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Abstract
The continental shelves of the Arctic Ocean and surrounding seas contain large stocks of organic
matter (OM) and methane (CH4), representing a potential ecosystem feedback to climate change
not included in international climate agreements. We performed a structured expert assessment
with 25 permafrost researchers to combine quantitative estimates of the stocks and sensitivity of
organic carbon in the subsea permafrost domain (i.e. unglaciated portions of the continental
shelves exposed during the last glacial period). Experts estimated that the subsea permafrost
domain contains∼560 gigatons carbon (GtC; 170–740, 90% confidence interval) in OM and 45
GtC (10–110) in CH4. Current fluxes of CH4 and carbon dioxide (CO2) to the water column were
estimated at 18 (2–34) and 38 (13–110) megatons C yr−1, respectively. Under Representative
Concentration Pathway (RCP) RCP8.5, the subsea permafrost domain could release 43 Gt
CO2-equivalent (CO2e) by 2100 (14–110) and 190 Gt CO2e by 2300 (45–590), with∼30% fewer
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emissions under RCP2.6. The range of uncertainty demonstrates a serious knowledge gap
but provides initial estimates of the magnitude and timing of the subsea permafrost climate
feedback.

1. Introduction

Effective mitigation of climate change requires know-
ledge of human climate forcing and the ecosystem
feedbacks that could amplify or stabilize the response
of the Earth system (Lenton et al 2008, 2019). Due to
complexity and limited data, quantitative estimates of
some ecosystem feedbacks are not available and will
not be available in the foreseeable future (Schuur et al
2013, Abbott et al 2016, Steffen et al 2018). This cre-
ates potentially severe knowledge gaps, where known
but unquantified ecosystem feedbacks may be dis-
regarded during the selection of climate targets and
regulatory policies (Barrett and Dannenberg 2012,
Turetsky et al 2020). One example of such an ecosys-
tem uncertainty is the climate sensitivity of organic
matter (OM) stored in permanently frozen ground,
or permafrost, which is widely distributed in Arctic,
Boreal, alpine, and subsea environments (Lindgren
et al 2018, Biskaborn et al 2019, Martens et al 2019,
Yang et al 2019). Recent research has improved under-
standing of the terrestrial climate feedback from per-
mafrost (Schuur et al 2015, Mcguire et al 2018, Natali
et al 2019, Turetsky et al 2020), but potential emis-
sions from the subsea permafrost domain (figure 1)
remain unknown because of limited observational
data andmodeling estimates (Schuur et al 2015, Shak-
hova et al 2017, Martens et al 2019). Consequently,
this ecosystem feedback is virtually absent from cli-
mate policy discussions (table S1 available online at
https://stacks.iop.org/ERL/15/124075/mmedia).

During the last glacial period (∼115 000–
11 700 years BP), permafrost formed on exposed
portions of the continental shelves surrounding
the Arctic Ocean (Osterkamp et al 1989, Lindgren
et al 2016). Unglaciated portions of the exposed
continental shelves accumulated billions of tons of
undecomposed plant material in frozen sediment
(figures 1(a) and (c); Clark et al 2009, Tesi et al 2016,
Lindgren et al 2018). Methane (CH4) from biogenic
and thermogenic sources accumulated within and
below permafrost deposits, potentially in gas hydrate
form (Frederick and Buffett 2014, Thornton and Crill
2015, Ruppel and Kessler 2017). After the Last Gla-
cial Maximum (LGM,∼26 500 BP), climate warming
melted ice sheets and glaciers, which increased global
sea level by∼134mon average (Clark et al 2009, Lam-
beck et al 2014), inundating more than 3 million km2

of terrestrial permafrost (figure 1(a); Lindgren et al
2018, Overduin et al 2019). This marine transgres-
sion changed the thermal conditions of inundated
permafrost, initiating warming and thawing of sub-
sea permafrost that continue today (Hubberten and

Romanovskii 2001, Shakhova et al 2009, Ruppel et al
2016). Because neither the amount nor climate sensit-
ivity of subsea carbon stocks is known, the subsea per-
mafrost domain remains one of the least-constrained
ecosystem feedbacks in the Earth’s climate system
(Vonk et al 2012, Schuur et al 2015, Thornton and
Crill 2015).

In this context, we used structured expert assess-
ment (Schuur et al 2013, Morgan 2014, Sutherland
and Burgman 2015, Abbott et al 2016) to explore how
climate change could impact carbon dynamics of the
complex and data-limited subsea permafrost domain.
Expert assessment is an interdisciplinary approach
often used for risk assessment and decision mak-
ing in the face of uncertainty (Bamber and Aspin-
all 2013, Morgan 2014, Oppenheimer et al 2019).
Using a quantitative questionnaire (supplementary
information), we documented the understanding of
25 permafrost-zone researchers about carbon stocks
in the subsea permafrost domain, defined as the
unglaciated continental shelf areas exposed during
the LGM that are currently inundated (figure 1). Our
goals were to: (a). generate first-order estimates of
OM and CH4 stocks on the continental shelves, (b).
assess risk of carbon dioxide (CO2) and CH4 release,
(c). provide a long-term perspective on vulnerabil-
ity of carbon currently being thawed from terrestrial
permafrost, and (d). improve consideration of this
Earth system feedback in climate policy circles. These
goals have been identified as critical research priorit-
ies (Lenton et al 2008, Shakhova et al 2010, Thornton
and Crill 2015, Lindgren et al 2018, Martens et al
2019), but given the scarcity of data and complex-
ity of subsea permafrost, precise empirical or model-
based estimates of the factors driving subsea per-
mafrost dynamics are unlikely to be available in the
near future. Consequently, we sought to combine
the best available information on the subsea perma-
frost domain to inform policy and future research
activities (Bamber and Aspinall 2013, Sutherland and
Burgman 2015, Oppenheimer et al 2019).

2. Methods

Expert assessment has long been used to synthes-
ize the best available information to inform policy
and decision making (Joly et al 2010, Sutherland and
Burgman 2015). It is particularly useful when the
published scientific knowledge is not adequate for
making decisions and the necessary research can-
not be done before the decision must be made
(Singh et al 2017, Oppenheimer et al 2019). While it
does not generate definitive answers of system state
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Figure 1. Extent and carbon dynamics of the subsea permafrost domain. We define the subsea permafrost domain as the
unglaciated continental shelf areas exposed during the Last Glacial Maximum (LGM) that are currently inundated. (a) Extent of
continental shelf permafrost at the LGM (data from Lindgren et al (2016)) and current subsea permafrost extent (data from
Overduin et al (2019)). (b)–(d) Conceptual drawings of the thermal, physical, and biogeochemical changes initiated in the subsea
permafrost domain by deglaciation and sea level rise. Major stocks are shown in white text and major fluxes are shown in black
text. Soil organic matter (SOM) refers to the SOM that accumulated on the exposed continental shelf in tundra and steppe
ecosystems prior to sea level rise (Lindgren et al 2018). Deposited Sediment refers to the sediment and associated organic matter
eroded from coastal and terrestrial environments that was deposited on top of subsea permafrost during and after sea level rise
(Vonk et al 2012, Tesi et al 2016). CH4 Stocks and CH4 Hydrates refer to methane trapped in the subsurface in free, dissolved, or
clathrate states (Ruppel and Kessler 2017). Thermogenic CH4 refers to methane formed abiotically in deeper geological processes
(Thornton et al 2016a, Ruppel and Kessler 2017). The quantitative estimates of carbon pools (white) and fluxes (black) are the
median values from this study (see text for uncertainty ranges).
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or behavior, expert assessment provides subjective
and holistic estimates that integrate a broad suite
of information extending beyond well-established
knowledge, including professional opinion, subject-
ive confidence in published results, and propriet-
ary information (e.g. industry knowledge) (Joly et al
2010, Morgan 2014).

Starting in December of 2018, we compiled all
available articles and reports on subsea permafrost in
a literature review of 92 articles published between
1949 and 2019. These studies included empirical
(53%) and modeling (47%) approaches. We integ-
rated findings from these studies into a background
document distributed to all participants (supple-
mentary information: Methods) to limit the effects
of availability bias, where relevant information that
is difficult to access may be unconsciously discoun-
ted (Morgan 2014). Based on this information and
best practices from expert elicitation and assessment
studies (Schuur et al 2013, Bamber and Aspinall 2013,
Morgan 2014, Sutherland and Burgman 2015), we
developed a structured questionnaire to collect cent-
ral estimates and 90% confidence intervals of current,
past, and future subsea permafrost carbon stocks and
fluxes.

After testing with an initial group of ‘lead experts,’
we distributed the final questionnaire to a list of∼120
permafrost researchers, including all co-authors of
papers identified in the background literature review
and referrals from invitees. Following several rounds
of invitations, we received estimates from 25 experts
(table 1), representing a 21% response rate, which
is typical for this kind of assessment (Abbott et al
2016). Participants had experience with all major
areas in the subsea permafrost domain, came from
a variety of field and modeling backgrounds, and
together represented over 180 cumulative years of
research in subsea permafrost. In addition to quant-
itative estimates, respondents identified sources of
uncertainty and provided self-ratings of their con-
fidence and expertise. The number of responses per
question ranged from 9 to 24, with a mean of
14 (table S2).

In addition to their central, ‘best’ estimate, we
asked experts to provide a 90% confidence inter-
val for each question. This process of consider-
ing the ‘lower’ and ‘upper’ plausible bounds—
respectively defined as a 95% likelihood that the
actual value is greater or lesser than this estimate—
can help counteract expert tendency toward over-
confidence, providing a more reliable measure of
uncertainty (Aarstad 2010, Aspinall 2010, Kok-
salmis and Kabak 2019). To consider all expert input
while not overemphasizing extreme values, we cal-
culated the among-expert medians for the lower,
best, and upper estimates. We performed calcula-
tions and created visualizations with the R software
enfigurevironment for statistical computing (Core
Team 2013). Detailed methods and descriptions

of each calculation are provided in tables S3
and S4.

2.1. Results
2.2. Past and present subsea permafrost
degradation and carbon dynamics
The median estimate by the group of experts for the
area of formerly subaerial permafrost inundated after
the LGM was 3.5 million km2 (2.5–4.4; range is the
90% confidence interval), which agrees closely with
estimates from the literature (Lindgren et al 2016,
Overduin et al 2019). This estimate suggests the sub-
sea permafrost domain is ∼1/5 the size of the ter-
restrial permafrost domain, which includes∼18 mil-
lion km2 in the Northern Hemisphere (Hugelius
et al 2014, Schuur et al 2015). Experts estimated
that the current extent of subsea permafrost was
∼2million km2 (1–2.7; figure 2(a)), indicating a 42%
decrease in subsea permafrost extent since the LGM
(figure 2(a)). When calculated for each expert indi-
vidually, the median decline in permafrost extent
since the LGM was 47% (figure S3(a)).

Experts estimated that 500 gigatons carbon (GtC)
(250–750) in soil organic matter (SOM) was stored
in and on the continental shelves at the LGM
(figure 2(b)). Expressed on an areal basis (i.e.
140 kg C m−2), these estimates of SOM from the
continental shelves are similar to carbon densities in
the continuous permafrost zone (70–200 kg C m−2),
where SOM is often deposited many meters below
the surface by periglacial processes (Hugelius et al
2014, Shmelev et al 2017, Lindgren et al 2018). Cur-
rent SOM stocks were estimated at 460 GtC (150–
540; figure 2(b)), indicating amedian decrease of 10%
of the SOM present at the LGM, based on the two
unpaired distributions. However, when calculated
for each expert individually, median SOM decreases
were 33%–40%, suggesting substantial mineraliza-
tion since the LGM (figure S3(b)). In their com-
ments, experts attributed this decrease in SOM to
microbial decomposition of OM to CH4 and CO2

after permafrost thaw (Thornton et al 2016a, Winkel
et al 2018). Current stocks of OM in sediment
deposited following the marine transgression were
estimated at 100 GtC (23–200; figures 1(d) and
2(b)). Together, these estimates suggest that 560 GtC
(170–740) of OM is currently stored in surface sedi-
ment and paleosols of the subsea permafrost domain
(figure 1(d)).

Experts estimated a wide range of current CH4

stocks with a median of 45 GtC (14–110; figure 2(c)).
Based on expert comments, the main reason for this
uncertainty was the extremely patchy spatial cov-
erage of observations of CH4 deposits, primarily
hydrates, but also dissolved and free gas in sediment
(figure 1(d)). Experts highlighted that estimating
organic carbon content of surface sediments across
the vast subsea permafrost domain is already chal-
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Table 1. Composition and characteristics of expert respondents.

Survey section
Past and current
extent

Past and current carbon
stocks and fluxes

Future carbon stocks
and fluxes

Average response per question 22 17 14
Primary region of study

North America 11 8 10
Europe 2 2 2

Asia 8 7 8
Circumpolar 7 3 6

Average modeling/field self-ratinga 2.5 2.4 2.5
Combined years of experience 183 130 121
Ratio male:female 17:8 11:7 13:6
a1 was defined as exclusively field research and 5 as exclusively modeling research.

Figure 2. Violin plots showing carbon stocks and fluxes for the subsea permafrost domain. (a) and (b) Expert estimates of subsea
permafrost extent and carbon stocks at the Last Glacial Maximum (LGM) and present. (b) Organic matter stocks including soil
organic matter (SOM) at the LGM and present (Current), and sediment deposited since the LGM (deposited; figure 1). (c)
Current methane (CH4) stocks, including hydrates, dissolved, and free gas. (d) Carbon flux from sediment to the water column
and from the water column to the atmosphere (for CH4). For each parameter, experts were asked to give lower, central, and upper
estimates, representing a subjective 90% confidence interval around a central value. For all panels, the individual expert estimates
are represented as dots (central) and error bars (lower and upper), while the violin plots show the among-expert distribution of
the central estimates (width indicates number of estimates in that range). The horizontal black lines indicate the among-expert
medians of lower, central, and upper estimates. The faint grey lines in a and b group individual experts to emphasize pairwise
differences among parameters. Number of respondents is indicated on or next to each violin plot (for questions that had several
parts, the minimum n is shown). Detailed data and calculations shown in table S3.

lenging (Martens et al 2019), and quantifying CH4

deposits requires more expensive and complicated
drilling beneath the seafloor (Frederick and Buffett
2014, Ruppel and Kessler 2017). Experts mentioned
that the scarcity of CH4 observations is exacerbated
by reluctance or legal prohibition of sharing data gen-
erated during research expeditions, energy explor-
ation by private companies, and national security
activities.

2.3. Present and future fluxes of CO2 and CH4
Weasked experts to estimate potential changes inCO2

and CH4 flux for three climate scenarios from the
IPCC Fifth Assessment Report (Moss et al 2010). The
selected RCPs were RCP2.6, which has a peak concen-
tration of∼490 ppmCO2-equivalent (CO2e) reached
before 2100, RCP4.5 with a peak of ∼650 ppm CO2e
at 2100, and RCP8.5 with a peak of∼1400 ppmCO2e
at 2100 (Moss et al 2010, Koenigk et al 2013). There
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Figure 3. Expert estimates of organic matter (OM) and CH4 stocks potentially affected by climate change. (a) and (c) OM and (b)
and (d) CH4 deposits that could experience a shift in thermal or chemical state because of anthropogenic climate change.
Estimates expressed as percentage of the total stock affected in the top panels and affected mass in gigatons of carbon (GtC) based
on the percentages and current estimates in the bottom panels. Symbology is the same as figure 2. Detailed data and calculations
in table S4.

are many potential controls on greenhouse gas pro-
duction and consumption in the subsea permafrost
domain, including changes in temperature, micro-
bial activity, sea level, altered chemistry in the Arctic
Ocean, and changes in photosynthesis associatedwith
loss of sea ice or changes in nutrient availability (sup-
plementary information). Because of this complexity,
we first asked experts to estimate the percentage of
the subsea OM (including relict SOM and sediment
deposited since the LGM) and CH4 stocks that could
be affected thermally or biogeochemically by any of
the RCP scenarios.

For OM in 2050, 2100, and 2300, experts estim-
ated that 3% (1–10), 8% (2–20), and 28% (10–55),
respectively (figure 3(a)), could be influenced by cli-
mate change. This suggests that a globally-relevant
store of OM may experience changes in physical or
biogeochemical state due to anthropogenic climate
change by 2100 (3.3–240GtC) and 2300 (18–420GtC;
figure 3(c)). Experts estimated that a smaller per-
centage of CH4 stocks would be affected by anthro-
pogenic climate change, with median estimates of
2.5% (1–6.5), 8% (2–15), and 18% (5–35) by 2050,
2100, and 2300 (figure 3(b)). When combined with
current estimates of CH4 stocks (figure 2(c)), these
percentages translate into highly uncertain but still
substantial quantities of affected CH4 by 2100 (0.2–
42GtC) and 2300 (0.6–64GtC; figure 3(d)). Together,

these estimates suggest that CH4 in the forms of
hydrates, dissolved, and free gas may be less sensit-
ive to climate change than OM stored in the contin-
ental shelves. Experts suggested this could be due to
the depth of some hydrate deposits and the combined
effects of water pressure, temperature, and hydrate
composition, which together determine the zone of
hydrate stability (Frederick and Buffett 2014, Ruppel
and Kessler 2017). These findings of relatively insens-
itive CH4 deposits support the growing evidence from
paleoclimate studies that subsea hydrates contributed
minimally to the abrupt climate change and cor-
respondingly abrupt increase in CH4 at the begin-
ning of the Holocene (Fischer et al 2008, Sowers
2010, Petrenko et al 2017, Dyonisius et al 2020) and
during previous paleoclimate perturbations (Jurikova
et al 2020).

The central estimates of present and future fluxes
of CO2 and CH4 were highly dispersed, varying by
a factor of 30, based on average range of lower and
upper values for each expert (figures 2(d) and 4(a),
(b)). For present conditions, the net CO2 flux to the
water column was estimated at 38 MtC yr−1 (13–
110), though two high estimates were two orders
of magnitude above that (figure 2(d)). We only
asked for CO2 flux estimates to the water column to
avoid complexities associated with marine primary
production, which is already included in Earth system
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models (Laufkötter et al 2015). For the current net
flux of CH4 to the water column, experts estimated
18 MtC yr−1 (2.3–34) and for the release to the
atmosphere, they estimated 4.3 MtC yr−1 (3–16),
indicating that ∼75% of CH4 released from sed-
iment is oxidized before reaching the atmosphere
(figure 2(d); Thornton et al 2016a). The experts pro-
jected that the amount of CH4 flux to the atmo-
sphere would have a net increase of 2% (0–3),
5% (1–8), and 4.5% (0.5–15) for RCP2.6 by 2050,
2100, and 2300, respectively; 5% (0.4–10), 10% (4.5–
23), and 15% (5–60) for RCP4.5; and 10% (2.5–
25), 25% (13–55), and 49% (16–80) for RCP8.5
on the same time steps (figure 4(b)). The estimates
paired by expert indicated a 75% (72–79) decrease
in added CO2 emissions for RCP2.6 versus RCP8.5
and a 73% (70–89) decrease in added CH4 emissions
(figure S4).

To compare the overall climate forcing from
the subsea permafrost domain, we converted CH4

emissions into CO2e, using the 100 year conver-
sion factor of 28 from the IPCC Fifth Assessment
Report (Schuur et al 2013, Abbott et al 2016). After
conversion (table S5), CH4 contributed more than
half of the overall climate forcing, accounting for a
mean of 65%, 67%, and 72% of the cumulative CO2e
releases for RCP2.6, RCP4.5, and RCP8.5, respect-
ively (figure 5). Experts estimated substantially dif-
ferent responses depending on warming scenario,
with the smallest increases associated with RCP2.6
and the largest with RCP8.5 (figure 4(a)). By 2050,
2100, and 2300, experts projected a change of 2%
(0.1–3), 5% (1–10), and 4.5% (2–8) for RCP2.6;
a change of 5% (0.5–10), 10% (3.5–30), and 28%
(10–50) for RCP4.5; and a change of 10% (2.5–
20), 20% (11–45), and 53% (20–100) for RCP8.5
(figure 4(a)).

When summed to estimate total climate forcing
in CO2e, the cumulative greenhouse gas release from
the subsea permafrost domain under RCP2.6 was 11
Gt CO2e (4–30) by 2050, 35 (10–83) by 2100, and
130 (34–270) by 2300. Under RCP4.5, cumulative
greenhouse gas emissions were similar to RCP2.6 for
2050 and 2100–12 (5–32) and 38 Gt CO2e (14–96),
respectively—but higher for 2300: 150 Gt CO2e (49–
380). For RCP8.5, emissions were substantially higher
across 2050, 2100, and 2300, with 13 (5–36), 43 (14–
110), and 190 Gt CO2e (45–590) released, respect-
ively. Experts estimated substantially elevated emis-
sions under all scenarios relative to current rates,
with 35%–45% higher emissions by 2050, 50%–80%
higher emissions by 2100, and 60%–135% higher
emissions by 2300 (figure 5). Together, these results
highlight how the permafrost domain continues to
respond to past warming (i.e. after the LGM) yet is
still sensitive to the degree of anthropogenic warming
in the future.

3. Discussion

3.1. Slow but substantial climate forcing from
subsea permafrost
Evaluating how much subsea permafrost has
degraded and howmuch SOM has been decomposed
since sea levels rose ∼14 000 years ago (Church et al
2010) can provide perspective on the current perma-
frost climate feedback. If the expert range of estimates
of 30%–50% decline in area and 33%–40% decline
in OM stocks are reliable (figure S3(b)), this suggests
that the subsea permafrost system responds relatively
slowly (i.e. millennial timescales) to climate change,
and that anthropogenically-driven changes may only
substantially alter subsea permafrost dynamics sev-
eral hundreds or thousands of years from now. How-
ever, if the expert estimates of current carbon fluxes
are reliable, the subsea permafrost domain is already
contributing regionally and globally relevant quantit-
ies of greenhouse gases to the Arctic Ocean and atmo-
sphere in response to paleoclimate changes since the
LGM. Our results suggest the ocean-atmosphere flux
of CH4 from the subsea permafrost domain equals
10%–40% of CH4 release from the five-fold larger
terrestrial permafrost zone (Mcguire et al 2009). This
range is bracketed by low (Thornton et al 2016a) and
high (Shakhova et al 2013, Thornton et al 2016b) field
estimates from the East Siberian shelf. Furthermore,
our estimates suggest that subsea CO2 flux could
already be offsetting 10%–20% of the terrestrial per-
mafrost carbon sink (Mcguire et al 2009).

Considering future emissions scenarios, the net
ecosystem carbon balance of the subsea permafrost
domain was projected to be negative under all scen-
arios (i.e. net loss to the atmosphere) in our study.
This contrasts with estimates of future carbon balance
in the terrestrial permafrost zone, where both posit-
ive and negative projections are considered plausible
(Mcguire et al 2018). Under RCP4.5, the multimodel
median of terrestrial permafrost carbon balance pro-
jects net removal of 140 and 94 Gt CO2 from the
atmosphere by 2100 and 2300, respectively (Mcguire
et al 2018). Our central estimates suggest that the
subsea permafrost zone could offset 27% of that
uptake by 2100 and 160% of that uptake by 2300, i.e.
releasing substantially more greenhouse gas than the
terrestrial permafrost zone removes. Under RCP8.5,
the terrestrial permafrost zone is expected to release
16 GtC by 2100 and 220 GtC by 2300 (Mcguire et al
2018). Our central results suggest that subsea carbon
release could augment this terrestrial release by 32%
in 2100 and 8% in 2300. Considering the upper estim-
ates from our study, the subsea permafrost domain
could augment terrestrial release by 100% in 2100 and
34% in 2300. These simplified comparisons suggest
that the subsea permafrost domain may play an out-
sized role in determining the overall carbon balance

7



Environ. Res. Lett. 15 (2020) 124075 S S Sayedi et al

n=10

n=10

n=9

0

5

10

25

100

400

(%
)

Scenario
RCP2.6

RCP4.5

RCP8.5

Change in CO2  flux a)

n=11

n=11

n=11

0

5

10

25

100

400

Change in CH4  flux b)

n=10
n=10

n=9

0.001

0.01

0.1

1

10

100

1,000

2050 2100 2300

(M
t C

 y
r−

1
)

c)

n=10
n=10 n=10

0.001

0.01

0.1

1

10

100

1,000

2050 2100 2300

d)

2050 2100 2300 2050 2100 2300

n=10

n=10

n=9

0

5

10

25

100

400

(%
)

Scenario
RCP2.6

RCP4.5

RCP8.5

Change in CO2  flux a)

n=11

n=11

n=11

0

5

10

25

100

400

Change in CH4  flux b)

n=10
n=10

n=9

0.001

0.01

0.1

1

10

100

1,000

2050 2100 2300

(M
t C

 y
r−

1
)

c)

n=10
n=10 n=10

0.001

0.01

0.1

1

10

100

1,000

2050 2100 2300

d)

2050 2100 2300 2050 2100 2300

Figure 4. Expert estimates of changes in CO2 flux to the water column and CH4 flux to the atmosphere in response to climate
scenarios RCP2.6, RCP4.5, and RCP8.5. Upper panels represent percentage of change directly asked by experts (hyperbolic sine
function is used for y axis scale for ease of visualization). Bottom panels represent the net flux change in Mt C yr−1 which was
calculated using the current estimates and the percentage of changes. Symbology is the same as figure 2. Detailed data and
calculations in table S5.

of high latitude ecosystems. More generally, the car-
bon stocks and current and future emissions from
the subsea permafrost domain are large relative to
the geographical size of this region: ∼0.4% of the
Earth’s surface area but up to 2%of global CH4 release
and 31% of oceanic surface sediment carbon (Saun-
ois et al 2016, Friedlingstein et al 2019). This sug-
gests that the subsea permafrost domain is already
a hot spot of carbon storage and greenhouse gas
release, justifying increased ecological research and
monitoring.

The expert estimates from this study suggest
that contemporary CO2 and CH4 emissions from
the subsea permafrost domain are sensitive to
anthropogenic climate change on decadal timescales.
However, compound uncertainties surrounding the
terrestrial and subsea permafrost climate feedbacks
mean that the relative importance of these envir-
onments in determining greenhouse gas release will
remain unknown until better empirical andmodeling
estimates are available (Mcguire et al 2018, Overduin
et al 2019, Turetsky et al 2020). We emphasize that
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Figure 5. Expert estimates of the cumulative greenhouse gas emissions in CO2-equivalents (CO2e) from the subsea permafrost
domain for RCP2.6, RCP4.5, and RCP8.5. The median lower, central, and upper estimates are represented by solid black lines,
with the grey fill between them denoting the qualitative 90% confidence interval. The relative contributions of CH4 (normalized
to CO2e) and CO2 for the central estimates only are shown in pink and blue. For reference, the yellow dashed line shows the
cumulative CO2e if emissions from subsea permafrost were to remain at current rates through 2300. Detailed data and
calculations in table S5.

because the subsea and terrestrial permafrost zones
are fundamentally linked (Vonk et al 2012, Tesi et al
2016), understanding the fate of old and new OM
on the continental shelves of the Arctic Ocean basin
should be a research priority.

3.2. Uncertainties of subsea permafrost estimates
and greenhouse gas exchange
Based on expert comments, the primary contributor
to uncertainty in the subsea permafrost domain is
insufficient field observations. Almost every expert
mentioned this conspicuous knowledge gap. The lack
of data reduces the reliability of estimates of carbon
pools and fluxes as well as the thermal and hydro-
logical conditions of submerged permafrost. Experts
pointed out that our ignorance of terrestrial and
marine permafrost linkages does not simply create
uncertainty in current estimates, it limits our abil-
ity to anticipate thresholds and unexpected linkages.
For example, the subsea permafrost climate feedback
could follow qualitatively different trajectories than
identified here, if changes in Arctic runoff, sediment
balance, and sea ice alter organic carbon inputs or the
location of the CH4-hydrate stability zone (Lenton

et al 2008,Wrona et al 2016, Bamber et al 2018, Trusel
et al 2018). Specific questions raised by experts that
cannot currently be answered with satisfactory cer-
tainty include: what were rates of sedimentation and
OM burial at the sea bottom during the last several
thousand years (Martens et al 2019); what was and
is the vertical and lateral distribution of carbon (OM
and CH4) in paleosols and marine sediments on the
continental shelves (Lindgren et al 2018); how much
local variability was there in climate and ecosystem
type before the LGM (Huang et al 2017); what was
the effect of marine transgression on the OM stocks
of shelf sediments and their resulting re-distribution
(Winterfeld et al 2011, Günther et al 2013); andwhere
are different kinds of microbial metabolism active in
the subsea permafrost domain (Overduin et al 2015,
Winkel et al 2018)?

One unexpected finding of this research was that
the dearth of data on the subsea permafrost domain
is partially due to divisions in the subsea permafrost
research community. While previous expert assess-
ments on other topics have always involved strong
opinions and evidence-based disagreements (Schuur
et al 2013, Abbott et al 2016), we found that many

9
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Figure 6. Expert assessment improves knowledge transfer between scientists, policymakers, and public. (a) The current situation
for most Earth systems. Poor communication among the three groups leads to misunderstandings and mismanagement. Available
science is not integrated in decision making and policy questions are not addressed by science. (b) Improving the connection
among the three groups via expert assessment and other methods can lead to enhanced planning and management based on the
latest science and policy needs.

invited experts declined to participate or at least
expressed serious concerns because of political and
territorial considerations, including perceived or real
threat of retribution or negative professional con-
sequences. These rifts between research groups and
culture of antagonistic competition long precede this
paper, as evidenced by unsuccessful synthesis efforts
in the past and frequent rebuttals and conflict sur-
rounding published and presented research products
(e.g. Thornton et al (2019)). We hope that this
exercise, which involved permafrost researchers from
many research groups, institutions, career stages, and
cultural backgrounds, can contribute to a détente
and improvement of collaborative research. At the
least, we trust that these initial and uncertain estim-
ates will encourage the publication of expansions and
rebuttals. Indeed, new (or newly published) obser-
vations of the physical state (e.g. subsurface geologic
structure, temperature, pressure), chemical state (e.g.
pore-water chemistry, pH, redox conditions, hydrate
composition), and biological state (rates of aerobic
and anaerobic metabolisms (Koch et al 2009, Over-
duin et al 2015, Winkel et al 2018)) of the subsea
permafrost domain are desperately needed to reduce
the uncertainty around the estimates presented here
and in recent work (Vonk et al 2014, Shakhova et al
2017, Lindgren et al 2018). These data could better
constrain models of present and future biogeochem-
istry as well as reveal past behavior of subsea perma-
frost and OM, generating fundamental insights into

biological dynamics at millennial timescales. Because
of the logistical challenges of collecting data from the
continental shelves, which ultimately requires deep
scientific drilling within the exclusive economic zones
of various countries, international collaborations as
well as private-public partnerships will be required to
meet these goals.

3.3. Improving integration of science and policy
Although there is evidence that subsea permafrost
could be a major greenhouse gas source, it has not
been quantitatively considered in any major climate
change reports (table S1). This is attributable to
the lack of data and published estimates of policy-
relevant information. For example, in the few reports
that do mention subsea permafrost, there is no detail
on the extent and magnitude of subsea carbon stocks
or potential greenhouse gas release (table S1). The
readers of these reports, which are mainly written for
public and policymakers, cannot therefore have an
accurate understanding of the potential influence of
this ecosystem feedback on the climate system.

While policymaking is inherently based on val-
ues, it should be informed by the best available sci-
entific evidence (Joly et al 2010, Sutherland and
Burgman 2015). To integrate the latest science into
policymaking and to direct scientific inquiry to
address societally relevant problems, it is important to
ensure the timely communication of relevant inform-
ation between policymakers and scientists (figure 6).
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Despite the necessity of the relationship between
science and policy, this link is often indirect or
weak (Brownell and Roberto 2015, Cherubini et al
2016). The uncertainty and complexity involved in
both science and policymaking can make it diffi-
cult for representatives from one world to appre-
ciate the implications of uncertainties presented by
the other (Bradshaw and Borchers 2000, Maxim and
van der Sluijs 2011). The communication of these
compound uncertainties between science, policy, and
public circles is inherently challenging, potentially
causing frustration and even undermining science
and policy objectives (Morgan 2014, Sutherland and
Burgman 2015). Consequently, for many environ-
mental issues, which always involve high levels of
complexity and uncertainty, much of the latest sci-
ence is not considered by policymakers and much of
the best policy knowledge is unknown by research-
ers (Cortner 2000, Liu et al 2008). In the case of
the permafrost climate feedback (both terrestrial and
subsea), we suggest that expert assessment should be
more regularly implemented to quantify uncertain-
ties and identify research priorities. As more data
and simulations become available, repeat assessments
(e.g. every 5 or 10 years) could reveal whether estim-
ates are converging and ensure that the most up-to-
date information is available to policymakers.

4. Conclusion

In this study, we used expert assessment to combine
available information on the past, present, and future
carbon stocks and fluxes of the subsea permafrost
domain. According to the experts, subsea permafrost
contains large stocks of organic carbon and glob-
ally relevant fluxes of CO2 and CH4 from the subsea
permafrost domain are already influencing climate
change, and future projections are substantial relat-
ive to carbon release and uptake in the terrestrial per-
mafrost zone. However, based on the slow response
of this system to paleoclimate change (e.g. deglaci-
ation), it appears that subsea permafrost is relatively
stable on centennial to millennial timescales. Experts
emphasized that the lack of field data creates high
uncertainty regarding carbon stocks and emissions.
Additionally, experts agreed that subsea permafrost
will degrade faster and contribute more emissions
under RCP8.5 compared to RCP2.6, suggesting that
this system is still responsive to short-term anthropo-
genic forcing. Therefore, ignoring this system in cli-
mate change policies exacerbates the risk of under-
estimating ecosystem feedbacks and overshooting
climate targets.
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