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Abstract

Simplicial complexes are used in topological data analysis (TDA) to extract topo-
logical features of the data. The HomologyBasis algorithm is proposed as an
efficient method for the computation of the topological features of a finite filtered
simplicial complex. We build up the implementation and intuition of this algorithm
from its theoretical foundation ensuring this schema produces the desired simplicial
homlogy groups as claimed. HomlogyBasis implemented and compared with the
GUHDI algorithm to determine the HomologyBasis’ efficiency at computing per-
sistence pairs for finite filtered simplicial complexes. We find the HomologyBasis
algorithm performs much better than GUHDI on large low-dimensional simplicial
complexes but needs further refinement before it can more efficiently work with
high-dimensional complexes.
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1 Introduction

Data analysis seeks to understand the underlying relationships of a given data set.
These relationships can be thought of as defining some sampling manifold upon
which all data points lie. In order to understand the relationships, it is prudent
to understand the sampling manifold from which a given data set is extracted.
This becomes increasingly difficult as the complexity of the data sets increases.
There are two usual causes for this complexity. First, the data may be of such
high dimension that it renders intuitive visualization of its sampling manifold
impossible. Second, as data collection can be imprecise, random fluctuations and
disturbances, i.e. noise, in our data set can obfuscate the underlying structure of
the manifold.

Topological data analysis (TDA) is a recent framework that seeks to extract
this structural information from a metric data set by constructing triangulations of
the point cloud and then describing the “shape” of this topological space through
the lens of homology. Specifically, homology gives us a qualitative description of
the space’s structure by characterizing the holes of the space. Persistent homology,
introduced by Edelsbrunner in [9], is an extension of homology to data analysis in
the attempt to define, recognize, and ignore noise in collections of data. It attempts
to siphon out the homological features that are most integral to the topological
space from those that are created by the noise within the data. Persistent homology
has had many successful applications. In medical research, persistent homology
has been used to help in the identification of breast cancer subgroups [11] and liver
lesions [1]. In Molecular Dynamics it has been use to assist with model selection
[10] as well as being applied to the study of viral evolution [5].

A popular choice of algorithm for computing persistent homology is GUHDI
(Geometry Understanding in Higher Dimensions), which utilizes a special class
of trees called SimplexTrees to efficiently store simplicial complexes and compute
their persistent homology groups. The central problem with computing persistent
homology is that the computation time scales exponentially with the number of
simplices in the simplicial complex. This leads to a restriction on the data sets
that are feasible to extract homological information from. When dealing with “big”
data, we quickly encounter computation times so large that any information we
hope to gleam from our analysis becomes impractical to extract. Trying to better
understand GUHDI, we noticed that it fails to take advantage of the algebraic
structures called chain complexes that are so integral to the theory of homology.
This leads to the question: can we use chain complexes to further improve upon
the GUHDI algorithm?

In this thesis, we present an algorithm for the computation of a finite filtered
simplicial complex’s persistence pairs. We introduce a variation of the chain com-
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plex and demonstrate that these new totally filtered chain complexes can be used
to uniquely represent sets of simplicial complexes that share a common ordering
and structure. There exists a set of projections which restrict a given totally fil-
tered chain complex to a free k-vector space composed strictly of basis elements
that generate homological features. We use these projections to find isomorphisms
between each homology group and a unique subspace of our homology basis. Our
aptly named algorithm, HomologyBasis, produces a given finite filtered simplicial
complex’s persistence pairs by converting it to a totally filtered chain complex,
building up the subsequent homology bases corresponding to the restriction of
our chain complex to the first n basis elements, and tracking when various basis
elements appear and vanish from the image of our projections. We prove struc-
turing the HomologyBasis in this way does produce both the desired homology
bases and the persistent pairs for all homological features that exist within this se-
quence. While our implementation of this algorithm is yet to be optimized, initial
comparisons with GUHDI highlight the potential for HomologyBasis to compute
persistent homology of finite filtered simplicial complexes with great efficiency.

A github repository for the HomologyBasis algorithm has been created and
made public here: https://github.com/Pbrosten/HomologyBasis.
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Overview

This thesis is structured as follows:
Section 2 introduces the basic concepts used as a mathematical foundation

throughout this thesis. Specifically, abstract simplicial complexes, Euclidian data
complexes and filtrations, and both simplicial and persistent homology. Section
2.5 serves to introduce the totally filtered chain complex with which we work for
the remainder of the thesis.

Section 3 presents homology basis of a totally filtered chain complex. It is
shown to contain exactly the homological information introduced in Section 2.3
and a schema for its extraction using compatible sequences of homology bases is
described. Expanding upon these compatible sequences, we find they also define
the persistent homology form Section 2.4 for the context of totally filtered chain
complexes. The proofs of Section 3 are predominantly constructive and thus serve
as a foundation for the computation of persistence pairs using totally filtered chain
complexes and homology bases.

Section 4 combines the mathematics presented in Sections 2 and 3 and proposes
a general construction of the HomologyBaisis algorithm and its formalization as
pseudo code. The main difference between GUHDI and the proposed Homology-
Basis is that the former explicitly makes use of the chain complex structure that is
present when computing homology groups. The hypothesis that this will allow for
more efficient computation of these groups is tested and the results are presented
in Section 6

Section 5 presents a brief description of the Simplex Tree data structure utilized
by GUHDI. This section is for those interested in the structure GUHDI utilizes.
However, as the Simplex Tree structure has already been documented in depth by
Boissonnat and Maria in [3], only an overview given here.

Section 6 contains the results and analysis of various comparative tests run
between HomologyBasis and the GUHDI algorithm. These comparisons us two
standard benchmark data sets from [12] in addition to multiple randomly generated
point clouds of various dimension.

Sections 7 and 8 serve as the final thoughts and remarks on the HomologyBasis
algorithm and its underlying theory. The former focuses on the various problems
encountered during the comparisons and elaborates on the areas that require fur-
ther investigation. The latter gives a final summary of the mechanisms of the
HomologyBasis and the results from its comparisons with GUHDI.
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2 Preliminaries

The information in this section forms a foundation upon which this thesis is built.
The topics pertain predominantly to algebraic and computational topology. Most
definitions are drawn from various well regarded texts on these subjects, see [7]
and [9]. The reader is expected to have a general understanding of abstract al-
gebra. Readers well versed in the subjects of simplicial methods, homology and
computational topology may skip ahead to Section 2.5 and simply refer back to
the prior sections when needed.

The three most important topological objects for this thesis are the simplicial
complex, its homology groups (specifically persistent homology), and the intro-
duced algebraic structure we have named the totally filtered chain complex. We
begin by introducing the simplicial complex and developing some of the most im-
portant features for its use, specifically applications to data analysis. We discuss
the problem of choosing an appropriate simplicial complex for a given data set
and what a filtration of a simplicial complex is. This is followed by a discussion
of the sequences of algebraic groups, referred to as chain complexes, and how they
allow for the extrapolation of homological information. Finally, we finish our back-
ground information with the introduction of an algebraic structure we utilise to
more efficiently compute homology (persistent homology) for a given finite filtered
simplicial complex: the totally filtered chain complex.

2.1 Simplicial Complexes

There are two types of simplicial complexes: geometric simplicial complexes and
abstract simplicial complexes. The former are topological spaces that are intuitive
but difficult to efficiently use in computations. The latter are simplified to only
contain pertinent combinatorial information and hence are much more flexible for
computational purposes. Note the terms abstract simplicial complex and simplicial
complex are used interchangeably for the following discussions.

Definition 2.1. The pair (X, V ) of a vertex set V and X a finite nonempty subsets
of a vertex set V is an abstract simplicial complex if for any σ ∈ X and τ ⊆ σ,
τ ∈ X.

An element of X is referred to as a simplex or more specifically a d-simplex
when the element is a finite subset with cardinality d+ 1. If τ ⊆ σ then τ is a face
of σ and σ is a coface of τ . When τ ⊂ σ, τ is called a proper face of σ and the
boundary of a simplex is the union of all its proper faces. If Y ⊆ X and (Y, V )
is a simplicial complex, then (Y, V ) is a simplicial subcomplex of (X, V ). When
there is no ambiguity about the choice of vertex set an abstract simplical complex
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is a based on, we may simply refer to (X, V ) as X. When the highest dimensional
simplex in X is a k-simplex, we refer to (X, V ) as a k-simplicial complex. The
simplicial subcomplexes that restrict a k-simplicial complex to all simplices of
dimension l < k and lower is the k-simplicial complex’s l-skeleton.

Example 2.2. Let the set V = {0, 1, 2, 3, 4, 5}. Now the collection of subsets

X = {0, 1, 2, 3, 4, 5, 01, 12, 13, 23, 24, 25, 34, 35, 45, 123, 245, 345}

such that each string v0v1... represents the simplex {v0, v1, ...} ⊂ V is a simplicial
complex. In order to get a geometric sense of what this means we may identify
each element of V with a point in Rn for some n and then identifying every non-
singleton subset of V with the convex hull defined by the points in Rn that are
identified with the vertices of our subset. We can see an embedding of (X, V ) in
R2 in Figure 1 along with its 1-skeleton.

0

1 2

3 4
5

0

1 2

3 4
5

Figure 1: Representation of the simplicial complex and 1-skeleton from Example
2.2, embedded in the plane.

Notice that the representation in Figure 1 is composed of multiple variations
of the same type of geometric objects for each dimension. Namely, points for
dimension 0, line segments for dimension 1, triangles for dimension 2. Each of these
is an embedding of what is referred to as the standard d-simplex for some dimension
d. These generic building blocks are useful for representing the combinatorial
information encoded in an abstract simplicial complex geometrically.

Definition 2.3. The standard d-simplex, ∆d, is the subspace spanned by the unit
coordinate vectors of Rd+1.

Let us consider the example where d = 2. The standard 2-simplex will be the
the subset of R3 that is spanned by the unit coordinate vectors (1, 0, 0), (0, 1, 0),
and (0, 0, 1) as seen in Figure 2. Using this new vocabulary, we can aptly describe
Figure 1 as being as an embedding of a collection of standard d-simplices for
d = 0, 1, and 2 such that the embedding preserves the combinatorial information
encoded in the abstract simplicial complex from example 2.2. We refer to such an
embedding as the geometric realization of our abstract simplicial complex (X, V ).
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Figure 2: Two views of the standard 2-simplex, ∆2, constructed using the unit
coordinate vectors of R3.

Definition 2.4. Given a finite simplicial complex (X, V ) with n elements in its
vertex set. The geometric realization of X, denoted |X|, is a subspace of Rn+1

defined by the embedding of various ∆d in such a way that each i ∈ V can be
mapped to a unique point xi ∈ Rn+1.

Interestingly, we may always construct a geometric realization for a simplicial
complex given we choose a sufficiently high dimensional euclidean space to embed
in.

Theorem 2.5 (Geometric Realization Theorem). Every abstract simplicial com-
plex of dimension d has a geometric realization in R2d+1.

A proof of the Geometric Realization Theorem is presented by Edelsbrunner
in [8].

Definition 2.6. A map f : (X, V )→ (Y,W ) between simplicial complexes is sim-
plicial if each simplex in X is taken to a simplex in Y via a linear map taking
vertices to vertices.

It is useful to notice that simplicial maps are purely determined by the restric-
tion to the vertex sets f 0:V → W . That is when considering a simplicial map, it
is sufficient to only consider what happens to 0-simplices of X under the simplicial
map f . Examples of such maps are the inclusion of a 3-simplex in a simplicial
complex of degree 3 or the inclusion of a 2-simplex based on one vertex set to
another as seen below.

(a) (b)

Figure 3: (a) An inclusion simplicial map of a 3-simplex into a 3-simplicial complex.
(b) A simplicial map between two 2-simplices with different vertex sets.
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Notice that the simplicial map defined on the simplicial complexes in Figure 3b
has a special relation that the other map lacks. The second simplicial map defines
an isomorphism between the two simplicial complexes X and Y where as the first
is non-isomorphic. In terms of topological features, both simplicial complexes in
the second example are identical even though (X, V ) 6= (Y,W ). This leads us
to a useful construction that eliminates the need to explicitly state a vertex set
when discussing a simplicial complex. That is, we make equivalent all complexes
which have an simplicial isomorphism between them and thus share the same
combinatorial and topological information.

Definition 2.7. Let (X, V ) and (Y,W ) be two simplicial complexes such that
there exists a bijective simplicial map f 0:V → W that induces an isomorphism
f : (X, V ) → (Y, V ). Then (X, V ) ∼ (Y, V ) and both are members of the same
equivalence class [X]. The equivalence class [X] is referred to as an isomorphism
class of simplicial complexes.

Using these isomorphism classes, we may construct a generalized collection of
abstract simplicial complexes that no longer require any specification of vertex set.

Definition 2.8. Let X∗ be the collection of all possible isomorphism classes of
simplicial complexes. That is,

X∗ = {[X]| (X, V ) is an abstract simplicial complex for some vertex set V }

The set X∗ now contains a representative for every possible abstract simplicial
complex. As our goal is to apply topoligical data analysis to finite data sets, we
limit X∗ to strictly finite abstract simplicial complexes. The prior definitions will
become useful later in Section 2.5.

2.2 Complexes, Filtrations, and Data

Consider a discrete subset P ⊆ Rn. If P is a finite collection of data points, a point
cloud, sampled from some unknown manifold, it may be productive to extrapo-
late information about the underlying manifold in order to better understand the
specific data set. Constructing graphs can help to discern pertinent clues about
the underlying structure. However, it is usually more descriptive to construct a
simplicial complex instead. However, given the numerous different simplicial com-
plexes that can be constructed on any sufficiently large point cloud, choosing a
useful simplicial complex for our data set is easier said than done.

When analyzing data, it is necessary to consider what underlying information
about the point cloud we are attempting to extract. Hence, it is pertinent to
choose a simplicial complex that will help uncover interesting relations within our
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Figure 4: On the left we have the simplicial representation of the pairwise acti-
vation neural system. Simplices are added to the complex based on simultaneous
activation. On the right, we have same neural system with the addition of triple
simultaneous activation represented by the inclusion of a 2-simplex.

data set that may not have been immediately obvious. One common method is
to abstract the idea of “nearness”. Simplicial complexes can help define complex
relations between the specific data points in order to uncover a better sense of
the underlying “nearness” of the point cloud. Take the example presented in [6].
Consider a simple three neuron system, with two distinct activation patterns. In
the first, each neuron is pairwise-active. That is, at any given time exactly two of
the neurons are firing, never three. For the second, let each of the neurons fire in
unison. Using the tools of graph theory, an intuitive representation of these systems
might to identify each neuron as a vertex and construct a C3 graph, where every
edge between two vertices is added, on our vertex set. Here we use concurrent
activation of two neurons to determine when it is appropriate to add an edge.
However, this representation falters to differentiate between the two. This is where
the use of simplicial complexes becomes advantageous. Choosing our definition of
when vertices are “near” one another to be when they are simultaneously active,
we are able to differentiate between the two systems by treating the C3 graphs
as simplicial complexes and then filling in the 2-simplex for the latter system, see
Figure 4, as all three vertices are “near” one another. This allows us to represent
these two systems without losing information about the internal relationships of
neuron activation activation patterns. We call such abstract simplicial complexes
that have a Eucidean data set as their vertex set a Euclidean data complex 1.

1This terminology is credited to Morten Brun and Kristian André Jakobsen.
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2.2.1 Nerves

When given a data set, one approach to extracting topological information about
the sampling manifold utilizes a structure called a nerve. The main premise is that
when given a covering, we can simplify the cover so that it only preserves the most
important information about the underlying structure of the manifold of interest.

Definition 2.9. Consider a finite collection of sets F . The nerve of F , Nrv(F ),
is defined as:

Nrv(F ) = {X ⊆ F |
⋂

X 6= ∅}.

That is, the set of all non-empty subcollections whose sets have a non-empty
intersection.

A useful property of the nerve is that it is always an abstract simplicial complex,
regardless of the collection F . Take the collection of sets in Figure 5. We may
think of the nerve of this collection of sets as an abstract simplicial complex by
identifying each set in F to a unique vertex in some vertex set of cardinality 4.
Then for every subcollection of n sets that share a non-empty multi-intersection
we add an (n − 1)-simplex, defined by vertices corresponding to each set in the
subcollection, to our simplicial complex. The nerve of F is isomorphic to the
restriction of the standard 3-simplex to is own boundary. Notice in this example,
there is a difference between the homotopy types of the union of the F and the
nerve of F . This occurs because we are dealing with non-convex sets. Interestingly,
if the sets in F are convex then the nerve preserves homotopy type. This is stated
formally in the following theorem.

Figure 5: A finite collection of sets F . Notice that viewing the Nrv(F ) as a
simplicial complex we get the standard 3-simplex restricted to its boundary.
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Theorem 2.10. Let F be a finite collection of closed, convex sets in Euclidean
space. Then the nerve of F and the union of the sets in F have the same homotopy
type.

This theorem becomes very useful when trying to tackle the Euclidean data
complex choice problem for a point cloud. In order to extract some interesting
topological information about the underlying manifold our data set has been sam-
pled from, we may construct a nerve on some finite collection of closed, convex
sets covering our point cloud.

2.2.2 The Čech Complex

Letting the closed, convex sets be d-balls of some given radius, we arrive at a
schema for constructing the Čech complex.

Definition 2.11. Let S be a finite set of points in Rd and write Br(v) = v + rBd

as the closed d-ball with radius r and center x. The Čech complex Čr(S) is the
simplicial complex of all subsets σ ⊆ S where the intersection of all Br(v) for v ∈ σ
is nonempty. That is,

Čr(S) = {σ ⊆ S |
⋂
v∈σ

Br(v) 6= ∅}.

By construction, the Čech complex is identical to the nerve of this collection of
specified d-balls.

Notice that for any collection of vertices S, there are more than one Čech
complex for S. By varying the parameter r we can construct a dynamic family
of Euclidean data complexes constructed on the vertex set S and bounded by
the simplicial complexes Č0(S) = S and Č∞(S), where Č∞(S) is the complete
(‖S‖−1)-simplex. By Theorem 2.10, each member of {Čr(S)}∞r=0 is homotopic to
the union of the radius-r balls about S. When it comes to fidelity of the topological
information extracted, the Čech complex is the best choice.

However, this fidelity comes at a two-fold cost. First, the construction of
a Čech complex requires that all higher-order intersections must be computed.
While this does not present an issue for very small point clouds like the one in
Figure 6, it becomes computationally unwieldy when considering larger and larger
data sets. Additionally, we are required to store every simplex in our Čech complex
individually. Both of these drawbacks have lead to the development of complexes
that trade topological fidelity for computational efficiency. Enter the Vietoris-Rips
complex.
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⊆ ⊆

S Č3(S) Č4(S)

Figure 6: Progression of a Čech complex. The first figure is the point set S in R2,
the second shows the complex Č3(S) and the third is the Č4(S) complex.

2.2.3 The Vietoris-Rips Complex

Recall for a set of points, the diameter of the set is the maximum of the pairwise
distances of all points in that set.

diam(σ) = max({dist(x, y) | x, y ∈ σ}).

Definition 2.12. Let S be a finite set of points in Rd. Then given r ∈ R the
Vietoris-Rips complex on S is defined by choosing all subsets of S with diameter
less than or equal to 2r, i.e.,

VRr(S) = {σ ⊆ S | diam(σ) ≤ 2r}.

The first difference that should be noticed between the Čech and Vietoris-Rips
complexes is when higher dimensional simplices are included. As inclusion is no
longer contingent on non-empty multi-intersections, but instead determined only
by the largest pairwise distance between vertices in a subset of the point cloud, we
find a much more liberal inclusion of higher dimensional simplices in our Vietoris-
Rips complex. Take the point cloud S from our discussion of the Čech complex
and consider the upper most three points. Remember that in Č3(S) we only
include the boundary of the 2-simplex defined by these three points. However,
when constructing the VR3(S) complex, we find that the 2-simplex is included.
This can be seen in Figure 7.

This choice to ignore evaluating multi-intersection not only decreases the com-
putational requirements of the Vietoris-Rips complex, but also assists with the
issue of efficient storage. Given that the inclusion of higher dimensional simplices
is dictated strictly by the pairwise distances of vertices, we find that every Vietoris-
Rips complex has a unique 1-skeleton. Utilizing this fact allows us to store any
Vietoris-Rips complex by its 1-skeleton. When we need to reconstruct the complex,
we may simply add a k-simplex for every complete k-subgraph in the skeleton.
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⊆ ⊆

S VR3(S) VR4(S)

Figure 7: Progression of a Vietoris-Rips complex. The first figure is the point
set S in R2, the second shows the complex VR3(S) and the third is the VR4(S)
complex.

Unfortunately, this increase in efficiency comes at a decrease in topological
precision. While Čr(S) ⊆ VRr(S) for all r and S, the Vietoris-Rips complex
only approximates the topological information that can be gleamed from the Čech
complex. This is usually considered a good enough approximation for capturing
the topology of large-scale holes [4]. Also note that as r approaches ∞, the Čech
and Vietoris-Rips complexes converge to the same Euclidean data complex. That
is, Č∞(S) = VR∞(S) = (PS, S) where S is the data set and PS is its powerset.

2.2.4 The Delaunay and Alpha Complexes

Sometimes we are not interested in the higher dimensional relationships that can
be expressed by a simplicial complex. In this case it is beneficial to consider either
the Delaunay complex or its parameterized counterpart, the Alpha complex.

When constructing either complex on a point set in Rd, one must first find
a cover of Rd based on the given point set and made up of closed subsets called
Voronoi cells.

Definition 2.13. Given a finite set of points in S ⊆ Rd, the Voronoi cell of a
point u ∈ S is the closed set

Vu = {x ∈ Rd | ‖x− u‖≤ ‖x− v‖, ∀v ∈ S}.

That is, the set of all points in the Vu are as close to the point u as to any other
v ∈ S.

An simple example of a Voronoi cell is given in Figure 8. Notice that the
Voronoi cells do in fact form a cover {Vs}s∈S of R2. When the collection of Voronoi
cells are considered all together, as a cover of Rd, we call them the Voronoi diagram
of our point set. Having defined the Voronoi diagram, we may now construct the
Delaunay complex.
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w

y

x

z

Vw

Figure 8: Example of a Voronoi diagram for the point set S = {w, x, y, z} in R2.
The Voronoi cell Vw has been highlighted in red. Note that, in this example, the
other three Voronoi cells (whose boundaries are in black) will extend indefinitely
across the plane and form a cover for R2.

Definition 2.14. Let S be a finite set of points in Rd. The Delaunay complex is
isomorphic to the nerve of the Voronoi diagram of S

Del(S) = {σ ⊆ S |
⋂
u∈σ

Vu 6= ∅}.

The Delaunay complex is very rigid when compared to the Čech and Vietoris-
Rips complexes, in that there is only one Del(S) complex for a given point cloud
S. If one desires the malleability of the Čech complex but the higher dimensional
suppression of the Delaunay complex, then one can take the parameterization of
the latter, which acts as a Čech complex that is bounded by the Delaunay complex.
This parameterization is named the Alpha complex.

Definition 2.15. Let V r
u = Vu ∩ Br(u) be a parameterized Voronoi cell. Then

given a finite point cloud S ⊆ Rd and r ≥ 0, the Alpha complex of parameter r is
the Euclidean data complex

Alphar(S) = {σ ⊆ S |
⋂
u∈σ

V r
u 6= ∅}.

For small values of r, Alphar(S) will be exactly Čr(S). However, as r increases
and we begin having more and more multi-intersections of d-balls, the bounding
by the Voronoi cells start to take effect to limit the number of intersections we
must check. This is especially noticeable when there are pockets of densely packed
points, as in Figure 9. Having chosen a sufficiently large value of r, we can see
that the Čech complex has many multi-intersections which force the inclusion of
equally numerous higher dimensional simplices up to dimension 5. In contrast, the
bounding effect of the Alpha complex suppresses all d-simplices for d ≥ 3 in the
Čech complex. Thus limiting our simplicial complex to a 3-complex.
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(a) Alphar(S) (b) Čr(S)

Figure 9: Instances of the Alpha and Čech complex for the same value of r on the
same densely packed point set. Notice the Alpha complex limits intersections to
the boundaries of the Voronoi cells.

2.2.5 Filtrations

The Alpha, Čech, and Vietoris-Rips complexes all share an interesting common-
ality: when allowing r to vary from 0 to ∞, they each define a family of nested
simplicial complexes. To demonstrate why this is of interest to us, consider Čr∗(S)
for some r∗ and S. When viewed in isolation, we can gleam no information about
the order in which its simplices were included to built up Čr∗(S). However, when
Čr∗(S) is considered as a member of the family {Čr(S)}∞r=0, we may look back
on r ≤ r∗ to better understand how Čr∗(S) was constructed. For each simplex
σ ∈ Čr∗(S), assign the value l such that σ ∈ Čl(S) and σ /∈ Čr(S) for all r < l.
Ordering our simplices by these l values will give insight into the way in which our
complex Čr∗(S) was built from the point set S.

What we have just done is construct a filtration on the simplicial complex
Čr∗(S). Intuitively speaking, a filtration gives us a sense of the “time” that each
simplex was added to our simplicial complex during its construction. We now
formalize this notion.

Definition 2.16. Let X be a simplicial complex. A function F :X → R is a
filtration on X if it is non-decreasing with regards to faces of simplices. That is,
if τ is a face of σ then F (τ) ≤ F (σ).

Each of the parameterized complexes discussed so far has an intuitive filtration
we may associate with it. Namely, using the r parameter to define our filtration
values. However, the definition is not overly restrictive on what can and cannot be
a filtration. For example, given a simplicial complex X, we are allowed to define
the filtration function on X that takes all simplices to 6. In this case, the filtration
would simply be telling us that the complex X appeared, wholly formed, at the
“time” 6. When the only desired feature of the filtration is to demonstrate how
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one would build the simplicial complex using one simplex at a time, the implicit
index filtration becomes the best option.

Definition 2.17. Let X be a finite simplicial complex such that there are n + 1
simplices in X. Then the index filtration on X is the injective function F :X → N

such that the image of F is the totally ordered set [n] = {0, 1, . . . , n}.

As there are some many possible filtrations for a given simplicial complex, it
is useful to be explicit about both the complex and filtration we are dealing with.

Definition 2.18. Given a simplicial complex (X, V ) and F :X → R a filtration, a
filtered simplicial complex (X,F ) is the application of the filtration to the simplicial
complex.

Applying the concept of isomorphism classes of simplicial complexes from defi-
nition 2.7, we may decouple a filtered simplicial complexes from its implicit vertex
sets.

Definition 2.19. Let the (X,F ) be a filtered simplicial complex. Then the iso-
morphism class of filtered simplicial complexes ([X], F ) is the equivalence class
such that the ordering created by the filtration function F on X is preserved by
all simplicial maps between members of the isomorphism class [X].

It is important to notice that if two filtrations F :X → R and G:X → R on a
simplicial complex X induce distinct orderings on the simplices of X, the isomor-
phism classes ([X], F ) and ([X], G) are also distinct. However, if the two filtrations
produce the same total ordering on X, then the filtered simplicial complexes (X,F )
and (X,G) will be members of the same isomorphism class ([X], F ) = ([X], G).

Definition 2.20. Define the set of all isomorphism classes of finite filtered sim-
plicial complexes to be

(X∗, F ) = {([X], F ) | [X] ∈ X∗ and F a filtration on X}.

The set of all isomorphism classes of finite filtered simplicial complexes rep-
resents the most generalized similarities between filtered, simplicial complexes as
it reduces simplicial complexes to common isomorphism classes and filtrations to
isomorphic total orderings.

We may also use the language of category theory to describe finite filtered
simplicial complexes.

Definition 2.21. The category XF is the category of finite filtered simplicial
complexes. Its objects are the finite filtered simplicial complexes (X,F ) and its
morphisms are simplicial maps φ:X → Y such that, given two finite filtered sim-
plicial complexes (X,F ) and (Y,G), F (σ) ≥ G(φ(σ)) for all σ ∈ X.
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Checking that this does constitute a category, consider the morphisms φ be-
tween (X,F ) and (Y,G) and ψ between (Y,G) and (Z,H). Notice F (σ) ≥ G(φ(σ))
for all σ ∈ X and G(τ) ≥ H(ψ(τ)) for all τ ∈ Y . Then as

F (σ) ≥ G(φ(σ)) ≥ H(ψ(φ(σ)))

for all σ ∈ X, we have a composition rule for morphisms.
Associativity follows as the morphisms are simplicial maps. Given three com-

patible morphisms (X,F )
φ−→ (Y,G), (Y,G)

ψ−→ (Z,H), and (Z,H)
θ−→ (W,E) we

have
θ ◦ (ψ ◦ φ)(σ) = θ(ψ(φ(σ))) = (θ ◦ ψ) ◦ φ(σ)

for all σ ∈ X. Finally, given (X,F ), the identity morphism id(X,F ) is simply the
inclusion simplicial map from X to itself. Thus, XF is in fact a category.

2.3 Homology

Homology is a mathematical framework for discussing, unambiguously, how a topo-
logical space is connected. The most intuitive way to understand homology is by
connected components and higher dimensional holes in a space. Consider the
boundary of the standard 2-simplex in Figure 2. We will find that the only non-
trivial homology groups are H1 and H0 and in fact each give one copy of the field
used for this computation. Topologically speaking, this translates to our complex
consisting of a single 1-dimensional hole (the loop formed by the 1-simplices) and
a singular connected component.

Circumventing the philosophical discussion of the metaphysical characteriza-
tion of holes [13], homology groups take an indirect approach at the discovery and
classification of a space’s holes by focusing instead on what surrounds them. This
is done using sequences called chain complexes.

Definition 2.22. A chain complex C is a sequence of abelian groups, called chain
groups,

· · · ∂k+1−−→ Ck
∂k−→ · · · ∂2−→ C1

∂1−→ C0
∂0−→ · · ·

connected by homomorphisms ∂k:Ck → Ck−1 such that ∂k−1∂k = 0 for all k.
Note that C−1 = ∅ and the individual elements of each chain group Cp are called
p-chains.

In order to adapt these chain complexes for the abstract simplicial complexes
discussed in Section 2.1 we need the following.

Definition 2.23. An orientation of an n-simplex is an ordering of its vertices
[v0, v1, ..., vn]. Any two orientations on the same simplex are equivalent if there is
an even permutation that changes one to the other.
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Defining orientations on simplices allows us to construct explicit boundary
maps with the purpose of ensuring the composition criterion of Definition 2.22.

Definition 2.24. Let X be a simplicial complex and σ be an oriented n-simplex
of X given by [v0, v1, ..., vn]. Then the boundary map ∂n is defined as follows:

∂n(σ) = ∂n([v0, v1, ..., vn]) =
n∑
i=0

(−1)iσ|[v0,...,v̂i,...,vn]

where σ|[v0,...,v̂i,...,vn] is the simplex created by removing the ith vertex from the
simplex σ.

Now given an abstract simplicial complex (X, V ), we choose Cp(X) to be the
free abelian group of oriented p-simplices and the p-chains as formal linear com-
binations of p-simplices. We claim that the boundary map in definition 2.24 acts
as the desired homomorphism for our chain complex. We must now verify the
boundary map is 0 for double composition.

Proposition 2.25. The composition ∂n−1 ◦ ∂n is always zero.

Proof. Let σ be an oriented n-simplex in the simplicial complex X. We write
σ = [v0, v1, ..., vn] and, by definition, ∂n(σ) =

∑
i(−1)iσ|[v0,...,v̂i,...,vn]. Now applying

∂n−1 we get

∂n−1(∂n(σ)) =
∑
j

(−1)j

(∑
i

(−1)iσ|[v0,...,v̂i,...,vn]

)∣∣∣
[v0,...,v̂j ,...,vn]

=
∑
j

∑
i

(−1)j(−1)i
(
σ|[v0,...,v̂i,...,vn]

)
|[v0,...,v̂j ,...,vn]

=
∑
j<i

(−1)i(−1)jσ|[v0,...,v̂j ,...,v̂i,...,vn]

+
∑
i<j

(−1)i(−1)j−1σ|[v0,...,v̂i,...,v̂j ,...,vn]

where the second term in the sum can be expressed as the negative of the first
when indexing over all j < i instead of i < j. This demonstrates that the double
composition of ∂n and ∂n−1 is always zero and thus the boundary maps {∂n}n∈N
define the chain complex C(X) = {Cn(X)}n∈N for the simplicial set (X, V ).

The following terminology is commonly used when discussing the boundary
maps: Zp = ker(∂p) and Bp = im (∂p+1). We must also distinguish two special
types of chains in a chain complex. The first being p-cycles that are p-chains with
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empty boundaries, ∂pc = 0, that reside in Zp. The second, p-boundaries, reside in
Bp and are defined by being the boundary of a (p + 1)-chain, c = ∂p+1c′ for some
c′ ∈ Cp+1.

As we have shown, the image of a p-boundary under the boundary map is
always zero. Hence, the group of p-boundaries is a subgroup of the group of p-
cycles. Thinking intuitively, a p-hole must be confined by some p-cycle. However,
not all p-cycles surround a hole. The boundary of a (p + 1)-simplex is a p-cycle
by Proposition 2.25, yet by definition it could not confine a hole as its interior is
filled by our (p + 1)-simplex. In order to find the holes in our complex, we must
restrict our p-cycles to those that do not serve as the p-boundary for some other
simplex. Hence, we take the quotient group of the p-cycles modulo p-boundaries.
This leads us directly to the homology groups.

Definition 2.26. The pth homology group of a chain complex is defined as

Hp =
Zp
Bp

=
ker(∂p)

im (∂p+1)
.

a c
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b

d e

f

Figure 10: The standard 2-simplex ∆2 (left) and its boundary ∂∆2 (right). The
simplices are given alphabetical signifiers to more precisely refer back to them.

Consider two closely related examples: the standard 2-simplex and its bound-
ary, see Figure 10. We will first use the chain complex for ∂∆2 to compute
the homology groups. We represent the free abelian groups of oriented sim-
plices by their respective set of generators. The only non-trivial chain groups
are C0(∂∆2) = {a, b, c} and C1(∂∆2) = {d, e, f}. Notice the only 1-cycles are
those in the subgroup Z1 = {d− e+ f} and there are no 1-chains that are also the
boundary of a 2-chain. For C0(∂∆2), we can make the following identifications:

b = b− a+ a = −∂1(d) + a
c = c− a+ a = −∂1(f) + a

∂(e) = b− c = (a− c) + (b− a) = ∂1(f)− ∂1(d).
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Applying these to C0(∂∆2), we find that

C0(∂∆2) = {a,−∂1(d) + a,−∂1(f) + a} = {a, ∂1(d), ∂1(f)}

and

Z0 = {a, ∂1(d), ∂1(f)}
B0 = {∂1(d), ∂0(f)}.

Using Definition 2.26 to compute the 0th and 1st homology groups of our complex,
we find of the quotient groups each have only one generator. This translates
to there being one 0-homology feature (the connected component) and one 1-
homology feature (the loop formed by the three 1-simplices). This is in agreement
with both the discussion at the beginning of this section and our intuition for the
characterization of ∂∆2’s holes.

Now consider what happens when we decide to include the 2-simplex in our
complex. We expect that the 1-dimensional hole we found in ∂∆2 will vanish
leaving only a single connected component. Notice that C2(∆

2) is no longer trivial
and 1-cycles generated by d − e + f are now also 1-boundaries of the 2-chains
generated by g. This tells us that Z1 = {d − e + f} = B1 and so H1 is now
trivial. As g has a non-zero image under ∂2, H2 will also be trivial. Using the
same identifications and argument as with ∂∆2, H0 has exactly one generator.

2.4 Persistent Homology

The homology groups that we have found give us intuition about the important
topological structure of a given abstract simplicial complex. It is, however, simply
a snapshot in time and lacks information on important topological features that
are created and destroyed during the construction of our specific complex. Let us
again consider the 2-simplex in Figure 10. Having computed the various homology
groups, Hp(∆

2), of this structure, we know that only p = 0 is a non-trivial group.
Yet if we are to build up this simplicial complex ∆2 one simplex at a time we will
eventually need to pass through the simplicial subcomplex ∂∆2, which we know
has a non-trivial H1(∂∆2) group.

This leads us to ask: how can we account for the homological features that
arise and vanish throughout the construction of a given complex? The answer is
persistent homology.

Consider a finite filtered simplicial complex (X,F ). Letting there be m sim-
plices in X, the filtration function F :X → R defines a sequence of n+ 1 ≤ m+ 1
subcomplexes of X

∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn = X
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such that the maximum value under F of all simplices in Xi is ai and a0 < a1 <
· · · < an. For every i ≤ j, we have an inclusion map from Xi to Xj and hence
an induced homomorphism f i,jp :Hp(Xi) → Hp(Xj) for each dimension p. From
our sequence of subcomplexes, we find an induced sequence of homology groups
connected by homomorphisms

0 = Hp(X0)→ Hp(X1)→ · · · → Hp(Xn) = Hp(X)

for each dimension p. This induced sequence of homology groups is the key to
understanding the evolution of topological features as our original finite filtered
simplicial complex is constructed.

Definition 2.27. Given a finite filtered simplicial complex (X,F ), the pth per-
sistent homology groups are the images of the homomorphisms, f i,jp :Hp(Xi) →
Hp(Xj) for 0 ≤ i ≤ j ≤ n induced by the inclusion of Xi ↪→ Xj.

We define the homomorphism f i,ip as the identity on Hp(Xi) for all i and p.
Letting c be a homology class in Hp(Xi), c is born at Xi if c /∈ im (f i−1,ip ). If the
homology class c is born at Xi, it is said to die entering Xj if it is absorbed by
another homology class as we go from Xj−1 to Xj. When two classes merge, the
class that absorbs or kills the other is determined by which class was born first,
hence the name: the Elder Rule [8].

When looking at a specific homology class c that is born at Xi and dies entering
Xj, its birth and death information are combined in the persistence pair (ai, aj).
We call the filtration value ai, corresponding to Xi, the birth time of c and the
filtration value aj is recorded as our class’ death time. The persistence of a class c
is defined as aj − ai. In the case when c never dies entering a subcomplex Xj, it
is given an infinite persistence and is called a persistent feature of (X,F ).

1 0 1 2 3 4 5

1

0

1

2

3

4

Figure 11: Example point cloud embedded in R2.
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There are two ways to present the persistent homology information for a sim-
plicial complex. One is the persistent diagram that plots each homology feature,
persistent or otherwise, by the pair of its birth and death times. The other is
the barcode diagram, which encodes each homological feature as a line segment,
beginning at its birth time and terminating at its death time. Each encode the
same topological information, but present them slightly differently.

0.0 0.2 0.4 0.6 0.8 1.0
Birth

0.0

0.2

0.4

0.6

0.8

1.0

De
at

h

Persistence Diagram - HomologyBasis

H0
H1

0.0 0.2 0.4 0.6 0.8 1.0

Barcode Diagram

H0
H1

Figure 12: The persistence (left) and barcode (right) diagrams for the Čech pro-
gression of Figure 11 restricted to simplices of dimension 0, 1, and 2.

For an example of each, consider varying the parameter of the Čech complex
from 0 to ∞ for the data set shown in Figure 11. As the data set is embedded
in R2, we have restricted the complex to simplices of dimension 0, 1, and 2. The
persistence and barcode diagrams are produced in Figure 12. In the persistence
diagram, all points that fall close to the line x = y are most likely noise that is
unimportant to the fundamental structure of our complex. The analog of this in
the barcode diagram are bars that have a very short length. There are, however,
three features that we consider interesting. First is the persistent 0-homology
feature that will always be present. This is denoted by the 0-homology point in
the up left corner of our persistence diagram and by the longest 0-homology bar
in our barcode diagram. The second is the 0-homology feature that has a birth
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time of 0 and a death time of roughly 0.55. This is a much larger persistence than
the majority of the other 0-homology features and so we may intuit that there
are two main connected components that make up our simplicial complex. Lastly,
we have a 1-homology feature that persists much longer than the other features
of this dimension. It is represented by the 1-homology point near the top of our
persistence diagram and by the longest 1-homology bar in our barcode diagram. It
is not a persistent feature which tells us that it is not present in the Č∞ complex,
but appears in a large number of the subcomplexes we built along the way. Hence,
we may guess that there is a prominent loop in our data set. Looking back to our
point cloud in Figure 11, we are able to identify the key features that our analysis
of the persistence and barcode diagrams picked out.

2.5 Totally Filtered Chain Complexes

We now introduce our main algebraic structure, the totally filtered chain complex.
As its name suggests, the totally filtered chain complex combines the chain complex
from Section 2.3 with the the idea of using filtrations to assess how the homology
groups evolve over the construction of the various subcomplexes from Section 2.4.
Recall, given a field k and function f :X → k, the set of all elements of X with
non-zero image under f is called the support of f .

Definition 2.28. Given a set X and field k, the free k-vector space k{X} based
on X is the set of functions v:X → k with finite support.

Definition 2.29. A totally filtered chain complex based on a totally ordered set
[n] is the pair C = (∂, deg) of a k-linear map ∂: k{[n]} → k{[n]} and a function
deg: [n]→ Z. Writing FiCp = k{[i] ∩ deg−1(p)}, we require:

1. ∂ ◦ ∂ = 0.

2. For all 0 ≤ i ≤ n and p ∈ Z, the k-linear map ∂ restricts to a k-linear map
∂i,p:FiCp → Fi−1Cp−1.

We write Cp = k{[n] ∩ deg−1(p)} and ∂p:Cp → Cp−1 for the restriction of ∂. As
with other chain complexes, Zp = ker(∂p) and Bp = im (∂p+1).

Given i ∈ N and a totally filtered chain complex C = (∂, deg), we denote
the totally filtered chain complex based on the restriction to [i] ∩ [n] with FiC =
(Fi∂, Fi deg). In FiC, Fi∂ is given by the restriction of ∂ to the k-linear subspace
k[i] ∩ [n] and Fi deg is the restriction of deg to the subspace [i] ∩ [n] of [n].

We now introduce an injective function between the set of all isomorphism
classes of finite filtered simplicial complexes and the set of all totally filtered chain
complexes. It is believed that this relationship may be more aptly described as a
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functor between the category of filtered simplicial complexes (see Definition 2.21)
and the category of totally filtered chain complexes. However, this requires a
precise description of the latter category which has not been created up to this
point.

Proposition 2.30. Let TFCC be the set of totally filtered chain complexes. Choos-
ing a field k, there exists a injective function

Γk: (X∗, F )→ TFCC

that uniquely maps each isomorphism class of finite filtered simplicial complex to
a totally filtered chain complex.

Proof. We first propose a schema for the function Γk and then prove that this
construction is in fact injective.

Let ([X], F ) be a isomorphism class of finite filtered simplicial complexes, with
representative (X,F ). Then F :X → R defines a total ordering on X such that
F (σ) ≤ F (τ) implies σ ⊆ τ for all τ, σ ∈ X. As X is finite, we know this is a finite
total ordering on n+ 1 simplices for some non-negative integer n. The total order

induces an isomorphism I:X
∼=−→ [n]. Note that this isomorphism is unique up to

reordering. From I we derive an appropriate deg: [n] → Z function, namely one
that preserves the degrees of all simplices in X under I. Now to find the k-linear
map ∂. As we have already chosen the field k that we wish to work in, we know
we must work in the free k-vector space k{[n]}. This k-vector space is spanned by
basis functions of the form fσ such that

fσ(τ) =

{
1 for τ = σ

0 else

Any function defined on the free k-vector space is uniquely described by how
it acts on the basis elements. Given a p-simplex x ∈ (X,F ) with orientation
x = [vx0 , vx1 , . . . , vxp−1 ], any of the boundary (p−1)-simplices’ orientations may be
denoted by dxi = [vx0 , . . . , v̂xi , . . . , vxp−1 ] where vxi is removed. Let σ = I(x), that
is σ is the representative of the simplex x under I. We define ∂: k{[n]} → k{[n]}
by

∂(fσ) = f∂(σ): [n]→ k

where

f∂(σ)(τ) =


1 if τ = I(dxi) for some even i

−1 if τ = I(dxi) for some odd i

0 else
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We now check that our proposed (∂, deg) is in fact a totally filtered chain
complex. Consider the basis element in k{[n]}, fσ, for some σ = I(x) and x ∈
(X,F ). Then

∂(fσ) = f∂(σ) =
∑
i

(−1)ifI(dxi).

Both dI−1(I(dxi))j and dI−1(I(dxj))i pick out the same oriented simplex in (X,F ),
however it is combinatorially important to track whether i < j or j < i. We use
the notation scheme that dxi,j refers to the stated (p − 2)-simplex when i < j.
Now when taking the double boundary of fσ we get

∂ ◦ ∂(fσ) = ∂(f∂(σ)) = ∂(
∑
i

(−1)ifI(dxi))

=
∑
i

(−1)i∂(fI(dxi))

=
∑
i

(−1)i(
∑
i 6=j

(−1)jfI(dI−1(I(dxi))j))

=
∑
j<i

(−1)i−1(−1)jfI(dxj,i) +
∑
i<j

(−1)i(−1)jfI(dxi,j)

By the same argument as in the proof of Proposition 2.25 the two terms sum to
zero.

Let 0 ≤ i ≤ n and p ∈ Z. We hope to show that ∂ restricts to ∂i,p:FiCp →
Fi−1Cp−1. As the isomorphism I is induced by the total ordering applied by
the filtration F on X, we know that if {i} is the representative of some simplex
x ∈ (X,F ) then a face of x must be represented by {j} such that j < i. Also, by
definition, deg preserves the degree structure from (X,F ) and ∂ is defined using
dxi’s which are of one lower degree than x. As ∂ restricts individually for both i
and p, it also restricts for them together. Thus we have constructed a schema to
send ([X], F ) into a totally filtered chain complex based on [n] in the field k.

The injectivity of Γk follows from the fact that the isomorphism I:X → [n] is
unique up to reordering. Let (X,F ) and (Y,G) be two finite filtered simplicial com-
plexes such that Γk(([X], F )) = Γk(([Y ], G)). We have an isomorphism between
X and Y , as both have isomorphisms, IX :X → [n] and IY :Y → [n] respectively,
between them and the totally ordered set [n]. As IX and IY are induced by the
filtration functions F and G, the isomorphism extends to the filtration functions
as well. As the degree and boundary relations that are encoded in the totally fil-
tered chain complex are the same for both ([X], F ) and ([Y ], G), we may construct
an isomorphic simplicial map between the simplicial complexes X and Y . Thus
([X], F ) = ([Y ], G), demonstrating the injectivity of Γk.
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Figure 13: The standard 2-simplex ∆2 along with the images of its simplices under
the isomorphism I: ∆2 → [6].

Example 2.31. Let us use Proposition 2.30 to construct a totally filtered chain
complex from the standard 2-simplex, see Figure 13. We apply a general filtration
to ∆2 such that F (a) < F (b) < · · · < F (f) < F (g).

First we choose the field we wish to be working in. For simplicity we select Zp
for some prime p. Next we choose the totally ordered set to be [6] as we have 7
simplices in our complex. The isomorphism I: ∆2 → [6] is constructed as in Figure
13. We now define the degree and boundary functions for our totally filtered chain
complex on the basis elements of Zp{[6]} in the table below.

σ I(σ) deg(I(σ)) fI(σ) ∂(fI(σ))

a 0 0 f0 0
b 1 0 f1 0
c 2 0 f2 0
d 3 1 f3 f0 − f1
e 4 1 f4 f1 − f2
f 5 1 f5 f0 − f2
g 6 2 f6 f3 − f4 + f5

Here fi is the basis element of Zp{[6]} for i ∈ [6] and 0: [6]→ Zp is the function
such that 0(x) = 0 for all x ∈ [6]. As we used our schema from Proposition 2.30
to construct them, the functions deg and ∂ define a totally filtered chain complex
that stores the same combinatorial information as ∆2.
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3 Homology Bases

The main purpose of this thesis is to devise a way to efficiently compute homology
groups. In Section 2.5 we introduced our main algebraic structure, the totally
filtered chain complex, and showed that for each isomorphism class of finite filtered
simplicial complexes there exist unique totally filtered chain complex that encodes
the same combinatorial information. Converting a finite filtered simplicial complex
in this way allows us to disregard all information that does not directly contribute
to the complex’s homology groups. Similar to how these homology groups are
not always immediately apparent given an abstract simplicial complex, we must
suss out the desired homology from our totally filtered chain complexes. We now
introduce the main mechanism used for this task: the homology basis.

3.1 The Homology Basis

Recall a k-linear map f :V → V is a projection if f ◦ f = f .

Definition 3.1. Let P be a subset of [n], C = (∂, deg) be a totally filtered chain
complex based on [n], and f : k{[n]} → k{[n]} be a k-linear projection such that
im (f) = k{P}. Then (P, f) is a homology basis of C if all the following hold:

1. f preserves degree,

2. f(Zp) = k{P ∩ deg−1(p)}, and

3. ker(f) ∩ Zp = im (∂p+1).

The following theorem demonstrates how the homology basis of a totally filtered
chain complex successfully extracts the essential homological information we seek.

Theorem 3.2. A homology basis (P, f) for C induces an isomorphism with each
homology group, H∗(C)→ k{P}.

Proof. Given a totally filtered chain complex C, we have the short exact sequence
with Hp the pth homology group. Let f |Zp be the function f restricted to Zp. Then
ker(f |Zp) = im (∂p+1) = Bp and Zp/ker(f |Zp) ∼= k{P ∩ deg−1(p)} gives us that Hp

is isomorphic to f(Zp) as seen below.

0 Bp Zp Hp = Zp/Bp 0

0 ker(f |Zp) Zp k{P ∩ deg−1(p)} 0

= = ∼=

Thus (P, f) contains all homology information.
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Corollary 3.3. The underlying set P of a homology basis (P, f) is unique.

Proof. Let Q and P be two underlying sets for a homology basis of a totally filtered
chain complex C. Then by Theroem 3.2

k{Q} ∼= H∗(C) ∼= k{P}

where
k{Q} = {g:Q→ k | support(g) is finite}

and
k{P} = {h:P → k | support(h) is finite}.

Thus the underlying sets Q and P must be isomorphic.

While the underlying set P of a homology basis will always be unique, the same
does not hold for the k-linear projection.

Proposition 3.4. The k-linear projection f : k{[n]} → k{[n]} of a homology basis
is not unique.

Proof. Let C be based on [n] and (P, f) be the homology basis of C. Let k be the
fixed field. Choose an element 0 6= α ∈ k. Now consider the projection αf that
is, given functions ψ ∈ k{[n]} and ψ′ = f(ψ) ∈ k{P}, the map ψ 7→ αψ′ with αψ′

the map x 7→ αψ′(x). Now we check if (P, αf) is also a homology basis.
Multiplying a function in k{P} by an element of k does not change the set that

the free k-vector space is based on. Given ψ′ ∈ k{P}, the function αψ′ then stays
in k{P}. Hence, if im (f) = k{P}, then im (αf) = k{P}. If f is degree preserving
then αf must also be degree preserving as each image is a linear combination of the
same basis elements. The image of the kernel of ∂p is unaffected by the choice of f .
If criterion (2), in Definition 3.1, holds for f it holds for αf . By construction the
same basis elements must be taken to zero by both f and αf thus the intersection
of the kernel and Zp is unchanged and ker(αf)∩Zp = im (∂p+1). Thus, if (P, f) is
a homology basis so is (P, αf).

Example 3.5. Consider the selection of subcomplexes of the standard 2-simplex
shown in Figure 14. We give the implicit index filtration to our complexes and
use Proposition 2.30 to generate a totally filtered chain complex for the standard
2-simplex such that each of our subcomplexes is a restriction Fi∆

2. We will de-
note the homology bases from left to right as (P2, f2) up to (P5, f5). As F2∆

2 is
only three disjoint simplices the k-linear projection for the homology basis is the
identity. As the projection is the identity, all the criteria for a homology basis are
fulfilled and (P2, f2) = ({0, 1, 2}, id). Moving to F3∆

2 we find that the newly added
1-simplex has forced the x and y vertices into the same connected component. The
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Figure 14: Selection of subcomplexes of the standard 2-simplex with the last added
simplex highlighted in red.

x and y representatives 0, 1 ∈ [n] can no longer generate distinct 0-homology fea-
tures. Using the Elder Rule, we know that the homology feature generated by the
basis element 1 dies while entering F3∆

2. We then adjust our projection to repre-
sent this and find our new homology basis is ({0, 2}, f3) where f3 is the previous
projection f2 now sending f1 = max(support(∂(f3))) to f0 as well as f3(f3) = 0. We
repeat the same approach when entering F4∆

2 to find (P4, f4) = ({0}, f4) where
f4(f1) = f4(f2) = f0 and all other elements are taken to 0. However, when looking
at F5∆

2 we find a new 1-homology feature is born leading us to expand our basis
from (P4, f4). This is because when looking at f4(∂(f5)) we find it is zero in P4.
Thus, we have connected simplices that are already in the same homology class
(forming a new 1-cycle) and creating a new homology class. Hence, we find the
homology basis ({0, 5}, f5) with f5 being the unique extension of f4 to F5∆

2 with
f5(f5) = f5.

In the last example, when transitioning from the F4∆
2 totally filtered chain

complex to F5∆
2, we find that a new homology feature has been created. In a

similar vein to the discussion of evolving homological features back in Section 2.4,
we say this feature was born at F5∆

2 and define its birth time in our totally filtered
chain complex as follows.

Definition 3.6. Given a totally filtered chain complex C = (∂, deg) based on [n],
the birth time of a homology class c ∈ HpC is the minimal element i of [n] with the
property that c is in the image of the homomorphism Hp(FiC)→ Hp(C) induced
by the inclusion FiC ⊆ C.

Back in Section 2.4, we defined birth time as the filtration value associated
with the subcomplex that the homology class is born in. This seems to conflict
with Definition 3.6. However, if our totally filtered chain complex C represents a
finite filtered simplicial complex (X,F ), we can utilize the isomporhism I:X → [n]
to jump between the two definitions. Specifically, given a birth time i for a class
c ∈ Hp(C), we find the filtration value of this birth time in (X,F ) is F (I−1(i)).
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Returning to Example 3.5, we see that each transition from Fi∆
2 to Fi+1∆

2

produced a change in the underlying set Pi that was either the addition of a new
element or the removal of an existing one. These transitions are called homology
basis extensions and homology basis contractions, respectively.

Definition 3.7. Let (Q, g) and (P, f) be homology bases of Fi−1C and FiC re-
spectively, such that Q is a proper subset of P . If q is the homomorphism q(j) = j
induced by the inclusion of Q in P and the diagram

H∗(Fi−1C) H∗(FiC)

k{Q} k{P}

g f

h

q

commutes, where h is the homomorphism induced by the inclusion Fi−1C ⊂ FiC,
g and f are isomorphisms as in Theorem 3.2, then q is a homology basis extension.

Definition 3.8. Let (Q, g) and (P, f) be homology bases of Fi−1C and FiC re-
spectively such that P is a proper subset of Q. If q is the homomorphism

q(j) =

{
j if j ∈ P
0 if j /∈ P

and the diagram

H∗(Fi−1C) H∗(FiC)

k{Q} k{P}

g f

h

q

commutes, where h is the homomorphism induced by FiC ⊂ Fi−1C, g and f are
isomorphisms as in Theorem 3.2, then q is a homology basis contraction.

We now introduce a classification for homology bases that are the most desir-
able for the purpose of extracting homological information. That is the minimal
homology basis.

Definition 3.9. A homology basis (P, f) of a totally filtered chain complex C =
(∂, deg) based on [n] is minimal if for every homology class c ∈ Hp(C), the birth
time i of c can be described as follows: under the isomorphism

Hp(C)
fp−→ k{P ∩ deg−1(p)},
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the homology class c is taken to an element fp(c) with the property that the

maximal element in the support of fp(c) is i. In particular i ∈ P .

Working with minimal homology bases is desirable because it ensures that the
image of every homology class c under f requires no additional information from
homology classes with birth time greater than itself.

Proposition 3.10. The inclusion H∗(Fi−1C) ⊂ H∗(FiC) induces a homology basis
extension when Fi−1C has a minimal homology basis (Q, g).

Proof. Let Fi−1C and FiC be subsequent totally filtered chain complexes such that
H∗(Fi−1C) ⊂ H∗(FiC). We know that Fi−1C has a minimal homology basis (Q, g)
and the inclusion of the simplex {i} corresponds to the creation of a new homology
feature.

First construct a homology basis for FiC. Choose P = Q∪{i} and let f be the
unique extension of g to FiC such that f({i}) = {i}. Clearly f preserves degree
as g was degree preserving. To see f ◦ f = f with im (f) = k{P}, notice

im (g) ∪ {i} = k{Q ∪ {i}} = k{P}.

We see
f(Zp) = k{P ∩ deg−1(p)}

for all p as f(Zp) is unchanged for p up to p = deg(i)− 1 and

f(Zdeg(i)) = k{P ∩ deg−1(deg(i))}

holds given our change (Q, g) to (P, f). Since ∂{i} ∈ ker(g) ∩ Fi−1Zdeg(i)−1 and
ker(g)∩Fi−1Zdeg(i)−1 = im (Fi−1∂deg(i)), we have im (Fi−1∂p) = im (∂p) for all p. As
ker(g) = ker(f), we see that ker(f)∩Zp = im (∂p+1) and that (P, f) is a homology
basis of FiC.

Now define the homomorphism q: k{Q} → k{P} induced by the inclusion
Q ⊂ P such that q(j) = j. As (Q, g) is minimal and the birth time of ∂{i} is i,
(P, f) is also minimal. Hence, the diagram in Definition 3.7 commutes when h is
the homomorphism induced by the inclusion Fi−1C ⊂ FiC and both g and f are
isomorphisms as in Theorem 3.2. Thus, q is a homology basis extension induced
by the inclusion H∗(Fi−1C) ⊂ H∗(FiC).

A similar result is obtained when the proper inclusion is reversed. This time
inducing a homology basis contraction.

Proposition 3.11. The inclusion H∗(FiC) ⊂ H∗(Fi−1C) induces a homology basis
contraction when Fi−1C has a minimal homology basis (Q, g).
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Proof. Let Fi−1C and FiC be subsequent totally filtered chain complexes such
that H∗(FiC) ⊂ H∗(Fi−1C). The inclusion of the simplex {i} corresponds to the
destruction of a homology feature in Fi−1C.

We now construct a homology basis for FiC from (Q, g). Let v = g(∂{i}) and
l be the maximum element in the support of v with respect to the homology basis
Q. Define P = Q\{l} and the k-linear projection

k{Q ∩ deg−1(deg(i)− 1)} π−→ k{P ∩ deg−1(deg(i)− 1)}

w 7→ w − wl
vl
v

where wl and vl are the coefficients of l in w and v expressed in the basis Q. For
all x ∈ Fi−1Cdeg(i)−1 we define the function f as the composition π ◦ g and for all
simplices x ∈ Fi−1Cp with p 6= deg(i) − 1, f(x) is simply g(x). Now we extend f
to a k-linear map f :FiC → k{P} by including f({i}) = 0. Again by construction,
f is a degree preserving projection with image k{P}. For p 6= deg(i) we have
Fi−1Zp = Zp, and Zdeg(i) = Fi−1Zdeg(i) ⊕ k{{i}}. Since f({i}) = 0 and {i} /∈ Zp
we get f(Zp) = k{P ∩ deg−1(p)} for all p ∈ Z. Also ker(f) ∩ Zp−1 = im (∂p) for
p 6= deg(i). For p = deg(i) we have

ker(f) ∩ Zdeg(i)−1 = g−1(k · v) ∩ Zdeg(i)−1

= (k · ∂{i}+ ker(g)) ∩ Zdeg(i)−1

= im (∂deg(i)).

Thus, (P, f) is a homology basis for FiC.
We know P ⊂ Q so we define our homomorphism q to be

q(j) =

{
j if j ∈ P
0 if j = l

for j ∈ Q.
Now we must show that the diagram in Definition 3.8 commutes, where the

top homomorphism h is induced by the inclusion of Fi−1C ⊆ FiC and the bottom
homomorphism is our chosen q. Both g and f are extensions of the isomorphisms
as in Theorem 3.2. Both g and f can be restricted degree wise to isomorphisms
gp and fp for p ∈ Z as every simplex contributes to the birth or death of a unique
homology feature. The diagram in Definition 3.8 commutes only if the following
degree wise restriction commutes for all p ∈ Z.
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Hp(Fi−1C) Hp(FiC)

k{Q ∩ deg−1(p)} k{P ∩ deg−1(p)}

gp fp

hp

qp

Consider p 6= deg(i) − 1. Then the diagram commutes as all maps are either
inclusions or isomorphisms. Now consider p = deg(i)−1 and c ∈ Hdeg(i)−1(Fn−1C).

If c = 0, fdeg(i)−1(hdeg(i)−1(c)) and qdeg(i)−1(gdeg(i)−1(c)) will also be zero. Assume
c 6= 0 and has birth time t. If t 6= l, then the birth time of c is preserved under
hdeg(i)−1 as hp is an inclusion map. If t = l, then both fdeg(i)−1(hdeg(i)−1(c)) and

qdeg(i)−1(gdeg(i)−1(c)) will equal zero in k{P ∩deg−1(deg(i)−1)}. Thus, the diagram
commutes for all p ∈ Z and we have shown the diagram in Definition 3.8 commutes
and that q is a homology basis contraction.

We will use the prior two propositions in the proof of the following theorem.

Theorem 3.12. Every totally filtered chain complex C has a minimal homology
basis.

Proof. We shall proceed inductively. Let n = 0, then the boundary homomorphism
is zero and the statement holds trivially.

For our inductive step, assume (Q, g) is a minimal homology basis for Fn−1C
with Q ⊆ [n− 1] and the k-linear projection

g:Fn−1C → k{Q}

Let v = g(∂{n}). We may split this step into the v = 0 and v 6= 0 cases.
Case 1: v = 0.

Given that v is zero, we know that the simplex {n} is a deg(n)-cycle in FiCdeg(n).
This tells us that H∗(Fn−1C) ⊂ H∗(FnC). Hence, Proposition 3.10 induces a ho-
mology basis (P, f) of FnC with a homology basis extension between k{Q} →
k{P}. The homology basis (P, f) was shown to be minimal in the proof of Propo-
sition 3.10.
Case 2: v 6= 0.

If v is non-zero, we know that {n} is a deg(n)-boundary and that H∗(FnC) ⊂
H∗(Fn−1C). We can now utilize Proposition 3.11 to get both the homology basis
(P, f) for FiC and the homology basis contraction q: k{Q} → k{P}.

Knowing the diagram
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H∗(Fn−1C) H∗(FnC)

k{Q} k{P}

g f

h

q

commutes, we now show that (P, f) is minimal. If 0 6= c ∈ H∗(Fn−1C) and the
birth time of c differs from the birth time l of the homology class represented by
∂{n}, then h(c) 6= 0 and the birth time of both is equal to the maximum element
i ∈ S, the support of g(c). As the function q simply removes l from all supports in
k{Q} and i 6= l, we find that i is still the maximum element of the support S/{l}
of q(g(c)). Thus, i is the maximum element of the support of f(h(c)) = q(g(c))
and we have a minimal basis.

The proof of Theorem 3.12 serves as the genesis of the HomologyBasis algorithm
presented in Section 4. The inductive step in cases 1 and 2 outline a method for the
construction of what we call a compatible sequence of homology bases for a totally
filtered chain complex based on [n]. Explicitly, compatibility in our context means
the following.

Definition 3.13. Given a totally filtered chain complex C based on [n], a sequence
{(Pi, fi)}ni=0 of homology bases is compatible if:

1. each Pi is the unique basis set induced by FiC,

2. every homology basis (Pi, fi) is minimal, and

3. each subsequent pair of homology bases (Pi−1, fi−1) and (Pi, fi) for 1 ≤ i ≤ n
gives rise to a homomorphism q that is either a homology basis extension or
a homology basis contraction.

3.2 Persistence in Homology Bases

Theorems 3.2 and 3.12 demonstrated how to extract the homology groups from a
totally filtered chain complex using its homology basis. In doing so, we constructed
sequences of homology bases that encode information on how the homological
features evolve as the totally filtered chain complex is built. We now have enough
to give a precise definition for the persistent homology groups of a totally filtered
chain complex.

Definition 3.14. Given a totally filtered chain complex C = (∂, deg) based on
[n], the pth persistent homology groups are the images of the homomorphisms,
f i,jp :Hp(FiC) → Hp(FjC) for 0 ≤ i ≤ j ≤ n induced by the inclusion of FiC ↪→
FjC.
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As in the definition of persistent homology groups from Section 2.4, the ho-
momorphism f i,ip is the identity on Hp(FiC) for all i and p. We now have all
the equipment required to compute persistent homology using the framework of
our totally filtered chain complex C and the homology bases of its various FiC
restrictions.

Proposition 3.15. Given a totally filtered chain complex C and a compatible se-
quence of its homology bases, the persistent homology groups of C can be computed.

Proof. Let C = (∂, deg) be a totally filtered chain complex based on [n], with
{(Pi, fi)}ni=0 a compatible sequence of homology bases for C. Consider a homo-
morphism f i,jp :Hp(FiC) → Hp(FjC) induced by the inclusion FiC ↪→ FjC. The
homomorphism can be decomposed into a composition of homomorphisms

{fk,k+1
p :Hp(FkC)→ Hp(Fk+1C)}j−1k=i .

As either Hp(FkC) ⊂ Hp(Fk+1C) or Hp(Fk+1C) ⊂ Hp(FkC), each fk,k+1
p induces a

homology basis extension or contraction qk,k+1
p : k{Pk} → {Pk+1}, by Propositions

3.10 and 3.11, which must live in our compatible sequence of homology bases.
Given that f i,jp is induced by the inclusion of FiC in FjC, when considering the
image of f i,jp in Hp(FjC) we ignore extensions and focus only on the homology
basis contractions. The image of f i,jp is then the image of Pi after applying all
contractions between Pi and Pj. This is exactly one of the pth persistent homology
groups by Definition 3.14. After repeating this process for all p, i, and j we will
have computed all the persistent homology groups of C.

The definition of a homology class’ death time in a totally filtered chain complex
follows the intuition of Section 2.4.

Definition 3.16. Given a totally filtered chain complex C = (∂, deg) based on [n],
the death time of a homology class c ∈ HpFiC born at i, as described in Definition
3.6, is the minimal element j > i of [n] with the property that c is in the kernel of
the homomorphism Hp(FiC)→ Hp(FjC) induced by the inclusion FiC ⊆ FjC.

We say that a homology feature c ∈ Hp(Fi−1C) with death time i dies entering
FiC.

Definition 3.17. Given a totally filtered chain complex C = (∂, deg) based on
[n] and a homology class c that is born in FiC and dies entering FjC. The pair
({i}, {j}) is called the persistence pair for c. Any homology class that lacks a
death time is called a persistent feature.

The use of brackets around i and j in the definition of persistence pairs is
intentional to emphasize that a persistence pair of a totally filtered chain complex
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is a tuple of elements in [n], not of filtration values. As we have seen with birth
times in a totally filtered chain complex, death times can also be converted to
their corresponding filtration values in the finite filtered simplicial complex using
the isomorphism I:X → [n]. This means that when discussing birth times, death
times, and persistence pairs, we may speak ambiguously as we can jump back and
forth between (X,F ) and C at will.

Example 3.18. Returning to the sequence of complexes in Figure 14, we wish
to derive its persistence pairs. We have already determined the various homology
bases for these for complexes: P2 = {0, 1, 2}, P3 = {0, 2}, P4 = {0}, and P5 =
{0, 5}. This gives all the information required to compute the persistence pairs.
First we notice that {0} is never eliminated from our homology basis meaning it
must be a persistent feature. However, {1} and {2} are removed from the basis at
the contractions P3 and P4 respectively and thus give persistence pairs ({1}, {3})
and ({2}, {4}). Finally, the one dimensional homology feature born at {5} dies
entering F6∆

2 if we extend the sequence to F6∆
2 = ∆2 by adding the final 2-

simplex. If we include the 2-simplex, we create the pair ({5}, {6}) Else we are left
with two persistent features as seen in P5.

Definition 3.19. Given a totally filtered chain complex C = (∂, deg) based on
[n], a filtration function F : [n] → R, and homology class c with persistence pair
({i}, {j}), the persistence of c is defined as the real-value F |{j}−F |{i}.

Note that in the case that C represents some finite filtered simplicial complex
(X,F ), using the injective function Γk: (X∗, F ) → TFCC from Proposition 2.30,
then the filtration function used to compute persistence of homology features in
C is F ◦ I−1: [n]→ X → R.

Theorem 3.20. Every homology basis contraction induced by the inclusion P ⊂ Q,
as described in Definition 3.8, corresponds to a unique persistence pair that dies
entering FiC.

Proof. Let (P, f) be the homology basis formed by the contraction of (Q, g) as
in the proof of Theorem 3.12. By construction, g(∂{i}) 6= 0 and there exists a
simplex {l} in Fi−1C such that {l} = max(support(∂({i}))∩Q) and {l} /∈ Q. Let
deg(l) = k = deg−1(i) − 1. As {l} ∈ Q, {l} is the representative of a homology
feature c of Hk(Fi−1C). Also the homology basis for FlC is the earliest basis
{l} could exist in. Hence, l is the minimal element of [n] such that {l} is in the
image of the homomorphism Hdeg−1(i)−1(FlC)→ Hdeg−1(i)−1(Fi−1C) induced by the
inclusion FlC ⊆ Fi−1C. Then by Definition 3.6, the birth time of c is l. As {l} ∈ P
but {l} /∈ Q, we find that FiC is the the earliest totally filtered chain complex that
the homology class c, represented by {l}, is in the kernel of the homomorphism
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Hdeg−1(i)−1(FlC) → Hdeg−1(i)−1(FiC). By Definition 3.16, the death time of c is
then i. We have now formed the persistence pair ({l}, {i}).

Uniqueness of the persistence pairs follows from the uniqueness of each simplex
that induced the homology basis contractions and extensions in our compatible
sequence of homology bases for C. Hence, each persistence pair uniquely represents
a homological feature that is born in FlC and dies entering FiC.
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4 The HomologyBasis Algorithm

We now present a general, theoretically explicit, schema for the computation of
a totally filtered chain complexes homology basis and persistent homlogy, in the
form of its corresponding persistence pairs. The algorithm itself may be found
here: HomologyBasis

4.1 General Construction

As stated, our goal is to construct an efficient way of computing a finite filtered sim-
plicial complex’s persistent homology, namely the set of persistence pairs. Starting
with a given finite filtered simplicial complex, we can generate a totally filtered
chain complex C by choosing a field k and applying Γk from Proposition 2.30. This
allows us to utilise Theorem 3.12 to construct a compatible sequence of homology
bases. During the sequences construction we apply Theorem 3.20 when appropri-
ate to determine all finite persistence pairs. Lastly, we account for the remaining
persistent feature of our chain complex and add them to our set of persistence
pairs.

We now expand precisely on this schema. Given a totally filtered chain complex
C = (deg, ∂), we begin building a compatible sequence of homology bases from the
minimal homology basis (P0 = {0}, f0) with f0 = ∗ ◦ f0 being the map that takes
all functions ψ: [n]→ k to the composition ψ ◦ f0 where f0 is the basis element of
C generated by {0}.

Any transition from (Pi−1, fi−1) to (Pi, fi) for i = 1, . . . , n will be characterized
by a homology basis extension or contraction depending on if a new cycle is created
by the addition of the simplex {i}. In the case of extension, the addition of {i}
creates a new cycle in the totally filtered chain complex FiC that was not present
in Fi−1C telling us that the image of ∂{i} under fi−1 is zero. Then we have a
new homology feature with birth time equal to i and we choose the extension of
(Pi−1, fi−1) to (Pi, fi) where Pi = Pi−1∪{i} and fi is simply fi−1 with {i} mapped
to itself.

If {i} does not form a new cycle, we know we are dealing with a homology
basis contraction. Let {i} be the new d-simplex added to FiC. We know ∂{i}
is non-zero and {i}’s addition necessitates the destruction of some homological
feature from H∗(Fi−1C). Let {l} represent the maximum element in the support
of fi−1(∂{i}) with respect to the prior homology basis. The simplex {l} is the
youngest simplex in the boundary of {i}’s projection into Pi−1 and, as l ∈ Pi−1,
the Elder Rule dictates that the the homology feature l must die entering FiC.
This is represented in our homology basis by choosing Pi = Pi−1\{l} to be the
subset of [n] our basis will be contracted onto. Now define the projection fi as we
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did in Theorem 3.12. Using the k-linear projection π we choose

fi(σ) =


fi−1(σ) ifσ ∈ Fi−1Cp for p 6= d− 1

π(fi−1(σ)) ifσ ∈ FiCd−1
0 ifσ = {i}.

This contracts (Pi−1, fi−1) to (Pi, fi) and as we proved in Theorem 3.20, generates
the new persistence pair ({l}, {i}).

Applying the extension and contraction cases when proper allows us to iterate
through all i ∈ [n] and construct both the homology bases in the compatible
sequence {(Pi, fi)}ni=0. As we have only recorded the persistence pairs of finite
persistence, we are left to account for the persistent features of C. Notice that
each element of Pn represents a homology feature, there are no more Fi>nC to
contract to, and each feature in Pn never die entering one of the totally filtered
chain complexes FiC for 0 ≤ i ≤ n. Hence, each is a persistent feature of C and
we find the persistence pair ({k},∞) for every k ∈ Pn. Thus, our proposed schema
finds both our homology basis for FnC = C and all its persistence pairs.

4.2 HomologyBasis

The schema described in the prior Section 4.1 is now formalized into the algorithm
HomologyBasis illustrated in Algorithm 1. The two sub algorithms 2 and 3 are
described in further detail in the subsequent subsections.

Expanding upon Algorithm 1. Let (X,F ) be a filtered simplicial complex with
injective filtration function F :X → N such that given σ, τ ∈ X if σ ⊆ τ then
F (σ) ≤ F (τ). This will be the complex that we compute persistent homology
for, in a chosen field k. We convert (X,F ) into a totally filtered chain complex
C = (∂, deg) as in Proposition 2.30 and begin to build our desired compatible
sequence of homology bases. Restricting to F0C allows us to start the compatible
sequence as any totally filtered chain complex has a minimal homology basis for
F0C of (P0 = {0}, f0 = ∗ ◦ f0).

For 1 ≤ i ≤ n, we either extend or contract the Fi−1C homology basis depend-
ing on if {i} is a cycle in C. This is accomplished, as in Theorem 3.12, by applying
Algorithm 2 when {i} is a cycle and Algorithm 3 when it is not. Both of these
algorithms are explored more thoroughly later in this section.

By Theorem 3.20, we can uniquely determine all finite persistence pairs of
C from exclusively the homology basis contractions in the compatible sequence
of homology bases. Every contraction will remove a simplex from the homology
basis. If {l} is the removed simplex, then it is the representative for the homological
feature that is born at time l and dies at time i. Thus, we create the persistence
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Algorithm 1 HomologyBasis.
Input: finite filtered simplicial complex (X,F ) and a field k
Output: Homology basis (P, f) and the persistence pairs

Convert (X, f) to C = (∂, deg)
P = {0}
f = pre-composition with p{0}: [n]→ {0}
persistence pairs = ∅
for i = 1, . . . n do

if f(∂{i}) = 0 then
(P, f) = HBE(C,P ,f)

else
(P, f) = HBC(C,P ,f)
add ({l}, {i}) to persistence pairs

end if
end for
for σ ∈ P do

add (σ,∞) to persistence pairs
end for
return (P, f) and persistence pairs

Algorithm 2 HBE (Homology Basis Extension).
Input: Totally filtered chain complex C = (∂, deg) and homology basis (P, f)
Output: Homology basis (Q, g)

Q = P ∪ {i}
g = f extended to include {i} 7→ {i}
return (Q, g)

pair ({l}, {i}) every time we find a homology basis contraction between k{Pi−1}
and k{Pi}.

Once we have preformed the above operations for all i = 1, . . . , n. We will
have all the information of the persistence pairs we need. To find the persistent
features of C, we look at the final homology basis (Pn, fn). All elements in Pn
represent homology classes that persist up to and through FnC = C, making
Pn the collection of persistent features. To represent these persistent features as
persistence pairs we create the pair ({k},∞) for every k ∈ Pn. We now have the
desired persistence pairs and have extracted all persistence information from our
finite filtered simplicial complex.
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Algorithm 3 HBC (Homology Basis Contraction).
Input: Totally filtered chain complex C = (∂, deg) and homology basis (P, f)
Output: Homology basis (Q, g)

{l} = max(support(f(∂{i}))), d = deg(i)
Q = P/{l}
g = f
for σ ∈ k{P ∩ deg−1(d− 1)} do
g(σ) = π ◦ g(σ) with π from Proposition 3.11

end for
extended g to include {i} 7→ 0
return (Q, g)

4.2.1 Extension

Given the homology basis (Pi−1, fi−1) for Fi−1C, assume that the new simplex has
a zero boundary in the Fi−1C homology basis. Then {i} will be a cycle of FiC and
H∗(Fi−1C) ⊂ H∗(FiC). We wish to induce a homology basis extension between
k{Pi−1} and k{Pi}. This is accomplished by the choice of Pi and fi as in Algorithm
2 where we extend Pi−1 to Pi−1 ∪ {i} and extend the fi−1 to include {i} 7→ {i}.

The homology basis extension does give us the the birth time information of
c ∈ H∗(FiC), the homology class generated by the addition of {i}. However, it
gives us no insight into whether c is of finite or infinite persistence. Thus, we leave
the determination of this and the construction of any persistence pairs to the next
contraction algorithm.

4.2.2 Contraction

Given {i} is not a cycle in FiC, so we know that it destroys some homology
feature c characterized by ∂{i}. In the homology basis (Pi−1, fi−1), this homology
feature is represented by the the simplex that causes its birth, namely the simplex
{l} ∈ ∂{i} that was last added to the complex. As we add simplices to our
complex in order of filtration value, {l} is precisely the maximum element in ∂{i}’s
representation under the prior basis (Pi−1, fi−1): max(support(fi−1(∂{i}))). Thus,
we know precisely which element of Pi−1 will be removed to get the correct Pi.

Now we must contract the k-linear projection fi−1 in such a way that we induce
the desired homology basis contraction. If {i} has a degree of d, the only basis
elements for k{Pi−1} that can have {l} in their support are those that correspond
to (d− 1)-simplices in Fi−1C and hence, the projection fi−1 will be unchanged on
the domain k{Pi−1 ∩ deg−1(d′ 6= d− 1)}. Letting v = fi−1(∂{i}), choose a change
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of basis
π: k{Pi−1 ∩ deg−1(d− 1)} → k{Pi ∩ deg−1(d− 1)}

defined by w 7→ w − (wl

vl
)v, where wl and vl are the coefficients of {l} in w and v

respectively. Applying the composition π ◦ fi−1 then removes all trace of {l} from
the prior homology basis. Combining the two cases above, we extend the projection
into k{Pi−1} using the map {i} 7→ 0. This is exactly the k-linear projection that
induces a homology basis contraction between k{Pi−1} and k{Pi = Pi−1/{l}}.

As discussed in Theorem 3.20, every contraction will create the finite persis-
tence pair ({l}, {i}). This is utilized in Algorithm 1 to find all finite persistence
pairs for our totally filtered chain complex.

Remark. A notebook giving a bare bones implementation of the above pseudo code
is provided here: HomologyBasis-Implementation.
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5 Simplex Tree

To determine the computational efficiency of HomologyBasis, we compare to well
established algorithm GUHDI. For the storage of abstract simplicial complexes,
GUHDI uses a tree data structure called Simplex Tree. We now give a brief
overview of simplex tree. Introduced by Boissonnat and Maria [3], it aims to
efficiently represent abstract simplicial complexes of any dimension. This is ac-
complished by constructing a bijective correspondence between the faces of a given
simplicial complex and the nodes of a trie as follows.

Definition 5.1. Given a simplicial complex (X, V ) of dimension k with vertices
enumerated 1 up to ‖V ‖. Then each simplex in X can be associated to a unique
word on the alphabet 1 . . . ‖V ‖ and a simplex tree structure is a trie on the words
representing simplices in (X, V ) such that:

1. The nodes of the simplex tree are in bijective correspondence with the sim-
plices, of all dimensions, of the complex (X, V ). Note the root is associated
to the empty simplex.

2. Each node of the tree, except the root, stores the label of a vertex. Specifi-
cally the label of the maximum enumerated vertex in the subset σ ∈ X.

3. Traveling along a path from the root gives a simplex whose vertices are the
vertex labels encountered on the path and the labels are always encountered
in increasing order.

For an explicit example, we will represent the Č4(S) complex from Figure 6.
Uniquely associating each vertex from this complex with a number from {1, . . . , 8}
as seen in Figure 15.

1
2

3

4

5

6

7

8
1 2 3 4 8765

2 3 4 4 5 5 6 6 7 8 8

4 5 8

Figure 15: The Č4(S) complex on 8 vertices and its representation as a SimplexTree
trie.

As per the definition, the root represents the empty face and serves as the
boundary to all 0-simplices. Notice that the depth of each node in the SimplexTrere
is equal to the dimension of the simplex that the node represents plus one. Thus,
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as we travel deeper into the SimpleTree we find simplices of higher and higher
dimension. All boundary relations can be determined from the trie by starting at
the given node, moving back toward the root on level, and identifying all linked
simplex nodes at this depth. Take the word [2, 3, 4] that describes the 2-simplex
[2, 3, 4] in Č4(S). Moving back toward the root we find the words [2, 3] and [2, 4].
Both of these simplices are boundary elements of our simplex, however there is
still one unaccounted for boundary term. In order to find this last boundary face,
we must traverse the circular list (represented by a dotted loop) connecting the
words [2, 4] and [3, 4]. The boundary faces of the simplex [2, 3, 4] are [2, 3], [2, 4],
and [3, 4], which are exactly the nodes we have picked out in the SimplexTree. The
use of circular lists also allows us to quickly locate all instances of a given label in
the tree. For additional information on the efficiency of tries see [2].
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6 Results

All comparisons between GUDHI and our proposed HomologyBasis algorithm,
were conducted on a laptop with an Intel Core i7-7820HQ CPU processor running
at 2.90Ghz and 8.00 GB of installed RAM. The operating system was 64-bit Win-
dows 10 pro version 20H2. The data sets used as benchmarks for the comparisons
were a 900 point sampling of the Klein Bottle in its figure-8 embedding in R3,
a 2000 point sampling of the Stanford Dragon, and a 5000 point sampling of the
5-ball of radius 1 centered at the origin. These may be seen in Figures 16a and
16b. For reasons that will be discussed in the next Section 6.5, we have limited
most comparisons in this thesis to simplicial complexes of degree no larger than
3. Additionally, the data set Bull’s Eye, consisting of the union of 400 randomly
generated points on the 1-sphere centered at the origin with radius 1 and 200
randomly generated points in the annulus centered at the origin with inner ra-
dius 1.25 and outer radius 1.5, see Figure 16c, is used as an explicit verification
of the agreement between the two algorithms. All resulting times for the various
comparisons may be found here: Comparison-Data-GUHDI-vs-HomologyBasis.

(a) Klein Bottle (b) Stanford Dragon

1 0 1 2 3 4 5

1

0

1

2

3

4

(c) Bull’s Eye

Figure 16: From left to right we have the figure-8 embedding of the Klein Bottle,
the Stanford Dragon, and the Bull’s Eye distribution. From the former two, 900
and 2000 data points are sampled respectively.

Before proceeding, we introduce the term critical complex to be a Euclidean
data complex upon which both GUHDI and HomologyBasis compute persistent
homology in roughly the same amount of time and after which, one becomes con-
sistently more efficient than the other. Note that whenever a critical complex is
specified, it is a rough approximation of where the critical complex occurs.

The focus of our analysis is two fold. First and foremost, we wished to con-
firm that both algorithms are in agreement when computing persistent homology
and persistence pairs. This was accomplished by a checking step added to ev-
ery computation to ensure both GUHDI and HomologyBasis produced the same
persistence pairs. This verification step is not included in the computation time
for the either algorithm and as expected both were in agreement for all simplicial
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complexes tested. For an explicit example of this see Section 6.1. The second goal
of our analysis is to determine the computational strengths of our proposed Ho-
mologyBasis algorithm with respect to that of GUHDI. Seeing as both algorithms
“forget” the position of vertices, only storing dimension and boundary relation-
ships for each simplex, it was considered unlikely that the dimension of the ambient
space from which the point clouds were sampled would have a significant effect on
computational efficiency. This was verified by computing the persistent homology
for the complete 1-skeletons of two 2000 point sampling from the 3 and 15-ball
respectively. Even though both of the vertex sets of the simplicial complexes were
randomly generated, as both were complete 1-skeletons they claimed membership
of the same isomorphism class and would be represented identically by Homolo-
gyBasis. A similar argument can be made for the complexes’ representations by
SimplexTree. There was no significant difference in computation times for either
sampling.

6.1 Bull’s Eye

We now present the qualitative results to a comparison of the persistence pairs
computed by both GUHDI and HomologyBasis. Specifically, computing the per-
sistence pairs of the complete 2-skeleton with the Bull’s Eye point cloud acting
as the vertex set. This has been added as an example to the HomologyBasis
repository here: HomologyBasis-GUHDI-Homology-Check. The persistence pairs
computed by both algorithms are presented in persistence and barcode diagrams
in Figure 17. The diagrams serve as an easy eye test for verifying that Homolo-
gyBaiss is producing the same persistent homology as GUHDI. It is important to
note that the persistence and barcode diagrams are identical for both algorithms.
We find there is one persistent 0-homology feature, as well as a spike in longer
lasting 1-homology features being born around the filtration value 0.15, generated
by the vertices sampled from the annulus.

6.2 Klien Bottle

All the remaining data sets were used to compare computational run times of the
two algorithms. The first we will discuss is that of the figure-8 embedding of the
Klein bottle in R2. In order to best understand how the run time of Homology-
Basis scales as more simplices are added to the simplicial complex, the number of
points used to construct our Euclidian data complex was varied from 50 to 900.
The Euclidian data complex constructed on each sampling were the complete k-
skeletons for k ∈ {1, 2, 3}. Only k-skeletons of the same dimension are compared
with each other and the maximum number of sampled vertices for k = 2 and 3
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Figure 17: The persistence and barcode diagrams for the complex 2-skeleton com-
plex constructed on the Bull’s Eye point cloud. Each diagram is labeled by the
algorithm used to compute the persistence pairs it presents.

were restricted to 400 and 180 respectively. We will proceed by analyzing each
dimension on its own.

For k = 1, when only looking at the raw run times, GUHDI is consistently
faster. However, as can be seen in Figure 18, when focusing on the proportional
computation times we find a steady decrease as more and more 1-simplices are
added to the Euclidian data complex. This leads us to believe that there may exist
a critical complex, after which HomologyBasis becomes superior for computing
persistent homology, but the total number of points sampled is not enough to
construct it. This is further supported by the findings in both Sections 6.3 and
6.4.

The critical complexes are clearly identifiable for both the 2 and 3-skeletons,
occurring at roughly 110 and 60 sampled points respectively. As seen in Figure
19, the decreasing proportional run time exhibited in the 1-skeleton comparisons
is still visible when k = 2 and 3. However, the incremental decrease seems to
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approach 0 as the proportional run times approach 1 : 2.
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Figure 18: Computational efficiency comparison between GUHDI and Homology-
Basis on various complete 1-complexes sampled from the embedded Klein Bottle
data set. Note the lack of a critical complex.
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Figure 19: The computational efficiency comparisons between GUHDI and Ho-
mologyBasis on various complete 2-complexes (above) and 3-complexes (below)
sampled from the embedded Klein Bottle data set. Note the critical complexes
occur around n = 110 and n = 60 respectively.

6.3 Stanford Dragon

Similar to the comparisons done in Section 6.2, we split our analysis into the
complete 1, 2, and 3-skeletons with the number of points used to generate the
Euclidian data complex being our variable of interest. The 3-skeleton is presented
in the notebook GUHDI-vs-HomologyBasis-Speed-Comparison. As the Stanford
Dragon point cloud is over twice the size of the Klein Bottle, we are able to get
a better picture of the run time behaviour for both algorithms when applied to
larger and larger simplicial complexes. This is most noticeable for the complete
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1-skeleton, see in Figure 20, as a critical complex does appear as the vertex set
of our Euclidian data complex reaches 1900 points. However, the critical complex
occurs so close to the total sampling of 2000 points that it limits our ability to see
what happens after the critical complex. As the same proportional decrease with
respect to number of sampled vertices is observed as in Section 6.2, it is assumed
that HomologyBasis is either comparable to GUHDI or better for complete 1-
skeletons of 2000 points or more.

Figure 21 shows the Stanford Dragon comparisons for the complete 2 and 3-
skeletons. As in the Klein Bottle comparison, we find the critical complexes very
quickly, 130 and 55 points respectively. One difference between the two data
sets comparisons is that the proportional computation time for the 3-skeleton
drops below the 1 : 2 mark in this comparison where as it did not in Section 6.2.
It is currently unknown if there is a limiting proportional run time for the two
algorithms.
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Figure 20: Computational efficiency comparison between GUHDI and Homology-
Basis on various complete 1-complexes sampled from the Stanford Dragon data set.
Notice how the computational times trend towards one another as the complexes
grow larger.

6.4 5-ball

In the 1-skeleton comparison of the prior two data sets we were not able to ade-
quately capture long term run time differences between GUHDI and Homology-
Basis due to the limited size of each point cloud. This next example is wholly
focused on determining the behaviour of each algorithm after the proposed critical
complex from Section 6.3. To do this a much larger point cloud was generated
consisting of 5000 distinct vertices laying within the 5-ball and computation times
were compared for various complete 1-complexes. The results of this comparison
are presented in Figure 22. As expected, we find a critical complex around the
2000 point sampling such that afterwards the HomologyBasis algorithm consis-
tently outperforms GUHDI. It seems from this comparison that the proportional
computation time is not determined by a linear relationship and, as we apply the
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Figure 21: The computational efficiency comparisons between GUHDI and Homol-
ogyBasis on various complete 2-complexes (above) and 3-complexes (below) sam-
pled from the Stanford Dragon data set. Notice both he inverse relation between
the size of the complex and the proportional run time of the two algorithms and
that, as the simplicial complexes grow larger, HomologyBasis overtakes GUHDI in
terms of computational efficiency.

algorithms to larger and larger point clouds, we approaching a limiting propor-
tional difference between the two algorithms run times.

0 1000 2000 3000 4000 5000
Points Sampled

0

10

20

30

40

50

60

70

80

Ti
m

e 
(s

ec
)

Comparison of Computation Times
HomologyBasis
GUHDI

0 1000 2000 3000 4000 5000
Points Sampled

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
op

or
tio

na
l R

un
 T

im
e

Proportional Computation Time (HomologyBasis:GUHDI)
HomologyBasis/GUHDI run time

Figure 22: Run time comparison between GUHDI and HomologyBasis on various
complete 1-complexes sampled from 5-dimensional ball of radius 1 centered at the
origin.

6.5 Final Remarks

Now we address a major draw back of the HomologyBasis algorithm in its current
form. That problem is computational efficiency when simplices of dimension 4
and greater are included in the Euclidian data complex. This issue was noticed
after computing the persistent homology for a complete 4-complex sampled from

50



the Stanford Dragon data set and was followed up on by computing multiple com-
plete 4 and 5-complexes sampled from a 3-ball. The results of both can be seen
in Figure 23. The most stark contrast to the comparisons in prior dimensions,
is how HomologyBasis quickly becomes orders of magnitude slower than GUHDI
when 4 and 5-simplices are introduced. The rapid explosion in run time occurs
when the Euclidian data complexes are constructed on 40 and 20 vertices respec-
tively. Given that there are only 7.6 × 105 simplices in a complete 4-complex of
40 vertices and 6.0× 104 in a complete 5-complex of 20 vertices, the driving factor
behind HomologyBasis’ computational inefficiency seems to be the dimension of
the complex rather than its size. It is believed that this issue may be remedied
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Figure 23: Run times and proportional run times for various complete 4-complexes
(above) and complete 5-complexes (below) by the GUHDI and HomologyBasis
algorithms. Note the extremely rapid increase of the HomologyBasis run time.

through the implementation of HomologyBasis in C++ or through a more efficient
implementation of the algorithm. These adjustments are beyond the scope of this
thesis and are left as future alterations to HomologyBasis.

In an effort to allow for easy transition from GUHDI to HomologyBasis, the
author constructed a class within HomologyBasis that replicates the functionality
of GUHDI’s SimplexTree. This class goes by the same name but uses Homology-
Basis’ techniques for computing persistent homology. The goal was to take code
that uses GUHDI to compute persistent homology for a finite filtered simplicial
complex, replace GUHDI with HomologyBasis when importing packages, and in-
crease the efficiency without altering any of the code itself. An implementation
of this is seen in Figure 24. As we have consistently found critical complexes
around the n = 2000 mark for complete 1-complexes, after which HomologyBasis
more efficiently computes persistent homology, it is believed that the inefficiency
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Figure 24: Comparison between GUHDI’s SimplexTree and HomologyBasis’ Sim-
plexTree classes’ run time on the complete 1-complex constructed on a sampling
of 2500 points from the 2-ball with radius 1 centered at the origin.

demonstrated in Figure 24 is a result of a less than optimized implementation of
HomologyBasis’ SimplexTree class. This comparison is presented in the notebook:
GUHDI-vs-HomologyBasis-SimplexTree.ipynb
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7 Further Research

As seen in Section 6.5, HomologyBasis experiences a sharp drop in efficiency when
simplices of dimension greater than 3 are introduced. This is not believed to be
due to a failure in the practical implementation of HomologyBasis rather than in
the foundation upon which the algorithm is built. It is of interest to the author
to further explore more streamlined and efficient implementations of the Homolo-
gyBasis algorithm in order to see if its usefulness does indeed extend beyond the
scope of simplicial complexes of dimension 3, as is believed.

The goal of HomologyBasis is to form a code that can be used to directly replace
that of GUHDI. In order to do this, it is required to have a class that is functionally
identical to GUHDI’s SimplexTree. We have seen that while HomologyBasis has a
rough implementation of this, it has not been done optimally and thus, hinders the
advantages that HomologyBasis holds over GUHDI. It is of interest to explore more
optimal implementation of this class, with the end goal of being able to implement
HomologyBasis in any existing code that uses GUHDI simply by changing one
line.

Additionally, while the author is not well versed in the C++ language, an
exploration into the comparative efficiencies of GUHDI and a C++ implementation
of HomologyBasis would serve as a accurate test between the two. Given that code
in C++ can always be more optimized than in pure Python, it is believed that
HomologyBasis would only perform better on this leveled playing field.

Lastly, while we have a category theoretic description of finite filtered simplicial
complexes, we are yet to apply the same terminology to totally filtered chain
complexes. Lacking this formal definition bars us from describing the injective
function Γk from Proposition 2.30 as a functor. As this was the initial goal of
the author, there is still work to be done in framing the set totally filtered chain
complexes as a category.
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8 Conclusion

In this thesis, we presented the totally filtered chain complex and its respective
homology basis as a theoretic foundation for the HomologyBasis algorithm. Ho-
mologyBasis proved to utilize this foundation to efficiently compute the persistent
homology of large low-dimensional simplicial complexes.

In the various comparisons of Section 6, we saw that when limited to sim-
plices of dimension 0, 1, 2, and 3, the more simplices in our complex the better
HomologyBasis performed compared to GUHDI. During the best comparisons,
HomologyBasis was able to produce persistence pairs at approximately double the
efficiency of GUHDI. It is still unknown if there is a limit to the proportional
efficiency of these comparisons. However, HomologyBasis’ efficiency falters when
investigating simplicial complexes of dimension 4 and greater as seen in Section
6.5. It should be remembered the difference in implementations between the two
algorithms, GUHDI in C++ and HomologyBasis in pure Python, which will be a
contributing factor but is not believed to be the main cause of this stark difference
in run times between dimensions. The lack of efficiency is believed to stems from
less than optimal implementation of the HomologyBasis algorithm and that this is
a problem that can be remedied through the use of more creative coding. However,
this has not been verified.

Ultimately, HomologyBasis presents itself as a very intriguing alternative to one
of the more popular algorithms for the computation of persistent homology. While
it is by no means a finished product and has a less than optimal implementation,
it shows strong indications that it is an algorithm that can compete, and even
surpass, the benchmark persistent homology algorithms of the present day. This
alone makes it worth further investigation.
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