
Utilizing public repositories to
improve the decision process
for security defect resolution
and information reuse in the
development environment

Anja Fonn Salen

Master’s thesis in Software Engineering at

Department of Computer science, Electrical
engineering and Mathematical sciences,

Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

May 2021

1

Abstract

Security risks are contained in solutions in software systems that could have
been avoided if the design choices were analyzed by using public information
security data sources. Public security sources have been shown to contain more
relevant and recent information on current technologies than any textbook or
research article, and these sources are often used by developers for solving soft-
ware related problems. However, solutions copied from public discussion forums
such as StackOverflow may contain security implications when copied directly
into the developers environment. Several different methods to identify security
bugs are being implemented, and recent efforts are looking into identifying se-
curity bugs from communication artifacts during software development lifecycle
as well as using public security information sources to support secure design and
development. The primary goal of this thesis is to investigate how to utilize pub-
lic information sources to reduce security defects in software artifacts through
improving the decision process for defect resolution and information reuse in the
development environment. We build a data collection tool for collecting data
from public information security sources and public discussion forums, construct
machine learning models for classifying discussion forum posts and bug reports
as security or not-security related, as well as word embedding models for finding
matches between public security sources and public discussion forum posts or
bug reports. The results of this thesis demonstrate that using public information
security sources can provide additional validation layers for defect classification
models, as well as provide additional security context for public discussion fo-
rum posts. The contributions of this thesis are to provide understanding of how
public information security sources can better provide context for bug reports
and discussion forums. Additionally, we provide data collection APIs for collect-
ing datasets from these sources, and classification and word embedding models
for recommending related security sources for bug reports and public discussion
forum posts.

Acknowledgements

First and foremost, I would like to thank my supervisor Tosin Daniel Oyetoyan
for all the great guidance and advice whilst working on this thesis. It would not
have been possible without his help. I would like to especially thank him for his
guidance during running the experiments in the case studies, as well as making it
possible to reuse some parts of the experiment framework in his previous paper.
I would also like to thank my friends and family for their support throughout
this year working on the thesis.

2

Contents

1 Introduction 9

2 Background 12
2.1 Public Information Sources . 12

2.1.1 Public Security Sources 12
2.1.2 Public Discussion Forums 14
2.1.3 Code Sharing Platforms 15

2.2 Bug Report Classification . 16
2.3 Natural Language Processing . 16
2.4 Machine Learning . 17

2.4.1 Supervised learning . 17
2.4.2 Unsupervised learning . 17
2.4.3 Reinforcement learning 17
2.4.4 Overfitting and Underfitting 18

2.5 Deep learning and Neural Networks 18
2.6 Model Evaluation . 20

2.6.1 Bug Report Classification Metrics 20
2.6.2 Contextualizing Discussion Forum Posts and Bug Reports 22

3 Design and Implementation 23
3.1 API Development . 23

3.1.1 Interface To Discussion Forums 24
3.1.2 Interface To Security Information Sources 24
3.1.3 Interface To Code-sharing Platforms 24
3.1.4 Builder Pattern For User Interaction 25
3.1.5 Configuration Using Maven 25
3.1.6 Java Properties File . 26

3.2 Data Collection and Preprocessing 26
3.2.1 Public Security Sources 27
3.2.2 Public Discussion Forums 27
3.2.3 Security bug datasets . 28

3.3 Information Retrieval and Feature Extraction Approaches 28
3.3.1 Term Frequency-Inverse Document Frequency 29
3.3.2 Word Embedding . 29

3.4 Similarity Measures . 31
3.4.1 TF-IDF approach . 32
3.4.2 Word Embedding Approach 32

3

3.5 Case study design to answer RQ1 and RQ2 32
3.5.1 Bug classification and contextualizing with Word2Vec (RQ1) 32
3.5.2 Public forum classification and contextualizing with Word2Vec

(RQ2) . 33
3.6 Quality Evaluation of the API . 33

3.6.1 Usability . 33
3.6.2 Maintainability . 34
3.6.3 Extensibility . 34
3.6.4 Static Code Analysis . 35

4 Case study 1: Contextualizing Bug Reports Using Public Se-
curity Data Sources 37
4.1 Experiment setup and modelling approach 38

4.1.1 Research questions and analysis 39
4.2 Results & Discussion . 40

4.2.1 Comparison to state-of-the-art studies 40
4.2.2 Comparing models with filtered dataset to models with

unfiltered dataset . 41
4.2.3 Providing additional context for bug reports 42

4.3 Threats to validity . 45
4.4 Conclusion . 46

5 Case study 2: Contextualizing Public Forum Discussions Using
Public Security Data Sources 47
5.1 Experiment setup and modelling approach 48
5.2 Results & Discussion . 48
5.3 Threats to validity . 51
5.4 Conclusion . 52

6 Improving security in the developer’s development environ-
ment 53

7 Discussion 55
7.1 API Development . 55
7.2 Case Study Results . 56

7.2.1 Contextualizing Bug Reports Using Public Security Data
Sources . 56

7.2.2 Contextualizing Public Forum Discussions Using Public
Security Data Sources . 57

8 Related Work 58
8.1 Public Information Security Sources 58
8.2 Bug Report Classification . 59
8.3 Linking Knowledge Units . 60
8.4 Machine Learning and NLP . 61

9 Conclusion 62

10 Future Work 64

A Source code 66

4

B Research Paper: Utilizing public repository to contextualize
security report classification models 67
B.1 Abstract . 67
B.2 Introduction . 68
B.3 Methodology . 68

B.3.1 Dataset collection . 69
B.3.2 Experiment setup and modelling approach 71
B.3.3 Research questions and analysis 73

B.4 Results & Discussion . 74
B.4.1 RQ1: What is the performance of vulnerability classifica-

tion model built with public information sources 74
B.4.2 RQ2: Can we gain additional context for discussion fo-

rums from public security sources? 77
B.4.3 Discussion . 78

B.5 Related study . 79
B.5.1 Linking Knowledge Units 79
B.5.2 Public Information Security Sources 82
B.5.3 Bug Report Classification 83

B.6 Threats to validity . 84
B.7 Conclusion . 85

5

List of Figures

2.1 Illutration of supervised, unsupervised and reinforcement learning 18
2.2 Illutration of underfitting, overfitting and well balanced models . 18
2.3 Example of neuron . 19
2.4 Illustration of neural network with two hidden layers 20
2.5 Confusion Matrix . 21

3.1 UML diagram of the main classes in the API 24
3.2 UML diagram of Builder Design pattern 25
3.3 Dataset Collection Framework . 27
3.4 CBOW Model Architecture . 30
3.5 Skip-Gram Model Architecture 31
3.6 CodeMR graph results . 35
3.7 CodeMR dependency graph . 36

4.1 Experiment modeling framework 38

6.1 Approach for collecting datasets consisting of vulnerable and clean
code . 54

10.1 Using a combination of the classification model and word embed-
ding model for validation . 65

B.1 Dataset collection framework . 72
B.2 Experiment framework . 73
B.3 Using a combination of classification model and word-embedding

model for validation . 79

6

List of Tables

2.1 Examples of CVE records . 13
2.2 Examples of CWE records . 13
2.3 Examples of CAPEC records . 14
2.4 Examples of posts on StackExchange forums 15

3.1 Validation Project Properties . 28
3.2 Validation dataset . 28

4.1 Experiment detail . 38
4.2 Comparison to state-of-the-art studies 40
4.3 Summary of results of filtered dataset with the best average g-

measure . 41
4.4 Summary of results of unfiltered dataset with the best average

g-measure . 41
4.5 Hypothesis: filtered dataset vs. unfiltered dataset 42
4.6 Percentage of CWE, CAPEC, and CVE matches for Chromium

bug reports predicted as true positive 42
4.7 Examples of CWE, CAPEC, and CVE matches for Chromium

bugs predicted as true positives 44
4.8 Examples of CWE, CAPEC, and CVE matches for Chromium

bugs predicted as false positives 45

5.1 Percentage of CWE, CAPEC, and CVE matches in StackOver-
flow and ServerFault discussion questions 48

5.2 Examples of CWE, CAPEC, and CVE matches to security related
StackOverflow discussion questions 49

5.3 Examples of CWE, CAPEC, and CVE matches to security related
ServerFault discussion questions 50

5.4 Example of CWE, CAPEC, and CVE matches to a non-security
related StackOverflow discussion question 51

5.5 Example of CWE, CAPEC, and CVE matches to a non-security
related ServerFault discussion question 51

B.2 Validation dataset . 70
B.1 Validation Project Properties . 70
B.3 Experiment detail . 72
B.4 Comparison to state-of-the-art studies 75

7

B.5 Summary of results of filtered dataset with the best average g-
measure . 75

B.6 Summary of results of unfiltered dataset with the best average
g-measure . 75

B.7 Hypothesis: filtered dataset vs. unfiltered dataset 77
B.8 Percentage of CWE, CAPEC, and CVE matches in StackOver-

flow and ServerFault discussion questions 77
B.9 Examples of CWE, CAPEC, and CVE matches to StackOverflow

discussion questions . 80
B.10 Examples of CWE, CAPEC, and CVE matches to ServerFault

discussion questions . 81

8

Chapter 1

Introduction

Software vulnerabilities are increasing security focus as critical and sensitive
systems which operate critical infrastructure become increasingly dependent
on complex software systems [61]. Consequently, organizations have focused
efforts on different methods to identify security bugs before attackers do. Some
of those efforts include using threat modelling during design, static analysis
tools during implementation [45], and using dynamic analysis tools. Recent
efforts are looking into identifying security bugs from communication artifacts
during the software development lifecycle [44, 46] as well as using public security
information sources to support secure design and development [51]. Security
risks are contained in solutions that could have been avoided if the design choices
have been analyzed by using public information security data sources. It is
therefore important that system architects and developers get easily processable
and up-to date security information during system design, development, and bug
resolution.

Thus, the primary goal of this thesis is to investigate how to utilize public
information sources to reduce security defects in software artifacts through im-
proving the decision process for defect resolution and information reuse in the
development environment. The main research question (RQ) is as follows:

• (RQ) How can we utilize public information sources to improve security in
the software development process?

To effectively address our main RQ, we formulate three sub-research questions
as follows:

• (RQ1) How can public security information sources be used to improve bug
report security classification models?

Existing vulnerability tools suffer from high misclassification rates, with espe-
cially high cases of false positives [46]. The hypothesis is that additional infor-
mation can be leveraged to reduce misclassifications of security bug prediction
models.

Furthermore, it has been remarked that modern software engineering is evolving
so fast that public forums contain more relevant and recent comments on current

9

technologies than any textbook or research article [20]. Public forums are now
de facto knowledge factory for solving software related problems. Unfortunately,
not every solution is security hardened. Solutions copied directly from public
discussion forums such as StackOverflow to the production environment have
been shown to have security implications [1, 4, 17]. Acar et al. [1] showed that
the use of StackOverflow by developers leads to insecurities as developers copy-
paste vulnerable solutions. We crafted two additional research questions (RQ2
and RQ3) following the above arguments.

• (RQ2) How can public security information sources be used to improve secu-
rity in online discussion forums?

This thesis will investigate how to extract information from public security
sources and use this information to gain additional security context for discus-
sion forum posts.

• (RQ3) How can public security information sources be used to improve secu-
rity in the developer’s development environment?

This thesis will investigate how to extract information from public security
sources and code sharing platforms, and use this information to build classifica-
tion models and gain additional security context for vulnerable solutions in the
developer’s development environment.

This thesis uses both qualitative and quantitative research methods to answer
the research questions. First we built a data collection tool for collecting data
from public information security sources and discussion forums, we then con-
struct machine learning models - classification models for classifying discussion
forum posts or bug reports as security or not-security related, and word em-
bedding models for finding matches between public security sources and public
discussion forum posts or bug reports. We then perform case studies on open
source bug datasets of software artifacts and datasets containing questions from
public discussion forums. To evaluate the models, we compare the classifica-
tion results to state-of-the-art studies, and perform a qualitative assessment
of the suggested matches between (1) public information security sources and
bug reports, and (2) public information security sources and public discussion
forums.

The results from this thesis show mappings between public information secu-
rity sources and bug reports, and mappings between public information sources
and discussion forum questions. These mappings are shown to give very useful
security information to developers during bug resolutions or during software de-
velopment questions and answers process on discussion forums. In addition, the
classification results of the quantitative case study are competitive to state-of-
the-art studies. The results demonstrate that using public information security
sources can provide additional validation layers for defect classification models,
as well as provide additional security context for public discussion forum posts.

This thesis makes the following contributions:

1. Provides understanding of how public information security sources can
better provide context for bug reports and discussion forums to reduce
security issues in software artifacts.

10

2. Data collection APIs for collecting datasets from public discussion forums,
public information security sources, and code sharing platforms.

3. Classification and word embedding models for recommending related se-
curity sources for discussion forum posts and bug reports to give the de-
veloper additional security context for security vulnerable solutions.

The thesis is structured as follows: Chapter 2 gives an overview of the theoreti-
cal background behind the research this thesis is built upon. Chapter 3 presents
the design and implementation of the API developed in this thesis for answering
the research questions. Chapter 4 gives a detailed description of the case study
conducted in order to answer RQ1. Chapter 5 describes the case study con-
ducted in order to answer RQ2. Chapter 6 gives an overview and description of
the idea on how to answer RQ3 in future work. Design choices and challenges
faced when developing the API, as well as the case study results are discussed
in chapter 7. Related work is presented in chapter 8. Finally, chapter 9 sum-
marizes the results of this thesis, and chapter 10 describes potential work that
could be conducted in the future.

11

Chapter 2

Background

In this chapter, we will give an overview of some of the knowledge the research
in this thesis is built upon. It is important to understand the concepts described
in this chapter before continuing to the following chapters.

2.1 Public Information Sources

2.1.1 Public Security Sources

In this thesis we argue that providing additional context to questions on discus-
sion forums and bug reports by using security information sources from publicly
disclosed cybersecurity vulnerabilities (CVE), common weaknesses (CWE), and
attack patterns (CAPEC), can improve solutions containing security vulnerabil-
ities and make stakeholders better evaluate security related reports. In addition,
it can support vulnerability models built using source code [70, 52].

The publicly disclosed vulnerabilities (CVE) is a list of records for publicly
known cybersecurity vulnerabilities. The mission of the CVE program is to
identify, define, and catalog publicly disclosed cybersecurity vulnerabilities. The
vulnerabilities are discovered and published by organizations around the world
that have partnered with the CVE program [11].

12

Table 2.1: Examples of CVE records

ID Description

CVE-2020-0001 In getProcessRecordLocked of ActivityManagerService.java iso-
lated apps are not handled correctly. This could lead to local esca-
lation of privilege with no additional execution privileges needed.
User interaction is not needed for exploitation. Product: Android
Versions: Android-8.0, Android-8.1, Android-9, and Android-10
Android ID: A-140055304

CVE-2019-0762 A security feature bypass vulnerability exists when Microsoft
browsers improperly handle requests of different origins, aka ’Mi-
crosoft Browsers Security Feature Bypass Vulnerability’.

CVE-2020-1039 A remote code execution vulnerability exists when the Win-
dows Jet Database Engine improperly handles objects in memory,
aka ’Jet Database Engine Remote Code Execution Vulnerability’.
This CVE ID is unique from CVE-2020-1074.

The common weaknesses enumeration (CWE) is a community-developed list of
software and hardware weakness types that have security ramifications. Weak-
nesses are flaws, faults, bugs, or other types of errors in software or hardware
implementation, code, design, or architecture that could result in vulnerabilities
if left unaddressed [12].

Table 2.2: Examples of CWE records

ID Title Description

CWE-20 Improper Input Validation The product receives input or data, but it does not validate or
incorrectly validates that the input has the properties that are
required to process the data safely and correctly.

CWE-77 Improper Neutralization of
Special Elements used in a
Command (’Command In-
jection’)

The software constructs all or part of a command using externally-
influenced input from an upstream component, but it does not
neutralize or incorrectly neutralizes special elements that could
modify the intended command when it is sent to a downstream
component.

CWE-289 Authentication Bypass by
Alternate Name

The software performs authentication based on the name of a re-
source being accessed, or the name of the actor performing the
access, but it does not properly check all possible names for that
resource or actor.

The common attack pattern enumeration and classification (CAPEC) is a pub-
lic list of common attack patterns that aims to give the user understanding of
how attackers exploit weaknesses in applications and other cyber-enabled capa-
bilities. Attack patterns are descriptions of the common approaches employed
by attackers in order to exploit known weaknesses [10].

13

Table 2.3: Examples of CAPEC records

ID Title Description

CAPEC-39 Manipulating Opaque
Client-based Data Tokens

In circumstances where an application holds important data
client-side in tokens (cookies, URLs, data files, and so forth)
that data can be manipulated. If client or server-side applica-
tion components reinterpret that data as authentication tokens
or data (such as store item pricing or wallet information) then
even opaquely manipulating that data may bear fruit for an At-
tacker. In this pattern an attacker undermines the assumption
that client side tokens have been adequately protected from tam-
pering through use of encryption or obfuscation.

CAPEC-
130

Excessive Allocation An adversary causes the target to allocate excessive resources to
servicing the attackers’ request, thereby reducing the resources
available for legitimate services and degrading or denying services.
Usually, this attack focuses on memory allocation, but any finite
resource on the target could be the attacked, including bandwidth,
processing cycles, or other resources. This attack does not at-
tempt to force this allocation through a large number of requests
(that would be Resource Depletion through Flooding) but instead
uses one or a small number of requests that are carefully format-
ted to force the target to allocate excessive resources to service
this request(s). Often this attack takes advantage of a bug in the
target to cause the target to allocate resources vastly beyond what
would be needed for a normal request.

CAPEC-
217

Exploiting Incorrectly Con-
figured SSL

An adversary takes advantage of incorrectly configured SSL com-
munications that enables access to data intended to be encrypted.
The adversary may also use this type of attack to inject commands
or other traffic into the encrypted stream to cause compromise of
either the client or server.

2.1.2 Public Discussion Forums

Public discussion forums refers to forums for posting questions and receiving
answers. An example is StackExchange, which is a network that comprises 173
question-and-answer (Q&A) communities that cover topics in diverse fields [28].
A public discussion forum on StakcExchange allows the users to post questions
and answers to questions related to a certain topic or domain. The questions
and answers have a voting system, where users are subject to a reputation
award process. This voting system helps good questions and answers rise to
the top, while simultaneously letting incorrect ones fall to the bottom. Users
who provide useful content (questions and answers) are granted more privileges
on the site. This reputation system allows the sites on StackExchange to be
self-moderating. In addition, the forums allow the user to post code snippets in
their questions and answers.

14

Table 2.4: Examples of posts on StackExchange forums

Forum ID Title Question Top answer

StackOverflow 1120575 What is the difference be-
tween a stack overflow and
buffer overflow?

What is the difference be-
tween a stack overflow and
a buffer overflow in program-
ming?

Stack overflow refers specif-
ically to the case when the
execution stack grows be-
yond the memory that is
reserved for it. For ex-
ample, if you call a func-
tion which recursively calls
itself without termination,
you will cause a stack over-
flow as each function call cre-
ates a new stack frame and
the stack will eventually con-
sume more memory than is
reserved for it. Buffer over-
flow refers to any case in
which a program writes be-
yond the end of the memory
allocated for any buffer (in-
cluding on the heap, not just
on the stack). For example,
if you write past the end of
an array allocated from the
heap, you’ve caused a buffer
overflow.

AskUbuntu 1332473 Is there any way to use mi-
crosoft office in ubuntu with-
out using wine? or any
other alternative similar to
microsoft office which uses
the same format

I am using Ubuntu and I
need to do my project work.
When I use libre office for
the work purpose it stores
in odt format and convert-
ing from odt to docx for-
mat changes the alignment
of words and paragraphs in
documentation. By read-
ing some blogs and watching
videos on Youtube I found
wine but,I didn’t have li-
cense for Microsoft office.so
is there any other possible
way?

You can’t use Microsoft Of-
fice in any way without a li-
cense ... It is payware. You
need an windows emulator
like wine to run Microsoft
.exe files on any Linux. You
can use LibreOffice. It reads
and writes MS-Office format
files. LibreOffice is free soft-
ware.

ServerFault 1060208 Is the Host: header required
over SSL?

Is the Host: header required
over SSL even if the request
is not HTTP/1.1? So, if a
client connects over SSL, and
sends the following request:
GET / HTTP/1.0 Should
the web server throw a bad
request due to the miss-
ing Host: header? Should
the web server respond with
an HTTP/1.0 200 OK re-
sponse? (the index.html file
always exists, so a request
to /, would never lead to
403/404)

A HTTP/1.0 request does
not need a Host according to
the standard, but this header
is still usually needed in
practice to decide on multi-
domain setups which con-
tent to serve. But if this
header is not present and it
is still clear which content to
serve, than this content can
be served without requiring
the header. Note that this
has nothing to do with TLS
and with the use of SNI.

In our approach, we collect posts from four public discussion forums on Stack-
Exchange, namely StackOverflow (SO), AskUbuntu (AU), SoftwareEngineering
(SE), and ServerFault (SF).

2.1.3 Code Sharing Platforms

Code sharing platforms allow users to share code and solutions for software
related problems. Developers often go to these platforms for solutions to their
problems, for example from StackExchange forums as described in 2.1.2 or from
sites like ProgramCreek. ProgramCreek is a website consisting of code examples
for various programming languages. These code examples are collected from
various software projects on GitHub, a code hosting platform for version control
and collaboration [27]. In our approach, we extract code from public discussion
forums on StackExchange as well as the code sharing platform ProgramCreek.

Example of a code example from ProgramCreek using the java.util.List package
in Java:

15

1 @Override
2 protected void encodeStage (f ina l BsonWriter wr i te r , f ina l Unset

value , f ina l EncoderContext encoderContext) {
3 List<Express ion> f i e l d s = value . g e tF i e l d s () ;
4 i f (f i e l d s . s i z e () == 1) {
5 f i e l d s . get (0) . encode (getMapper () , wr i te r , encoderContext) ;
6 } else i f (f i e l d s . s i z e ()> 1) {
7 Codec codec = getCodecRegistry () . get (f i e l d s . g e tC la s s ()) ;
8 encoderContext . encodeWithChildContext (codec , wr i te r , f i e l d s

) ;
9 }

10 }

Listing 2.1: Example of code from Programcreek.

2.2 Bug Report Classification

A software bug report is a report describing a bug found by a developer or user
of a software system. The bug report should contain information about the bug
and steps that allow the developer to reproduce the bug. Security bug reports
are bug reports that show some sort of security related vulnerabilities in soft-
ware products. These are very important to classify correctly, as undiscovered
security bug reports can lead to vulnerabilities and weaknesses in the system
that can be exploited by a possible attacker.

Bug reports are usually logged in a bug tracking system. A bug tracking system
is a software application for tracking reported software bugs in software develop-
ment systems. These bug tracking system may contain thousands of bug reports
where only a few of them are security related [46]. This makes it a challenge to
find and categorize unlabelled security bugs, and can easily cause security bugs
to go under the radar. Text-based prediction models to help security engineers
identify these unlabelled security bugs have been proposed. The proposed mod-
els often suffer from high misclassification rates, with especially high rates of
false positives (non-security bugs incorrectly labelled as security) [46].

Oyetoyan et al. [44] have shown that using collected security keywords as fea-
tures to train a text classification model gives promising results. In our ap-
proach, we investigate whether using collected features from public security
sources can improve the misclassification rates of bug report classification.

2.3 Natural Language Processing

Natural Language Processing (NLP) is defined as the automatic manipulation
of natural language by software. Natural language refers to the way we com-
municate with each other by speech and text [7]. NLP sits at the intersection
of computer science, artificial intelligence, and computational linguistics, and
is a way for computers to be able to analyze, understand and derive meaning
from human language. NLP development in applications can be a challenge, as
human speech often is imprecise, ambiguous, and the linguistic structure often
depends on complex variables like slang, dialects and social context, whereas
programming languages are precise, unambiguous and highly structured [37].

16

Information retrieval is a problem in NLP, and refers to software programs that
deal with the storage, organization, retrieval, and evaluation of information
from document repositories, in particular textual information. It is the activity
of collecting material, usually of an unstructured nature, that satisfies an infor-
mation need from within large collections usually stored on computers [53]. An
example is when a user enters a search query into a web search engine.

We use two different information retrieval techniques in our approach; Term
Frequency-Inverse Document Frequency (see 3.3.1) and Word Embedding (see 3.3.2).

2.4 Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that is based on
an idea that systems can learn from data, identify patterns and make decisions
with minimal human intervention. In machine learning, the data and result is
executed in order to create a program that can be used to predict unknown
data. This differs from traditional programming where the data and a set of
rules is executed in order to create the result. Machine learning can be broadly
categorized into three types - supervised learning, unsupervised learning, and
reinforcement learning. In addition, some algorithms use a combination of su-
pervised and unsupervised learning, called semi-supervised learning.

2.4.1 Supervised learning

Supervised learning refers to a type of machine learning approach where the
algorithms learn from labeled training data in order to make predictions on
future unlabeled data. Supervised learning is divided into two categories; clas-
sification problems and regression problems. For regression problems you want
to predict real values, whereas for classification problems you want to predict
what category the input data belongs to. Bug report prediction falls under the
classification category, where we want to predict whether a bug report belongs
to the security category or the non-security category.

In this thesis we have used five different supervised learning algorithms; random
forest, naive bayes, support vector machines, k-nearest neighbor and logistic
regression.

2.4.2 Unsupervised learning

Unsupervised learning refers to a type of machine learning where the algorithms
find patterns and relationships in unlabeled data. The goal of unsupervised
learning can be to discover hidden patterns in the data or simply to perform fea-
ture learning. Typical unsupervised learning tasks include clustering, anomaly
detection, neural networks and dimensionality reduction.

2.4.3 Reinforcement learning

Reinforcement learning refers to a type of machine learning where the system
interacts with a dynamic environment where it must perform a certain goal (e.g.
trying to win in a video game). The system is provided feedback in the form of

17

rewards and punishments based on its decisions. This way it can learn how to
improve its performance.

Figure 2.1: Illutration of supervised, unsupervised and reinforcement learning

2.4.4 Overfitting and Underfitting

In machine learning, it is important to create a model that generalizes well on
different data. A complex model will often fit the training data better than a
simple model, but might perform poorly on new unseen data. This is called
overfitting. This is because the model is too closely adapted to the training
data to be able to make good predictions on new and unseen data that differs
from the training data. On the other hand, a simple model might not be able
to make any intelligent predictions based on the underlying relationships in the
training data. This is called underfitting. It can often be difficult to find a
balance between these two issues.

Figure 2.2: Illutration of underfitting, overfitting and well balanced models

2.5 Deep learning and Neural Networks

Deep learning is a sub-field of machine learning that is concerned with algo-
rithms inspired by the structure and function of the brain called artificial neural
networks (ANNs) [7]. ANNs try to mimic the operations of a human brain in
order to recognize relationships in large amounts of data. Unlike other machine
learning techniques, large neural networks tend to increase their performance
when we supply them with more and more data. Another benefit of deep learn-
ing models is their ability to perform automatic feature extraction from raw
data (feature learning) [7].

18

Figure 2.3: Example of neuron

ANNs are based on a collection of connected nodes called neurons. These neu-
rons try to mimic the neurons in a brain, where each connection (called edges)
can transmit signals to other neurons. The signal that is transmitted is a real
number, and the output of each neuron is usually computed by some non-linear
activation function of the sum of its inputs. Each neuron and edge has a weight
associated with it that adjusts throughout the learning process. These weights
increase or decrease the strength of the transmitted signal.

Figure 2.3 shows an example of a neuron showing the input X = [x1, x2, ..., xn],
their corresponding weights W = [w1, w2, ..., wn], a bias (b) and the activation
function f applied to the weighted sum. The neuron calculates the dot product
between the input signals X and the corresponding weights W as follows:

X ·W = b +

n∑
i=1

xiwi (2.1)

An additional constant (b) called a bias is added to the weighted sum to give the
model more flexibility. The output is then passed through to an activation func-
tion f that calculates the final output signal. An activation function is a function
added into neural networks that helps the network learn complex patterns in
the data. The activation function is what decides what is to be transmitted to
the next neuron in the network. Some of the most common activation functions
are ReLu, Sigmoid and Tanh. The formulas for these activation functions are
as follows:

f(z) = max{z, 0}(ReLU) (2.2)

f(z) =
1

1 + e−z
(Sigmoid) (2.3)

f(z) =
e2z − 1

e2z + 1
(Tanh) (2.4)

There are various different models of neural networks, such as feed forward
neural networks, recurrent neural networks and convolutional neural networks.

19

Figure 2.4 shows an example of a feed forward neural network model, where the
data is only passed in one direction through all the layers from input to output.
Feed forward neural networks tend to be straightforwards and associate the
inputs with outputs, and are often used in pattern recognition. This differs from
recurrent neural networks, where signals can travel in both directions through
loops in the network. These models can get very complicated. Convolutional
neural networks (CNNs) contains one or more convolutional layers that create
feature maps that records a part of an image, breaks it into rectangular pieces
and sends it out for processing. These convolutional layers can be either entirely
connected or pooled. The advantage of CNNs are that they can detect important
features without human interference.

Figure 2.4: Illustration of neural network with two hidden layers

In this thesis we use deep learning in combination with natural lanugage pro-
cessing (NLP) techniques. Deep learning in the field of NLP promises better
performance by models that may require more data but less linguistic expertise
to train and operate [7]. Deep learning methods are achieving state-of-the-art
results on challenging NLP problems. In our approach, we use a Word Embed-
ding deep learning model (see 3.3.2) for creating a distributed representation
of words in a given document. For bug classification we use a word embedding
model together with a Convolutional Neural Network (CNN). Word embedding
models for representing words are often used together with a CNN for learn-
ing how to discriminate documents on classification problems [7]. CNNs are
effective at document classification because they are able to pick out features
regardless of their position in the document [24].

2.6 Model Evaluation

2.6.1 Bug Report Classification Metrics

The performance evaluation of machine learning models is measured by calcu-
lating several metrics. We have used recall, precision, probability of false (pf)
alarm, f-score, and g-measure as our performance metrics [54]. Both pf and g-
measure are used to compare our work with previous studies [46, 30, 44]. These

20

metrics are computed from true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) where:

TP = Number of security records correctly identified as security records

TN = Number of non-security records correctly identified as non-security records

FP = Number of non-security records incorrectly identified as security records

FN = Number of security records incorrectly identified as non-security records

Figure 2.5: Confusion Matrix

Recall shows the sensitivity to classify a bug report as security related or not. It
represents the percentage of security related bugs that were correctly classified
as security related. A high recall score is desired. The formula for recall is:

Recall =
TP

TP + FN

Precision is the fractions of relevant instances among the retrieved instances.
It shows us the percentage of actual security related bugs classified as security
related. In practice, having a high recall will decrease the precision, and vice
versa. Therefore it is important to look at the specific classification task when
choosing which metric is most important. The formula for precision is:

Precision =
TP

TP + FP

The probability of false (pf) alarm is the probability of a non-security related
bug being classified as security related. The formula for pf is:

pf =
FP

FP + TN

The F-score combines the precision and recall of the model, and is defined as
the harmonic mean of the model’s precision and recall. This means that it will
have a high value if both precision and recall values are high. The formula for
F-score is:

21

F-Score = 2 ∗ Precision ∗Recall

Precision + Recall

G-measure is the geometric mean of the recall for both the majority and minority
classes. The formula for G-measure is:

G-measure =
2 ∗ recall ∗ (100− pf)

recall + (100− pf)

2.6.2 Contextualizing Discussion Forum Posts and Bug
Reports

When evaluation the results from contextualizing discussion forum posts and
bug reports with public security sources, we provide a qualitative assessments
of the mappings to external security sources to identify whether they are mean-
ingful or not. When assessing whether a source reasonably matches a discussion
or bug report, we use the categories D-Direct, I-Indirect, and N-Not related as
our classification scheme. Where ”Direct” means the relationship between the
two sources are unambiguous, ”Indirect” means they can be related (e.g. one
provides an example for the other), and ”Not related” means we can not infer
any relationship between the two.

22

Chapter 3

Design and Implementation

To answer the research questions require that we first build data collection
APIs that interface with public security information sources, public discussion
forums, and other code-sharing platforms. Second, it requires that we perform
case studies by using the API to collect datasets. In this section, we describe the
design and implementation of the data collection API, data collection and pre-
processing using the API, information retrieval approaches, case study designs to
answer our research questions, and the quality attributes selected for evaluating
the API. The source code is available on GitHub from the link specified in
appendix A.

3.1 API Development

For this thesis, Java was chosen as the programming language as it was a require-
ment in the project’s description for the thesis. When selecting the framework
for the API, we decided on a Apache Maven Java project. Apache Maven is
a software project management and comprehension tool that is based on the
concept of a project object model (POM) [19]. Maven makes it easy to include
necessary dependencies in a project, as well as making it possible to package
the project into an executable JAR (Java ARchive) file for distribution.

For the machine learning part of this project, Weka (version 3.8.4) was chosen
as the framework for implementing machine learning algorithms and models.
Weka is an open source machine learning software that can be accessed through
a graphical user interface, standard terminal application, as well as through a
Java API [42]. For this project, we chose to use the Java API which allows us
to easily build machine learning pipelines and train classifiers.

Deeplearning4j (version 1.0.0.beta6) was used in this project for implementing
word embedding (Word2Vec) and neural network models. It is an open-source,
distributed deep-learning library written for Java and Scala with wide support
for deep learning algorithms [14].

Figure 3.1 gives an overview of the main classes of the API. We have not included
the helper classes (such as pre-processing and utility classes) in this diagram as

23

to not make it too substantial and confusing. The UML diagram shows how the
API is put together, and how the different classes relate to each other.

Figure 3.1: UML diagram of the main classes in the API

3.1.1 Interface To Discussion Forums

The API has an interface for sending queries to the StackExchange API, which
allows us to query several different public discussion forums. We collect infor-
mation containing the question title, question description and answers, question
ID and date. It is possible to send filtered queries to the StackExchange API,
allowing us to send separate queries for collecting security related posts and
non-security related posts, as well as adding other tags e.g. Java, IoT, Cloud
etc. Additionally, our API has a function for collecting only the code section of
a discussion forum post.

3.1.2 Interface To Security Information Sources

The API has an interface for crawling three public security sources; the pub-
licly disclosed vulnerabilities (CVE), common weaknesses enumeration (CWE),
and common attack pattern enumeration and classification (CAPEC). The API
collects information such as the ID, description, security type, type-of-source,
weakness, date, source, reference(s), severity score and severity rating if it is
available.

3.1.3 Interface To Code-sharing Platforms

The API has an interface for crawling ProgramCreek for code examples, as well
as the option to only extract the code portion of posts from discussion forums
on StackExchange. The ProgramCreek crawler in the API supports queries for
code examples on the site written in Java, C++ and Scala.

24

3.1.4 Builder Pattern For User Interaction

The API uses the builder pattern for constructing classes, setting the parameters
and running methods. The builder pattern is a design pattern designed to
separate the construction of a complex object from its representation so that
the same construction process can create different representations [21]. It is a
good choice when designing classes with constructors that have more than a
handful of parameters. The builder pattern makes it easy for the user to read
and understand, which in turn makes it more user friendly.

Figure 3.2: UML diagram of Builder Design pattern

Figure 3.2 shows an UML diagram of the builder design pattern. The Product
class defines the type of object that is generated by the builder pattern. The
Builder is an abstract base class that defines all the steps that must be taken
in order to create a product. Each step is abstract as the functionality of the
builder is carried out in the concrete subclasses. The ConcreteBuilder may
consist of many classes inherited from the Builder, and these classes contain the
functionality to create a particular product. The Director is in control of the
algorithm for generating the final product object.

Example of builder pattern use in the API:

48 StackExchangeAPI sed = new StackExchangeAPI . Bui lder ()
49 . s i t e (StackExchangeAPI .STACKOVERFLOW)
50 . numRecords (1000)
51 . onlyQuest ion (true)
52 . s e c u r i t y (true)
53 . tags (” java ”)
54 . pathToStoreResult (” . / f i l e s /”)
55 . dataWithoutS imi lar i ty (true)
56 . bu i ld () ;
57

58 sed . run () ; // s t a r t to c o l l e c t data

Listing 3.1: Using the Builder pattern to query the StackExchange API

3.1.5 Configuration Using Maven

The API is created as a Apache Maven Java Project, which is a software manage-
ment and comprehension tool that is based on the concept of a Project Object
Model (POM) [19]. The POM file contains project information and configu-
ration information for Maven to build the project such as dependencies, build
directory, source directory, test source directory, plugins etc. A POM file makes

25

it easy to include necessary dependencies in a project, as well as update them
when a newer version is released.

Code example 3.2 shows how we have included Weka and Deeplearning4j library
dependencies so that Maven can compile, build, test and run these libraries.

1 <dependency>
2 <groupId>nz . ac . waikato . cms . weka</groupId>
3 <a r t i f a c t I d>weka−s t ab l e</ a r t i f a c t I d>
4 <version>3 . 8 . 4</version>
5 </dependency>
6 <dependency>
7 <groupId>org . d e ep l e a rn ing4 j</groupId>
8 <a r t i f a c t I d>deep l ea rn ing4 j−core</ a r t i f a c t I d>
9 <version>1.0.0− beta6</version>

10 </dependency>

Listing 3.2: Examples of dependencies in Maven POM file

3.1.6 Java Properties File

The API uses a Java properties file for storing parameters that should be possible
for the user to change as they see fit. The .properties extension is a file extension
used in Java related technologies. It is mainly used for storing configurable
parameters, where each parameter is stored as a pair of strings. In the API it is
used for allowing the user to change the .csv file separator, StackExchange API
version, and other parameter variables used for classification like class index
and the train/test split ratio.

Code example 3.3 shows examples of parameters that can be set in the Java
properties file. Here the user can set the file separator, train size, class index
for classification, and the StackExchange API version.

1 # sp e c i f y csv column separa to r
2 SEPARATOR=;
3 # sp e c i f y r a t i o for s p l i t t i n g datase t i n to t r a i n and t e s t
4 TRAIN SIZE=0.80
5 # sp e c i f y index o f class label
6 CLASS INDEX=1
7 # sp e c i f y Stack Exchange API ve r s i on
8 STACKEXCHANGE=2.2

Listing 3.3: Examples of parameters in Java properties file

3.2 Data Collection and Preprocessing

Figure 3.3 gives an overview of the dataset collection framework. It shows the
steps of the feature extraction methods, how we have built the different filtered
and unfiltered datasets used for training a machine learning model later on, as
well as how we find the most similar security source mappings for each security
related post and bug report.

26

Figure 3.3: Dataset Collection Framework

3.2.1 Public Security Sources

We collected security information from three public security sources; the publicly
disclosed vulnerabilities (CVE), common weaknesses enumeration (CWE), and
common attack pattern enumeration and classification (CAPEC). As shown in
Figure 3.3, we collect the features for filtering datasets from discussion forums
(see 3.2.2) and for training machine learning models from these sources. From
CVE we have collected 5000 records from 2019 and 2020 due to computational
limitations, and from CWE and CAPEC we collected all available records.

3.2.2 Public Discussion Forums

We collected posts from four discussion forums, namely StackOverflow (SO),
AskUbuntu (AU), SoftwareEngineering (SE), and ServerFault (SF) where tag =
security for security related posts (SRs) and tag! = security for non-security
related posts (NSRs) as illustrated in Figure 3.3. We have used the StackEx-
change API v2.2 to collect the data. We separate the SR datasets into two
categories - filtered and unfiltered datasets. Filtered datasets are collected by
performing a similarity score between a given post and each of the reports in
a given security source document (CVE, CWE or CAPEC). We include a dis-
cussion if the cosine similarity score to a particular security source is above a
certain threshold. For this work, we have used a threshold of 0.4 in order to
obtain enough SR records from forums with low security related discussions.

The cosine similarity scores are calculated using three different information re-
trieval methods; TF-IDF, word embedding, and taking the average of the scores
from the two methods. In total, we collected 1000 SR records from each dis-
cussion forum. For unfiltered datasets, we simply collected 1000 SR records

27

without performing similarities to security sources. We have used 1000 records
for NSRs. The collected posts were then preprocessed by removing stopwords,
numbers and any non-alphabethic characters before being used to train a model
for bug report classification.

3.2.3 Security bug datasets

We have used security bug report datasets from five projects used in three
previously published studies [46, 30, 44] as the ground truth for validating our
classification models. These projects are: Derby, Camel, Wicket, and Ambari
from the Ohira et al. [43] dataset. The fifth project is Chromium from Peters
et al. [46]. We chose these datasets because they are publicly available and
have been previously used in the research community for validating security
bug report classification models. Table 3.1 provides the properties of the five
projects while Table 3.2 lists the properties of the actual validation datasets as
used in previous studies.

Table 3.1: Validation Project Properties

Project Domain Start Date End Date #BRs #SBRs SBR(%)

Ambari Hadoop man-
agement web UI
backed by its
RESTful APIs

Sep 26 2011 Aug 8 2014 1000 29 2.9

Wicket Component-based
web application
framework for
Java program-
ming

Oct 20 2006 Nov 9 2014 1000 10 1.0

Camel A rule-based rout-
ing and mediation
engine

Jul 8 2007 Sep 18 2013 1000 32 3.2

Derby A relational
database manage-
ment system

Sep 28 2004 Sep 17 2014 1000 88 8.8

Chromium Web browser Aug 30 2008 Jun 11 2010 41940 192 0.5

Table 3.2: Validation dataset

Project #BRs #SBRs SBR(%)
Ambari 500 7 1.4
Wicket 500 6 1.2
Camel 500 18 3.6
Derby 500 42 8.4
Chromium 20970 115 0.5

3.3 Information Retrieval and Feature Extrac-
tion Approaches

Information retrieval refers to finding material of an unstructured nature that
satisfies an information need from within large collections [53]. Feature extrac-
tion is an approach that provides solutions to information retrieval problems.
Feature extraction refers to extracting and producing feature representations
that are relevant to the NLP task we are trying to accomplish and the type of

28

model we are planning to use. In our proposed approach, we have selected two
feature extraction approaches; Term Frequency-Inverse Document Frequency
(TF-IDF) [53] and the word embedding model Word2Vec [39].

3.3.1 Term Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency, shortened to TF-IDF, is a statis-
tical measure that evaluates how relevant a word is to a document in a collection
of documents. It is often used as a weight in information retrieval and text min-
ing.

TF-IDF combines the term frequency (TF) metric and the inverse document
frequency (IDF) metric. Term frequency for a term in a document is computed
as the fraction of the number of times the term occurs in the document to
the total words in the document. IDF on the other hand finds the log of the
fraction of the total number of documents to the number of documents where a
term appears. The intuition behind IDF is that terms that are frequent in all
documents may not discriminate very well and will thus be penalized with low
IDF. Conversely, terms that occur in a few documents may be more interesting
for the documents where they appear and will thus be weighted with a higher
IDF.

The TF-IDF for term t, in document d, in an entire documents D corpus can
be computed as:

TF-IDF(t,d) =
count(t, d)

| d |
.log

| D |
|{d ∈ D : t ∈ d}|

(3.1)

By computing the TF-IDF for the entire corpus, we retrieve the top-n features
with the highest TF-IDF.

The API also includes methods for using normalized term frequency and boolean
term frequency:

Normalized Term Frequency = 0.5 +
0.5 ∗ tft,d
maxt(tft,d)

(3.2)

Where tf(t,d) represents the number of times t appears in a document d and
max(t) represents the frequency of the term with the maximum occurrence in a
document d. We use 0.5 as the smoothening term to avoid a large swing in the
ntf(t,d) from a small change in tf(t,d).

Boolean term frequency prints 1 if the term is present document, and 0 if the
term is not present.

3.3.2 Word Embedding

Word embedding is a way of representing a document vocabulary that captures
the context of a word in a document, its relation to other words, and its semantic
similarity. The basic idea is that if two words share similar contexts, then they
will be associated with vectors that are close to each other in the vector space.
It is based on distributional semantic models (DSMs), which are based on the

29

assumption that words appearing in a similar context tend to have a similar
meaning [26]. These models represent each word by a d-dimensional vector
of real numbers, and words appearing in a similar context have similar vector
representations. Traditional DSMs tend to use count-based models, but models
based on deep neural networks have recently been proposed [40], [39]. These
models use neural networks to learn from the context of the corpus, and create
low-dimensional word vector representations (word embedding).

Figure 3.4: CBOW Model Architecture

There are two main word embedding models used; Continuous Bag-of-Words
Model (CBOW) and Continuous Skip-gram Model [39], [40]. CBOW predicts
a word based on the surrounding context consisting of a fixed window size. As
the order of the words in the context is not important, this is called a bag-of-
words model. The Continuous Skip-gram model uses the current word to predict
the surrounding context words. Figure 3.4 and 3.5 depicts the architecture of
CBOW and Skip-gram models, where w(t) represents the current word and w(t
± 1,2,...,n) represents the surrounding word of the context w(t).

30

Figure 3.5: Skip-Gram Model Architecture

In our API, we have used the word embedding technique proposed in [39] aka
Word2Vec, with an implementation based on the Skip-gram model. The objec-
tive function of the skip-gram model is to maximize the negative log likelihood of
the surrounding context words (wi+k), with a fixed window size m, conditioned
on the center word (wi) over n vocabulary words.

− 1

n

n∑
i=1

n∑
−m≤k≤m,k 6=0

log p(wi+k|wi) (3.3)

The Word2Vec model after training will thus contain a dictionary of words,
where each word is associated with a vector representation. We trained a
Word2Vec model for each of CVE, CWE, and CAPEC using a window size
of 5, and a dimension of 100. By using the trained Word2Vec model, a docu-
ment d (discussion question or security source record) with w1, w2, ..., wn words
can use the mean vector representations of the words. If each word, wi has uwi

vector embedding, the mean vector embedding for d is computed as:

ud =
1

n

n∑
i=1

uwi
(3.4)

We use the mean of the vectors of a discussion or security source record when
collecting filtered datasets, and we only select n words as features from the
vocabulary list for building a machine learning model.

3.4 Similarity Measures

The main component of the API is to compute similarity between a security
source document and a given public information source post or bug report. This

31

can then later be used to create datasets for building models for classification
of bug reports, as well as for tagging public information sources. In order to do
this, we use TF-IDF, Word2Vec or a combination of both to transform a given
document into vectors and compute the cosine similarity between these vectors.
A bigger cosine similarity value indicates that the corresponding two documents
are more similar.

Cosine similarity is a metric used to measure how similar two documents are.
It measures the cosine of the angle between two vectors projected in a multi-
dimensional space. It is calculated as follows:

Cosine Similarity(A, B) =
A.B

‖A‖ × ‖B‖
(3.5)

The bigger the cosine value the similar the two documents are to each other. We
compare two documents that have been vectorized using TFIDF or Word2Vec
model by computing their cosine similarity.

3.4.1 TF-IDF approach

Given a security source, we first extract the top n terms from the descriptions in
the documents using either TF-IDF or Word2Vec. It is then possible to create
TF-IDF word vectors for a security source document and a public information
source document or bug report using either the TF-IDF top n terms or the
Word2Vec top n terms. We can then calculate the cosine similarity between the
two documents to generate a similarity score.

3.4.2 Word Embedding Approach

In this approach, we use a Word2Vec model based on a given security source
to create word embedding vectors for a security source document and a public
information source document or bug report. We can then calculate the cosine
similarity between the two documents to generate a similarity score.

3.5 Case study design to answer RQ1 and RQ2

3.5.1 Bug classification and contextualizing with Word2Vec
(RQ1)

In this case study we explore RQ1 by investigating whether using public secu-
rity sources and public discussion forums for building datasets and training a
machine learning model will improve misclassificaton rates in bug classification
models. In addition, we investigate whether we can use security information
sources from publicly disclosed cybersecurity vulnerabilities (CVE), common
weaknesses (CWE), and attack patterns (CAPEC) to further provide additional
context to the bug report predicted by the bug report classification models. We
are especially interested in whether non-security bug reports predicted as se-
curity can be exposed as security vulnerable with the additional context. The
case study is described in detail in chapter 4.

32

3.5.2 Public forum classification and contextualizing with
Word2Vec (RQ2)

In this case study, we aim to answer RQ2 by investigating whether providing
additional context to questions on discussion forums and bug reports by using
security information sources from publicly disclosed cybersecurity vulnerabil-
ities (CVE), common weaknesses (CWE), and attack patterns (CAPEC) can
improve the security in online discussion forums. Our hypothesis is that secu-
rity information sources can provide an additional validation layer of security
classification for public information sources. The case study is described in
detail in chapter 5.

3.6 Quality Evaluation of the API

Software quality is the degree to which software possesses a desired combination
of attributes [IEEE 1061]. Developers of critical systems are responsible for iden-
tifying the requirements of the application, developing software that implements
the requirements, and for allocating appropriate resources [5]. Software quality
attributes include attributes like correctness, reliability, adequacy, learnabil-
ity, robustness, maintainability, readability, extensibility, testability, efficiency,
portability and usability. High scores in these attributes enables developers to
guarantee that a software application will meet the specifications of the client.
In the development of the API, we have focused on three main software qual-
ity attributes; usability, maintainability and extensibility. In addition, we have
performed a static code analysis to check the internal quality attributes and
dependencies in the API.

3.6.1 Usability

Usability refers to how well a specific user in a context can use a product/design
to achieve a defined goal effectively, efficiently and satisfactory [18]. According
to The Interaction Design Foundation [18], the product/design should contain
these elements in order to accommodate users’ needs and context:

• Effectiveness — It should support users in completing actions accurately.

• Efficiency — Users should be able to perform tasks quickly through the
easiest process.

• Engagement — Users find it pleasant to use and appropriate for its
industry/topic.

• Error Tolerance — It supports a range of user actions and only shows
an error in genuine erroneous situations. You achieve this by finding out
the number, type and severity of common errors users make, as well as
how easily users can recover from those errors.

• Ease of Learning — New users can accomplish goals easily and even
more easily on future visits.

In our approach, we have chosen to use the Builder Design Pattern described
in 3.1.4 to build in the usability quality attribute. The builder pattern makes

33

it easy for the user to read and understand, which in turn makes it more user
friendly. It has a simple setup, and makes it easy and quick for the user to
complete their desired task correctly, as well as allowing the user to change a
variety of parameters to fit their needs.

In addition, we use a Java Properties File as described in 3.1.6 where the user
has the possibility to configure parameters that are used throughout the API,
like the .csv file separator, StackExchange API version, and other parameter
variables used for classification like class index and train/test split ratio.

3.6.2 Maintainability

Maintainability refers to the suitability for debugging and for modification and
extension of functionality [3]. According to Quality Assurance [3], the main-
tainability of a software system depends on these elements:

• Readability - The form of representation, programming style, consis-
tency, readability of the programming language(s), structuredness of the
system, quality of the documentation and tools available for inspection.

• Extensibility - Allowing required modifications at the appropriate loca-
tions to be made without undesirable side effects.

• Testability - Suitability for allowing the programmer to follow program
execution and for debugging.

In order to support this quality attribute, we have used Maven POM as de-
scribed in 3.1.5. The POM file contains project information and configuration
information for Maven to build the project, and allows the user to easily up-
date dependencies and plugins etc. when a newer version is released. It is also
easy for the user to add new dependencies if it is desired. In addition, using
the Builder design pattern described in 3.1.4 makes the code very maintainable
as it is very easy to change the implementation of an object, add or remove
parameters, and add, remove or change implemented methods.

3.6.3 Extensibility

Extensibility should allow for required modifications at the appropriate loca-
tions to be made without undesirable side effects [3]. According to Quality
Assurance [3], the extensibility of a software system depends on these elements:

• Structuredness (modularity) of the software system.

• Possibilities that the implementation language provides for this purpose.

• Readability (to find the appropriate location) of the code.

• Availability of comprehensible program documentation.

Extensibility is an element of maintainability, and thus require some of the
same measures. As described in 3.6.2, we have used Maven POM for including
dependencies and plugins that can easily be updated and extended. In addition,
the Builder Design Pattern described in 3.1.4 makes the code very readable
and extendable because of the clear separation of responsibility between the
classes. This way, the API can easily be extended, for instance by adding new

34

classification algorithms, new feature extraction methods, or even new crawlers
for public information sources or code sharing platforms.

3.6.4 Static Code Analysis

Static code analysis is a way of debugging and examining code before the pro-
gram is run. It is typically done by analyzing the code against a set of rules.
We have used the static code analysis tool CodeMR, which gives a quick and
simple insight into the software quality of the code [38]. CodeMR gives then
user several graphs that explain how the code scores in the different quality
attributes. Coupling, Complexity, Cohesion and Size are the fundamental in-
ternal quality attributes of code [38]. Coupling is the degree of interdependence
between classes, measuring how closely connected two classes are. Complexity
is how complex the code is, where if it has high complexity, the code is difficult
to understand. Cohesion measures how well the methods in a class are related
to each other. High cohesion (low lack of cohesion) is usually preferable. Size
refers to the number of lines and methods of a class. Bigger classes can be
harder to maintain, and might do too much work that could possibly be split
up into several classes.

Figure 3.6: CodeMR graph results

Figure 3.6 shows the percentage of classes in the API that fall under a certain

35

category of each of the four quality attributes. In the graphs, dark green means a
low score, green means low-medium, yellow means medium-high, orange means
high, and red means a very high score. Only the complexity and coupling
metrics have classes that score very high (red), where three classes score very
high in complexity and one class scores very high in coupling. One class scores
high (orange) in size. Apart from that, most classes score low (dark green)
or low-medium (green) in all metrics, and a few score medium-high (yellow).
Only one class has both high coupling and high complexity. According to the
CodeMR results, the rest of the classes have fair quality attributes.

Figure 3.7 shows how the different packages in the API depend on each other.
A dependency is another package that a given package depends on in order to
work. Most of the dependencies are to the similarity package, which contains all
the classes that compute similarity. The only exception is the machine learning
package, which depends on the classifiers package containing all the classes
for the different classification algorithms. The other dependencies are to the
utility package which contains most of the helper classes, for example classes
containing methods for removing symbols from text or pre-processing methods
for the classification algorithms.

Figure 3.7: CodeMR dependency graph

36

Chapter 4

Case study 1:
Contextualizing Bug
Reports Using Public
Security Data Sources

In this case study we explore RQ1 by investigating whether using public secu-
rity sources and public discussion forums for building datasets and training a
machine learning model will improve misclassificaton rates in bug classification
models. In addition, we investigate whether we can use security information
sources from publicly disclosed cybersecurity vulnerabilities (CVE), common
weaknesses (CWE), and attack patterns (CAPEC) to further provide additional
context to the bug report predicted by the bug report classification models. We
are especially interested in whether non-security bug reports predicted as secu-
rity can be exposed as security vulnerable with the additional context. To ad-
dress the research question, we build classification models from public discussion
forum datasets and public security datasets using the TF-IDF and Word2Vec
feature extraction methods shown in Figure 3.3. These classification models are
then validated using open source bug reports. We then use the best scoring
classification model to make predictions on an open source bug report, and use
a Word2Vec model to provide mappings between the predicted bug reports and
security sources in order to provide additional context.

To answer RQ1, we investigate two subquestions:

• RQ1.1: How can public security information sources be used to improve
performance of bug report classification models?

• RQ1.2: How can public security information sources be used to improve
security in bug report classification models?

37

4.1 Experiment setup and modelling approach

We build classification models from public discussion forum datasets and public
security datasets using the TF-IDF and Word2Vec feature extraction methods
shown in Figure 3.3. Table 4.1 presents the different combinations of parameters
for building our classification models. In total, we constructed 6480 models. We
have used six text classification algorithms that have been commonly used in
the research environment [46] - Random Forest, Naive Bayes, Support Vector
Machine, K-Nearest Neighbor, Logistic Regression, and Multilayer Perceptron
Layer (CNN). Both the Weka (version 3.8.4) [42] and DeepLearning4J (version
1.0.0.beta6) [14] libraries are used for our experiments. We have used default
parameters in the algorithms.

As shown in Figure 4.1 we perform five experiments for each combination of
parameters and compute the mean, maximum, minimum, and standard devia-
tion for the performance metrics. In each experiment, we train a model using
5-fold cross-validation where the training dataset is split into 4 folds (80%) for
training and 1 fold (20%) for testing in each round. The model is then validated
using each of the security bug validation datasets.

Figure 4.1: Experiment modeling framework

Table 4.1: Experiment detail

Models Total
3 security sources (CVE, CWE, CAPEC)
4 discussion forums (SO, SE, SF, AU)
2 Content categories (Q, Q+A)
5 validation dataset (Ambari,Wicket,Camel,Derby,Chromium)
6 Machine Learning Algorithms
3 Feature types (TFIDF, Word2Vec, Both.)
3 Feature dimensions (100, 200, 300) 6480

38

4.1.1 Research questions and analysis

RQ1.1: How can public security information sources be used to im-
prove performance of bug report classification models?

We approach RQ1.1 in 2 ways:

1. Comparison to state of the art studies: We first compare the results
of our model to state-of-the-arts studies [46, 30, 44]. We have compared
our results to those reported for transfer project prediction since we have
used public discussion forums to construct the training dataset for our
classification model. We then use the same test dataset as used in all
these studies to validate our model. A comparable result to the state-of-
the-art studies will be a proof of the usefulness of our approach.

2. Hypothesis: We hypothesize that using public security sources to filter
training datasets for constructing classification models can produce better
classification models. Our null hypothesis (H0) is thus: Models based on
unfiltered datasets by security sources outperform models based on filtered
datasets.

To test the hypothesis, we collect the top-50 observations ranked by g-measure
for each of the models that use filtered datasets and unfiltered datasets. The
data is unpaired, thus we use Wilcoxon signed ranked test [15] (a non-parametric
test) at 95% confidence level to compare the mean of both groups for three
metrics - recall, f-score, and g-measure. In addition, we perform an effect size
check on our results. As noted in Kampenes et al. [31], effect size quantifies
the size of the difference between two groups and allows us to judge whether
the conclusions drawn from our hypotheses testing are meaningful or not. It
might be possible that the effect size is negligible even when the statistical test
is significant and vice versa. We apply the Hedges, g standardized effect size
measure calculated as: Hedges, g = X̄1−X̄2

Sp
. Where X̄1 and X̄2 represent the

sample means for the classification measures (recall, f-score, and g-measure)
and Sp represents the pooled standard deviation computed from the standard
deviations of s1 and s2 of the two groups. We use the results reported in
Software Engineering empirical studies categorized under Table 9 as the basis
for comparing our effect sizes. The size category for 284 estimated values for
Hedges, g is given as: Small: 0.00-0.376, Medium: 0.378-1.000 and Large: 1.002-
3.40. We have used standard statistical packages in R [49].

RQ1.2: How can public security information sources be used to im-
prove security in bug report classification models?

To answer RQ 1.2, we output the classification results for the Chromium dataset,
and manually validate the true positives and false positives predicted by the
model. We use the best classification model on the Chromium dataset shown in
Table 4.2 for outputting the prediction results. We use a Word2Vec model that
we have trained on each of the security sources. For each record, we use the
mean vector embedding from the Word2Vec model described in 3.3.2 and then
perform a cosine similarity to the mean vector embedding of each record from the
security source. Using a cosine of 0.5 as our threshold for the true positives and
0.4 for the false positives, we collect the top five most similar security sources to

39

a particular bug report. We select the first 100 bug reports predicted to be true
positives from Chromium. We then provide a qualitative assessments of these
mappings to external security sources to identify whether they are meaningful
or not. When assessing whether a source reasonably matches a bug report, we
use the method described in 2.6.2. We have evaluated the 100 true positive
records, where a record has one to five suggested matches. We record a one for
a category when at least one of the five matches is marked with this category.
For the false positive records, about 100 bug reports were evaluated.

4.2 Results & Discussion

Table 4.2: Comparison to state-of-the-art studies

Target Source Paper (Model) Cat Ratio Learner TN TP FN FP pd pf prec f-score g-measure

Chromium Ambari Peters et al. (clnifarsecsq) - - MLP 19, 817 56 59 1, 038 48.7 5.0 5.1 9.3 63.9

Derby Jiang et al. (rs-selector) - 1 : 1 MLP 15, 346 76 39 5509 66.1 26.4 1.4 2.7 69.6

Camel Oyetoyan et al.(fsec-ext+) TCAI 2.0 LR 16, 737 84 31 4109 73.0 19.7 2.0 3.9 76.5

AU CWE −Q−AV G− 300−Both(Ext) - - RF 17, 626 72 43 3229 62.6 15.5 2.2 4.2 72.0

Wicket Camel Peters et al. (train) - - NB 437 3 3 57 50.0 11.5 5.0 9.1 63.9

Ambari Jiang et al. (rs-selector) - 2 : 1 MLP 396 6 0 98 100.0 19.8 5.8 10.9 88.9

Camel Oyetoyan et al.(fsec-ext+) TCAI 2.0 LR 412 6 0 82 100.0 16.6 6.8 12.8 90.9

SO CAPEC −QA− TFIDF − 300−Both(Int) - - RF 396 6 0 98 100.0 19.8 5.8 10.9 88.9

Ambari Chromium Peters et al. (farsecsq) - - MLP 474 3 4 19 42.9 3.9 13.6 20.7 59.3

Chromium Jiang et al. (rs-selector) - 3 : 1 LR 417 7 0 76 100 15.4 8.4 15.6 91.6

Derby Oyetoyan et al.(fsec-tfidf+) - 0.0 SVM 415 6 1 78 85.7 15.8 7.1 13.2 84.9

SE CWE −Q− TFIDF − 200−Both(Int) - - KNN 414 6 1 79 85.7 16.0 7.1 13.0 84.8

Camel Derby Peters et al. (farsectwo) - - NB 371 8 10 110 44.4 22.9 6.8 11.8 56.4

Derby Jiang et al. (rs-selector) - 9 : 1 LR 425 13 5 57 72.2 11.8 18.6 29.6 79.4

Derby Oyetoyan et al.(fsec-ext+) TCAI 1.0 LR 359 13 5 123 72.2 25.5 9.6 16.9 73.3

AU CAPEC + Q + Word2V ec− 200−Both(Ext) - - KNN 371 14 4 111 77.8 23.0 11.2 19.6 77.4

Derby Chromium Peters et al. (clnifarsecsq) - - NB 372 19 23 86 45.2 18.8 18.1 25.9 58.1

Ambari Jiang et al. (ms-selector) - 2 : 1 MLP 295 30 12 164 71.4 35.7 15.5 25.4 67.7

Wicket Oyetoyan et al.(fsec-ext+) C 2.0 LR 419 27 15 39 64.3 8.5 40.9 50.0 75.5

SE CWE −QA−Word2V ec− 300− TFIDF (Ext) - - NB 360 30 12 98 71.4 21.4 23.4 35.3 74.8

4.2.1 Comparison to state-of-the-art studies

We compare the best results of the models built with discussion forums to other
models reported in the literature. For Chromium, the model stands in the sec-
ond place with 72% gmeasure, 4.2% fscore, and 62.6% recall. For Wicket, it
ranks second with a g-measure of 88.9%, 10.9% fscore, and 100% recall. The
model ranked third for Ambari with 84.8% gmeasure, 13% fscore and 85.7%
recall. For Camel, the model ranked second with 77.4% gmeasure, 19.6% fs-
core, and best recall of 77.8%. Lastly, for Derby, the model also ranked second
with 74.8% gmeasure, 35.3% fscore, and 71.4% fscore. Clearly, the results are
competitive to existing results.

We can infer that the public discussion forum contains textual reports that can
be semantically similar and useful to build security bug report classification
models.

40

Table 4.3: Summary of results of filtered dataset with the best average g-measure

pd pf prec fscore g-measure

Target Forum Content Feature.Method Feature.source Feature.dim Feature.Learner Learner Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Chromium SO Q Word2Vec CVE 200 Both(Ext) LR 52.1 1.0 8.5 2.6 1.9 0.5 3.7 0.9 66.4 0.4

SF Q TFIDF CWE 300 Both(Ext) RF 53.9 1.3 11.5 1.6 1.9 0.2 3.7 0.4 66.6 0.6

SO Q AVG CAPEC 200 Word2Vec(Ext) LR 52.2 0.9 8.9 1.5 2.3 0.4 4.4 0.6 66.4 0.6

Wicket AU Q Word2Vec CWE 300 TFIDF(Int) RF 83.3 0.0 9.3 2.2 6.0 1.3 11.2 2.1 83.8 1.1

AU QA TFIDF CAPEC 300 Word2Vec(Int) NB 66.7 0.0 5.9 1.2 7.8 1.4 14.0 2.1 76.8 0.4

SO Q AVG CWE 100 Both(Ext) NB 66.7 0.0 13.6 2.0 3.9 0.6 7.5 1.0 72.9 0.8

Ambari AU QA Word2Vec CWE 300 TFIDF(Ext) RF 71.4 0.0 10.3 0.9 7.1 0.6 12.9 0.9 78.4 0.4

SO QA TFIDF CAPEC 100 TFIDF(Ext) RF 71.4 0.0 10.7 0.9 7.1 0.5 12.9 0.9 78.4 0.4

SE Q AVG CWE 100 Word2Vec(Ext) RF 71.4 0.0 8.1 0.7 8.9 0.7 15.9 1.1 79.5 0.3

Camel AU Q Word2Vec CAPEC 200 Both(Ext) RF 72.2 2.2 23.0 1.4 9.1 0.8 16.1 1.3 72.6 1.8

AU Q TFIDF CAPEC 200 TFIDF(Ext) RF 72.2 2.2 27.6 2.4 7.3 0.5 13.3 0.8 68.8 1.2

AU Q AVG CAPEC 200 Word2Vec(Ext) RF 66.7 2.2 23.2 1.4 8.6 0.4 15.2 0.6 69.9 1.0

Derby AU Q Word2Vec CWE 200 TFIDF(Ext) SVM 59.5 1.8 23.6 0.7 18.2 0.6 28.1 0.9 66.9 1.1

AU Q TFIDF CWE 200 TFIDF(Ext) NB 66.7 3.6 25.1 5.2 14.1 1.9 23.5 2.3 65.2 1.8

AU Q AVG CWE 300 TFIDF(Ext) SVM 52.4 4.6 17.2 6.2 15.5 2.7 24.8 2.6 64.2 0.8

Table 4.4: Summary of results of unfiltered dataset with the best average g-
measure

pd pf prec fscore g-measure

Target Forum Content Feature.source Feature.dim Feature-Learner Learner Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Chromium SE Q CVE 200 Word2Vec(Ext) LR 54, 8 0, 9 13, 2 1, 3 1, 9 0, 2 3, 7 0, 3 67, 1 0, 5

SF Q CWE 300 TFIDF(Ext) LR 63, 5 1, 7 29, 5 0, 9 1, 2 0, 0 2, 3 0, 1 66, 6 0, 7

SE Q CVE 200 Both(Ext) LR 50, 4 1, 5 6, 1 2, 4 2, 3 0, 8 4, 4 1, 4 65, 6 1, 1

Wicket SO QA - 200 Word2Vec(Int) LR 66.7 6.7 9.7 2.1 6.2 1.3 11.3 2.1 75.7 3.7

SE Q - 200 TFIDF(Int) NB 66.7 0.0 8.9 0.6 7.0 0.5 12.7 0.7 76.3 0.2

SE Q - 200 Both(Int) NB 66.7 0.0 8.5 1.3 6.2 0.9 11.3 1.4 75.7 0.5

Ambari AU Q CWE 100 Word2Vec(Ext) SVM 71.4 0.0 12.8 0.7 6.4 0.3 11.7 0.5 77.7 0.3

AU QA - 300 TFIDF(Int) RF 71.4 0.0 16.0 1.7 4.8 0.5 9.1 0.8 75.5 0.7

AU QA CWE 100 Both(Ext) LR 71.4 0.0 13.2 2.1 5.1 0.7 9.4 1.2 75.9 0.9

Camel AU Q CAPEC 200 Word2Vec(Ext) RF 61.1 6.5 21.2 2.7 8.6 0.4 15.2 0.6 68.9 2.3

AU Q CAPEC 200 TFIDF(Ext) RF 61.1 5.4 28.2 0.9 7.4 0.5 13.2 0.9 65.8 2.6

AU Q CAPEC 300 Both(Ext) RF 61.1 8.2 26.9 1.6 7.8 0.5 13.8 0.9 66.5 3.2

Derby SO Q CVE 100 Word2Vec(Ext) LR 57.1 2.6 21.8 1.3 18.2 1.2 27.7 1.6 65.5 1.8

AU Q CWE 200 TFIDF(Ext) NB 61.9 1.8 28.4 2.2 15.1 0.6 24.7 0.6 66.2 0.3

SE QA CWE 200 Both(Ext) NB 54.8 8.4 17.5 9.5 13.9 3.1 23.6 3.0 65.2 0.9

4.2.2 Comparing models with filtered dataset to models
with unfiltered dataset

We report the summary statistics of the model with the best g-measure average
for both the filtered dataset in Table 4.3 and unfiltered dataset in Table 4.4. In
Table 4.3, the results show the discussion forum where the training dataset is
collected from, whether we use the question (Q), or a combination of question
and answers (QA), the method used to collect features from the dataset (Fea-
ture.Method), the security data source of the features (Feature.source), the size
of the feature (Feature.dim), the feature used as dictionary list for the leaner
algorithm (Feature.Learner), this can be either external or internal, and the
learner algorithm (Learner). The metrics for Chromium across the three meth-
ods are similar - recalls between 52% and 53%, gmeasures between 66.4% and
66.6%, and precisions between 1.9% and 2.3%. These patterns are the same
for Ambari, Camel, and Derby. Only Wicket has a clear best model with 83%
recall and gmeasure. CAPEC and CWE are dominant security sources and
AskUbuntu (AU) featured most. Both CAPEC and CWE relate to attack sce-
narios and weaknesses which are common in software projects unlike the CVE
that describe real vulnerabilities in specific products. We cannot explain the
reason for AU dominating the datasets. External features from security sources
appear to produce the best and most stable models across the projects.

In comparison to unfiltered datasets (Table 4.4), the performance metrics are
mostly similar across the projects. The exception is Wicket with a clear best

41

model recorded with a filtered dataset. This is confirmed by the hypothesis
test for the Word2Vec model in Table 4.5 where the test for the metrics (re-
call, fscore, and gmeasure) are significant for filtered datasets with effect sizes
varying between medium (0.47) and large (1.97). Another benefit of filtered
datasets could be seen in the significant test under the Word2Vec model of fs-
core (harmonic mean between recall and precision) and g-measure (harmonic
mean between recall and true negative rate). Both the fscores and gmeasures
for Wicket, Ambari, Camel, Derby and Chromium (only fscore) are statisti-
cally significant with effect sizes between medium and large. The recall however
is better with the unfiltered datasets. Another observation from Table 4.4 is
that using externally generated features from security sources produce the best
models across the projects with only Wicket as an exception. We can infer that
extracting features from security sources can be beneficial for security report
classification models.

Table 4.5: Hypothesis: filtered dataset vs. unfiltered dataset

Word2Vec TFIDF
Project Metric p-value Hedges,g p-value Hedges,g

Chromium recall (pd) 0.99 −1.28 0.94 −0.60
f-score < 0.001 1.17 0.93 −0.41
g-measure 0.99 −1.11 0.84 −0.19

Wicket recall (pd) < 0.0001 1.02 0.31 0.11
f-score 0.021 0.47 0.10 0.18
g-measure < 0.0001 1.97 0.006 0.49

Ambari recall (pd) 0.99 −0.64 0.99 −0.48
f-score < 0.0001 1.82 < 0.0001 0.75
g-measure < 0.0001 1.67 < 0.0001 0.71

Camel recall (pd) 0.98 −0.43 0.88 −0.19s
f-score < 0.0001 0.60 < 0.0001 0.40
g-measure 0.01 0.42 < 0.0001 0.89

Derby recall (pd) 0.80 −0.18 0.99 −0.56
f-score < 0.0001 0.47 0.88 −0.49
g-measure < 0.0001 0.71 0.99 −0.91

4.2.3 Providing additional context for bug reports

We report the result of our qualitative assessments of the matches between the
security sources and bug reports.

Table 4.6: Percentage of CWE, CAPEC, and CVE matches for Chromium bug
reports predicted as true positive

Dataset Category CWE CAPEC CVE

Chromium Direct 7 7 0

Indirect 21 13 13

Table 4.6 presents the percentage of matching records from the qualitative as-
sessment of 100 bug reports in Chromium predicted by the classification model
as true positives. In summary, 7% of CWE has direct matches while 21% has
indirect matches. For CAPEC, 7% has direct matches and 13% has indirect
matches. For CVE, 13% has indirect matches while there was no direct match.
The empty match for CVE in the sample of true positives we assessed can be
explained first based on the small size of CVE records used for training the

42

Word2Vec model and second, because the bug reports we assessed are not at-
tack incidents.

Table 4.7 shows examples of how bugs in Chromium predicted by the model
as true positive can be tagged with related direct and indirect source(s) from
our Word2Vec model. The bug report ”Chrome Buffer Overflow Vulnerability”
has both a CWE and CAPEC match that describes the weakness and possible
attack related to it in detail. The bug report ”Security cross domain thefts via
CSS string property injection” has a CAPEC match that describes the related
attack. Lastly, the bug report ”Further restrict access of file URL.” also has
both a CWE and CAPEC source that can provide more security context.

43

Table 4.7: Examples of CWE, CAPEC, and CVE matches for Chromium bugs
predicted as true positives

Dataset Bug CWE CAPEC CVE

Chromium Chrome Buffer Overflow Vul-
nerability - ”SaveAs” Function
s...@bkav.com.vn SVRT - Bkis
have just discovered vulnerabil-
ity in Google Chrome 0.2.149.27
and would like to inform you
with this. Here comes the report
Details - Type of Issue Buffer
Overflow. - Affected Software
Google Chrome 0.2.149.27. - Ex-
ploitation Environment Google
Chrome (Language Vietnamese)
on Windows XP SP2. - Im-
pact Remote code execution -
Description The vulnerability is
caused due to a boundary er-
ror when handling the ”SaveAs”
function. On saving a malicious
page with an overly long title
(¡title¿ tag in HTML) the pro-
gram causes a stack-based over-
flow and makes it possible for
attackers to execute arbitrary
code.

CWE-130: If an attacker can
manipulate the length parame-
ter associated with an input such
that it is inconsistent with the
actual length of the input, this
can be leveraged to cause the tar-
get application to behave in un-
expected, and possibly, malicious
ways. One of the possible mo-
tives for doing so is to pass in ar-
bitrarily large input to the appli-
cation. Another possible motiva-
tion is the modification of appli-
cation state by including invalid
data for subsequent properties
of the application. Such weak-
nesses commonly lead to attacks
such as buffer overflows and exe-
cution of arbitrary code...

CAPEC-242: code injection ”An
adversary exploits a weakness in
input validation on the target to
inject new code into that which is
currently executing. This differs
from code inclusion in that code
inclusion involves the addition or
replacement of a reference to a
code file.

Chromium Security cross domain thefts via
CSS string property injection.
This bug is kind of annoying.
The hope is that something can
be done at the browser level.
We really don’t want to have to
make sweeping changes to lots
of our applications and gener-
ally burden web apps with more
web browser issues. This af-
fects Chrome Safari IE Opera
and FF. But let’s keep this bug
Chrome-private whilst we debate
what can be done (and protect
our customers first) The at-
tack involves cross-domain CSS
stylesheet loading. Because the
CSS parser is very lax it will skip
over any amount of preceding
and following junk in its quest to
find a valid selector...

CAPEC-468: An attacker makes
use of Cascading Style Sheets
(CSS) injection to steal data
cross domain from the victim’s
browser. The attack works by
abusing the standards relating to
loading of CSS: 1. Send cook-
ies on any load of CSS (includ-
ing cross-domain) 2. When pars-
ing returned CSS ignore all data
that does not make sense before a
valid CSS descriptor is found by
the CSS parser By having control
of some text in the victim’s do-
main, the attacker is able to in-
ject a seemingly valid CSS string.
It does not matter if this CSS
string is preceded by other data.
The CSS parser will still locate
the CSS string. If the attacker
is able to control two injection
points, one before the cross do-
main data that the attacker is
interested in receiving and the
other one after, the attacker can
use this attack to steal all of the
data in between these two CSS
injection points when referencing
the injected CSS while perform-
ing rendering on the site that the
attacker controls. When render-
ing, the CSS parser will detect
the valid CSS string to parse and
ignore the data that ”does not
make sense”. That data will sim-
ply be rendered. That data is in
fact the data that the attacker
just stole cross domain. The
stolen data may contain sensitive
information, such CSRF protec-
tion tokens.

Chromium Further restrict access of file
URL. It sucks that viewing an
HTML document at a file URL
compromises the confidentiality
of your entire file system We
should follow Firefox s lead and
further restrict the privileges of
file URLs

CWE-356: The software’s user
interface does not warn the user
before undertaking an unsafe ac-
tion on behalf of that user. This
makes it easier for attackers to
trick users into inflicting dam-
age to their system. Software
systems should warn users that
a potentially dangerous action
may occur if the user proceeds.
For example, if the user down-
loads a file from an unknown
source and attempts to execute
the file on their machine, then
the application’s GUI can indi-
cate that the file is unsafe.

CAPEC-597: Absolute Path
Traversal: An adversary with ac-
cess to file system resources, ei-
ther directly or via application
logic, will use various file abso-
lute paths and navigation mecha-
nisms such as ”..” to extend their
range of access to inappropriate
areas of the file system. The goal
of the adversary is to access di-
rectories and files that are in-
tended to be restricted from their
access.

It is possible that non-security bug reports predicted by the model to be security
related, are actually security related. Table 4.8 shows examples of how bugs in
Chromium marked as non-security are predicted as security (false positive) and

44

tagged with related source(s). The bug report ”IME should be disabled in
password box” has a CWE match that describes the weakness related to the
bug report, and the bug report ”Create Master Password for Saved Passwords”
has both a CWE and CAPEC match that gives the user information on the
related weakness and possible attack pattern related to it.

Table 4.8: Examples of CWE, CAPEC, and CVE matches for Chromium bugs
predicted as false positives

Dataset Bug CWE CAPEC CVE

Chromium IME should be disabled in pass-
word box. Prev 1642 of 14166
Next 5 problem? 1. Open a web-
page with a password box (eg.
gmail.com’s login page) 2. Try
to enable IME and input some-
thing with IME in the password
box. 3. ? IME should not be
enabled and used in a password
box. ? IME can be enabled and
can input text in a password box.
Allowing IME in a password box
should be considered as a seri-
ous security issue. Think about
if an IME records all input of
a user and sends them to a re-
mote server the user’s password
can easily be stolen in this way.

CWE-260: The application
stores sensitive information in
cleartext within a resource that
might be accessible to another
control sphere.

Chromium Create Master Password for
Saved Passwords. I personally do
not feel safe allowing anyone ac-
cess to my computer to just click
maybe three buttons and see all
of my passwords from a security
standpoint this is A HUGE de-
fect. What is the use of having
passwords if they can all be seen
so easily. So I propose creating
a master password to be able to
view all of the saved passwords
for increased security.

CWE-922: The software stores
sensitive information without
properly limiting read or write
access by unauthorized actors.

CAPEC-21: An adversary
guesses, obtains, or ”rides” a
trusted identifier (e.g. session
ID, resource ID, cookie, etc.)
to perform authorized actions
under the guise of an authenti-
cated user or service. Attacks
leveraging trusted identifiers
typically result in the adversary
laterally moving within the
local network, since users are
often allowed to authenticate
to systems/applications within
the network using the same
identifier. This allows the ad-
versary to obtain sensitive data,
download/install malware on the
system, pose as a legitimate user
for social engineering purposes,
and more. Attacks on trusted
identifiers take advantage of the
fact that some software accepts
user input without verifying its
authenticity...

This shows that it is possible to use our classification model along with the
Word2Vec model to provide additional context for security bug reports, as well
as for discovering bug reports tagged as non-security that could actually be
security related issues and providing additional context for clarity.

4.3 Threats to validity

Data sampling: We have collected a subset of the security related records in
the discussion forums. These samples do not represent all types of datasets in the
forums. E.g. StackOverflow contains over 80000 SR records. We have only used
2000 records. Using a bigger sample size can lead to different results. However,
our validation results are proof that the sample size is a good representation.

Modelling: There are several parameters that can be tuned in the algorithms
we have used. We have used the default settings for the parameters of the
algorithms during model construction. In the cases where we have used specific

45

parameters, we have reported them in the experiment section. It is possible
that tuning the parameters might lead to different results.

Generalization: The observations we have made are based on four discussion
forums on StackExchange and five open source bug report datasets. We can-
not claim that datasets from other forums and projects will produce the same
results. Therefore, further studies will be necessary to generalize the results
across other forums and software project datasets.

4.4 Conclusion

We built models by using discussion forum datasets that we have filtered with
security sources, and compare their performances to unfiltered datasets from the
forum. By validating the models on five popular security bug report datasets,
we establish that features extracted from security sources can be useful to build
security report models. We also find that filtered datasets do not produce models
with higher recalls to unfiltered ones, however, they produce models that are
better in fscore and gmeasure. Lastly, our models’ performances are competitive
to state-of-the-art studies.

We investigated using public security sources such as CWE, CAPEC, and CVE
to provide additional context for Chromium bug reports predicted by the model
to be true positive or false positive. We assess the CWE, CAPEC, and CVE
recommendations from our Word2Vec models for a sample of Chromium bug re-
ports predicted as true positive. We find 7% direct matches for CWE, 7% direct
matches for CAPEC, 21% indirect matches for CWE, 13% indirect matches for
CAPEC, and 13% indirect matches for CVE. In addition, we assessed a sample
of bug reports predicted by the classification model to be false positive for hidden
security implications that can be contextualized using public security sources.
We found examples where CWE and CAPEC could give valuable information
on the security threats related to the bug report, as well as suggestions on how
to mitigate them.

In conclusion, our results demonstrate a useful layer of validation for security
classification models, by providing additional security context information.

46

Chapter 5

Case study 2:
Contextualizing Public
Forum Discussions Using
Public Security Data
Sources

In this case study, we aim to answer RQ2: How can public information sources
be used to improve security in online discussion forums?

Online discussion forums have become de facto knowledge factory for solving
software related problems. Unfortunately, solutions from public discussion fo-
rums are not security hardened, and have been shown to have security implica-
tions [1, 4, 17]. Acar et al. [1] showed that the use of StackOverflow by developers
leads to insecurity as developers copy-paste vulnerable solutions. We argue that
providing additional context to questions on discussion forums and bug reports
by using security information sources from publicly disclosed cybersecurity vul-
nerabilities (CVE), common weaknesses (CWE), and attack patterns (CAPEC)
can improve this situation and make stakeholders better evaluate security re-
lated reports. Thus, users of public information resources such as StackOverflow
can better evaluate the security implications of their discussions or the solutions
they are adapting in their environment if this information can be mapped to
existing security information sources.

Our hypothesis is that security information sources can provide an additional
validation layer of security classification for public information sources. In this
case study, we use a word embedding Word2Vec model to provide mappings
between discussion forum questions and security sources in order to answer
RQ2.

47

5.1 Experiment setup and modelling approach

To answer RQ2, we use a Word2Vec model that we have trained on each of
the security sources. We then select the first 100 security related (SR) records
from StackOverflow and ServerFault. For each record, we use the mean vector
embedding from the Word2Vec model described in 3.3.2 and then perform a
cosine similarity to the mean vector embedding of each record from the security
source. Using a cosine of 0.5 as our threshold, we collect the top five most similar
security sources to a particular forum question. We also evaluate collected non-
security related (NSR) records from StackOverflow and ServerFault that have
a cosine similarity of 0.5 for any security source. We collect the top five most
similar security sources for each particular NSR question.

We then provide a qualitative assessments of these mappings to external security
sources to identify whether they are meaningful or not. When assessing whether
a source reasonably matches a discussion, we use the method described in 2.6.2.
Two raters have independently evaluated the 100 SR records and compared
results in addition to resolving disagreements. A record has one to five suggested
matches. We record a one for a category when at least one of the five matches
is marked with this category. For the NSR records, only one rater evaluated
them.

5.2 Results & Discussion

We report the result of our qualitative assessments of the matches between the
security sources and discussion forum questions.

Table 5.1: Percentage of CWE, CAPEC, and CVE matches in StackOverflow
and ServerFault discussion questions

Forum Category CWE CAPEC CVE

StackOverflow Direct 12 10 0

Indirect 44 54 14

ServerFault Direct 14 8 0

Indirect 20 14 18

Table 5.1 presents the percentage of matching records from qualitative assess-
ment of 100 security-related questions in both StackOverflow and ServerFault.
In summary, for StackOverflow, 12% of CWE has direct matches while 44%
has indirect matches. For CAPEC, 10% has direct matches and 54% has in-
direct matches. For CVE, 14% has indirect matches while there was no direct
match. For ServerFault, 14% of CWE has direct matches while 20% has indirect
matches. For CAPEC, 8% has direct matches and 14% has indirect matches.
For CVE, 18% has indirect matches while there was no direct match.

The empty match for CVE in the sample of SR we assessed can be explained first
based on the small size of CVE records used for training the Word2Vec model
and second, because the discussion forum questions we assessed are not attack
incidents. Tables 5.2 and 5.3 present specific examples of questions with direct
and indirect matches to the security sources. The matches provide, in some

48

cases, examples of incidents (CVE) that can be relevant to the question. For
example, the user with question-Id 934731 is looking to log all account manage-
ment activities for at least 6 months. However, CVE-2020-15095 in Table 5.3
presents a real world information exposure vulnerability in npm cli through
log files that can help the user think through certain mitigations while imple-
menting this feature. CAPEC-93: Log Injection-Tampering-Forging, further
amplifies the pattern of attack. Thus, the stakeholder can think of mitigation
in advance such as digitally signing every record in the log file in order to detect
tampering.

In some other cases, the matches only provide information to users. For example,
the questions id - 1057084 (fixing weak TLS), 104870 (Memory Pressure Pro-
tection feature) in Table 5.3 and 63605452 (XML injection), 28606689 (Screen
Capture in Android), and 332365 (SQL injection) all have CWE and CAPEC
matches that describe and discuss the implications of the security questions.

Table 5.2: Examples of CWE, CAPEC, and CVE matches to security related
StackOverflow discussion questions

Q-ID Question CWE CAPEC CVE

63605452 How to prevent XML injection - I
got a vulnerability report. XML
is injected in the URL ”XIn-
clude”. I’m trying to find a val-
idation to prevent the XML to
be executed. My web application
is built using Visual Studio C#
with webforms. I was thinking to
validate this from the web.config
or IIS. I’m not sure if I have to
add code to validate or parse the
XML...

CWE-611: Improper Restriction
of XML External Entity Refer-
ence - The software processes an
XML document that can contain
XML entities with URIs that re-
solve to documents outside of the
intended sphere of control, caus-
ing the product to embed incor-
rect documents into its output...

CAPEC-250: An attacker
utilizes crafted XML user-
controllable input to probe,
attack, and inject data into the
XML database, using techniques
similar to SQL injection. The
user-controllable input can allow
for unauthorized viewing of
data, bypassing authentication
or the front-end application for
direct XML database access,
and possibly altering database
information

28606689 How to prevent Screen Capture
in Android - Is it possible to pre-
vent the screen recording in An-
droid Application? I would like
to develop an Android Secure
Application. In that I need to
detect screen recording software
which are running background
and kill them. I have used SE-
CURE FLAG for prevent screen-
shots. But I dont know is it pos-
sible to prevent Video capturing
of Android Screen also. Let me
know how to prevent screen cap-
turing (video / screenshots)...

CAPEC-648: Collect Data from
Screen Capture - An adversary
gathers sensitive information by
exploiting the system’s screen
capture functionality. Through
screenshots, the adversary aims
to see what happens on the
screen over the course of an oper-
ation. The adversary can lever-
age information gathered in or-
der to carry out further attacks...

332365 How does the SQL injection
from the “Bobby Tables” XKCD
comic work? What does this
SQL do: Robert’); DROP TA-
BLE STUDENTS; – I know both
’ and – are for comments, but
doesn’t the word DROP get com-
mented as well since it is part of
the same line?...

CWE-89: Improper Neutraliza-
tion of Special Elements used in
an SQL Command (’SQL Injec-
tion’) - The software constructs
all or part of an SQL command
using externally-influenced input
from an upstream component,
but it does not neutralize or in-
correctly neutralizes special ele-
ments that could modify the in-
tended SQL command when it
is sent to a downstream compo-
nent...

49

Table 5.3: Examples of CWE, CAPEC, and CVE matches to security related
ServerFault discussion questions

Q-ID Question CWE CAPEC CVE

934731 Using auditd and retaining
log files for 6 months. - Find
a way to log all account man-
agement activities (e.g., ac-
count creation, modification,
deletion, etc.) on an Ubuntu
16.04 LTS server and retain
the logging information for
at least 6 months...

CAPEC-93: Log Injection-
Tampering-Forging - This
attack targets the log files
of the target host. The at-
tacker injects, manipulates
or forges malicious log en-
tries in the log file, allowing
them to mislead a log audit,
cover traces of attack, or per-
form other malicious actions.
The target host is not prop-
erly controlling log access.
As a result tainted data is re-
sulting in the log files lead-
ing to a failure in account-
ability, non-repudiation and
incident forensics capability.

CVE-2020-15095: versions
of the npm cli prior to
are vulnerable to an infor-
mation exposure vulnerabil-
ity through log files the cli
supports urls like protocol
hostname path the password
value is not redacted and is
printed to stdout and also to
any generated log files

1057084 How to fix Weak TLS 1.2
Encryption - I have a re-
quirement to disable below
weak TLS ciphers in Win-
dows Server 2016. I tried to
reasearch and it says ”The
Microsoft SCHANNEL team
does not support directly
manipulating the Group Pol-
icy and Default Cipher suite
locations in the registry”
Please advise. Thank you in
advance...

CWE-326: Inadequate En-
cryption Strength - A weak
encryption scheme can be
subjected to brute force at-
tacks that have a reasonable
chance of succeeding using
current attack methods and
resources.

104870 Memory Pressure Protection
Feature for TCP Stack - Pro-
vided by Microsoft Security
Update KB967723 - We’ve
been having a lot of funky
issues with some of our web
based applications that allow
clients to submit lot of im-
age files to our servers. Lots
of ports are used in the pro-
cess... There doesn’t appear
to be a pattern and some-
times it works and other
times is doesn’t. Typi-
cally we’ve noticed it when
server is under load.I’m curi-
ous what others think about
this MPP and any issues
that you may have experi-
enced from it...

CWE-406: Insufficient Con-
trol of Network Message
Volume (Network Amplifica-
tion) - In the absence of a
policy to restrict asymmetric
resource consumption, the
application or system can-
not distinguish between le-
gitimate transmissions and
traffic intended to serve as
an amplifying attack on tar-
get systems. Systems can of-
ten be configured to restrict
the amount of traffic sent out
on behalf of a client, based
on the client’s origin or ac-
cess level...

Table 5.4 and 5.5 present examples of non-security related questions posted
on StackOverflow and ServerFault, where our Word2Vec model has suggested
CWE and CAPEC matches that can provide the user with additional context
regarding the possible security vulnerabilities. Question ID 66540743 (REST -
GET - Passing secret value) in Table 5.4 gives an example of a possible weakness
that can take place if the user does not apply the right measures for avoiding
it. Question ID 1056340 (Pfsense External IP to Internal Server) in Table 5.5
has both a CWE match and CAPEC match that discusses the possible security
implications related to this question.

50

Table 5.4: Example of CWE, CAPEC, and CVE matches to a non-security
related StackOverflow discussion question

Q-ID Question CWE CAPEC CVE

66540743 REST - GET - Passing secret
value I am designing a REST
API for getting a gift card
balance I choose GET HTTP
verb to be used for it But
then I realized that I need to
pass the PIN number of the
gift card for which balance
needs to be fetched I am a bit
puzzled with the design I can
think of two approaches Use
HTTP GET and pass PIN as
a custom HTTP header X-
GC-PIN URI giftcards gift-
card-number PIN is not a
meta-data so I am reluc-
tant to pass it as a HTTP
header Use HTTP POST
and pass PIN in the body
And URI giftcards gift-card-
number balance But since
this is a fetch call I am re-
luctant to use POST How I
should approach this design
problem Is any of the above
is more suitable or is there
another way

CWE-614: The Secure at-
tribute for sensitive cookies
in HTTPS sessions is not set
which could cause the user
agent to send those cookies
in plaintext over an HTTP
session

Table 5.5: Example of CWE, CAPEC, and CVE matches to a non-security
related ServerFault discussion question

Q-ID Question CWE CAPEC CVE

1056340 Pfsense External IP to In-
ternal Server I am cur-
rently searching for some
help regarding firewall net-
work traffic Mind you I am
not a guru by any means
so some terms may not be
proper and I will do my best
to explain Diagram 1 Cur-
rently I host a game server
This game server is setup as
described and can be viewed
from the Network Diagram
Image below Server ip is 10
1 0 120 my public is is 67 x x
x I have port forwarded all
ports 2502 2512 and 27018
This allows users to connect
into my network and play
the game This is a security
risk as my external ip is visi-
ble and there is nothing se-
curing my line other than
my ability to lock it down
There is nothing wrong with
this connection and it per-
forms great Well until This
is where things get a bit
sketchy My current public
ip of 67 x x x is visible to
everybody and their mother
on the internet so if some-
one ddos attacks me I no
longer have access to the in-
ternet and neither do the 50-
80 people connecting into my
server...

CWE-941: Attackers at the
destination may be able to
spoof trusted servers to steal
data or cause a denial of
service. There are at least
two distinct weaknesses that
can cause the software to
communicate with an unin-
tended destination: If the
software allows an attacker
to control which destination
is specified, then the at-
tacker can cause it to con-
nect to an untrusted or ma-
licious destination... As an-
other example, server-side
request forgery (SSRF) and
XML External Entity (XXE)
can be used to trick a server
into making outgoing re-
quests to hosts that cannot
be directly accessed by the
attacker due to firewall re-
strictions..

CAPEC-590: An adversary
performing this type of at-
tack drops packets destined
for a target IP address. The
aim is to prevent access to
the service hosted at the tar-
get IP address.

5.3 Threats to validity

Data sampling: We have collected a subset of the security related records in
the discussion forums. These samples do not represent all types of datasets in
the forums. E.g. StackOverflow contains over 80000 SR records. We have only
used 100 records. Using a bigger sample size can lead to different results.

Generalization: The observations we have made are based on two discussion

51

forums on StackExchange. We cannot claim that datasets from other forums
and projects will produce the same results. Therefore, further studies will be
necessary to generalize the results across other forums and software project
datasets.

5.4 Conclusion

We have investigated using public security sources such as CWE, CAPEC, and
CVE to provide additional context for security discussions on StackExchange
forums. We argue that such context can further clarify questions and provide
examples of weaknesses, attack patterns, and real-world scenarios related to the
question.

We assess the CWE, CAPEC, and CVE recommendations from our Word2Vec
models for a sample of security related StackOverflow and ServerFault records.
We find 12% - 14% direct matches for CWE, 8% - 10% direct matches for
CAPEC, 20% - 44% indirect matches for CWE, 14% - 54% indirect matches
for CAPEC, and 14% - 18% indirect matches for CVE. In addition, we have
assessed non-security related questions from StackOverflow and ServerFault for
hidden security implications that can be contextualized using public security
sources. We found examples where CWE and CAPEC could give the user
valuable information on the security threats related to their questions, as well
as suggestions on how to mitigate them.

In conclusion, our results demonstrate a useful model for providing additional
security context for public discussion forum posts related to security issues, as
well as promising results for finding hidden security implications in non-security
related discussion forum posts.

52

Chapter 6

Improving security in the
developer’s development
environment

In this thesis, we have not answered RQ3. However, we describe the idea behind
the RQ which can be pursued in future work. RQ3 is as follows: How can public
information sources be used to improve security in the developer’s development
environment?

To properly validate RQ3, we would collect datasets from code sharing platforms
or public code bases. Figure 6.1 gives an overview of the suggested approach
for validating RQ3. The API already has interfaces for two code sharing plat-
forms (StackExchange and ProgramCreek), but an interface for code bases (e.g.
Github [27]) would be a good extension. Our approach is based on the idea
presented by Scandariato et al. [52]. The idea is to collect a dataset consisting
of vulnerable code and clean code. To do his, we can run a static analysis tool
on several code bases or code sharing platforms, as well as collect vulnerable ex-
amples by mining the examples from e.g. CWE, using the interfaces in the API
described in section 3.1.2, or CERT. We can then train a vulnerability classifi-
cation model on this code dataset using the modelling approach from chapter 4
shown in Figure 4.1.

53

Figure 6.1: Approach for collecting datasets consisting of vulnerable and clean
code

The final classification model from this approach will then be integrated into
a developers IDE (e.g. Eclipse or IntelliJ). The idea is that when a developer
for example copies code from a discussion forum, when pasting it into the IDE,
the model will first process the code sample and predict whether is is security
vulnerable or not. In addition, the developer should be given suggestions of
public security source matches to give the code additional security context. To
do this, we will use a Word2Vec model trained on CVE, CWE and CAPEC
code examples to identify closely matched context.

54

Chapter 7

Discussion

In this chapter, we discuss some of the design choices and challenges we faced
when developing the API, as well as the results of the case studies conducted in
this thesis.

7.1 API Development

When developing the API, we had to decide on what types of sources to build in-
terfaces for as a start. Because of the time limit, we decided to include interfaces
for three types of sources; public discussion forums, public security sources and
code sharing platforms. This gives a solid foundation for the API, and allows for
further extensions later on, for instance adding interfaces for other discussion
forums, public information sites, expert blogs, code sharing platforms or public
code bases. Currently, the API has interfaces for two code sharing platforms,
namely StackExchange and ProgramCreek. The idea behind this was to create
the groundwork for answering RQ3 in the future as described in chapter 6. The
interfaces for the public security sources and code sharing platforms uses web
crawlers built specifically for each website. The issue with this is that any sort
of change or update to the HTML tags on the site must also be addressed in
our API implementation. However, as these websites did not have any sort of
API for collecting records, this was the best way to do it. This also led to
some challenges, as not all pages on a website had the same layout, so we had
to implement workarounds for these problems as we encountered them. Code
example 7.1 shows an example of this, where we implemented the crawler to
skip rejected CVE records.

1 // sk ip CVE i f i t i s r e j e c t e d
2 i f (desc . asText () . conta in s (”∗∗ REJECT ∗∗”)) {
3 number++;
4 continue ;
5 }

Listing 7.1: Example of a workaround in CVE web crawler

We decided early on to use the two feature extraction methods TF-IDF and
Word2Vec, because these methods have been shown to have good results on

55

similar tasks in several papers [46, 44, 67]. However, the API is built in such
a way that it should it be easy to add new feature extraction methods. This
is further described in chapter 10. All feature sets, word vectors, datasets and
classification models are stored in files, as the classification algorithms in Weka
and Deeplearning4j all use files as input. We encountered some challenges when
writing Word2Vec vectors to a file for the validation dataset Chromium, as some
of the bug reports only containing one word in the description were not properly
written in a vectorized form. Instead the number vectors were replaced by the
replacement character (Unicode U+FFFD). This resulted in an exception error
when trying to run the Convolutional Neural Network classification model on
the file. To fix this, we had to clean all vectorized Chromium files, and replace
the odd symbols with 0.0 instead. A method for fixing this problem was created
in the DataPreProcess class.

7.2 Case Study Results

7.2.1 Contextualizing Bug Reports Using Public Security
Data Sources

The case study described in chapter 4, investigated RQ1 by creating classifica-
tion models from public discussion forum datasets and public security datasets,
as well as by using a Word2Vec model to find similar public security sources
for Chromium bugs predicted by the best performing classification model to be
true positive or false positive.

The results of the classification models were compared to results of state-of-
the-art studies, and showed clear competitive results. When comparing the
filtered dataset results to the unfiltered dataset results, we could see that filtered
datasets generally performed slightly better than unfiltered datasets with a few
exceptions. The explanation for this could be that even though the unfiltered
datasets are not extracted using any of the feature extraction methods described
in Figure 3.3, the SRs could still contain terms that give them a high cosine
similarity, resulting in a model being able to predict them correctly. We also
saw that using externally generated features from security sources produced the
best models across the projects with only one exception for the Wicket dataset.
We can therefore infer that extracting features from security sources can be
beneficial for security report classification models. There are several factors in
this case study that could lead to different results. Firstly, the collected datasets
do not represent all types of datasets that can be collected from forums on
StackExchange. StackExchange contain over 80000 security-related records, but
we have only used 2000 records. Using a bigger sample or a different threshold
for filtering datasets can lead to different results. However, our validation results
are proof that the sample size is a good representation. Secondly, datasets
from other forums and software projects might produce different results, so
further studies will necessary to generalize the results across forums and project
datasets. Lastly, we have used the default settings for the parameters of the
classification algorithms during model construction. Tuning the parameters
could possibly lead to different results.

The results of the qualitative assessment of 100 bug reports on Chromium pre-

56

dicted by the classification model as true positives, demonstrated that providing
additional security context for bug reports can be a useful layer of validation for
security classification models. We assessed the CWE, CAPEC, and CVE recom-
mendations from our Word2Vec models for a sample of Chromium bug reports
predicted as true positive. We found 7% direct matches for CWE, 7% direct
matches for CAPEC, 21% indirect matches for CWE, 13% indirect matches for
CAPEC, and 13% indirect matches for CVE. In addition, we found examples of
false positives where the model suggested public security sources that explained
the possible security implications of the reported bug. The empty match for
CVE in the sample of bug reports we assessed can be explained first based on
the small size of CVE records used for training the Word2Vec model and second,
because the bug reports we assessed are not attack incidents. There are fac-
tors that could possibly lead to different results for this qualitative assessment.
For instance, the sample of Chromium bugs in the dataset do not represent
all types of bugs in the Chromium project. In addition, many of the security
related bug reports in the Chromium dataset only have a one-word description
of ”Security”, which is correctly predicted by the classification model, but is not
possible to find any public security source matches for as it does not include
any context for the bug.

7.2.2 Contextualizing Public Forum Discussions Using Pub-
lic Security Data Sources

The case study described in chapter 5, investigated RQ2 by using a word embed-
ding Word2Vec model to provide mappings between public security sources and
StackOverflow and ServerFault forum questions. The result of our qualitative
assessments of the matches between the security sources and discussion forum
questions were promising. For StackOverflow, 12% of CWE has direct matches
while 44% has indirect matches. For CAPEC, 10% has direct matches and 54%
has indirect matches. For CVE, 14% has indirect matches while there was no
direct match. For ServerFault, 14% of CWE has direct matches while 20% has
indirect matches. For CAPEC, 8% has direct matches and 14% has indirect
matches. For CVE, 18% has indirect matches while there was no direct match.
The empty match for CVE in the sample of SRs we assessed can be explained
first based on the small size of CVE records used for training the Word2Vec
model and second, because the discussion forum questions we assessed are not
attack incidents. There are factors that could possibly lead to different results
for this qualitative assessment. For instance, the sample of discussion forum
questions do not represent all types of questions on the various forums. Collect-
ing different datasets might lead to different results.

57

Chapter 8

Related Work

Related works were surveyed on public information security sources, bug re-
port classification, linking knowledge units, as well as some relevant work on
machine learning and natural text processing that could benefit the bug report
classification.

The systematic literature review was carried out based on the snowballing
methodology described by Wohlin [62]. The approach consists of a start set
of papers and several iterations for finding papers that will be included in the
final version. The iterations include two steps: backwards snowballing which
looks at the references of the considered paper, and forwards snowballing for
identifying new papers citing the paper being considered. For the literature
review, three papers regarding public information security sources and two pa-
pers regarding linking knowledge units were selected as the start set. Several
iterations were conducted until no more relevant papers were found. The final
version was a set of 37 papers covering four relevant topics.

8.1 Public Information Security Sources

Sauerwein et al. [51] conducted a triangulation study to identify and analyze
public information security data sources, as well as introducing a taxonomy
to classify and compare these data sources. Their investigations showed that
research and practice rely on a large variety of heterogeneous information secu-
rity data sources, which makes it difficult to integrate and use for information
security and risk management processes.

Felderer et al. [16] propose a framework for security data extraction, processing
and application. The framework consists of a security data collection compo-
nent and an analysis component, as well as a security knowledge generation
component.

Wijayasekara et al. [61] discusses existing bug data mining classifiers, and present
an analysis of vulnerability databases showing the necessity to mine common
publicly available bug databases for hidden impact vulnerabilities.

58

Pletea et al. [47] evaluated the presence and atmosphere surrounding security-
related discussions on GitHub from discussions around commits and pull re-
quests.

Ohira et al. [43] introduced a dataset of high impact bugs that was created by
manually reviewing four thousand issue reports in four open source projects.

Islam et al. [29] studies 2716 high-quality posts from Stack Overflow and 500 bug
fix commits from Github about five popular deep learning libraries to under-
stand the types of bugs, root causes of bugs, impacts of bugs, bug-prone stage of
deep learning pipeline as well as whether there are some common antipatterns
found in this buggy software.

Wei et al. [59] proposes a semantics-aware approach for warning prioritization in
Link, a static analyzer for detecting bugs/issues in Android apps, called OASIS.
OASIS combines program analysis and NLP techniques to recover intrinsic links
between the Link warnings and the user complaints of an app.

8.2 Bug Report Classification

Wu et al. [64] propose an automated data labeling approach based on iterative
voting classification for identifying security bug reports.

Tyo [57] explored the distribution and characteristics of security vulnerabilities
in bug tracking systems, as well as data analytics approaches for automatic
classification of security bug reports. They used supervised learning algorithms
as well as a novel unsupervised machine learning approach. Their results showed
most consistently good results from the learning algorithm Naive Bayes across
all datasets used.

Peters et al. [46] proposes a framework, FARSEC, for filtering and ranking
bug report for reducing the presence of security bug reports that removes non-
security bug reports containing security related keywords before building a pre-
diction model. They demonstrate that FARSEC improves the performance of
text-based prediction models for security bug reports in 90% of cases.

Gegick et al. [23] developed an approach to identify mislabeled security bug
reports that applies text mining on natural-language descriptions of bug reports
to train a statistical model.

Shu et al. [56] aims to aid software developers to better classify bug reports
that identify security vulnerabilities as security bug reports through parameter
tuning of learners and data pre-processor.

Goseva-Popstojanova et al. [25] focuses on automated classification of software
bug reports to security and not-security related using both supervised and unsu-
pervised approaches. Their results showed that the supervised learning slightly
outperforms the unsupervised learning, at the expense of labeling the training
set. In general, the results showed that datasets with more security information
lead to better performance.

Wijayasekara et al. [60] presents a hidden impact bug identification methodol-
ogy by means of text mining bug databases. Wright et al. [63] conducted an

59

experiment using the MySQL bug report database to estimate the number of
misclassified bugs yet to be identified as vulnerabilities.

Gantzer [22] focuses on exploring techniques that have potential to improve the
performance of automated classification of software bug reports as security or
non-security related. They use feature selection, clustering and deep learning
for classification.

Shu et al. [55] proposes a method, SWIFT, that combines learner hyperpa-
rameter optimization and pre-processor hyperparameter optimization for dis-
tinguishing security-related bug reports in a product’s bug database. Their
results show that their approach achieves better performance in a fast way than
existing state-of-the-art method.

Jiang et al. [30] proposes a novel approach, LTRWES, that incorporates learning
to rank a word embedding into the identification of SBRs. Their results show
that the proposed method outperforms state-of-the-art method.

Zhou et al. [69] describe an efficient automatic vulnerability identification system
for tracking large-scale projects in real time using natural language processing
and machine learning techniques.

Kudjo et al. [34] introduces a new approach for vulnerability classification using
term frequency and inverse gravity moment (TF-IGM). Their results show that
TF-IGM outperforms the benchmark method across the applications used in
the study.

Chawla et al. [9] presents an automated technique for bug labeling using TF-
IDF and LSI. Their results showed better results from using LSI along with
TF-IDF compared to using TF-IDF alone.

Das et al. [13] proposes a learning based approach to identify security and
performance bug reports addressing class-bias and feature-skew phenomenon.

Mostafa et al. [41] proposes an automatic approach to identify security bug re-
ports in open bug repositories using semi-supervised learning and keyword-based
pre-filtering based on keywords mined from existing security related textual de-
scription in the CVE. Their results show that the approach outperforms the
best baseline approaches.

Scandariato et al. [52] presents an approach based on machine learning to predict
which components of a software application contain security vulnerabilities by
text mining the source code of the components.

Oyetoyan et al. [44] investigates whether a generic text classification model can
be developed for classifying security related messages in software development
project communications. Their approach showed improvement in 75% cases
over a state-of-the-art prediction model for security bug reports.

8.3 Linking Knowledge Units

Xu et al. [66] formulates the problem of predicting semantically linkable knowl-
edge units as a multiclass classification problem, and solve the problem using
deep learning techniques.

60

Xu et al. [65] proposes a query-focused multi-answer-posts summarization task
for a given technical question, AnswerBot. Their user study results showed that
answers generated by their approach were relevant, useful and diverse.

Bogdanova et al. [6] aims to detect semantically equivalent questions in online
user forums by performing an extensive number of experiment using data from
two different Stack Exchange forums, and compare standard machine learning
methods with a convolutional neural network. Their results showed that the
convolutional neural network with in-domain word embeddings achieved high
performance even with limtied training data.

Zhang et al. [68] proposes an automated approach to duplicate question de-
tection that takes a new question as input and detects potential duplicates of
this question considering multiple factors. Their results show that the approach
improves the recall-rate of 40.63% compared to the standard search engine of
Stack Overflow.

Yang et al. [67] proposes a novel approach for similar bug recommendation using
traditional information retrieval techniques and a word embedding technique.
The results show that their approach improves the performance of similar bug
recommendation system, NextBug, significantly and substantially.

Li et al. [36] conducted an empirical study to explore the characteristics of a
large number of links within popular Python projects in GitHub.

Cai et al. [8] proposes a tool, AnswerBot, which enables to automatically gener-
ate an answer summary for a technical problem based on Stack Overflow. The
results showed thath the answer summaries generated by AnswerBot were more
relevant, useful and diverse than Google and Stack Overflow search engine.

8.4 Machine Learning and NLP

Lopez et al. [37] explains the basics of Convolutional Neural Networks (CNNs),
the different variations and how they have been applied to Natural Language
Processing (NLP).

F. Sebastiani [54] discusses the main approaches to text categorization that fall
within the machine learning paradigm.

Allahyari et al. [2] describe several of the most fundamental text mining tasks
and techniques including text pre-processing, classification and clustering.

Kenter et al. [32] investigates whether determining short text similarity is pos-
sible using only semantic features by using word embeddings.

Y. Kim [33] shows that a simple convolution neural network with little hy-
perparameter tuning and static vectors achieves excellent results on multiple
benchmarks.

61

Chapter 9

Conclusion

Software vulnerabilities are increasing security focus as critical systems become
more dependent on complex software systems. Solutions may contain security
risks that could have been avoided if the design choices were analyzed by using
public information security data sources. Because of this, easily processable
and up-to date security information should be available for system architects
and developers during system design, development, and bug resolution. It has
been observed that public discussion forums such as StackOverflow contain more
recent and relevant comments on current technologies than any textbook or re-
search article [20], and these public discussion forums are heavily used for solving
software related problems. However, solutions copied from these forums can of-
ten be found to have security implications when they are copied directly into
the production environment [1, 4, 17]. In this thesis, we have developed an API
that provides developers with the ability to interface public security information
sources and public discussion forums, extract data from these sources, popu-
late them into existing structured expression languages, build machine learning
classification models from these sources, and provide mapping between public
security sources and public discussion forum posts.

RQ1 questioned how public security information sources can be used to improve
bug report security classification models. The case study described in chapter 4
approached RQ1 by building classification models from public discussion forum
datasets and public security datasets, as well as by using a Word2Vec model
to find similar public security sources for Chromium bug reports predicted by
the best performing classification model to be true positive or false positive.
The results showed that features extracted from security sources can be useful
for building security report models, as the models’ performances showed results
that are competitive to state-of-the-art studies. In addition, the matches for
Chromium bug reports found by the Word2Vec model showed that the model
could give valuable information on the security threats related to the bug report,
as well as suggestions on how to mitigate them. In conclusion, the case study
demonstrated a useful layer of validation for security classification models, by
providing additional security context information.

RQ2 questioned how public security information sources can be used to improve

62

security in online discussion forums. The case study described in chapter 5 inves-
tigated RQ2 by using a word embedding Word2Vec model to provide mappings
between public security sources and StackOverflow and ServerFault forum ques-
tions. The results of the qualitative assessment conducted by the case study,
showed a promising amount of matches for the security related questions. In
addition, the model found examples where CWE and CAPEC could give the
user valuable information on the security threats related to their non-security
related questions, as well as suggestion on how to mitigate these threats.

RQ3 questioned how public security information sources can be used to improve
security in the developer’s development environment. In this thesis, we have
not answered RQ3. However, the idea behind the RQ which can be pursued in
future work is described in detail in chapter 6. The idea is to collect datasets
consisting of vulnerable and clean code examples using a static analysis tool, and
train a classification model using the collected datasets following the modelling
approach in chapter 4. The final classification model will be integrated into an
IDE, and used to predict whether pasted code into the IDE is security vulnerable
or not. In addition, it will give the developer suggestions of related public
security source matches to give the developer additional security context for the
vulnerable code.

63

Chapter 10

Future Work

The API could be extended in several different ways. It would be beneficial
to add interfaces to other discussion forums, public information sites, expert
blogs or code sharing platforms as this would give the user more opportunities
to collect datasets and use the model to find similar public security sources. In
addition, it would be interesting to add more feature extraction methods. A
feature extraction method that would be interesting to explore in this context
is Doc2Vec proposed in [35]. Doc2Vec is an extension of the Word2Vec word
embedding model that is based on whole sentences (or documents) instead of sin-
gular words in a context. It would be very interesting to see how classification
models and similarity calculations using this model would perform compared
to TF-IDF (see 3.3.1) and especially Word2Vec (see 3.3.2). The collection of
feature words for the classification models could also use some refinement. Cur-
rently, when collecting feature words using Word2Vec, we only collect the top n
feature words from the model with no particular logic behind it. Although we
have seen good results from doing it this way, it could possibly be beneficial to
come up with a method to extract these words in an intelligent way.

Figure 10.1 shows a possible way to combine the models we have developed in
this thesis for the purpose of refining the classification model. The idea is to use
the Word2Vec model as a validation model, where the classification result (SR or
NSR) is passed through the Word2Vec model. Using a certain threshold, we can
check whether additional context from CWE, CAPEC, or CVE can be derived.
If a classification result is NSR but has a context from the Word2Vec model, we
can conclude that it is a SR (FN → TP). Similarly, if a classification result is
SR and does not have a context, then this may probably be a NSR (FP→ TN).
However, such has to be re-inspected. In addition, it can also be that results
from the Word2Vec model can be used during training for re-training models.

64

Figure 10.1: Using a combination of the classification model and word embed-
ding model for validation

To properly validate RQ3, we would collect datasets from code sharing platforms
or public code bases. The API already has interfaces for two code sharing
platforms (StackExchange and ProgramCreek), but an interface for code bases
(e.g. Github [27]) would be a good extension. Our approach is based on the idea
presented by Scandariato et al. [52]. The idea is to collect a dataset consisting
of vulnerable code and clean code. To do his, we can run a static analysis tool
on several code bases or code sharing platforms, as well as collect vulnerable
examples by mining the examples from e.g. CWE or CERT. We can then train
a vulnerability classification model on this code dataset. The final classification
model from this approach will then be integrated into a developers IDE (e.g.
Eclipse or IntelliJ). The idea is that when a developer for example copies code
from a discussion forum, when pasting it into the IDE, the model will first
process the code sample and predict whether is is security vulnerable or not.
In addition, the developer should be given suggestions of public security source
matches to give the code additional security context. To do this, we will use a
Word2Vec model trained on CVE, CWE and CAPEC code examples to identify
closely matched context.

65

Appendix A

Source code

The source code for the API is available at this URL: https://github.com/
anjfs/Security-Information-API.

66

https://github.com/anjfs/Security-Information-API
https://github.com/anjfs/Security-Information-API

Appendix B

Research Paper: Utilizing
public repository to
contextualize security
report classification models

This research paper was written in collaboration with my supervisor, Tosin
Daniel Oyetoyan, and comprises parts of the thesis. It has been submitted to
the 7th International Conference on Data Mining (DTMN 2021).

B.1 Abstract

It has been remarked that modern software engineering is evolving so fast that
public forums contain more relevant and recent comments on current technolo-
gies than any textbook or research article. Public forums are now de-facto
knowledge factory for solving software related problems. Unfortunately, not
every solution is security hardened. Solutions copied from public discussion fo-
rums such as stackoverflow to production environment have been shown to have
security implications.

We investigate whether we can provide additional context to both discussion
forum contents and bug reports by using public security sources such as CVE,
CWE, and CAPEC. We construct classification models with discussion forum
dataset filtered by and built with features from public security sources. We
then validate our model using commonly used bug report dataset. Finally,
using similarity measures and word embedding technique, we map discussion
questions that are related to security sources.

Our results show that features extracted from public security records produce
stable models. By performing a qualitative assessment of a sample of stackover-
flow and serverfault records that are mapped to public security sources from
word embedding models, we find 12% - 14% direct matches for CWE, 8% - 10%

67

direct matches for CAPEC, 20% - 44% indirect matches for CWE, 14% - 54%
indirect matches for CAPEC, and 14% - 18% indirect matches for CVE. Our
result demonstrates additional layer for validating security classification models.

B.2 Introduction

It has been remarked that modern software engineering is evolving so fast that
public forums contain more relevant and recent comments on current technolo-
gies than any textbook or research article [20]. Public forums are now de-facto
knowledge factory for solving software related problems. Unfortunately, not
every solution is security hardened. Solutions copied from public discussion
forums such as StackOverflow to production environment have been shown to
have security implications [1, 4, 17]. Acar et al. [1] showed that the use of Stack-
Overflow by developers leads to insecurity as developers copy-paste vulnerable
solutions. We argue that providing additional context to questions on discus-
sion forums and bug reports by using security information sources from publicly
disclosed cybersecurity vulnerabilities (CVE), common weaknesses (CWE), and
attack patterns (CAPEC) can improve this situation and make stakeholders
better evaluate security related reports. In addition, it can support vulnerabil-
ity models built using source code [70, 52]. Thus, users of public information
resources such as StackOverflow can better evaluate the security implications of
their discussions or the solutions they are adapting in their environment if this
information can be mapped to existing security information sources.

Our hypothesis is that security information sources can provide additional val-
idation layer of security classification for bug reports and public information
sources. To address our hypothesis, we first build a classification model from
both public discussion forum dataset and public security dataset. We then val-
idate our models using open source bug report dataset. Our justification for
choosing the bug reports as ground truth is that software development artifacts
and discussion forums have been shown to be associated [29, 58, 48]. Second,
we use word embedding model to provide mappings between discussion forum
questions and security sources. We provide answers to two questions:

1. What is the performance of vulnerability classification model built with
public information sources?

2. Can we gain additional context for discussion forums from public security
sources?

The rest of the paper is structured as follows: Section B.5 discusses related
studies, Section B.3 provides the details of our methodology. Section B.4
presents our results and provide discussions. Section B.6 discusses the threats
to the validity of our results. We conclude the paper in Section B.7.

B.3 Methodology

In this section, we describe our dataset collection approach, experiment meth-
ods, and research question analysis.

68

B.3.1 Dataset collection

In this study, we have used data from public discussion forums, public security
sources, and open source bug dataset.

Public security sources

We collected security information from three public security sources; the publicly
disclosed vulnerabilities (CVE) 1, common weaknesses enumeration (CWE)2,
and common attack pattern enumeration and classification (CAPEC)3. As shown
in Figure B.1, we collect the features for filtering dataset from discussion forums
(see B.3.1) and also training machine learning models from these sources. We
have collected 5000 records from 2019 and 2020 from CVE due to computational
limitations and from CWE and CAPEC, we collected all available records.

Public discussion forums:

We collected posts from four discussion forums namely StackOverflow (SO),
AskUbuntu (AU), SoftwareEngineering (SE), and ServerFault (SF) where tag =
security for security related posts (SRs) and tag! = security for non-security
related posts (NSRs) as illustrated in Figure B.1. We have used the stackex-
change API v2.24 to collect the data. We separate the SR dataset into two
categories - filtered and unfiltered dataset. Filtered dataset is collected by per-
forming a similarity score between a given post and each of the reports in a
given security source document (CVE, CWE or CAPEC). We include a dis-
cussion if the cosine similarity score to a particular security source is above a
certain threshold. For this work, we have used a threshold of 0.4 in order to ob-
tain enough SR records from forums with low security related discussions. The
cosine similarity scores are calculated using three different information retrieval
methods; TF-IDF, word embedding, and taking the average of the scores from
the two methods. In total, we collect 1000 SR records for each discussion forum.
For unfiltered dataset, we simply collect 1000 SR records without performing
similarities to security sources. We have used 1000 records for NSRs.

Security bug dataset:

We have used the security bug report dataset of five projects from three pre-
viously published studies [46, 30, 44] as the ground truth for validating our
classification models. These projects are: derby, camel, wicket, and ambari
from the Ohira et al. [43] dataset. The fifth project is chromium from Peters
et al. [46]. We choose these dataset because they are publicly available and
have been used in the research community for validating security bug report
classification models. Table B.1 provide the properties of the five projects while
Table B.2 lists the properties of the actual validation dataset as used in previous
studies.

1https://cve.mitre.org/
2https://cwe.mitre.org/
3https://capec.mitre.org/
4https://api.stackexchange.com/

69

Table B.2: Validation dataset

Project #BRs #SBRs SBR(%)
Ambari 500 7 1.4
Wicket 500 6 1.2
Camel 500 18 3.6
Derby 500 42 8.4
Chromium 20970 115 0.5

Table B.1: Validation Project Properties

Project Domain Start Date End Date #BRs #SBRs SBR(%)

Ambari Hadoop man-
agement web UI
backed by its
RESTful APIs

Sep 26 2011 Aug 8 2014 1000 29 2.9

Wicket Component-based
web application
framework for
Java program-
ming

Oct 20 2006 Nov 9 2014 1000 10 1.0

Camel A rule-based rout-
ing and mediation
engine

Jul 8 2007 Sep 18 2013 1000 32 3.2

Derby A relational
database manage-
ment system

Sep 28 2004 Sep 17 2014 1000 88 8.8

Chromium Web browser Aug 30 2008 Jun 11 2010 41940 192 0.5

Information Retrieval Techniques

We have used the TFIDF [53] metric and word2vec [39] model to identify feature
set in our study. We include word embedding because it has been successfully
applied to solve software engineering problems where semantic relationships can
be inferred [30].

• Term Frequency-Inverse Document Frequency (TFIDF): TFIDF
combines the term frequency (TF) metric and the inverse document fre-
quency (IDF) metric. Term frequency for a term in a document is com-
puted as the fraction of number of times it occurs in the document to the
total words in the document. IDF on the other hand finds the log of the
fraction of the total number of documents to the number of documents
where a term appears. The intuition behind IDF is that terms that are
frequent in all documents may not discriminate very well and will thus be
penalized with low IDF. Conversely, terms that occur in a few documents
may be more interesting for the documents where they appear and will
thus be weighted with higher IDF.

The TFIDF for term t, in document, d in an entire documents D, corpus
can be computed as:

TFIDF(t,d) =
count(t, d)

| d |
.log

| D |
|{d ∈ D : t ∈ d}|

(B.1)

By computing the TFIDF for the entire corpus, we retrieve the top-n
features with the highest TFIDF.

70

• Word Embedding: is a way of representing a document vocabulary that
captures the context of a word in a document, its relation to other words,
and its semantic similarity. The basic idea is that if two words share
similar contexts, then they will be associated with vectors that are close
to each other in the vector space.

In our approach, we have used the word embedding technique proposed
in [39] aka Word2Vec, with an implementation based on the Skip-gram
model. This model uses the current word to predict the surrounding con-
text of words in a corpus. The objective function of skip-gram model is
to maximize the negative log likelihood of the surrounding context words
(wi+k), with a fixed window size m, conditioned on the center word (wi)
over n vocabulary words.

− 1

n

n∑
i=1

n∑
−m≤k≤m,k 6=0

log p(wi+k|wi) (B.2)

The Word2Vec model after training will thus contain a dictionary of words,
where each word is associated with a vector representation. We trained
a word2vec model for each of CVE, CWE, and CAPEC using a win-
dow size of 5, and a dimension of 100. By using the trained Word2Vec
model, a document, d (discussion question or security source record) with
w1, w2, ..., wn words can use the mean vector representations of the words.
If each word, wi has uwi vector embedding, the mean vector embedding
for d is computed as:

ud =
1

n

n∑
i=1

uwi (B.3)

We use the mean of the vectors of a discussion or security source record
when collecting filtered dataset and we only select n words as features
from the vocabulary list for building a machine learning model.

• Similarity measure: In this paper, we have used cosine similarity to
measure the similarity between two documents. It measures the cosine
of the angle between two vectors projected in a multi-dimensional space.
Given two documents with vectors A and B, the cosine of the angle be-
tween them can be computed as:

Cosine(A, B) =
A.B

‖A‖ × ‖B‖
(B.4)

The bigger the cosine value the similar the two documents are to each
other. we compare two documents that have been vectorized using TFIDF
or Word2Vec model by computing their cosine similarity.

B.3.2 Experiment setup and modelling approach

Table B.3 presents the different combinations of parameters for building our
classification models. In total, we constructed 6480 models. We have used six
text classification algorithms that have been commonly used in the research
environment [46] - Random Forest, Naive Bayes, Support Vector Machine, K-
Nearest Neighbor, Logistic Regression, and Multilayer Perceptron Layer. Both

71

Table B.3: Experiment detail

Models Total
3 security sources (CVE, CWE, CAPEC)
4 discussion forums (SO, SE, SF, AU)
2 Content categories (Q, Q+A)
5 validation dataset (Ambari,Wicket,Camel,Derby,Chromium)
6 Machine Learning Algorithms
3 Feature types (TFIDF, Word2Vec, Both.)
3 Feature dimensions (100, 200, 300) 6480

the Weka (version 3.8.4) [42] and DeepLearning4J (version 1.0.0.beta6) [14]
libraries are used for our experiments. We have used default parameters in
the algorithms. As shown in Figure B.2 we perform five experiments for each
combination of parameters and compute the mean, maximum, minimum, and
standard deviation for the performance metrics. In each experiment, we train
a model using 5-fold cross-validation where the training dataset is split into 4
folds (80%) for training and 1 fold (20%) for testing in each round. The model
is then validated using each of the security bug validation datasets.

Figure B.1: Dataset collection framework

Performance metrics

We have used recall, precision, probability of false (pf) alarm, f-score, and g-
measure as our performance metrics [54]. Both pf and g-measure are used
to compare our work with previous studies [46, 30, 44]. These metrics are
computed from true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) where:

TP = Number of security records correctly identified as security records

72

Figure B.2: Experiment framework

TN = Number of non-security records correctly identified as non-security records

FP = Number of non-security records incorrectly identified as security records

FN = Number of security records incorrectly identified as non-security records

Recall = TP
TP+FN Precision = TP

TP+FP

pf = FP
FP+TN

F-Score = 2 ∗ Precision∗Recall
Precision+Recall G-measure = 2∗recall∗(100−pf)

recall+(100−pf)

B.3.3 Research questions and analysis

RQ1: What is the performance of vulnerability classification model
built with public information sources?

We approach RQ1 in 2 ways:

1. Comparison to state of the art studies: We first compare the results
of our model to state-of-the-arts studies [46, 30, 44]. We have compared
our results to those reported for transfer project prediction since we have
used public discussion forums to construct the training dataset for our
classification model. We then use the same test dataset as used in all
these studies to validate our model. A comparable result to the state-of-
the-art studies will be a proof of the usefulness of our approach.

2. Hypothesis: We hypothesize that using public security sources to filter
training dataset for constructing classification models can produce better
classification model. Our null hypothesis (H0) is thus: Models based on
unfiltered dataset by security sources outperform models based on filtered
dataset.

To test the hypothesis, we collect the top-50 observations ranked by g-measure
for each of the model that use filtered dataset and unfiltered dataset. The data is
unpaired, thus we use Wilcoxon signed ranked test [15] (a non-parametric test)

73

at 95% confidence level to compare the mean of both groups for three metrics -
recall, f-score, and g-measure. In addition, we perform effect size check on our
results. As noted in Kampenes et al. [31], effect size quantifies the size of the
difference between two groups and allows us to judge whether the conclusions
drawn from our hypotheses testing are meaningful or not. It might be possible
that the effect size is negligible even when the statistical test is significant and
vice versa. We apply the Hedges, g standardized effect size measure calculated
as: Hedges, g = X̄1−X̄2

Sp
. Where X̄1 and X̄2 represent the sample means for

the classification measures (recall, f-score, and g-measure) and Sp represents
the pooled standard deviation computed from the standard deviations of s1

and s2 of the two groups. We use the results reported in Software Engineering
empirical studies categorized under Table 9 as the basis for comparing our effect
sizes. The size category for 284 estimated values for Hedges, g is given as: Small:
0.00-0.376, Medium: 0.378-1.000 and Large: 1.002-3.40. We have used standard
statistical packages in R [49].

RQ2: Can we gain additional context for discussion forums from pub-
lic security sources?

To answer RQ2, we use word2vec model that we have trained on each of the
security sources. We then select the first 100 SR records from stackoverflow
and serverfault. For each record, we use the mean vector embedding from the
word2vec model described in B.3.1 and then perform a cosine similarity to the
mean vector embedding of each record from the security source. Using a cosine
of 0.5 as our threshold, we collect the top five most similar security sources to a
particular forum question. We then provide a qualitative assessments of these
mappings to external security sources to identify whether they are meaning-
ful or not. When assessing whether a source reasonably matches a discussion,
we use D-Direct, I-Indirect, and N-Not related categories as our classification
scheme. Where ”Direct” means, the relationship between the two sources are
unambigous, ”Indirect” means, they can be related (e.g. one provides an exam-
ple for the other), and ”Not related” means, we can not infer any relationship
between the two. Two raters have independently evaluated the 100 SR records
and compared results in addition to resolving disagreements. A record has one
to five suggested matches. We record a one for a category when at least one of
the five matches is marked with this category.

B.4 Results & Discussion

B.4.1 RQ1: What is the performance of vulnerability clas-
sification model built with public information sources

Comparison to state-of-the-art studies

We compare the best results of the models built with discussion forums to other
models reported in the literature. For chromium, the model stands in the second
place with 72% gmeasure, 4.2% fscore, and 62.6% recall. For wicket, it ranks
second with a g-measure of 88.9%, 10.9% fscore, and 100% recall. The model
ranked third for ambari with 84.8% gmeasure, 13% fscore and 85.7% recall.
For camel, the model ranked second with 77.4% gmeasure, 19.6% fscore, and

74

Table B.4: Comparison to state-of-the-art studies

Target Source Paper (Model) Cat Ratio Learner TN TP FN FP pd pf prec f-score g-measure

Chromium Ambari Peters et al. (clnifarsecsq) - - MLP 19, 817 56 59 1, 038 48.7 5.0 5.1 9.3 63.9

Derby Jiang et al. (rs-selector) - 1 : 1 MLP 15, 346 76 39 5509 66.1 26.4 1.4 2.7 69.6

Camel Oyetoyan et al.(fsec-ext+) TCAI 2.0 LR 16, 737 84 31 4109 73.0 19.7 2.0 3.9 76.5

AU CWE −Q−AV G− 300−Both(Ext) - - RF 17, 626 72 43 3229 62.6 15.5 2.2 4.2 72.0

Wicket Camel Peters et al. (train) - - NB 437 3 3 57 50.0 11.5 5.0 9.1 63.9

Ambari Jiang et al. (rs-selector) - 2 : 1 MLP 396 6 0 98 100.0 19.8 5.8 10.9 88.9

Camel Oyetoyan et al.(fsec-ext+) TCAI 2.0 LR 412 6 0 82 100.0 16.6 6.8 12.8 90.9

SO CAPEC −QA− TFIDF − 300−Both(Int) - - RF 396 6 0 98 100.0 19.8 5.8 10.9 88.9

Ambari Chromium Peters et al. (farsecsq) - - MLP 474 3 4 19 42.9 3.9 13.6 20.7 59.3

Chromium Jiang et al. (rs-selector) - 3 : 1 LR 417 7 0 76 100 15.4 8.4 15.6 91.6

Derby Oyetoyan et al.(fsec-tfidf+) - 0.0 SVM 415 6 1 78 85.7 15.8 7.1 13.2 84.9

SE CWE −Q− TFIDF − 200−Both(Int) - - KNN 414 6 1 79 85.7 16.0 7.1 13.0 84.8

Camel Derby Peters et al. (farsectwo) - - NB 371 8 10 110 44.4 22.9 6.8 11.8 56.4

Derby Jiang et al. (rs-selector) - 9 : 1 LR 425 13 5 57 72.2 11.8 18.6 29.6 79.4

Derby Oyetoyan et al.(fsec-ext+) TCAI 1.0 LR 359 13 5 123 72.2 25.5 9.6 16.9 73.3

AU CAPEC + Q + Word2V ec− 200−Both(Ext) - - KNN 371 14 4 111 77.8 23.0 11.2 19.6 77.4

Derby Chromium Peters et al. (clnifarsecsq) - - NB 372 19 23 86 45.2 18.8 18.1 25.9 58.1

Ambari Jiang et al. (ms-selector) - 2 : 1 MLP 295 30 12 164 71.4 35.7 15.5 25.4 67.7

Wicket Oyetoyan et al.(fsec-ext+) C 2.0 LR 419 27 15 39 64.3 8.5 40.9 50.0 75.5

SE CWE −QA−Word2V ec− 300− TFIDF (Ext) - - NB 360 30 12 98 71.4 21.4 23.4 35.3 74.8

Table B.5: Summary of results of filtered dataset with the best average g-
measure

pd pf prec fscore g-measure

Target Forum Content Feature.Method Feature.source Feature.dim Feature.Learner Learner Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Chromium SO Q Word2Vec CVE 200 Both(Ext) LR 52.1 1.0 8.5 2.6 1.9 0.5 3.7 0.9 66.4 0.4

SF Q TFIDF CWE 300 Both(Ext) RF 53.9 1.3 11.5 1.6 1.9 0.2 3.7 0.4 66.6 0.6

SO Q AVG CAPEC 200 Word2Vec(Ext) LR 52.2 0.9 8.9 1.5 2.3 0.4 4.4 0.6 66.4 0.6

Wicket AU Q Word2Vec CWE 300 TFIDF(Int) RF 83.3 0.0 9.3 2.2 6.0 1.3 11.2 2.1 83.8 1.1

AU QA TFIDF CAPEC 300 Word2Vec(Int) NB 66.7 0.0 5.9 1.2 7.8 1.4 14.0 2.1 76.8 0.4

SO Q AVG CWE 100 Both(Ext) NB 66.7 0.0 13.6 2.0 3.9 0.6 7.5 1.0 72.9 0.8

Ambari AU QA Word2Vec CWE 300 TFIDF(Ext) RF 71.4 0.0 10.3 0.9 7.1 0.6 12.9 0.9 78.4 0.4

SO QA TFIDF CAPEC 100 TFIDF(Ext) RF 71.4 0.0 10.7 0.9 7.1 0.5 12.9 0.9 78.4 0.4

SE Q AVG CWE 100 Word2Vec(Ext) RF 71.4 0.0 8.1 0.7 8.9 0.7 15.9 1.1 79.5 0.3

Camel AU Q Word2Vec CAPEC 200 Both(Ext) RF 72.2 2.2 23.0 1.4 9.1 0.8 16.1 1.3 72.6 1.8

AU Q TFIDF CAPEC 200 TFIDF(Ext) RF 72.2 2.2 27.6 2.4 7.3 0.5 13.3 0.8 68.8 1.2

AU Q AVG CAPEC 200 Word2Vec(Ext) RF 66.7 2.2 23.2 1.4 8.6 0.4 15.2 0.6 69.9 1.0

Derby AU Q Word2Vec CWE 200 TFIDF(Ext) SVM 59.5 1.8 23.6 0.7 18.2 0.6 28.1 0.9 66.9 1.1

AU Q TFIDF CWE 200 TFIDF(Ext) NB 66.7 3.6 25.1 5.2 14.1 1.9 23.5 2.3 65.2 1.8

AU Q AVG CWE 300 TFIDF(Ext) SVM 52.4 4.6 17.2 6.2 15.5 2.7 24.8 2.6 64.2 0.8

Table B.6: Summary of results of unfiltered dataset with the best average g-
measure

pd pf prec fscore g-measure

Target Forum Content Feature.source Feature.dim Feature-Learner Learner Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Chromium SE Q CVE 200 Word2Vec(Ext) LR 54, 8 0, 9 13, 2 1, 3 1, 9 0, 2 3, 7 0, 3 67, 1 0, 5

SF Q CWE 300 TFIDF(Ext) LR 63, 5 1, 7 29, 5 0, 9 1, 2 0, 0 2, 3 0, 1 66, 6 0, 7

SE Q CVE 200 Both(Ext) LR 50, 4 1, 5 6, 1 2, 4 2, 3 0, 8 4, 4 1, 4 65, 6 1, 1

Wicket SO QA - 200 Word2Vec(Int) LR 66.7 6.7 9.7 2.1 6.2 1.3 11.3 2.1 75.7 3.7

SE Q - 200 TFIDF(Int) NB 66.7 0.0 8.9 0.6 7.0 0.5 12.7 0.7 76.3 0.2

SE Q - 200 Both(Int) NB 66.7 0.0 8.5 1.3 6.2 0.9 11.3 1.4 75.7 0.5

Ambari AU Q CWE 100 Word2Vec(Ext) SVM 71.4 0.0 12.8 0.7 6.4 0.3 11.7 0.5 77.7 0.3

AU QA - 300 TFIDF(Int) RF 71.4 0.0 16.0 1.7 4.8 0.5 9.1 0.8 75.5 0.7

AU QA CWE 100 Both(Ext) LR 71.4 0.0 13.2 2.1 5.1 0.7 9.4 1.2 75.9 0.9

Camel AU Q CAPEC 200 Word2Vec(Ext) RF 61.1 6.5 21.2 2.7 8.6 0.4 15.2 0.6 68.9 2.3

AU Q CAPEC 200 TFIDF(Ext) RF 61.1 5.4 28.2 0.9 7.4 0.5 13.2 0.9 65.8 2.6

AU Q CAPEC 300 Both(Ext) RF 61.1 8.2 26.9 1.6 7.8 0.5 13.8 0.9 66.5 3.2

Derby SO Q CVE 100 Word2Vec(Ext) LR 57.1 2.6 21.8 1.3 18.2 1.2 27.7 1.6 65.5 1.8

AU Q CWE 200 TFIDF(Ext) NB 61.9 1.8 28.4 2.2 15.1 0.6 24.7 0.6 66.2 0.3

SE QA CWE 200 Both(Ext) NB 54.8 8.4 17.5 9.5 13.9 3.1 23.6 3.0 65.2 0.9

75

best recall of 77.8%. Lastly, for derby, the model also ranked second with 74.8%
gmeasure, 35.3% fscore, and 71.4% fscore. Clearly, the results are competitive to
existing results. We can infer that the public discussion forum contains textual
reports that can be semantically similar and useful to build security bug report
classification models. Furthermore, it can be possible to use the model to tag
bug reports. As an example, a bug report in chromium can be tagged with
related CWE and CAPEC from our word2vec model as follows:

Bug: Chrome Buffer Overlow Vulnerability - ”SaveAs” Function s...@bkav.com.vn SVRT - Bkis have just

discovered vulnerability in Google Chrome 0.2.149.27 and would like to inform you with this. Here comes

the report Details - Type of Issue Buffer Overflow. - Affected Software Google Chrome 0.2.149.27. -

Exploitation Environment Google Chrome (Language Vietnamese) on Windows XP SP2. - Impact Remote

code execution - Description The vulnerability is caused due to a boundary error when handling the ”SaveAs”

function. On saving a malicious page with an overly long title (¡title¿ tag in HTML) the program causes a

stack-based overflow and makes it possible for attackers to execute arbitrary code

CWE-130: If an attacker can manipulate the length parameter associated with an input such that it is

inconsistent with the actual length of the input this can be leveraged to cause the target application to

behave in unexpected and possibly malicious ways One of the possible motives for doing so is to pass in

arbitrarily large input to the application Another possible motivation is the modification of application state

by including invalid data for subsequent properties of the application Such weaknesses commonly lead to

attacks such as buffer overflows and execution of arbitrary code

CAPEC-242: code injection ”An adversary exploits a weakness in input validation on the target to inject

new code into that which is currently executing. This differs from code inclusion in that code inclusion

involves the addition or replacement of a reference to a code file

Comparing models with filtered dataset to models with unfiltered
dataset

We report the summary statistics of the model with the best g-measure average
for both the filtered dataset in Table B.5 and unfiltered dataset in Table B.6. In
Table B.5, the results show the discussion forum where the training dataset is
collected, whether we use question (Q), or a combination of question and answers
(QA), the method used to collect features from the dataset (Feature.Method),
the security data source of the features (Feature.source), the size of the feature
(Feature.dim), the feature used as dictionary list for the leaner algorithm (Fea-
ture.Learner), this can be either external or internal, and the learner algorithm
(Learner). The metrics for chromium across the three methods are similar -
recalls between 52% and 53%, gmeasures between 66.4% and 66.6%, and preci-
sions between 1.9% and 2.3%. These patterns are the same for ambari, camel,
and derby. Only wicket has a clear best model with 83% recall and gmeasure.
CAPEC and CWE are dominant security sources and askubuntu (AU) featured
most. Both CAPEC and CWE relate to attack scenarios and weaknesses which
are common in software projects unlike the CVE that describe real vulnerabili-
ties in specific products. We cannot explain the reason for AU dominating the
dataset. External features from security sources appear to produce the best and
stable models across the projects.

In comparison to unfiltered dataset (Table B.6), the performance metrics are
similar mostly across the projects. The exception is wicket with a clear best
model recorded with filtered dataset. This is confirmed by the hypothesis test for

76

Table B.7: Hypothesis: filtered dataset vs. unfiltered dataset

Word2Vec TFIDF
Project Metric p-value Hedges,g p-value Hedges,g

Chromium recall (pd) 0.99 −1.28 0.94 −0.60
f-score < 0.001 1.17 0.93 −0.41
g-measure 0.99 −1.11 0.84 −0.19

Wicket recall (pd) < 0.0001 1.02 0.31 0.11
f-score 0.021 0.47 0.10 0.18
g-measure < 0.0001 1.97 0.006 0.49

Ambari recall (pd) 0.99 −0.64 0.99 −0.48
f-score < 0.0001 1.82 < 0.0001 0.75
g-measure < 0.0001 1.67 < 0.0001 0.71

Camel recall (pd) 0.98 −0.43 0.88 −0.19s
f-score < 0.0001 0.60 < 0.0001 0.40
g-measure 0.01 0.42 < 0.0001 0.89

Derby recall (pd) 0.80 −0.18 0.99 −0.56
f-score < 0.0001 0.47 0.88 −0.49
g-measure < 0.0001 0.71 0.99 −0.91

Table B.8: Percentage of CWE, CAPEC, and CVE matches in StackOverflow
and ServerFault discussion questions

Forum Category CWE CAPEC CVE

StackOverflow Direct 12 10 0

Indirect 44 54 14

ServerFault Direct 14 8 0

Indirect 20 14 18

word2vec model in Table B.7 where the test for the metrics (recall, fscore, and
gmeasure) are significant for filtered dataset with effect sizes varying between
medium (0.47) and large (1.97). Another benefit of filtered dataset could be seen
in the significant test under word2vec model of fscore (harmonic mean between
recall and precision) and g-measure (harmonic mean between recall and true
negative rate). Both the fscores and gmeasures for wicket, ambari, camel, derby
and chromium (only fscore) are statistically significant with effect sizes between
medium and large. The recall however is better with the unfiltered dataset.
Another observation from Table B.6 is that using externally generated features
from security sources produce the best models across the projects with only
wicket as an exception. We can infer that extracting features from security
sources can be beneficial for security report classification models.

B.4.2 RQ2: Can we gain additional context for discussion
forums from public security sources?

We report the result of our qualitative assessments of the matches between the
security sources and discussion forum questions.

Table B.8 presents the percentage of matching records from qualitative assess-
ment of 100 security-related questions in both stackoverflow and serverfault. In
summary, for stackoverflow, 12% of CWE has direct matches while 44% has
indirect matches. For CAPEC, 10% has direct matches and 54% has indirect
matches. For CVE, 14% has indirect matches while there was no direct match.
For serverfault, 14% of CWE has direct matches while 20% has indirect matches.
For CAPEC, 8% has direct matches and 14% has indirect matches. For CVE,
18% has indirect matches while there was no direct match. The empty match for

77

CVE in the sample of SR we assessed can be explained first based on the small
size of CVE records used for training the word2vec model and second, because
the discussion forum questions we assessed are not attack incidents. Tables B.9
and B.10 present specific examples of questions with direct and indirect matches
to the security sources. The matches provide, in some cases examples of inci-
dent (CVE) that can be relevant to the question. For example, the user with
question-Id 934731 is looking to log all account management activities for at
least 6 months. However, CVE-2020-15095 in Table B.10 presents real world
information exposure vulnerability in npm cli through log files that can help the
user think through certain mitigation while implementing this feature. CAPEC-
93: Log Injection-Tampering-Forging, further amplifies the pattern of attack.
Thus, the stakeholder can think of mitigation in advance such as digitally signing
every record in the log file in order to detect tampering.

In some other cases, the matches only provide information to users. For ex-
amples, the questions id - 1057084 (fixing weak TLS), 104870 (Memory Pres-
sure Protection feature) in Table B.10 and 63605452 (XML injection), 28606689
(Screen Capture in Android), and 332365 (SQL injection) all have CWE and
CAPEC matches that describe and discuss the implications of the security ques-
tions.

B.4.3 Discussion

Using the combination of the classification model and word2vec model, the re-
sults demonstrate a possibility to both identify false positives and false negatives
in the classification model. Figure 3 shows a possible way to combine the models
we have developed in this study for the purpose of refining classification model.
The idea is to use the word2vec model as a validation model, where the clas-
sification result (SR or NSR) is passed through the word2vec model. Using a
certain threshold, we can check whether additional context from CWE, CAPEC,
or CVE can be derived. If a classification result is NSR but has a context from
the word2vec model, we can conclude that it is a SR (FN -¿ TP). Similarly, if a
classification result is SR and does not have a context, then this may probably
be a NSR (FP -¿ TN). However, such has to be re-inspected. In addition, it can
also be that results from the word2vec model can be used during training for
re-training models. Lastly, we identify that security report classification model
constructed using discussion forum dataset has competitive results with models
developed using bug reports. One advantage of using discussion forum dataset
is the availability of security training datasets which is a challenge with bug
reports [49]. As a result, there is possibility for improving model based only on
dataset.

78

Figure B.3: Using a combination of classification model and word-embedding
model for validation

B.5 Related study

Our study intersects between public information security sources, bug report
classification, and linking knowledge units. In this section, we provide a review
of studies in these areas that are related to our work.

B.5.1 Linking Knowledge Units

Vasilescu et al. [58] investigates the relationship between StackOverflow activi-
ties and code changes in GitHub. They find that GitHub committers ask fewer
questions and provide more answers than others and that the StackOverflow
activity rate correlates with the code changing activity in GitHub.

Ponzanelli et al. [48] proposes a novel approach that takes a context in the
IDE and automatically provides recommendation of discussion retrieved from
StackOverflow that can help developers

Xu et al. [66] formulates the problem of predicting semantically linkable knowl-
edge units as a multiclass classification problem, and solve the problem using
deep learning techniques.

Xu et al. [65] proposes a query-focused multi-answer-posts summarization task
for a given technical question, AnswerBot. Their user study results showed that
answers generated by their approach were relevant, useful and diverse.

79

Table B.9: Examples of CWE, CAPEC, and CVE matches to StackOverflow
discussion questions

Q-ID Question CWE CAPEC CVE

63605452 How to prevent XML injection - I
got a vulnerability report. XML
is injected in the URL ”XIn-
clude”. I’m trying to find a val-
idation to prevent the XML to
be executed. My web application
is built using Visual Studio C#
with webforms. I was thinking to
validate this from the web.config
or IIS. I’m not sure if I have to
add code to validate or parse the
XML...

CWE-611: Improper Restriction
of XML External Entity Refer-
ence - The software processes an
XML document that can contain
XML entities with URIs that re-
solve to documents outside of the
intended sphere of control, caus-
ing the product to embed incor-
rect documents into its output...

CAPEC-250: An attacker
utilizes crafted XML user-
controllable input to probe,
attack, and inject data into the
XML database, using techniques
similar to SQL injection. The
user-controllable input can allow
for unauthorized viewing of
data, bypassing authentication
or the front-end application for
direct XML database access,
and possibly altering database
information

28606689 How to prevent Screen Capture
in Android - Is it possible to pre-
vent the screen recording in An-
droid Application? I would like
to develop an Android Secure
Application. In that I need to
detect screen recording software
which are running background
and kill them. I have used SE-
CURE FLAG for prevent screen-
shots. But I dont know is it pos-
sible to prevent Video capturing
of Android Screen also. Let me
know how to prevent screen cap-
turing (video / screenshots)...

CAPEC-648: Collect Data from
Screen Capture - An adversary
gathers sensitive information by
exploiting the system’s screen
capture functionality. Through
screenshots, the adversary aims
to see what happens on the
screen over the course of an oper-
ation. The adversary can lever-
age information gathered in or-
der to carry out further attacks...

332365 How does the SQL injection
from the “Bobby Tables” XKCD
comic work? What does this
SQL do: Robert’); DROP TA-
BLE STUDENTS; – I know both
’ and – are for comments, but
doesn’t the word DROP get com-
mented as well since it is part of
the same line?...

CWE-89: Improper Neutraliza-
tion of Special Elements used in
an SQL Command (’SQL Injec-
tion’) - The software constructs
all or part of an SQL command
using externally-influenced input
from an upstream component,
but it does not neutralize or in-
correctly neutralizes special ele-
ments that could modify the in-
tended SQL command when it
is sent to a downstream compo-
nent...

80

Table B.10: Examples of CWE, CAPEC, and CVE matches to ServerFault
discussion questions

Q-ID Question CWE CAPEC CVE

934731 Using auditd and retaining
log files for 6 months. - Find
a way to log all account man-
agement activities (e.g., ac-
count creation, modification,
deletion, etc.) on an Ubuntu
16.04 LTS server and retain
the logging information for
at least 6 months...

CAPEC-93: Log Injection-
Tampering-Forging - This
attack targets the log files
of the target host. The at-
tacker injects, manipulates
or forges malicious log en-
tries in the log file, allowing
them to mislead a log audit,
cover traces of attack, or per-
form other malicious actions.
The target host is not prop-
erly controlling log access.
As a result tainted data is re-
sulting in the log files lead-
ing to a failure in account-
ability, non-repudiation and
incident forensics capability.

CVE-2020-15095: versions
of the npm cli prior to
are vulnerable to an infor-
mation exposure vulnerabil-
ity through log files the cli
supports urls like protocol
hostname path the password
value is not redacted and is
printed to stdout and also to
any generated log files

1057084 How to fix Weak TLS 1.2
Encryption - I have a re-
quirement to disable below
weak TLS ciphers in Win-
dows Server 2016. I tried to
reasearch and it says ”The
Microsoft SCHANNEL team
does not support directly
manipulating the Group Pol-
icy and Default Cipher suite
locations in the registry”
Please advise. Thank you in
advance...

CWE-326: Inadequate En-
cryption Strength - A weak
encryption scheme can be
subjected to brute force at-
tacks that have a reasonable
chance of succeeding using
current attack methods and
resources.

104870 Memory Pressure Protection
Feature for TCP Stack - Pro-
vided by Microsoft Security
Update KB967723 - We’ve
been having a lot of funky
issues with some of our web
based applications that allow
clients to submit lot of im-
age files to our servers. Lots
of ports are used in the pro-
cess... There doesn’t appear
to be a pattern and some-
times it works and other
times is doesn’t. Typi-
cally we’ve noticed it when
server is under load.I’m curi-
ous what others think about
this MPP and any issues
that you may have experi-
enced from it...

CWE-406: Insufficient Con-
trol of Network Message
Volume (Network Amplifica-
tion) - In the absence of a
policy to restrict asymmetric
resource consumption, the
application or system can-
not distinguish between le-
gitimate transmissions and
traffic intended to serve as
an amplifying attack on tar-
get systems. Systems can of-
ten be configured to restrict
the amount of traffic sent out
on behalf of a client, based
on the client’s origin or ac-
cess level...

81

Bogdanova et al. [6] aims to detect semantically equivalent questions in online
user forums by performing an extensive number of experiment using data from
two different Stack Exchange forums, and compare standard machine learning
methods with a convolutional neural network. Their results showed that the
convolutional neural network with in-domain word embeddings achieved high
performance even with limtied training data.

Zhang et al. [68] proposes an automated approach to duplicate question de-
tection that takes a new question as input and detects potential duplicates of
this question considering multiple factors. Their results show that the approach
improves the recall-rate of 40.63% compared to the standard search engine of
Stack Overflow.

Yang et al. [67] proposes a novel approach for similar bug recommendation using
traditional information retrieval techniques and a word embedding technique.
The results show that their approach improves the performance of similar bug
recommendation system, NextBug, significantly and substantially.

Li et al. [36] conducts an empirical study to explore the characteristics of a large
number of links within popular Python projects in GitHub.

Cai et al. [8] proposes a tool, AnswerBot, which enables to automatically gener-
ate an answer summary for a technical problem based on Stack Overflow. The
results showed thath the answer summaries generated by AnswerBot were more
relevant, useful and diverse than Google and Stack Overflow search engine.

Ruohonen [50] investigates the use of common textual information retrieval
techniques to map reported vulnerability to their corresponding software weak-
nesses.Their results show that explicit referencing of vulnerability and weak-
nesses yield more consistent results compared to information retrieval tech-
niques.

B.5.2 Public Information Security Sources

Sauerwein et al. [51] conducts a triangulation study to identify and analyze
public information security data sources, as well as introducing a taxonomy
to classify and compare these data sources. Their investigations showed that
research and practice rely on a large variety of heterogeneous information secu-
rity data sources, which makes it difficult to integrate and use for information
security and risk management processes.

Felderer et al. [16] proposes a framework for security data extraction, processing
and application. The framework consists of a security data collection compo-
nent and an analysis component, as well as a security knowledge generation
component.

Wijayasekara et al. [61] discusses existing bug data mining classifiers, and presents
an analysis of vulnerability databases showing the necessity to mine common
publicly available bug databases for hidden impact vulnerabilities.

Pletea et al. [47] evaluates the presence and atmosphere surrounding security-
related discussions on GitHub from discussions around commits and pull re-
quests.

82

Ohira et al. [43] introduces a dataset of high impact bugs and with security
implications that was created by manually reviewing four thousand issue reports
in four open source projects.

Islam et al. [29] studies 2716 high-quality posts from Stack Overflow and 500 bug
fix commits from Github about five popular deep learning libraries to under-
stand the types of bugs, root causes of bugs, impacts of bugs, bug-prone stage of
deep learning pipeline as well as whether there are some common antipatterns
found in this buggy software.

Wei et al. [59] proposes a semantics-aware approach for warning prioritization in
Link, a static analyzer for detecting bugs/issues in Android apps, called OASIS.
OASIS combines program analysis and NLP techniques to recover intrinsic links
between the Link warnings and the user complaints of an app.

B.5.3 Bug Report Classification

Wu et al. [64] proposes an automated data labeling approach based on iterative
voting classification for identifying security bug reports.

Tyo [57] explores the distribution and characteristics of security vulnerabilities
in bug tracking systems, as well as data analytics approaches for automatic
classification of security bug reports. They used supervised learning algorithms
as well as a novel unsupervised machine learning approach. Their results showed
most consistently good results from the learning algorithm Naive Bayes across
all datasets used.

Peters et al. [46] proposes a framework, FARSEC, for filtering and ranking
bug report for reducing the presence of security bug reports that removes non-
security bug reports containing security related keywords before building a pre-
diction model. They demonstrate that FARSEC improves the performance of
text-based prediction models for security bug reports in 90% of cases.

Gegick et al. [23] develops an approach to identify mislabeled security bug re-
ports that applies text mining on natural-language descriptions of bug reports
to train a statistical model.

Shu et al. [56] aims to aid software developers to better classify bug reports
that identify security vulnerabilities as security bug reports through parameter
tuning of learners and data pre-processor.

Goseva-Popstojanova et al. [25] focuses on automated classification of software
bug reports to security and not-security related using both supervised and unsu-
pervised approaches. Their results showed that the supervised learning slightly
outperforms the unsupervised learning, at the expense of labeling the training
set. In general, the results showed that datasets with more security information
lead to better performance.

Wijayasekara et al. [60] presents a hidden impact bug identification method-
ology by means of text mining bug databases. Wright et al. [63] conducts an
experiment using the MySQL bug report database to estimate the number of
misclassified bugs yet to be identified as vulnerabilities.

Gantzer [22] focuses on exploring techniques that have potential to improve the

83

performance of automated classification of software bug reports as security or
non-security related. They use feature selection, clustering and deep learning
for classification.

Shu et al. [55] proposes a method, SWIFT, that combines learner hyperpa-
rameter optimization and pre-processor hyperparameter optimization for dis-
tinguishing security-related bug reports in a product’s bug database. Their
results show that their approach achieves better performance in a fast way than
existing state-of-the-art method.

Jiang et al. [30] proposes a novel approach, LTRWES, that incorporates learning
to rank a word embedding into the identification of SBRs. Their results show
that the proposed method outperforms state-of-the-art method.

Zhou et al. [69] describes an efficient automatic vulnerability identification sys-
tem for tracking large-scale projects in real time using natural language pro-
cessing and machine learning techniques.

Kudjo et al. [34] introduces a new approach for vulnerability classification using
term frequency and inverse gravity moment (TF-IGM). Their results show that
TF-IGM outperforms the benchmark method across the applications used in
the study.

Chawla et al. [9] presents an automated technique for bug labeling using TF-
IDF and LSI. Their results showed better results from using LSI along with
TF-IDF compared to using TF-IDF alone.

Das et al. [13] proposes a learning based approach to identify security and
performance bug reports addressing class-bias and feature-skew phenomenon.

Mostafa et al. [41] proposes an automatic approach to identify security bug re-
ports in open bug repositories using semi-supervised learning and keyword-based
pre-filtering based on keywords mined from existing security related textual de-
scription in the CVE. Their results show that the approach outperforms the
best baseline approaches.

Scandariato et al. [52] presents an approach based on machine learning to predict
which components of a software application contain security vulnerabilities by
text mining the source code of the components.

Oyetoyan et al. [44] investigates whether a generic text classification model
can be developed for classifying security related messages in software develop-
ment project communications. They used harvested features classified into four
categories to build classification models. Their approach outperform a state-of-
the-art prediction model for security bug reports.

Our study is different from the above studies as we have combined these three
sub-fields in order to contextualize security report classifications models.

B.6 Threats to validity

Data sampling: We have collected a subset of the security related records in
the discussion forums. These samples do not represent all types of dataset in the
forums. E.g. StackOverflow contains over 80000 SR records. We have only used

84

2000 records. Using a bigger sample size can lead to different results. However,
our validation results are proof that the sample size is a good representation.

Modelling: There are several parameters that can be tuned in the algorithms
we have used. We have used the default settings for the parameters of the
algorithms during model construction. In the cases where we have used specific
parameters, we have reported them in the experiment section. It is possible
that tuning the parameters might lead to different results.

Generalization: The observations we have made are based on four discussion
forums on stackexchange and five open source bug report dataset. We cannot
claim that dataset from other forums and projects will produce the same results.
Therefore, further studies will be necessary to generalize the results across other
forums and software project dataset.

B.7 Conclusion

We have investigated using public security sources such as CWE, CAPEC, and
CVE to provide additional context for security discussions on stackexchange
forums. We argue that such context can further clarify questions and provide
examples of weaknesses, attack patterns, and real-world scenarios related to the
question.

We built models by using forums’ dataset that we have filtered with security
sources and compare their performances to unfiltered dataset from the forum.
By validating the models on five popular security bug report dataset, we estab-
lish that features extracted from security sources can be useful to build security
report models. We also find that filtered dataset does not produce models with
higher recalls to unfiltered ones, however, they produce models that are better
in fscore and gmeasure. Lastly, our models’ performances are competitive to
state-of-the-art studies.

We assess the CWE, CAPEC, and CVE recommendations from our word2vec
models for a sample of stackoverflow and serverfault records. We find 12% -
14% direct matches for CWE, 8% - 10% direct matches for CAPEC, 20% - 44%
indirect matches for CWE, 14% - 54% indirect matches for CAPEC, and 14% -
18% indirect matches for CVE.

In conclusion, our results demonstrate a useful layer of validation for security
classification models, by providing additional security context information.

85

Bibliography

[1] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L
Mazurek, and Christian Stransky. How internet resources might be helping
you develop faster but less securely. IEEE Security & Privacy, 15(2):50–60,
2017.

[2] M. Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi, Saied Safaei, Eliza-
beth D. Trippe, Juan B. Gutierrez, and K. Kochut. A brief survey of
text mining: Classification, clustering and extraction techniques. ArXiv,
abs/1707.02919, 2017.

[3] Quality Assurance. Software quality attributes, 2011.

[4] Wei Bai, Omer Akgul, and Michelle L Mazurek. A qualitative investigation
of insecure code propagation from online forums. In 2019 IEEE Cyberse-
curity Development (SecDev), pages 34–48. IEEE, 2019.

[5] Mario Barbacci, Mark H Klein, Thomas A Longstaff, and Charles B Wein-
stock. Quality attributes. Technical report, CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, 1995.

[6] D. Bogdanova, C. D. Santos, L. Barbosa, and Bianca Zadrozny. Detecting
semantically equivalent questions in online user forums. In CoNLL, 2015.

[7] J. Brownlee. Deep Learning for Natural Language Processing: Develop Deep
Learning Models for your Natural Language Problems. Machine Learning
Mastery, 2017.

[8] L. Cai, Haoye Wang, Bowen Xu, Q. Huang, Xin Xia, D. Lo, and Zhenchang
Xing. Answerbot: an answer summary generation tool based on stack
overflow. Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2019.

[9] Indu Chawla and S. Singh. Automatic bug labeling using semantic infor-
mation from lsi. 2014 Seventh International Conference on Contemporary
Computing (IC3), pages 376–381, 2014.

[10] The MITRE Corporation. About capec, 2019.

[11] The MITRE Corporation. About cve, 2021.

[12] The MITRE Corporation. About cwe, 2021.

86

[13] Dipok Chandra Das and Md. Rayhanur Rahman. Security and performance
bug reports identification with class-imbalance sampling and feature selec-
tion. 2018 Joint 7th International Conference on Informatics, Electronics
& Vision (ICIEV) and 2018 2nd International Conference on Imaging,
Vision & Pattern Recognition (icIVPR), pages 316–321, 2018.

[14] Deeplearning4j. Eclipse deeplearning4j, 2020.

[15] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine Learning Research, 7:1–30, 2006.

[16] M. Felderer and Irdin Pekaric. Research challenges in empowering agile
teams with security knowledge based on public and private information
sources. In SecSE@ESORICS, 2017.

[17] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky,
Yasemin Acar, Michael Backes, and Sascha Fahl. Stack overflow consid-
ered harmful? the impact of copy&paste on android application security.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 121–136.
IEEE, 2017.

[18] Interaction Design Foundation. Usability, 2021.

[19] The Apache Software Foundation. Welcome to apache maven, 2021.

[20] Wei Fu and Tim Menzies. Easy over hard: A case study on deep learning.
In Proceedings of the 2017 11th joint meeting on foundations of software
engineering, pages 49–60, 2017.

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1 edition, 1994.

[22] Tanner D Gantzer. Security bug report classification using feature selection,
clustering, and deep learning. 2019.

[23] M. Gegick, Pete Rotella, and T. Xie. Identifying security bug reports via
text mining: An industrial case study. 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010), pages 11–20, 2010.

[24] Yoav Goldberg. A primer on neural network models for natural language
processing. CoRR, abs/1510.00726, 2015.

[25] K. Goseva-Popstojanova and Jacob Tyo. Identification of security related
bug reports via text mining using supervised and unsupervised classifica-
tion. 2018 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pages 344–355, 2018.

[26] Zellig Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[27] GitHub Inc. Where the world builds software, 2021.

[28] Stack Exchange Inc. About us, 2021.

[29] M. J. Islam, Giang Nguyen, Rangeet Pan, and H. Rajan. A comprehensive
study on deep learning bug characteristics. Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019.

87

[30] Yuan Jiang, Pengcheng Lu, Xiaohong Su, and Tiantian Wang. Ltrwes:
A new framework for security bug report detection. Inf. Softw. Technol.,
124:106314, 2020.

[31] Vigdis By Kampenes, Tore Dyb̊a, Jo E Hannay, and Dag IK Sjøberg. A
systematic review of effect size in software engineering experiments. Infor-
mation and Software Technology, 49(11-12):1073–1086, 2007.

[32] Tom Kenter and M. Rijke. Short text similarity with word embeddings. In
CIKM ’15, 2015.

[33] Yoon Kim. Convolutional neural networks for sentence classification. In
EMNLP, 2014.

[34] P. Kudjo, J. Chen, Minmin Zhou, Solomon Mensah, and Rubing Huang.
Improving the accuracy of vulnerability report classification using term
frequency-inverse gravity moment. 2019 IEEE 19th International Confer-
ence on Software Quality, Reliability and Security (QRS), pages 248–259,
2019.

[35] Quoc V. Le and Tomás Mikolov. Distributed representations of sentences
and documents. CoRR, abs/1405.4053, 2014.

[36] L. Li, Z. Ren, Xiaochen Li, W. Zou, and He Jiang. How are issue units
linked? empirical study on the linking behavior in github. 2018 25th Asia-
Pacific Software Engineering Conference (APSEC), pages 386–395, 2018.

[37] M. Lopez and J. Kalita. Deep learning applied to nlp. ArXiv,
abs/1703.03091, 2017.

[38] QualCode Ltd. Quality attributes, 2021.

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient esti-
mation of word representations in vector space, 2013.

[40] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositional-
ity, 2013.

[41] Shaikh Mostafa and Xiaoyin Wang. Automatic identification of security
bug reports via semi-supervised learning and cve mining. 2020.

[42] University of Waikato. Weka, 2021.

[43] M. Ohira, Yutaro Kashiwa, Yosuke Yamatani, Hayato Yoshiyuki, Yoshiya
Maeda, Nachai Limsettho, K. Fujino, Hideaki Hata, Akinori Ihara, and
K. Matsumoto. A dataset of high impact bugs: Manually-classified issue
reports. 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pages 518–521, 2015.

[44] T.D. Oyetoyan and P. Morrison. An Improved Text Classification Mod-
elling Approach to Identify Security Messages in Heterogeneous Projects.
Software Quality Journal, in press.

[45] Tosin Daniel Oyetoyan, Bisera Milosheska, Mari Grini, and Daniela Soares
Cruzes. Myths and facts about static application security testing tools:
An action research at telenor digital. In Juan Garbajosa, Xiaofeng Wang,

88

and Ademar Aguiar, editors, Agile Processes in Software Engineering and
Extreme Programming - 19th International Conference, XP 2018, Porto,
Portugal, May 21-25, 2018, Proceedings, volume 314 of Lecture Notes in
Business Information Processing, pages 86–103. Springer, 2018.

[46] F. Peters, T. Tun, Yijun Yu, and B. Nuseibeh. Text filtering and ranking
for security bug report prediction. IEEE Transactions on Software Engi-
neering, 45:615–631, 2019.

[47] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. Security and
emotion: sentiment analysis of security discussions on github. In MSR
2014, 2014.

[48] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Michele Lanza. Mining stackoverflow to turn the ide into a self-
confident programming prompter. In Proceedings of the 11th Working Con-
ference on Mining Software Repositories, pages 102–111, 2014.

[49] R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2008. ISBN 3-900051-07-0.

[50] Jukka Ruohonen and Ville Leppänen. Toward validation of textual in-
formation retrieval techniques for software weaknesses. In International
Conference on Database and Expert Systems Applications, pages 265–277.
Springer, 2018.

[51] Clemens Sauerwein, Irdin Pekaric, M. Felderer, and R. Breu. An analy-
sis and classification of public information security data sources used in
research and practice. Comput. Secur., 82:140–155, 2019.

[52] R. Scandariato, James Walden, A. Hovsepyan, and W. Joosen. Predicting
vulnerable software components via text mining. IEEE Transactions on
Software Engineering, 40:993–1006, 2014.

[53] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Intro-
duction to information retrieval, volume 39. Cambridge University Press
Cambridge, 2008.

[54] F. Sebastiani. Machine learning in automated text categorization. ACM
Comput. Surv., 34:1–47, 2002.

[55] Rui Shu, Tianpei Xia, Jianfeng Chen, Laurie Williams, and T. Menzies. Im-
proved recognition of security bugs via dual hyperparameter optimization.
ArXiv, abs/1911.02476, 2019.

[56] Rui Shu, Tianpei Xia, Laurie Williams, and T. Menzies. Better secu-
rity bug report classification via hyperparameter optimization. ArXiv,
abs/1905.06872, 2019.

[57] Jacob P. Tyo. Empirical analysis and automated classification of security
bug reports. 2016.

[58] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. Stackover-
flow and github: Associations between software development and crowd-

89

sourced knowledge. In 2013 International Conference on Social Computing,
pages 188–195. IEEE, 2013.

[59] L. Wei, Yepang Liu, and S. Cheung. Oasis: prioritizing static analysis
warnings for android apps based on app user reviews. Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017.

[60] D. Wijayasekara, M. Manic, and M. McQueen. Vulnerability identifica-
tion and classification via text mining bug databases. IECON 2014 - 40th
Annual Conference of the IEEE Industrial Electronics Society, pages 3612–
3618, 2014.

[61] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen. Mining bug
databases for unidentified software vulnerabilities. 2012 5th International
Conference on Human System Interactions, pages 89–96, 2012.

[62] C. Wohlin. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In EASE ’14, 2014.

[63] J. L. Wright, Jason W. Larsen, and M. McQueen. Estimating software vul-
nerabilities: A case study based on the misclassification of bugs in mysql
server. 2013 International Conference on Availability, Reliability and Se-
curity, pages 72–81, 2013.

[64] X. Wu, Wei Zheng, Xiang Chen, F. Wang, and D. Mu. Cve-assisted large-
scale security bug report dataset construction method. J. Syst. Softw., 160,
2020.

[65] Bowen Xu, Zhenchang Xing, Xin Xia, and D. Lo. Answerbot: Automated
generation of answer summary to developers’ technical questions. 2017
32nd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 706–716, 2017.

[66] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, G. Chen, and S. Li.
Predicting semantically linkable knowledge in developer online forums via
convolutional neural network. 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pages 51–62, 2016.

[67] Xinli Yang, D. Lo, Xin Xia, L. Bao, and Jianling Sun. Combining word
embedding with information retrieval to recommend similar bug reports.
2016 IEEE 27th International Symposium on Software Reliability Engineer-
ing (ISSRE), pages 127–137, 2016.

[68] Y. Zhang, D. Lo, Xin Xia, and Jianling Sun. Multi-factor duplicate question
detection in stack overflow. Journal of Computer Science and Technology,
30:981–997, 2015.

[69] Y. Zhou and Asankhaya Sharma. Automated identification of security
issues from commit messages and bug reports. Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, 2017.

[70] Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams.
Searching for a needle in a haystack: Predicting security vulnerabilities
for windows vista. In 2010 Third International Conference on Software
Testing, Verification and Validation, pages 421–428. IEEE, 2010.

90

	Introduction
	Background
	Public Information Sources
	Public Security Sources
	Public Discussion Forums
	Code Sharing Platforms

	Bug Report Classification
	Natural Language Processing
	Machine Learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning
	Overfitting and Underfitting

	Deep learning and Neural Networks
	Model Evaluation
	Bug Report Classification Metrics
	Contextualizing Discussion Forum Posts and Bug Reports

	Design and Implementation
	API Development
	Interface To Discussion Forums
	Interface To Security Information Sources
	Interface To Code-sharing Platforms
	Builder Pattern For User Interaction
	Configuration Using Maven
	Java Properties File

	Data Collection and Preprocessing
	Public Security Sources
	Public Discussion Forums
	Security bug datasets

	Information Retrieval and Feature Extraction Approaches
	Term Frequency-Inverse Document Frequency
	Word Embedding

	Similarity Measures
	TF-IDF approach
	Word Embedding Approach

	Case study design to answer RQ1 and RQ2
	Bug classification and contextualizing with Word2Vec (RQ1)
	Public forum classification and contextualizing with Word2Vec (RQ2)

	Quality Evaluation of the API
	Usability
	Maintainability
	Extensibility
	Static Code Analysis

	Case study 1: Contextualizing Bug Reports Using Public Security Data Sources
	Experiment setup and modelling approach
	Research questions and analysis

	Results & Discussion
	Comparison to state-of-the-art studies
	Comparing models with filtered dataset to models with unfiltered dataset
	Providing additional context for bug reports

	Threats to validity
	Conclusion

	Case study 2: Contextualizing Public Forum Discussions Using Public Security Data Sources
	Experiment setup and modelling approach
	Results & Discussion
	Threats to validity
	Conclusion

	Improving security in the developer's development environment
	Discussion
	API Development
	Case Study Results
	Contextualizing Bug Reports Using Public Security Data Sources
	Contextualizing Public Forum Discussions Using Public Security Data Sources

	Related Work
	Public Information Security Sources
	Bug Report Classification
	Linking Knowledge Units
	Machine Learning and NLP

	Conclusion
	Future Work
	Source code
	Research Paper: Utilizing public repository to contextualize security report classification models
	Abstract
	Introduction
	Methodology
	Dataset collection
	Experiment setup and modelling approach
	Research questions and analysis

	Results & Discussion
	RQ1: What is the performance of vulnerability classification model built with public information sources
	RQ2: Can we gain additional context for discussion forums from public security sources?
	Discussion

	Related study
	Linking Knowledge Units
	Public Information Security Sources
	Bug Report Classification

	Threats to validity
	Conclusion

