
Equivalent Euclidean Data Complexes

Kristian André Jakobsen
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Abstract

Euclidean data complexes are simplicial complexes that have been constructed
from a point cloud in Euclidean space. Two of the most important examples of
such complexes are the Čech and Alpha complex. In this thesis, we will prove that
these are homotopy equivalent to the Delaunay-Čech complex using the geometric
and gradient collapse arguments. Moreover, we introduce a new Euclidean data
complex that we call the selective Delaunay-Alpha complex. Not only does it
generalize the other three, but it is also simple-homotopy equivalent to them. The
implications of this result will also be discussed.
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1 Introduction

Topological data analysis (TDA) is a subfield of mathematics that studies the
shape of data using topological techniques. It lies at the intersection of compu-
tational geometry and topology, algebraic topology, and data analysis. To help
make the problem of finding useful patterns tractable, we usually make some gen-
eral assumptions about the kind of data we study. First, we assume it consists of
a finite set X ⊆ Rd. Perhaps somewhat surprisingly, this does not limit the scope
of the kind of problems we can tackle. Real-world data – whether it is geospatial,
times series or image-based – can be represented as a collection of finite vectors in
some d-dimensional Euclidean space. This can be good to keep in mind whenever
TDA seems overly abstract.

Second, the manifold hypothesis is the assumption that these points have been
sampled from a lower dimensional submanifold of Rd, e.g., a surface in R3, or a
curve in R2. Nature is full of regularities and patterns that one would expect to
be observed in the data as a whole. Hence, it makes theoretical sense to assume
that we are not dealing with a uniform distribution in Rd, and that the data varies
smoothly because there are correlations between nearby data points. The manifold
hypothesis is important for machine learning models to be able to extract features
from the dataset with appropriate representations [4, p. 173]. The mathematical
tools from TDA make the study of such manifolds interesting in their own right.

The manifold hypothesis has long been a theoretical assumption in the ma-
chine learning community, but TDA has provided tools to also justify it empirically
[23]. Persistent homology is one such tool. It lets us distinguish between the holes
and components that are in the manifold and those that are artefacts of noisy data
[7]. As a result, we might try to classify a manifold by the homological features
that persist as one builds an increasingly larger space from the data points in X.
As a real-world example, Gunnar Carlsson et al. [8] used persistent homology to
show that the space of 3×3 patches of grayscale natural images has the shape of a
Klein bottle. Persistent homology is useful for data where connectivity and loops
matter, with applications in viral evolution [9] and remote sensing [14].

However, in order to compute persistent homology, we need to have a family
of simplicial complexes that are ordered by inclusion, called a filtration. Hence,
this thesis is concerned with the step before one computes persistent homology.
The focus is on ways to reconstruct, or approximate, the underlying manifold
based on data that was sampled from it, and produce a filtration of simplicial
complexes [21, p. 28]. Note that we do not concern ourselves with how good
these approximations are. We should rather use it as motivation for why these
complexes might be interesting. We will construct different kinds of simplicial
complexes, but all of them have X as their set of vertices. Figure 1 is a geometric
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Figure 1: The data points are used to construct a simplicial complex that
approximates the manifold that the data is sampled from.

illustration of how such a reconstruction might look. An n-simplex between n+ 1
points in X can be thought of as an approximation of the manifold in the region
of those points, given they are sufficiently close. Better yet, the dimension of the
simplex formed can tell us something about the density of the data in said region.
This has obvious parallels to standard clustering methods. We will call simplicial
complexes that have been constructed from a finite set of points in Rd Euclidean
data complexes. This is not to be confused with the concept of data complexes by
Abraham D. Smith et al. [1]. Euclidean data complexes not considered in this
thesis include the Vietoris-Rips, Witness and Intrinsic Čech complex.

However, different measures of “nearness” produce simplices of differing di-
mensions and computational complexity. One of the more obvious approaches in
constructing a Euclidean data complex would be to grow balls around each point
in X with some radius r ≥ 0 to form a cover that locally resembles the underlying
manifold. Then we can form an n-simplex if the intersection of n + 1 balls is
non-empty. This is known as the Čech complex, and, by the Nerve Theorem, it is
homotopy equivalent to the union of the balls [21, p. 31]. One problem with this
Euclidean data complex is how quickly high dimensional simplices are formed.
If the number of points in X exceeds the dimension of the ambient Euclidean
space, then a sufficiently large r will create simplices that cannot be embedded in
the ambient space. Not only is this computationally inefficient, but it also goes
against one of the motivations for studying these complexes in the first place. The
Alpha complex attempts to resolve these issues by limiting the number of balls
that can intersect, with only very specific configurations of the data producing
high dimensional simplices. The goal of this thesis is to show that these two Eu-
clidean data complexes are homotopy equivalent to a complex that includes the
Alpha complex and is included by the Čech complex, namely the Delaunay-Čech
complex. In other words, we do not lose much topological information by dealing
with either the Alpha, Čech or Delaunay-Čech complex. There will be given two
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different arguments for this result. One will be called the geometric argument, and
the other the gradient collapse argument. These were given by Nello Blaser and
Morten Brun [5], and Ulrich Bauer and Herbert Edelsbrunner [3], respectively. In
the process, we will prove a more general result for a new simplicial complex that
generalizes the ones mentioned above.

The thesis is structured as follows:
Section 2 will introduce the two Euclidean data complexes mentioned above,

and others that play an important role. It will also show how they relate to their
respective radius functions. The main contribution in this section is the selective
Delaunay-Alpha complex.1 It generalizes all the other Euclidean data complexes
in this section.

Section 3 will show an alternative way of understanding the Euclidean data
complexes introduced in Section 2 by using dissimilarities. The most important
result in this section is the Dowker Nerve Theorem since it will be the basis for the
geometric argument. The main contribution in this section is defining Euclidean
data complexes, and proving several smaller results, that are not mentioned in [5].
This helps bridge the gap to the approach in [3].

Section 4 will introduce the discrete version of Morse theory. The techniques
here will be essential for the gradient collapse argument. The main contribution
in this section is relating definitions in [3] to those in [18]. We also provide proofs
of Theorem 4.12 and Theorem 4.16 that were omitted in [3]. The most important
result will be showing that the radius functions from Section 2 are generalized
discrete Morse functions by adding a small assumption to our dataset.

Section 5 will present the two arguments for why the Alpha and Čech com-
plexes are equivalent to the Delaunay-Čech complex. The main contribution in
this section is formulating results in [3] in terms of the selective Delaunay-Alpha
complex, which leads to corollary that proves this complex is simple-homotopy
equivalent to all the complexes it generalizes.

Section 6 will summarize the results in this thesis and discuss an unsuccessful
approach in giving a geometric proof of showing that the selective Delaunay-Alpha
and Čech complexes are homotopic. It will also discuss some implications of having
equivalent Euclidean data complexes.

1Note that this complex is implicit in Theorem 5.9 in [3], but was independently discovered
using dissimilarities.

3





2 Euclidean Data Complexes

Before explaining what we mean by Euclidean data complexes, we need to define
simplicial complexes. There are two notions of simplicial complexes: geometric
and abstract. Geometric simplicial complexes are topological spaces and intuitive,
but can be cumbersome to work with. Abstract simplicial complexes, on the other
hand, contain the necessary combinatorial information for computations, but do
not have the topological properties that a geometric simplicial complex has. This
thesis will exclusively work with abstract simplicial complexes. Hence, it should
be assumed that it is the latter notion we refer to when talking about “simplicial
complexes”, unless stated otherwise. We begin by defining the central objects of
our study.

2.1 Abstract Simplicial Complexes

Those familiar with geometric simplicial complexes will recognize that abstract
simplicial complexes are also built out of smaller simplices. One cannot, e.g., have
a 2-simplex without also having three 1-simplices and three 0-simplices.

Definition 2.1. An (abstract) simplicial complex K on a set V is a collection of
subsets of V such that if σ ∈ K and τ ⊆ σ is non-empty, then τ ∈ K.

We call V the vertex set of K and write V (K) for this set. An element σ ∈ K
is called a simplex in K. Given another simplex τ ⊆ σ in K, then σ is a coface of
τ , while τ is a face of σ. If the inclusion is proper, we say that σ is a proper coface
and τ is a proper face. If L ⊆ K is an inclusion of simplicial complexes, then L is
said to be a subcomplex of K. The dimension p of a simplex σ is given by |σ| − 1
and we say that σ is a p-simplex. This is similar to the notion of dimension for
a geometric simplex being the number of vertices minus one. The dimension of a
simplicial complex is given by the maximum dimension of any of its simplices. We
will only need to consider simplicial complexes defined on a finite vertex set V .

It is worth reiterating the distinction between the two types of simplicial
complexes for those more familiar with the geometric version. In Figure 2 we have
drawn a geometric illustration of an abstract simplicial complex. We can think
of the vertices as being sampled from R3 and a p-simplex being drawn between
p + 1 points, if they form a simplex. In this case, we start out with 10 vertices
and form a 3-simplex, a 2-simplex and two 1-simplices, if we do not count faces.
Unlike geometric simplicial complexes, we only care about the relationship be-
tween simplices, regardless of potential intersections. We also want to talk about
structure-preserving maps between simplicial complexes.
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Figure 2: Geometric illustration of an abstract simplicial complex.

Definition 2.2. A simplicial map f : K → L between simplicial complexes K
and L is defined as a function f : V (K) → V (L) such that a simplex σ ∈ K gets
mapped to a simplex f(σ) ∈ L.

There is a category ASC with abstract simplicial complexes as objects and
simplicial maps as morphisms. It is useful to consider this category when we
introduce other kinds of structures and want to relate them by means of functors.
However, we will manage without categorical language. Now we make an abstract
simplicial complex into a topological space.

Definition 2.3. The geometric realization |K| of a simplicial complex K, with ver-
tex set V , is the subspace of the function space [0, 1]V , given the strong topology2,
such that α is in |K| if

(1) α−1((0, 1]) is a simplex in K, and

(2)
∑

v∈V α(v) = 1.

This abstract definition is more easily understood by considering each func-
tion α in |K| as describing a convex combination of the vertices in a simplex
σ ∈ K. The convex hull, i.e., the set of all convex combinations, represents the
geometric realization |σ| of σ. Although this is similar to how geometric simplicial
complexes are defined [15], note that the geometric realization is not turning an
abstract simplicial complex into a geometric one. The first condition ensures we
only consider convex combinations of vertices that make up a simplex α−1((0, 1])
that exists in K. The second tells us that α is a “point” in the simplex α−1((0, 1]),
defined by the vertices that become non-zero. Since every vertex vi ∈ V is itself a

2The strong topology is convenient when we want to look at functions into |K|, such as in the
case of the Dowker Nerve Theorem [12, p. 355].
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simplex, there must necessarily be a function πi ∈ |K| such that

πi(v) =

{
1 if v = vi

0 otherwise.

For a higher dimensional simplex σ, it will be as if we introduce a new axis
for each vertex in σ and then find the points lying in-between them. Figure 3
illustrates this for a 1-simplex σ = {v1, v2} and how |σ| is the closure of

{α : V → [0, 1] | α(v) > 0 for all v ∈ σ}.

α(v1) + α(v2) = 1

π1(v1)

π2(v2)

[0, 1]

[0, 1]

Figure 3: A function α : V → [0, 1] in |K| considered as a point on a 1-
simplex. The red line represents all such points, giving |{v1, v2}| ⊆ |K|.

We are now ready to state in what sense simplicial complexes in this thesis
will be considered equivalent. It is, namely, in terms of their geometric realizations
that simplicial complexes are equivalent.

Definition 2.4. Simplicial complexes K and L are homotopy equivalent, denoted
K ' L, if there is a homotopy equivalence |K| ' |L|.

Since we will introduce a parameter for our complexes, it is useful to consider
a family of simplicial complexes. We define the order on this family to be inclusion
of subcomplexes.

Definition 2.5. A filtration of a simplicial complex K is a sequence of subcom-
plexes

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.3

A simplicial complex is said to be filtered if it has a filtration.

3It is not strictly necessary to require that the sequence begins with the empty set.
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Note that since we are working with finite complexes, any infinite sequence of
subcomplexes will contain a finite subsequence such that each inclusion is proper.
This is worth keeping in mind when we will be working with a parameter in R.

2.2 Examples of Euclidean Data Complexes

As stated in the introduction, we are interested in how we can construct simplicial
complexes from a finite set of data points – or a point cloud – X in Rd. In this
thesis, we call such simplicial complexes for Euclidean data complexes. However,
not only are there several complexes one may construct from X, there are also two
different ways of constructing the same Euclidean data complex. One is to directly
give a condition on balls centered at the different points in the point cloud. The
other uses continuous functions to define how dissimilar every point in Rd is from
every point in X.

We begin, however, with the former way of defining the Čech, Delaunay and
Alpha complexes, as they require less machinery. We will then see how they are
particular instances of the selective Alpha complex and how they may be combined
to form the Delaunay-Čech complex. Moreover, the Čech and Delaunay complexes
can be described by smallest enclosing balls and smallest circumscribing spheres,
respectively. This idea will also be generalized to the selective Alpha complex
via radius functions. Finally, we introduce a new simplicial complex, called the
selective Delaunay-Alpha complex, as a generalization of all the others. Besides
these, there are several other Euclidean data complexes. Two of the most popular
for computations are the Vietoris-Rips and Witness complexes [21].

Let d(x, y) be the Euclidean distance between two points x and y in Rd. We
also define the open ball of radius r ≥ 0 centered at x as

Bd(x, r) = {y ∈ Rd | d(x, y) < r},

and denote its closure Bd(x, r) by B̄d(x, r). The subscript indicates that one can
use other metrics than d. We will revisit this point when considering dissimilarities.

2.2.1 Čech Complexes

Before defining the Čech complex, it can be informative to think in concrete terms
about what property of a given dataset one is hoping to capture. When doing
data analysis, one tries to find some useful pattern in the data. A reasonable
hypothesis could be that a notion of nearness tells us when certain data points
should be considered related. For instance, consider a dataset consisting of all
the RGB values of every pixel in a collection of images. A clustering algorithm
might identify different classes for the objects in the images by grouping together
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the images with similar RGB values in pixels that are sufficiently near each other.
Images of lawns might thus be clustered together because they all have high green
values in pixels near the bottom of the image. Geometrically, one could think
of adding a p-simplex whenever p + 1 data points are sufficiently close, and a
higher value of p indicates a more dense clustering. It is this intuitive notion
of “relatedness” that our simplicial complexes, including the Čech complex, are
trying to extract from the point cloud. We will be using the Euclidean distance d
to measure nearness, but there is no reason why one cannot use any other distance
metric.

Definition 2.6. The Čech complex of a finite set X ⊆ Rd with radius r ≥ 0 is the
simplicial complex

Čechr(X) =

{
σ ⊆ X |

⋂
x∈σ

B̄d(x, r) 6= ∅

}
.

That is, we construct a p-simplex whenever p+1 closed balls, centered at p+1
different points in X, have a common intersection. Note that in the example of
Figure 4 there are two triangles, but only one forms the boundary of a 2-simplex.
Keep in mind that we have merely drawn a geometric simplicial complex as an

Figure 4: A geometric illustration of a Čech complex.

illustration of the combinatorial information in an abstract simplicial complex.
The Čech complex gives a filtration of the full simplex ∆(X) = P(X) − {∅}
spanned by X since Čech0(X) is empty and Čech∞(X) is the full simplex, and
since r ≤ s implies Čechr(X) ⊆ Čechs(X). This filtration gets constructed by
increasing r, adding simplices to the vertices in X until ∆(X) is formed.

Going back to our concrete example, one can think of the radius r of the
closed balls as being the tolerance level for some data points to be considered
“near”. If r = 0, one would not tolerate any “noise” in the data, while increasing
r indefinitely, one ends up considering all points to be “near” each other. An
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approach that looks at which topological features persist as one increases r is
called persistent homology [7].

Implementing the definition, as given, is computationally inefficient. To avoid
having to check all the intersections, we can give a description of the Čech complex
that is faster. We reformulate the condition for a p-simplex to be added.

Proposition 2.7. A set σ ⊆ X containing p+1 points is a p-simplex in Čechr(X)
if and only if there exists a point q ∈ Rd such that σ ⊆ B̄d(q, r).

Proof. Suppose σ ⊆ Čechr(X) is a p-simplex. Then we know there exists a q ∈ Rd

such that q is in the intersection of the p+ 1 closed balls of radius r and centered
at the points in σ. Then d(q, x) ≤ r for every x ∈ σ, proving one direction.

Conversely, we assume σ is contained in B̄d(q, r) for some q ∈ Rd. In other
words, d(q, x) ≤ r for every x ∈ σ. This implies that the common intersection of
all balls B̄d(x, r), with x ∈ σ, must at least contain q, and hence be non-empty.

Using this new condition, we can write an algorithm that decides whether
σ ⊆ X is a simplex in Čechr(X). Define the miniball of σ to be the smallest
closed d-ball that contains all points in σ. It can be found using Welzl’s miniball
algorithm [25]. After finding the miniball of σ, one checks if its radius is smaller
than or equal to r. If it is, then we know that σ is a simplex in Čechr(X) by
Proposition 2.7.

2.2.2 Delaunay Complexes

A simplicial complex that has more interesting properties than the Čech complex is
the Delaunay complex, and its parameterized version, the Alpha complex. What
is important from the point of view of computation is that the Alpha complex
captures the same structure as the Čech complex, but is much more computation-
ally efficient because it substantially limits the dimension of its simplices. As has
become a reoccurring theme so far, there are several ways of constructing the De-
launay complex, and hence also the Alpha complex. The most intuitive requires a
cover of Rd associated to X that is called the Voronoi diagram of X, which is made
up of the Voronoi cells of each point x ∈ X. The reader curious to learn more
about the Voronoi diagram – and its uses in everything from biology to engineering
– should seek out [2].

Definition 2.8. Given a finite set X ⊆ Rd, the Voronoi cell of x ∈ X is the set

Vor(X, x) = {p ∈ Rd | d(x, p) ≤ d(y, p) for all y ∈ X}.

The Voronoi cell of x gives us the set of all points in Rd that are closer to x
than any other point in X. One way to find Vor(X, x) is to first draw a hyperplane
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xy1

y2

y3

Hy2

Hy1
Hy3

Figure 5: The Voronoi cell of x is the shaded area, and has been constructed
from hyperplanes separating x from the other points in X.

Hy for every point y ∈ X − {x} in such a way that it is equidistant to x and y.
Let

H+
y = {p ∈ Rd | d(x, p) ≤ d(y, p)},

i.e., H+
y contains all points in Rd that are closer to x than y, or lie on Hy. Then

we finally get that

Vor(X, x) =
⋂

y∈X−{x}

H+
y .

See Figure 5 for an example of how one would construct Vor(X, x) in the plane.
The Voronoi cells of the points in X now form a cover {Vor(X, x)}x∈X of Rd. This
cover is what we call the Voronoi diagram of X and denote it by Vor(X). Using
the same points as in Figure 5, we get the Voronoi diagram on the left in Figure 6.

Figure 6: A Voronoi diagram for four points in R2 on the left. On the
right, we have superimposed the empty circumscribed circles defining two
2-simplices.

Note that some of the Voronoi cells in Vor(X) intersect. This suggests a
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natural way to define a simplicial complex.

Definition 2.9. The Delaunay complex of a finite set X ⊆ Rd is the simplicial
complex

Del(X) =

{
σ ⊆ X |

⋂
x∈σ

Vor(X, x) 6= ∅

}
.

Before proving that the Delaunay complex decreases the dimension of its
simplices when compared to the Čech complex, we need to qualify our claim first.
We can, namely, have a special case in which all n points in our point cloud X ⊆ Rd

lie on a common sphere. It is clear that their Voronoi cells would then intersect at
the center of said sphere. In this special case, Del(X) = Čechr(X) as r goes to∞,
irrespective of n. Hence, we will need to restrict the number of points that can lie
on a common sphere. A good limiting number may be d + 1 since this will have
the added benefit of being able to geometrically represent the Delaunay complex
as embedded in Rd.

Proposition 2.10. If at most d+1 points in a finite set X ⊆ Rd lie on a common
(d− 1)-sphere, then the dimension of any simplex in Del(X) is at most d.

Proof. Recall that one cannot have a simplex of dimension larger than d+1 unless
it contains a (d+ 1)-simplex. Hence, it is sufficient to show that Del(X) does not
contain a (d+1)-simplex whenever the points in X do not lie on a common sphere.
Suppose Del(X) contains a (d+1)-simplex σ. Then the common intersection of the
Voronoi cells of the d + 2 vertices in σ is non-empty. By definition of Vor(X, x),
that means there is a point in Rd that is equidistant from every vertex in σ,
defining a common (d − 1)-sphere for d + 2 points in X. The result follows by
contradiction.

This naturally leads to the following description of the Delaunay complex that
is reminiscent of the miniballs for Čech complexes. Instead of finding the smallest
ball containing points in σ, we need to find the smallest empty circumscribed
(d − 1)-sphere of σ. In other words, we are looking for a (d − 1)-sphere S such
that all points in σ lie on S and no points in X − σ are on, or bounded by, S. See
Figure 7 for an example and a non-example. The smallest such sphere is called
the Delaunay sphere of σ, and σ must be a simplex in Del(X). On the right of
Figure 6, we get two empty circumscribed circles of three points each. These define
two 2-simplices. Their center lies where the Voronoi diagrams of the respective
points meet.

Note that a (d−1)-sphere is uniquely determined by d+1 affinely independent
points. Hence, if a sphere circumscribes d+ 1 points in X, but still contains other
points ofX in its closure, then we know the former points cannot make up a simplex
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x x

y y

Figure 7: Although the circumscribed circle of x and y on the left is not
empty, the one on the right is. So {x, y} would be considered a simplex in
Del(X)

in Del(X). In the case of n affinely independent points, where n ≤ d, there will
exist many circumscribed spheres, but the smallest one is unique. Moreover, a
lemma due to Seidel says that the center of this ball must lie in the convex hull
of all n points [17]. It will be convenient to refer to the case in which we are
guaranteed the existence of a circumscribed sphere for any n-simplex in Del(X)
for n ≤ d. Furthermore, we want this sphere not to contain any other points than
those in σ.

Definition 2.11. A finite set X ⊆ Rd is in general position if for every subset
σ ⊆ X, of at most d+ 1 points,

(1) σ is affinely independent, and

(2) X − σ does not contain a point on the smallest circumscribed sphere of σ.

It can be hard to determine when there exists a circumscribed sphere in the
case of n > d+ 1 points. We note, however, that the vertices of the platonic solids
always have a circumscribed sphere. More generally, the center of the smallest
circumscribed sphere of points in general position must lie in points’ affine hull.

2.2.3 Alpha Complexes

Unlike the Čech complex, the Delaunay complex is a fixed complex. However, one
can make it a filtered simplicial complex by letting it be a Čech complex that is
bounded by the Delaunay complex. More formally, let

Vorr(X, x) = Vor(X, x) ∩ B̄d(x, r)

be the Voronoi ball of x with radius r.
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Definition 2.12. The Alpha complex of a finite set X ⊆ Rd with radius r ≥ 0 is
the simplicial complex

Alphar(X) =

{
σ ⊆ X |

⋂
x∈σ

Vorr(X, x) 6= ∅

}
.

As one grows a closed ball, it will eventually meet the boundary of two or
more Voronoi cells and stop growing in that direction. The result is akin to buns
rising in the oven and getting stuck to each other, as seen on the right-hand side of
Figure 8. Note also how the number of balls intersecting decreases, when compared
to the regular closed balls on the left-hand side. This leads to the dimension of
the simplices in the Alpha complex to decrease as well. Moreover, we get that

Figure 8: The regular closed balls are shown on the left and the Voronoi
balls are shown on the right, given four points.

Vor∞(X, x) = Vor(X, x), which means Alpha∞(X) = Del(X). Hence, there is a
filtration of Del(X) formed by Alpha complexes since r ≤ s implies Alphar(X) ⊆
Alphas(X). This filtration gives us the following corollary of Proposition 2.10.

Corollary 2.13. If at most d + 1 points in a finite set X ⊆ Rd lie on a common
(d− 1)-sphere, then the dimension of any simplex in Alphar(X) is at most d.

One may find authors who call the Delaunay complex the Delaunay triangula-
tion and the Alpha complex the Delaunay complex – notably [3]. I have, however,
decided to stay consistent with the terminology used in [5].

2.2.4 Selective Alpha Complexes

It turns out that the Alpha and Čech complexes are extremal cases of a more
general simplicial complex. The purpose of this complex will, first and foremost,
be in proving the homotopy equivalences of some Euclidean data complexes in
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Section 5. Let us start by generalizing the Voronoi cell of x ∈ X to be defined
with respect to an arbitrary subset E of X, i.e.,

Vor(E, x) = {p ∈ Rd | d(x, p) ≤ d(e, p) for all e ∈ E}.

Using this definition also gives us the Voronoi ball with respect to E, i.e.,

Vorr(E, x) = Vor(E, x) ∩ B̄d(x, r).

Definition 2.14. Given a finite set X ⊆ Rd, then the selective Alpha complex 4

for E ⊆ X and with radius r ≥ 0 is the simplicial complex

Alphar(X,E) =

{
σ ⊆ X |

⋂
x∈σ

Vorr(E, x) 6= ∅

}
.

We write Del(X,E) = Alpha∞(X,E) and call it the selective Delaunay com-
plex. It is clear that if we are given x ∈ X, then Vor(∅, x) will vacuously be all
of Rd, making Vorr(∅, x) = B̄d(x, r) for all r ≥ 0. Then Alphar(X, ∅) is exactly
the definition of Čechr(X). While if E = X, then Alphar(X,E) = Alphar(X).
The novelty must then come from the case when ∅ ( E ( X. In this case, the
Voronoi cells do not have to respect the boundaries of every other Voronoi cell.
Only points in E respect the boundaries of each other’s Voronoi cells. Hence, the
result is a regular Voronoi diagram for points in E, with the remaining Voronoi
cells overlaying it. See Figure 9 for an example. This, in turn, gives a simplicial

x

z

y

Figure 9: The Voronoi cell Vor(E, z) overlaps with Vor(E, x) and Vor(E, y)
when E = {x, y}.

complex Alphar(X,E) that is somewhere in-between the Čech and Alpha complex.
We can make this more precise.

4Note that due to the different choice in terminology, [3] introduced this as the selective
Delaunay complex.
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Lemma 2.15. If E ⊆ F are subsets of X, then Vorr(F, x) ⊆ Vorr(E, x) for all
x ∈ X.

Proof. Recall that a point p lies in Vor(F, x) if and only if d(p, x) ≤ d(p, f) for
every f ∈ F . In particular, d(p, x) ≤ d(p, e) for every e ∈ E ⊆ F . This gives us
that p ∈ Vor(E, x). Then we get the desired result since Vorr(G, x) ⊆ Vor(G, x)
for all G ⊆ X.

As a consequence of Lemma 2.15, the Alpha and Čech complexes are extremal
cases of the selective Alpha complex in the sense that

Alphar(X,X)︸ ︷︷ ︸
Alphar(X)

⊆ Alphar(X,E) ⊆ Alphar(X, ∅)︸ ︷︷ ︸
Čechr(X)

for any E ⊆ X.
Bauer and Edelsbrunner [3] give another way to define the selective Alpha

complex and to state Lemma 2.15, namely by means of radius functions. This
formulation generalizes Delaunay spheres. In Section 4, we will that they are
examples of generalized discrete Morse functions.

Definition 2.16. Given a (d − 1)-sphere S ⊆ Rd and a finite set X ⊆ Rd, let
InclS be the set of included points in X, i.e., the points that lie on or inside S.
Similarly, let ExclS be the set of excluded points in X, i.e., the points that lie on
or outside S.

We call the points in OnS = InclS ∩ ExclS the points in X that are on
S. We begin with subsets σ and E of a finite set X ⊆ Rd. We will say that a
(d− 1)-sphere S ⊆ Rd includes σ if σ ⊆ InclS and excludes E if E ⊆ ExclS. If S
includes σ and excludes E, while A = σ ∩E is not empty, then clearly A ⊆ OnS.
It is possible for there to be no spheres that both include σ and exclude E, but
let S(σ,E) be the sphere with the smallest radius r in the case there are such
spheres. Define s(σ,E) to be equal r2. We call S(σ,E) the Delaunay sphere of
σ with respect to E. As expected, S(σ,X) is the Delaunay sphere of σ we have
already seen, while S(σ, ∅) is the boundary of the miniball of σ. Hence, it makes
sense to call the latter the Čech sphere of σ.

Definition 2.17. Let σ and E be subsets of the finite set X ⊆ Rd. Then the
radius function

sE : Del(X,E)→ R

for E is defined by sE(σ) = s(σ,E).

We call sX the Delaunay radius function of X and s∅ the Čech radius function
of X. Just as the miniballs and Delaunay spheres were used to determine whether

16



a simplex belongs to the Čech and Delaunay complexes, respectively, sE will do
the same for the selective Alpha complex. The proof is similar to Proposition 2.7.

Lemma 2.18. Let X ⊆ Rd be a finite set and E ⊆ X. If given r ≥ 0, then a
simplex σ in Del(X,E) is also a simplex in Alphar(X,E) if and only if sE(σ) ≤ r2.

Proof. Suppose σ is a simplex in Alphar(X,E) ⊆ Del(X,E) for some r ≥ 0. By
definition, the Voronoi balls with respect to E of the points in σ need to have some
point y in common. For this to be the case, the furthest distance d between any
point in σ ∩E to y will necessarily be less than r. Moreover, the sphere of radius
d with center y will include σ and exclude E. This implies that sE(σ) ≤ d2 ≤ r2

since sE(σ) is a lower bound on d2.

Conversely, suppose sE(σ) ≤ r2 for some r ≥ 0 and that σ is a simplex in
Del(X,E). This implies that the center of the smallest sphere including σ and
excluding E lies in ⋂

x∈σ

Vorr(E, x).

Hence, we know that σ ∈ Alphar(X,E).

Using Lemma 2.18, we see that sE(σ) ≤ sF (σ) if and only if Vorr(F, x) ⊆
Vorr(E, x). We can now restate Lemma 2.15 with the help of radius functions.

Corollary 2.19. If E ⊆ F are subsets of the finite set X, then sE(σ) ≤ sF (σ)
whenever both functions are defined.

2.2.5 Delaunay-Čech Complexes

The Alpha complex is defined by limiting the closed balls – used to define the Čech
complex – to the Voronoi cells, which are used to define the Delaunay complex.
The Delaunay-Čech complex, on the other hand, is defined by limiting the Čech
complex itself to the Delaunay complex. As a result, both complexes are similar
in that they use ideas from the Delaunay and Čech complexes to define a new
complex.

Definition 2.20. Given a finite set X ⊆ Rd, then the selective Delaunay-Čech
complex for E ⊆ X with radius r ≥ 0 is the simplicial complex

DelČr(X,E) =

{
σ ⊆ Del(X,E) |

⋂
x∈σ

B̄d(x, r) 6= ∅

}
.

17



Note that we are mostly interested in the case when E = X, and call
DelČr(X) = DelČr(X,X) the Delaunay-Čech complex. It is only the latter com-
plex that is considered in [3, 5], but making it selective will help motivate the next
Euclidean data complex in this section.

But first we would like to compare the Alpha to the Delaunay-Čech complex.
One way to distinguish them is to note that the latter only considers whether
there is an intersection of closed balls at any point, as well as whether there is an
intersection of the respective Voronoi cells at any other point. This does not have
to be the same point. The Alpha complex, on the other hand, requires that the
closed balls and the respective Voronoi cells do meet at the same point for a new
simplex to be formed. Hence, in Figure 8 the Alpha complex would not contain a
3-simplex, while the Delaunay-Čech complex would (given that the Voronoi cells
of the left and right points would eventually meet). One can think of this as
saying the following. To form a simplex when we know some Voronoi cells meet,
the Alpha complex requires the respective closed balls to have a radius r0 that is
sufficiently large for all the balls to reach a point at which the Voronoi cells meet.
But for the Delaunay-Čech complex a simplex will be formed when the radius is
large enough for the balls to meet at some point. It will at most require a radius
of r0. By this reasoning one can see that Alphar(X) ⊆ DelČr(X). Both complexes
form a filtration of Del(X).

2.2.6 Selective Delaunay-Alpha Complexes

All the previous complexes are well-known Euclidean data complexes. We will now
introduce a simplicial complex that we arrived at independently, but is implicit
in [3, Theorem 5.9]. Its main purpose is to generalize all of the Euclidean data
complexes we have defined in this thesis.

Definition 2.21. Given a finite set X ⊆ Rd, then the selective Delaunay-Alpha
complex for E,F ⊆ X with radius r ≥ 0 is the simplicial complex

DelAr(X,E, F ) =

{
σ ⊆ Del(X,E) |

⋂
x∈σ

Vorr(F, x) 6= ∅

}
.

The new definition naturally leads us to ask whether the results proven in [3,
5] generalize to this complex as well. We will tackle this question in Section 6.
For convenience, we gather all instances of the selective Delaunay-Alpha complex
into Table 1. It illustrates how different choices of E,F ⊆ X produce all of the
Euclidean data complexes we have already defined. By making r =∞ and F = E,
we even get Del(X,E). Unfortunately, we will see that the selective Delaunay-
Alpha dissimilarity will not be able to generalize the Delaunay dissimilarity since
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r E F DelAr(X,E, F )

r ∅ ∅ Čechr(X)

∞ E E Del(X,E)

r ∅, F F Alphar(X,F )

r E ∅ DelČr(X,E)

Table 1: Given a finite set X ⊆ Rd, then choosing different subsets E,F ⊆ X
and radius r ≥ 0 gives a different complex DelAr(X,E, F ).

we do not have the same control over r. This is, however, not a substantial problem.
As a last remark, we note that we clearly can define the selective Delaunay-

Alpha complex with radius r as

DelAr(X,E, F ) = Del(X,E) ∩ Alphar(X,F ).

This will help us show that this Euclidean data complexes is equivalent to all the
others if F ⊆ E.
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3 Dissimilarities

We begin by giving the general definition of a dissimilarity as well as some construc-
tions associated with it. In the next section we turn to the specific dissimilarities
we need when proving one of our main results.

3.1 Generalized Metrics

We generalize a metric on a topological space by removing its axioms and just
considering continuous functions into [0,∞]. Moreover, we want the ability to
compare two different topological spaces X and Y , and say how dissimilar a point
in X is from a point in Y .

Definition 3.1. Given topological spaces X and Y , a dissimilarity is a continuous
function Λ: X × Y → [0,∞], where [0,∞] is given the order topology.

This is a noticeably a very general definition, but all our examples will have
Y = Rd and X a finite subset of Y . Then we can think of X as our point cloud
and define how dissimilar a point in Rd is from every point in X. We shall return
to this when defining our Euclidean data complexes using dissimilarities.

Example 3.2. The most obvious example of a dissimilarity is a metric D : X ×
X → [0,∞) on a set X. If we let X be Rd, then a metric that is particularly useful
is the Euclidean distance

d(x, y) =

√√√√ d∑
i=1

(yi − xi)2

between points x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd. Note that we can find
the distance between a point p ∈ Rd and a subset X ⊆ Rd if we let

d(p,X) = inf{d(p, x) | x ∈ X}.

Definition 3.3. A morphism f : Λ → Λ′ of dissimilarities Λ: X × Y → [0,∞]
and Λ′ : X ′ × Y ′ → [0,∞] is given by the pair (f1, f2) of continuous functions
f1 : X → X ′ and f2 : Y → Y ′ such that

Λ′(f1(x), f2(y)) ≤ Λ(x, y)

for all (x, y) ∈ X × Y .
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We can think of this as saying that two elements remain at least as similar
after applying the morphism as before.

Example 3.4. In the case of metrics, a morphism of dissimilarities d1 : X ×X →
[0,∞) and d2 : Y × Y → [0,∞) corresponds to a Lipschitz continuous function
f : X → Y , where the Lipschitz contsant is 1. Note that an endomorphism of
a single dissimilarity is also similar to the idea of a contraction, but where the
“contraction constant” is 1 instead of strictly less than 1 [24, p. 220].

We can generalize the notion of a ball centered at some point to any dissimi-
larity.

Definition 3.5. Given a dissimilarity Λ: X × Y → [0,∞], then the Λ-ball of
radius r > 0 centered at x ∈ X is the subset

BΛ(x, r) = {y ∈ Y | Λ(x, y) < r}

of Y .

Using the Euclidean metric d as our dissimilarity, we see that the definition of
Bd(x, r) given in the previous section coincides with the one above. We can think
of this as thickening the point x to a radius r. If we do this for every point in X
with respect to Y , then it can be considered a thickening of Λ.

Definition 3.6. The r-thickening of Λ is the subset

Λr =
⋃
x∈X

BΛ(x, r)

of Y for r > 0.

3.2 The Dowker Nerve Theorem

Recall that we defined simplicial complexes by covering our point cloud with some
balls and constructing an n-simplex where n+1 such balls intersect. This is called
taking the nerve of a cover. One of the most central results in computational
topology – and a big reason why the complexes in this thesis are interesting – is
known as the nerve theorem. It tells us that the nerve of a convex covering is
homotopic to the union of the sets in the cover [15]. In other words, we get all
the combinatorial benefits of looking at simplicial complexes, while maintaining
the homotopy type of the cover. We will state the nerve theorem in the context of
dissimilarities along similar lines. To this end, we need to define the Dowker nerve
of a dissimilarity, before stating the Dowker Nerve Theorem.
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Definition 3.7. The Dowker nerve NΛ of a dissimilarity Λ: X × Y → [0,∞] is
the filtered simplicial complex NΛ where

NΛr = {σ ⊆ X | there exists y ∈ Y such that Λ(x, y) < r for all x ∈ σ}

for r > 0.

Let f : Λ → Λ′ be a morphism of dissimilarities Λ: X × Y → [0,∞] and
Λ′ : X ′ × Y ′ → [0,∞], given by (f1, f2), and let σ ∈ NΛr. If y is in Y such that
Λ(x, y) < r for every x in σ, then Λ′(f1(x), f2(y)) < r, by the definition of f . Hence,
f1(σ) must be in NΛ′, which means f induces a simplicial map Nf : NΛ→ NΛ′.

Definition 3.8. A partition of unity subordinate to the dissimilarity Λ: X×Y →
[0,∞] is a collection of continuous functions ϕr : Λr → |NΛr| such that

{y ∈ Y | ϕr(y)(x) > 0} ⊆ BΛ(x, r)

if x is in X.

Note that if Y is paracompact, then there always exists a partition of unity
subordinate to Λ: X × Y → [0,∞] [12, p. 355]. Moreover, we say that a cover U
of Y is good if every finite and non-empty intersection of sets in U is contractible.

Theorem 3.9 (The Dowker Nerve Theorem). Given a dissimilarity Λ: X × Y →
[0,∞], where Y is paracompact, there exists a partition of unity

{ϕr : Λr → |NΛr|}

subordinate to Λ for some r > 0. If the cover {BΛ(x, r)}x∈X of Λr is a good cover,
then ϕr is a homotopy equivalence.

Proof. See Theorem 3 in [5].

It is particularly the last part that will become useful. Instead of proving that
the geometric realizations of the Dowker nerve of two dissimilarities are homotopy
equivalent, we can show it for the r-thickening of those dissimilarities. In other
words, if we are given dissimilarities Λ and Λ′, then Λr and (Λ′)r are homotopy
equivalent if and only if |NΛr| and |NΛ′r| are – given the conditions in Theorem 3.9
are satisfied. But first we need to introduce the specific dissimilarities that we will
need.
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3.3 Euclidean Data Complexes from Dissimilarities

Now we come to the second way of defining our Euclidean data complexes. This
definition of the Čech, Delaunay and Delaunay-Čech complexes was introduced by
Morten Brun and Nello Blaser [6], and was inspired by the work of C. H. Dowker
[13]. We give a definition of the selective Alpha complex along the same lines. In
addition, we introduce a generalization of the Delaunay-Čech dissimilarity, which
we call the selective Delaunay-Alpha dissimilarity. As we have seen, the Euclidean
metric is an example of a dissimilarity. Thus, it is not hard to define the Čech
dissimilarity in terms of it.

Definition 3.10. The Čech dissimilarity of a finite set X ⊆ Rd is defined as the
function

Čech
X

: X × Rd → [0,∞],

where Čech
X

(x, p) is the usual Euclidean distance d(x, p) between x and p in Rd.

The Čech dissimilarity serves as a good example of how the definitions in
this section relate to the standard definitions of Euclidean data complexes. If
given r > 0, then the Dowker nerve of the Čech dissimilarity contains a simplicial

complex NČech
X

r .

Proposition 3.11. The simplicial complex NČech
X

r is equal to Čechr(X).

Proof. A subset σ ⊆ X is a simplex in NČech
X

r if and only if there exists a point

p ∈ Rd such that Čech
X

(x, p) = d(x, p) < r for every point x in σ. The latter is
just Proposition 2.7, finishing the proof.5

Let us now turn to the different Delaunay complexes and how we define their
dissimilarities. The definitions should make it clear that all we are doing is making
every point in our point cloud X more or less dissimilar to every point in Rd. In
the case of Delaunay dissimilarities, that means whether p ∈ Rd is in the Voronoi
cell of x ∈ X or not. This is a binary relationship, unlike the Čech complex. Let
Rd
D be Euclidean space with the discrete topology.

Definition 3.12. The discrete Delaunay dissimilarity of a finite set X ⊆ Rd is
the function

delX : X × Rd
D → [0,∞]

5Note that we here have strict inequality. This does make the nerve of the Čech dissimilarity
different from the Čech complex in some very specific cases, but since a tiny perturbation of r
makes them equal again, we do not think this is a meaningful difference.

24



defined by

delX(x, p) =

{
0 if p ∈ Vor(X, x)

∞ otherwise.

It is not hard to see that NdelXr is just a less direct, but nonetheless equivalent,
definition of Del(X), where r > 0. However, delX is not continuous with respect to
the Euclidean topology on Rd. This means that we cannot make use of the nerve
theorem as we would like. We will, hence, construct a version of the Delaunay
dissimilarity that will be continuous with respect to the Euclidean topology. To
this end, we will need to “ramp up” continuously from 0 to ∞ in such a way
that the Dowker nerve remains the same. We need to find some threshold ε that
says how much we can thicken a Voronoi cell before constructing a simplex not in
Del(X). We obtain ε as follows.

If σ ⊆ X is not in Del(X), then

εσ := inf
p∈Rd

max{d(p,Vor(X, x)) | x ∈ σ}

is a strictly positive real. The only alternative is for it to be zero, but that would
mean every x ∈ σ lies in the same simplex in Del(X), contradicting the assumption
that σ /∈ Del(X). In fact, εσ may be thought of as the distance to the midpoint of
the vertices in X. Hence, we may choose an ε such that ε < εσ/2 for every σ ⊆ X
that is not in Del(X).

ε

x

Figure 10: The ε-thickened Voronoi cell Vor(X,x)ε.

Definition 3.13. Given x ∈ X and an ε as found above, the ε-thickened Voronoi
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cell is the set
Vor(X, x)ε = {p ∈ Rd | d(p,Vor(X, x)) < ε}.

Figure 10 illustrates how we can think of Vor(X, x)ε geometrically. Now we
have that the nerve of the open cover {Vor(X, x)ε}x∈X of Rd is precisely Del(X).
That is to say, we have thickened the Voronoi cells by ε to give ourselves a buffer
to transition continuously from 0 to ∞, but with an ε small enough so that the
nerve of {Vor(X, x)ε}x∈X and {Vor(X, x)}x∈X remain the same. The continuous
transition is given by the following function.

Let h : [0,∞]→ [0,∞] be the increasing function defined by

h(t) =

{
− ln(1− t/ε) if t < ε

∞ if t ≥ ε.

We have drawn a graph of h in Figure 11. Note how h serves as a “quick” way to
go continuously from 0 to ∞.

ε

t

h(t)

Figure 11: A graph of h, where h(t) =∞ for t ≥ ε.

We describe the generalized inverse of h since that will be used in proving one
of our main results. Given a subset A ⊆ R, let A be its closure, and let R denote
the extended real numbers R ∪ {−∞,∞}.

Definition 3.14. Given an increasing function f : A → B, where A and B are
convex subsets of R, the generalized inverse f− : B → A of f is defined by

f−(y) = inf{x ∈ A | f(x) ≥ y},

where we let inf ∅ =∞.
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Note that for a continuous and strictly increasing function we have that f− =
f−1. Hence, the generalized inverse of h is given by

h−(t) =

{
h−1(t) if t <∞
ε if t =∞.

We have drawn a graph of h− in Figure 12. See [16] for more about generalized
inverses.

ε

t

h−(t)

Figure 12: A graph of h−, where h−(∞) = ε.

Given x ∈ X, let Delx : Rd → [0,∞] be the function defined by

Delx(p) = h(d(p,Vor(X, x))).

We see that Delx(Vor(X, x)) = 0 and Delx(Rd − Vor(X, x)ε) =∞. We can finally
define the non-discrete version of the Delaunay dissimilarity.

Definition 3.15. The Delaunay dissimilarity of a finite set X ⊆ Rd is the function

DelX : X × Rd → [0,∞]

defined by
DelX(x, p) = Delx(p).

In order to simplify notation, we will write NdelXr and NDelXr as respectively
NdelX and NDelX since their Dowker nerves remains unchanged for all r > 0.

Definition 3.16. The discrete selective Delaunay dissimilarity of a finite set X ⊆
Rd with respect to E ⊆ X is the function

delXE : X × Rd
D → [0,∞]
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defined by

delXE (x, p) =

{
0 if p ∈ Vor(E, x)

∞ otherwise.

As with the regular Delaunay dissimilarity, we need to construct a continuous
version to use the Dowker Nerve Theorem 3.9. As before, choose a suitable ε for
h, but this time depending on NdelXE = Del(X,E) instead of Del(X).

Definition 3.17. The selective Delaunay dissimilarity of X is the function

DelXE : X × Rd → [0,∞]

defined by

DelXE (x, p) = h(d(p,Vor(E, x))).

By similar reasoning as before, we have that NDelXE = NdelXE . Having defined
both the Čech and Delaunay dissimilarities, we can also give the Alpha dissimi-
larity. However, to motivate the definition, we prove the following lemma first.

Lemma 3.18. If Λ,Λ′ : X × Y → [0,∞] are two dissimilarities, then

max(Λ,Λ′) : X × Y → [0,∞]

is also a dissimilarity, and

N max(Λ,Λ′)r = NΛr ∩NΛ′r

for r > 0.

Proof. The function max(Λ,Λ′) is continuous since it is the maximum of two con-
tinuous functions, and hence a dissimilarity. For the second part, suppose σ is
a simplex in N max(Λ,Λ′)r, i.e., σ ⊆ X such that there is some y ∈ Y with
max(Λ,Λ′)(x, y) < r for all x ∈ σ. However, max(Λ,Λ′)(x, y) is less than r if and
only if Λ(x, y) < r and Λ′(x, y) < r. This makes σ a simplex in NΛr and NΛ′r.
Hence, we get the inclusion

N max(Λ,Λ′)r ⊆ NΛr ∩NΛ′r

of simplicial complexes. The other direction is equivalent.

Definition 3.19. Given E ⊆ X, the selective Alpha dissimilarity of a finite set
X ⊆ Rd is defined as

AlphaXE = max(DelXE , Čech
X

).
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Using Lemma 3.18 and the definition above, we claim that the Dowker nerve
of the selective Alpha dissimilarity

N(AlphaXE )r = N(DelXE )r ∩NČech
X

r

gives us the selective Alpha complex Alphar(X). Since we have shown that the
Dowker nerves of the Delaunay and Čech dissimilarities give us their corresponding
complexes, we are left with showing that

Alpha(X,E) = Delr(X,E) ∩ Čechr(X).

But this should be clear from the definition of Alphar(X,E). Being consistent

with the corresponding simplicial complexes, we get AlphaX∅ = Čech
X

, and we
define AlphaX = AlphaXX to be the Alpha dissimilarity of X.

In order to remain general, we will define a selective version of the Delaunay-
Čech complex using dissimilarities. We will make use of both the discrete and
continuous versions in proving one of our main results.

Definition 3.20. The discrete selective Delaunay-Čech dissimilarity of a finite set
X ⊆ Rd with respect to E ⊆ X is the function

delČ
X

E : X × (Rd
D × Rd)→ [0,∞]

defined by

delČ
X

E (x, (p, q)) = max{delXE (x, p), Čech
X

(x, q)}.

Note that we do not take the maximum of two functions, but of the two points

delXE (x, p) and Čech
X

(x, q) in R. Hence, taking the Dowker nerve of delČ
X

E , this
ensures that we are looking for an intersection of delXE -balls at some point, and

Čech
X

-balls at some – not necessarily the same – point. The definition is similar
in the continuous case, except we use the continuous Delaunay dissimilarity.

Definition 3.21. The selective Delaunay-Čech dissimilarity of a finite set X ⊆ Rd

with respect to E ⊆ X is the function

DelČ
X

E : X × (Rd × Rd)→ [0,∞]

defined by

DelČ
X

E (x, (p, q)) = max{DelXE (x, p), Čech
X

(x, q)}.

We get the (discrete) Delaunay-Čech dissimilarity by letting E = X in the

definitions above, and denote them by respectively delČ
X

and DelČ
X

. The simpli-

cial complex NdelČ
X

r = NDelČ
X

r is equal to DelČr(X), by the argument above.
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Continuing the idea of combining dissimilarities in order to create new ones,
we arrive at the most general dissimilarity. Taking the Dowker nerve of this dis-
similarity will give us a filtration of selective Delaunay-Alpha complexes.

Definition 3.22. The selective Delaunay-Alpha dissimilarity of a finite set X ⊆
Rd with respect to subsets E,F ⊆ X is the function

DelAX
E,F : X × (Rd × Rd)→ [0,∞]

defined by

DelAX
E,F (x, (p, q)) = max{DelXE (x, p),AlphaXF (x, q)}.

Just as the selective Delaunay-Alpha complex generalizes many Euclidean
data complexes, the selective Delaunay-Alpha dissimilarity generalizes most of the
corresponding dissimilarities. Note that it cannot generalize the selective Delaunay
dissimilarity, but the Dowker nerve does contain the complex

(NDelAX
E,E)∞ = Del(X,E).

Analogous to what we did in Table 1, we collect the different instances of the
selective Delaunay-Alpha dissimilarity.

Proposition 3.23. Given a finite set X ⊆ Rd and subsets E,F ⊆ X, then

DelAX
E,F =


Čech

X
if E = F = ∅

DelČ
X

E if F = ∅
AlphaXF if E = ∅, F .

(1)

This is not telling us anything new. Taking the Dowker nerve of Equation (1)
gives us a filtration of the corresponding complexes in Table 1. It tells us that what
we did in this section is just a different way to understand Euclidean data com-
plexes. It allows us to show that some of the Euclidean data complexes are equiv-
alent in Section 5 using tools such as r-thickened dissimilarities and the Dowker
nerve theorem. In the next section, we will introduce another toolbox for proving
that two simplicial complexes are equivalent. This will allow us to prove that all
the Euclidean data complexes from Section 2 are equivalent.
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4 Discrete Morse Theory

Most of the discussion about discrete Morse theory in this section is adopted from
[18, 19] and the combinatorial description in [10]. Write σ(p) if σ is a p-simplex.
We say that a face τ (p−1) ⊆ σ(p) is a facet. Note that discrete Morse theory is
more generally developed for CW-complexes [19], but will only be described for
simplicial complexes.

4.1 Discrete Morse Functions

Definition 4.1. Given a simplicial complex K, a function f : K → R is a discrete
Morse function on K if for every σ(p) ∈ K we have

(1) |{τ (p+1) ) σ | f(τ) ≤ f(σ)}| ≤ 1 and

(2) |{υ(p−1) ( σ | f(υ) ≥ f(σ)}| ≤ 1.

In other words, a function is a discrete Morse function on K if every simplex
σ ∈ K is the facet of at most one simplex with lower or equal value, and if there
is at most one facet of σ that has a higher or equal value. This leads to a natural
example of a discrete Morse function.

Example 4.2. The function in Figure 13 is a discrete Morse function, given as
the height of the simplicial complex K. We see that τ3 ) σ2, σ3 while f(τ3) is
greater than f(σ2) = f(σ3), and σ1 ( τ1, τ2 while f(σ1) less than f(τ1) = f(τ2).
Hence, the map f in Figure 13 does satisfy the conditions for it to be a discrete
Morse function, as claimed.

σ1

τ2τ1

σ3

τ3

σ2

K R

f(σ2) = f(σ3)

f(τ1) = f(τ2)

f(σ1)

f(τ3)

Figure 13: A discrete Morse function f given as a height function on K.
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Definition 4.3. Given a discrete Morse function f : K → R, a simplex σ(p) ∈ K
is critical with critical value f(σ) if

(1) |{τ (p+1) ) σ | f(τ) ≤ f(σ)}| = 0 and

(2) |{υ(p−1) ( σ | f(υ) ≥ f(σ)}| = 0.

The function in Example 4.2 has σ1 and τ3 as critical simplices. The vertex σ1

satisfies (1) since it is not the facet of a simplex with a lower value than σ1, while
(2) is vacuously true. Similarly, the edge τ3 satisfies (2) since no facet of τ3 has a
higher value, and (1) is vacuously true. Using the definition of a Morse function,
we get that any simplex must satisfy at least one non-vacuous test for criticality.
This will play a crucial role when we talk about gradient vector fields of discrete
Morse functions.

Lemma 4.4. If K is a simplicial complex with a Morse function f, then for any
simplex σ(p) ∈ K we must have

(1) |{τ (p+1) ) σ | f(τ) ≤ f(σ)}| = 0, or

(2) |{υ(p−1) ( σ | f(υ) ≥ f(σ)}| = 0.

Proof. See Lemma 2.5 in [19].

Similarly to what is done in classical Morse theory, we can construct a simpli-
cial complex by building it up with subcomplexes in the order given by the discrete
Morse function. In other words, we define a filtration on a simplicial complex that
has been given a discrete Morse function.

Definition 4.5. Given a simplicial complex K and a discrete Morse function f
on K, the level subcomplex is

K(t) :=
⋃

f(σ)≤t

⋃
τ⊆σ

τ

for t ∈ R.

Note that since we are working with finite simplicial complexes, there are
either no, or a finite number of values f(σ) ≤ t for a given t ∈ R. So if we choose
t, s ∈ R such that

t < min
σ∈K

f(σ) and s = max
σ∈K

f(σ),

then K(t) = ∅ and K(s) = K. Hence, we can define a finite increasing sequence
{ti}ni=0 from all values f(σ) with σ ∈ K and the t chosen above. This gives a
filtration of K by letting Ki := K(ti) for i = 0, 1, . . . , n.
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A proper face τ of a maximal simplex σ ∈ K is said to be free if τ is not the
face of any other simplex in K. If L is a subcomplex of K such that L = K−{σ, τ},
where τ is a free facet of σ in K, then we say K collapses onto L, and write K ↘ L
for the simplicial collapse itself. In general, we write K ↘ L if there is a finite
sequence

K = M1 ↘M2 ↘ · · · ↘Mn = L

of such collapses. See Figure 14 for the collapse of a 2-simplex onto a vertex.
It is clear that – after taking the geometric realization – a simplicial collapse

is an example of a deformation retract. In fact, such collapses were studied by
J.H.C. Whitehead in the general case of CW-complexes. He called a homotopy
equivalence generated by simplicial collapses for a simple-homotopy equivalence.
Hence, one of the proofs in Section 5 will technically be stronger because of this.
We refer the reader to [11] for more information about simple-homotopy theory.
For our purposes, it will be sufficient to consider these as regular homotopies.

Figure 14: The simplicial collapse of a 2-simplex to a vertex.

Theorem 4.6 (Collapsing Theorem). Let f : K → R be a discrete Morse function
and (a, b] ⊆ R. If there are no critical simplices σ ∈ K with f(σ) ∈ (a, b], then
K(b)↘ K(a).

Proof. See [19, Theorem 3.3].

Looking at Example 4.2, Theorem 4.6 says that we may collapse K(f(σ2))
onto K(f(σ1)). That is the same as saying that one may contract an arc to a point
without changing its homotopy type since (f(σ1), f(σ2)] does not contain a critical
value. However, we cannot collapse K(f(τ3)) onto K(f(σ1)) since (f(σ1), f(τ3)]
now does contain a critical value, namely f(τ3). This tells us, as expected, that a
circle and a point are not (simple-)homotopy equivalent.

4.2 Discrete Vector Fields

Defining a discrete Morse function f : K → R for nontrivial simplicial complexes
can be very cumbersome. To avoid having to do this explicitly, we can rather look
at its discrete gradient V , which can be thought of as the discrete analogue of the
negative gradient vector field −∇f in the smooth case. We begin more generally
with an arbitrary discrete vector field.
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Definition 4.7. A discrete vector field V on K is a subset of K × K such that
each simplex of K is in at most one pair in V , and (σ, τ) ∈ V implies σ is a facet
of τ .

We can think of V as containing arrows (σ, τ) with a tail σ and head τ . Then
this tells us that a discrete vector field makes every simplex at most either the
tail of a cofacet or the head of a facet. The discrete vector fields we are interested
in, however, need to somehow depend on f . Since we are looking for the discrete
analogue of −∇f , it is natural to also require for a discrete gradient V to define
“vectors” (σ, τ) that go from a higher to a lower Morse value, i.e., we require that
f(τ) ≤ f(σ). In fact, there is a unique such V , hence justifying the following
definition.

Proposition 4.8. Let f : K → R be a discrete Morse function. There exists a
unique discrete vector field V such that (σ, τ) ∈ V if and only if σ is a facet of τ
and f(τ) ≤ f(σ).

Proof. We only need to check that every simplex of K is in at most one pair in V
for V to be a discrete vector field. Without loss of generality, let us assume σ is
contained in the pair (σ, τ) in V . First suppose it is also in the pair (σ, υ) in V .
Then, by definition, σ is a facet of both τ and υ with f(τ), f(υ) ≤ f(σ). However,
condition (1) in the definition of a discrete Morse function states that there can be
at most one simplex with such a property. Hence, we must conclude that τ = υ.

Now suppose σ is contained in the pair (υ, σ) in V . Then, as before, we
know that υ is a facet of σ, which again is a facet of τ . Moreover, we get that
f(τ) ≤ f(σ) ≤ f(υ). This leads to a contradiction since Lemma 4.4 says that only
one of the inequalities can be true.

To prove uniqueness, let us suppose there exists another discrete vector field
V ′ such that (σ, τ) lies in V ′ if and only if σ is a facet of τ and f(τ) ≤ f(σ). But
the latter part is true if and only if (σ, τ) lies in V . The other containment is
similar.

We call this discrete vector field the discrete gradient of f . Note that defin-
ing the discrete gradient in such a way also gives us the desired property that a
critical simplex σ is not the head nor tail of any vector in V . In the smooth case
this is usually stated as ∇f(σ) = 0. The idea is that an arrow exists between
two simplices precisely when there is a corresponding simplicial collapse. Hence,
Theorem 4.6 says that the discrete gradient encodes all the simplicial collapses.
This will become formalized when we reformulate the theorem.

Example 4.9. Since −∇f defines vectors pointing in the direction of steepest
descent, we might expect the same to be true of V . Looking at Example 4.2 once
again, we have drawn its discrete gradient V = {(σ2, τ1), (σ3, τ2)} in Figure 15.
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Note how τ3 in some way acts as a source and σ1 acts as a sink, even if neither is
the head nor tail of any arrow. This is consistent with the idea that the vectors in
V point in the direction of steepest descent. Moreover, the two arrows correspond
precisely to the simplicial collapse that we considered at the end of Section 4.1.

σ1

τ2τ1

σ3

τ3

σ2

Figure 15: The discrete gradient V .

As hinted at in the beginning of the section, there is a neat combinatorial way
of looking at the discrete vector fields using Hasse diagrams that is due to Chari
[10]. Then we can look at discrete Morse functions that have a particular discrete
vector fields as its discrete gradient. We begin by specifying discrete vector fields
based on the cofacet relation. We organize this information into a single object.

Definition 4.10. The Hasse diagram H(K) of a simplicial complex K is the
transitive reduction of the partially ordered set of simplices defined by the coface
relation.

In other words, the coface relation defines a partially ordered set on K, which
gives us H(K) when we remove all coface relations that are the composition of any
other two. This means that H(K) only contains (τ, σ) if σ is a facet of τ . Clearly,
this defines a directed acyclic graph G(K) with K as the vertex set and H(K) the
set of edges. For our reoccurring example, we get the graph in Figure 16.

τ1 τ2 τ3

σ1 σ2 σ3

Figure 16: The directed acyclic graph G(K) representing H(K). The di-
mension of the simplices increases upwards.

For the remainder of this thesis, it will be more convenient to work with
discrete gradients as a partition of a simplicial complex K rather than a set of
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ordered pairs. Let a discrete vector field V be a partition of K into singleton sets
{σ} and unordered pairs {τ, υ} corresponding to some edges (τ, υ) in G(K). We
let GV (K) be the graph obtained by reversing the edges in G(K) corresponding
to the pairs in V . Suppose a function f : K → R has values f(σ) ≤ f(τ) if σ is a
face of τ , and f(σ) = f(τ) if and only if {σ, τ} is a pair in V . Then f is a discrete
Morse function – as defined in Definition 4.1 – with discrete gradient V . One can
check that a discrete vector field V of a simplicial complex K is a discrete gradient
if and only if GV (K) is acyclic [10].

We see that there are uncountably many discrete Morse functions with V as
their discrete gradient by scaling values of f by some positive real. But every
discrete Morse function only has one discrete gradient. Hence, a discrete gradient
acts as an equivalence class of discrete Morse functions. So although requiring
equal values for pairs in V makes us consider a smaller collection of discrete Morse
functions, we are in fact just picking convenient representatives of said equivalence
classes.

By design, a face can never have a higher value than its coface. So to check
if a simplex σ is critical is equivalent to checking whether it has a facet τ , or a
cofacet υ, with equal value under f . However, we have also required that to be
the case if and only if either {τ, σ}, or {σ, υ}, is a pair in V . Hence, a simplex is
critical if it does not belong to any pair in V . Equivalently, a simplex is critical if
it belongs to a singleton set in V . Note that although the critical simplices remain
the same, the critical values may differ based on the function f .

Example 4.11. We may reconstruct the discrete gradient V of K in Figure 15
based on the Hasse diagram H(K) in Figure 16. We choose the pairs in V to
be {σ2, τ1} and {σ3, τ2}, corresponding to the pairs (τ1, σ2) and (τ2, σ3) in H(K).
Then we let the last two simplices be singleton sets. This gives us the discrete
gradient

V = {{σ2, τ1}, {σ3, τ2}, {σ1}, {τ3}}.

We draw the resulting graph GV (K) in Figure 17. The only difference from how

τ1 τ2 τ3

σ1 σ2 σ3

Figure 17: The graph GV (K) corresponding to the discrete gradient V . The
simplex σ1 is a sink, while τ3 is a source.

we previously described V is the addition of the singleton sets and not making
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the pairs ordered. Defining a discrete Morse function f that has V as its discrete
gradient can be done using the same values as before, except we now require the
equalities f(σ2) = f(τ1) and f(σ3) = f(τ2). The critical simplices are those that
do not belong to a pair in V , i.e., the singleton sets {σ1} and {τ3}, as expected.

A sink always exists, and it must be a critical 0-simplex. A source must also
exist, but it does not have to be of a particular dimension. It is critical if and only
if it is a maximal simplex. This fact will be useful in proving the gradient version
of Theorem 4.6.

Theorem 4.12 (Gradient Collapsing Theorem). Let V be the discrete gradient of
a simplicial complex K, and let L be a subcomplex of K. If K − L is a union of
pairs in V , then K ↘ L.

Proof. Half of the simplices in K − L must be source nodes in GV (K), having an
edge to the other half. Choosing a sufficiently large p, suppose σ(p) ∈ K − L is
a source simplex with an edge to a simplex τ (p+1) ∈ K − L that is maximal in
K. Such a p and τ exist because L is a simplicial complex. Note that a maximal
simplex which is a source in GV (K) has to be a critical simplex. Thus, σ is not
maximal and τ is not a source since they make up a pair in V . Then, by definition
of a discrete gradient, σ is free since it is the facet of exactly one simplex τ , and
that simplex is maximal. This gives us the simplicial collapse K ↘ K − {σ, τ}.
Proceeding inductively, from the higher to the lower dimensional simplices inK−L,
we get

K ↘ K − (K − L) = L,

as desired.

Thus, a discrete gradient does encode simplicial collapses. Theorem 4.12
makes no reference to a discrete Morse function, which means we no longer need
to find the specific function that will give us a desired simplicial collapse. This is a
major benefit of working with discrete gradients over the discrete Morse functions
themselves.

4.3 Generalized Discrete Morse Theory

In order to generalize our notions in discrete Morse theory, we consider intervals
of faces of a simplicial complex K.

Definition 4.13. Given two simplices σ, τ ∈ K, an interval [σ, τ ] is a subset of K
given by {υ ∈ K | σ ⊆ υ ⊆ τ}.
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If [σ, τ ] is nonempty, we call σ the lower bound and τ the upper bound. The
following terminology is due to Bauer and Edelsbrunner [3], inspired by the work
of Ragnar Freji [20].

Definition 4.14. A generalized discrete vector field W is a partition of K into
intervals.

As one would hope, this definition has as a special case the partition of K
into intervals of the form [σ, σ] = {σ} and [σ, τ ] = {σ, τ}, giving us the second
definition of a discrete vector field from Section 4.2. However, no generalization
of discrete Morse theory is complete without also generalizing the discrete Morse
function. This can be done by constructing a function f : K → R such that some
generalized discrete vector field W will become the generalized discrete gradient of
f .

Definition 4.15. If given a simplicial complex K and a generalized discrete vector
field W , then a function f : K → R is a generalized discrete Morse function on K
with generalized discrete gradient W if

(1) σ being a face of τ implies f(σ) ≤ f(τ), and

(2) f(σ) = f(τ) if and only if there exists an interval [υ1, υ2] ∈ W such that
σ, τ ∈ [υ1, υ2].

Clearly, a discrete Morse function is a generalized discrete Morse function
where its generalized discrete gradient only consists of singletons and pairs. In
this way, we have generalized both the discrete gradient and the discrete Morse
function.

An interval in a generalized discrete gradient W associated to the generalized
discrete Morse function f : K → R is called singular if it only contains a single
simplex σ ∈ K. Then we call σ a critical simplex and f(σ) a critical value of K.
This is consistent with how simplices in singleton sets of a discrete gradient are
critical. The link between the generalized and non-generalized case can be made
even more clear.

Given a generalized discrete gradient W , we can construct a discrete gradient
V . The only intervals a non-generalized discrete gradient can contain are singletons
and pairs. So we will let V refine every non-singular interval [σ, τ ] ∈ W into pairs
by choosing an arbitrary vertex x ∈ τ − σ and partitioning [σ, τ ] into pairs of the
form {υ − {x}, υ ∪ {x}} for υ ∈ [σ, τ ]. We call V a vertex refinement of W . A
simplex in K is critical if it does not belong to any pair in V . This means that W
and V contain the same critical simplices and allows us to state Theorem 4.12 in
the generalized case.
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Theorem 4.16 (Generalized Gradient Collapsing Theorem). Let K be a simplicial
complex with a generalized discrete gradient W , and let L be a subcomplex of K.
If K − L is a union of non-singular intervals in W , then K ↘ L.

Proof. Suppose K − L is a union of non-singular intervals in W . Construct a
vertex refinement V of W as above. Then K −L only contains pairs in V since it
is comprised of non-singular intervals. This implies that K ↘ L by Theorem 4.12.

4.3.1 Radius Functions

The reason for developing all the theory in this section comes down to the radius
functions we first met in Section 2.2.4. These are, namely, examples of generalized
discrete Morse functions. Although we will only give an outline of the argument
given in [3], it is a crucial step in showing that one can collapse some Euclidean
data complexes onto others.

It turns out that we can use convex optimization to approach this problem.
We begin by describing a Delaunay sphere S(σ,E) with respect to E as the sphere
with center p ∈ Rd and radius r ≥ 0 that solves the following constrained mini-
mization problem:

min
p, r

r2

s.t. d(p, x)2 ≤ r2 for all x ∈ σ,
d(p, e)2 ≥ r2 for all e ∈ E.

Recall that S(σ,E) is defined as the smallest enclosing sphere including σ and
excluding E. In other words, we want to find a center p and radius r that defines
a sphere that has the smallest squared radius possible, subject to the conditions
of inclusion and exclusion. This also defines the radius function sE. If we now
use Lemma 2.18, we can determine if a simplex σ belongs to Alphar(X,E) via the
convex optimization problem above.

We want to rephrase this problem to prove that the radius functions are
generalized discrete Morse functions. In the field of constrained optimization,
there are first derivative tests called the Karush-Kuhn-Tucker (KKT) conditions
that are helpful. It is beyond the scope of this thesis to introduce these conditions
in their full generality, but more details are provided in [3]. What is more relevant
for us, is to see how we can use a specific example of these conditions to describe
generalized discrete Morse functions.

We need to restrict ourselves to the case in which our point cloud X ⊆ Rd

is in general position. It should be noted that this does make the final result less
general. Recall that X being in general position tells us that the center p of the
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smallest circumscribed sphere S of σ ⊆ X must lie in the affine hull of σ = OnS.
In other words,

p =
∑

x∈OnS

ρxx such that
∑

x∈OnS

ρx = 1

and ρx is non-zero and unique for each x ∈ OnS.

Definition 4.17. Given a (d − 1)-sphere S ⊆ Rd and a finite set X ⊆ Rd, the
front face of OnS ⊆ X is the subset

FrontS = {x ∈ OnS | ρx > 0},

while the back face of OnS is the subset

BackS = {x ∈ OnS | ρx < 0}.

As an example, we draw the same circumscribed 1-sphere of three points in
two different positions in Figure 18. Note that BackS is empty if the center p of

p p

Figure 18: On the left, BackS contains the top point (shown in red), and
FrontS contains the other two in OnS. On the right, FrontS contains all
three points in OnS since p is in the convex hull of OnS (shaded blue).

S is in the convex hull of the points OnS since, by definition, ρx > 0 for every
x ∈ OnS. We can use FrontS and BackS to state a combinatorial version of the
KKT conditions.

Theorem 4.18 (Combinatorial KKT Conditions). Let X ⊆ Rd be a finite set in
general position and let σ,E ⊆ X be two subsets such that there exists a sphere
S ⊆ Rd with σ ⊆ InclS and E ⊆ ExclS. Then S = S(σ,E) if and only if

(1) S is the smallest circumscribed sphere of OnS,

(2) FrontS ⊆ σ and
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(3) BackS ⊆ E.

Proof. See Theorem 4.3 in [3].

Given a point cloud X and σ,E ⊆ X, Theorem 4.18 tells us when a sphere S
is the Delaunay sphere of σ with respect to E. Hence, it can be used in conjunction
with Lemma 2.18 to determine whether σ is a simplex in Alphar(X,E) for r ≥
0. This gives us all the tools necessary to prove that the radius functions are
generalized discrete Morse functions.

Theorem 4.19 (Selective Delaunay Morse Function Theorem). Let X ⊆ Rd be a
finite set in general position with E ⊆ X. Then the radius function

sE : Del(X,E)→ R

is a generalized discrete Morse function with the generalized discrete gradient

W = {[FrontS(σ,E), InclS(σ,E)] | σ ∈ Del(X,E)} .

Proof. If τ ⊆ σ are simplices in Del(X,E) contained in two different intervals
in W , then sE(τ) < sE(σ) since X is in general position, which means τ is not
included by S(σ,E). This is Condition (1) of Definition 4.15. Having fixed E ⊆ X
and S = S(σ,E), note that sE(τ) = sE(σ) for all τ ∈ [FrontS, InclS]. This ensures
Condition (2), i.e., sE only has equal values for simplices in the same interval in
W .

Just by changing E ⊆ X in Theorem 4.19, we get that the Čech and Delaunay
radius functions are also generalized discrete Morse. Recall that Del(X, ∅) is the
full simplex ∆(X) and that Del(X,X) = Del(X).

Corollary 4.20 (Čech Morse Function Corollary). Let X ⊆ Rd be a finite set in
general position. The Čech radius function is a generalized discrete Morse function
with generalized discrete gradient

{[OnS(σ, ∅), InclS(σ, ∅)] | σ ∈ ∆(X)} .

Proof. If we let E = ∅, then Theorem 4.18 forces BackS to be empty. Hence, we
get FrontS = OnS. Using Theorem 4.19 gives us that s∅ is a generalized discrete
Morse function with discrete gradient containing intervals of the form [OnS, InclS]
for all Čech spheres of X.

Corollary 4.21 (Delaunay Morse Function Corollary). Let X ⊆ Rd be a finite set
in general position. The Delaunay radius function is a generalized discrete Morse
function with generalized discrete gradient

{[FrontS(σ,X),OnS(σ,X)] | σ ∈ Del(X)} .
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Proof. This proof is similar. If we let E = X, then Theorem 4.18 forces FrontS
to be empty. Hence, we get InclS = OnS. Using Theorem 4.19 gives us that sX
is a generalized discrete Morse function with discrete gradient containing intervals
of the form [FrontS,OnS] for all Delaunay spheres of X.

This concludes most of the theory necessary to tackle the main results of this
thesis. It will hopefully become clear in the following section why we discussed
dissimilarities and discrete Morse theory so extensively. All the theory comes
together to show – in two different ways – that all the Euclidean data complexes
in Section 2 are equivalent.
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5 Equivalent Euclidean Data Complexes

Thus far, we have dealt with a lot of definitions and concepts related to simplicial
complexes. This section will bring these together into some important results, and
hence deals with the main theorem of this thesis: the Alpha, Delaunay-Čech and
Čech complexes are homotopy equivalent. Let us start by explicitly stating the
theorem, and then discuss the two different approaches in proving it.

Theorem 5.1 (Equivalent Euclidean Data Complexes Theorem). Let X ⊆ Rd be
a finite set. The Euclidean data complexes

Alphar(X) ⊆ DelČr(X) ⊆ Čechr(X)

are homotopy equivalent6 for a given r ≥ 0.

The first proof of Theorem 5.1 is done directly using elementary geometry,
while the second relies on generalized discrete Morse theory. The geometric ar-
gument [5] uses less theory than the gradient collapse argument [3] which gives
a slightly weaker conclusion, but it does not assume X is in general position in
return.

5.1 Geometric Argument

We begin with the proof by Nello Blaser and Morten Brun [5], as it is more in-
tuitive and requires less theory, given we are already familiar with the definition
of Euclidean data complexes in terms of dissimilarities. Recall that taking the
Dowker nerve of the Alpha, Delaunay-Čech and Čech dissimilarities gives us their
corresponding Euclidean data complexes. In particular, if we also take their ge-

ometric realization, we have |NAlphaXr | = |Alphar(X)|, |NČech
X

r | = |Čechr(X)|
and |NDelČ

X

r | = |DelČr(X)|. We will thus prove Theorem 5.1 if we can provide

homotopy equivalences (AlphaX)r → (Čech
X

)r and (Čech
X

)r → (DelČ
X

)r, by the
Dowker Nerve Theorem 3.9. The first homotopy equivalence is trivial.

Lemma 5.2. Let X ⊆ Rd be a finite set. The inclusion

BAlphaX (x, r) ↪−→ B
Čech

X (x, r)

of balls gives us the identity map (AlphaX)r −→ (Čech
X

)r for r ≥ 0.

6It is technically a simple-homotopy equivalence if we assume X is in general position and we
use the gradient collapse argument.

43



Proof. We get injectivity by hypothesis. For surjectivity, first note that

BAlphaX (x, r) = BDelX (x, r) ∩B
Čech

X (x, r).

Given y ∈ B
Čech

X (x, r), i.e., Čech
X

(y, x) < r, there exists some x′ in X such that

y ∈ Vor(X, x′). By the definitions of a Voronoi cell and the Čech dissimilarity, we
get

Čech
X

(y, x′) = d(y, x′)

≤ d(y, x)

= Čech
X

(y, x) < r.

This means y is also in BDelX (x′, r) ∩B
Čech

X (x′, r), as desired.

Hence, the identity (AlphaX)r → (Čech
X

)r in Lemma 5.2 gives the first ho-
motopy equivalence

|NAlphaXr |︸ ︷︷ ︸
|Alphar(X)|

' |NČech
X

r |︸ ︷︷ ︸
|Čechr(X)|

in the Equivalent Euclidean Data Complexes Theorem 5.1. So we are left with

showing that there is a homotopy equivalence |NDelČ
X

r | ' |NČech
X

r |. We will
define a deformation retract using the straight-line homotopy.

Lemma 5.3. The line segment between any point (p, q) ∈ (DelČ
X

)r and (q, q) is

contained in (DelČ
X

)r.

Proof. Having fixed X, the superscript on dissimilarities will be omitted in order
to simplify notation. Let γ : [0, 1]→ Rd be the function γ(s) = (1−s)q+sp, giving
the straight line between p and q in Rd. Then all we need to show is that the point
(γ(s), q) ∈ R2d is in DelČ

r
for all s ∈ [0, 1]. Note that BČech(x, r) = Bd(x, r) for

all r > 0.
If (p, q) ∈ DelČ

r
, then we know there has to be some x ∈ X such that

p ∈ BDel(x, r) and q ∈ Bd(x, r), by definition of DelČ. The former statement is
equivalent to saying d(p,Vor(X, x)) < h−(r) since p ∈ BDel(x, r) and Delx(p) =
h(d(p,Vor(X, x))) is true, if and only if, h(d(p,Vor(X, x))) < r. But by applying
h− and noting that d(p,Vor(X, x)) < ∞, we get that d(p,Vor(X, x)) < h−1(r) =
h−(r). In particular, pick p′ ∈ Vor(X, x) such that d(p, p′) < h−(r). We now
define a line segment between q and p′ given by the function γ′ : [0, 1]→ Rd where
γ′(s) = (1− s)q+ sp′. Suppose that (γ′(s), q) is in delČ

r
for some s ∈ [0, 1]. Then

there exists an x′ ∈ X such that d(x′, q) < t and γ′(s) ∈ Vor(X, x′). Moreover,
(γ(s), q) ∈ DelČ

r
since d(γ(s), γ′(s)) < h−(t) and d(γ′(s),Vor(X, x′)) = 0.
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What we are left with is to show that (γ′(s), q) is in delČ
r

for any s ∈ [0, 1].
Hence, since the Voronoi cells cover Rd, we can assume γ′(s) is in Vor(X, y) for
some s ∈ [0, 1) and some y ∈ X, and we will just need to prove that q ∈ Bd(y, r).
We may assume y 6= x without loss of generality. We can cover X using the
hyperplane H that separates x and y, i.e.,

H = {z ∈ X | d(x, z) = d(y, z)}.

If we let

H+ = {z ∈ X | d(x, z) ≥ d(y, z)} and H− = {z ∈ X | d(x, z) ≤ d(y, z)},

we have H+ ∪ H− = X and H+ ∩ H− = H. We see that γ′(s) must be in H+

since it is in Vor(X, y). Similarly, p′ must be in H− as it is in Vor(X, x). Since the
line segment γ′ between q and p′ is either contained in H, or traverses H at most
once, we must have q ∈ H+. Recalling our assumption that q ∈ Bd(x, r), we have
d(y, q) ≤ d(x, q) < r by definition of H+, which means q ∈ Bd(y, r), as desired.

Corollary 5.4. The map (Čech
X

)r → (DelČ
X

)r given by p 7→ (p, p), is a defor-
mation retract.

Since a deformation retract is a particular instance of a homotopy equivalence,
Corollary 5.4 and the Dowker Nerve Theorem 3.9 gives the desired homotopy
equivalence

|NČech
X

r |︸ ︷︷ ︸
|Čechr(X)|

' |NDelČ
X

r |︸ ︷︷ ︸
|DelČr(X)|

.

This finishes the geometric proof of the Equivalent Euclidean Data Theorem 5.1.

5.2 Gradient Collapse Argument

We now turn to Bauer and Edelsbrunner’s [3] slightly stronger version of the
Equivalent Euclidean Data Complexes Theorem 5.1, using generalized discrete
Morse theory. We do, however, need more work to get there than we did with
the more direct proof above. Thus, we start with some lemmas before eventually
getting to the simplicial collapse of the three Euclidean data complexes, i.e., we
show that they are simple-homotopy equivalent if X is in general position. In
particular, we will demonstrate two collapses of Euclidean data complexes:

Čechr(X)↘ DelČr(X)↘ Alphar(X).

As we saw in Section 2, all three of these are instances of the selective Delaunay-
Alpha complex. We will, hence, show the two collapses as particular instances of
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a collapse of selective Delaunay-Alpha complexes by choosing appropriate subsets
E,F ⊆ X.

5.2.1 Preliminary Lemmas

We will first need to cover some necessary lemmas for us to prove the two gradient
collapses above. Given a simplex σ ∈ K and a vertex x belonging to a simplicial
complex K, we follow the notation in [3] by writing σ − x instead of σ − {x} and
σ + x instead of σ ∪ {x}. We have decided to only provide references for most of
the lemmas, as their statements are more relevant to us than the technical proofs
themselves. First, we want different ways of constructing discrete gradients for a
simplicial complex.

Lemma 5.5 (Vertex Gradient Lemma). Let K be a simplicial complex, V a dis-
crete vector field on K and x a vertex of K. If every pair in V is of the form
{σ − x, σ + x} for some simplex σ ∈ K, then V is a discrete gradient on K.

Proof. See Lemma 5.1 in [3].

By choosing some vertex x in our simplicial complex, the Vertex Gradient
Lemma 5.5 gives us a useful class of discrete gradients. Clearly, σ is either equal
to σ−x or σ+x, which means we get a discrete gradient V where every non-critical
simplex σ is either in a pair {σ, σ + x} or {σ − x, σ} in V . We can also construct
a discrete gradient for a simplicial complex by composing the discrete gradient of
a subcomplex with one defined on its complement.

Lemma 5.6 (Gradient Composition Lemma). Let L be a subcomplex of the sim-
plicial complex K with discrete gradients VL and VK, respectively. If every pair in
VK is disjoint from L, then the pairs in VK ∪ VL define a discrete gradient on K.

Proof. See Lemma 4.3 in [22].

One can, for instance, take the union K ∪ L of two disjoint simplicial com-
plexes K and L, with discrete gradients VK and VL, respectively. Then VK is a
discrete gradient for K ∪ L and is disjoint from L. Hence, the Gradient Compo-
sition Lemma 5.6 tells us VK ∪ VL is a discrete gradient on K ∪ L. In effect, the
lemma reduces the number of critical simplices. The composed gradient is more
descriptive of the simplicial complex we are working with by potentially collapsing
the original one to an even smaller subcomplex than before the composition, if we
use the Gradient Collapse Theorem 4.12.

We can also describe the generalized discrete gradient when taking the sum
of two generalized discrete Morse functions. It is a refinement because the sum of
two functions on two different simplicial complexes has to be restricted to their
intersection.
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Lemma 5.7 (Sum Refinement Lemma). Let K and L be simplicial complexes
with generalized discrete Morse functions f : K → R and g : L → R. Moreover,
let their generalized discrete gradients be Wf and Wg. Then the sum of functions
f+g : K∩L→ R is a generalized discrete Morse function with generalized discrete
gradient

Wf+g = {I ∩ J | I ∈ Wf , J ∈ Wg and I ∩ J 6= ∅}.

Next, we consider when S(σ,E) remains unchanged while removing a point
from σ or E.

Lemma 5.8 (Same Sphere Lemma). Given a finite set X ⊆ Rd, let E be a subset
of X with σ a simplex in Del(X,E), and let S = S(σ,E). Then

(1) S(σ − x,E) = S(σ + x,E) if and only if x ∈ InclS − FrontS, and

(2) S(σ,E − y) = S(σ,E + y) if and only if y ∈ ExclS − BackS.

Proof. For (1), recall that S must be equal to S(σ − x,E) or S(σ + x,E). More-
over, we get that σ ⊆ InclS since S includes σ, while the Combinatorial KKT
Theorem 4.18 gives FrontS ⊆ σ. This implies that x being in InclS − FrontS is
equivalent to FrontS ⊆ σ − x and σ + x ⊆ InclS, which again is equivalent to
σ − x and σ + x belonging to [FrontS, InclS] since σ − x is contained in σ + x.
This gives the desired result. The proof of (2) is similar.

Using the Same Sphere Lemma 5.8, we get the most crucial lemmas for ob-
taining the desired gradient collapses. The next two will be more specific about
which point can be added or removed from a simplex without changing the smallest
circumscribed sphere of said simplex, given different criteria.

Lemma 5.9 (First Simplex Pairing Lemma). Given a finite set X ⊆ Rd, let E ⊆ F
be subsets of X with σ a simplex in Del(X,F ) such that S(σ,E) 6= S(σ, F ). Then
there exists a point x ∈ F − E such that

(1) S(σ − x,E) = S(σ + x,E) and

(2) S(σ − x, F ) = S(σ + x, F ).

Proof. See Lemma 5.5 in [3].

Define A to be equal to Del(X,E)−Del(X,F ).

Lemma 5.10 (Second Simplex Pairing Lemma). Given a finite set X ⊆ Rd, let
E ⊆ F be subsets of X, and let σ be in A. Then there exists a point x ∈ F − E
such that

(1) S(σ − x,E) = S(σ + x,E) and

(2) neither σ − x, nor σ + x, are in Del(X,F ).
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Proof. See Lemma 5.7 in [3].

The final lemma we will need tells us something about the ability to make a
consistent choice of x in the Second Simplex Pairing Lemma 5.10. We can, namely,
change σ − x or σ + x for σ without it changing the result.

Lemma 5.11 (Second Consistent Pairing Lemma). Given a finite set X ⊆ Rd,
let E ( F be subsets of X. Then there is a map

ψ : A→ F − E

such that, for a given σ ∈ A, the point x = ψ(σ) satisfies the properties of
Lemma 5.10 and is equal to both ψ(σ − x) and ψ(σ + x).

Proof. See Lemma 5.8 in [3].

5.2.2 Collapsing Theorem

Having all the lemmas from the previous section, we are now ready to prove the
stronger version of the Equivalent Euclidean Data Complexes Theorem 5.1. It is
stronger because it gives us a simple-homotopy, but we do need to assume X is
in general position. Note that this is Theorem 5.9 in [3] but in terms of the new
selective Delaunay-Alpha complex. Hence, our new complex is simple-homotopy
equivalent to the selective Alpha complex. As was mentioned in Section 4, we
know two simplicial complexes are simple-homotopy equivalent if there exists a
simplicial collapse from one to the other.

Theorem 5.12 (Selective Alpha Collapsing Theorem). Let X ⊆ Rd be a finite set
in general position with subsets E ⊆ F . Then

Alphar(X,E)↘ DelAr(X,F,E)↘ Alphar(X,F )

for r ≥ 0.

Proof. We can get both collapses if we construct appropriate discrete gradients
and use the two gradient collapsing theorems. This will be done with the help of
the preliminary lemmas from the previous subsection.

We begin with the last collapse. First, note that

DelAr(X,F,E) = Del(X,F ) ∩ Alphar(X,E).

Also recall that the radius functions sE and sF are generalized discrete Morse
functions by Theorem 4.19. LetWE andWF be their respective generalized discrete
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gradients. Then sE + sF : Del(X,F ) → R is also a generalized discrete Morse
function with generalized discrete gradient

WE+F = {I ∩ J | I ∈ WE, J ∈ WF and I ∩ J 6= ∅},

by the Sum Refinement Lemma 5.7, and since

Del(X,E) ∩Del(X,F ) = Del(X,F )

whenever E ⊆ F , by Lemma 2.15. A simplex σ that is in the intersection of
Alphar(X,E) and Del(X,F ), but is not a simplex in Alphar(X,F ), gives a sphere
S(σ,E) with radius at most r, while S(σ, F ) must have a radius larger than r. A
subset U of the intervals in WE+F gives a partition of all such simplices. Moreover,
we know that S(σ,E) 6= S(σ, F ) since their radii are different, which implies that
U does not contain any singular intervals, by the First Simplex Lemma 5.9. Then
the Generalized Gradient Collapsing Theorem 4.16 gives us the desired collapse

DelAr(X,F,E)↘ Alphar(X,F ).

We get the first collapse as a particular case of Del(X,E)↘ Del(X,F ) since

Alphar(X,E) ⊆ Del(X,E) and DelAr(X,F,E) ⊆ Del(X,F )

whenever E ⊆ F and r ≥ 0. Hence, we will partition Del(X,E)−Del(X,F ) into
pairs using the Second Simplex Pairing Lemma 5.10. As in the proof of the Second
Consistent Pairing Lemma 5.11, we fix a total ordering x1, x2, . . . , xn on the points
in X and recursively define a filtration of Del(X,E). Let

K0 = Del(X,E)

and
Ki = Ki−1 − {σ ⊆ X | ψ(σ) = xi}

for i = 1, 2, . . . , n. The resulting filtration is thus

Del(X,F ) = Kn ⊆ Kn−1 ⊆ · · · ⊆ K0 = Del(X,E).

Similarly, we define the sets

Pi = {{σ − xi, σ + xi} | σ ⊆ X and ψ(σ) = xi}

containing pairs for i = 1, 2, . . . , n. Each Pi gives rise to a discrete gradient Vi that
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partitions
Ki−1 −Ki = {σ ⊆ X | ψ(σ) = xi}.

By construction, Vi consists only of pairs, which implies Ki−1 ↘ Ki, by the
Gradient Collapsing Theorem 4.12. Then the union

⋃n
i=1 Pi gives a partition of

Del(X,E) − Del(X,F ) into pairs, and we may apply the Gradient Composition
Lemma 5.6 inductively for our Vi and Ki. By again applying the Gradient Col-
lapsing Theorem 4.12, this gives us a discrete gradient on Del(X,E) that defines
a collapse Del(X,E)↘ Del(X,F ).

Corollary 5.13. Let X ⊆ Rd be a finite set in general position with subsets E ⊆ F .
Then

Čechr(X)↘ DelČr(X)↘ Alphar(X)

for r ≥ 0.

Proof. If we let E = ∅ and F = X, then the Selective Alpha Collapsing Theo-
rem 5.12 gives the desired collapse since Alphar(X, ∅) and Alphar(X,X) are equal
to Čechr(X) and Alphar(X), respectively. Moreover, we know

DelAr(X,X, ∅) = DelČr(X),

by Table 1.

This concludes the second proof of the Equivalent Euclidean Data Complexes
Theorem 5.1. Since the selective Delaunay-Alpha dissimilarity generalizes all the
Euclidean data complexes in this thesis, we can rewrite the Selective Alpha Col-
lapsing Theorem 5.12 as

DelAr(X,E,E)↘ DelAr(X,F,E)↘ DelAr(X,F, F ),

while Corollary 5.13 becomes

DelAr(X, ∅, ∅)↘ DelAr(X,F,E)↘ DelAr(X,X,X).

We end this section by proving a new corollary. It tells us that, more than gen-
eralizing many Euclidean data complexes, the selective Delaunay-Alpha complex
is simple-homotopy equivalent to them as well.

Corollary 5.14. Let X ⊆ Rd be a finite set in general position with subsets E ⊆ F .
Then

Čechr(X) ' DelAr(X,F,E) ' Alphar(X)

are two simple-homotopy equivalences for r ≥ 0.
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Proof. If we let E = ∅ in the Selective Alpha Collapsing Theorem 5.12, then we
get the simplicial collapse

Čechr(X)↘ Alphar(X,F ).

Hence, the selective Alpha and Čech complexes are simple-homotopy equivalent.
However, the same theorem tells us that the selective Alpha complex is simple-
homotopy equivalent to the selective Delaunay-Alpha complex, by the theorem’s
second collapse. Transitivity gives us that the Čech and selective Delaunay-Alpha
complexes are simple-homotopy equivalent. We get the second simple-homotopy
equivalence if we let F = X and use a similar argument.
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6 Conclusion

In this thesis, we have considered a range of Euclidean data complexes, with the
Čech and Alpha complex being the most important. We have seen that the former
is quite descriptive in that it is homotopy equivalent to the union of balls cen-
tered at each data point. However, the latter is preferable due to computational
efficiency and it having low-dimensional simplices that locally resemble the under-
lying manifold better. An important goal was to show that we can work with the
Alpha complex without sacrificing much of the topological content in the Čech
complex. In the process, we proved that the Delaunay-Čech complex is equivalent
to them both using the geometric and gradient collapse argument.

We also introduced a new Euclidean data complex that we called the selec-
tive Delaunay-Alpha complex. We saw how it generalizes all the other complexes,
and that it fits into a simplicial collapse in the Selective Alpha Collapsing Theo-
rem 5.12. Most importantly, we showed that it is simple-homotopy equivalent to
the Alpha and Čech complex, and that, as a result, it is also equivalent to all the
other Euclidean data complexes in Section 2. Hence, we can freely choose which
Euclidean data complex to work with, knowing it will be the same simplicial com-
plex up to homotopy equivalence. In particular, filtrations of the Čech, Alpha,
Delaunay-Čech and selective Delaunay-Alpha complex have isomorphic persistent
homology [3, p. 18].

Before discussing potential further research, we will present a failed attempt
at proving Corollary 5.14 using elementary geometry, similar to what was done
in Lemma 5.3. It is not in general true that the line segment between two points
(q, q) and (p, q) in (DelAX

E,F )r is contained in (DelAX
E,F )r. Suppose, on the contrary,

that such a line segment does exist. We will suppress sub- and superscripts on
all dissimilarities from now on. If (p, q) ∈ DelAr, then we know there has to be
some x ∈ X such that p ∈ BDel(x, r) and q ∈ BAlpha(x, r), by definition of DelA.
Recall that p ∈ BDelXE

(x, r) is equivalent to p ∈ Vor(E, x), and that in the proof of
Lemma 5.3 the separating plane H was useful because we knew the Voronoi cell
of x gives all the points lying closer to x than any other point y ∈ X. This is no
longer true when E 6= X.

An attempt at remedying this problem could have been to find an appropriate
e ∈ E such that x and p are both in Vor(E, e). Choose an e ∈ E such that
d(e, x) ≤ d(e′, x) for all e′ ∈ E. Now it is true that x is in Vor(E, e), but not
necessarily true that p is. See Figure 19 for a counter-example. Thus, this seems
to imply that the choice of E ⊆ X matters for the geometry of the selective
Delaunay-Alpha complex. For future research, one might attempt a similar proof
while being more careful about how the choice of E,F ⊆ X impact the geometry
of DelAr(X,E, F ). Perhaps a better approach in obtaining a geometric proof
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xe p e′

Vor(E, x)Vor(E, e) Vor(E, e′)

Figure 19: When x 6∈ E it is possible for p 6∈ Vor(E, e) even if p ∈ Vor(E, x).

would be to do as in Corollary 5.14, i.e., we could try to show that the selective
Delaunay-Alpha complex is homotopy equivalent to the selective Alpha complex
first. Does assuming X is in general position also play a role? Can we obtain a
homotopy equivalence without this assumption?

However, having Corollary 5.14 is more than sufficient to make the selective
Delaunay-Alpha complex interesting. We think our new complex might be useful
due to the increased number of parameters giving more control to create a specific
type of complex. The selective Delaunay-Alpha complex can, namely, produce
Euclidean data complexes that are not equal to any of the others, even if it is
simple-homotopy equivalent to all of them. This could possibly lead to the use
of machine learning methods to optimize these parameters and find the complex
that would best suit one’s needs, e.g., using regularization to find the optimal
dimension for our simplices. In other words, there are many avenues – in both
mathematics and computer science – to explore related to the selective Delaunay-
Alpha complex.
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