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Abstract

Magnetic reconnection is a fundamental plasma process, which can explosively convert
magnetic energy to particle energy. When reconnection operates, it releases almost all
of the energy stored in the magnetic field and accelerates and heats the plasma. The
consequences of reconnection depend on the magnetic energy available and the process
ability to rapidly release the energy. Thus, the effectiveness of reconnection, which can
be quantified by the rate at which energy is converted, is a key factor in understanding
consequences and implications of this universal process. It is critical to understand how
effective reconnection operates. In this thesis, we investigate how the reconnection rate
depends on the resistivity in the system. In our fluid-based scheme, resistivity refers, in
simple terms, to the plasmas ability to diffuse across the magnetic field - allowing new
magnetic topologies to form. We employ a resistive MHD model to study the fundamental
physics of this question and show that, even when inserting very strong resistive spots
with varying shapes, there appears to be a maximum rate of reconnection the system can
support. In addition, we find that a sub-optimal choice of resistivity magnitude or shape
of the resistive spot leads to lower overall reconnection rates. These results imply that the
reconnection rate depends significantly on properties of the diffusion region, even if the
size of that region is much smaller than the system. This is a new insight, which may be
a counterpoint to the assertion that the reconnection rate is independent of the diffusion
region physics. We find very strong indications that a maximum reconnection rate exists,
and it appears exceedingly likely that this rate limitation is due to larger-scale system
properties rather than properties of the diffusion region.
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Chapter 1

Introduction

Magnetic fields are present all around the universe. From planets and stars to galaxies
and beyond. Magnetism, along with gravity, is responsible for shaping and controlling the
majority of dynamics observed in the cosmos. Magnetic reconnection is a universal process
that plays a crucial role in nearly all regimes, by explosively converting magnetic energy
to particle energy.

Magnetic fields store and carry energy, and the coupling between plasmas and mag-
netic fields is the source of many energetic phenomena observed in laboratories, in our
magnetosphere and in the cosmos. Magnetic reconnection is the process that facilitates
these events, being able to energize plasma at the expense of magnetic energy. Magnetic
reconnection is not only considered a possible mechanism for the majority of phenomena
exhibiting particle acceleration and heating and large magnetic geometry changes, but it
is also responsible for events such as explosive stellar flares, geomagnetic storms and, thus,
aurora.

To understand the implications of reconnection, it is critical to understand how effective
the process can operate. For instance, a key aspect of space weather lies in the efficiency of
solar wind-magnetospheric coupling and the resulting coupling to the ionosphere, which is
directly correlated to the reconnection rate of the Earth’s dayside magnetopause. Also, this
understanding is very important in magnetically confined fusion devices or for identifying
reconnection and studying its effects in places where directly measuring magnetic fields is
not possible, such as in astrophysical settings [Cassak et al., 2017].

The simplest way of describing magnetic reconnection is given by the model developed
by Sweet [1958] and Parker [1957a]. However, the predicted reconnection rate derived
from the Sweet-Parker model, which corresponds to the rate at which magnetic energy is
being converted into kinetic energy of the plasma, is too slow to explain the observations.
To explain the observation of, for instance, solar flares, the rate should have been orders
of magnitudes larger. In the following years, many analytical theories of fast magnetic
reconnection were developed to explain the observed behaviour. Today, observations and
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CHAPTER 1. INTRODUCTION

numerical simulations in a wide variety of settings suggest that the global rate of magnetic
reconnection is approximately 0.1 in normalized units. However, understanding the reason
for reconnection to proceed at this rate has been a long-standing problem [Cassak et al.,
2017]. The present study uses a MagnetoHydroDynamic (MHD) model to investigate the
fundamental physics of this question.

MHD is a proven tool for understanding the physics of magnetic reconnection from a
fluid-based perspective. MHD modelling of magnetic reconnection appeared in the 1990s,
enabling simulations to reproduce different analytical solutions of fast magnetic reconnec-
tion [Petschek , 1964; Sonnerup, 1970; Vasyliunas , 1975]. At the same time, a number of
experimental devices for studying magnetic reconnection were built (e.g., Princeton MRX
[Ji et al., 2001], UCLA LAPD [Gekelman et al., 2016]). Numerical simulations of high-
temperature fusion plasma, solar dynamo generation, solar flare generation, and 3D MHD
magnetospheres were used to predict the consequences of magnetic reconnection. Over
time, these models have evolved to include more realistic plasma configurations, such as
two-fluid effects, and additional terms that contribute to diffusion [Kuznetsova et al., 2007].
Today, fluid-based models can simulate the unified consequence of a solar flare from the
Sun to Earth’s atmosphere [Tóth et al., 2005, 2012]. Fluid models have had an enormous
impact on our understanding of how reconnection shapes space.

The advantage of fluid models is that they are computationally cheap and can be used
to simulate the large-scale behaviour of plasma over vast distances. However, kinetic effects
beyond two-fluid descriptions cannot be described by fluid models, and other models such
as Particle-In-Cell (PIC) simulations can be used for these purposes. These models can
treat particle motions of billions of electrons and ions in three dimensions at timescales
appropriate to the dynamical behaviour of the plasma. However, due to the enormous
computational cost, particle simulations are only practical for limited spatial scales.

The purpose of this thesis is to study how effective the reconnection rate can be in a
fluid-based simulation setup with varying magnitudes and shapes of resistivity. Our tool
of investigation is a 2.5D (two spatial dimensions [x and z] and three velocity and field
dimensions [x,y and z]) resistive MHD simulation.

In nature, reconnection is enabled and facilitated by different forces that represent
resistivity. In a resistive MHD scheme, we employ an explicit resistivity, which resembles
the physical mechanism that produces diffusion in reality. The ultimate goal of the process,
to convert magnetic energy to particle energy, pervades - regardless of the process enabling
it. The benefit of resistive MHD is that we can control the magnitude and shape of the
diffusion. This enables us to study how the process behaves and resolves different scenarios.
We emphasize that, in this framework, we cannot study the details of the diffusion region.
Such an analysis requires a particle treatment. However, as it will be shown, we can achieve
realistic reconnection rates without considering the details of diffusion. Our novel approach,
therefore, allows us to determine how the overall system responds and reconfigures itself
based on varying diffusion properties.
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This thesis is organized as follows: in Chapter 2, the theoretical background concerning
the study is presented. Important concepts such as plasma or magnetic reconnection are
defined, and some processes and environments related to magnetic reconnection are intro-
duced. In this chapter, we also present the field equations and the kinetic theory in order
to derive the MHD equations. Next, we talk about some theoretical models of magnetic
reconnection, giving special attention to the Sweet-Parker model, which is explained in
detail. To end the chapter, the reconnection rate problem is discussed.

Chapter 3 gives a detailed explanation of the simulation used in the present study,
including the set-up and the integration method that our code uses to obtain solutions
to the MHD equations. We also present the scientific problem and how are we going to
approach the analysis.

In Chapter 4, we present our analysis and results. We begin the chapter by discussing
one of the runs in detail for the purpose of getting a general overview and understanding
of the simulation layout and evolution. Then we move on to the proper study, which is
split into two parts. In the first part, we study the impact of the resistivity’s magnitude
on the effectiveness of magnetic reconnection. In the second part, we study how the shape
of the resistivity affects the reconnection rate.

Chapter 5 discusses three different aspects of interest. These are: the scaling relations
in MHD, the grid resolution and the time resolution.

In Chapter 6, we summarize the work presented in the thesis and we present a collection
of the key findings of our study, and Chapter 7 contains some suggestions for future work.
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Chapter 2

Theory and Background

The main goal of this chapter is to give an introduction to magnetic reconnection and
MagnetoHydroDynamics (MHD), which will be necessary for understanding our analysis
and how we obtained our results. Sections 2.1 and 2.2 introduce some plasma environments
and regimes where magnetic reconnection can operate. Sections 2.3 and 2.4 describe the
concept of plasma and introduce the main equations that describe its behaviour, as well
as some approximations that lead us to the equations that we will be using: the resistive
magnetohydrodynamic equations. In section 2.5, the process of magnetic reconnection will
be described and some theoretical models will be presented in section 2.6, paying special
attention to the Sweet Parker model, which is the simplest way of describing magnetic
reconnection. Finally, we will talk about the magnetic reconnection rate problem, which
constitutes one of the main motivations for this thesis.

2.1 The Sun and the Solar Wind

The Sun is an ordinary magnetic star of average size in its middle age. In terms of number
of atoms, it consists of 91% hydrogen, 8.9% helium, and only 0.1% of it is formed by other
elements. These constituents are ionized because nuclear reactions and electrodynamic
interactions create temperatures that exceed the binding energies of the atoms.

The Sun’s atmosphere is divided into the photosphere, the chromosphere, and the
corona. The corona extends beyond the chromosphere and into interplanetary space, reach-
ing the most distant regions of our solar system. This expansion of the corona is called
solar wind and appears as a way for the Sun to maintain charge neutrality. It can be
explained in the following way: at the base of the corona, the temperature reaches about
1.000.000°K. At these temperatures, nearly 50% of the electrons have thermal velocities
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CHAPTER 2. THEORY AND BACKGROUND

that exceed the gravitational escape velocity of the Sun while less than 1% of the ions
do. This creates a large electric field that will accelerate the protons outward, causing the
expansion [Parks , 2004].

The solar wind is a supersonic and fully ionized plasma. Its electron-ion collision
frequency is around 10−5Hz, which means that only one collision or less will occur every
day. This is why it is considered a collisionless plasma. The solar wind streams away from
the sun with velocities of around 500-1500km/s and its electron density and temperature
near the Earth are generally around ne ≈ 5cm−3 and Te ≈ 105K [Parker , 1958a].

The Interplanetary Magnetic Field (IMF), also referred to as the Heliospheric Magnetic
Field (HMF), is a part of the Sun’s magnetic field that is carried into interplanetary space
by the solar wind in a radial outflow. The interplanetary magnetic field lines are said to
be frozen into the solar wind plasma, meaning that they are closely tied together. Because
of the 27-day solar rotation period, the IMF will not maintain the form it had in the solar
corona, but will bend into an Archimedean spiral form as shown in Figure 2.1. This is also
known as Parker spiral. The IMF value near the Earth’s orbit ranges from 1 to 20nT, with
an average magnitude of about 5nT and a velocity of around 400km/s [Parker , 1958b;
Baumjohann and Treumann, 2012].

Figure 2.1: Spiral form of an interplanetary field line due to solar rotation.

2.2 The Earth’s magnetosphere

According to the dynamo theory, a rotating, convecting and electrically conducting fluid
can maintain a magnetic field over astronomical time scales. The Earth rotates once on
its axis every 23 hours and 56 minutes, which makes it the most rapid rotator of the inner
planets. It has an average radius of 6371 km and its interior consists of a mantle, a liquid
core and a solid core. The energy released by the solidification of the core, through the
settling of solid particles to the center of the planet, and the heat released by the freezing
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2.2. THE EARTH’S MAGNETOSPHERE

process, are believed to be the principal sources of power for the dynamo, which allows our
planet to have a magnetic field [Russell , 1993].

The Earth’s magnetic field is basically a dipole, with its axis tilted with respect to the
rotation axis by around 11◦. This value is not constant but has been varying in magnitude
and spatial orientation. The Earth’s dipole points downward, and therefore the magnetic
field at the magnetopause is directed northward, as it can be seen in Figure 2.2.

As mentioned in Section 2.1, the solar wind also carries a magnetic field and streams
away from the Sun across the Earth’s orbit and further beyond at supersonic velocities.
That means that the solar wind ions flow at speeds much in excess of either their thermal
speed or any wave speed the plasma can support. The electrons, by contrast, are subsonic
because of their much higher thermal speed. The Earth’s dipole moment of about 7.8×1015

Tm3 is strong enough for its magnetic field to present an obstacle to the supersonic solar
wind flow. Here, the solar wind is decelerated and deflected by a collisionless shock wave
known as the bow shock. A bow shock forms as the supersonic solar wind encounters Earth’s
magnetosphere. The supersonic incoming flow cannot be deflected since information about
the presence of Earth’s magnetosphere cannot travel upstream until the flow has been made
subsonic by a shock transition. This collisionless shock acts to change the local plasma
properties allowing the incoming jet to deflect around the magnetosphere.

In its turn, the kinetic pressure of the solar wind distorts the shape of the terrestrial
dipolar field, which is compressed in the dayside and stretches out in the nightside into a
long magnetotail.

Figure 2.2: Illustration of the noon-midnight cross section of the magnetosphere [Russell ,
1972]

The bow shock, as illustrated in Figure 2.2, is formed in front of the dayside magne-
tosphere, and the region of shocked solar wind plasma surrounding the magnetosphere is
called the magnetosheath. The boundary of the magnetosphere is known as magnetopause
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and there is very little flow of mass or momentum across it, since the magnetosphere acts
as a shield from the direct influx of the solar wind. However, the shielding is not perfect
and this allows solar wind plasma to enter the magnetosphere. The process that allows
particles from the solar wind to enter the magnetosphere is known as magnetic reconnection
and will be explained in detail in Section 2.5.

The redistribution of the solar wind energy in the ionosphere-magnetosphere system can
lead to two different classes of geomagnetic activity, which are distinguished as geomagnetic
storms and substorms. A geomagnetic storm is a major disturbance of the Earth’s magnetic
field caused by the solar wind. The generation of geomagnetic storms requires relatively
specific conditions in the solar wind, which correlates with the level of solar activity. If
the IMF is strong and steadily southward for several hours, the energy content in the
magnetosphere increase significantly by loading of magnetic flux, and a geomagnetic storm
may occur as a result of reconnection releasing this newly added flux [Russell , 2000]. The
reconnection process in the magnetotail energizes the ring current and leads to energy
deposition in the ionosphere. Some geomagnetic storms are triggered by the arrival of
interplanetary shocks, which are characterized by large velocities and densities, leading to
increased ram pressure, P = nswv

2
sw. The arrival of the shocks generally coincides with

the onset of the first phase of the storm. The initial phase of the storm is followed by the
main phase, in which sustained southward interplanetary fields are present. During this
phase, charged particles in the near-Earth plasma sheet are energized and injected deeper
into the inner magnetosphere, and multiple intense substorms occur, with the attendant
auroral and geomagnetic effects. When the interplanetary field turns northward again, the
rate of plasma energization and inward transport slows and the various loss processes that
remove plasma from the ring current can begin to restore it to its pre-storm state. This is
known as the recovery phase.

Substorms, first described by Akasofu [1964], can be defined as: A magnetospheric
substorm is a transient process initiated on the nightside of the earth in which a significant
amount of energy derived from the solar wind-magnetosphere interaction is deposited in
the auroral ionosphere and in the magnetosphere [Rostoker et al., 1980]. Several substorms
can be observed during a geomagnetic storm, but they can also appear during rather quiet
periods where no significant storm is in progress [Gonzalez et al., 1994].

Substorms are also controlled by the interplanetary magnetic field, prevailing when it
points southward, and in the simplest case, they also appear to have three phases: a growth
phase in which energy is extracted from the solar wind and stored in the magnetotail, an
expansion phase in which energy is explosively released, and a recovery phase in which
the magnetosphere relaxes to a quiet state. However, weak auroral disturbances called
pseudobreakups can occur during the growth phase, or more than one expansion phase
may follow a single growth phase [McPherron, 1979].
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2.3. PLASMA PHYSICS

2.3 Plasma Physics

2.3.1 Concept of plasma

A plasma is a type of ionized gas which forms as electrons are knocked free from atoms.
The ionization process can be due to collisions with other atoms or molecules, or through
ionizing radiation - light. Since a plasma is made up of negatively and positively charged
particles that move around, both electric and magnetic fields will be generated inside a
plasma. We say that a plasma has collective behaviour because these fields affect the
motion of particles far away, meaning that motions inside a plasma do not only depend on
local conditions, but also on the state of the plasma in remote regions.

Plasmas are quasineutral gases, which means that they are neutral enough so that one
can take ne ≈ ni ≈ n, but not so neutral that all the interesting electromagnetic forces
vanish. Here, ne represents the electron density, ni the ion density and n is a common
density called plasma density. Any region inside a plasma subject to charge imbalance will
attract particles of the opposite charge until the charge is shielded away. This is known
as Debye shielding. The Debye length (λD) is a measure of the shielding distance. It is
defined as

λD ≡
ε0kBTe
ne2

, (2.1)

where ε0 is the vacuum permittivity, kB is the Boltzmann constant, Te is the electron
temperature, n is the plasma density, and e is the electron charge. Here, the electron
temperature is used, because electrons are typically the ones to do the shielding due to
their high mobility. The potential due to a point-like charge will be given by:

φ = φ0e
−r/λD , (2.2)

where φ0 is the potential of the perturbing charge and r is the distance from its center.
This means that the direct effect of the perturbing charge will be unimportant on scales
larger than the Debye length. The typical length scale of the plasma needs to be much
larger than the Debye length L� λD in order to be quasineutral. In addition, the number
of particles forming the plasma needs to be large enough to do the shielding. If ND is the
number of particles inside a sphere of radius λD, then ND ≫ 1 must be fulfilled.

The last condition that an ionized gas needs to fulfill in order to be a plasma is related
to collisions. If the collision frequency of the particles of a gas is too high, its motion will
be controlled by ordinary hydrodynamic forces rather than by electromagnetic forces. In
order for a gas to behave like a plasma we need τω > 1, where ω is the collision frequency
and τ is the mean time between collisions with neutral atoms [Chen and Torreblanca,
2006].
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CHAPTER 2. THEORY AND BACKGROUND

2.3.2 Field equations for single particles

The motion of charged particles is strongly influenced by the presence of the electromag-
netic fields, while at the same time it is also the source of the fields. In this section,
we will introduce the equations that describe this coupling between electric charges and
electromagnetic fields, which is considered fundamental for describing the behaviour of
plasma.

If a particle of charge q moves with velocity v in the presence of an electric field E
and a magnetic field B, then it will experience a force which will modify its trajectory. Its
equation of motion will then be given by:

m
dv

dt
= q(E + v ×B) (2.3)

where the first term on the right-hand side is the Coulomb force and the second term is the
Lorentz force. The combination of the terms inside the parenthesis represents the electric
field, E′ = E + v ×B, in the particle frame of reference.

In the presence of an externally imposed large scale magnetic field, for example the
Earth’s magnetic field or the IMF, and in the absence of externally imposed electric field,
the motion of a particle will perform circular motions, with its central axis aligned with the
magnetic field. The center of the circle is often referred to as the guiding center [Alfven,
1940]. Due to various combinations of electric and magnetic fields, the guiding center
may drift, resulting in bulk flows of the plasma. Common drifts are: the E × B drift,
which is due to the combination of electric and magnetic fields; the polarization drift,
due to temporal changes in the electric field; the gradient and curvature drifts, due to
gradients or curvature in the magnetic fields and the magnetization drift, due to the effects
of magnetized particles in a density gradient.

Maxwell’s equations

The electric and magnetic fields, though, are not independent of each other. This fact,
and also the relationship between the fields and the particles is described by Maxwell’s
equations :

Gauss’s law: ∇ · E = σ/ε0 (2.4)

Gauss’s law for magnetism: ∇ ·B = 0 (2.5)

Faraday’s law: ∇× E = −∂B
∂t

(2.6)

Ampère-Maxwell’s law: ∇×B = µ0j + ε0µ0
∂E

∂t
(2.7)
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2.3. PLASMA PHYSICS

where j is the current density, j = e(nivi − neve), σ is the charge density, σ = e(ni − ne),
and ε0 and µ0 are the vacuum permittivity and susceptibility, respectively. Here, vs is the
bulk velocity, and ns is the density of the plasma species s (typically electrons and a single
ion species).

Gauss’s law (eq. 2.4) states that the net flux of the electric field through any closed
surface is proportional to the charge enclosed by the surface. Gauss’s law for magnetism
(eq. 2.5) tells us that there are no sources or sinks for the magnetic field. This is the same
as stating that magnetic monopoles don’t exist, and the net outflow of a magnetic field
through any closed surface is zero.

From the last two equations, we can see that the electric and magnetic fields are inter-
dependent, coupled by their spatial and temporal variations. Faraday’s law (eq. 2.6)
describes how a time varying magnetic field induces an electric field, while Ampère’s law
with Maxwell’s addition (2.7) tells us that magnetic fields can be generated in two different
ways: by electric currents (original Ampère’s law) or by changing electric fields (Maxwell’s
addition, also called displacement current). The displacement current term (ε0µ0

∂E
∂t
) ap-

pears when there are fast oscillations in the electric field and will be neglected in our
description, since the time scales involved with it are too small to be of interest.

2.3.3 Kinetic Theory and Vlasov’s equation
When considering a plasma, we must take into account a large amount of particles, which
will induce some collective effects that will allow us to simplify the evolution. We can
obtain a complete microscopic description of a plasma by considering the motion of each
one of the particles, their charge and current densities, the electric and magnetic field they
generate and the effects of these microscopic fields on the particle motion (eqs. 6.2 to 6.9
in Baumjohann and Treumann [2012]).

By solving all these equations, we would get the exact (with some restrictions) mi-
croscopic solution of the behaviour of the plasma. However, this calculation is practically
infeasible, and we don’t require all the information that it would provide us. Consequently,
it’s useful to develop an averaging scheme to get an expression that describes the evolution
of the smoothed, averaged distribution function, f , in response to the smoothed, aver-
aged electric and magnetic fields in the plasma. This is the so-called Klimontovich-Dupree
equation [Klimontovich, 1969].

By assuming that space plasmas are collisionless and neglecting the correlations between
the fields, the mentioned expression can be simplified to the simplest possible form of kinetic
equation of a plasma, which is called Vlasov’s equation:

∂f

∂t
+ v · ∇xf +

q

m

(
E + v ×B

)
· ∇vf = 0 (2.8)

which describes the evolution of the distribution functions. It also implies that, in the
absence of collisions, the phase space density remains constant under the interaction of
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the particles with the ensemble averaged self-consistent fields in the Lorentz force as it is
convected with the particles. Consequently, instead of describing every particle as a single
entity, it is useful to describe the distribution of particles in position and velocity space
(together termed phase space) f(r),v. The phase space density, thus, describes how many
particles are present at the physical coordinate r with the velocity v.

The collective effect of the particle distribution described by f can be obtained by
taking the velocity moments of the distribution:

Number density: n =

∫ +∞

−∞
fd3v (2.9)

Bulk velocity: v =

∫ +∞

−∞
fvd3v (2.10)

Pressure: P =

∫ +∞

−∞
f(v − 〈v〉)2d3v. (2.11)

The derived macroscopic quantities no longer depends on velocity coordinates, but are
only a function of space and time.

2.4 Magnetohydrodynamics (MHD)

Equation 2.8 describes how distribution functions evolve, but we are interested in a dy-
namical theory in which the state of our system is described by macroscopic variables, such
as the ones found by taking the velocity moments of the probability distribution. Our goal
will be to develop a theory that describes the plasma as a single fluid, but we will first
introduce the Multi-Fluid Theory, which separates the different species in the plasma.

2.4.1 Multi-Fluid Theory

Integrating the Vlasov equation with respect to the velocity space, we can get the evolution
equations for the macroscopic quantities that were mentioned in the previous subsection
for each species in the plasma. While a plasma may consist of several ion species, the
near-Earth environments of our interest is usually dominated by H+ ions (protons). We
will therefore consider a two-fluid plasma, with one ion fluid and one electron fluid.

Taking the zeroth moment of the Vlasov equation, we find the continuity equation for
each component of the plasma (eq. 2.12). Its physical meaning is that the particle number
density, the charge and the mass are conserved during the motion of the fluid. Written
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in the conservational form it emphasizes that we neglect any possible sources, such as
ionization or recombination that could be important in some plasma regimes.

∂ns
∂t

+∇ · (nsvs) = 0 (2.12)

By taking the first moment, we get the equation of motion of each fluid component, or
the momentum density conservation equation. This equation tells us how the fluid velocity,
vs, evolves.

∂(nsvs)

∂t
+∇ · (nsvsvs) +

1

ms

∇ ·Ps −
qs
ms

ns(E + vs ×B) = 0 (2.13)

However, this equation introduces a new quantity, the pressure tensor Ps, whose evo-
lution we also need to know. Instead of taking a higher moment of the Vlasov equation,
which would give us an equation for the evolution of the pressure tensor, but introduce
another new quantity, we choose to close our set of equations by describing the pressure
with an equation of state which relates the pressure to changes in the density:

ps = ps0

(
ns
ns0

)γ
(2.14)

where γ can take different values depending on which approximation we are considering.
In a collisionless, ideal, isotropic plasma, the temperatures and densities of each species
can, to a good approximation, be considered to evolve adiabatically. γ will then take the
value γ = 5/3 and this is the approximation that we will make for this study. However,
under the isothermal approximation it would take a value of 1, or 0 for isobaric conditions.

2.4.2 Magnetohydrodynamic equations

The magnetohydrodynamic (MHD) model is a single fluid model of a fully ionized plasma,
in which the plasma is treated as a single hydrodynamic fluid acted upon by electric and
magnetic forces [Goldston and Rutherford , 1995].

Our derivation of the magnetohydrodynamic equations will be limited to the case of
a hydrogen plasma, which is composed of electrons (qs = −e, ms = me) and only one
ion species with charge +e and mass mi. Since electrons are much lighter than protons
(me/mi = 1/1836� 1), we will be able to simplify some expressions. We will also assume
quasineutrality, so that ne ≈ ni ≈ n.

By adding the continuity equations for ions and electrons (eq 2.12 with s = i, e), and
defining the mass density of the single fluid as ρ = nimi + neme ≈ nmi and the mass
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velocity as v = (nimivi + nemeve)/ρ we obtain the mass continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0. (2.15)

The continuity equation is the evolutionary equation of the mass density, expressing that
the temporal change in mass density inside of a volume is equal to the transport of mass
in or out of the volume.

By doing the same with the equations of motion (eq. 2.13 with s = i, e), we obtain the
single fluid equation of motion:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ ·P + j×B. (2.16)

The term in the left-hand side represents the net change of momentum density of a fluid
element. The term ∇ · P is the thermal pressure tensor, which is commonly assumed
to be isotropic. The term j × B is the Lorentz force of the combined species. The mo-
mentum equation does not depend on the electric field, since any separation between ions
and electrons would instantly be neutralized, so that the plasma remains, to a very good
approximation, quasi charge-neutral.

The equation of state for the single fluid can be written as:

d

dt

(
p

ργ

)
= 0, (2.17)

where γ = 5/3 is the adiabatic index, as explained above.

Finally, to quantify the difference in the ion and electron motion, we can subtract the
two species (2.13) from each other to obtain the Generalized Ohms Law :

E + v ×B = ηj +
1

ne
j×B− 1

ne
∇ ·Pe +

me

ne2
∂j

∂t
(2.18)

which is written in its full form for completeness.

Adding Maxwell’s equations (eqs 2.4 to 2.7) to this set of equations, we get what we
call the Governing MHD equations.

2.4.3 Resistive MHD

The Generalized Ohms Law (eq. 2.18) allows us to determine E by plasma dynamics; E
will assume the value it must have in order to prevent a differential acceleration of ions
and electrons that would separate charges too much [Vasyliunas , 2005].

The last term in equation 2.18 represents the electron inertia and can be safely ne-
glected, as the electrons, with a mass 1/1840 of the protons, respond much quicker com-
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pared to the overall dynamics of the system. ∇ · Pe is the electron pressure tensor, while
the term with j × B is called the Hall term and accounts for two-fluid effects [Vasyliu-
nas , 1975]. These two terms can also be neglected if the ion Larmor radius is very small
compared to the scale-length of the fluid motion, which will be our case. Employing these
approximations leads to what is called Resistive MHD, and Ohms Law, in this case, reduces
to:

E + v ×B = ηj (2.19)

in which the remaining term in the RHS, the resistive term, can be thought of as a term
that allows for the diffusion of plasma across the magnetic field. It is often referred to as
"Ohmic dissipation" since its form resembles diffusion caused by collisions between charged
particles. One can intuitively imagine that collisions can make a particle gyrating about a
field line diffuse (by collisions) to another field line. If we consider that the plasma has an
infinite conductivity, equation 2.19 reduces to

E + v ×B = 0, (2.20)

which is referred to as Ideal MHD, where no appreciable electric field will exist in the frame
of the plasma. The consequence of this will be that the plasma will be completely tied to
the magnetic field lines, not being able to move across different field lines. This is known
as the frozen-in condition [Alfvén, 1942]. This implies that the magnetic field has to move
with the plasma; i.e. the only change of B is by means of v. As we will show in the next
section, the diffusive terms (terms on the right-hand side of eq. 2.18) will be important
for enabling changes in the magnetic field topology, resulting in explosive energy transfer
from the magnetic field to the plasma through the process of magnetic reconnection.

2.5 Magnetic reconnection

In a highly conducting plasma (η → 0), we can consider Ideal MHD (eq. 2.20), which
implies that the large-scale magnetic fields are transported bodily with the bulk motion
of the plasma (frozen in condition). If the frozen-in approximation is not violated, any
IMF impinging on our magnetopause would deflect and flow around without mixing of
magnetospheric and solar wind plasma.

However, we do observe solar wind particles in the Earth’s magnetosphere, and the
process that allows this to happen is called Magnetic Reconnection or magnetic field line
merging.

Magnetic reconnection, first proposed by Giovanelli [1947] to explain solar activities,
can be defined as the process by which magnetic field lines of opposite polarity reconfigure
to a lower-energy state, with the release of magnetic energy to the surroundings in the form
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of plasma kinetic and thermal energy. The reconnection process occurs where the frozen-in
condition is violated, and an interconnection between the initially unlinked, antiparallel
components of the magnetic fields is possible. This is illustrated in Figure 2.3.

Figure 2.3: Evolution of magnetic field line merging. The dots represent two plasma el-
ements. Before reconnection is initiated, the two plasma elements label the same field
line. After magnetic reconnection is initiated, the two plasma elements are no longer la-
belling the same field line.

Magnetic reconnection is made possible by the existence of a diffusion region, where
ideal MHD is no longer valid. In fluid-based descriptions, most studies of magnetic recon-
nection are based on the resistive MHD equations, mentioned in Section 2.4.3, where a
resistivity will be responsible for the breakdown of the frozen-in condition [Cai and Lee,
1997; Gonzalez and Parker , 2016].

2.5.1 Magnetic reconnection in the magnetosphere

Dungey [1961] proposed a model to explain how magnetic reconnection between the in-
terplanetary and terrestrial magnetic fields could explain the magnetospheric dynamics.
Figure 2.4 shows the basics of this model, which is known as the Dungey cycle.

The Dungey cycle begins when a southward-directed interplanetary field line encounters
the magnetopause and reconnects with a closed terrestrial field line (lines marked with
number 1 in Figure 2.4). The merged field lines split into two open field lines (2) and are
transported tail-wards by the solar wind (3-6). At the nightside, the two open field line
halves meet again and reconnect (7), leaving a stretched closed field line connected to the
earth and a field line with both ends connected to the solar wind (8). The closed field line
will relax getting closer to the Earth and eventually going back to the dayside, completing
the cycle.

It is important to notice that we are conveniently talking about open and closed field
lines even though magnetic field lines have no ends. We will talk about a closed field line
when, if followed through space from the surface of the earth, it returns to the surface
of the earth within a finite path length. Otherwise, we will talk about open field lines
[Russell , 1972].
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Figure 2.4: Field line merging and reconnection at the magnetopause. Edited from
Baumjohann and Treumann [2012].

We also note that, contrary to our two-dimensional cartoons, the opposing magnetic
fields only rarely are exactly antiparallel. More commonly they have shears below 180 deg.
The component that does reverse from one side to the other is often referred to as the
reconnection component (this is what is depicted in Figure 2.3), while the component that
reduces the shear (which would be directed into or out of the plane in Figure 2.3) is called
the guide field.

We call the line along which reconnection occurs the X line or neutral line. The first
name is due to the topology resembling the X letter that the field lines adopt along this
line (see Figure 2.3). The second name is given because the reconnecting magnetic field
strength vanishes at the X line, turning the X line into a neutral line. In figures 2.3 and
2.4, this line would go into and out of the plane if we were in a 3D system. In a 2D system,
the X line can be called X point instead.

2.5.2 The magnetic reconnection process

As we mentioned in the previous subsection, in the magnetosphere we can distinguish three
classes of field lines: open field lines, closed field lines and interplanetary field lines. The
regions of space traversed by the different classes of field lines are bounded by a surface
made up of field lines called the separatrix. The separatrix has two branches that will
intersect along the X-line as it is shown in Figure 2.5.

Whenever there is an increase or decrease in the amount of magnetic flux connecting
from the Earth to the interplanetary magnetic field, a magnetic flux transport across the
separatrix will be required. This will imply a flow of plasma across the separatrix and,
thus, the breaking of the frozen-in condition. This is often used as a definition for magnetic
reconnection [Vasyliunas , 1975]. The magnitude of the plasma flow will be a measure of
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the merging rate.

For a given magnetic field configuration, the rate at which magnetic energy is being
converted into other forms is given by the rate at which the magnetic flux is being trans-
ported across the separatrix, and is proportional to the plasma flow. This means that the
merging rate is also a measure of the energy conversion rate.

The coupling between the flow of plasma and the transport of magnetic flux arises from
the equation for the electric field, E, which corresponds to equation 2.20 for most regions in
space plasmas. This equation implies that, in steady-state, any plasma flow perpendicular
to a magnetic field is associated with an electric field, and the same goes for a flow across
the separatrix. Thus, if there exists an electric field at the separatrix, this means that
magnetic reconnection is occurring.

Figure 2.5: Illustration of the magnetic field lines around the X point as black solid lines,
the separatrix as blue lines and the diffusion region as the pink region. The arrows indi-
cate the inflow (orange) and outflow (blue).

However, at the neutral line, the term v×B vanishes, and ideal Ohm’s law is no longer
appropriate. In this region around the X line, we will have to use equation 2.19, and it
will be the term ηj that will contribute to the electric field. The region around the X
line, where v×B is very small compared to E and where the term ηj dominates, is called
the diffusion region or the resistive region. In Figure 2.5, the diffusion region has been
illustrated as a pink rectangle.

Using Faraday’s law (equation 2.6), it can be proven that Ey inside the diffusion region
is the same as Ey outside the diffusion region, where eq. 2.20 applies. Since Ey outside
the diffusion region is related to the plasma flow across the separatrix, this means that the
electric field along the X-line is also a measure of the reconnection rate [Vasyliunas , 1975].

The reconnection rate is also conventionally measured by the dimensionless ratio (Alfvén
Mach number)

MA ≡
v0
vA0

(2.21)
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where v0 is the magnitude of the plasma flow speed towards the diffusion region, but far
away from it, and vA0 ≡ B0/(4πρ)1/2 is the Alfvén speed in the inflow region.

During the merging process, plasma flows into the field reversal region from both sides.
This plasma flow is usually called inflow, and the region in which the plasma flows towards
the reconnection point is called inflow region. Since plasma cannot accumulate there
indefinitely, it must somehow flow out of the region as well (outflow). We will assume that
the outflow is perpendicular to the neutral line and to the inflow, as shown in Figure 2.5.
The outflow region will contain the plasma moving away from the X point.

2.5.3 Magnetic Lundquist number

Inserting the electric field given by the resistive Ohm’s law, E = −v × B + ηj, inside
Faraday’s Law (eq. 2.6) in its dimensionless form, we obtain the induction equation:

∂B

∂t
= ∇× (v ×B)− η∇2B (2.22)

where we have used that j = ∇ × B and considered a uniform resistivity. The first term
on the right side of this equation represents the convection of the magnetic field by the
plasma flow, and the second represents the diffusion of the field due to a finite resistivity.
The Lundquist number, S, tells us about the relation between the timescales of these two
processes: τc for the convection and τd for diffusion.

By doing a scaling analysis of these two terms we can write that

B

τc
∼ vAB

λ
;

B

τd
∼ ηB

λ2

where λ represents the length scale of the region where we calculate the Lundquist number.
The Lundquist number is defined as S ≡ τd

τc
, so we can write it as:

S =
λvA
η

(2.23)

High Lundquist numbers indicate highly conducting plasmas, while low Lundquist numbers
indicate more resistive plasmas. Laboratory plasma experiments typically have Lundquist
numbers between 102 − 108 [Ji and Daughton, 2011], while in space, Lundquist numbers
can be greater than 1020. In the solar corona, for example, S ≈ 1012 − 1014 [Huang and
Bhattacharjee, 2013].
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2.6 Theoretical models of magnetic reconnection

Several models based on a hydromagnetic approach have been developed since Giovanelli
[1947] proposed the concept of magnetic reconnection. In this section, we will discuss some
common aspects of this approach before introducing the model proposed by Sweet [1958]
and developed further by Parker [1957b, 1963]. Their model neglected entirely the mag-
netic field in the outflow, and the reconnection rate obtained by it is orders of magnitude
smaller than observed. Petschek [1964] argued that the neglect of the downstream mag-
netic field is not justified, except in a small part of the system, and he presented another
model that accounted for high enough reconnection rates. Different models have also been
presented by Sonnerup [1970] and Yeh and Axford [1970], but they will not be discussed
in this thesis.

Let d be the half-width and L the half-length of the box enclosing the diffusion region,
and let v1 and v2 be the inflow and outflow velocities near the box, respectively (see Figure
2.6). Applying the conservation of mass (equation 2.15) in steady-state (∂ρ/∂t = 0), we
find that the relation between the inflow and outflow velocities is given by

v1L = v2d (2.24)

Figure 2.6: Illustration of the diffusion region together with the different parameters.
Subscripts 0, 1 and 2 mean far from the diffusion region, inflow region and outflow region
respectively.

As it has been pointed out before, for strictly anti-parallel reconnection, the magnetic
field in the neutral line is zero, but its curl is not. This means that a jy will arise inside
the diffusion region (see equation 2.7) as a consequence of Amperes law:

jNL =
B1

µ0d
(2.25)
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This current density will be the main contributor to the electric field inside the diffusion
region, which will have to be the same as the electric field outside. From the resistive Ohm’s
Law (2.19) we get:

E0 = −v1B1 = v2B2 = ηjNL. (2.26)

Thus, outside the diffusion region, the electric field is determined by the bulk velocity, but
inside the diffusion region, where both the flow velocity and the magnetic field go towards
zero, the resistive component dominates.

2.6.1 Sweet-Parker Theory

The Sweet-Parker model description is the simplest way of describing magnetic recon-
nection. As it has been pointed out before, magnetic reconnection is a process in which
magnetic energy is converted into mechanical energy. In this model, it is considered that
the kinetic energy in the inflow region, and the magnetic energy in the outflow region, are
negligible. Moreover, it is assumed that all the magnetic energy is converted into kinetic
energy, and thermal energy is not considered.

Sweet-Parker theory from a momentum perspective

Let us examine the force balance between the inflow region and the X line by examin-
ing the z-component of eq. 2.16 and Ampère-Maxwell’s equation (eq. 2.7) without the
displacement current (j = 1

µ0
∇×B):

j×B−∇p =
1

µ0

B · ∇B−∇ B2

2µ0

−∇p = ρv · ∇v ≈ 0 (2.27)

This force balance is approximately simply a balance between the inward-directed magnetic
pressure, and the outward-directed plasma pressure at the center:

∂

∂z

(
B2

2µ0

+ p

)
= 0 ⇒ B2

1

2µ0

= pNL (2.28)

where pNL is the pressure at the neutral line. On the other hand, in the outflow region,
the magnetic field is considered weak enough to be neglected, which means that

ρv · ∇v = j×B−∇p ≈ −∇p

and
ρ2v

2
2

2
= pNL (2.29)
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If we assume that the density is the same everywhere outside the diffusion region (ρ0 =
ρ1 = ρ2 = ρ) and putting equations 2.28 and 2.29 together we get that

ρv22
2

=
B2

1

2µ0

In terms of energy, this expression means that all the magnetic energy is converted into
kinetic energy, leaving out the thermal energy as it was mentioned before. This expression
leads us to the following expression for the outflow speed:

v2 =
B1√
µ0ρ
≡ vA1 (2.30)

Thus, the outflow velocity is equal to the Alfvén speed in the inflow region and does not
depend on the size or shape of the diffusion region. This result implies that the velocity
at which the magnetic field lines are being processed is limited by the Alfvén speed.

Let us see what happens to the inflow speed next. Putting together equations 2.26,
2.25 and 2.30, and using eq. 2.24, we get:

v1 = −η 1

µ0d
=

η

µ0

v2
v1L

=
η

µ0

vA1
v1L

⇒ v21
v2A1

=
η

µ0vA1L
,

which can be written in terms of the inflow Lundquist number or the inflow Mach number
as: ∣∣∣∣ v1vA1

∣∣∣∣ =
1√
S1

= M1

This can be related to the properties far upstream (labelled with 0 in Figure 2.6) by
v1B1 = v0B0, leading us to the following expression:

v0 = −vA1
d

L

B1

B0

(2.31)

However, the Sweet-Parker model assumes that the diffusion region is thin and extended,
so that L ≈ Λ, where Λ is a characteristic MHD scale length. This condition gives a largely
homogenous external region, so that we can consider B1 ≈ B0. v0 will then also have the
same value as v1.

For a finite-sized diffusion region, though, the effective inflow (v1) would not be equal
to the ambient conditions (v0). The shape of the diffusion region controls how the field is
deformed as it expands towards the diffusion region. More on this will be discussed in the
results.

In the case that we are discussing, we can safely assume v0 = v1, so that the reconnection
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rate becomes
MA0 =

1√
S0

∼ √η (2.32)

This result, for space plasmas, gives a value that is too small compared to the real recon-
nection rate. The main factors that keep the reconnection rate so low in this model are the
aspect ratio of the diffusion region and the magnitude of η or the mechanism that generates
it. If we consider that the aspect ratio is around d

L
∼ 0.1, then we obtain a reconnection

rate of around 0.1 which is of the order of what we observe.

Sweet-Parker theory from an energy perspective

As mentioned, the Sweet-Parker scaling derived from an energy perspective emphasizes that
all the magnetic energy is converted into bulk energy. The Poynting theorem describes how
magnetic energy is converted into mechanical energy:

∂

∂t

B2

2µ0

+∇ · S = −E · j. (2.33)

The first term represents the energy stored in the magnetic field and the second term
represents electromagnetic energy flow and is contained in the Poynting vector S ≡ E×B

µ0
.

The term on the right-hand side represents the rate per unit volume of electromagnetic
energy conversion. If the quantity E · j is positive, it means that electromagnetic energy is
being converted to mechanical energy, and the other way round if it is negative.

The mechanical energy includes both the energy of kinetic bulk flow and thermal mo-
tions. Its conservation equation is given by:

∂

∂t

(
ρv2

2
+

p

γ − 1

)
+∇ ·

[(ρv2
2

+
γ

γ − 1
p
)
v

]
= E · j (2.34)

where for an adiabatic approximation, γ = 5/3 would be used (see eq. 2.17). By assuming
ideal MHD, E = −v×B, our Poynting vector becomes S = B2

µ0
v− v·B

µ0
B. Then, combining

equations 2.33 and 2.34, we obtain the following expression:

∂ε

∂t
= −∇ ·

[(
ε+ p+

B2

2µ0

)
v − v ·B

µ0

B

]
(2.35)

for the evolution of the total energy, ε = ρv2

2
+ p

γ−1 + B2

2µ0
, [Birn and Hesse, 2005].

Let’s consider a stationary case, so that the time derivative in the left-hand side of
equation 2.35 is 0, and apply the divergence theorem, so that we obtain the following:∮

S

[(
ε+ p+

B2

2µ0

)
v − v ·B

µ0

B

]
· ŝdS = 0 (2.36)

where S is the surface of our diffusion region, of length 2L and height 2d, and ŝ points out
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of the box as it can be seen in Figure 2.7.

Figure 2.7: Illustration of the diffusion region as a surface to be integrated

By assuming that the thermal pressure, p, doesn’t play any role in the energy conversion
process, we can evaluate the integral in our box. The inflow is dominated by the magnetic
field and the outflow by kinetic energy. With these assumptions eq. 2.36 reduces to:

L

(
B2

1

2µ0

v1

)
= d

(
ρv22
2
v2

)
(2.37)

Which can be simplified by applying the relation from equation 2.24 to:

B2
1

2µ0

=
ρv22
2

This leads us to the same expression written in 2.30:

v2 =
B1√
µ0ρ

= vA1

The derivation based on energy conservation emphasizes that the original derivation only
considered magnetic energy to kinetic bulk acceleration. It assumes a quasi-steady state,
incompressible flow (eq. 2.24), and that the thermal enthalpy does not play any role in
the energy conversion.

2.7 The reconnection rate problem

Observations and numerical simulations in a wide variety of settings suggest that the
global rate of magnetic reconnection is approximately 0.1 in normalized units [Comisso
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and Bhattacharjee, 2016; Cassak et al., 2017]. This has been known for many years, but
it has been extremely challenging to develop a theoretical understanding of why it is like
this.

Knowing what controls the reconnection rate in various settings is crucial for many
applications. For instance, a key aspect of space weather lies in the efficiency of solar wind-
magnetospheric coupling and the rate at which the global convection pattern occurs, which
is directly related to the reconnection rate of the Earth’s dayside magnetopause. Also, this
understanding is very important in magnetically confined fusion devices or for identifying
reconnection and studying its effects in places where directly measuring magnetic fields is
not possible, such as in astrophysical settings.

Observational evidence for the 0.1 reconnection rate can be obtained using plasma pa-
rameters observed at macroscopic scales. Let us consider two regions of magnetic field
coming together and reconnecting, as shown in Figure 2.8, and let the time over which
significant energy release via reconnection occurs be ∆t. Suppose the reconnecting mag-

Figure 2.8: Sketch of two reconnecting flux ropes in red, with reconnecting magnetic
field lines in white. The flux rope radius R and out-of-plane extent Lext are shown. The
dissipation region of thickness δ and length L is in blue. The white surface of area A
denotes the location of the magnetic field that reconnects in a time ∆t [Cassak et al.,
2017].

netic field has a characteristic strength B, threading a region of characteristic radius R
and out-of-plane extent Lext, each assumed uniform for simplicity. Then, the magnetic
flux processed per unit time by reconnection is BA/∆t, where A ∼ RLext. From Faraday’s
law, this must be associated with an electric field extending over a distance Lext out of the
reconnection plane. This will be the reconnection electric field. In SI units, the relation is

E ∼ BA

Lext∆t
∼ BR

∆t
, (2.38)
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which can be normalized by the reconnecting magnetic field B and the Alfvén speed cA,
and presented as a dimensionless quantity, E ′:

E ′ =
E

BcA
∼ R

cA∆t
. (2.39)

Using this expressions and taking the needed plasma parameters, we can infer the recon-
nection rate in several different processes. Some of the values that have been obtained
are E ′ ' 0.053 for geomagnetic substorms, E ′ = 0.075 for solar flares or E ′ ' 0.21 in
magnetically confined fusion devices [Cassak et al., 2017].

Regarding the numerical and theoretical efforts, studies on this problem have typically
been performed using simplified systems like the one sketched in Figure 2.5. One of the
first inputs on this matter is the Sweet-Parker theory, where Parker [1957b] showed that
the reconnection rate scales as

E ∼ d

L
voutB (2.40)

where d and L are the thickness and length of the diffusion region respectively (see Fig-
ure 2.6) and vout is the outflow speed, which scales like the Alfvén speed cA. The local
reconnection rate, normalized to B and cA is

E ′ ∼ d

L
(2.41)

which is proportional to 1/
√
S when the mechanism allowing the magnetic topology to

change is a uniform resistivity. As it has been explained before, this prediction is too
slow to account for the rates observed in solar flares and other phenomena [Parker , 1963],
and the failure of this theory lies in the fact that the exhaust region closes down into an
elongated region. Since the outflow is constrained to leave at the Alfvén speed, conservation
of mass requires the inflow speed to be small.

The Petschek [1964] model uses a more localized diffusion region and manages to provide
a more open exhaust region than the Sweet-Parker model, which leads to reconnection rates
closer to the observed values. Even though many aspects of this model are believed to be
essentially correct, the model was found out to not be self-consistent in the MHD model
with a uniform resistivity [Biskamp, 1986]. However, some progress was made when it
was realized that a fluid model with a localized resistivity could produce a Petschek-like
reconnection with the associated high rates [Ugai and Tsuda, 1977]. If there is a region
of higher diffusion near the X point, the magnetic field lines bend in, which gives an open
outflow exhaust [Kulsrud , 2001]. But it is not clear what could physically be the origin for
the existence of a localized resistivity.

Later, other numerical studies focused on steady-state collisionless reconnection found
that the local reconnection rate was approximately 0.1, independent of the electron-to-
ion mass ratio and the ratio of system size to ion inertia length [Shay et al., 1999]. The
Geospace Environment Modeling (GEM) Challenge study carried on to compare simula-
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tions with different models, and found that all models with the Hall term (second term in
the right-hand side of equation 2.18) had rates comparable to 0.1 [Birn et al., 2001].

Since then, other systems have also been found to have a similar reconnection rate of
approximately 0.1, even without the Hall term or a localized resistivity. This leads us
to what is called the reconnection rate problem: what is the mechanism that causes the
reconnection rate to be such? Is it a coincidence that so many different studies containing
different mechanisms give rise to the same rate or is there something more fundamental
causing the reconnection rate to be approximately 0.1?

NASA’s Magnetospheric Multiscale (MMS) mission was launched on March 12, 2015,
in order to study magnetic reconnection [Burch and Torbert , 2016; Burch et al., 2016].
It consists of four spacecraft which travel directly through areas near Earth known to be
magnetic reconnection sites. The spacecraft fly in an adjustable pyramid formation that
enables them to measure magnetic field lines, charged particles and, thus, the structure of
magnetic reconnection, in three dimensions. One of the main outstanding questions that
MMS plans to answer is what determines the rate at which reconnection occurs, which
means that, in synergy with modelling, the MMS mission might help us understand the
inner workings of this fundamental question.
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Chapter 3

The scientific problem and approach

Magnetic reconnection plays an important role in the dynamics of the magnetosphere.
It allows particles and energy from the solar wind to enter the magnetosphere and the
magnetospheric topology to change depending on the direction of the IMF. In a resistive
magnetohydrodynamic description, it is the dissipation region that controls the rate of
reconnection [Birn et al., 2001].

The purpose of this thesis is to study how fast can the reconnection rate go in a
fluid-based simulation setup with varying levels and shapes of resistivity. Our tool of
investigation is a 2.5D (two spatial dimensions [x and z] and three velocity and field
dimensions [x, y and z]) resistive MHD simulation, invariant in the y direction, which will be
used to obtain solutions to the magnetohydrodynamic equations presented in the previous
chapter. The variation of the reconnection rate as well as some other output variables will
be analyzed while changing the value of two different parameters: the magnitude and the
shape of the resistivity.

In this chapter, we will present the main goal of this thesis and describe the method
that has been used to study it, as well as the steps made to obtain the results.

3.1 Approach to the problem

Magnetic reconnection in two dimensions in a simple Harris sheet equilibrium has been
previously investigated using different simulation models, including MHD, Hall MHD, hy-
brid (electrons are treated as fluid and ions as particles), and full particle (particle-in-cell
ions and electrons) [Birn et al., 2001].

In this thesis we intend to study how the reconnection rate responds to modifications
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of the magnitude and shape of a localized resistive region. For the goal of this study it is
sufficient and more practical to use a resistive MHD simulation.

3.1.1 Simulation set up

The code, written in Fortran, solves the time dependent resistive MHD equations using an
explicit finite-difference method. More on this has previously been described in detail by
Birn and Hones Jr. [1981], but an overview of the numerical procedure will be presented
in the following section.

The whole simulation takes place in a domain large enough so that any boundary
effects will not intervene with the reconnection process. This corresponds to a box of
400 × 200, with x going from 0 to 400 and z from -100 to 100. For most of the runs,
these dimensions correspond to a resolution of 3200× 1600 cells. The boundary conditions
consist of solid and ideally conducting walls at the top and bottom of the box, while the left
and right walls have been defined with periodic conditions. To visualize the characteristics
of these boundaries let’s imagine a plasma element moving towards the left wall. For
periodic boundaries, a plasma element crossing the left boundary reappears on the right side
boundary with the same properties. Such boundary conditions means that the properties
across the boundaries are periodic, and the simulation domain can be visualized as a torus.
For the top and bottom boundaries, any plasma element with an outbound velocity will
be reflected. In such a simulation setup, no mass, momentum or energy is lost through the
boundaries.

The code runs on the Alfven timescale, where t = L/vA. L is the characteristic length,
which corresponds to the distance an Alfvén wave can travel in a time unit. The compu-
tation is done every timestep dt = 0.0125.

The total resistivity, η, consists of a background resistivity (η0) plus an exponential
function in the center of the box. It is given by

η/ω = η0 + η1e
−
[(

x−x0
Lx

)2
+
(

z−z0
Lz

)2]
, (3.1)

where η1 determines the peak magnitude of the resistivity. z0 = 0 and x0 = xmax/2
determine the location of the resistive region, and Lx and Lz determine the shape of the
resistive spot. If they both have the same value, the resistivity will have a circular shape,
and it will turn to an ellipse in the x or z direction if one is larger than the other. The
parameter ω is used as a scaling factor for the resistivity and will remain invariant during
the whole study.

Figure 3.1b shows the profile of the resistive spot as a function of x, with the values
written in table 3.1.

Apart from the resistivity, which is time independent, some initial configurations for
the magnetic field, pressure, current density and mass density will be imposed. These will
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(a) η(x, z) (b) η(x)

Figure 3.1: To the left, magnitude of the resistive spot given by equation 3.1 as a func-
tion of x and z. To the right, profile of the magnitude of the resisitive spot as a function
of x. Both with the values written in table 3.1

ω η0 η1 x0 z0 Lx Lz
0.3 0.005 8 xmax/2 0 5 1

Table 3.1: Values taken for the resistivity corresponding to equation 3.1.

follow a simple Harris sheet equilibrium, which will be explained in more detail in Section
3.2.

3.1.2 Scientific approach

The goal of this thesis is to determine how fast can the reconnection rate go, by modifying
the finite resistivity that has been described in the previous subsection. In order to do so,
we approach the problem from two different perspectives.

First, we study the impact of changing the magnitude of the resistivity. This means
giving different values to the parameter η1 defined in the equation 3.1. 16 different values
are taken inside the range 0.01-8 to perform this study.

The second approach to the problem is to change the aspect ratio of the resistive spot.
As it can be seen from the expression 3.1, it is the parameters Lx and Lz that should be
modified in order to achieve what we want. Lz is kept constant with a value Lz = 1 and
16 different values of Lx are studied within the range 0.5-40.

Figure 3.2 shows the values of η1 and Lx for all the runs made. The study in which
we change the value of the magnitude of the resistivity is represented in color orange. The
aspect ratio taken for this study is equal to 5 (Lx = 5 and Lz = 1). The blue stars represent
the study in which the aspect ratio is being modified, and the value of η1 for this study is
taken at 8.
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Figure 3.2: Distribution of the runs as a function of the aspect ratio (Lx/Lz) and mag-
nitude (η1) of their resistive spot. In orange, the runs corresponding to the first study, in
which the magnitude is changed. In blue, the runs corresponding to the second study, in
which the aspect ratio is varied. In magenta, the runs in which the size of the resistive
spot is changed keeping a constant Lundquist number.

The three runs marked in color magenta in Figure 3.2 are discussed in Chapter 5. They
are taken with a constant Lundquist number but changing the size of the resistive spot.
Thus, the aspect ratio is kept the same and the value of η is varied with the value of λ (or
Lz in our case) so that S is kept constant (see equation 2.23).

3.2 Overview of the numerical procedure

In this section we will describe the initial conditions of our simulation, and we will explain
the integration method that is used in order to obtain solutions to the equations.

Some additional literature on the numerical approach of resistive MHD models can be
found in Schindler [1972]; Birn et al. [1975]; Birn [1980].
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3.2.1 Initial conditions
As we mentioned before, the initial magnetic field configuration is a two-dimensional Harris-
type equilibrium [Birn et al., 1996]. Its components are given by

Bx = tanh(z) (3.2)

By = Bz = 0 (3.3)

This initial magnetic field has only x-component, which is positive above the X-line and
negative below it. It can be visualized like the case t < 0 in Figure 2.3. Note that the
magnitude of the magnetic field, as well as the length unit are normalized to 1. Normalized
quantities are being used in the whole code since MHD allows us to work in adimensional
quantities.

Since j = ∇×B, the initial current density and, thus, the particle density must be of
the form

jy =
1

cosh2(z)
(3.4)

ρ =
1

cosh2(z)
+ ρlobe (3.5)

Figure 3.3 shows the current density before any reconnection is happening. It follows
the dependence with z written in equation 3.4.

Figure 3.3: Current density and magnetic field lines at t=0.

The plasma pressure is given by p = ρT , where T is the sum of the electrons and ions
temperature, T = Ti + Te, and it’s taken equal to 0.5. Then we are left with

p =
1

2

1

cosh2(z)
+ plobe (3.6)

where plobe = Tρlobe is the pressure in the lobes. Assuming force balance, the plasma
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pressure together with the magnetic pressure, pB, must stay constant (see equation 2.27),
so that ∇(p+B2/2) = 0. It can be seen how the dependence on z vanishes by calculating
the magnetic pressure:

pB =
B2
x

2
=

1

2
tanh2(z) =

1

2

(
1− 1

cosh2(z)

)

3.2.2 Integration method

As mentioned, our code uses an explicit finite difference scheme to solve the resistive MHD
equations. In this section, we present the equations in the form that the code uses them,
and we will show how they are solved inside the program.

The magnetohydrodynamic (MHD) equations have been presented in Section 2.4. They
consist of equations 2.15 to 2.18, which correspond to the mass continuity equation, the
equation of motion, Ohm’s law and the equation of state, which are coupled to Maxwell’s
equations (equations 2.7 to 2.4). In this section, we will write all the needed equations
in their conservational form, in order to perform spatial discretization in the integration
scheme.

The first equation that we need is the one for the conservation of mass, which is equation
2.15, already written in the conservational form. We rewrite it here:

∂ρ

∂t
+∇ · (ρv) = 0 (2.15)

ρ is the mass density.

The next equation that we will need is the momentum conservation equation, which is
equivalent to equation 2.16. Written in the conservational form it looks like the following
expression:

∂

∂t
(ρv) = ∇ · (ρvv)−∇ ·P + j×B (3.7)

This equation can be simplified a lot by defining two quantities. First, lets define the
momentum flux density tensor of the bulk velocities as S ≡ ρvv. The last term can also
be written as the divergence of a tensor. To do so, we need to replace the current density
using Ampères law, j = ∇×B, so that the last term in equation 3.7 is just (∇×B)×B.
By doing some algebra, we are able to write this quantity as the divergence of a tensor
defined as following:

Mij ≡
1

µ0

BiBj −
1

2µ0

B2δij (3.8)

This is the so called Maxwell Stress Tensor.
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3.2. OVERVIEW OF THE NUMERICAL PROCEDURE

Equation 3.7 can then be written as:

∂

∂t
(ρv)−∇ ·

(
S−P + M

)
= 0 (3.9)

which now has the same form as equation 2.15.

Our study is based on resistive MHD, which means that the third equation that we will
use will not be the Generalized Ohm’s Law (eq. 2.18), but equation 2.19. However, we
also want it in a conservational form, so we will need to combine it with Faraday’s Law.
Thus, inserting equation 2.19 into 2.6 we obtain the time variation of the magnetic field:

∂B

∂t
= −∇× E = ∇× (v ×B− ηj)

This equation is known as the Induction equation:

∂B

∂t
= ∇× (v ×B)− η∇× j−∇η × j. (3.10)

where the second term in the RHS can also be written as η∇2B using Ampères law.

The only equation that we are missing is the equation of state (eq. 2.17), which tells
us that the pressure evolves in a similar way as the density. Combining the equation of
state (remember that the total derivative is defined as d

dt
= ∂

∂t
+ v · ∇) with the mass

conservation equation (eq. 2.15), we obtain the following expression:

∂p

∂t
+ v · ∇p+ γp∇ · v = 0 (3.11)

which describes the ideal evolution of the pressure, without considering sources or sinks.
However, there is a contribution of a dissipation term in the evolution of the thermal energy
that we need to account for. The conservation law for the thermal energy is written as:

∂

∂t

p

γ − 1
+∇ ·

[( γ

γ − 1
p
)
v

]
+ v · ∇p = j · E′ (3.12)

where j ·E′ is the dissipation term which accounts for all the non-ideal terms in the Ohm’s
law. In resistive MHD simulations like ours, the dissipation term is represented by Ohmic
heating, ηj2. This fact is easy to see, since the only non ideal term in the Ohms law is
the resistive term, so that E′ = ηj. Rewriting equation 3.12 in the same form as 3.11 we
obtain:

∂p

∂t
+ v · ∇p+ γp∇ · v = (γ − 1)ηj2 (3.13)

In order to get an equation in a conservational form, the code introduces a new quantity,
u, as:

u = p1/γ (3.14)
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which can be thought of as the internal energy. Applying this change of variable to the
expression written in 3.13, we get the expression that is solved in the code:

∂u

∂t
= −∇ · (uv) +

γ − 1

γ
u1−γηj2

Let’s gather all the equations that the code will be solving:

1○
∂ρ

∂t
= −∇ · (ρv) (3.15)

2○
∂

∂t
(ρv) = ∇ ·

(
S−P + M

)
(3.16)

3○
∂B

∂t
= ∇× (v ×B) + η∇2B−∇η × j (3.17)

4○
∂u

∂t
= −∇ · (uv) +

γ − 1

γ
u1−γηj2 (3.18)

In order to solve these equations, the code uses an explicit finite difference method.
This means that we will use the present values of the variables on the right hand side to
find the future values of the variables on the left hand side of equations 3.15 to 3.18. Let’s
try to explain this using equation 1○ as an example.

Let us define
sni (x, z) ≡ ρn(x, z)vni (x, z) ; i = x, y, z (3.19)

to simplify things. Note that n represents the current timestep and (x, z) represents the
current location in the grid. Equation 3.15 in the method that we are using will then be
written as:

ρn+1(x, z)− ρn(x, z)

∆t
= −s

n+1/2
x (x+ 1, z)− sn+1/2

x (x− 1, z)

2∆x

− s
n+1/2
z (x, z + 1)− sn+1/2

z (x, z − 1)

2∆z
(3.20)

Which means that to find the future value (n + 1) of the mass density at the location
(x, z) we will have to compute the following:

ρn+1(x, z) = ρn(x, z)−∆t

[
s
n+1/2
x (x+ 1, z)− sn+1/2

x (x− 1, z)

2∆x

+
s
n+1/2
z (x, z + 1)− sn+1/2

z (x, z − 1)

2∆z

]
(3.21)
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and loop around the whole grid in order to get the value of ρ in the entire the simulation
domain. Note that, to find the future value of ρ, we are using the values of sx and sz at an
intermediate time n+ 1/2, which is between n and n+ 1. The code resolves every timestep
using two integration steps (or iterations). The first step pushes the variables from n−1/2
to n+ 1/2 using the values at n, and the second step uses the value of n+ 1/2 to push the
variables from n to n + 1. In Figure 3.4 we have illustrated this leapfrog-method, where
the left panel represents the current timestep, together with the values at n+ 1/2, and the
right panel represents the future timestep.

Figure 3.4: Illustration of the explicit finite difference method. The grid to the right rep-
resents the future value, extrapolated from all the present values in the left grid using
the relation 3.21.

The code solves the equations in the order in which we have written them in 1○ to 4○.
First, it pushes the value of ρ forward using the current value of ρv as we just explained.
Then, with equation 3.16, it finds the future value of ρv using the present values of B, ρvv
and P . This step is split into two parts. First, it adds the contribution of the pressure and
the second half of the Maxwell stress tensor as written in 3.8 to the future quantity, and
then it proceeds to add the contribution of the bulk velocities tensor and the second half
of the Maxwell stress tensor (see expression 3.25).

Next, it calculates the new value of B with the current values of v×B, B and J using
the relation written in 3.17, and finally, using equation 3.18, it updates the value of the
pressure. After all these steps, the future velocities are easily set by using the value of ρv
found with 3.16 and dividing by the value of ρ found in 3.15 as following:

vn+1
i (x, z) =

sn+1
i (x, z)

ρn+1(x, z)
; i = x, y, z. (3.22)

Regarding the current density, j, there is not an actual "push" of this quantity. It is
calculated from B by Ampères law (j = ∇×B) every time that it is used. The components

37



CHAPTER 3. THE SCIENTIFIC PROBLEM AND APPROACH

are computed as written in equation 3.23.

jnx =−
Bn
y (x, z − 1)−Bn

y (x, z + 1)

2∆z

jny =
Bn
x (x, z − 1)−Bn

x (x, z + 1)

2∆z
− Bn

z (x− 1, z)−Bn
z (x+ 1, z)

2∆x

jnz =
Bn
y (x− 1, z)−Bn

y (x+ 1, z)

2∆x

(3.23)

The expressions written in 3.24 to 3.27 intend to illustrate which quantities are used
and which quantities are pushed forward at each timestep. The numbers 1○ to 5○ relate
them to the equations 3.15 to 3.18 and 3.22 and indicate the order in which the code solves
them.

1○ ρn

∇ · (ρv)n+1/2

}
⇒ ρn+1 (3.24)

2○
(ρv)n

∇pn+1/2

∇(Bn+1/2)2/2

⇒ (ρv)′n+1 ;

(ρv)′n+1

∇ · (ρvv)n+1/2

∇ ·Bn+1/2
i B

n+1/2
j

⇒ (ρv)n+1 (3.25)

3○

Bn

∇× (vn+1/2 ×Bn+1/2)
η∇2Bn+1/2

∇η × jn+1/2

⇒ Bn+1 ⇒ jn+1 (3.26)

4○
un

∇ · (un+1/2vn+1/2)
γ−1
γ

(un)1−γη(jn+1)2

⇒ un+1 ⇒ pn+1 (3.27)

In Figure 3.5, we have drawn a flow chart. The numbers represent the equations 1○ to
5○ and the green arrows indicate in which order they are being solved in the code, going
from one run (n) to the next one(n+ 1). The orange arrows indicate which quantities are
being used for the computation of the other quantities, following the expressions 3.24 to
3.27.

3.2.3 Output

We have now explained which are the initial conditions of our simulation and how does the
code solve the equations. The equations are solved pushing the quantities a dt = 0.0125
forward each time, and the code runs to a maximum time of t = 150. If we were to have
a data file for each timestep, this would result in a larger amount of data than the one we
can process. For this reason, the code prints a data file every dt = 2, which gives us a total
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Figure 3.5: Integration method flow chart. The green arrows indicate the order in which
the equations are solved. The orange arrows indicate which variables are used to com-
pute the new quantities, as written in the expressions 3.24 to 3.27.

of 76 data files.

The content of these files consists on encrypted values, arrays and matrices of the
quantities computed by the method described in the previous subsection. The quantities
that appear in the output files as matrices of nx × nz (most of the times corresponding to
1600× 3200) are:

• The resistivity: η

• The mass density: ρ

• The velocity components: vx, vy, vz

• The magnetic field components: Bx, By, Bz

• The internal energy: u

The rest of quantities, such as the current density, the energy or the reconnection rate,
will be calculated afterwards in order to carry out the analysis.
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Chapter 4

Results

In this chapter, we perform an analysis of the data obtained from the different runs of the
simulation mentioned previously. We perform two different sets of runs. In the first set,
we vary the magnitude of the resistive spot while leaving the size of the diffusion region
invariant. In the second set of runs, we vary the shape of the resistive spot, making it more
circular or elongated, while leaving the magnitude of the resistivity invariant.

We begin this chapter by showing the general behaviour of a sample run to demonstrate
how the ensemble of runs is analyzed. This includes describing the time evolution of the
current density, the conversion of magnetic energy into kinetic and thermal energy, and
the origin of Ey in the different regions of the box. Additionally, we analyze how the
reconnected flux and the reconnection rate vary for each set of runs, and we explain their
behaviours with the study of the profile of jy, as well as the variation of the different
components of the magnetic field. Finally, we analyze the opening angle of the separatrix
for 4 different aspect ratios, and we compare the results to the ones obtained by Liu et al.
[2017].

4.1 Sample evolution

In this section, one of the runs will be discussed for the purpose of getting a general overview
and understanding of the simulation layout and evolution. The run presented has η1 = 8
and an aspect ratio of 5. This run is included in our analysis of how the magnitude
impacts the rate, and in the analysis of how the shape influences the rate (Figure 3.2).
The additional quantities needed to define η are written in table 3.1.

Figure 4.1 shows the out-of-plane current density jy (color) and the in-plane magnetic
field (Bx, Bz) lines for four different stages of the evolution. At t = 2, we can already
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(a) t=2

(b) t=10

(c) t=40

(d) t=100

Figure 4.1: jy with magnetic field lines for different stages of the evolution.
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observe a perturbation of the current sheet at the X point due to the high resistivity
present. For later timesteps, the perturbation has evolved, and a reconnection region
has developed. At t = 10 an outflow region has formed. The reconnection process is
now in the so-called fast phase. The reconnection rate peaks at about t = 26. Fresh
magnetic field lines with plasma from the inflow region are dragged in to compensate for
the plasma pressure convected away by the outflow. Later, at t = 40, we see clear outflow
structures moving towards the two sides. At this time the inflowing magnetic field lines
are considerably deformed as a consequence of their expansion towards the reconnection
region. This effect is amplified by the outflow structures expanding outward into the inflow
region. At t = 100 the outflow structures are approaching the boundaries of our simulation
domain. The reconnection process has, at this time, converted a significant amount of the
available magnetic energy in the inflow region, which results in a consistently slower and
slower rate.

Our primary interval of investigation is between t = 10 and t = 40, which is when the
system reaches its peak rate. In addition, our interest lies in the diffusion region and its
nearest surroundings, and we will not focus on the outflow dynamics and structures. More
on this has been studied and described by Zenitani et al. [2009].

Taking a closer look at the central region, where the reconnection process operates,
and plotting the inflow and outflow velocities (see Figure 4.2), we can clearly see how the
plasma moves towards the reconnection point above and below the current sheet (Figure
4.2a), and how it moves away from the X point with much higher velocities in the outflow
region (Figure 4.2b). This means that a process inside this region accelerates the plasma.
This acceleration has to be at the expense of magnetic energy.

(a) vz (b) vx

Figure 4.2: Inflow and outflow velocities at the timestep 50
.

As we mentioned in Section 2.5, reconnection is a process for which magnetic energy is
converted into kinetic and thermal energy. Thus, the increase in kinetic energy shown in
Figure 4.2 has its origin in the magnetic energy reservoir in the inflow region. Figure 4.3a
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shows the magnetic energy, which is defined as B2

2µ0
(B2

2
in our case), to prove that in the

inflow region it is much higher than in the outflow region. In this figure we can also point
out that the magnetic field is close to zero along the entire current sheet, as a result of the
field reversal (the normal component of the magnetic field, Bz, is small).

(a) B2/2 (b) p

Figure 4.3: Magnetic energy and pressure at the timestep 50.

Figure 4.3b shows that the pressure and, consequently, the thermal energy are domi-
nating in the current sheet. The magnetic energy outside is balanced by the pressure in
the current sheet. This force balance is described in Section 2.6.

(a) Ey (b) η

Figure 4.4: y component of the electric field and resistivity at the timestep 50.

In Figure 4.4a we have plotted the y component of the electric field obtained using the
resistive Ohm’s Law: Ey = ηjy − (v×B)y. We can observe a rather uniform behaviour of
it, even though we have a very high resistivity in the center of the box (Figure 4.4b). Due
to the fact that there is a resistivity in the center, the term that dominates Ey inside the
diffusion region is ηjy. Outside the diffusion region, the term that dominates Ey is v×B,
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which goes to zero at the X point and decreases significantly around it at the same rate at
which ηjy increases.

This fact can be more clearly seen in Figure 4.5, where the profile of both terms and
the sum of them at the two cuts that pass through the center of the box in the x and z
directions have been plotted. In both plots, we can appreciate a similar behaviour of the
three quantities: the terms ηjy and v×B have the same profile with the same magnitude,
but one opposite to the other, so that when v × B is at its maximum (outside of the
diffusion region) then ηjy is zero, and vice-versa. As a consequence, Ey is practically
constant, with some instabilities around where its two components intersect each other. In
the region where v ×B dominates, the magnetic field is convected with the plasma. This
means that the term ηjy is crucial for reconnection to occur, allowing the magnetic field
to diffuse across the plasma and, thus, new magnetic connections to be formed.

(a) Cut at z = 0 (b) Cut at x = 200

Figure 4.5: Terms of the resistive Ohm’s Law as a function of x and z in the center of
the box for the timestep 50.

4.2 Impact of the magnitude of the resistive spot

Our goal is to study how does the reconnection rate vary by changing the magnitude and
the shape of the resistive region. In this section, we will vary the magnitude of the resistive
spot and analyze which effects these variations have on the system.

The resistivity in our problem is given by equation 3.1. We will change its magnitude
by changing the value of η1, taking values between 0.01 and 8, like explained in Section
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3.1.2. The rest of the values which define η will be the same as the ones written in table
3.1.

4.2.1 Reconnection rate vs amplitude of the resistivity

In this section, we study the influence of the magnitude of the resistive spot on the re-
connection rate. We vary the magnitude of η from 0.003 (η1 = 0.01) to 2.4 (η1 = 8),
corresponding to slightly less and more resistive plasmas, respectively. The magnetic flux
through a surface A is given by the following expression:

φ =

∫
A

B · ÂdA (4.1)

Thus, the amount of magnetic flux that has reconnected can be calculated as the change
of magnetic flux in the inflow region from t = 0.

The reconnection rate can be derived using different methods, as mentioned in Section
2.5. Here we define it as the time derivative of the reconnected flux, dφ/dt.

Reconnection rate ≡ dφ/dt (= Ey = ηjy) (4.2)

In Figure 4.6, we have plotted the reconnected flux, φ, as a function of time for all the
different values of η1. From this plot, we can extract two main behaviours. The first is
that, as the magnitude of η gets larger, the flux reconnects faster. This means that for
the same amount of time, there will be a higher amount of reconnected flux for larger
magnitude of the resistivity.

The second behaviour that we can observe from Figure 4.6 is that for values of η1 larger
than 4, the slope does not change significantly. We can observe a similar behaviour when
we plot the reconnection rate for each of the values of η1 as a function of time (see Figure
4.7). The reconnection rate is higher for larger magnitudes of the resistivity, but as we
increase η1, the reconnection rate seems to stop increasing, reaching a maximum at around
0.2.

In Figure 4.7, we can also see that for the lowest values of η1, the maximum reconnection
rate is reached much later than for higher values. Thus, for our lowest value of η1, 0.01,
the peak in the reconnection rate is reached after timestep 100, while for η1 = 8 the peak
is reached at around t = 24.

Due to a finite amount of magnetic flux in our simulation domain, the rate consistently
decreases after reaching its peak value. Another source of the decrease is back-pressure from
the outflow region. The latter is generally not a problem, at the times of our investigation,
due to the relative large size of our simulation domain. In both figures (4.6 and 4.7), the
data has been cut at timestep 120 and, for some runs (see data for the lowest values of η1 in
Figure 4.7), even before that. The reason for this is that the runs develop some numerical
instabilities after some time.
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Figure 4.6: Reconnected flux, as a function of time, for different values of the magnitude
of the resistive spot

Figure 4.7: Reconnection rate, as a function of time, for different values of the magni-
tude of the resistive spot

47



CHAPTER 4. RESULTS

To demonstrate the relationship between the peak reconnection rate and the magnitude
of the resistivity, we show in Figure 4.8 the peak rate as a function of η1. Our estimation of
the reconnection rate based on the change of magnetic flux coincides with the more direct
measure of extracting Ey at the center of the box, shown in Figure 4.8 as blue and red
dots, respectively.

Figure 4.8: Peak reconnection rate, as a function of η1, as blue dots, peak reconnected
electric field, as a function of η1, as red dots and fitted function as the grey dashed line

In Figure 4.8, we have also plotted as a dashed grey line a function which fits the dots.
Equation 4.3 represents this function.

f(η1) = a
η1

b+ η1
+ c (4.3)

where a = 0.184, b = 0.307 and c = 0.021. The functional form is chosen empirically,
and thus does not have a direct physical interpretation. However, one can speculate on
the physical significance of the obtained values. The value of a relates to the maximum
reconnection rate and must have dimensions corresponding to the electric field. The value of
b determines how quickly the function converges, and must have dimensions corresponding
to η. One can also speculate whether the constant c is related to the uniform background
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resistivity, signifying a constant energy conversion throughout the simulation domain. This
would correspond to η1 → 0 which would equal to c.

To summarize, for low values of η1 the reconnection rate is slow, but increases rapidly
as η1 increases. For larger values (η1 & 1), the rapid increase ceases, and the rate saturates
at approximately 0.2. This behaviour illustrates that the effect of increased resistivity can
significantly influence the reconnection rate, but only to a certain level. For large values
of η1, the reconnection rate appears to be controlled and limited by other processes. To
understand why the rate saturates for high values of η, we investigate the profile of ηj in
the next section.

4.2.2 Study of the diffusion region for different peak η

Figure 4.8 showed that the reconnection rate stops increasing significatively even if the
magnitude of the resistivity keeps getting larger. The reconnection rate can be written as
ηjy at the center of the box. The fact that the rate saturates while η increases means that
jy must decrease at the center. We will now investigate the current density profiles for 4
different values of η1.

Figure 4.9 shows 4 different panels in which we have plotted jy, ηjy and η, as a function
of z, for four different values of η1. The data is taken along the line x = 200, which
corresponds to a vertical cut through the X point. For each plot, the two first quantities
are represented in color red (jy in a solid line and ηjy in a dashed line) with their scale
corresponding to the red ticks at the bottom, while the last quantity, η, is plotted as a
blue solid line with the magnitude scale given by the blue ticks on the top. The limits are
equal in the 4 cases.

From these plots, we can easily see a significant change in magnitude of the resistivity
as the value of η1 increases (blue solid line), as well as a change in ηjy (red dashed line).
The value of ηjy in the center corresponds to the rates shown in Figure 4.3. However, the
most interesting feature of these plots is the current density profile (red solid line).

For η1 = 0.5 (panel 4.9a) the current density peaks at the X point, and the relative
contribution of jy to the product ηjy dominates over that of η. As the value of η1 starts
increasing, however, the current density profile exhibits two distinct peaks, both of which
have a higher magnitude than the center value. This bifurcation illustrates that the current
density is forced outwards from the center. For panel 4.9b, the relative contribution of η
and jy to ηjy is approximately the same, but in the last two panels (4.9c and 4.9d), the
magnitude of η is so large that jy has been considerably reduced in the center. Here, the
relative contribution of η to the product, is much larger than the one of jy.

In panels 4.10a and 4.10b, we show 2D plots of the current density for η1 = 0.5 and
for η1 = 8, respectively. This illustrates the bifurcation of the current sheet in the center
region for high values of η.

In Figure 4.9, we saw that, for large resitivity, the current density has its maximum at
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(a) η1 = 0.5 (b) η1 = 1

(c) η1 = 4 (d) η1 = 8

Figure 4.9: Resistivity as the blue solid line, current density as the red solid line and re-
connection rate as the red dashed line. All of them plotted at x=200 at the time when
the reconnection rate is maximum.

the boundary of the resistive region. These current densities are a result of the restructuring
of the magnetic field gradients by j = 1

µ0
∇×B⇒ µ0jy ∼ ∂Bx/∂z (equation 2.7). For low

values of the resistivity, the gradient is monotonically increasing towards the center.

To determine how the system reorganizes the current density profiles, we investigate the
contributions from the different terms in the induction equation. The equation was derived
in Section 3.2 by combining Faraday’s law (equation 2.6) with the resistive Ohm’s Law
(equation 2.19). The induction equation (equation 3.10) is stated again for convenience:

∂B

∂t
= ∇× (v ×B)− η∇× j−∇η × j (3.10)

This equation can help us understand why there is a bifurcation of the current sheet
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(a) η1 = 0.5 (b) η1 = 8

Figure 4.10: jy and magnetic field lines at their peak reconnection rate for two different
values of η1.

for large magnitudes of the resistivity. The first term on the right-hand side represents
advection of magnetic flux, while the two remaining terms correspond to its diffusion.

Figure 4.11 shows the contribution of each of the terms in equation 3.10 and the total
variation of the magnetic field for two different values of η1 at the times of peak recon-
nection rate. During these times, the temporal change of Bx (black line) is small and
negligible. This is expected, as the system has already established the magnetic field and
associated current structure, neither of which move or change significantly in magnitude.
The green line shows the contribution from advection of magnetic flux. This term has
a positive contribution for z > 0 for both cases, which means that it tries to increase
Bx by transporting fresh field lines into the region. The blue and orange lines show the

(a) η1 = 0.5 (b) η1 = 8

Figure 4.11: Contribution of the terms of the induction equation (eq 3.10) for two differ-
ent magnitude values of η at their peak reconnection rate.
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contribution from diffusion of magnetic flux. The diffusion in Bx enables the creation of
new magnetic connections, and will result in an increase in Bz in the outflow region. Since
the sum of the different terms (∂B/∂t) is approximately zero, it means that the advected
flux into the region is diffused at an equal rate. If we look at the two diffusive terms
individually, there are clear differences between the low and high resistivity case.

For η1 = 0.5 (panel 4.11a), both diffusive terms try to reduce Bx, as expected. This
results in a constant decrease in the advection term for 1 > z > 0. The resulting current
profile, shown in Figure 4.9a, is therefore a result of advection of Bx into the current sheet,
together with a finite diffusion across the current sheet. For η1 = 8 (panel 4.11b), both
diffusive terms attempt to reduce the magnetic field strength around z = 2, but just below
this value, the term −η∇× j turns positive, trying to increase Bx. This behaviour matches
with the bifurcation of the current density, which experiences a considerable reduction after
the peak around z = 1.8 (see panel 4.9d). For this case, panel 4.11b shows an important
reduction in the advective term around z = ±1.8. The resistivity is in this case so large
that it diffuses the magnetic field over a very short spatial scale, and so quickly that the
advective contribution decreases rapidly. However, since the current density decreases
rapidly after its peak at z = 1.8, the diffusive term −η∇× j has a positive contribution to
the magnetic field (for z > 0). This term ensures that a gradient of the magnetic field exists
at the center of the current sheet, which is needed to maintain the reconnection rate. For
even larger values of η1, the spatial extent of the bifurcated current density peaks would
be even shorter (in the z-direction), while the current in the center, required to maintain
the maximum rate of 0.2 would consequently be even smaller.

Figure 4.12 shows the profile of Bx as a function of z for η1 = 0.5 and η1 = 8. To
illustrate the restructuring and the origin of the bifurcated current density, we have added
schematic arrows as magnetic field lines to illustrate this mechanism. In the left figure,

(a) η1 = 0.5 (b) η1 = 8

Figure 4.12: Bx as a function of z and schematic representation of the magnetic field
lines for two different values of η1
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the largest gradient is around z = 0, which corresponds to the peak of jy in Figure 4.9a.
In the right figure, which corresponds to η1 = 8, the largest gradient in Bx is not around
z = 0. In this case, the magnetic field around the neutral line has been strongly diffused,
and the largest gradients occur at around ±1.8. These are indicated in panel 4.12b with
magenta arrows. At these locations will then be where the curl of B is strongest and, as a
consequence, where we will have the peaks in j.

To summarize, increasing the magnitude of the resistivity in our system results in an
increased reconnection rate, but only up to a point. At around 0.2, the reconnection
rate saturates, even if we keep increasing the magnitude of η. The rate is limited by the
bifurcation of the current sheet density, resulting in a smaller current density at the center.
Intuitively, what happens is that the gradient of the magnetic field is pushed towards
the boundary of the resistive region. The amount of current required is dictated by the
asymptotic change in Bx between the two inflow regions, but the system has the freedom
to change the distribution of the magnetic field gradient, and therefore also the current
density profile.

It remains uncertain why the system wants to prevent the reconnection rate from in-
creasing above 0.2. This limitation is likely due to macroscopic conditions such as the
inflow or outflow velocity. Whenever one of them cannot keep up with the other one, the
reconnection rate will slow down so that they are balanced, and the magnetic field lines
don’t pile up. It is known that the opening angle of the separatrix has a great impact in
the forces driving the inflow and outflow. This will be discussed in more detail in the next
section.

4.3 Impact of the shape of the resistive spot

In this section, we want to find out if changing the shape of the resistive spot can make
the reconnection rate go even faster. To accomplish this, we are running the code with
the highest value of η1 analyzed in the last section (η1 = 8), while changing the value of
Lx introduced in equation 3.1. This will be the same as changing the aspect ratio of the
diffusion region.

We take values of Lx in the range from 0.5 to 40, while Lz is kept constant at 1. The
rest of the values which define η remain unchanged from the ones specified in table 3.1.

Figure 4.13 shows the colormaps for two different values of Lx. For low values of Lx,
which means small aspect ratio, the resistive region takes a circular-like shape (Figure
4.13a). As we increase Lx, it becomes more elliptical. Eventually, for very large values of
Lx, the resistive spot will be long and thin, and we will expect our reconnection rate to be
similar to the one obtained by a Sweet Parker approximation (see Section 2.6).
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(a) Lx = 0.5 (b) Lx = 10

Figure 4.13: Shape of the resistivity or diffusion region for two different values of Lx

4.3.1 Reconnection rate vs aspect ratio

Figure 4.14 shows the reconnected flux as a function of time for the different values of
Lx that we have considered. We notice a clear trend in the amount of reconnected flux
depending on the aspect ratio; large values of Lx, which correspond to an elongated re-
sistive region, reconnect significantly less magnetic flux compared to smaller values of Lx.
However, this trend does not hold for Lx . 2, where the amount of reconnected magnetic
flux decreases again. The highest amount of reconnected flux is reached for an aspect ratio
of 2 (Lx = 2).

We also note that, in the beginning of the simulation (time 0 to 15), the flux seems to
reconnect faster for elongated resistive regions, which would indicate that a larger aspect
ratio makes it easier to start reconnection. Although this difference is not very significant
from Lx = 40 to Lx = 2, it is made very evident for the 2 smallest aspect ratios (Lx = 1
and Lx = 0.5), where the reconnected flux is less than for the other values during the early
timesteps.

In Figure 4.15, we plot the time derivative of the reconnected flux as a function of time,
which is equivalent to the reconnection rate. Here, we observe that the peak reconnection
rate is reached for an aspect ratio of 2, and its peak value is around 0.25. This is even
higher than what we obtained in the previous section, where the aspect ratio was 5.

As expected, the lowest reconnection rate is reached for the largest values of Lx, as the
shape of our resistive spot becomes a very long and thin resistive layer. This resembles the
original Sweet-Parker description, where the length of the diffusion region is comparable to
the system scale. The rate becomes very small since there is no significant tension (j×B) on
the reconnected field line to transport the flux away. Reconnection for such configurations
is no longer explosive in nature, and can be considered as magnetic annihilation.

Figure 4.16 shows the time derivative of the reconnected flux (dφ
dt
) as blue dots and
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Figure 4.14: Reconnected flux, as a function of time, for different aspect ratios of the
diffusion region.

Figure 4.15: Reconnection rate, as a function of time, for different aspect ratios of the
diffusion region.
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the reconnected electric field (ηjy) as red dots, both as a function of Lx. This allows us
to check that these two ways of calculating the reconnection rate give us similar enough
values so that we can use them interchangeably.

Figure 4.16: Peak reconnection rate, as a function of η1, as blue dots, peak reconnected
electric field, as a function of η1, as red dots and fitted function as the grey dashed line.

In this plot, we can also see how the reconnection rate increases with the aspect ratio
for values smaller than 2, and then decreases again. The grey dashed line shows a fit to
the data using a functional form:

f(Lx) = aLxe
−
(

Lx
b

)c
(4.4)

where a = 4.838, b = 0.026 and c = 0.299. The functional form is chosen, and thus does
not have a direct physical interpretation. However, in the limits Lx → 0 and Lx →∞ the
function goes to 0, which coincides with our data. We can also speculate on the physical
significance of the obtained values. Since the reconnection rate has units of V/m, the
value of a must have dimensions of Volts. The value of b must have units of length. The
parameter c determines how quickly the function converges.

In the next subsections, we will investigate why the reconnection rate has a maximum
for an aspect ratio of 2.
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4.3.2 Study of the diffusion region for different shapes of the
resistive spot

In the previous subsection, we showed that the reconnection rate peaks for an aspect ratio
equal to 2. To determine why the reconnection rate peaks at this specific aspect ratio,
we investigate current density profiles and the separatrix opening angles for various aspect
ratios.

In Figure 4.17, we show the current density (jy) and the reconnection rate (ηjy ) for
three different values of Lx. Both quantities are plotted as function of x in panel 4.17a
and as function of z in panel 4.17b. For the values of Lx we have chosen Lx = 2, a greater
value (Lx = 5) and a lower value (Lx = 0.5).

(a) z = 0 (b) x = 200

Figure 4.17: jy as solid lines and ηjy as dashed lines, as a function of x and z for Lx =
[0.5, 2, 5] (Lz = 1) at the time when the reconnection rate is higher for each of them

Both panels show that the reconnection rate (dashed lines at the center value) for
Lx = 2 is higher compared to the other two values. Since the resistivity is equal for the
three cases, the difference in the rate must correspond to a higher jy at the X point. This
is evident looking at the orange solid line at the center of both panels.

We also note that in panel 4.17a, the distribution of the current density is significantly
different for the three choices of Lx. This directly reflects the influence of the resistive
shape on the gradients of the magnetic field. Along the x direction, peaks of different
magnitude can be observed for the 3 values of Lx. The highest current density is seen
adjacent to the X point for Lx = 0.5, while the orange line (Lx = 2) profile is slightly
wider and has a lower peak magnitude. For Lx = 5, the current density is distributed over
a larger area. Hence, the distance between the peaks adjusts to the width of the resistive
region for each of the cases.

In panel 4.17b, we can see a clear bifurcation of the current density for Lx = 2 and
Lx = 5. The location of the peaks for Lx = 5 is located further from the center compared
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to Lx = 2 which suggests that the length of the diffusion region has an impact on the
current profile in the z-direction at x = 200. This is even more evident for Lx = 0.5 which
is even narrower in the z-direction and does not have any bifurcation signatures. Note
that Lz = 1 for all three cases. Since the current density depends on gradients along both
directions, this suggests that the shape of the diffusion region leads to a reconfiguration
of the magnetic field profile such that jy is reduced at the center for smaller values of Lx.
Next, we will analyze the behavior of the magnetic field to explain the reason for this.

Figure 4.18 shows the contribution of the different terms of the induction equation (eq.
3.10) for the 3 values of Lx represented in Figure 4.17, at times of peak reconnection rate.
The left column shows the terms inducing a Bz component in a cut along the x-direction,
while the right column shows the contributing terms to Bx along the z-direction. As we
can see in Figure 4.18, the temporal change of Bx is negligible, since, at these times, the
system has already established the magnetic field’s structure and, consequently, neither
the magnetic field nor the current density change significantly.

The green line represents the advection of magnetic flux. For the three cases, this
contribution is positive for z > 0 (panels on the right-hand side), which means that it
tries to increase Bx as field lines are transported towards the reconnection region. For
x > 200 (panels on the left-hand side), the advective term contribution is negative, which
means that it would decrease Bz, since Bz is positive here. For x < 200 the direction of
Bz in newly reconnected field lines is opposite, and the positive contribution would also
act to reduce Bz. Intuitively, one can imagine that if we shut off the resistivity, the ideal
components would advect the newly reconnected field lines away with no possibility of
generating new reconnected field lines. In such a hypothetical scenario the inflow region
would start piling up magnetic flux, which would eventually mitigate the inflow velocity,
and finally, the system would evolve into a thicker stable current sheet. In the panels on
the left-hand side, we see that the contribution from the advective terms gets smaller as
we increase Lx. The strength of Bz decreases for larger Lx. This was discussed in Section
2.6, and can also be explained by Gauss law: The divergence of the magnetic field is zero:
∇ ·B = 0→ Bz ∼ BxLz

Lx
.

The blue and orange lines represent the contribution of the diffusive terms. Since
∂B/∂t = 0, the sum of all the terms in the induction equation must balance. In all the
panels in Figure 4.18, it is possible to see how the term −∇η× j has a larger contribution
compared to the term −η∇× j. The reason for this is that we are using a resistivity with
a large magnitude (η1 = 8), so the impact of the gradient of the resistivity must be large.
This term, represented with the blue line, is negative (for z > 0) in the panels on the
right-hand side, meaning that, in the inflow region, it tries to diffuse the magnetic field
away from the reconnection region. The orange line, representing the term −η∇× j, has a
negative contribution at first, but turns positive just after. This characteristic behavior was
discussed in Section 4.2.2 (Figure 4.11). In the x-direction, panel 4.18a shows how the blue
line has a positive contribution for x > 200, peaking at around x = 200.5, while the orange
line has a negative contribution. This means that the gradient of η in the x direction tries
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(a) z = 0, Lx = 0.5 (b) x = 200, Lx = 0.5

(c) z = 0, Lx = 2 (d) x = 200, Lx = 2

(e) z = 0, Lx = 5 (f) x = 200, Lx = 5

Figure 4.18: Contribution of the different terms of the induction equation, as a function
of x (panels on the left side) and z (panels on the right side), for 3 different values of Lx.
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to increase Bz at the edges of the diffusion region, while the curl of jy tries to oppose this
behaviour. The short extent in the x-direction of the resistive spot, corresponds to a very
strong η gradient and, consequently, a large Bz close to the X line, unlike the cases where
Lx > 2. The profile and shape of these two diffusive terms depend on the current density
profile. As we observed in Figure 4.17, changing Lx not only changes the current profile in
the x-direction, but also has a significant contribution to the profile in the z-direction.

To understand how changing Lx influences the current profile and magnitude, Figure
4.19 shows the magnitude of Bx as a function of z and Bz as a function of x for our 3
values of Lx. For Lx = 5, which corresponds to an elongated resistivity, the gradient of
Bx has a steeper slope (resulting in a lower current density) in the central region, which
results in a smaller gradient of Bz in the outflow (Figure 4.19b). For Lx = 2, the gradient
of both Bx and Bz get larger, and even stronger for Lx = 0.5. Notice that for Lx = 0.5,
there is a large enhancement of Bz close to the X point, as we described above.

(a) x = 200 (b) z = 0

Figure 4.19: Bx and Bz for the 3 different values of Lx studied at their times of peak
rate.

For all values of Lx, the term −∇η × jy is responsible for the majority of the local
changes of B. Thus, the shape of the resistive region has a significant influence on the
distribution of the magnetic field, and in turn, the current density. For Lx > 2, Bx has a
smaller gradient in the center region, resulting in a lower current density, while for Lx < 2,
Bz is important, also resulting in a lower current density. In order to understand how this
restructuring of the magnetic field affects the magnitude of the current density, we look in
detail at the profiles of the magnetic field components that result in the y-directed current
density. Figure 4.20 shows the contribution of ∂Bx

∂z
and −∂Bz

∂x
to the current density for the

cases Lx = 0.5, Lx = 2 and Lx = 5 as a function of x (panels on the left side) and z (panels
on the right side). From these plots, it is clear that the reduction in jy in the center for
the case Lx = 0.5 is due to a large increase in the gradient of Bz close to the reconnection
point (panels 4.20a and 4.20b). For Lx = 5, the contribution of ∂Bz/∂x is very small, but
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(a) z = 0, Lx = 0.5 (b) x = 200, Lx = 0.5

(c) z = 0, Lx = 2 (d) x = 200, Lx = 2

(e) z = 0, Lx = 5 (f) x = 200, Lx = 5

Figure 4.20: Contribution of the terms ∂Bx

∂z
and −∂Bz

∂x
to the total current density jy, as

a function of x and z, for 3 different values of Lx. Very small aspect ratios correspond to
a reduction of jy in the center.
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the contribution of ∂Bx/∂z is also very small (see panels 4.20f and 4.20e), resulting in a
lower current density than for Lx = 2. Thus, the case Lx = 2, reaches the right balance
between the two terms to have the highest current density in the central region, resulting
in a faster reconnection rate.

To summarize, we’ve seen that the bifurcation of the current sheet occurs when the
magnitude of the resistivity is so large that the gradient of Bx is pushed towards the
boundary of the resistive region. The magnitude of the resistivity is η1 = 8 for all three
cases, but for the case Lx = 0.5 the bifurcation is reduced, as shown in Figure 4.17b.
The reason for this is that for most cases, which have larger Lx, Bz is very small near
the diffusion region, making Bx the main contributor to jy. However, for Lx = 0.5, the
incoming magnetic flux, which is primarily in the x-direction above and below the x-line,
must be converted into Bz within our diffusion region. In terms of the induction equation,
the jy∂η/∂x is the dominating term (see panel 4.18b). This is because the region is so small
that a strong η gradient exists throughout the diffusion region. This produces a strong
increase in Bz close to the x-line, that reduces the total amount of current density, slowing
down reconnection in its turn. This explains the reduction in jy observed in panel 4.17b.
Since jy = ∇ × B|y = ∂Bx

∂z
− ∂Bz

∂x
, the second term on the right-hand side will effectively

reduce jy.

Impact of the aspect ratio on the opening angle

The increase in Bz for very small values of Lx is tied to a deformation of the magnetic
field lines as they move towards the diffusion region. Figure 4.21 shows schematically how
would the magnetic field lines look like for a large aspect ratio (panel 4.21a) and for a small
aspect ratio (panel 4.21b).

(a) (b)

Figure 4.21: (a) Sketch of the magnetic field lines for a large aspect ratio. (b) Sketch of
the magnetic field lines for a small aspect ratio. The inflow field lines for a small aspect
ratio bend more while approaching the diffusion region. This results in a larger opening
angle of the separatrix.

For a large aspect ratio, the magnetic field lines approach the diffusion region with
mainly a Bx component, which, as illustrated in Figure 4.20a, results in a thin and elon-
gated current sheet. The outflow is driven by the tension force (j × B), which can be
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4.3. IMPACT OF THE SHAPE OF THE RESISTIVE SPOT

approximated as jyBz in this region. For a thin, elongated current sheet, Bz is small, the
outflow is limited, and the reconnection rate will be adjusted self-consistently.

For a small aspect ratio, the magnetic field lines in the inflow bend more. The Bz

component in the outflow is larger (as illustrated in Figure 4.20b) and the tension force
increases, increasing the outflow speed and the reconnection rate. However, if the aspect
ratio keeps getting smaller, Lx < 2, jy decreases too much and the tension starts getting
smaller again, as discussed above.

The Sweet-Parker scaling, discussed in Section 2.6, considers the effective inflow to
be equal to the ambient conditions. This approximation does not take into account the
deformation of the magnetic field as it expands towards the diffusion region. This expansion
will influence the effective tension of newly reconnected field lines.

Liu et al. [2017] studied why magnetic reconnection usually has a maximum rate of the
order of 0.1 across different systems. The author suggested that the maximum local rate,
for a low-β plasma, where β is defined as ratio of magnetic pressure to the plasma pressure,
is determined by an optimal opening angle of the separatrix. The angle corresponding to
the peak rate was found to be 17.22◦, corresponding to a reconnection rate of 0.2. We can
think of the opening angle as the one made by the separatrix with the x axis.

The existence of an optimal angle can be understood as follows. For small opening
angles (θ ≈ 0◦), the diffusion region will be long and thin, which will bring us back to a
case similar to the Sweet-Parker approximation where due to very elongated reconnected
field lines the z component of the magnetic field is very small, as it is shown in Figure
4.21a. The j×B force driving the outflow can be written as:

j×B|outflow = Bz

[
∂Bx

∂z
− ∂Bz

∂x

]
, (4.5)

where the first term in the right side represents the magnetic tension and, the second term,
the magnetic pressure. If Bz is very small, the ouflow speed will be limited due to a small
j × B force. Thus, the reconnection rate will be slow. For θ ≈ 45◦, the current density
is zero (jy = ∂Bz/∂x − ∂Bx/∂z = 0), by symmetry. This means that the tension force
balances the magnetic pressure force since ∂Bx

∂z
= ∂Bz

∂x
, and equally in the inflow direction

- effectively stopping reconnection. Consequently, there has to exist an intermediate angle
which corresponds to the fastest reconnection rate, optimizing the system.

Since large aspect ratios in the diffusion region are associated with small opening angles,
and small aspect ratios are related to larger opening angles, we expect that our runs with
different aspect ratios should consistently have different opening angles.

To demonstrate this, we have plotted the magnetic field lines for 4 different values of the
aspect ratio including the case for Lx = 2, which corresponds to the maximum reconnection
rate. The result is shown in Figure 4.22. The dashed lines represent the contour of η at
a value 0.1, which illustrates the profile of the diffusion region. These are plotted in the
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Figure 4.22: Magnetic field lines around the diffusion region as solid lines, and contour
of η at a value 0.1 as dashed lines for 4 different values of Lx at their peak rate time.
Changing the aspect ratio has an influence on the geometry of the reconnected field
lines, which in turn determines how efficient the j×B force can transport flux away.

same color as the corresponding field lines (solid lines).

Looking into the inflow region, we note that for Lx = 10, the magnetic field line that
is approaching the reconnection region has almost no Bz component, consistent with its
resistivity with a large aspect ratio. The field line corresponding to Lx = 5, shows some
deformation as it expands towards the diffusion region. Finally, the field lines for Lx = 0.5
and Lx = 2 show a significant bending in the same region, as expected for smaller aspect
ratios.

If we take a closer look into the magnetic field lines that are reconnecting, we notice that
they cannot be considered straight lines such as the separatrices that have been illustrated
(e.g. Figure 4.21). Far from the reconnection region, the reconnecting field lines bend due
to the expanding outflow structure that can be observed in Figure 4.1. Also, from careful
inspection they also deform as they penetrate the diffusion region, this is most clearly seen
for Lx = 0.5.

For this reason, it is not straightforward to define the opening angle. We chose to
quantify the opening angle between the edge of the diffusion region and the beginning of
the outflow structure. That is, we choose a region far enough away from the reconnection
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4.3. IMPACT OF THE SHAPE OF THE RESISTIVE SPOT

point to avoid the local deformation there, but not so far that it is affected by the outflow
structures.

The opening angle corresponding to our highest rate is obtained for Lx = 2, and it
corresponds to a value of ∼ 15◦. The reconnection rate obtained for this value is around
0.25. This is close to the analytically predicted value of 17◦, suggested by Liu et al. [2017].
Regardless of a precise quantification, a clear trend is observed. As Lx increases from 10
to 2 the opening angle increases, which consistently means that the outflow driving force
increases, and consequently the reconnection rate increases. However, for values between
Lx = 2 to Lx = 0.5 the opening angle decreases, meaning that the rate decreases. This is
consistent with the reduction of jy as discussed above. The current density, the outflow
force and velocity, the reconnection rate, and the opening angle are of course coupled and
self-consistently constantly regulated between microscopic and macroscopic scales. Thus,
we have here demonstrated that, to maximize the reconnection rate, the system must
reconfigure itself, so that an optimum opening angle is achieved.

Figure 4.23: Magnetic field lines around the diffusion region as solid lines, and contour of
η at a value 0.1 as dashed lines for 4 different values of Lx at their peak rate time. Inside
the diffusion region, the opening angle for Lx = 0.5 is larger than for the other cases.

Even though we would have expected a larger opening angle for smaller values of Lx
this does not fit the conclusion from above. In Figure 4.23, we take a closer look at the
deformation of the field lines as they penetrate the diffusion region. Inside the diffusion
region, the blue line (Lx = 0.5) exhibits a larger opening angle compared to the other cases.
However, as we move outside the diffusion region the angle changes and becomes smaller.
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This suggests that the opening angle is not determined by the local microscopic properties
alone, but instead also includes contributions from the larger scales. Such a conclusion is
also suggested by Liu et al. [2017], and this supports the hypothesis that the rate is also
limited and to some degree controlled by macroscopic properties.
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Chapter 5

Discussion

In this chapter, we are going to discuss some properties of MHD scaling, as well as the
impact of the grid resolution and time resolution in our analysis. We want to verify that, as
we should expect from the characteristics of MHD scaling, changing the size of the resistive
spot in our system does not have any impact in the results, as long as the Lundquist number
is kept equal and the ratio between the size of the resistive spot and the width of the current
sheet is maintained. To do so, we will analyse two additional runs (see magenta dots in
Figure 3.2). Moreover, we will verify that both the grid resolution and the time resolution
that we use in our analysis are sufficient for the study.

5.1 Scaling relations

Ideal MHD has no inherent scale. That means that no equation explicitly quantifies the
length scale of the system. Resistive MHD is, however, characterized by a specific scale.
The added resistivity in Ohms law determines how quickly the field diffuses over a specific
length scale (τd = L2/η). Thus, changing the size of our diffusive region will effectively
alter the characteristic length scale of our problem.

To understand our code and analyze these scaling relations in MHD, we execute three
new runs, in which we change the size of the resistive spot, but trying to keep all the ratios
between quantities invariant. The aspect ratio for the three runs compared is kept at 1,
and the values of Lx and Lz are changed accordingly. Figure 5.1 shows the profile of the
resistive spots for the 3 different sizes that we are studying.

By changing the gradient scale length Lz, we are effectively also altering all relevant
derived gradients in this direction. This includes the current, time and velocity (t =
L/v), and the system size. Another scale introduced in the simulation, part of our initial
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(a) Lx = Lz = 0.5 (b) Lx = Lz = 1 (c) Lx = Lz = 2

Figure 5.1: Shape of the resistivity or diffusion region for the 3 different runs

conditions, is the current sheet width. For all previous runs, the width is kept equal to
Lz (=1). When we increase or decrease Lz, this width must be changed consistently. For
example, for Lz = 2, the current sheet width must match. Otherwise, due to the scaling
of the system the current sheet would appear as a current sheet with half the thickness
compared to the Lz = 1 case. A current sheet with half the thickness would contain half
the mass and, thus, be less inert. Similarly for Lz = 0.5, the current sheet would appear
as twice the thickness and be much more inert compared to the previous runs.

An important quantity is the relation between the Alfvenic convection electric field and
the diffusion electric field, defined by the lundquist number:

S =
λvA
η

(2.23)

The lundquist number in itself does not have a dimension, which means that the right hand
side of equation 2.23 is also dimensionless. In our case, λ is picked to be the significant
dimensionless gradient scale length, which corresponds to Lz in our case. This means that
by changing Lz, the value of η needs to be changed in accordance in order to maintain the
relation. Additionally, changing the scale length of the resistivity also changes the ratio
between the relevant gradient scale length, Lz, and the system size. This implies that even
if the resistivity magnitude is changed in order to keep S the same, the effective system size
can be twice as large for Lz = 0.5 as for Lz = 1. However, the system size is big enough so
that we don’t have to worry about the influence of the boundary conditions. Thus, even if
we double Lz in size, and we double the width of the current sheet and the magnitude of
the resistivity in accordance, there will still be enough space in x, so that the flux doesn’t
pile up, and enough space in z, so that we don’t spend all the available flux.

Table 5.1 shows the quantities that have been changed in order to maintain the scaling
relation.

where τ is the characteristic time, and τ0 represents the specific time scale used for all
previous runs.
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η1 Lx Lz Bx0 ρ0 jy0 τ

Run 1 4 0.5 0.5 tanh(z/0.5) 1/ cosh2(z/0.5) + ρlobe 1/ cosh2(z/0.5) 0.5τ0
Run 2 8 1 1 tanh(z) 1/ cosh2(z) + ρlobe 1/ cosh2(z) τ0
Run 3 16 2 2 tanh(z/2) 1/ cosh2(z/2) + ρlobe 1/ cosh2(z/2) 2τ0

Table 5.1

Figure 5.2 shows the reconnection rate, dφ/dt, as a function of time, for the 3 different
runs.

Figure 5.2: Reconnection rate, as a function of time, for the 3 different runs.

We can appreciate how the 3 runs reach a similar peak reconnection rate, but the case
Lx = 0.5 reaches it at around t = 10, the case Lx = 1 at around t = 20 and the case
Lx = 2 reaches the peak reconnection rate at around t = 40. The derived characteristic
time scale is τ = Lz/vA, thus, changing the characteristic scale length consistently affects
the derived characteristic timescale. This is the reason why there is a difference in the time
the reconnection rate takes to reach its peak, and the relation between the times is a proof
of that (2tLz=0.5 ≈ tLz=1 ≈ 0.5tLz=2).

We conclude then, that in MHD, we can reproduce the same analytical scenario if the
rates between the quantities are maintained the same inside the domain. Thus, when
studying the reconnection rate for three different sizes of the resistive spot, the result will
be the same for any size, as long as we maintain the relations between all the needed
quantities and the size of the domain is big enough.
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5.2 Grid resolution impact

When investigating the impact that different shapes of the resistive spot have on the
reconnection rate, we are required to make some runs with small values of Lx. It seems
reasonable, then, to get concerned about the fact that the box resolution may not be
enough to give a precise enough result for the reconnection rate.

To verify that the obtained result does not depend on the resolution, we executed two
additional runs, with the same conditions but with different resolution of the simulation
domain.

As mentioned, the box resolution that we want to use for our analysis is 3200 × 1600
cells. The two additional runs are made with two times and three times this grid size, see
table 5.2. We choose the run with the smallest Lx for the comparison, as this run has the
shortest characteristic gradient scale length and would be most susceptible to changes in
the resolution. In table 5.2, we have written the values of the magnitude of the resistivity
(η1), the values of Lx and Lz which determine the shape of the resistivity, the size of the
domain (x and z), and number of grid cells for the z axis (nz) and x axis (nx) for the three
different runs.

η1 Lx Lz x z nz nx
Run 1 8 0.5 1 [0,400] [-100,100] 1600 3200
Run 2 8 0.5 1 [0,400] [-100,100] 3200 6400
Run 3 8 0.5 1 [0,400] [-100,100] 4800 9600

Table 5.2

In Figure 5.3, we have plotted the reconnection rate obtained with the 3 different grid
resolutions.

Some variations between the runs can be appreciated for the initial timesteps in Figure
5.3, but otherwise the reconnection rate remains the same for the three different resolutions.

Higher resolution means that the simulation can resolve smaller structures. To demon-
strate this, in Figure 5.4, we show the current density around the diffusion region tor the
three different resolutions.

Comparing the current density for the different resolution reveals significant differences.
The magnitude of the current density is very different between the runs. We can also
observe different structures in similar regions, e.g. the cut at z = 0 has two zones of
negative jy in the Figure 5.4b at around 198 and 202, that do not exist in the other two
figures.

These consequences of changing the resolution, though, appear to be unimportant for
our study, as we showed with Figure 5.3. A higher resolution means that the code resolves
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Figure 5.3: Reconnection rate, as a function of time, for the three cases specified in table
5.2

structures at smaller scales, as demonstrated in figures 5.4a and 5.4c, but these smaller
structures do not influence the larger scale energy conversion or rate.

Based on the comparison, we conclude that our resolution is sufficient. Increasing the
resolution has no significant impact on the rate, which means that the overall dynamics
in the entire system behaves the same. This means that the solution has converged at a
lower resolution. Higher resolution means higher computational cost, and for the problem
at hand, this result suggests that our chosen resolution is more than adequate.

In our study, we used a resolution of 9600×4800 for the case where Lx = 0.5 and Lz = 1,
since it can provide a better quality in figures like 4.22 or 4.17a and the computational
cost was acceptable, but the rest of the runs have been made with the normal resolution
of 3200× 1600.

5.3 Time resolution impact

The code runs on the Alfvén timescale t = L/vA, where the characteristic length, L, is the
distance an Alfvén wave can travel in a time unit. The timestep used is a value chosen
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(a) Box resolution: 3200× 1600

(b) Box resolution: 6400× 3200

(c) Box resolution: 9600× 4800

Figure 5.4: Pixelated view around the X point of the current density at t = 26 for Lx =
0.5 and η1 = 8
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to be significantly smaller than the time an Alfvén wave needs to travel across one grid
cell. The time required to do so is t = 0.125, and the timestep chosen is 10 times smaller:
dt = 0.0125.

In order to prove that the timestep chosen is small enough to not produce any irregu-
larities in the data obtained, we have run the simulation for η1 = 1, Lx = 5 and Lz = 1
with a timestep corresponding to dt = 0.006, less than half than the value used for our
simulations. The reconnection rate obtained for both time resolutions is shown in Figure
5.5.

Figure 5.5: Reconnection rate, as a function of time, for the two different time resolu-
tions

This figure shows almost no difference between both resolutions, which means that the
time resolution used is small enough for our study.
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Chapter 6

Summary and Key Findings

The goal of this thesis was to determine how fast magnetic reconnection can occur by
varying the magnitude and shape of a localized resistivity. To do so, we first introduced
some plasma environments, such as the solar wind and the magnetosphere, where magnetic
reconnection can operate. We then introduced the concept of plasma and the necessary
equations to describe its behaviour in space, as well as the magnetohydrodynamic (MHD)
equations, in which the plasma is treated as a single fluid and the state of our system is
described by macroscopic variables. In our case, we are using the resistive MHD equations,
in which several assumptions have been made. The assumptions include considering that
the plasma is composed of electrons and only one species of ion, and that the sum of both
charges is approximately the same (quasineutrality). We are also considering timescales
and lengthscales in which we can neglect most of the terms in Ohm’s law (equation 2.18).
This way, we can consider the resistive MHD equations near the diffusion region, and ideal
MHD equations elsewhere.

In this same chapter, we defined magnetic reconnection as the fundamental process
by which magnetic field lines of opposite polarity reconfigure to a lower energy state,
explosively converting magnetic energy to particle energy. This process was described
in detail and we also presented the Dungey Cycle, which explains the magnetospheric
dynamics from magnetic reconnection between the interplanetary and terrestrial magnetic
fields. Later, the expression reconnection rate was described and the diffusion region was
introduced. We also introduced some theoretical models of magnetic reconnection, giving
special attention to the Sweet-Parker model, which is considered as the simplest way of
describing magnetic reconnection. Finally, we discussed the reconnection rate problem as
the main motivation for this study.

In order to obtain the data needed for the analysis, we used a 2.5D resistive MHD
simulation based on a simple Harris sheet equilibrium. In Chapter 3, we introduced in
detail the setup of our simulation. Some characteristics of the code were presented, such as
the size of our domain, the boundary and initial conditions, and the location and form of
the resistive spot. The code solves the MHD equations in the conservational form, and the

75



CHAPTER 6. SUMMARY AND KEY FINDINGS

equations were presented together with a detailed explanation of the integration method
used to solve them.

The analysis was made out of a total of 31 runs that were split into 2 different studies.
In Chapter 4, we first showed the general behaviour of a sample run to demonstrate how
the ensemble of runs are analysed. Here, we described the time evolution of the current
density and we plotted the components of the velocity together with the magnetic en-
ergy and pressure. These plots provided evidence of how, during magnetic reconnection,
magnetic energy is being converted to kinetic and thermal energy. By analysing the two
different components of the resistive Ohms law around the diffusion region, we showed that
outside the diffusion region, the term v×B dominates, while the resistive term is the only
contributor to Ey at the center. Then, we presented the results corresponding to our two
studies.

In the first study, we investigated 16 different values for the magnitude of the resistivity
(η1), keeping its aspect ratio constant. The amount of reconnected flux for each of the η1
values was plotted together with the variation of the reconnection rate. We found that
the reconnection rate increases with the magnitude of the resistivity, but only to a certain
limit - most likely determined by macroscopic quantities such as the inflow speed, outflow
speed or the opening angle. The system has the freedom to change the distribution of the
magnetic field and, studying the current density profile and the contribution of the different
terms of the induction equation, we concluded that, for large values of η1, the gradient of
the magnetic field is pushed towards the boundary of the resistivity, diffusing away from
the center of the diffusion region. This implies a bifurcation of the current sheet, thereby
restricting jy at the center and preventing the reconnection rate from increasing.

The goal of the second study was to investigate the impact of changing the shape of the
resistive spot on the reconnection rate. 16 additional runs were used for this objective. We
noticed a clear trend in the increase of the reconnection rate as the aspect ratio was getting
larger, but found that this trend did not hold for Lx . 2. Thus, the highest reconnection
rate was found for Lx = 2. Studying the current density for this value of the aspect ratio,
and 2 other values around it, as well as the contribution of the resistive terms to the profile
of B, we concluded that, for aspect ratios smaller than 2, the gradient of η is so sharp that
the x-component of the magnetic field (Bx) is converted into Bz. The induction of Bz in
the diffusion region is governed by the resistive terms in the induction equation. Due to
the limited extent of the resistivity in the x-direction (for small values of Lx), Bz must
be induced over a small finite region. The associated current density effectively reduces
the jy component at the center, which reflects the reduction of the reconnection rate by
Ey = ηjy.

Later, we related this variation in the components of the magnetic field to a deformation
of the field lines near the X point, and we compared the shape of the field lines for 4 different
values of Lx. We could verify how the opening angle of the separatrix is related to the
shape of the resistive spot, and that the largest opening angle (' 15◦) corresponded to
the aspect ratio with a fastest reconnection rate. We also noticed that the largest opening

76



angle corresponded to the smallest aspect ratio inside the diffusion region, but this does
not happen at larger scales, which suggested that the opening angle is not only determined
by local microscopic properties, but also by larger scales effects.

In Chapter 6, we discussed three different characteristics of our simulation which are
of special interest or concern. First, we discussed the property of MHD simulations that
allow us to work in dimensionless units. Here, we obtained proof that keeping an invariant
Lundquist number in runs with different resistivities, results in a similar reconnection rate
if we also keep the rate between all the necessary quantities, such as the current sheet width
or the time scale. Second, we discussed the grid resolution of our simulation domain. We
showed that increasing the resolution has no significant impact on the reconnection rate and
concluded that the resolution used is sufficient. Finally, we discussed the time resolution.
We compared two different runs with different time resolutions and showed that the time
resolution used in our simulations is more than adequate.

Let’s summarize the findings of our analysis:

• The effectivenes of the reconnection process increases with the magnitude of the
resistivity, but only to a certain limit which is most likely determined by larger-scale
system properties.

• The distribution of the system undergoes major changes near the diffusion region
when increasing the magnitude of the resistivity. These include the displacement of
the magnetic field gradient to the edges of the diffusion region, decreasing the current
density in the center and preventing an increase in the reconnection rate.

• The peak reconnection rate corresponds to an optimal aspect ratio value of the re-
sistive spot. This corresponds to a value of Lx = 2 (for Lz = 1).

• For Lx > 2, the tension force decreases with increasing Lx, reducing the outflow
speed and the reconnection rate.

• For Lx < 2, the gradient of η in the x-direction is so sharp that Bx is too rapidly
converted to Bz, reducing jy at the center and decreasing the reconnection rate.

• The opening angle of the outflow magnetic field lines is strongly tied to the shape of
the diffusion region.

• Inside the resistive region, a smaller aspect ratio corresponds to a larger opening
angle.

• Outside the diffusion region, the largest opening angle is reached for the peak rate
(Lx = 2).
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6.1 Key Findings

To end this chapter, we present the main key findings of this thesis.

The present study shows that:

• Even when inserting very strong resistive spots with varying shapes, there appears
to be a maximum rate of reconnection the system can support.

• A sub-optimal choice of resistivity magnitude or shape of the resistive spot leads to
lower overall reconnection rates.

These results have two important implications:

• The reconnection rate depends significantly on properties of the diffusion region, even
if the size of that region is much smaller than the system. This is a new insight, which
may be a counterpoint to the assertion that the reconnection rate is independent on
the diffusion region physics.

• Even though this has not been proven strictly, there are very strong indications that
there is a maximum reconnection rate, which cannot be exceeded irrespective of the
diffusion region physics. It appears exceedingly likely that this rate limitation is due
to larger-scale system properties rather than properties of the diffusion region.
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Chapter 7

Future Work

7.1 Coupling between large and small scales

We have presented strong indications that a maximum reconnection rate exists. This rate
cannot be exceeded even when we allow the field to diffuse much quicker than it can be
transported into the region. Thus, larger-scale properties must play a controlling role in
limiting the allowed rate. However, no strict proof has been presented, and there is still a
lot of work to do in order to achieve a better understanding of the coupling between large
and small scales.

Since the reconnection rates found in this thesis are on the same order as the peak
rates found in particle models, this suggests that our current framework is applicable for
studying these large-scale limitation as well. This large-scale process limiting the rate could
be related to how the systems freedom resolves an optimum opening angle, as discussed
in Section 4.3.2, which in turn suggests that the maximum outflow velocity allowed is
somehow restricted. Such an investigation is a formidable task, but we now have the
necessary tools to pursue such a challenge.

7.2 Three-dimensional MHD

The present study uses a 2.5D resistive MHD model to perform the analysis. A natural
extension of our investigation is to perform three-dimensional simulations to determine
whether this enhanced freedom results in a similar limitation of the reconnection rate.
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Can we achieve the same rates in 3D, if not - what limits the rate? What is the most
efficient resistive shape in 3D?

7.3 Beyond resistive MHD

Our current resistive MHD scheme represents the simplest model that can be used to study
magnetic reconnection self-consistently. It has the advantage that we can easily control
the magnitude and shape of the diffusion region, in addition to being computationally
cheap. However, kinetic effects beyond two-fluid descriptions cannot be described by fluid
models, and other models such as Particle-In-Cell (PIC) simulations must be used for these
purposes. Thus, it could bring some better understanding to the matter to extend this
study to kinetic plasmas.

7.4 Related studies

A prediction model incorporating both magnitude and shape of the diffusion region could
be developed. Such a model could quantify how the different shapes and magnitude unified
influences the efficiency of magnetic reconnection. Such an analysis, which would require
many additional simulations, could further optimize the peak reconnection rate.
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