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Abstract

Short-term load forecasting is vital for electric utility companies. The ob-

jective of this thesis is the short-term load forecasting of the five bidding

zones in the Norwegian electrical grid. This master thesis proposes a novel

method of approaching short-term load forecasting problem called Lagged

SpatioTemporal Features Short-Term Load Forecasting (LSTF STLF) using

LSTM. LSTF STLF is based on a spatiotemporal feature selection approach.

The dependencies between the five of Norway’s bidding zones in the Nord

Pool power market are discovered using tools such as correlation and mutual

information to find the best spatiotemporal features from all bidding zones

to better perform electricity demand forecasting in each given zone. By ap-

plying the proposed spatiotemporal feature extraction approach, forecasting

accuracy improved significantly for the five bidding zones on a 48-hour fore-

casting horizon.
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Chapter 1

Introduction

Electricity load forecasting is the prediction of power consumption. For elec-

tricity utility planning, load forecasting is the fundamental business prob-

lem[1]. It is also known as consumption prognosis and vital for both the

transmission system operators and the power suppliers. These stakeholders

have to plan the distribution and generation of electricity on a constant basis.

Electricity is not easily stored. Therefore there must be a balance between

generation and consumption of power to reduce the risk of undersupply or

oversupply issues. In the case of under-supply of power, there will be power

outages. In the case of oversupply, the excess energy has to be disposed of

or sold at a lower price, both actions lead to financial loss [2].

Electric utilities run the power grid, known as the most complex man-made

system on earth, to deliver electricity to more than six billion people around

the globe. Electric utilities also play a critical role in Norway as the main
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energy deliveries. Electricity is the main source of all industries in Norway.

The Norwegian power grid system is geographically divided into five bidding

zones; NO1, NO2, NO3, NO4 and NO5. The power engross NordPool [3] pro-

vides historical power consumption data for these zones. These are hourly

resolution consumption data, provided in the metric megawatt-hour(MWh),

which will be the basis of the data for this thesis. Alongside all the weather

variables collected from the respective zones.

This master thesis will experiment on the use case of short-term forecasting

of electricity consumption for the five bidding zones in Norway. The main

objective is to explore the spatiotemporal relation of data between these

zones and discover if the data from the zones can be utilized for improving

the short-term load forecasts. Spatiotemporal means data that is collected

across both space and time. The naming comes from the spatial and tem-

poral domains. The spatiotemporal weather variables are also considered in

the case study. To compare the impact of these features, a baseline vanilla

LSTM will be implemented. The models are only as good as their data in-

put, so the feature selection for the model is crucial in load forecasting. By

applying the best possible input to the model makes it more likely to learn

the data, understand the underlying trends and forecast more accurately.

The data-driven spatiotemporal feature selection methodology applied in this

thesis is tailored for the case study. By first performing data analysis of the

spatiotemporal data collected for the bidding zones, the feature selection

will be narrowed down based on the results. The processing of the features
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will reveal if applying lag to the spatiotemporal features is beneficial. The

step-by-step approach is validated through testing the vanilla LSTM imple-

mentation with the features as input.

1.1 Motivation

Statnett is the main transmission operator for the Norwegian electrical grid.

One of their main responsibilities is to balance the power consumption with

the power production [4]. To accomplish this, they rely heavily on good load

forecasts.

More accurate forecasts lead to less excess electricity being produced. In

Norway, the majority of our power generation comes from green sources such

as hydropower, wind and solar power. In other countries and especially the

underdeveloped countries, power generation is relying on coal and other pol-

luting sources. If the load forecasts are improved, especially the peak load

forecasts, this could lead to less strain on the environment.

For the generation companies who provide the electricity, the more accurate

forecasts for their region, the better they can plan their generation. In Nor-

way, they send in a production scheme that contains what they are willing

to produce at a given price. The generation companies with better forecasts

can get an advantage in the market.

Dr. Hong estimates that a improvement of 1 % to short-term load forecasting

can save 300 000 USD for a year with 1-gigawatt peaks [5]. In 2020, the peak
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load for Norway was 21.86 GWh. Adapted to the Norwegian use case means

approximately 6.5 million USD saved a year by improving the short-term

load forecast by 1 percentage.

1.2 Thesis contribution and Research Ques-

tions

The knowledge gap this thesis aims to fill, is the exploration and utilization of

the spatiotemporal relations in a large case study like the Norwegian bidding

zone use case. This thesis will implement a baseline vanilla neural network

and perform an extensive data-driven feature selection on the available spa-

tiotemporal data. This data is both the historical electricity consumption

and the weather variables collected. The objective is to select these features

based on spatiotemporal data analysis and process them for the five Norwe-

gian bidding zones and discover a novel method for approaching short-term

load forecasting. This use case is also scalable to other countries, especially

the Nordic countries. Provided that the areas have historical spatiotempo-

ral data for electricity consumption data. The following research questions

represent the red line through this master thesis:

RQ 1 How are the spatiotemporal relationships for the data five bid-

ding zones of electricity demand in Norway?

RQ 2 How to utilize spatiotemporal dependencies in short-term load
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forecasting methods?

1.3 Thesis Structure

The outline of the thesis where each chapter is shortly introduced.

Chapter 1 presents the introduction and motivation for this thesis,

and lastly the research questions.

Chapter 2 provides a theoretical background for the relevant subjects

of the thesis. The literature review of load forecasting as a topic and

popular methods in load forecasting for this thesis will be presented.

Chapter 3 presents the the use case for the thesis.

Chapter 4 presents the research method and methodology.

Chapter 5 describes the results and discussion for the experiments of

the thesis.

Chapter 6 concludes the thesis and present ideas for further work.
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Chapter 2

Background

In this chapter, an introduction to the relevant subjects in this thesis is

provided. First, an overview of the load forecasting topic and the literature

review conducted for this is presented. Then the popular methods and models

for load forecasting are described.

2.1 An Overview of Electricity Load forecast-

ing

Load forecasting is the prediction of electricity power to be consumed. A

good comprehensive introduction of the basics of load forecasting is provided

in the white paper on load forecasting [1]. The white paper has great pin-

points on how to approach the load forecasting problem. Many methods,

methodologies and proven algorithms are presented. The authors provide
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case studies, which give the reader insights into how a load forecasting case

could be solved. The terminology for load forecasting is set along with the

general history of load forecasting and the advancements made. Furthermore,

they explain what pitfalls to avoid when approaching the load forecasting

problem.

In figure 2.1.1, the terms for electric load forecast horizons are shown

in a rough overview. These terms vary in their temporal definition from

paper to paper, and there is no commonly accepted understanding for the

duration of the electric load forecasting horizon. The only repeating infor-

mation is that the cut-off between short-term and medium-term forecasts is

set at two weeks. We can observe that there are four categories that belongs

to the short-term horizon [6]. Energy purchasing is done on the market of

Nord pool for Norway, where generation companies and electricity vendors

buy and sell electricity. The reason for the energy trading inclusion in the

medium- and long-term horizons, is because the stakeholders can buy and

sell futures to guarantee a spot price in the future. This is done as a risk

management and hedge against fluctuating prices. Transmission and distri-

bution planning is mainly done by the transmission system operator(TSO).

Demand side management is done by the TSO and the generation companies.

The short-term forecasts are vital for this horizon. Good forecasts enables

these stakeholders to plan the the electricity generation for the coming elec-

tricity consumption. The operations and maintenance have to be planned on

a short-term aspect. For instance, the parts of a hydropower plant wear and
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loses effect over time. Due to fluctuating spot prices and electricity demand,

the generation companies have to plan these operations in a short time frame

to minimize financial loss. The maintenance work means down-periods for

the electricity generation.

Figure 2.1.1: An overview of the terms used for forecasting horizons. In-
spired by: [7].

To understand the Nord Pool market and the different powers that con-

trol it, a master thesis [8] gives a good overview of the different factors and

stakeholders in the power market. Statnett is the main transmission system

operator in Norway. It is funded by the government and they operate the

grid and the electricity transmission flow. Statnett have an own data science

team. An article from their data science team [4] tells us about their ap-

proach to creating and deploying short-term load forecasting models for live
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applications. They also disclose their results. Their LSTM model yields a

Mean Average Percentage Error(MAPE) of 4.2 % for 48 hours forecast hori-

zon for the 5 individual Norwegian bidding zones. Their result provides this

thesis a benchmark and comparison basis for my methodology and results.

This is the most comparable result found in the literature review of this topic

and case study of Norway. Statnett’s data science team made two different

models, one Ridge regression model and one LSTM recurrent neural network

model. The LSTM model performed the best out of these. However, these

results will not be directly comparable of the results for the experiments in

this thesis. The reason for this is that the Statnett team used the electricity

consumption data for 2018 in their results, while this thesis will consider data

from 2020 and 2021.

In 1978, the U.S Congress passed a bill to deregulate the power market.

This was done to promote greater use of renewable energy due to environmen-

tal concerns, high inflation and increased fuel prices. An overview of factors

that affects load forecasting is presented in a research paper [9], which gives

the reader insights into how important load forecasting is in a deregulated

economy. Since the Norwegian energy market was one of the first in the

world to deregulate, it is interesting to delve deeper into this evolution of the

market. The paper also provides introductions to the different methods and

algorithms which are widely used and approved by the scientific community

for the different forecast horizons. The authors study which factors affect

energy consumption, such as the weather variables temperature, humidity
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and wind. These spatiotempporal weather variables will be collected and

tested in this thesis as well.

The wind variables are tough to incorporate in a load forecasting use case,

while the temperature variables are deemed important and easier to forecast

on due to the daily pattern cycle. The demographic factors are mentioned

in the paper as important features for medium and long-term load forecasts.

Since this master thesis will only consider the short-term forecast horizon,

the demographic factors will not be considered as features of the models.

However, the similarities between the bidding zones in demographics are

relevant in understanding the spatiotemporal relation for the bidding zones.

Figure 2.1.2: A random sample of 7 days of electricity consumption in NO1
region

The authors have acknowledged that the load profile is different for week-

days and weekends in a paper about using neural networks [10] for short-term
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load forecasting. In the figure 2.1.2, we can see that during a 7 day period

of a random NO1 zone consumption load profile, there are approximately

72 hours with lower mean values. This indicates a weekend. The authors

trained one model for weekdays, and one for weekends. In their case study

they achieved good results even without applying weather parameters.

2.2 Popular Methods for Load Forecasting

This section presents the literature review and past work for popular methods

for load forecasting. The two load forecasting methods chosen for this thesis’

experiments are presented in their own subsections.

There are four main methodologies for load forecasting presented in the

white paper for load forecasting [1]. Variable selection or feature selection is

a methodology for determining which variables are useful and improve the

load forecasts. Similar day approach was one of the first methodologies in

load forecasting. The similar day approach is looking at the consumption

of similar days historically, with weather factors being the main contributor

in finding these days. Weather station selection is a methodology for load

forecasting, due to the impact weather has on the electricity consumption.

Hierarchical forecasting is a more novel methodology, because of the new

smart electrical grid and the way this measures the energy consumption.

More live data can be accessed, and aggregated consumption data on smaller

levels such as households or city-level can be utilized.
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The white paper also mentions three main methods for short-term load

forecasting. These are Multiple linear regression(MLR), Auto-Regressive In-

tegrated Moving Average(ARIMA), and artificial neural network(ANN). The

MLR is described as easy to implement and achieves good accuracy, but

needs explanatory variables and at least two years of history. The ARIMA

achieves good accuracy on short term forecasts and it functions well with less

historical data and few variables. The ANN achieves good accuracy during

normal daily patterns for the load, and minimum domain knowledge of load

forecasting is required to implement. The downside for ANN is that it needs

heavy computing power and it is difficult to interpret and understand the

results.

A comparative research paper [11] provides a case study of methods for

load forecasting in Turkey. The paper concludes that artificial neural net-

works(ANN) and Least-squares support-vector machines(LS-SVM) perform

better than the multiple linear regression(MLR) model.

For one hour ahead forecasts [12], the authors compare the methods of

multilayer perceptron(MLP), ANN, and a support-vector machine(SVM).

The ANN method achieves the lowest MAPE score, but they conclude that

the SVM is preferred since it exhibits repeatability to always find the global

minimum. However, the models were unable to accurately perform load

forecasts if there were any erratic load patterns or missing data. This can

be mitigated through outlier detection and missing data imputation, which

this thesis’s experiments will have as a pre-processing step for the data. In a
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case study for 24-hour load forecasts on weekends with an ANN, the results

were accomplished [13].

The Long Short-Term Memory(LSTM) model is an recurrent neural net-

work(RNN) architecture. This allows the model to recognize and predict

sequences data. By applying the LSTM model with long sequences [14], the

authors achieve good results in their use case. A comparative study was

performed in a use case of Estonia [15]. The results further demonstrate the

LSTM’s ability to provide accurate short-term load forecasts. It surpasses

the support-vector machines(SVM) model in this study.

The similar day approach is used with an XGBoost model in a case study

[16]. The approach is to classify the main influencing factors of electricity

consumption so that a feature map is constructed to select a similar day.

The results improve, showing promise as a modern take on the similar day

methodology. To model in weather parameters, a paper [17] proposes using

Fuzzy modeling to incorporate these parameters.

The auto-regression methods are widely used in load forecasting. In a

comparison with the SVM, the Auto-Regressive Integrated Moving Aver-

age(ARIMA) model scores slightly worse [18]. However, the ARIMA seems

to detect the trends better. So for repeatability and the robustness of the

model, the ARIMA can be considered preferable. In a case study of the

Karnataka State electrical load, the author applies the ARIMA model for

one-hour forecasts throughout a month [19]. The results show favorable

short-term load forecasting accuracy.
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A method for improving the features and achieving better forecasts is by

applying lag to the variables. Either for imputing variables that are not up

to date, or for improving the feature input to the models. Lagging the tem-

perature variable and feature extract a average temperature are considered

the two most popular approaches. Lagging the weather variables such as

the temperature have documented an effect in day-ahead load forecasts [20].

To help data scientists in discovering how many time-steps a variable should

be lagged, two analysis tools called autocorrelation function(ACF) and par-

tial autocorrelation function (PACF) can be applied. A paper on short-term

load forecasting [21] using regression analysis presents these tools as effi-

cient. Lagged values will be tested and applied in the feature processing in

this thesis’ experiment. Lagging the spatiotemporal electricity consumption

in a large case study like the Norwegian bidding zones has not been found in

the literature review. Therefore, it will be a new approach when considering

a large electrical grid.

Exploring the spatiotemporal dependency between different zones has

been tried in case studies earlier. In a research paper [22], the results jus-

tify using this approach in the prepossessing of the data. Applying spa-

tiotemporal analysis improves the load forecast accuracy in a paper where

the use case has smart grid data [23]. A dynamic Spatio-temporal(DST)

algorithm [24] was implemented in a paper, and the authors experienced a

great performance increase when applying this algorithm to their use case.

It outperformed a vector autoregressive (VAR) model.
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The case study for this thesis is large in the sense of electricity volume

and the spatial distances of the bidding zones in Norway. The analysis and

experiments in the case study will explore the spatiotemporal approach. As

this literature review has been conducted, many methods and algorithms

have been unveiled. As there is no possibility to apply them all, it has been

narrowed down to using the LSTM as the main model. The LSTM model

has shown great results for several different short-term load forecasting use

cases. The ARIMA models will be implemented as a basis for comparison.

Both are presented in further depth in the following sections.

2.2.1 Long Short-Term Memory

The most popular method when applying artificial neural networks in load

forecasting problems is by using a recurrent neural network(RNN). The

LSTM is the most popular and widely used model of the RNNs, and in

the following subsection, it will be explained. This model is the base model

for this thesis’s experiments. There are several reasons for this choice. The

LSTM achieves great results on various load forecasting use cases found in

the literature review. Statnett’s data science team applied it with success in

the same use case for the Norwegian bidding zones. In the initial experiments

with the data for electricity consumption in Norway, it outperforms the other

models tried without any tuning of the model.

The LSTM white paper was released in 1997 and has set record-breaking

results in various applications [25]. It is widely used in regression tasks such
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as time series and load forecasting due to its feedback connections, which

differ from the standard feedforward neural networks such as convolutional

neural networks. The LSTM network also performs well on classification

applications such as image processing.

First, the LSTM unit will be explained. Then the overall architecture

of the autoencoder-LSTM network applied in the thesis’ experiment is pre-

sented. An LSTM unit has a cell, an input gate, an output gate and a forget

gate [26]. These gates determine what information in a unit to update, for-

get and output. The figure 2.2.1 visualizes the flow of information through

an LSTM unit. The input to a cell is the ht−1, the hidden state from the

previous time step, and the xt which is the new information.

Figure 2.2.1: Overview of the LSTM unit. Inspired by fig. 3: [26]
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Cell state is that the recurrent information flow from previous time-steps

can be stored. The cell has memory to remember information, while the

three gates control the flow of information to and from the cell. It does

not store every bit of information, since the forget gate forces it to lose

information. This is done by the forget gate’s sigmoid activation function,

which multiplies 0 to a position in the cell states matrix if it is to be deleted,

or 1 if it is supposed to be remembered.

The input gate and the input modulation gate have a shared name called

the save vector and determines what information should be allowed to flow to

the cell state. There are two activation functions. For the input gate, it is a

sigmoid function within a range from 0 to 1. This activation function will only

add memory and not forget information. However, the input modulation gate

applies a tanh activation function which ranges from -1 to 1. This activation

function provides the possibility for the cell state to remove information.

The output gate decides what information should be allowed to flow

through to the next cell with the sigmoid activation function. Ht in figure

2.2.1 is the hidden state output from the LSTM unit.

When choosing which LSTM architecture to implement, an Autoencoder-

LSTM(AE-LSTM) showed promise. An AE-LSTM architecture for load fore-

casting use case is applied in a paper[27]. They achieved improved results

from the standard LSTM implementation. The standard network is a regu-

lar LSTM architecture. The AE-LSTM network has an encoder-decoder part

and an repeat vector which differs from the regular LSTM. A paper with the
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Figure 2.2.2: The Autoencoder-LSTM network architecture applied in this
thesis.

AE-LSTM used for forecasting solar power production for the next 24-hours

showed that the AE-LSTM outperformed the regular LSTM [26]. They used

a wide range of weather variables, and incorporated these in their model

through a data-driven feature selection method. The AE-LSTM showed that

it was more equipped with for handling complex weather conditions.

In figure 2.2.2, the schematics of the architecture of the AE-LSTM net-

work applied in this thesis is presented. The autoencoder consists of an

encoder and decoder. There is input to the network, which can be univariate

or multivariate. This is sent through the hidden layers where the LSTM
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units work out what information to store in the cell states and what to send

further through the model. Between layer 2 and layer 4 there is a repeat

vector layer. This acts as a bridge between the encoder and decoder sections

of the network. The repeat vector duplicates the values for the decoder part

of the network. Layer 4 and 5 are the mirrored layers of the layer 1 and 2.

These equal the encoder part, with the dense layer as the last layer. The

prediction is made after this.

2.2.2 ARIMA

This section will cover the basics of the ARIMA model, which will be imple-

mented to have validation results to compare the final method’s performance

against.

The Autoregressive moving average(ARMA) models are a widely used

for load forecasting use cases [28]. They are especially popular in time series

forecasting problems. It comes in many variances such as the seasonal auto

regressive integrated moving average exogenous (SARIMAX) model and the

previously mentioned ARIMA model [18]. SARIMAX takes multivariate

input, while ARIMA only takes univariate data. The AR-family are popular

forecasting models due to their simplicity and the ability to generalize for

non-stationary series. In the case of seasonal data and medium- to long-

term forecast horizons, the use of SARIMAX can be applied. However, the

ARIMA model is implemented in this thesis due to the good results it shows

in short-term load forecasting use cases.
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Yt = β1 + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p (2.1)

The Auto-Regression(AR) equation is displayed is shown in 2.1. An Auto

Regressive model means that the variable input into the model depends on

the past data values of itself. This highly depends on the fact that those

previous values are correlated with the last data point. For the model to

decide the weight of the past values for future predictions, the past values

are checked for a correlation between the last data point and the past values.

This is done by partial auto-correlation. Auto-correlation is an automatic

detection for how many past values have a relatively high correlation with

the current time-step.

Yt = β2 + ω1εt−1 + ω2εt−2 + · · ·+ ωqεt−q + εt (2.2)

The Moving Average(MA) equation is shown in 2.2. The model analyzes

the errors in the previous time steps. To be able to predict better for the

current time step, the model incorporates these errors from earlier to perform

better for later time-steps. The auto-correlation affects how much these

errors should be weighted for later predictions.

As the AR and the MA have been covered for the ARIMA model, the

Integrated(I) will be disclosed. If the time series to be predicted or forecasted

on is not stationary, it is necessary to transform the data by differencing the

data set [19]. Stationarity means that the time series data does not trend
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upwards or downwards over time, but is stationary with the approximately

same values during a certain period of time.

To summarize, the ARIMA has three main calibrations:

• Auto-Regression(AR), which is the lag order. This is determined by

finding the past values where the correlation for current observation

are still significant.

• Integrated(I), which is the order of differencing. This is determined

through analysis into the stationarity of the data.

• Moving Average(MA), which is the size of the moving average win-

dow. This is decided by checking how many past observation errors are

significant.
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Chapter 3

Use case

The use case for this thesis work is forecasting the electricity consumption

for the Norwegian electricity bidding zones. There are five zones, with logical

geographical separation. As can be seen in figure 3.0.1, the zones vary in size

and shape. The NO1 and NO2 has generally the highest consumption, being

the zones with the largest population. The five zones have their own bidding

market, with vendors trading and providing electricity to the market.

There are transmission lines that go across the zones, and also from other

countries such as Sweden, Denmark and Finland. If there is a surplus of

production versus the consumption of electricity in Norway, there is an op-

portunity for export to other countries. The transmission operator Statnett

governs the grid, maintaining the order of the electricity flows for the trans-

mission lines. They also have the mandate to halt production for the power

plants, to avoid surplus production they can not transfer anywhere. The lines
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Figure 3.0.1: The NO bidding zones which the Transmission System Op-
erator Statnett governs [29]

have limitations in form of the amount of electricity that can be transported

at any given moment.

What affects the spot price for electricity is in large degree the production

and consumption of electricity. Is there a surplus production in the market;

for instance when there is lots of wind in southwestern Sweden, which has

a huge windmill park that is not as easy to stop the production of as a hy-

dropower plant. The market gets overwhelmed with the surplus, the prices

drop, and the hydropower plant companies in Norway may halt their pro-

duction to save their reservoirs of water to more profitable times. In the
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winter season the water reservoirs are low and the production is not at its

peak. The consumption is also higher for the scandinavian countries. The

generation companies want higher prices for using their reservoirs. There are

many unregulated hydropower plants in Norway with no water reservoirs.

They use the river as their fuel for production. These often run dry during

the winter, while in the spring and summer they run full capacity because of

the yearly snowmelt. This causes overflow of electricity production and it is

often timed with warmer weather and lower electricity consumption; leading

to lower spot prices.

The day-ahead market is the primary market for power trading in the

Nordic region and is where the largest volumes are traded on NordPool[30].

Making the intra-day and day-ahead market the most important part for the

power suppliers and vendors. For this thesis, the forecast horizon is set to 48

hour since this is deemed as the most important horizon for short-term load

forecasting in the generation and consumption aspect.

3.1 Data set description

The data with the hourly frequency of electricity consumption from the five

zones are retrieved from Nord pool data [3]. The data is continually updated,

and may be fetched through an API or downloaded manually. Analyzing one

full year of data from 2020 gives insights into the variations between the

zones. The table 3.1 holds the values for mean, minimum and maximum
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for electricity consumption for the 5 bidding zones in MWh and three of

the weather variables from the NO5 zone. The values for the NO bidding

zones are in megawatt-hour (MWh). The Temp column is the temperature

in Celcius degrees, humidity is in percentage, and wind in meters per sec-

ond. All these weather variables are collected from weather stations in the

city of Bergen. As can be observed, the mean values have differences. The

more populated areas of NO1 and NO2 use far more electricity than the less

populated areas such as NO5 and NO4.

Table 3.1: The electricity consumption zonal data and weather variables
insight for 2019.

NO1 NO2 NO3 NO4 NO5 Temp Humidity Wind

Mean 3948 4141 3023 2127 1874 8.5 75.2 5.3
Min 1812 2759 1751 1288 1128 -5.2 18 0
Max 6846 5883 4262 3170 3218 32.1 97 15.8

In figure 3.1.1, the load profiles for four of the bidding zones are shown.

These are from the same period in June 2020 for 96 hours. As we can ob-

serve, the load profiles differ greatly. In figure 3.1.1 (a), the NO1 load profile

is presented. The daily patterns are very similar, while the daily peak load

for NO2 in figure 3.1.1 (b) fluctuates from 4350 MWh to 3600 MWh. This

could lead to difficulties for the load forecasts with such varying daily peaks.

The NO3 zone in figure 3.1.1 (c) has similar daily trends as the NO1 zone,

while the NO4 zone presented in figure 3.1.1 (d) is more volatile as can be
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seen in the bottom right corner.

(a) NO1 Load (b) NO2 Load

(c) NO3 Load (d) NO4 Load

Figure 3.1.1: Load profile for 96 hours in June 2020 for 4 of the bidding
zones

The other data for this use case are weather variables collected from the

FROST API [31]. These are hourly values from weather stations throughout

Norway. The individual variables were chosen and collected after investigat-

ing the data integrity from many weather stations in the five regions.

In figure 3.1.2 (a), the weather data is shown as a time series alongside the
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(a) NO5 load (b) NHH wind

(c) Florida humidity (d) Florida temperature

Figure 3.1.2: Consumption data, wind, humidity and temperature for 7
days in the NO5 zone.

consumption data for NO5. This is from the same 7 days, with weather vari-

ables from the NO5 zone. The wind data is from the Norges Handelshøgskule

(NHH) weather station in Bergen, and as can be observed in figure 3.1.2 (b)

was quite a windy week in Bergen. The humidity is shown in figure 3.1.2

(c) and fluctuates with daily peaks from 90 % to daily lows in the 50s per-

centage. Both the humidity and the temperature data are collected from the

same weather station in Florida, Bergen. The temperature is shown in figure
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3.1.2 (d) and it sees a constant daily rise during this week in June 2020.

In table 3.2 all the weather variables from Norway are displayed. They

are categorized from in which NO zone the weather station data is located

in. The weather variables vary from only 5 in the Northern Norway region

NO4, to 13 in the Southern Norway NO2 zone. The reason for this is that

some zones have many weather stations with good data integrity, while the

NO4 zone has scarcity in both weather stations and quality of the data. The

variables are wind, humidity and temperature, as these have shown positive

effects for other load forecasting use cases [20].

Table 3.2: All weather variables collected through the FROST API [31]

NO1 NO2 NO3 NO4 NO5

BlindernTemp SømskTemp RisvollTemp BodøTemp FloridaHumid
HaugenTemp V̊alandTemp RisvollHumid BodøHumid NHHWind
IlsengTemp OksøyHumid MoldeTemp TromsøTemp FossmarkWind
IlsengHumid V̊alandHumid MoldeHumid AltaTemp FossmarkHumid
IlsengWind TorungenTemp MoldeWind AltaWind LundebotnWind

FredrikTemp TorungenWind ÅlesundTemp MjølfjellHumid
FredrikHumid LandvikTemp ÅlesundHumid FloridaTemp

LandvikWind Sverreumid VossevangenTemp
LandvikHumid SverreTemp OddaTemp
SandnesTemp
LysebotnTemp
LysebotnWind
ÅlesundHumid
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Chapter 4

Methodology

4.1 Design Science Research

Design science is the research method for the thesis and it is an information

technology method of approaching research work. The research essay Design

science in Information Systems Research [32] lists 7 guidelines for adopting

the design science research method. Here are the 6 guidelines this thesis will

incorporate:

• Guideline 1: Design as an Artifact

• Guideline 2: Problem relevance

• Guideline 3: Design evaluation

• Guideline 4: Research contributions
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• Guideline 6: Design as a search process

• Guideline 7: Communication of research

For the first guideline, a viable artifact must be produced [32]. For my

thesis, it is finding a novel method for approaching short-term load forecast-

ing. An artifact can also be a model, but the models that are applied in

this thesis’ experiments are well-tested and already created. However, the

tuning of the parameters and the network to fit the use case and data can

be considered a smaller artifact.

For the second guideline, the research must seek to solve a relevant busi-

ness problem. It has to provide an information technology-based solution to

existing problems. Short-term load forecasting has a high degree of prob-

lem relevance, and a new method of approaching this is potentially very

cost-saving [5]. The third guideline means to evaluate the artifact through

well-executed evaluation methods. To adapt this to this thesis’ work, the

evaluation has to be a standard set in the research community and have

multiple angles.

The fourth guideline reads research contributions. For this thesis, it

means what the research and utilization of applying spatiotemporal features

to a short-term load forecasting use case could provide for the research com-

munity. Furthermore, what the possible improvements could mean for the

actual application of this for both transmission system operators, electricity

generation companies and vendors.
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Design as a search process is that the researcher should utilize all available

means in the domain of the use case. For this thesis, it is gathering of all

available and relevant data for the load forecasting use case of the Norwegian

bidding zones. Furthermore, what load forecasting models to apply to the

use case. The last guideline is the communication of the research work. The

research should be presented in an effective way to both the domain experts

and to the peers who are novel to the domain.

4.2 Short-term Spatiotemporal LSTM Fore-

casting

As for the methodology for this thesis, I decided on a data-driven spatiotem-

poral feature selection approach. A data-driven spatiotemporal approach is

built on data analysis of the spatiotemporal data. The data-driven part is

that further actions are determined based on the results of the data analysis

and the validation results for the load forecasts. A paper using a data-driven

feature selection method for solar power forecasts with an AE-LSTM model

improved the results compared to other models [26]. The feature selection

methodology is one of the main methodologies in short-term load forecasting

[1].

The flow diagram in figure 4.2.1 shows the methodology pipeline for this

case study. Firstly, the collected hourly resolution electricity consumption
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Figure 4.2.1: Overview of the Lagged Spatiotemporal Feature Short-Term
Load Forecasting

data from all zones and weather variables are sent to the data pre-processing

block. The integrity of these spatiotemporal data will be checked, through

outlier and missing data detection. Then the data flow moves to the data

analysis and feature selection block. With data analysis tools such as mutual

information and correlation will reveal what features have the potential for

improving the model.

The promising features are first sent to the LSTM model for test and

validation. This is done to verify the feature selection based on the spa-

tiotemporal data analysis performed. The feature processing block is meant

to investigate if there are some tweaks or improvements that can be done
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for the spatiotemporal features. In this case it is testing the lagging of the

features. The LSTM is chosen as the main model for the thesis work, so

the inclusion of this in the methodology of the thesis is considered impor-

tant. Then the LSTM network runs and produces a 48-hour load forecast

to be tested and validated against the actual consumption. The workflow

goes back to data analysis and feature selection until the results are deemed

acceptable, and a method has been found. The following sections will unveil

what actions happen in the different blocks.

4.2.1 Data Pre-processing Block

When applying a data set to a model, there has to be a thorough check to

review the data integrity. The usual checks are outlier detection and missing

values. Outlier detection is for detecting data points that are skewed and

non-logical. For instance, a data point of 20 000 MWh for region NO2 which

has a mean of 1874 MWh, or a 0 MWh without there being a power outage

for the entire bidding zone. The second check is for missing data points.

Most models will simply stop calculation and get errors if a Null or Not-a-

Number(NaN) value is sent into the network.

The consumption data set is checked for outliers, but none were detected.

There are also no missing data through the last 3 years of electricity con-

sumption data sets. However, in the weather variables, there are several

instances of missing data. These are mitigated using interpolation, where

the adjacent value is applied to the missing data point.
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Data formatting for this dataset, when sending it through an LSTM network,

is using a scaler to normalize the values. We set the range to be between

-1 and 1. This is a normal operation for data pre-processing because having

features with different ranges can cause a neural network to weigh the fea-

tures wrong. The normalized values are sent through the network and are

converted back to the original domain space for testing and validation after

the forecast.

4.2.2 Feature Selection and Processing Block

Feature selection in load forecasting is essential. The model performance is

only as good as the input data. As a data-driven spatiotemporal methodol-

ogy, there has to be a reasoning for the selection of what feature inputs to

have in a model. The features to be selected from can be found in section

3.1. These are historical energy consumption data for the 5 bidding zones,

and 44 weather variables.

The spatial distances between the zones are shown in figure 3.0.1. The

zones are not all adjacent to each other. The temporal relation between

the zones is that the data is collected across the same time-space with the

same hourly resolution. The spatiotemporal relation is the data analysis

of the two parts combined. The weather variables are also considered spa-

tiotemporal. They are collected across time and space, with the same hourly

resolution, and will be examined against their respective bidding zone. To

determine if there is a spatiotemporal dependency for the bidding zone fea-
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tures and weather variables, we need to perform an analysis of the historical

spatiotemporal data with tools such as correlation and mutual information.

Correlation checks reveal if and how variables are related. The range for

the output of the check is from -1 to 1. If the value is above 0, it has a positive

correlation. This means that the two variables move in the same direction. If

x goes up, it is likely that y goes up at the same time. For negative correlation

less than 0, this means through the time series when the value in variable x

trends upwards, the variable y tends to trend downwards. They move in the

opposite direction. The equation in 4.1 is the most widely applied correlation

equation called Pearson correlation. Where n is the number of observations,

(xi − x̄) is the sum of scores for x, and (yi − ȳ) is the sum of scores for y.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4.1)

Mutual information reveals if there is some explanatory resemblance be-

tween the variables. It measures how much information can be acquired

from one feature given another. When mutual information was applied as

the main feature selection tool, the authors experienced improved results

for their short-term load forecasting use case [33]. The mutual information

can be equivalently expressed as displayed in 4.2 [34]. Where the marginal

entropies are H(X) and H(Y ), the conditional entropies are H(X|Y ) and

H(Y |X), and X and Y are represented as joint entropy by the H(X, Y ).
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I(X;Y ) ≡ H(X|Y ) ≡ H(X|Y )−H(Y |X)

≡ H(X) +H(Y )−H(X, Y )

≡ H(X, Y )−H(X|Y )−H(Y |X)

(4.2)

The results were also improved in the experiments for day-ahead pricing

forecasts when the authors applied mutual information scores in their feature

selection pipeline [35].

For the peak load forecasting problem, the authors in a research paper [36]

concludes that using mutual information for feature selection could lead to

improvements for peak load forecasting use cases. In another case study, the

correlation and mutual information were combined as feature selection tools

for weather input [37]. The authors improved their results on the short-term

load forecasting horizon. This paper enforces the application of the data-

driven spatiotemporal feature selection methodology disclosed earlier in this

section.

In this thesis’ experiments the correlation and mutual information checks

will be applied to all features shown in 3.1, as part of the data analysis in

feature selection. This will reveal which features have the potential to affect

the short-term load forecast positively for this use case.

For the feature processing block, the features selected in the feature selec-
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tion block shall be investigated first. A widely applied method of improving

and achieving better forecasts is using lagged features. Either for imputing

variables that are not up to date or by applying lag to the features applied

to the model for forecasting. Lagging the weather variables such as temper-

ature have documented an effect in past works [21]. Lagging the electricity

consumption feature itself is applied as a feature input in a case study [38].

The authors achieved a 31.6 % Mean Absolute Percentage Error(MAPE) im-

provement when applying this method to their load forecasting use case. The

spatiotemporal data in their study is the electricity consumption gathered

from 1708 households.

Lagged values will be tested and applied for the features that show promise

in the feature selection. The NO bidding zones electricity consumption fea-

tures can be lagged with itself as a feature extraction process and applied as

a feature to its own forecast. Or, the electricity consumption bidding zones

can be applied as lagged spatiotemporal features in the forecast of another

bidding zone.

4.2.3 LSTM Forecasting Block

Showing the best results both in the initial studies and in the general liter-

ature review, the LSTM was chosen as the model for my case study. The

LSTM model is not an out-of-the-box solution to all use cases and data. It

has to be tailored, tuned and optimized to perform well and adopt the trends

in the data. To optimize the LSTM, the tuning and tweaking of the hyper-
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parameters, training length and settings have to be performed.

To have a fair and academically correct comparison of the results, a base-

line vanilla model has to be made. In an LSTM model, there are several

parameters and settings that affect the performance:

• Training data length. How much of the data should be used for training.

• How many past values the LSTM unit should hold in memory.

• Number of epochs to train and validate the data on.

• The batch size. How many values to be sent through the network at

the same time.

• The number of layers in the network.

• The optimizer and loss function choice.

• Drop out-filters to mitigate overfitting.

To approach this scientifically, there has to be some trade-offs. One so-

lution is to grid-search with different values for all of the parameters and

settings at the same time. This will create too many iterations. A grid

search approach is a way of testing many combinations of different parame-

ters at the same time, to find the best result. The other solution is to choose

step-by-step which parameters to be tested against each other. For instance

setting the grid-search with 1, 3, 6, 9, 12, and 24 months of training data

against batch sizes of 8, 16, 32, 64, and 128. This creates 30 iterations for
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the model to execute.

With the testing of the parameters through a grid search approach, a

baseline vanilla model has been established. This was performed using uni-

variate electricity consumption data for the LSTM model. This yielded the

following settings shown in table 4.1 .

Table 4.1: The tuned values.

Parameter tuned Tuned value setting

Training data length 6 months

Past values 48 hours/time steps
Epochs 13

Batch size 16

The optimizer ADAM has shown that it performs well and is chosen as the

optimizer for this model in the experiments [26]. The loss function and the

number of layers were also predetermined before optimization. The drop-out

filter only skewed the results, so this was discarded.

The LSTM network chosen for this thesis’ experiments is an autoencoder

sequence-to-sequence model. A part of the objective for this thesis is to

achieve as good results as possible. However, the more important scientific

contribution lies in the attempt of discovering a novel method and approach

for short-term load forecasting in a large case study like the Norwegian bid-

ding zones. Therefore, the experiments in this thesis are mainly focused on

spatiotemporal data analysis, feature selection, and feature processing. The

comparison of the results between the vanilla model and the model with
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added features is an integral part for the validation of the thesis work.

Figure 4.2.2: The LSTM architecture for the case study

In figure 4.2.2, the architecture of the final network is presented. The

input to the model is 48 hours/data points x number of features. The number

of units of the hidden layers is determined by how many time-steps are set.

In this case, it is set to 48. The first layer has the return sequence parameter

set to true, so this layer receives the input data and outputs 128 features

with all 48 time-steps to the next layer [39]. The second layer receives the

input and reduces the feature size to 64. This layer outputs to the repeat

vector a vector with only 1 time-step because the return sequence is set to

false. This output is called an encoded feature vector. The repeat vector

duplicates the feature vector 48 times, once for every time step. This makes
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up the bridge between the encoder and decoder sections in the network.

The decoder section reverses the order of the encoder section. The fourth

layer has the same parameter settings and feature size as layer 3, while the

fifth layer is the same as layer 2. The last layer in the network is the Time

Distributed Dense layer. Layer 5 outputs a vector of the 48 time-steps x 128

features. The Time distributed layer duplicates the number of features from

this vector equals the number of input features into the network. In the end

the prediction of the model is performed, creating the 48 hour short-term

load forecasts based on what the model has learned.
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Chapter 5

Results and Discussion

For the results achieved in the use case of short-term load forecasting for

the Norwegian bidding zones, the data explained in section 3.1 is applied to

methodology shown in figure 4.2.1.

The results in this use case is executed on a Nvidia GeForce GTX 1060 6GB,

a Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz and 16.0 GB ram.

5.1 Feature selection results

Here we disclose the feature selection results, where the correlation and mu-

tual information scores are presented and discussed. They will point us in the

direction of which of all the previously mentioned features should be added

as an input to the LSTM model.

In regards to the spatiotemporal relationships between the bidding zones,
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the data analysis points to the fact that they are highly positively correlated.

As can be seen in figure 5.1.1, with two years of spatiotemporal electricity

consumption data from the full calendar years 2019 and 2020, zone NO2

scores the highest average correlation with the other zones. While NO4 has

the lowest average score. The NO4 zone is the one with the most spatial

distance from the other zones, and this could be the reason for the slightly

lower correlation score. The spatiotemporal bidding zones correlation scores

range from 0.88 to 0.98. The maximum positive score for correlation is 1.

This tells us that if one of the zones trends upwards in consumption, most

likely the others will as well. Furthermore, if one of the zones trends down-

wards, there is a strong case for the others zones will trend at approximately

the same time.

Figure 5.1.1: The correlation between the 5 bidding zones and the total
consumption for Norway variable NO.

The mutual information scores can be observed in figure 5.1.2. The nam-

43



ing of the columns represents which NO zone is shown against which other

NO zone. The first 4 columns represent the NO5 results in mutual informa-

tion against the others, with the last number being the zone from which the

check is performed. The takeaway is that NO1 and NO2 have the highest

average scores and NO3, NO4 and NO5 have similar scores. The results from

the mutual information analysis performed in the range of 4 to 6. A score

of 6 tells us that information from one feature can explain a great deal from

the other feature. This further strengthens the case that the zones have a

spatiotemporal dependency.

Figure 5.1.2: The Mutual Information scores between the 5 bidding zones.

The spatiotemporal relation is not equal for the zones concerning data

analysis. It is not a given fact that the highest correlated or highest-scoring

mutual information spatiotemporal zones perform the best in load forecasting
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use cases. When applied as a feature to the other zones, the results can

either strengthen the case for the zones with the highest scores or debunk

the differences. There could be other factors playing in.

Figure 5.1.3: The correlation scores between the NO zones and the weather
variables.

The weather variables have been checked for correlation and mutual in-

formation as well over two full calendar years 2019 and 2020. In figure 5.1.3,

the correlation between the NO zones and the weather variables in their re-

spective zones is displayed. All the temperature variables vary in the range

from -0.7 to -0.84. This inclines a strong negative correlation. If the temper-

ature decreases, the most likely will outcome for the electricity consumption

is an increase. There seems to be no consistency in the results of the wind

variables, with varying scores from 0.31 to -0.27. The humidity scores show

that there is not much explanation to be found for electricity consumption in

the historical humidity data. Except for the NO1 zones, where the humidity

correlation ranges from 0.19 to 0.31.
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Figure 5.1.4: The Mutual Information scores between the NO zones and
their weather variables.

In figure 5.1.4, we observe the 44 weather variables checked for mutual

information against the respective bidding zones where the weather station is

located. For instance, the variable ’BlindernTemp’ is the historical temper-

ature data from the weather station Blindern in Oslo, which is in the NO1

zone. What can be discovered in the data, is that the temperature variables

score the highest on mutual information. The humidity variables score the

lowest, while the wind variables being slightly higher. The data analysis for
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the spatiotemporal weather variables reveals that the temperature variables

are most likely the most applicable features to be included in the short-term

load forecasts. All the temperature variables score high throughout the data

analysis tests. There seems to be a spatiotemporal dependency.

After the spatiotemporal data analysis has been conducted, some fea-

tures stand out. By following the data-driven feature selection methodology

shown in figure 4.2.1, the next step is testing and validate these features in

the LSTM model. We must uncover which features improve the model before

testing out modifications to the features. First, we need a way of scoring the

short-term load forecasts for a comparison basis.

The most common and standard way of scoring load forecast results is

by using Mean Absolute Percentage Error(MAPE). Since Mean Absolute

Error(MAE) could confuse as to what is an acceptable result, which would

differ from the sole amount of load in the given use case. In this thesis, the

mean values of electricity consumption have differences between the zones,

meaning that the most reasonable way to evaluate the results is to use MAPE

scoring. This yields a percentage average score based on the error in the load

forecasts. The MAPE equation is shown in 5.1. For the load forecasting

domain; a 48 hour forecast means 48 T observations. The yt is the electricity

consumption at time t. The ft is the forecast of the actual consumption yt.
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MAPE =
1

T

T∑
t=1

100

∣∣∣∣yt − ftyt

∣∣∣∣ (5.1)

The MAPE value is a good indicator for the evaluation of the model’s

performance. The lower the percentage score is, the more accurately the

forecast is for the horizon set. If the score is 0 %, the model predicts the

exact value over the future unknown 48 data points in this experiment. A

MAPE score of 5 % indicates a 5 % average error for the 48 data points.

The initial baseline results were performed for each of the five bidding zones.

This was done with the vanilla LSTM model disclosed in section 4.2.3, using

univariate data from the region to forecast on. For instance, the bidding

zone NO1 baseline result is achieved by running the LSTM network with

the electricity consumption from NO1. The output is a 48-hour short-term

load forecast, to have as a comparison basis and validation of the feature

selection. The same forecast time is applied to the feature selection testing

and validation part. Let us move to multivariate data and feature selection.

The best scores in correlation and mutual information in the data analysis

part were the electricity consumption bidding zones. By first applying these

NO features to the baseline model, 3 out of 5 zones showed better results

than the baseline vanilla model. This was done through a grid search ap-

proach. For instance, the NO1 zone was tested individually with the NO2

zone, then NO3, and so forth. Adding all of the 4 other NO zones at once
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caused too much noise for the model, and the results worsened.

Figure 5.1.5: NO1 bidding zone forecast with all weather variables as input,
MAPE score 8.25 %

The temperature variables showed the most promise of the weather vari-

ables in the spatiotemporal data analysis section. These were tested both

individually and then incrementally if they showed promise. When applying

all the weather variables for a region into the model, the results were poor,

as can be seen in figure 5.1.5. This achieved a MAPE score of 8.25 % for

the NO1 zone forecast. The blue line is the short-term load forecast and the

orange line is the actual electricity consumption. When implementing the

temperature variables into the model, none of them improved the baseline

result. In figure 5.1.6, the NO1 forecast with the ’Haugenstua’ temperature

variable is shown. This variable had one of the highest scores in the data

analysis and achieved a MAPE score of 3.85 %. However, it still did not

improve from the univariate vanilla LSTM result for the NO1 region. This
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forecast shows that the model learns the daily trends better than the forecast

in figure 5.1.5.

Figure 5.1.6: NO1 bidding zone forecast with best temperature feature
’HaugenstuaTemp’, MAPE score 3.85 %

After checking all the temperature variables with their inherent zone,

none of them improved the vanilla baseline result. To be thorough in the

experiment, we checked all the 44 weather variables for their respective bid-

ding zone. These are listed in table 3.2. Alas, only 2 out of the 44 weather

variables improved the baseline model. When these two were run together

in the model, the results worsened from the baseline result again.

The next step was the feature processing explained in section 4.2.2. In

the literature review of this thesis, the majority of papers on lagged variables

consider lagging the weather variables. By first lagging the temperature vari-

ables for the NO1 region with a range from 8 to -8, one feature improved

the baseline model’s MAPE score. This was with -4 lag, meaning that the

time series was shifted 4 hours back in time. By having discovered that a
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temperature variable improved when applying -4 lag, the rest of the tem-

perature variables for the other bidding zones were tested. Only one other

temperature variable improved from the baseline model’s result.

Recalling that the spatiotemporal bidding zones features had a high pos-

itive correlation and that they most likely trend in one direction at approx-

imately the same time. The real discovery of the experiments in this thesis

was made when lagging the spatiotemporal bidding zones. With a grid search

approach, we applied it to the spatiotemporal NO electricity consumption

features. Testing a lag range from 8 to -8 again for the bidding zones, to

discover if shifting the added NO zone feature back or forth in time was the

most effective for all of the zones. This would possibly tell us if a zone has

to be lagged to function as a ”trendsetter” for the rest of the NO zones. It

was quickly discovered that either -2 or -4 was the optimal lag for the spa-

tiotemporal features.

Forecasts for all zones were improved beyond all-time best MAPE score when

applying a lagged spatiotemporal bidding zone feature to the forecast zone.

To find out which of NO zones are the best ones to apply as a lagged

spatiotemporal feature, several tests were carried out. By running the fore-

casts for different periods in time in April, June, and September of 2020,

it was clear to see which spatiotemporal features distinguished themselves

from the others. In figure 5.1.7, we can see the spatiotemporal connectivity

graph for what feature was applied to a NO zone forecast. The NO2 feature
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Figure 5.1.7: The spatiotemporal connectivity graph of the Norwegian
bidding zones

repeatedly had the best MAPE score when applied to the NO1, NO4, and

NO5 zone short-term load forecasts. The NO4 lagged feature had the best

MAPE scores when applied to the NO3 and NO2 zone. Both the NO2 and

NO4 spatiotemporal zones performed best when lagged with -2 either or -4.

When checking the correlation before and after lagging the time series by

-2 and -4, the correlation declines. However, the mutual information score

remains around the same values.

Let us first consider the first scenario; the baseline vanilla LSTM results

with just the electricity consumption of NO2 as input. Figure 5.1.8 shows
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the forecast in the blue line and the actual consumption in the orange for

48 hours in June 2020 for the NO2 zone. The MAPE result for the model is

1.63 %.

Figure 5.1.8: Vanilla LSTM forecast

Figure 5.1.9: Lagged spatiotemporal LSTM forecast

Considering the second scenario, applying the NO4 as a lagged spatiotem-

poral feature for the NO2 forecast. This is executed for the same time and

forecast horizon as the vanilla model. The figure 5.1.9 shows the forecast

value versus actual consumption. The MAPE result for adding the lagged
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spatiotemporal feature to the baseline model is 0.97 %. Compared to the

vanilla baseline model result, the improvement is a relative 65 %.

5.2 Validation Results and Discussion

For the validation technique of the short-term load forecasts for the use

case of the Norwegian bidding zones, the most fitting approach is analysis.

For this thesis’ experiment it means analyzing the results from the same

model and forecast horizon, but with different input to the model. Testing

and validating the short-term load forecasts on the four seasons to have

seasonal results is another extra validation step made. The evaluation will be

presented in comparative tables with an explanation. To evaluate the quality

of the best method found in this use case lies in comparing the results with

the univariate LSTM model, the ARIMA model, and Statnett performances.

The method which outperformed the other methods and models is to apply

a lagged spatiotemporal feature to the baseline LSTM model.

In table 5.1, the seasonal test results are presented using the final method:

Lagged Spatiotemporal Feature Short-Term Load Forecasting (LSTF STLF)

using LSTM. These results were achieved by adding a lagged spatiotemporal

feature alongside the consumption data for the forecast region. Which zonal

features that were applied to a zone can be viewed in the spatiotemporal

connectivity graph in 5.1.7. The 4 forecast test times are chosen at random

given a season from summer 2020 to spring 2021. The forecast horizon is 48
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hours, and those data points are not seen by the model. The training data

ends at the given data point, and the predictions are made by the lagged

spatiotemporal feature LSTM model based on the training.

Table 5.1: The MAPE results in percentage with the LSTF LSTM.

Test time NO1 NO2 NO3 NO4 NO5

Spring 2021 1.54 0.97 1.25 1.42 1.55
Winter 2020 2.36 2.12 2.08 1.76 1.86

Fall 2020 2.32 1.85 1.76 1.82 1.62
Summer 2020 1.75 1.98 1.75 1.31 1.74

Average MAPE 1.93 1.73 1.73 1.57 1.69

As can be discovered in table 5.1, region NO4 has the lowest average

MAPE score at 1.57 %, while NO1 has an average score of 1.98 %. The

results for Summer and Spring achieve the best performing short-term load

forecasts. While the winter season is the toughest one to forecast.

Table 5.2: The average MAPE model scores in percentage.

Model MAPE %

LSTF LSTM 1.73

Vanilla LSTM 1.98
ARIMA 3.20

Table 5.2 shows the average MAPE results for the models; the Lagged

Spatiotemporal Feature using LSTM(LSTF LSTM), the Vanilla LSTM, and

the ARIMA model is tested on the same short-term load forecasting use

case data. Applying only electricity consumption for the forecast zone in the

Vanilla LSTM network, the results are accomplished. The average MAPE
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score over all bidding zones from the seasonal results is 1.98 %. The LSTF

LSTM MAPE score over all bidding zones from the seasonal results is 1.73

%. The ARIMA model performs an average MAPE of 3.20 % with results

from the 5 bidding zones in Summer 2020 using univariate data.

Statnett’s data science team achieved a score of 4.2 % in their approach

to the short-term load forecasting of the bidding zones [4]. It is comparable

in the fact they used the same recurrent neural network model and use case.

However, their test data was from 2018 and can not be directly compared

with the data from 2020 and 2021 in these tables. Statnett is the transmission

system operator for the Norwegian electrical grid and their work relies on the

accurate forecast. Their results were the benchmark we had set before the

experiments.

When comparing the results with the vanilla model, the LSTF LSTM

performs 14.4 % better. The ARIMA model had an average MAPE of 3.20

% for the 5 regions in summer 2020. The LSTF LSTM performs a relative

85 % better than the ARIMA implementation. The ARIMA model has not

been as thoroughly tuned and tested as the LSTM baseline model.

In figure 5.2.1, the graphs presents five of the the validation results. The

actual consumption lines are the orange ones, while the blue lines are the

short-term load forecasts for the method LSTF LSTM. Every zone is repre-

sented in the collage. In figure 5.2.1 (a) the NO1 load forecast for Spring 2021

is displayed. The figure 5.2.1 (b) is the NO2 load forecast for Spring 2021.
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(a) NO1 forecast (b) NO2 forecast

(c) NO3 forecast (d) NO4 forecast

(e) NO5 forecast

Figure 5.2.1: A selection of the short-term load forecasts for the five bidding
zones.
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This was the best scorer of all results, with a MAPE of 0.97 %. Translated

into MWh, each hour misses on average by approximately 56 MWh. The

NO3 load forecast is for summer 2020, shown in figure 5.2.1 (c). In figure

5.2.1 (d), the NO4 load forecast for the summer of 2020 is displayed. Lastly,

the NO5 forecast for Fall 2020 is shown in 5.2.1 (e).

When first applying the spatiotemporal bidding zones as features to the

forecasts for another zone, the results showed some improvements from the

vanilla model. The major milestone was when we tried lagging the spa-

tiotemporal features. The short-term load forecasts improved. The reason

for this is still up for debate. NO2 and NO4 have shown that they are the

best spatiotemporal features to apply for the short-term load forecasting use

case of the Norwegian bidding zones. The distinction in the results between

the zones grew when lag was applied to the features as well. This underlines

the fact that these two lagged spatiotemporal features are the best to utilize.

To explain why we could argue that the two zones score differently in

the spatiotemporal data analysis. The NO2 zone has the highest average

correlation with the other zones, while the NO4 zone has the lowest. For

mutual information, the NO2 zone has the second-highest average, while

NO4 has one of the lowest. Both of the zones have a relatively high score

in both tests. There may be some explanation in this. The NO4 zone is the

one zone that behaves slightly differently, and this could benefit the forecasts

in regions NO2 and NO3. The correlation tells us that these spatiotemporal

time series trend together. When we applied either -2 or -4 lag to these two
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spatiotemporal features and used them in the forecasts, all 5 zones achieved

new all-time best MAPE scores for this experiment.

(a) NO1(pink line) and NO2(black line) (b) NO3(red line) and NO4(blue line)

Figure 5.2.2: Comparing morning electricity consumption for the zones.

In figure 5.2.2, the electricity consumption from midnight to 08:00 in the

morning is displayed. As can be observed in figure 5.2.2 (a), the NO1 zone

with the pink line starts the increase in consumption 1 hour before the NO2

zone with the black line. As the best result for NO1 forecasts is achieved

when we apply lag -2 to the spatiotemporal NO2 feature, this makes sense.

The NO2 data is shifted 2 hours back in time, meaning that the NO2 data

starts the pick up in consumption for the morning before the NO1 zone.

This gives the model a daily trend to learn. The same can be observed in

figure 5.2.2 (b). The NO3 zone with the red line starts a major uptake in

consumption 3 hours before the NO4 zone with the blue line increases much.

The best results for the NO3 forecasts are with -4 lag applied to the NO4

spatiotemporal feature.
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If we apply Dr. Hong’s estimate [5] of what could be saved a year with 1

% improvement of short-term load forecasting to the Norwegian use case, this

number reaches approximately 6.5 million USD based on the maximum peak

load of 21.86 GWh for Norway in 2020. The average MAPE score of 1.73

% for the LSTF LSTM from this thesis’ results compared with the MAPE

result of 4.2 % from Statnett is a 2.47 % improvement. Following Dr. Hong’s

estimate, this thesis’ final method could lead to savings of approximately

16.19 million USD for a full year for the Norwegian bidding zone use case.

However, Statnett’s article is from 2018, and they most likely have improved

their short-term load forecasts by now.

As can be seen in figure 5.2.1, where we compare the forecasted values

with the actual consumption, the model struggles with some of the peak

loads. This is a common issue in load forecasting when using machine learn-

ing models and is difficult to mitigate. To avoid power outages these peaks

have to be predicted or at least taken into account in the actual handling of

the power grid.

The spatiotemporal weather variables did not improve the forecasts for

this use case. All of the 44 weather variables collected for this thesis were

applied to their respective zones, and only 2 of them improved the baseline

vanilla model forecast result. When applying lag to the temperature vari-

ables, two zones improved slightly from the baseline result. This could be

explained by the size of the bidding regions. Temperature is considered an

important factor for electricity consumption. In other case studies it has
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shown improvements for the short-term load forecasts. For smaller use cases

like household load forecasting, the temperature is a very important and

sensitive feature to include.

As an artifact for the design science research method in this thesis was

mainly to find a novel approach for short-term load forecasting, the proposed

novel method is called: Lagged SpatioTemporal Features Short-Term Load

Forecasting(LSTF STLF) using LSTM.
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Chapter 6

Conclusion

Through a data-driven spatiotemporal feature selection methodology in this

thesis, a novel method for approaching short-term load forecasting for a large

use case been created. The solution I have found for the use case of the

Norwegian bidding zones is applying lagged electricity consumption features

as input to the LSTM model. The novel method proposed after following

the thesis methodology presented in figure 4.2.1 is called:

Lagged SpatioTemporal Features Short-Term Load Forecasting (LSTF STLF).

The spatiotemporal data analysis and the grid search for the zones and lags

revealed the two bidding zones NO2 and NO4 as the best applicable spa-

tiotemporal features for the other zones. This selection can be substantiated

with high positive correlation and mutual information scores. NO4 scored

lowest in the correlation score, and this can be explained by the spatial dis-

tance from the other zones. Furthermore, that the NO2 and NO4 zones seem
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to start their daily morning increase in electricity consumption later than the

other zones. The 44 weather variables collected for this experiment did not

have any positive impact on the short-term load forecasts on regions of this

size.

By using univariate electricity consumption data on the same optimized

LSTM network, the average short-term load forecast MAPE for the 5 bidding

zones is 1.98 %. With an added lagged spatiotemporal feature the average

is 1.73 %. Both are good results for a forecast horizon of 48 hours. In real-

world application, however, the 14.4 % relative improvement could mean

a substantial amount of money saved in several integral parts of the energy

sector. Demand-side management is crucial For the Norwegian TSO Statnett.

They need to have accurate short-term load forecasts to operate the grid and

control the electricity flow. The stakeholders who have the best load forecasts

have a competitive edge in the energy trading market. Maintenance work

for the generation companies has to be planned on a short-term aspect to

minimize financial loss, and knowing when it is most cost-effective to plan

these operations is dependent on the short-term load forecasts.

6.1 Answers to Research Questions

Research Question 1: How are the spatiotemporal relationships for

the data in the five bidding zones of electricity demand in Norway?
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The spatiotemporal relationships between the zones are highly positively

correlated. The five bidding zones seem to trend up or down at approximately

the same time. The mutual information score is also high, which strengthens

the case that they are highly spatiotemporal dependent on each other. The

spatiotemporal temperature variables had high negative correlation and high

mutual information scores for their regions.

Research Question 2 How to utilize the spatiotemporal depen-

dencies in short-term load forecasting methods?

When adding the spatiotemporal bidding zone features to the LSTM, 3

out of 5 zones improve. However, when we tried lagging these features in

a grid search approach, the best results for this use case of short-term load

forecasting for the Norwegian bidding zones were revealed. With a lag of

either -2 or -4, the NO2 and NO4 zone were the optimal spatiotemporal fea-

tures. When adding several of these features at once to the forecast region,

the results showed that it caused too much noise. So by applying one lagged

spatiotemporal feature, as can be discovered in the spatiotemporal connec-

tivity graph in figure 5.1.7, the best way to utilize the dependencies was

revealed. The temperature variables did not improve the short-term load

forecasts until we applied lag. Two of the bidding zones slighly improved

from the baseline result.
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6.2 Future work

For further work on the same use case, the work would contain more opti-

mization for the tuning of the hyperparameters, settings, and architecture of

the LSTM model. The main focus for this thesis has been to find a novel

method for short-term load forecasting, and the architecture could be scaled

more. The novel method this thesis presents could be transferable to other

countries and regions. First and foremost to Sweden, who has a similar sep-

aration for bidding zones as Norway. It should be scalable to other regions

as well if there is enough historical and regional zonal data to analyze, train

and validate on.
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