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ABSTRACT

The trends in marine 10-m wind speed U10 and significant wave height Hs found in two century-long

reanalyses are compared against a model-only integration. Reanalyses show spurious trends due to the

assimilation of an increasing number of observations over time. The comparisons betweenmodel and reanalyses

show that the areas where the discrepancies in U10 and Hs trends are greatest are also the areas where there

is amarked increase in assimilated observations. Large differences in the yearly averages call into question the

quality of the observations assimilated by the reanalyses, resulting in unreliableU10 andHs trends before the

1950s. Four main regions of the world’s oceans are identified where the trends between model and reanalyses

deviate strongly. These are the North Atlantic, the North Pacific, the Tasman Sea, and the western South

Atlantic. The trends at124-h lead time are markedly weaker and less correlated with the observation count.

A 1985–2010 comparison with an extensive dataset of calibrated satellite altimeters shows contrasting results

in Hs trends but similar U10 spatial trend distributions, with general agreement between model, reanalyses,

and satellite altimeters on a broad increase in wind speed over the Southern Hemisphere.

1. Introduction

Long-term changes in ocean surface wind speed and

wave height have received increasing attention as cli-

mate change impacts have become evident (Young et al.

2011; Mentaschi et al. 2018; Luijendijk et al. 2018;

Young and Ribal 2019). Changes in surface wind speed

and wave height may dramatically affect coastal com-

munities (Ranasinghe 2016), as well as offshore opera-

tions (Bitner-Gregersen et al. 2018), but uncertainties

still characterize our current knowledge of long-term

variations in these quantities (Rhein et al. 2013).

Trend analyses of global ocean surface wind speed and

wave height rely on observational and modeled datasets.

Long time series of surface wind speed and wave height

observations originate from shipboardmeasurements that

date back to 1854, the year marking the beginning of an

internationally organized system for recording shipboard

meteorological observations (Maury 1853; Cardone et al.

1990; Woodruff et al. 1998). These datasets are mainly

derived from Voluntary Observing Ships (VOS). Studies

ofVOSmarinewind speed have shown that these datasets

are affected by changes in measuring techniques. This is

especially relevant in the first part of the century, where

the absence of universal standards for estimated winds

(formalization of sea-state equivalent Beaufort scale took

place in 1946; Thomas et al. 2008) may have permanently

compromised trend studies of ocean surface wind speed

over this period (Peterson and Hasse 1987; Ramage

1987). These findings were confirmed by Cardone et al.

(1990) who voiced general skepticism on the possibility of
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removing the spurious trends caused by the presence of

inhomogeneities before 1950. After 1950, VOS wind ob-

servations show an increasing trend in some areas of the

oceans due to a growing number of observations as well as

changes in anemometer heights, instrument calibration,

and ship size (Cardone et al. 1990). After bias correcting

the VOS wind datasets, an increasing signal still remains

in the surface wind speed (Thomas et al. 2008; Tokinaga

and Xie 2011), leaving open questions as to whether these

residual trends are real or affected by other artificial fac-

tors (Tokinaga and Xie 2011).

VOS wave height observations are less affected by

changes in measurement approaches. However, the

coding system had several changes, with the most signif-

icant happening in 1950 (Kent et al. 2019). An extensive

analysis of VOS wave height time series (Gulev and

Grigorieva 2004) found increasing trends in the Atlantic

from 1950 to 2002, but no significant trends on the total

1885–2002 period, again questioning the quality of the

measurements in the first part of the twentieth century.

Increasing trends in the Pacific (1950–2002)were found to

be considerably weaker compared to the North Atlantic

region (Gulev and Grigorieva 2004). However, the anal-

ysis was limited to the main ship routes, with limited

coverage in the Southern Hemisphere.

Buoy measurements started in the 1970s and cover

only a small area of the oceans. Trends in wind speed and

wave height have been investigated from buoy measure-

ments in some areas of the oceans such as the northeast

Pacific (Allan and Komar 2000; Gower 2002; Ruggiero

et al. 2010) and the Southern Ocean (Hemer 2010). How-

ever, these trend analyses may also be affected by spurious

effects and step changes in the records due to changes in

instrumentation, buoy hulls, and measurement techniques

(Gemmrich et al. 2011; Thomas and Swail 2011).

The advent of ocean-observing satellites in the late

1970s represents a fundamental step forward in the un-

derstanding of marine wind and wave climate. These

datasets guarantee global coverage of the ocean, drasti-

cally increasing the amount of observations in previously

poorly observed areas such as the SouthernOcean. Today

these datasets constitute time series covering a period of

over 30 years (Young et al. 2011; Young and Ribal 2019).

However, for trend analysis even longer datasets are

desired. This would reduce the effect of natural variability

(Dobrynin et al. 2015; Kumar et al. 2016) and help identify

potential climate change signals (Weisse 2010).

Reanalyses and hindcasts (without assimilation) have

been widely used for both weather and climate applica-

tions at both regional and global scales (Gregow et al.

2016), as they represent the best available interpolated

datasets in space and time. Trend studies have also taken

advantage of reanalyses’ long and spatially homogeneous

time series that cover thewhole globe (Semedo et al. 2011;

Bertin et al. 2013; Wang et al. 2012, 2013; Aarnes et al.

2015). TheEuropeanCentre forMedium-RangeWeather

Forecasts (ECMWF) and the National Oceanic and At-

mospheric Administration (NOAA) have recently ex-

tended reanalyses back to the beginning of the twentieth

century (Compo et al. 2011; Poli et al. 2016; Laloyaux et al.

2018). These datasets are interesting candidates for in-

vestigation of long-termwind andwave climate.However,

changes caused by increasing numbers of assimilated ob-

servations throughout the years, may produce spurious

trends (Bengtsson et al. 2004; Weisse 2010; Aarnes et al.

2015; Wohland et al. 2019). Inconsistent surface wind

speed trends have been found between the ECMWF

century-long reanalyses (ERA-20C and CERA-20C) and

the twentieth-century NOAA climate reanalysis (20CR)

(Compo et al. 2011). Considering the North Atlantic and

North Pacific, Wohland et al. (2019) argue that spurious

trends might be connected to the growing number of ma-

rine wind speed observations assimilated by the ECMWF

reanalyses. Furthermore, the ERA-20C (Poli et al. 2016)

and the NOAA 20CR were found to be inconsistent in

the low-frequency variability of the Northern Hemisphere

winter seasons (Befort et al. 2016).

So far, no studies have been carried out on wave height

long-term trends of these reanalysis products. Waves are

a combination of local wind-sea and swell coming from

distant storms (Young 1999b). Despite being entirely

forced by the wind field, the long-term trends of wave

height may be affected by low-frequency variability, for

example, increasing number of cyclones, in the form of a

swell contribution (Young 1999a; Gulev and Grigorieva

2006). This is also found in climate projections, where

significant changes in extratropical swell can be found

toward the end of the twenty-first century (Shimura et al.

2016; Breivik et al. 2019).

This work aims to investigate the relevance of trend

analysis of 10-m surface wind speed, and significant wave

height, obtained from the ERA-20C (Poli et al. 2016) and

CERA-20C (Laloyaux et al. 2018) and compare with the

ERA-20CM (Hersbach et al. 2015a) atmosphere–wave

model-only integration (i.e., without assimilation). To

further investigate the relevance ofU10 andHs trends from

twentieth-century climate models and reanalyses, we

compare the ECMWF century-long datasets, with and

without assimilation of in situ observations, with the trends

of an independent dataset of calibrated satellite altimeter

observations (Ribal and Young 2019; Young and Ribal

2019). The objective is to investigate twentieth-century

U10 and Hs long-term changes and to evaluate the rele-

vance of climate studies derived from twentieth-century

models. Furthermore, data assimilation impacts will be

assessed by comparing with trends at 124-h forecast lead
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time (Aarnes et al. 2015). This analysis provides a mech-

anism to determine the level of confidence in the climate

change signal in ocean wind speed and significant wave

height over the twentieth century.

The paper is structured as follows. Section 2 describes

the datasets used for the trend analysis and explains the

approach used to calculate trend magnitude and statis-

tical significance. Section 3 describes the century-long

trends. Section 4 analyses the differences between each

model representation of climate averages over the

twentieth century. Section 5 concentrates on comparing

the climatemodel and reanalysis trends with the satellite

altimeters trends. Sections 6 and 7 discuss the possibility

of a real climate signal and our confidence in the esti-

mated trends. Finally, we include our recommendations

on how to interpret trends from reanalyses.

2. Datasets and methodology

ECMWF (Dee et al. 2014; Buizza et al. 2018) and

NOAA (Compo et al. 2011) have recently developed

state-of-the-art reanalyses that cover the whole twenti-

eth century. The aim is to obtain a better understanding

of the past to improve current weather forecasts and

climate studies (Buizza et al. 2018). ECMWF developed

three different century-long datasets: (i) ERA-20CM

(Hersbach et al. 2015a), (ii) ERA-20C (Poli et al. 2016),

and (iii) CERA-20C (Laloyaux et al. 2018). Table 1

describes the characteristics of the three models.

ERA-20C and CERA-20C are interesting in the con-

text of trend analysis because in contrast with ERA-

20CM, which is a model-only integration, they assimilate

in situ observations of surface pressure and marine sur-

face winds. Neither reanalysis assimilates satellite or

in situ oceanwave heightmeasurements. This allows us to

compare their trends with independent satellite altimeter

wave height measurements. The atmosphere horizontal

resolution of the three model integrations is 125km,

whereas the ocean model resolution is 166km for ERA-

20CM and ERA-20C and 110km for CERA-20C. The

models employ the same CMIP5 radiative forcing

scheme. The 10-m surface wind speedU10 and significant

wave heightHs are available asmonthly averages of daily

means, or asmonthly averages of daily outputs at specific

synoptic times. The latter have been selected for the trend

analysis of the period from 1901 to 2010, and to perform a

comparison with independent satellite altimeter trends

for the overlapping 1985–2010 period. The main charac-

teristics of each dataset used in this study are described in

the following paragraphs in the context of trend analysis.

a. ERA-20CM

ERA-20CM (Hersbach et al. 2015a) is a 10-member

ensemble model-only simulation that covers the period

1899–2010. The model version is the Integrated Fore-

casting System (IFS) cycle 38r1 (released in 2012, see

https://bit.ly/2OXuHFF). No observations are assimi-

lated in ERA-20CM, and thus the model is not able to

accurately reproduce actual synoptic states. Despite this,

ECMWF argues that the ERA-20CM model still per-

forms well in terms of long-term climate, being consistent

with other CMIP5 models. As noted also by Dee et al.

(2014) the models require boundary conditions that are

implemented from other models that in turn depend on

observations from multiple sources. ERA-20CM bound-

ary conditions include sea surface temperature (SST) and

sea ice states from the Hadley Centre Global Sea Ice and

Sea Surface Temperature dataset, version 2 (HadISST2),

model (Rayner et al. 2006), developed as part of the same

ERA-CLIM European project.

b. ERA-20C

ERA-20C (Poli et al. 2016) is a single-member reanalysis

for the period 1900–2010. It assimilates in situ observations

of surface pressure from the International Surface Pressure

Databank (ISPD), version 2 (Cram et al. 2015), and both

marine surface pressure and surface wind speed from the

InternationalComprehensiveOcean–AtmosphereDataset

(ICOADS), version 2.5 (Woodruff et al. 2011). The model

has the same atmospheric general circulation configuration

TABLE 1. Characteristics of the ECMWF century-long models.

ERA-20CM ERA-20C CERA-20C

Ensemble members 10 1 10

Assimilation atmosphere Model-only integration Marine wind, surface pressure Marine wind, surface pressure

Atmosphere–waves–land Coupled Coupled Coupled

Coupled ocean–ice Prescribed HadISST2.1.0.0 Prescribed HadISST2.1.0.0 Coupled

Assimilation ocean — — Temperature, salinity

Radiative forcing CMIP5 CMIP5 CMIP5

Horizontal resolution Atmosphere: 125 km Atmosphere: 125 km Atmosphere: 125 km

Ocean: 166 km Ocean: 166 km Ocean: 110 km

IFS cy38r1 (2012) cy38r1 (2012) cy41r1 (2015)

OFA — Public Public
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as the control member of ERA-20CM and employs the

same model version. Surface boundary conditions are also

provided by HadISST. This allows for a direct comparison

of the trend analysis between the two models. In well-

sampled regions, the assimilation of observations adds

precision at the synoptic scale, however, a negative impact

has been observed on trends and low-frequency variability

(Poli et al. 2016). Two main aspects of the model in-

tegrationswill be investigated: theobservational constraints

and the realism of long-term trends.

c. CERA-20C

CERA-20C is the first atmosphere–ocean coupled cli-

mate reanalysis of the twentieth century (Buizza et al.

2018). It is a 10-member ensemble and covers the period

from 1901 to 2010 (Laloyaux et al. 2018). It is based on the

CERA coupled data assimilation system (Laloyaux et al.

2016) and employs IFS cycle 41r1 of 2015. Like ERA-20C,

it assimilates surface pressure and marine wind observa-

tions. In addition, it assimilates ocean temperature and

salinity profiles. Coupled models have been shown to be

crucial for synoptic weather representations. They are

especially relevant in the prediction of tropical cyclones

(Mogensen et al. 2017), and for a consistent global trans-

port of mass, water, and energy at the relevant time scales

(Dee et al. 2014). Despite these models being potentially

the best available to reconstruct Earth’s climate system

and thuswind andwave conditions, openquestions remain

as to the impact of data assimilation on long-term trends

and how these compare to ERA-20CM and ERA-20C.

Allmodels described are coupled to the same version of

the ECMWFglobal third-generation wavemodel (WAM;

WAMDI Group 1988; Janssen 2004), which resolves the

two-dimensional wave spectrum, taking into account ad-

vection, wind input, bottom friction, nonlinear interac-

tions, and dissipation due to white capping. At each time

step the wave model interacts with the atmosphere as

surface roughness is fed back to the atmospheric boundary

layer scheme of IFS.

d. Observation Feedback Archive

ECMWF produces an Observation Feedback Archive

(OFA) (Dee et al. 2014) where all observations used in

the data assimilation are archived with the corresponding

model values interpolated to the observation location

(Hersbach et al. 2015b).Herewe investigate the feedback

archive of ICOADS v2.5 (Woodruff et al. 2011) surface

pressure andwind speed and ISPDv2.2 (Cramet al. 2015)

surface pressure.

1) ICOADS V2.5

ICOADS is regarded as the reference long-term ma-

rine surface dataset (Woodruff et al. 2011). The ICOADS

monthly summary statistics have been produced at a 28 3 28
resolution covering the period 1800–1960 and at 18 3 18
resolution since 1960. There are eight observed variables:

SST, air temperature, wind speed, wind components, sea

level pressure (SLP), total cloudiness, and relative humidity.

There are also 14 derived variables. No attempt is made to

account for observing system changes and measurement

biases (Woodruff et al. 2011). Critical metadata such as

instrument type and placement are used to improve ac-

curacy. However, effects of changes in measurement

techniques and the growing number of observations may

still affect estimates of long-term trends in the dataset. In

Table 2 the surface pressure and wind speed observation

counts are listed by measurement technique. These are

the observations that have been assimilated in the ERA-

20C and CERA-20C.

Figure 1 shows the yearly counts classified by report

type over the complete duration of the reanalysis. The vast

majority of observations assimilated by ECMWF rean-

alyses were collected from ships, that is, report type 16008.

As shown in Fig. 1, shipmeasurements started to decrease

in the last part of the twentieth century, and observation of

the oceans now heavily relies on satellites and drifting

buoys (Kent et al. 2006). The observation counts derived

from theOFA are crucial to determining the main drivers

of trend differences between models and reanalyses

(Wohland et al. 2019).

2) ISPD V2.2

The ISPD is the world’s largest surface and sea level

pressure dataset. The dataset consists of observations from

land stations, marine observations and tropical cyclone

best track reports (Cram et al. 2015). This dataset was first

used in theNOAAtwentieth-century reanalysis 20CRand

then also assimilated by ERA-20C and CERA-20C.

Figure 2 compares global observation counts of the

three observational datasets considered here (ICOADS

v2.5 surface wind, ICOADS v2.5 surface pressure, and

ISPD v2.2 surface pressure). The counts are binned on a

28 3 28 grid. The comparison shows how the majority of

ocean in situ observations have been collected in the

Northern Hemisphere with some isolated areas in the

Southern Hemisphere such as the Tasman Sea, between

Australia and New Zealand, and the South Atlantic ship

routes that connect South American and African coasts

to the Northern Hemisphere. Figures 2a and 2b clearly

show the main ocean ship routes. In the ICOADS wind

speed observations plot (Fig. 2a) the tropical ocean

mooring buoy array can be clearly observed. Figure 2c

shows the ISPD surface pressure observation density,

mainly composed of land observations with localized

areas of ocean observations. Considering the distribu-

tion of the observation density shown in Fig. 2, we focus
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on the ICOADS dataset to investigate the data assimi-

lation impact on the model climate trends.

e. Satellite altimeters

To further assess long-term climate performance of

the ECMWF reanalyses and model-only integrations,

we compare the trends of the last part of the century-

long model runs with the trends found from the largest

available dataset of satellite measurements of U10 and

Hs (Young and Ribal 2019). This archive is calibrated

and cross validated against buoys from theU.S. National

Data Buoy Center (NDBC) and independent buoy da-

tasets (Ribal and Young 2019). The calibrated satellite

altimeter observations span the period 1985–2018. To

compare with the ECMWF model integrations, we

analyze the overlapping 1985–2010 window, noting that

before 1991 the amount of altimeter data is relatively

sparse, as only one satellite was operational. The hori-

zontal resolution of this satellite altimeter dataset is 28 3 28.
The comparison is particularly interesting given the fact

that the ECMWF century-long model integrations do

not assimilate satellite observations to avoid impact of

sudden changes in the assimilated observations (Weisse

2010; Sasaki 2016).

f. Trend analysis

To perform the trend analysis we select the monthly

mean Hs and U10 values from the three ECMWF

century-long models and the satellite altimeter obser-

vations. We apply a nonparametric trend analysis using

FIG. 1. The 1901–2010 ICOADS 2.5 (left) surface wind and (right) surface pressure observation yearly counts

divided by report type, as archived in the ECMWF Observational Feedback Archive. Refer to Table 2 for the

description of report type ID.

TABLE 2. ICOADS 2.5 dataset. Surface pressure and wind speed observation counts (obs) classified by report type ID, as archived in the

OFA of the ECMWF (Hersbach et al. 2015b).

ID Description No. of pressure obs No. of wind obs

16005 Drifting and mooring buoys — 845 712

16008 Ship 5 593 209 4 845 002

16049 Ocean station vessel on station 81 830 120 308

16050 Ocean station vessel off station 32 842 55 488

16051 Station or ship on ice 17 022 7944

16052 Ocean bottle and low-resolution

conductivity temperature depth (CTD

and XCTD)

— 21 734

16053 Mechanical or digital or

microbathythermograph (MBT)

— 33 062

16054 Expendable bathythermograph (XBT) — 4496

16055 Coastal-marine automated network

(CMAN)

289 524 12 384

16056 Undulating oceanographic recorder

(UOR)

7 380

16057 Fixed ocean platform or rig 20 211 12 256

16061 High-resolution conductivity temperature

depth (CTD and XCTD)

— 812
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the Theil–Sen estimator (Theil 1950; Sen 1968). Com-

pared to a regression analysis, this method is more ro-

bust for nonnormally distributed data, such as in the case

of Hs, and has the advantage of reducing the impact of

potential outliers. The approach has previously been

used to estimate trends of marine wind speed and sig-

nificant wave height from model reanalyses (Wang and

Swail 2001; Aarnes et al. 2015) and from satellite ob-

servations (Young et al. 2011; Young and Ribal 2019).

The trend magnitude is found by selecting the median of

the slopes (change per unit of time) computed for each

month, between distinct pairs (i, j) of monthly mean

values, as shown by

median

 
X

j
2X

i

t
j
2 t

i

!
, 1# i# j# n, with i 6¼ j , (1)

where n is the number of years, and X takes, re-

spectively, the monthly mean values of Hs or U10. The

Sen’s slope is computed for each month, and tj 2 ti is the

difference in time (years). The trend at each location of

the globe is the median of the monthly slopes. To eval-

uate the significance of the trend at each gridpoint lo-

cation, we perform a Mann–Kendall test (Mann 1945;

Kendall 1948) adapted to account for seasonality and

serial dependence (Hirsch et al. 1982; Hirsch and Slack

1984). To test the serial dependence ofmonthlymeanHs

and U10, we computed the Pearson correlation between

consecutive months (monthly lag-1 correlation) for the

three ECMWF models considered in this study. The

results show that two consecutive monthly mean values

are globally correlated with a Pearson coefficient gen-

erally higher than 0.4. This is the case for both Hs and

U10 monthly means from the three ECMWF models.

Thus, serial dependence is accounted for in the seasonal

Mann–Kendall trend test (SKTT) with the covariance

term introduced by Dietz and Killeen (1981).

3. Century-long trends

The Hs and U10 1901–2010 trends from the three

ECMWF twentieth-century models are shown in Fig. 3 as

percentage change per decade. Only the trends with 95%

significance from the SKTT are shown. The ensemble

model trends are found for the 10-member ensemble

mean. Figure 3 shows that the ERA-20C and CERA-20C

trends differ significantly from the ERA-20CM model

trends. Two areas stand out with a significant positive

trend in the ERA-20CM: the Southern Ocean high

latitudes (5–10 cm s21 decade21 change in U10; 1–2 cm

decade21 change in Hs) where the different sea ice

cover derived from the model boundary condition may

play a role (Fig. 3b), and the western tropical Pacific

(3–7cms21decade21 forU10; no significant trend in theHs),

where the strong recent La Niña episode affects the trend
of the entire century (de Boisséson et al. 2014). The trend

in the Southern Ocean could be correlated to the different

surface roughness related to the changes in sea ice cover

found by the SST/sea ice conditions of HadISST2 (Rayner

et al. 2006). TheHsdomain ismasked at the latitudes of sea

ice cover (hatched regions in Fig. 3a). The Hs trends are

spatially uniform compared to the U10 trends. A slight

decrease in Hs (’20.5 cmdecade21) is depicted at mid-

latitudes with the exception of the South Atlantic region.

In contrast, the deterministic reanalysis, ERA-20C, shows

mostly increasing trends with magnitudes in the North-

ern Hemisphere that exceed 11.75% decade21 (up to

FIG. 2. The 1901–2010 OFA observations counts in a base-10

logarithmic scale, binned on a 28 3 28 grid. The three different da-

tasets assimilated in ERA-20C and CERA-20C are (a) ICOADS2.5

surface wind, (b) ICOADS2.5 surface pressure, and (c) ISPD2.2

surface pressure.
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18 cms21 decade21 change in U10 and 5–8cmdecade21

change inHs). The CERA-20C spatial trend distribution

is very similar to the ERA-20C results, but with reduced

magnitude (up to 8 cms21 decade21 change inU10 and up

to 5 cmdecade21 change in Hs). This could be related to

the 10-member ensemble averaging process or to the

dampening effect of the coupled ocean model caused by

the assimilation of subsurface ocean measurements

(Wohland et al. 2019). A significant increase in both Hs

andU10 is found, especially in the Northern Hemisphere,

for both ERA-20C and CERA-20C. The spatial distri-

bution of the strongest trends found in these reanalyses

is remarkably similar to the spatial distribution of the

areas with the highest observation counts, as shown in

Fig. 2. This is particularly true for the ICOADS data-

set (Figs. 2a,b) and in agreement with the analysis by

Wohland et al. (2019). Given the similarities between

ERA-20C and CERA-20C trends, and assuming that the

ensemble approach is more reliable in finding relevant

trends, we concentrate our further investigations only on

the comparison between the two ensemblemodels (ERA-

20CM and CERA-20C).

124-h forecast lead-time trends

To assess to what extent the differences in the CERA-

20C trends are related to the assimilated observations,

and how this is sustained through themodel forecast time,

we performed a trend analysis at the124-h forecast lead

time (FC24). Note that the 124-h lead time is the only

forecast dataset available online for thesemodels. Aarnes

et al. (2015) used the 148-h forecast lead time to lessen

the impact of data assimilation on the ERA-Interim

trends. The percentage-per-decade trend difference be-

tween CERA-20C at analysis time (ANA) and 124-h

forecast lead time (FC24) is shown inFig. 4 (ANA-FC24).

The trend in the analysis is larger than the forecast

(positive values in Fig. 4), especially in the areas where

the main differences in the number of observations are

found, that is, in the Northern Hemisphere and in local-

ized areas of the Southern Hemisphere (Figs. 2a,b). The

FIG. 3. The 1901–2010 trends (% decade21). Comparison between the three twentieth-century ECMWF

datasets—(a),(b) ERA-20CM, (c),(d) ERA-20C, and (e),(f) CERA-20C—for (left) Hs and (right) U10. Only the

95% significant trends from the SKTT are plotted.White regions represent areas where the trend is not statistically

significant. Sea ice cover areas that limit the Hs domain are hatched.
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differences are larger for U10 (Fig. 4b), because the wind

speed is a parameter directly assimilated from the

ICOADS2.5 dataset, whereas Hs is a derived variable

(Fig. 4a). Again, theHs spatial variability ismore uniform

compared to the wind speed due to the different nature of

these two variables. Differences betweenANAandFC24

Hs are less pronounced, showing a smaller impact of data

assimilation onHs climate, but remarkably similar to the

ICOADS pattern in Fig. 2a.

To further investigate the areaswhere the observational

datasets significantly impact the century-long trends, we

select four locations with the largest differences between

ANAandFC24 trends. The locations are shown inFig. 4b.

At these locations we compute the yearly averages for all

three models. Figure 5 shows the yearly average values of

U10 and Hs for the reanalyses ERA-20C and CERA-20C

(green and red lines) and the model-only integration

ERA-20CM (blue lines) at ANA and FC24. Large dif-

ferences are found in the first part of the century. At lo-

cation a1 the reanalyses show a change in the trend

direction across the century, with an unusual decrease in

the first part of the twentieth century. Again, the com-

parison between ANA and FC24 confirms that the data

assimilation effect is reduced in the forecast case of U10

but not significantly forHs. The FC24 ensemble spread is

larger than the ANA spread as expected. Location a3 in

the Tasman Sea shows a significant reduction in the av-

erage difference between the two reanalyses and ERA-

20CM at FC24 compared to ANA. Figure 5 generally

reveals large differences in the first part of the twentieth

century. This difference is also present for Hs at FC24.

However, the U10 ANA yearly average difference be-

tween models is significantly reduced at FC24.

4. Twentieth-century climate

We compare the Hs and U10 yearly averages and in-

vestigate the differences between the ERA-20CMmodel

and CERA-20C climate at the global scale. The nor-

malized difference in the yearly averages is found using

d5
x ERA20CM 2 x CERA20C

x ERA20CM
, (2)

where x is the yearly average, respectively, of Hs or U10

monthly means. The differences are normalized over the

ERA-20CM yearly averages to obtain a percentage dif-

ference. The results are shown in Fig. 6 for three different

time periods: 1901–2010 (Figs. 6a,b), 1901–30 (Figs. 6c,d),

and 1985–2010 (Figs. 6e,f). It is interesting to note that the

yearly average Hs differences between the two models

are generally higher than the U10 differences, showing

that the impact of data assimilation ofU10 and SLP have a

marked effect on wave climate. In the first part of the

century, 1901–30 (Figs. 6c,d), the climate differences are

larger, whereas the last part of the century, 1985–2010

(Figs. 6e,f), shows a better agreement between the

models. This is consistent with the location analysis per-

formed in Fig. 5. The ERA-20CM climate is consistently

higher for both Hs and U10 yearly averages throughout

the century. Some areas show closer agreement, such as

the 308–408N latitude band in the western North Pacific,

where we find significantly smaller differences between

the models than other regions. Initially, this singular

pattern of similarity might be attributed to the average

ship routes that follows higher latitudes on the great circle

between Asia and North America. However, a more

detailed analysis of observation counts shows that also at

these latitudes the number of observations increases

throughout the dataset time period. Given that ERA-

20CM and CERA-20C both have SST boundary condi-

tions dictated by the HadISST2 model, these similarities

could be related to SST-induced winds. This area is

indeed impacted by the Kuroshio Extension phe-

nomenon, characterized by strong seasonal variations of

SST temperature that affect surface winds (Nonaka and

Xie 2003). These findings, if confirmed, could further

FIG. 4. Difference in CERA-20C 1901–2010 trends (% decade21) between analysis time (ANA) and forecast lead

time 124 h (FC24) for (a) Hs and (b) U10. Sea ice cover areas that limit the Hs domain are hatched.
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demonstrate the impact of SST boundary conditions on

modeled ocean surface climate. In general, Hs and U10

yearly average differences show similar spatial distri-

bution. For the complete 1901–2010 dataset, the abso-

lute Hs differences are between 20.15 and 0.5m,

whereas, the U10 differences are between 21.8 and

2ms21. The Hs and U10 maximum absolute differences

are found at the high latitudes. Larger discrepancies

between ERA-20CM and CERA-20C are found again

in the areas with most assimilated observation from the

ICOADS dataset (Figs. 2a,b).

5. Model, reanalysis, and satellite trends

Considering the large difference in Hs and U10 climate

representation in the first part of the century, and to fur-

ther investigate the ECMWFdataset performance in long-

term climate analyses, we here compare the 1985–2010

model and reanalysis trends with trends calculated from

calibrated satellite altimeter dataset (Young and Ribal

2019; Ribal and Young 2019). The trends are shown in

Fig. 7 in terms of percentage change per decade. The

dotted areas are regions where the trends are significant at

the SKTT 95% level. Few locations show a statistically

significant trend in Hs for both the satellite altimeter

(Fig. 7a) and ERA-20CM (Fig. 7c), demonstrating general

agreement between the datasets. In contrast, the altimeter

U10 trends (Fig. 7b) are largely significant in the Southern

Hemisphere, whereas the ERA-20CM U10 trends

(Fig. 7d), show only few statistically significant areas of

the oceans with lower trend magnitudes. Different U10

trends are also found in the northeast Pacific. Here, the

altimeters depict an increasing trend that is in contrast with

the decreasing values found in ERA-20CM. However, the

results do show similar spatial distribution for both Hs

and U10 between the satellite altimeter and ERA-20CM

FIG. 5. Yearly averages of monthly mean values at four different locations indicated in Fig. 4b. For ERA-20CM and CERA-20C, the envelope of

the ensemble values areplotted togetherwith themean.Columns represent (left to right)ANAHs, FC24Hs,ANAU10, andFC24U10, respectively.
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results. For instance, the U10 altimeter and ERA-20CM

trends (Figs. 7b,d) both show a significant increase in the

central Pacific (de Boisséson et al. 2014), a positive band

across the tropical Atlantic, and a general increase across

the SouthernOcean.Also, both figures show an increase in

the central Indian Ocean and a reduction in the southern

Indian Ocean (agreement less clear). Also, the Hs altim-

eter and ERA-20CM trends (Figs. 7a,c), show a small in-

crease in the Southern Ocean west of South America, the

increase in the central Pacific already noted for U10, a

decrease in the North Pacific, and a slight increase in the

Atlantic east of the Gulf of Mexico.

A greater spatial difference in distribution is found

between the altimeter trends (Figs. 7a,b) and the CERA-

20C trends at analysis time (Figs. 7e,f). Compared to both

satellite and ERA-20CM results, the CERA-20C Hs

trends (Fig. 7e) show larger differences than the U10

trends. CERA-20C results show a generally increasing

U10 trend in the Southern Hemisphere (Fig. 7f) that is

further amplified in theHs trends (Fig. 7e). The reason for

the large trends in the Hs coupled CERA-20C in the

Southern Hemisphere is not clear. We speculate that the

large positive trends in Southern Hemisphere mid-

latitudes (Fig. 7e) may be associated with an increase of

swell propagating from the Southern Ocean. However,

this possibility requires further analysis of, for instance,

changes in wave period.

Although there are differences in magnitude, all three

datasets compared here show increasing U10 in the

Southern Hemisphere, with similar spatial distribution.

The analysis of the CERA-20C FC24 trends (not shown

here) does not differ significantly from the results ob-

tained at ANA shown in Figs. 7e and 7f. This means that

data assimilation for the period 1985–2010 is not af-

fecting U10 trends as strongly as is the case when the

whole twentieth century is considered.

6. Discussion

Thepresentwork foundgenerally inconsistent twentieth-

century Hs and U10 trends for an ECMWF model-only

integration (ERA-20CM) and reanalyses (ERA-20C and

FIG. 6. Annual averages of monthlymean values. Differences betweenERA-20CMand CERA-20C [Eq. (2)] are

shown for (left)Hs and (right)U10 for the periods of (a),(b) 1901–2010, (c),(d) 1901–30, and (e),(f) 1985–2010. Sea

ice cover areas that limit the Hs domain are hatched.
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CERA-20C). This is also in agreement with previous

studies that compared the ECMWF reanalysis datasets

with the NOAA twentieth-century reanalysis (20CR)

(Befort et al. 2016; Wohland et al. 2019). NOAA 20CR

assimilates ISPD surface pressuremeasurements but does

not show any inconsistencies in trends compared with

ECMWF’s model-only integration, ERA-20CM (Compo

et al. 2006, 2011; Befort et al. 2016; Wohland et al. 2019).

This suggests that the main impact on trends might be

caused by the ICOADS dataset assimilation in the

ECMWF reanalyses. It is not clear if the assimilated ISPD

surface pressure measurements (Fig. 2c) also have a sig-

nificant impact on reanalyzed U10 and Hs trends.

It seems at first counterintuitive that the difference

between the free-running ERA-20CM and the two

reanalyses, ERA-20C and CERA-20C, is greatest in the

early period where observations are scarce. The reason is,

as Laloyaux et al. (2018) explain (and first noted by Poli

et al. 2015), that the observation error for pressure ob-

servations in ERA-20C were too small at the start of the

century, putting too much weight to the observations

located in the subtropical high pressure belt. This gen-

erated large positive surface pressure increments over the

unobserved Antarctic region. The same effect was found

over the Arctic, but not as strongly as in the Southern

Hemisphere. To alleviate this, the observation errors

were increased in CERA-20C for the early twentieth

century and then allowed to decrease with for the more

recent, data-rich period (J. Nicolas 2019, personal com-

munication; Laloyaux et al. 2018, their Fig. 11). We note

here, however, that there remains a large discrepancy

between ERA-20CM and CERA-20C in all locations

investigated, both Northern and Southern Hemisphere,

and the improvement over ERA-20C is only marginal in

terms of surface wind speed (see Fig. 5, third column).

This work found large positive trends for ERA-20C

and CERA-20C in areas that correspond to the highest

number of observation counts of ICOADS2.5 assimilated

data (Fig. 2). Further analysis at four locations around the

globe (Fig. 5), shows that the quality of the observations

FIG. 7. The 1985–2010 trends (%decade21). Comparison between (top) altimeter dataset trends (28 3 28) (Young

and Ribal 2019; Ribal and Young 2019), (middle) ERA-20CM, and (bottom) CERA-20C at analysis time (1.58 3
1.58) for (a),(c),(e)Hs trends and (b),(d),(f)U10 trends. Areas of SKTT 95% statistical significance level are dotted.

Sea ice cover areas are hatched.
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may be as important as the increasing number of obser-

vations in affecting potential spurious trends, especially in

the first part of the twentieth century, where the U10 and

Hs monthly averages significantly differ between rean-

alyses and the climate model. This is particularly true for

the first half of the century (Fig. 5), where the main av-

erage differences are found between ERA-20CMand the

two reanalyses (ERA-20C and CERA-20C). Since the

observations in this part of the century originate only

from shipboard observations (Fig. 1), we believe that the

quality of the measurements, already questioned in ref-

erence studies (Ramage 1987; Peterson and Hasse 1987;

Cardone et al. 1990), have a major impact. As a result, it

may not be possible to extract reliable trend estimates

from reanalysis that extend to the period before 1950.

ERA-20CM seems to perform better than the rean-

alyses in resolving the spatial distribution of Hs and U10

long-term trends. As pointed out by Hersbach et al.

(2015a), ERA-20CM outperforms reanalyses such as

ERA-20C at large time scales (more than a year) thus

being a potential reference model to analyzeHs andU10

trends over the last century. Although the ERA-20CM

spatial trend distribution proved to be similar to altim-

eter significant wave height trends, it should be noted

that the ERA-20CM realizations, especially in variation

in temperature, are closely related to the spread in the

HadISST2 ensemble (Hersbach et al. 2015a). That is, the

sea surface temperature boundary condition may be a

significant contributor to this observed trend. Indeed,

we found similarities between ERA-20CM model-only

integration and CERA-20C coupled model reanalysis in

the yearly average climate for regions such as the Kur-

oshio Extension area (Fig. 6), where SST-induced winds

might explain the effect of the SST boundary conditions

on Hs and U10 in the reanalyses. The North Pacific, the

North Atlantic, the Tasman Sea, and the South Atlantic

coasts of Africa and South America are regions char-

acterized by large discrepancies between model and

reanalyses trends (Fig. 3), suggesting a significant impact

of assimilated ICOADS observations (Figs. 2a,b) on

long-term climate analysis of these areas.

The 1985–2010 comparison with satellite altimeter

trends further investigated the ECMWF datasets ability

in representing long-term climate variations in Hs and

U10. The comparison confirmed the superior quality of

the ERA-20CMmodel-only integration in describing the

spatial distribution ofHs trends compared toCERA-20C.

The CERA-20C Hs trends found in the Southern Hemi-

sphere midlatitudes are somewhat confusing. Model, re-

analyses, and satellite altimeter observations agree on a

general increase of U10 over the Southern Hemisphere in

the last part of the twentieth century. However, only the

satellite trend results are consistently statistically significant,

whereas ERA-20CM and CERA-20C are only sparsely

statistically significant at the SKTT 95% level.

Both model and satellite wind and wave time series

have limitations. However, these are invaluable tools to

understand the global wind-wave climate, and it is fun-

damental to continue to compare and analyze indepen-

dent observational andmodel datasets. It is not possible to

identify a general best performing dataset to estimate

wind-wave climate trends. However, we might argue that

the absence of data assimilation in ERA-20CM, and the

larger time span, if compared to the satellite observations,

makes this model the more suitable for the analysis of

century-long trends. Furthermore, knowledge of the per-

formance and structure of these datasets, may provide

insight as to the most appropriate model results for par-

ticular areas of the oceans or for a specific time period.

Also, these tools may benefit practical applications if their

limitations with respect to trend estimates are understood.

The contrasting Hs and U10 trend results found in this

study, show that the connection between the wind and

wave climate trends is not as straightforward as onemight

think. The model wave height trends may significantly

differ from the wind speed trend estimates. Future wind

and wave climate trend studies should consider this as-

pect of the global models.

7. Conclusions

Twentieth-century reanalyses show spurious trends in

10-m surface wind speedU10 and significant wave height

Hs throughout the whole 1901–2010 period. The in-

creasing number of observations, as well as changes in

the quality of the data ingested in these reanalyses,

mainly affect four areas of the oceans whereHs and U10

trend analyses show the largest discrepancies between

the model-only integration and the reanalyses. These

are the North Atlantic, the North Pacific, the Tasman

Sea, and the SouthAtlantic region east of SouthAmerica.

The comparison with satellite altimeter trends showed

agreement on a general increase of SouthernHemisphere

U10. Considerable care must be exercised when consid-

ering the assimilation of surface wind measurements be-

fore the 1950s. A comparison with the newly available

ERA-5 (from 1950 until the present) may further help to

detect data assimilation impacts and investigate the na-

ture ofHs and U10 climate trend estimates from state-of-

the-art reanalyses.
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