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This paper is dedicated to a question whether the currently 
known families of quadratic APN polynomials are pairwise 
different up to CCZ-equivalence. We reduce the list of these 
families to those CCZ-inequivalent to each other. In particu-
lar, we prove that the families of APN trinomials (constructed 
by Budaghyan and Carlet in 2008) and multinomials (con-
structed by Bracken et al. 2008) are contained in the APN 
hexanomial family introduced by Budaghyan and Carlet in 
2008. We also prove that a generalization of these trinomial 
and multinomial families given by Duan et al. (2014) is con-
tained in the family of hexanomials as well.
© 2020 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let n and m be two positive integers, an (n, m)-function, or vectorial Boolean function, 
is a function F from the finite field F2n with 2n elements to the finite field F2m with 
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2m elements. When m = 1 such functions are simply called Boolean functions. Boolean 

functions and vectorial Boolean functions have been intensively studied due to the large 

number of applications both in mathematics and computer science. In particular, they 

have a crucial role in the design of secure cryptographic primitives, such as block ciphers. 
In this context, vectorial Boolean functions are also called S-boxes.

The differential attack, introduced by Biham and Shamir [2], is among the most 
efficient attacks on block cipher. To measure the resistance of an S-box to this attack, 
in [31], Nyberg introduced the notion of differential uniformity. A vectorial Boolean 

function F is called differentially δ-uniform if the equation F (x) + F (x + a) = b has at 
most δ solutions for any non-zero a and for all b. The smallest possible values for δ is 2, 
and functions achieving such differential uniformity are called almost perfect nonlinear
(APN).

Boolean functions used in cryptography must have low differential uniformity. For this 
reason, functions with low differential uniformity, and in particular APN functions, are 

an important domain of research for symmetric cryptography.
The differential uniformity, and thus the APN property, is preserved by some 

transformations of functions, which define equivalence relations between vectorial 
Boolean functions. Two of these equivalence notions are the extended affine equiv-
alence (EA-equivalence) and Carlet-Charpin-Zinoviev equivalence (CCZ-equivalence). 
EA-equivalence is a particular case of CCZ-equivalence, which is the most general known 

equivalence relation preserving the differential uniformity.
An important aspect of the study and the analysis of APN functions, and vectorial 

Boolean functions in general, is their classification with respect to these equivalence rela-
tions. Classifications of APN functions is a hard problem and a complete classification is 
only known for n ≤ 5 [7]. There are only few infinite classes of APN functions known: six 

classes of power functions and fifteen classes of quadratic polynomials CCZ-inequivalent 
to monomials, presented in Tables 1 and 2. When constructed, some of these 15 families 
have not been checked for equivalence to already known classes.

In this work we reduce the list of known families of polynomial APN functions by 

excluding all equivalent cases. Indeed, we show that the class of trinomial APN functions 
introduced in [9] and the class of multinomials studied in [4] are equivalent. Moreover, 
we prove that also their generalizations given in [24] coincide with the original ones. 
Finally we show that these classes can be reduced to the hexanomials introduced in 

[9]. According to the table of CCZ-inequivalent functions which arise from known APN 

families (in dimensions up to 11) [16], the remained families of APN functions are pairwise 

inequivalent in general. We present, then, a complete list of the known families of APN 

polynomials, which are pairwise CCZ-inequivalent, in Table 3.
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2. Preliminaries

Let n ≥ 2, we denote by F∗
2n the multiplicative group of F2n and by F2n [x] the univari-

ate polynomial ring defined over F2n . Any function F : F2n → F2n can be represented 
as a univariate polynomial of degree at most 2n − 1 in F2n [x], that is

F (x) =
2n−1∑
i=0

cix
i, ci ∈ F2n .

The algebraic degree of a function F is equal to the maximum 2-weight of the exponent i
such that ci �= 0, where the 2-weight of i is the (Hamming) weight of its binary represen-
tation. Functions of algebraic degree 1 are called affine and of degree 2 quadratic. Affine 
functions without the constant term are linear functions and they can be represented as 
L(x) =

∑n−1
i=0 cix

2i . For any m ≥ 1 such that m|n,

Trmn (x) =
n/m−1∑
i=0

x2im

denotes the trace function from F2n to F2m . When m = 1 we denote Tr1
n(x) by Tr(x).

The derivative of F in the direction of a ∈ F∗
2n is given by the function DaF (x) =

F (x + a) + F (x). The function F is APN if for every a �= 0 and every b in F2n , the 
equation DaF (x) = b admits at most 2 solutions, or equivalently |Im(DaF )| = 2n−1, 
where Im(F ) = {F (x) | x ∈ F2n} is the image of F .

There are several equivalence relations of functions for which the APN property is 
preserved. Two functions F and F ′ from F2n to itself are called:

• affine equivalent if F ′ = A1◦F◦A2, where A1, A2 : F2n → F2n are affine permutations;
• EA-equivalent if F ′ = F ′′ + A, where the map A : F2n → F2n is affine and F ′′ is 

affine equivalent to F ;
• CCZ-equivalent if there exists some affine permutation L of F2n × F2n such that 

the image of the graph of F is the graph of F ′, that is, L(GF ) = GF ′ , where 
GF = {(x, F (x)) : x ∈ F2n} and GF ′ = {(x, F ′(x)) : x ∈ F2n}.

The affine equivalence is, obviously, included in the EA-equivalence, and EA-
equivalence is a particular case of CCZ-equivalence [19]. Moreover, every permutation is 
CCZ-equivalent to its inverse [19]. As proven in [14], CCZ-equivalence is more general 
than EA-equivalence together with taking inverses of permutations. The algebraic degree 
of a function (if it is not affine) is invariant under EA-equivalence but, in general, it is not 
preserved by CCZ-equivalence. In general, neither EA-equivalence nor CCZ-equivalence 
preserves the permutation property.

There are six known infinite families of power APN functions presented in Table 1. 
Some results on CCZ-inequivalence between these functions were proven in [11]. Recently, 
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Table 1
Known APN power functions xd over F2n .

Functions Exponents d Conditions Degree In

Gold 2i + 1 gcd(i, n) = 1 2 [26,31]
Kasami 22i − 2i + 1 gcd(i, n) = 1 i + 1 [28,29]
Welch 2t + 3 n = 2t + 1 3 [21]
Niho 2t + 2

t

2 − 1, t even n = 2t + 1 t+2
2 [22]

2t + 2
3t+1

2 − 1, t odd t + 1
Inverse 22t − 1 n = 2t + 1 n − 1 [1,31]
Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i + 3 [23]

in both [34] and [20] Yoshiara and Dempwolff show that two power APN functions are 
CCZ-equivalent if and only if they are cyclotomic-equivalent, i.e. they are EA-equivalent 
or one is EA-equivalent to the inverse of the second one. Since the algebraic degree is 
preserved by EA-equivalence, and families in Table 1 have, in general, different algebraic 
degrees, then all these families differ up to CCZ-equivalence (although they can intersect 
in some particular cases).

There are also fifteen known infinite families of quadratic APN polynomials CCZ-
inequivalent to power functions listed in Table 2. In addition there was also a family 
of APN functions constructed by Göloǧlu [27] but it was proven to be CCZ-equivalent 
to Gold power functions in [16]. In this paper we show that this list can be reduced to 
thirteen pairwise CCZ-inequivalent families represented in Table 3.

Regarding to the first two classes in Table 2 (C1 and C2) there is an interesting 
conjecture that these binomials together with the exceptional example B(x) = x3 +μx36

defined over F210 ([25]) are the only possible APN binomials (up to CCZ-equivalence) 
[6]. On the other hand, in the recent paper [15] it is shown that the APN binomial B(x)
is a part of family of APN quadrinomials C15.

3. Equivalence between known families

Note that functions in Table 2 are given with different choices for parameters and 
coefficients, which in some cases can provide a huge number of different functions. In 
[16], the authors present a table of all possible pairwise CCZ-inequivalent functions 
which can be derived from the families of APN functions C1-C12, up to dimension 
n = 11. According to this table, families C3 and C11 coincide on small dimensions and 
are contained in C4. In this section we study the equivalence between families C3 and 
C11. In addition, we consider two generalizations of these families, given in [24]. We show 
that such generalizations coincide with the original families. Note that CCZ-equivalence 
between quadratic APN functions reduces to EA-equivalence [33], so all the equivalences 
that we prove in the following sections are EA-equivalence.

We recall the conditions for families C3 and C11 in the following theorems.
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Table 2
Known classes of quadratic APN polynomial over F2n CCZ-inequivalent to power functions.

In
, pk) = 1,
m = p − i, [10]

n

) = 1,
q + c �= 0, [9]
n}, dq+1 = 1

) = 1,
[9]

1 = 1

[12]

[13]

[13]

, 3k) = 1,
[4,5]

∗
2n

) = 1, i,m odd,
[4]

ven,
[35]

2m not a cube

= 1
sfies [8]

6.3 of [8]

) = 1, u primitive in F∗
2n

X + b [32]

β, 0, 0), i = 3, k = 2,F∗
4 = 〈β〉

, b, c) = (β, β2, 1), [15]
2m − 1, (m − 2)−1 mod n}
N◦ Functions Conditions
n = pk, gcd(k, p) = gcd(s

C1-C2 x2s+1 + u2k−1x2ik+2mk+s

p ∈ {3, 4}, i = sk mod p,
n ≥ 12, u primitive in F∗

2

q = 2m, n = 2m, gcd(i,m
C3 x22i+2i

+ cxq+1 + dxq(22i+2i) gcd(2i + 1, q + 1) �= 1, dc
d /∈ {λ(2i+1)(q−1), λ ∈ F2

q = 2m, n = 2m, gcd(i,m
C4 x(x2i

+ xq + cx2iq) c ∈ F2n , s ∈ F2n \ Fq,
+x2i

(cqxq + sx2iq) + x(2i+1)q X2i+1 + cX2i

+ cqX + 1
has no solution x s.t. xq+

C5 x3 + a−1Tr(a3x9) a �= 0

C6 x3 + a−1Tr3n(a3x9 + a6x18) 3|n, a �= 0

C7 x3 + a−1Tr3n(a6x18 + a12x36) 3|n, a �= 0

n = 3k, gcd(k, 3) = gcd(s
C8-C10 ux2s+1 + u2k

x2−k+2k+s

+ v, w ∈ F2k , vw �= 1,
vx2−k+1 + wu2k+1x2s+2k+s

3|(k + s) u primitive in F

q = 2m, n = 2m, gcd(i,m
C11 dx2i+1 + dqxq(2i+1)+ c /∈ F2m , γs ∈ F2m ,

cxq+1 +
∑m−1

s=1 γsx
2s(q+1) d not a cube

(x + xq)2
i+1+ q = 2m, n = 2m, m ≥ 2 e

C12 u′(ux + uqxq)(2
i+1)2j

+ gcd(i,m) = 1 and j even
u(x + xq)(ux + uqxq) u primitive in F∗

2n , u′ ∈ F

n = km, m > 1, gcd(n, i)
C13 L(x)2

i

x + L(x)x2i

L(x) =
∑k−1

j=0 ajx
2jm

sati
the conditions in Theorem

u(uqx + xqu)(xq + x) + (uqx + xqu)2
2i+23i

q = 2m, n = 2m, gcd(i,m
C14 +a(uqx + xqu)2

2i
(xq + x)2

i

+ b(xq + x)2
i+1 a, b ∈ F2m and X2i+1 + a

has no solution over F2m

n = 2m = 10, (a, b, c) = (

C15 x3 + ax2k(2i+1) + bx3·2m

+ cx2n+k(2i+1) n = 2m,m odd, 3 � |m, (a
F∗

4 = 〈β〉, i ∈ {m − 2,m,
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Theorem 3.1 ([9]). Let n = 2m, with m > 1. Let i be such that gcd(i, m) = 1. Let F be 
the function over F2n defined by

cx2m+1 + x22i+2i

+ dx2m(22i+2i) (C3)

where c, d ∈ F2n are such that d2m+1 = 1, d /∈ {λ(2i+1)(2m−1) : λ ∈ F2n} and dc2
m+c �= 0. 

Then, F is APN over F2n .

Theorem 3.2 ([4]). Let n = 2m, with m > 1 an odd integer. Let i be an odd integer such 
that gcd(i, m) = 1. Let F be the function over F2n defined by

cx2m+1 +
m−1∑
s=1

γsx
2s(2m+1) + dx2i+1 + d2m

x2m(2i+1) (C11)

where c /∈ F2m , d ∈ F2n not a cube and γs ∈ F2m for each s. Then, F is APN over F2n .

Remark 3.3. Note that, it is possible to restate Theorem 3.2, i.e. to change the conditions 
for family C11. That is, assuming m odd and i coprime with m, the condition i odd and 
d not a cube is equivalent to just request d /∈ {x2i+1 : x ∈ F22m}. Indeed, if i is odd, 
then {x2i+1 : x ∈ F22m} = {x3 : x ∈ F22m}. If i is even, recalling that (cf. Lemma 11.1 
in [30])

gcd(2i + 1, 2n − 1) =
{

1 if gcd(i, n) = gcd(2i, n)
2gcd(i,n) + 1 if 2 gcd(i, n) = gcd(2i, n),

we get {x2i+1 : x ∈ F22m} = F22m , implying existence of no choice for d.

The same can be done for family C3. Indeed, coefficients c and d, satisfying the 
constrains in Theorem 3.1, exist if and only if gcd(2i + 1, 2m + 1) �= 1 (see [9]). This 
implies that m is odd since i and m are coprime (it can be easily deduced from gcd(22i−1,
22m − 1) = 2gcd(2i,2m) − 1 = 3). Moreover, as shown above, if i is even we have no choice 
for d, so also i must be odd.

In [24], the authors generalize these two families. In the following, we report the 
statements of the results given in [24]. However, as we will show in the next section, 
the parameters of these functions need some adjustment. So we warn the reader that, 
instead of using the statements below that we copied from the original submission [24], 
one has to use the adjustments in Theorems 3.6 and 3.8. However, in view of the main 
result of this paper, it is not necessary to refer to these families any more since they are 
all included in C4.

Family C11*: Let n = 2m, with m > 1. Let i, j be such that i > j and gcd(i − j, m) = 1. 
Let F be the function over F2n defined by
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cx2m+1 +
m−1∑
�=1

γ�x
2�(2m+1) + L(dx2i+2j

+ d2m

x2m(2i+2j)), (1)

where c /∈ F2m , d is not in {x2i+2j : x ∈ F2n}, γ� ∈ F2m for all � and L(x) =
∑

k∈K x2k

such that {0, 1} �= K ⊆ {0, ..., n} and 
∑

k∈K x2k−1 is irreducible over F2n . Then, F is 
APN over F2n .

Family C3*: Let n = 2m, with m > 1. Let i, j be such that i > j and gcd(i − j, m) = 1. 
Let F be the function over F2n defined by

cx2m+1 +
m−1∑
�=1

γ�x
2�(2m+1) + L(x2i+2j

) + dL(x2m(2i+2j)), (2)

where c, d, γ� ∈ F2n are such that d2m+1 = 1, d /∈ {λ(2i+2j)(2m−1) : λ ∈ F2n}, dcq +c �= 0, 
d = γ1−2m

� for all � and L(x) =
∑

k∈K x2k such that {0, 1} �= K ⊆ {0, ..., n} and ∑
k∈K x2k−1 is irreducible over F2n . Then, F is APN over F2n .

Note that, these types of functions are of the form (or can be reduced to)

F (x) = wx2m+1 + Q(x), (3)

where Q is a quadratic function from F2n into F2m and w /∈ F2m . This construction for 
APN and differentially 4-uniform functions has been further studied in [17,18].

Remark 3.4. The general idea, used in this work, for proving the equivalence between 
these families is based on the fact that for any element w not in F2m we have F2n =
wF2m ⊕ F2m . At this point, considering two functions as in (3),

F1(x) = w1x
2m+1 + Q1(x), and F2(x) = w2x

2m+1 + Q2(x),

to prove the equivalence we need to identify a linear permutation L for which L(F1(x)) =
F2(x). Since F2n = w1F2m ⊕F2m = w2F2m ⊕F2m the action of L can be given by defining 
the images of w1F2m and of F2m separately. In particular, L should be such that the vector 
space w1F2m is mapped into w2F2m with the trivial action w1y 
→ w2y (for any y ∈ F2m) 
and L(Q1(x)) = Q2(x).

Before proving the equivalence of these families, we correct the results of [24]. Indeed, 
the first family when m is even cannot be APN. While, for the second one, in addition 
to restriction of m to be odd, in general is not APN if L(x) �= x2k (tested by MAGMA 
in small dimensions).
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3.1. Correction of family C11* and family C3*

For family C11* we have the following result.

Proposition 3.5. Let n = 2m. Let F be a function defined over F2n as in (1). Then, if m
is even F cannot be APN.

Proof. Consider the function

F (x) = cx2m+1 +
m−1∑
�=1

γlx
2�(2m+1) + L(dx2i+2j

+ d2m

x2m(2i+2j)),

satisfying the properties given in (1).
First of all note that, L(x) = x(

∑
k∈K x2k−1) where {0, 1} �= K ⊆ {0, ..., n} and ∑

k∈K x2k−1 is irreducible over F2n . Since 
∑

k∈K x2k−1 �= x + 1 we have that 0 is the 
only root of L(x) = 0. This implies that L is a linear permutation and, moreover, 
L(x2m) = L(x)2m . To prove that F cannot be APN for m even we need to prove that 
there exists a ∈ F2n nonzero such that

Δ(x) = F (x) + F (x + a) + F (a) = 0 (4)

admits more than two solutions.
Suppose that x is a solution of (4). Then we obtain

Δ(x) + Δ(x)2
m

= (c + c2
m

)(x2m

a + a2m

x) = 0.

Since c /∈ F2m we have x2m

a + a2m

x = 0, which implies x = at for some t ∈ F2m . 
Substituting x = at in (4) we have

L((da2i+2j

+ d2m

a2m(2i+2j))(t2
i

+ t2
j

)) = 0.

Since L is a linear permutation, this implies that (da2i+2j + d2m

a2m(2i+2j))(t2i + t2
j ) =

0. Now, from the fact that d /∈ {x2i+2j : x ∈ F2n} the authors in [24] claim that 
(da2i+2j + d2m

a2m(2i+2j)) �= 0 for all nonzero a. However, while for m odd the condition 
d /∈ {x2i+2j : x ∈ F2n} is sufficient to guarantee da2i+2j

/∈ F2m , such claim is incorrect 
when m is even.

Indeed, if m is even, 3 | (2m−1) and 3 � (2m +1). Now, let d = αk, with α a primitive 
element of F2n and k some integer. Since gcd(i − j, m) = 1 we have that i − j is odd 
and thus gcd(2i−j + 1, 2n − 1) = 3. So, finding a such that da2i+2j ∈ F2m is equivalent 
to finding a′ such that da′ 3 ∈ F2m . Let a′ = αh, we want to determine h such that 
(2m + 1) | (3h + k). Suppose d /∈ F2m , otherwise a′ can be just 1. We have two cases, 
k ≡ 1, 2 mod 3. If k ≡ 1 mod 3, then 3h + k = 3(h + k′) + 1 for some k′. Since m is 
even 2m+1 + 1 is equal to 3h′ for some h′. Thus, considering h = h′ − k′ we would have 
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3h +k = 3(h +k′) +1 = 3h′ +1 = 2(2m +1). If k ≡ 2 mod 3, then 3h +k = 3(h +k′) +2
for some k′. Since m is even 2m − 1 is equal to 3h′ for some h′. Considering h = h′ − k′, 
we would have 3h + k = 3(h + k′) + 2 = 3h′ + 2 = 2m + 1. This concludes our proof. �

We can note that, in the previous proof, for analyzing the solutions of (4), we used 
only the fact that L(x) is a linear permutation with coefficients over F2m . So, we restate 
the conditions for family C11* as follows.

Theorem 3.6. Let n = 2m with m odd. Let i, j be such that i > j and gcd(i − j, m) = 1. 
Let F be the function over F2n defined by

cx2m+1 +
m−1∑
�=1

γ�x
2�(2m+1) + L(dx2i+2j

+ d2m

x2m(2i+2j)), (C11*)

where c /∈ F2m , d is not in {x2i+2j : x ∈ F22m}, γ� ∈ F2m for all � and L(x) a linear 
permutation with coefficients over F2m . Then, F is APN over F2n .

Remark 3.7. For the second family, some steps of the proof in [24, Theorem 2] do not 
work in general. When L(x) = x2k , family C3* results to be APN, this can be proved 
following the steps given in [24], which became legit when L has only one monomial.

While, if L is not of type x2k , from computational tests done using MAGMA in small 
dimensions, the function in (2), in general, is not APN.

More precisely, let

F (x) = cx2m+1 +
m−1∑
�=1

γ�x
2�(2m+1) + L(x2i+2j

) + dL(x2m(2i+2j)),

satisfying the properties given in (2). Then, F is APN if and only if the equation Δ(x) =
F (x) + F (x + a) + F (a) = 0 admits at most two solutions for any nonzero a ∈ F2n . It is
easy to check that

Δ(x) + dΔ(x)2
m

= (c + dc2
m

)(x2m

a + a2m

x).

Thus, if x is a solution of Δ(x) = 0 we have that x = at for some t ∈ F2m . Substituting 
x = at, we obtain

L(a2i+2j

(x2i

+ x2j

)) + dL(a2m(2i+2j)(x2i

+ x2j

)2
m

) = 0.

At this point, in [24, Theorem 2] the authors claim that

L(a2i+2j

(t2
i

+ t2
j

)) + dL(a2m(2i+2j)(t2
i

+ t2
j

)) = L((a2i+2j

+ da2m(2i+2j))(t2
i

+ t2
j

)),

which is not true in general. For the case of L(x) = x2k for some integer k, we have that
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L(a2i+2j

(t2
i

+ t2
j

))+dL(a2m(2i+2j)(t2
i

+ t2
j

)) = L((a2i+2j

+d2n−k

a2m(2i+2j))(t2
i

+ t2
j

)).

So, in this case we would obtain

Δ(x) = L((a2i+2j

+ d2n−k

a2m(2i+2j))(t2
i

+ t2
j

)) = 0,

which is equivalent to (a2i+2j + d2n−k

a2m(2i+2j))(t2i + t2
j ) = 0. Now, d2n−k

/∈
{λ(2i+2j)(2m−1) : λ ∈ F2n} implies that a2i+2j + d2n−k

a2m(2i+2j) �= 0, so we can have at 
most two solutions.

Thus, we consider C3* only with L(x) = x2k , and in this case the exponent k can be 
included in i and j. Moreover, as for the family C3, from the constrains on c and d we 
need m odd. So, in this case we have the following.

Theorem 3.8. Let n = 2m with m odd. Let i, j be such that i > j and gcd(i − j, m) = 1. 
Let F be the function over F2n defined by

cx2m+1 +
m−1∑
�=1

γ�x
2�(2m+1) + x2i+2j

+ dx2m(2i+2j), (C3*)

where c, d, γ� ∈ F2n are such that d2m+1 = 1, d /∈ {λ(2i+2j)(2m−1) : λ ∈ F2n}, dcq +c �= 0, 
d = γ1−2m

� for all �. Then, F is APN over F2n .

3.2. C11 and C3 are equivalent

Computational results performed in [16] for m = 3, 4, 5 show that all APN functions 
of family C11 are equivalent to functions in C3. This leads us to the idea that family C11 
is contained in family C3. In the following we are going to show that it is true, firstly 
showing that family C11 without the sum 

∑m−1
�=1 γ�x

2�(2m+1) is equivalent to family C3, 
secondly that every function in family C11 is equivalent to a function in the same family 
without the sum.

Lemma 3.9. Let n = 2m, with m odd. Let i odd be such that gcd(i, m) = 1 and consider 
the APN function

F (x) = cx2m+1 + dx2i+1 + d2m

x2m(2i+1), (5)

where c ∈ F22m \ F2m and d /∈ {x2i+1 : x ∈ F22m}. That is, F belongs to C11. Then, F
is EA-equivalent to a function F ′ of C3.

Proof. Since c ∈ F22m \F2m we have F22m = cF2m ⊕F2m . Let L be the linear permutation 
which is the identity map on cF2m and the power linear function x2i on F2m , that is 
L(cy + z) = cy + z2i for all y, z ∈ F2m . Then, we obtain
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F ′(x) = L(F (x))
d2i = c′x2m+1 + x22i+2i

+ d′x2m(22i+2i),

with c′ = c

d2i and d′ = d2i(2m−1). Since m is odd and d /∈ {x2i+1 : x ∈ F22m} = {x3 :

x ∈ F22m} (recall that i is odd) we have d′ /∈ {x(2i+1)(2m−1) : x ∈ F22m}. Indeed, if 
d′ ∈ {x(2i+1)(2m−1) : x ∈ F22m} we have that d′ is a cube, but 3 � (2m − 1) and d is not 
a cube.

Moreover, since c /∈ F2m

c′ 2
m

d′ + c′ = c2
m

d2i + c

d2i �= 0,

implying that F in (5) is EA-equivalent to an APN function contained in C3 (F ′ satisfies 
the conditions of Theorem 3.1). �
Lemma 3.10. Let n = 2m, with m odd. Let i odd be such that gcd(i, m) = 1 and consider 
an APN function

F (x) = cx2m+1 +
m−1∑
�=1

γ�x
2�(2m+1) + dx2i+1 + d2m

x2m(2i+1)

as in Theorem 3.2. Then, F is EA-equivalent to a function as in (5)

F ′(x) = c′x2m+1 + d′x2i+1 + d′ 2
m

x2m(2i+1),

where c′ and d′ satisfy the conditions in Theorem 3.2.

Proof. Assume 1 ≤ t ≤ m − 1 be such that γt �= 0. We can assume that γt = 1. Indeed, 
since γt ∈ F2m , dividing F by γt the function F/γt would satisfy the hypothesis of 
Theorem 3.2. Consider the following linear function with w ∈ F∗

2m (we will study its 
permutation property later)

L(x) = (w + (c + c2
m

)2
t

)x + x2t

+ wx2m

+ x2m+t

. (6)

Let u = dx2i+1 + d2m

x2m(2i+1) ∈ F2m , then we obtain

L(F (x)) = (w + (c + c2
m

)2
t

)[u + cx2m+1 +
m−1∑
l=1

γlx
2l(2m+1)]

+ u2t

+ c2
t

x2t(2m+1) +
m−1∑
l=1

γ2t

l x2l+t(2m+1)

+ w[u + c2
m

x2m+1 +
m−1∑

γlx
2l(2m+1)]
l=1
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+ u2t

+ c2
m+t

x2t(2m+1) +
m−1∑
l=1

γ2t

l x2l+t(2m+1)

= (w + (c + c2
m

)2
t

+ w)u + ((w + (c + c2
m

)2
t

)c + wc2
m

)x2m+1

+ (c + c2
m

)2
t

x2t(2m+1) +
m−1∑
l=1

γl(w + (c + c2
m

)2
t

+ w)x2l(2m+1)

= (c + c2
m

)2
t

u + (w(c + c2
m

) + c(c + c2
m

)2
t

)x2m+1

+
m−1∑

l=1,l �=t

γl(c + c2
m

)2
t

x2l(2m+1)

Hence

L(F (x))
(c + c2m)2t = u + (w(c + c2

m

)1−2t

+ c)x2m+1 +
m−1∑

l=1,l �=t

γlx
2l(2m+1).

Let c′ = w(c + c2
m)1−2t + c. Also the condition c′ /∈ F2m is satisfied since we have

c′
2m

+ c′ = w2m

(c + c2
m

)1−2t

+ c2
m

+ w(c + c2
m

)1−2t

+ c

= (w2m

+ w)(c + c2
m

)1−2t

+ (c + c2
m

) = (c + c2
m

).

Therefore we managed, from the original general formula C11, to obtain a similar one in 
which the monomial x2t(2m+1) is not present any more and the rest of the components 
of the sum is left unchanged. If the same procedure is applied for any j such that γj �= 0
we are able to obtain a function of the form (5).

Now we only need to show that L(x) of equation (6) is a permutation.

We have that

L(x) = (x + x2m

)2
t

+ w(x + x2m

) + (c + c2
m

)2
t

x.

Assume that x ∈ F2m then L(x) = (c + c2
m)2t

x is null if and only if x = 0. Otherwise 
consider x /∈ F2m and let y = x + x2m ∈ F∗

2m , we have L(x) = y2t + wy + (c + c2
m)2t

x. 
If L(x) = 0 then

x = y2t + wy

(c + c2m)2t .

Since w ∈ F2m then we have that the right hand-side belongs to F2m that leads to a 
contradiction. Therefore L is a linear permutation. �
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We have that C3 can be reduced to C11 reversing the computation done for (5) (an 
explicit computation is given in the next section when we prove that C3* is included in 
C11*). So we have proved:

Proposition 3.11. Families C3 and C11 are EA-equivalent.

3.3. C11* is equivalent to C11

Using Remark 3.4 the equivalence is almost straightforward, however we want to make 
clear to the reader how to construct such equivalence. Obviously, C11 is a particular case 
of C11*. We show that also C11* can be reduced to C11.

Let

F (x) = cx2m+1 +
m−1∑
l=1

γlx
2l(2m+1) + L(dx2i+2j

+ d2m

x2m(2i+2j)),

as in Theorem 3.6.
Without loss of generality, we can consider j = 0, and using the same technique as in 

Lemma 3.10 we can remove the summation 
∑m−1

l=1 γlx
2l(2m+1). Hence we end up with

F ′(x) = c′x2m+1 + L′(d′x2i+1 + d′ 2
m

x2m(2i+1)) = c′x2m+1 + Q′(x), (C11*)

for some c′ /∈ F2m , d′ /∈ {x2i+1 : x ∈ F22m} and L′ is a linear permutation with 
coefficients over F2m .

Therefore, as explained in Remark 3.4, with the linear map L′′ which acts as the 
identity map on c′F2m and as the linear function L′ −1 on F2m , we obtain

L′′ ◦ F ′(x) = c′x2m+1 + d′x2i+1 + d′ 2
m

x2m(2i+1).

Since the constrains on the coefficients are the same for C11* and C11, we have obtained 
our claim.

Proposition 3.12. Families C11* and C11 are EA-equivalent.

3.4. C3* is equivalent to C11

Now, we show that family C3* as in Theorem 3.8, which contains C3, is equivalent to 
C11.

Let n = 2m with m odd and consider the APN function defined over F2n

F (x) = cx2m+1 +
m−1∑

γ�x
2�(2m+1) + x2i+2j

+ dx2m(2i+2j),

�=1
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where c, d, γ� ∈ F2n satisfy the constrains of Theorem 3.8.
Since d2m+1 = 1, there exists d′ such that d′ 2m−1 = d. Moreover, since d is not 

contained in {x(2i+2j)(2m−1) : x ∈ F22m} we have d′ /∈ {x(2i+2j) : x ∈ F22m}.

Multiplying F by d′, we obtain

F ′(x) = d′F (x) = d′cx2m+1 +
m−1∑
�=1

d′γ�x
2�(2m+1) + d′x2i+2j

+ d′ 2
m

x2m(2i+2j).

Since c + c2
m

d �= 0 we have that d′c + (d′c)2m = d′(c + c2
m

d) �= 0, so d′c /∈ F2m . 
Moreover, since d = γ1−2m

� for all � such that γ� �= 0, we have that (d′γ�)2
m = d′(dγ2m

� ) =
d′(γ1−2m

� γ2m

� ) which implies d′γ� ∈ F2m for all γ�. Thus, F ′(x) is an element of C11*, 
which is EA-equivalent to C11 from Proposition 3.12. Then, from Proposition 3.11 we 
can conclude the following.

Proposition 3.13. Families C11 and C3* are EA-equivalent.

We summarize our results in the following theorem.

Theorem 3.14. Families C3, C11, C3* and C11* are all EA-equivalent to each other.

We conclude this section showing that, for any fixed i, all the functions contained in 
these families are EA-equivalent to each other.

Proposition 3.15. Let n = 2m with m odd and let i be such that gcd(n, i) = 1. Let

F (x) = cx2m+1 + dx2i+1 + d2m

x2m(2i+1), F ′(x) = c′x2m+1 + d′x2i+1 + d′ 2
m

x2m(2i+1)

be two APN functions of family C11, that is, c, c′ /∈ F2m and d, d′ /∈ {x2i+1 : x ∈ F2n}. 
Then, F and F ′ are affine equivalent.

Proof. Let us fix d not a cube, consider c, c′ ∈ F2n \ F2m and the functions

F (x) = cx2m+1 + dx2i+1 + d2m

x2m(2i+1) and F ′(x) = c′x2m+1 + dx2i+1 + d2m

x2m(2i+1).

Then, considering the linear permutation L which is the identity on F2m and that maps 
cF2m into c′F2m , we immediately have L ◦ F = F ′.

Now, let us fix the coefficient c ∈ F2n \ F2m and d not a cube. Consider the two 
functions

F (x) = cx2m+1+dx2i+1+d2m

x2m(2i+1) and F ′(x) = cx2m+1+d2x2i+1+(d2)2
m

x2m(2i+1).

Then, we have that
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F (x1/2)2 = c2x2m+1 + d2x2i+1 + (d2)2
m

x2m(2i+1)

is equivalent to F ′ from the argument above. Thus, F is equivalent to F ′.
Now, let U = {x2i+1 : x ∈ F∗

2n} = {x3 : x ∈ F∗
2n} (i is odd), for any u ∈ U ,

F (x) = cx2m+1 + dx2i+1 + d2m

x2m(2i+1)

and

F ′(x) = cx2m+1 + dux2i+1 + (du)2
m

x2m(2i+1)

are equivalent. Indeed, we can apply the substitution x 
→ λx for some λ ∈ F∗
2n such 

that λ2i+1 = u, and we have that F (λx) = cλ2m+1x2m+1 + dux2i+1 + (du)2m

x2m(2i+1)

is equivalent to F ′(x).
Now, since we can partition all non-cube elements as dU ∪d2U for some d not a cube, 

from the arguments above we have our claim. �
3.5. Equivalence with hexanomials (family C4 in Table 2)

The following family of APN hexanomials was constructed in [9].

Theorem 3.16 ([9]). Let n and i be any positive integers, n = 2m, gcd(i, m) = 1, and 
c̄, d̄ ∈ F2n be such that d̄ /∈ F2m . Then, the function

H(x) = d̄x2i(2m+1) + x(2m+1) + x2i+1 + x2m(2i+1) + c̄x2m+i+1 + c̄2
m

x2i+2m

is APN if and only if the equation

x2i+1 + c̄x2i

+ c̄2
m

x + 1 = 0

has no solution x such that x2m+1 = 1.

The existence of coefficients c̄ satisfying the conditions of the theorem above has been 
studied in [3]. In [27], Göloğlu characterizes and computes the number of such c̄’s.

The family of hexanomials given in the previous theorem can be expressed as pen-
tanomials.

Lemma 3.17. Let n and i be positive integers such that n = 2m and gcd(i, m) = 1. Let

P (x) = d̄x(2m+1) + x2i+1 + x2m(2i+1) + c̄x2m+i+1 + c̄2
m

x2i+2m

,

with c̄, d̄ ∈ F2n be such that d̄ /∈ F2m . Then, P is APN if and only if the equation
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x2i+1 + c̄x2i

+ c̄2
m

x + 1 = 0

has no solution x such that x2m+1 = 1.
Moreover, the family of hexanomials given in Theorem 3.16 and this family of pen-

tanomials are EA-equivalent.

Proof. The APN property of the pentanomial P can be proved following the same steps 
of [9, Theorem 2]. Thus, we prove only the equivalence between the two families.

Let

H(x) = d̄x2i(2m+1) + x(2m+1) + x2i+1 + x2m(2i+1) + c̄x2m+i+1 + c̄2
m

x2i+2m

as in Theorem 3.16. Applying the linear permutation (as in (6)) L(x) = (w + (d̄ +
d̄2m)2n−i)x + wx2m + x2n−i + x2m−i with w = (d̄ + d̄2m)2n−i−1 ∈ F∗

2m , we obtain

H ′(x) = L(H(x))
(d̄ + d̄2m)2n−i

= d̄′x2i(2m+1) + x2i+1 + x2m(2i+1) + c̄x2m+i+1 + c̄2
m

x2i+2m

,

where d̄′ = w(d̄+ d̄2m)1−2n−i + d̄ = 1 + d̄ /∈ F2m . Since F22m = d̄′F2m ⊕F2m we can apply 
a linear permutation which is x2n−i on d̄′F2m and the identity on F2m in order to obtain 
the EA-equivalent function

P (x) = d′′x2m+1 + x2i+1 + x2m(2i+1) + c̄x2m+i+1 + c̄2
m

x2i+2m

,

where d′′ = 1 + d̄2n−i . Thus, we have that the hexanomial with coefficients d̄ and c̄ can 
be reduced to the pentanomial with coefficients 1 + d̄2n−i and c̄.

On the other hand, let

P (x) = d̄x2m+1 + x2i+1 + x2m(2i+1) + c̄x2m+i+1 + c̄2
m

x2i+2m

be APN with d̄ /∈ F2m . Then, there exist d̄′ /∈ F2m such that d̄ = 1 + d̄′ 2
n−i . Thus, 

since we used linear permutations for reducing an hexanomial to a pentanomial, we can 
reverse the steps above and we would obtain the APN hexanomial

H(x) = d̄′x2i(2m+1) + x(2m+1) + x2i+1 + x2m(2i+1) + c̄x2m+i+1 + c̄2
m

x2i+2m

.

Then, the two families coincide. �
We are going to show below that C11 (and thus C3) is contained in C4.
Without loss of generality, from the arguments given in Lemma 3.10, we can consider 

functions of the form

F (x) = cx2m+1 + x2i(2m+1) + dx2i+1 + d2m

x2m(2i+1), (7)
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with c ∈ F22m \ F2m and d /∈ {x2i+1 : x ∈ F22m}.

Consider a linear permutation of the type x + γx2m (γ2m+1 �= 1). Evaluating F (x +
γx2m) and deleting terms of algebraic degree less than 2, we obtain

F̃ (x) = (c + cγ2m+1)x2m+1 + (1 + γ2i(2m+1))x2i(2m+1)

+(d + d2m

γ2m(2i+1))x2i+1 + (d2m + dγ2i+1)x2m(2i+1)

+(dγ2i + d2m

γ2m)x2m+i+1 + (d2m

γ2m+i + dγ)x2i+2m

}
= u.

Now, using a linear permutation as in (6), it is possible to delete the monomial (1 +
γ2i(2m+1))x2i(2m+1) since (1 +γ2i(2m+1)) and u are in F2m . Indeed, let γ′ = (1 +γ2i(2m+1))
and L(x) = (w+(c +c2

m)2i γ′

γ′ 2i )x +x2i +wx2m +x2m+i for some w ∈ F∗
2m . Then, following 

the same steps as in Lemma 3.10, we have

F ′(x) = L(F̃ (x)/γ′)(
c
γ′ + c2m

γ′

)2i = c′x2m+1 + u,

for some c′ /∈ F2m depending on L. Denoting by a = (d + d2m

γ2m(2i+1)) and b =
(dγ2i + d2m

γ2m) we get

F ′(x) = c′x2m+1 + (ax2i+1 + a2m

x2m(2i+1) + bx2m+i+1 + b2
m

x2i+2m

). (8)

Now, since i and m are odd and gcd(i, m) = 1, x2m+i+1 is a permutation of F2n , which 
means that there exists λ ∈ F∗

2n such that λ2m+i+1 = b. Then, substituting x 
→ λ−1x in 
(8), we obtain

F ′′(x) = c′′x2m+1︸ ︷︷ ︸
c′′F2m

+ a

λ2i+1x
2i+1 +

( a

λ2i+1

)2m

x2m(2i+1) + x2m+i+1 + x2i+2m

︸ ︷︷ ︸
F2m

,

where c′′ = c′/λ2m+1. Since F2n = c′′F2m⊕F2m we can perform a substitution x 
→ x2m−i

and then apply a linear map L which is x2m+i on c′′F2m and the identity on F2m . Thus, 
denoting by c̃ = (c′′)2m+i , we obtain the EA-equivalent function

F̄ (x) = L(F ′′(x2m−i

)) = c̃x2m+1+ a

λ2i+1x
2m+2j

+
( a

λ2i+1

)2m

x(2m+j+1)+x2j+1+x2m(2j+1),

(9)
where j = m − i is even and gcd(j, m) = 1.

Denoting ā =
(

a

λ2i+1

)2m

, since F̄ (x) is APN and c′′ /∈ F2m from Lemma 3.17 we have 
that

x2j+1 + āx2j

+ ā2m

x + 1 = 0
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Table 3

.

In

s, pk) = 1,
, m = p − i, [10]
∗
2n

m) = 1,
[9]

+1 = 1

[12]

[13]

[13]

s, 3k) = 1,
[4,5]

F∗
2n

even [35]
F2m not a cube

) = 1
isfies [8]
m 6.3 of [8]

m) = 1, u primitive in F∗
2n

[32]

(β, 0, 0), i = 3, k = 2,F∗
4 = 〈β〉

, b, c) = (β, β2, 1), [15]
, 2m − 1, (m − 2)−1 mod n}
Refined list of known classes of quadratic APN polynomial over F2n CCZ-inequivalent to power functions

N◦ Functions Conditions

n = pk, gcd(k, p) = gcd(
F1-F2 x2s+1 + u2k−1x2ik+2mk+s

p ∈ {3, 4}, i = sk mod p

n ≥ 12, u primitive in F

q = 2m, n = 2m, gcd(i,
F3 sxq+1 + x2i+1 + xq(2i+1) c ∈ F2n , s ∈ F2n \ Fq,

+cx2iq+1 + cqx2i+q X2i+1 + cX2i

+ cqX + 1
has no solution x s.t. xq

F4 x3 + a−1Tr(a3x9) a �= 0

F5 x3 + a−1Tr3n(a3x9 + a6x18) 3|n, a �= 0

F6 x3 + a−1Tr3n(a6x18 + a12x36) 3|n, a �= 0

n = 3k, gcd(k, 3) = gcd(
F7-F9 ux2s+1 + u2k

x2−k+2k+s

+ v, w ∈ F2k , vw �= 1,
vx2−k+1 + wu2k+1x2s+2k+s

3|(k + s) u primitive in

(x + x2m

)2
i+1+ n = 2m, m ≥ 2 even,

F10 u′(ux + u2m

x2m

)(2
i+1)2j

+ gcd(i,m) = 1 and j ≥ 2
u(x + x2m

)(ux + u2m

x2m

) u primitive in F∗
2n , u′ ∈

n = km, m > 1, gcd(n, i
F11 L(x)2

i

x + L(x)x2i

L(x) =
∑k−1

j=0 ajx
2jm

sat
the conditions in Theore

u(uqx + xqu)(xq + x) + (uqx + xqu)2
2i+23i

q = 2m, n = 2m, gcd(i,
F12 +a(uqx + xqu)2

2i
(xq + x)2

i

+ b(xq + x)2
i+1 X2i+1 + aX + b

has no solution over F2m

n = 2m = 10, (a, b, c) =

F12 x3 + ax2k(2i+1) + bx3·2m

+ cx2n+k(2i+1) n = 2m,m odd, 3 � |m, (a
F∗

4 = 〈β〉, i ∈ {m − 2,m
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has no nonzero solution such that x2m+1 = 1. Hence, the function F̄ (x) is equivalent to 
a pentanomial (and thus to an hexanomial) as in Lemma 3.17.

Therefore, we have proved the following result:

Theorem 3.18. The families C3, C3*, C11 and C11* coincide and they are included 
in C4. In particular, the hexanomials admit a representation as pentanomials in the 
following form

P (x) = d̄x2m+1 + x2i+1 + x2m(2i+1) + c̄x2m+i+1 + c̄2
m

x2i+2m

,

satisfying the conditions in Lemma 3.17.
Moreover, when m and i are odd, P (x) is EA-equivalent to a pentanomial of type

P̄ (x) = dx2m+1 + x2j+1 + x2m(2j+1) + cx2m+j+1 + c2
m

x2j+2m

,

where d and c satisfy the same conditions of d̄ and c̄ above, and j = m − i.

Proof. We need to prove only that when m is odd the case i odd is equivalent to a 
pentanomial relative to the even case j = m − i. This can be done with the same steps 
as used above to compute F̄ (x) in (9) from F ′′(x) of (8), with the only difference that 
in this case the coefficient a of F ′′(x) is equal to 1. �
4. Conclusion

In this paper we proved that, after corrections, the generalizations introduced in 
[24] of the families of APN trinomials and multinomials constructed in [9] and in [4], 
respectively, coincide with the original families. Moreover, we showed that the APN 
trinomials and multinomials are EA-equivalent to each other and they are contained in 
the family of the APN hexanomials, introduced in [9].

Using the obtained results we reduce the list of known families of APN polynomials 
(which are CCZ-inequivalent to power functions) to those pairwise CCZ-inequivalent to 
each other. This refined list is presented in Table 3.
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