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Abstract
We present a proof of coherence for monoidal groupoids in homotopy type theory. An important
role in the formulation and in the proof of coherence is played by groupoids with a free monoidal
structure; these can be represented by 1-truncated higher inductive types, with constructors freely
generating their defining objects, natural isomorphisms and commutative diagrams. All results
included in this paper have been formalised in the proof assistant Coq.
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1 Introduction

Homotopy type theory (HoTT) [21] is a version of Martin-Löf type theory, enhanced with a
definition of identity types that allows the interpretation of terms in a type as points in spaces,
and terms in identity types as paths; iterating the construction of identity types promotes
the interpretation of types as ∞-groupoids [17, 21, 3]. One of the key features of HoTT is
the use of higher inductive types (HITs) [18, 21, 8], which integrate inductive constructions
with the higher groupoid structure of types. This has lead to the formalisation of numerous
results and computations in homotopy theory (see e.g. [21, Chapter 8] for a nonexhaustive
list), which have largely been checked using proof assistants such as Coq [12, 11], Agda [7]
and Lean [9]. In this paper we employ the functionalities of HITs to formalise in HoTT the
result in category theory known as coherence for monoidal categories.

A (weak) monoidal category consists of a category C together with a monoidal structure,
i.e. a bifunctor • : C × C → C that serves as product, an object e ∈ ob(C) that serves as
unit for the product, and natural isomorphisms describing associativity and unitality of the
product (w.r.t. the unit object) and making two classes of diagrams – namely, the coherence
diagrams in Figures 1a and 1b – commute. A monoidal category is said to be strict if the
associativity and unitality natural isomorphisms are identities. Monoidal categories satisfy a
theorem of coherence, which states that every monoidal category is monoidally equivalent to
a strict one; an equivalent formulation [14, 19] is the following:

I Statement 1. Every diagram in a free monoidal category commutes.
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8:2 Coherence for Monoidal Groupoids in HoTT

This means that all (nontrivial) diagrams in a free monoidal category can be expressed
as combinations of instances of the coherence diagrams and of the naturality diagrams of
associativity and unitality.

Different proofs of Statement 1 have been formalised in intensional MLTT in [4, 5] using
the proof assistant ALF [20] (with Axiom K) and later in [1] using HOL [10]; there, a
category is given by a set of objects and a family of Hom-setoids. After noticing that a free
monoidal category is a groupoid (since all its arrows are built upon instances of the natural
isomorphisms defining the monoidal structure, and hence they are invertible), a version of
the same statement can be proved in HoTT by exploiting the mentioned groupoid structure
of types (Theorem 7). Indeed, monoidal groupoids can be represented by 1-types, using the
correspondence between objects in a groupoid and terms in the type, arrows and paths,1 and
commutative diagrams and 2-paths, where monoidality refers to the presence in the type of
the necessary terms, paths and 2-paths to define a monoidal structure. Moreover, HITs offer
a way to describe objects satisfying certain universal properties, allowing us to define types
that can be interpreted as free monoidal groupoids.

Since every path in a type has an inverse, this framework only allows us to express
groupoids and not categories; however, a formulation of Statement 1 for groupoids is, from a
mathematical standpoint, equivalent to the original one, as the free objects in the categories
of monoidal groupoids and of monoidal categories coincide. The choice of proving coherence
as formulated in Statement 1, without referring to strict monoidal structures, is also due to
the design of the theory, as discussed in Section 5.

The results included in this paper have been formalised using the Coq proof assistant
(see Section 6 for further details); the code is available as supplementary material.

Background and Notation
We assume familiarity with the basics of HoTT; our main reference is [21], from which we
largely borrow our notation. In particular:

we will use the symbol ≡ for judgmental equality and :≡ for definitions;
we will not distinguish, in the notation, between different members of an assumed hierarchy
of universes, and will instead denote them uniformly by U ;
for a family of types B : A→ U , dependent functions are denoted by f :≡ (x 7→ f(x)) :
Π(x : A).B(x); the identity function is indicated by idA :≡ id : A→ A; dependent pairs
are denoted by 〈a, b〉 : Σ(x : A).B(x); terms in nested Σ-types are denoted by tuples
〈a, b, c, . . .〉;
identity types are denoted by x =A y or simply x = y for x, y : A; their terms are called
paths in A and their elimination principle is called path induction; identity (reflexivity)
paths, which inductively generate identity types, are denoted by reflx :≡ refl : x = x;
terms r : p = q, where p and q are paths in a type, are called 2-paths, and so on;
the inverse of a path p is denoted by p−1; the concatenation of paths p : x = y and q : y = z

is denoted by p · q : x = z; this operation is provably associative and unital with respect
to the identity path and it satisfies inverse laws, giving rise to the umbrella-expression
“path algebra” to encompass all proofs of existence of 2-paths of the sort;
the action of f : A → B on a path p : x =A y is denoted by apf (p) : f(x) =B f(y);
functoriality of ap will also be referred to as path algebra;

1 Observe that, by their very nature, the categories we are describing are univalent.



S. Piceghello 8:3

given a family of types P : A→ U and a path p : x =A y, the transport of terms in P (x)
along p is denoted by pP∗ :≡ p∗ : P (x) → P (y); the action of f : Π(a : A).P (a) on p is
indicated by apdf (p) : p∗(f(x)) =P (y) f(y); a term in the identity type p∗(u) = v is called
a pathover [15];
several results are assumed about transporting in families of paths; in particular, we
will implicitly use that, given functions f , g : A → B and paths p : x =A y and
q : f(x) =B g(x), there is a (2-)pathover of type p(a 7→f(a)=g(a))

∗ (q) = apf (p)−1 · q · apg(p);
pointwise equalities of functions f and g : A→ B are called homotopies and denoted by
f ∼ g :≡ Π(x : A).f(x) = g(x); if h : B → A and f ◦ h ∼ idB , f is said to be a retraction
of h and B a retract of A;
we denote by A ' B :≡ Σ(f : A→ B, g : B → A).(g ◦f ∼ idA)× (f ◦g ∼ idB) the type of
equivalences between A and B; f and g are said to be half adjoint in such an equivalence;
the prefix “0-” or “1-” for types refers to their truncation level; a 0-type is a type A such
that there is a term in Π(x, y : A).Π(p, q : x = y).p = q, embodying the notion of a set
of terms, while A is a 1-type (i.e. a groupoid) if all its identity types are 0-types; every
0-type is a 1-type; the property of A being a 1-type is denoted by IsTrunc1(A);
as mentioned, the theory assumes HITs; in the presentation we will informally call
“computation rules” also the assumed identities involving the (dependent) application of
the elimination principle of a HIT on higher constructors, although no computation takes
place [21, Chapter 6].

We will, moreover, refer to a (2-)path as “trivial” if it is either the identity path or it can be
obtained by path algebra.

In figures presenting 2-paths, we choose to display paths p : x = y as arrows x→ y, both
to preserve the analogy with categories and to keep track of the endpoints; in such diagrams,
all arrows are invertible, as all paths are. A dotted line denotes instead judgmental equality.
Figures relevant to proofs are included in Appendix A.

2 Monoidal Groupoids

In this section we will provide the definitions of the objects of our study, building a categorical
framework within which to formulate the theorem of coherence for monoidal groupoids.

I Definition 2. A groupoid is the data given by a type G and a proof that G is a 1-type; we
call Gpd :≡ Σ(G : U).IsTrunc1(G) the subuniverse of 1-types in the universe U . A (groupoid)
functor F between groupoids is simply a function between the underlying (1-)types; a natural
isomorphism between two functors is a homotopy between the functions.

In Definition 2 we bestow the title of “functor” on simple functions, as the functorial action
on paths is provided by ap. We will use the same notation for a groupoid G : Gpd and its
underlying type G : U . This framework allows us to represent categories with all arrows
invertible (i.e. groupoids) as 1-types, with paths taking the role of arrows and 2-paths that of
commutative diagrams.2

I Definition 3. For a type M , the type MonStr(M) of monoidal structures on M is the
Σ-type encoding the following data:

2 This translation implies a “relaxation” of certain strict categorical properties: for example, associativity
of the composition of the arrows in a category is strict, while associativity of concatenation of paths
only holds up to a coherent choice of higher paths. Moreover, we remark that, given a groupoid G : Gpd,
we do not have access to the discrete subcategory of its objects.

TYPES 2019



8:4 Coherence for Monoidal Groupoids in HoTT

((a • b) • c) • d

(a • b) •(c • d)

a •(b •(c • d))

(a •(b • c)) • d a •((b • c) • d)

αM αM

αM • refl

αM

refl •αM

(a)

(a • eM ) • b a •(eM • b)

a • b

αM

ρM • refl refl •λM

(b)

(eM • a) • b

eM •(a • b)

a • bαM

λM

λM • refl

(c)

(a • b) • eM

a •(b • eM )

a • bαM

refl • ρM

ρM

(d)

eM • eM eM

λM

ρM

(e)

Figure 1 (a) and (b): coherence diagrams M and OM , respectively, where αM , λM and ρM are
associativity and left and right unitality morphisms; (c), (d) and (e): coherence diagrams derivable
from M , OM and naturality of αM , λM and ρM ; the derivation is shown in Figures 5 and 6. Here
•M is denoted by • for clarity.

eM : M (unit);
•M : M →M →M (monoidal product, infix notation);
αM : Π(a, b, c : M).(a •M b) •M c = a •M (b •M c) (associativity);
λM : Π(b : M).eM •M b = b (left unitality);
ρM : Π(a : M).a •M eM = a (right unitality);
families M and OM of 2-paths filling the coherence diagrams in Figures 1a and 1b.

The type of monoidal groupoids is defined as MonGpd :≡ Σ(M : Gpd).MonStr(M).

We will use the same notation for a monoidal groupoid M and its carrier. The functorial
action of •M on paths and 2-paths, denoted in this paper by the same symbol, is given by
the following functions, each defined by path induction (on both arguments):

•M : (a1 =M b1)→ (a2 =M b2)→ (a1 •M a2 =M b1 •M b2),
•M : (p =(a1=b1) p

′)→ (q =(a2=b2) q
′)→ (p •M q =(a1 •M a2=Mb1 •M b2) p

′ •M q′).

We emphasise that the given definition of a monoidal structure only pertains the levels of
coherence for associativity and unitality that might be present in a (non-higher) groupoid
(“1-coherent” monoidal structure, [6]), i.e., no higher diagrams need to be described, as they
are present already.

By path induction, αM , λM and ρM are natural in all their arguments. Moreover, the
2-paths in Figures 1c to 1e can be derived by instances of the coherence diagrams M and
OM , together with naturality of associativity and unitality [13], as shown in Figures 5 and 6.

I Definition 4. The type MonGpd(M,N) of (strong) monoidal functors between two
monoidal groupoids 〈M, eM , •M , . . .〉 and 〈N, eN , •N , . . .〉 is defined as the Σ-type encoding
the following data:

a functor F : M → N ;
a path F0 : eN = F (eM ) and a family of paths F2 : Π(a, b : M).F (a) •N F (b) = F (a •M b);
families of 2-paths Fα, Fλ and Fρ, as depicted in Figure 2.
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(F (a) •N F (b)) •N F (c) F (a) •N (F (b) •N F (c))

F (a •M b) •N F (c) F (a) •N F (b •M c)

F ((a •M b) •M c) F (a •M (b •M c))

αN

refl •N F2

F2

F2 •N refl

F2

apF (αM )

eN •N F (b) F (b)

F (eM ) •N F (b) F (eM •M b)

λN

F0 •N refl

F2

apF (λM )
F (a) •N eN F (a)

F (a) •N F (eM ) F (a •M eM )

ρN

refl •N F0

F2

apF (ρM )

Figure 2 Coherence conditions Fα(a, b, c), Fλ(b) and Fρ(a) (respectively: top, bottom left and
bottom right) for monoidal functors, for a, b, c : M .

eN

F (eM ) G(eM )

F0

θ(eM )

G0
F (a) •N F (b) F (a •M b)

G(a) •N G(b) G(a •M b)

F2

θ(a •M b)θ(a) •N θ(b)

G2

Figure 3 Coherence conditions θ0 and θ2(a, b) for monoidal natural isomorphisms, for a, b : M .

We will use the same notation for a monoidal functor F : MonGpd(M,N) and its
underlying function. This implementation allows us to provide sound definitions of identity
and composition of monoidal functors:

(idM )0 :≡ refl : eM = eM

(idM )2(a, b) :≡ refl : a •M b = a •M b, and

(G ◦ F )0 :≡ G0 · apG(F0) : eP = G(F (eM ))
(G ◦ F )2(a, b) :≡ G2(F (a), F (b)) · apG(F2(a, b)) : G(F (a)) •P G(F (b)) = G(F (a •M b)),

for F : MonGpd(M,N), G : MonGpd(N,P ) and a, b : M ; we omit here the 2-paths (G ◦ F )α,
(G ◦ F )λ and (G ◦ F )ρ (appearing in the formalisation), while the corresponding ones for
identity monoidal functors are trivial.

I Definition 5. The type MonFunM,N (F,G) of monoidal natural isomorphisms between
monoidal functors F , G : MonGpd(M,N) is the Σ-type encoding a natural isomorphism
θ : F ∼ G between the underlying functors, together with a 2-path θ0 and a family of 2-paths
θ2, as shown in Figure 3.

We will use the same notation for a monoidal natural isomorphism θ : MonFunM,N (F,G)
and its underlying homotopy. If F : MonGpd(M,N) and G : MonGpd(N,M), the underlying
homotopies in η : MonFunM,M (idM , G ◦ F ) and ε : MonFunN,N (F ◦ G, idN ) prove that the
functions underlying F and G are half adjoint in an equivalence between (the carriers of) M
and N ; this will be called a monoidal equivalence and denoted by M ' N .

TYPES 2019
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MonGpd(F (X),M) (X →M)

MonGpd(F (X), N) (X → N)

φX,M

H ◦ −H ◦ −

φX,N

(a) Naturality of φ in M : the diagram commutes
for every H : MonGpd(M,N), i.e. there is a ho-
motopy H ◦ φX,M (G) ∼ φX,N (H ◦ G) for every
G : MonGpd(F (X),M).

(X →M) MonGpd(F (X),M)

(Y →M) MonGpd(F (Y ),M)

ψX,M

− ◦ F (h)− ◦ h

ψY,M

(b) Naturality of ψ in X: the diagram commutes
for every h : Y → X, i.e. there is a term in
MonFunF (Y ),M (ψX,M (g) ◦ F (h), ψY,M (g ◦ h)) for
every g : X →M .

Figure 4 Naturality conditions for φ and ψ in Definition 6.

I Definition 6. A functor from the universe U of types to monoidal groupoids consists of a
function term F : U → MonGpd, together with a function between function types
−→
F : Π(X,Y : U).(X → Y )→ MonGpd(F (X), F (Y ))

respecting identity and composition, i.e. terms

Fid : Π(X : U).MonFunF (X),F (X)

(−→
F (idX), idF (X)

)
and

F◦ : Π(X,Y, Z : U , f : X → Y, g : Y → Z).MonFunF (X),F (Z)

(−→
F (g) ◦ −→F (f),−→F (g ◦ f)

)
.

We will refer to a function F : U → MonGpd as a “functor” if the remaining data is implied.
Such a functor is free if there are:

a function φ : Π(X : U).Π(M : MonGpd).MonGpd(F (X),M)→ X →M , natural in M ,
i.e. the diagram in Figure 4a commutes for every H : MonGpd(M,N);
a function ψ : Π(X : U).Π(M : MonGpd).(X →M)→ MonGpd(F (X),M), natural in X,
i.e. the diagram in Figure 4b commutes for every h : Y → X;
a family of homotopies θ : Π(X : U).Π(M : MonGpd).φX,M ◦ ψX,M ∼ idX→M ;
a family of monoidal natural isomorphisms

χ : Π(X : U).Π(M : MonGpd).Π(G : MonGpd(F (X),M)).
MonFunF (X),M (ψX,M (φX,M (G)), G).

If X : U , the monoidal groupoid F (X) is said to be freely generated by X.

One can recognise, in the data listed above for the definition of a free functor, the requirements
needed to verify that F is left adjoint to the forgetful functor to types, which in this case is
the composition of the projections MonGpd→ Gpd and Gpd→ U .

Focussing in Definition 6 on free monoidal groupoids generated by 0-types, Statement 1
can be then formulated as follows:

I Theorem 7 (Coherence for monoidal groupoids). A free functor FMG : U → MonGpd exists
and, for every 0-type X, the carrier of FMG(X) is a 0-type.

Indeed, Theorem 7 both ensures that the construction of a free monoidal groupoid (over a
set) is possible, and shows that every diagram in such a groupoid commutes, i.e. that there
is a 2-path between every two paths sharing endpoints.

Coherence will be achieved by means of two functors: one will be easily proved to be free
(Section 3); the other one (list) to produce monoidal groupoids that are also 0-types. We will
show that these two functors produce equivalent types (Section 4).
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3 Free Monoidal Groupoids

Higher inductive types allow us to define a functor FMG : U → MonGpd that contains the
proof of its freeness in the elimination principle of the types it produces.

I Definition 8 (FMG). Given a type X : U , the HIT FMG(X) is defined with the following
constructors:

FMG(X) :≡ e : FMG(X) | ι : X → FMG(X) | • : FMG(X)→ FMG(X)→ FMG(X)
| α : Π(a, b, c : FMG(X)).(a • b) • c = a •(b • c)
| λ : Π(b : FMG(X)).e • b = b | ρ : Π(a : FMG(X)).a • e = a

| : . . . | O : . . . | T : IsTrunc1(FMG(X)),

where and O are families of 2-path constructors corresponding to the coherence diagrams
in Figures 1a and 1b.

For any type X, FMG(X) is a monoidal groupoid, with the monoidal structure provided by
the constructors of the HIT.

I Remark 9. The elimination rule of FMG(X) states that, given a family P : FMG(X)→ U
together with terms:

e′ : P (e); ι′ : Π(x : X).P (ι(x)); •′ : Π(a, b : FMG(X)).P (a)→ P (b)→ P (a • b) (infix;
we will keep the arguments a and b implicit in the notation);
a family α′ witnessing, for every a, b, c : FMG(X) and a′ : P (a), b′ : P (b), c′ : P (c), a
pathover (αa,b,c)P∗ ((a′ •′ b′) •′ c′) = a′ •′(b′ •′ c′); similarly defined families of pathovers λ′
and ρ′;
appropriate families of 2-pathovers ′ and O′;
T ′ : Π(w : FMG(X)).IsTrunc1(P (w)),

there is a function ind :≡ indFMG(e′, ι′, •′, . . .) : Π(w : FMG(X)).P (w), such that

ind(e) ≡ e′, apdind(αa,b,c) = α′ind(a),ind(b),ind(c),

ind(ι(x)) ≡ ι′(x), apdind(λb) = λ′ind(b),

ind(a • b) ≡ ind(a) •′ ind(b), apdind(ρa) = ρ′ind(a),

for all x : X and a, b, c : FMG(X). When instantiated to constant families, it provides the
following recursor: given a monoidal groupoid 〈M, e′, •′, α′, . . .〉 and a function ι′ : X →M ,
there is a function rec :≡ recFMG(e′, ι′, •′, . . .) : FMG(X)→M such that

rec(e) ≡ e′, aprec(αa,b,c) = α′rec(a),rec(b),rec(c),

rec(ι(x)) ≡ ι′(x), aprec(λb) = λ′rec(b),

rec(a • b) ≡ rec(a) •′ rec(b), aprec(ρa) = ρ′rec(a),

(3.1)

for all x : X and a, b, c : FMG(X); this is also the underlying function of a monoidal functor,
with rec0 and rec2(a, b) being identity paths for every a, b : FMG(X) and recα, recλ, recρ
given by the computation rules in (3.1).

The construction FMG is functorial, as shown in the following lemma.

I Lemma 10. The function FMG : U → MonGpd, X 7→ 〈〈FMG(X), T 〉, e, •, α, λ, ρ, ,O〉 is
a functor.

TYPES 2019



8:8 Coherence for Monoidal Groupoids in HoTT

Proof. Let f : X → Y be a function of types. By Remark 9, a function ι′ : X → FMG(Y ) is
sufficient to define a monoidal functor FMG(f) : MonGpd(FMG(X),FMG(Y )); this can be
given by ι′ :≡ ι ◦ f . The proof that FMG respects identity and composition is given in detail
in the Coq formalisation included as supplementary material for this paper, and it is also
provided by the elimination rule of FMG(X). By way of example, given a type X : U , a
monoidal natural isomorphism

FMGid : MonFunFMG(X),FMG(X)(FMG(idX), idFMG(X))

has as underlying homotopy

FMGid : Π(w : FMG(X)).recFMG(FMG(X), e, ι, •, . . .)(w) = w

the function FMGid :≡ indFMG(e′, ι′, •′, . . .), with:
e′ :≡ refl : e = e;
ι′(x) :≡ refl : ι(x) = ι(x) for every x : X;
a′ •′ b′ : recFMG(a) • recFMG(b) = a • b, for a, b : FMG(X), a′ : recFMG(a) = a and
b′ : recFMG(b) = b, is given recursively by a′ • b′ (so that FMGid(a • b) will compute
to FMGid(a) •FMGid(b));
the other required terms are obtained by naturality of associativity and unitality, together
with the computation rules of recFMG.

With this definition, the diagrams in Figure 3 for FMGid commute trivially. J

As hinted by the universal property of FMG(X), given by its elimination rule, the functor
FMG is free.

I Proposition 11. FMG is a free functor, and hence the monoidal groupoid FMG(X) is freely
generated by X, for every X : U .

Proof. We will proceed to fulfil the requirements listed in Definition 6 for a free functor.
For X : U and M : MonGpd, a function φX,M : MonGpd(FMG(X),M) → X → M is
given by φX,M (G) :≡ G ◦ ι. Then, given a monoidal functor H : MonGpd(M,N), we have
H ◦ φX,M (G) ≡ φX,N (H ◦G), so the diagram in Figure 4a commutes judgmentally (and
hence pointwise) and φ is natural in M .
Referring to Remark 9, for X : U and M : MonGpd, a function ψX,M : (X → M) →
MonGpd(FMG(X),M) is immediately obtained, defining

ψX,M (g) :≡ recFMG(eM , g, •M , αM , . . .) : FMG(X)→M,

where eM , •M , αM , . . . are the components of the monoidal structure of M , since the
recursor of FMG is a monoidal functor. If h : Y → X is a function of types, a monoidal
natural isomorphism

θψ : MonFunFMG(Y ),M (ψX,M (g) ◦ FMG(h), ψY,M (g ◦ h))

witnessing naturality of ψ in X can be given as follows. The natural transformation
between the underlying monoidal functors

θψ : Π(w : FMG(Y )).ψX,M (g)(FMG(h)(w)) = ψY,M (g ◦ h)(w)

is defined as θψ :≡ indFMG(e′, ι′, •′, . . .), where:
e′ :≡ refl : ψX,M (g)(FMG(h)(e)) = ψY,M (g◦h)(e), as both sides of the equality compute
to eM ;
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ι′(y) :≡ refl : ψX,M (g)(FMG(h)(ι(y))) = ψY,M (g ◦ h)(ι(y)), for every y : Y , as both
sides of the equality compute to g(h(y));
a′ •′ b′ :≡ a′ •M b′ : ψX,M (g)(FMG(h)(a • b)) = ψY,M (g ◦ h)(a • b) for every a, b :
FMG(Y ), a′ : ψX,M (g)(FMG(h)(a)) = ψY,M (g ◦ h)(a) and b′ : ψX,M (g)(FMG(h)(b)) =
ψY,M (g ◦ h)(b), as the equation computes to

ψX,M (g)(FMG(h)(a)) •M ψX,M (g)(FMG(h)(b)) = ψY,M (g ◦h)(a) •M ψY,M (g ◦h)(b);

this way, θψ(a • b) will compute to θψ(a) •M θψ(b);
the families α′, λ′ and ρ′ of pathovers are given by naturality of αM , λM and ρM ,
together with the computation rules of recFMG in (3.1); for example, α′ corresponds to
a 2-path filling the diagram in Figure 7;
the families ′ and O′ of 2-pathovers are trivially given, since they correspond to
3-paths in a 1-type.

The 2-paths (θψ)0 and (θψ)2(a, b) corresponding to the diagrams in Figure 3 for a,
b : FMG(Y ) are then trivial; hence, a monoidal natural isomorphism making the diagram
in Figure 4b commute is provided and ψX,M is natural in X.

A homotopy θ : φX,M ◦ ψX,M ∼ idX→M , for every X : U and M : MonGpd is trivially
given, since, for every g : X →M , we have φX,M (ψX,M (g)) ≡ ψX,M (g) ◦ ι ≡ g.

A monoidal natural isomorphism χ : MonFunFMG(X),M (ψX,M (φX,M (G)), G) for every
X : U , M : MonGpd and G : MonGpd(FMG(X),M) is given as follows. The natural
transformation between the underlying monoidal functors

χ : Π(w : FMG(X)).ψX,M (φX,M (G))(w) = G(w)

can be defined as χ :≡ indFMG(e′, ι′, •′, . . .), where:
e′ :≡ G0 : ψX,M (φX,M (G))(e) = G(e), since the left-hand side of the equality computes
to eM ;
ι′(x) :≡ refl : ψX,M (φX,M (G))(ι(x)) = G(ι(x)) for x : X, as both sides of the equality
are judgmentally equal to to φX,M (G)(x);
a′ •′ b′ : ψX,M (φX,M (G))(a • b) = G(a • b) is given recursively, for a, b : FMG(X), a′ :
ψX,M (φX,M (G))(a) = G(a) and b′ : ψX,M (φX,M (G))(b) = G(b), by the concatenation:

ψX,M (φX,M (G))(a • b)
≡ ψX,M (φX,M (G))(a) •M ψX,M (φX,M (G))(b)
= G(a) •M G(b) by a′ •M b′

= G(a • b) by G2(a, b);

this way, χ(a • b) will compute to (χ(a) •M χ(b)) ·G2(a, b);
the families α′, λ′ and ρ′ of pathovers are given by the computation rules of ψX,M ,
naturality of αM , λM and ρM , and by Gα, Gλ and Gρ; Figure 8 shows α′, while the
other families are obtained similarly;
again, the families ′ and O′ of 2-pathovers are trivially given.

With this definition of the underlying homotopy χ, there are trivial paths χ0 and
χ2(a, b) corresponding to the diagrams in Figure 3, making χ into a monoidal natural
isomorphism. J
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4 Coherence

This section is devoted to the proof of Theorem 7; from here on, X is assumed to be
a 0-type. Coherence will be proved by exhibiting functions K : FMG(X) → list(X) and
J : list(X)→ FMG(X), where the latter is a retraction of the former.

The type list(X) has a monoidal structure that sees the operation of list concatenation
as the monoidal product, which by list-elimination can be proved associative and unital w.r.t.
the unit given by the empty list. Families of coherence 2-paths list and Olist are provided by
the truncation level of list(X), which is a 0-type (because X is); the ensuing construction
list : U → MonGpd, when restricted to 0-types, satisfies the conditions to be a functor in the
sense of Definition 6. As a matter of fact, FMG(X) and list(X) as monoidal groupoids can
be shown to be in a monoidal equivalence, where the half adjoint monoidal functors are built
upon the mentioned functions K and J . We will only make use of the monoidal components
of J to prove the retraction; a complete proof of the monoidal equivalence is present in the
Coq formalisation included to this paper as supplementary material.
I Remark 12. We will use the following notation and conventions. The constructors of list(X)
are the empty list nil : list(X) and : : : X → list(X) → list(X) (infix). Concatenation of
lists ++ (infix) is defined by list-elimination on the first argument, i.e. nil ++ l2 :≡ l2 and
(x : : l1) ++ l2 :≡ x : : (l1 ++ l2) for every x : X and l1, l2 : list(X). The components of the mon-
oidal structure of list(X), besides nil and list concatenation, are λlist : Π(l : list(X)).nil ++ l = l,
defined pointwise to be the identity path, and αlist and ρlist, defined by list-elimination as
follows for every l, l1, l2, l3 : list(X) and x : X:

αlist
l1,l2,l3 : (l1 ++ l2) ++ l3 = l1 ++(l2 ++ l3) ρlist

l : l++ nil = l

αlist
nil,l2,l3 :≡ refl ρlist

nil :≡ refl
αlist
x : : l1,l2,l3 :≡ ap(x : : −)(αlist

l1,l2,l3) ρlist
x : : l :≡ ap(x : : −)(ρlist

l ).

I Definition 13. We define a function K : FMG(X)→ list(X) as

K :≡ recFMG(nil, (x 7→ x : : nil),++, αlist, λlist, ρlist, list,Olist);

that is, K is defined to map the monoidal structure of FMG(X) into that of list(X).

I Definition 14. We define a monoidal functor J : MonGpd(list(X),FMG(X)) as follows. The
underlying function J : list(X)→ FMG(X) is defined by list-elimination, declaring J(nil) :≡ e
and, recursively, J(x : : l) :≡ ι(x) • J(l), for every x : X and l : list(X). A path J0 : e = J(nil)
is then given by refl, while, given l1, l2 : list(X), a path J2(l1, l2) : J(l1) • J(l2) = J(l1 ++ l2)
can be produced by induction on l1:

J2(nil, l2) : J(nil) • J(l2) ≡ e • J(l2) = J(l2) ≡ J(nil ++ l2) by λJ(l2),

J2(x : : l1, l2) : J(x : : l) • J(l2) ≡ (ι(x) • J(l1)) • J(l2)
= ι(x) •(J(l1) • J(l2)) by αι(x),J(l1),J(l2)

= ι(x) • J(l1 ++ l2) by refl • J2(l1, l2)
≡ J(x : : (l1 ++ l2)) ≡ J((x : : l1) ++ l2).

The construction of the families of 2-paths Jα, Jλ and Jρ are shown in Figures 9 to 11. Since
++ satisfies left unitality judgmentally (Remark 12), we can easily find a 2-path Jλ(l) for
l : list(X), as the sought diagram (Figure 10) is trivial. Moreover, we have for every path
p : l1 = l2 in list(X) and x : X, a 2-path

apJ(ap(x : : −)(p)) = reflι(x) • apJ(p) (4.1)
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by induction on p. This, together with the coherence diagrams in Figure 1 and naturality
of associativity and unitality, allows us to define the families of 2-paths Jα(l1, l2, l3) and
Jρ(l) by list-elimination (on the first argument for Jα), as shown in Figure 9 and Figure 11,
respectively.

I Lemma 15. There is a homotopy η : idFMG(X) ∼ J ◦K, for K and J given in Definitions 13
and 14.

Proof. A term η : Π(w : FMG(X)).w = J(K(w)) is given by η :≡ indFMG(e′, ι′, •′, . . .), where:
e′ :≡ refl : e = J(K(e)), since the right-hand side of the equality computes to e;
ι′(x) :≡ ρ−1

ι(x) : ι(x) = J(K(ι(x))) for every x : X, the right-hand side of the equality
computing to ι(x) • e;
a′ •′ b′ : a • b = J(K(a • b)) for a, b : FMG(X), a′ : a = J(K(a)) and b′ : b = J(K(b)), is
defined as the concatenation:

a • b = J(K(a)) • J(K(b)) by a′ • b′

= J(K(a) ++K(b)) ≡ J(K(a • b)) by J2(K(a),K(b)),

so that η(a • b) ≡ (η(a) • η(b)) · J2(K(a),K(b));
α′, λ′ and ρ′ correspond to the diagrams illustrated in Figures 12 to 14 and are proved
using the monoidal components Jα, Jλ and Jρ of J ;
the families ′ and O′ correspond to 3-paths in a 1-type, so they are obtained trivially. J

The proof of coherence is then immediately achieved.

Proof of Theorem 7. By Proposition 11, FMG is a free functor. By Lemma 15, FMG(X)
is a retract of list(X); since X is a 0-type, so is list(X) and hence FMG(X), as shown in
Figure 15. J

5 Discussion

The choice of employing the higher groupoid structure of types to represent categories, where
paths take the role of arrows, leads to an important observation concerning the expressivity
of the theory: the concept of strictness of a monoidal category cannot be formulated in the
framework. Indeed, strictness is not homotopy invariant, and hence it cannot be detected
by the theory. For this reason, we use instead a formulation of coherence (Statement 1)
concerning a property that is preserved under equivalence of types. Its proof is, then, the
presentation of a technique of normalisation of monoidal expressions over a set: a term
a : FMG(X) has, as normal form, the term J(K(a)), for J and K given in Definitions 13
and 14.

The use of identity types and HITs in HoTT to describe monoidal structures largely
simplifies the definition of the free monoidal groupoid, compared to [4, 5]; there, the free
monoidal category over a set X is defined via:

an inductive set of objects, whose terms correspond to the ones produced by the 0-
constructors e, ι and • in FMG(X);
inductive families of arrows, with identity arrows, (− ◦ −), (−•−), α, α−1, λ, λ−1, ρ
and ρ−1 as constructors, on which induction is performed when proving coherence; in
our implementation, the groupoid structure of identity types takes care of most of the
inductive cases, whereas the cases for α, λ and ρ remain present in the application of the
elimination principle of FMG(X);
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inductive families of equalities between arrows, with a sizeable number of constructors,
including: reflexivity, symmetry and transitivity of equality; associativity and unitality
of composition; substitution for composition and for the monoidal product; naturality
of associativity and unitality of the monoidal product; the interchange law between
composition and the monoidal product; composition of associativity and unitality arrows
with their inverse; and the coherence diagrams. All but the latter is made redundant in
our implementation, as path induction proves everything but the defining diagrams
and O of the monoidal structure.

As a result, the proof of coherence presented in this paper is considerably shorter than the
one provided in [4, 5]; this is reflected in the rather compact computer verification (Section 6),
which is included in this paper as supplementary material.

Another feature of our approach is the easiness in formulating and proving freeness of
FMG (Proposition 11), as the proof is entirely contained in the elimination principle of the
HIT itself. Although this proof was not present in [4, 5], our presentation shares the same
strategy in defining ad hoc a free structure with inductively generated “objects” and “arrows”
and normalising the ensuing monoidal expressions to a type of lists (via the functor K in
Definition 13), where coherence is immediate, rather than directly show freeness for lists.
This turns out to be the easiest option: indeed, for X : U and M : MonGpd, the reasonable
way of producing functions φX,M and ψX,M as in Definition 6 for F :≡ list would be by
defining:

φX,M (G) :≡ G ◦ (− : : nil) : X →M for every G : MonGpd(list(X),M);
the underlying function of ψX,M (g) : MonGpd(list(X),M), for g : X → M , by list-
elimination, in a way analogous to J in Definition 14, i.e., declaring ψX,M (g)(nil) :≡ eM
and ψX,M (g)(x : : l) :≡ g(x) •M ψX,M (g)(l) for every x : X and l : list(X).

The term (ψX,M (g))2, necessary to define a monoidal functor, and similarly (ψX,M (g))α,
(ψX,M (g))λ and (ψX,M (g))ρ, are not trivial and require to be also proved by list-elimination.
Carrying convoluted proof terms in a proof of freeness of list is cumbersome and in stark
contrast to the benefits given by the computation rules of indFMG, described in Remark 9 and
used in Proposition 11. Moreover, in exhibiting a homotopy θX,M : φX,M ◦ ψX,M ∼ idX→M ,
we would be forced to use function extensionality: indeed, for g : X →M , we would have to
provide a term

θX,M (g) : φX,M (ψX,M (g)) ≡ (x 7→ g(x) •M eM ) = g,

whereas ρM ◦ g : Π(x : X).g(x) •M eM = g(x) only ensures pointwise equality between the
two functions. We believe it is worth observing that, contrary to what above, our proof of
freeness of FMG does never employ function extensionality.

Alternative definitions for a monoidal functor K : MonGpd(FMG(X), list(X)) are possible.
Notably, the normalising functor described in [4, 5] could be replicated in our set-up as a
monoidal functor having, as underlying function, the composition of

evnil : (list(X)→ list(X))→ list(X), evnil(f) :≡ f(nil)

after a function N : FMG(X) → (list(X) → list(X)), defined by the elimination principle
of FMG, declaring N(e) :≡ idlist(X), N(ι(x)) :≡ (x : : −) for every x : X, and N(a • b) :≡
N(b) ◦N(a) for every a, b : FMG(X). The requirements relative to the higher constructors
in the inductive definition of N are trivially fulfilled (since e.g. the composition of functions
is judgmentally associative) and the composition evnil ◦N can be shown to be a monoidal
functor. While this definition is useful to normalise associativity and unitality, it does not
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extend to more complex monoidal structures, for example when symmetry is present (see
Section 7), as composition of functions is not symmetric; in that case, a functor such as the
one presented in Definition 13 is more suitable to the task of normalisation.

6 Formalisation in Coq

The formalisation, included to this paper as supplementary material, has been written using
the HoTT library [11, 2] for the Coq proof assistant3 and is structured as follows:

the categorical framework on monoidal groupoids is included in monoidalgroupoid.v; for
the definitions of monoidal groupoids, monoidal functors, monoidal natural isomorphisms
and free functors, we use classes instead of Σ-types for easy access to their components
and for type coercions;
in FMG.v we provide the definition, for a typeX, of the HIT FMG(X) as a private inductive
type, specifying the 0-constructors (on which Coq can perform pattern matching) and,
separately, the higher constructors as axioms. The elimination principle indFMG and its
computation rules also need to be given as axioms, while the corresponding recursor
recFMG can be derived from indFMG; a specific (derived) version of the elimination principle
for families of paths in a groupoid is also formalised;
the proof of Proposition 11 appears in FMG_free.v;
the proof that list(X) is a 0-type whenever X is a 0-type is included in lists.v; this is
achieved by means of an “encode-decode” proof [16, 21] and is roughly based on the fact
that, for every x1, x2 : X and l1, l2 : list(X), there is an equivalence of identity types
(x1 : : l1 = x2 : : l2) ' (x1 = x2)× (l1 = l2). The same file contains the definition of the
monoidal structure of list(X);
Theorem 7 is formalised in FMG_coherence.v;
a library of lemmata about path algebra is included in a separate file (hott_lemmas.v).

7 Conclusions

The work presented in this paper serves as an example to highlight some of the features
of HoTT that can be employed in the context of formalisation of mathematics. Identity
types and higher inductive types can be used to give a concrete description of objects
satisfying certain universal properties. This result opens the way to the formalisation of
similar coherence theorems; for example, definitions analogue to those given in Sections 2
and 3 can be used to describe (free) symmetric monoidal groupoids, and symmetric monoidal
expressions can be normalised to a HIT of lists with added paths and 2-paths encoding the
action of symmetric groups, corresponding to transpositions of adjacent elements in a list
and the relations they satisfy. The relevant formalisation in Coq is also present as part of
the supplementary material included.
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A Figures in Proofs

Derived Coherence Diagrams in Figure 1

e •((e • a) • b)

(e •(e • a)) • b

((e • e) • a) • b

e •(e •(a • b)) (e • e) •(a • b)

(e • a) • b

e •(a • b)

a • bα

λ • refl

λ

e •(a • b)

λ

λ

λ

refl •(λ • refl)

refl •λ

ρ •(refl • refl)

(e • a) • b

α

(refl •λ) • refl

(ρ • refl) • refl

α

α

α • reflα

refl •α

1

2

3

4 5

6

7
8

Figure 5 Derivation of the coherence diagram in Figure 1c, here appearing as the unmarked
2-path; the attribute −M has been omitted for clarity from e, •, α, λ and ρ. The 2-paths (1), (2)
and (3) are instances of naturality of λM ; (4) and (6) are instances of naturality of αM ; (5) and (7)
are instances of OM •M refl and OM respectively; the outer pentagon (8) is an instance of M . The
diagram in Figure 1d is obtained similarly.

e

e • e

e • e

ee • e(e • e) • ee •(e • e)

λ

λ

ρ

ρ

λ

ρ

ρ

λ • refl

ρ • refl

α

λ

refl •λ

1
2

3

4

5

6 7

Figure 6 Derivation of the coherence diagram in Figure 1e, here appearing as the unmarked
2-path; again, −M has been omitted for clarity. The outer square (1) is an instance of naturality of
λM ; the 2-path (2) is the derived coherence diagram in Figure 1c; (3) is an instance of OM ; (4) and
(5) are instances of naturality of ρM ; (6) and (7) are trivial.
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Figures in the Proof of Proposition 11 (Freeness of FMG)

(ψX,M (g)(FMG(h)(a)) •M ψX,M (g)(FMG(h)(b))) •M ψX,M (g)(FMG(h)(c))

ψX,M (g)(FMG(h)((a • b) • c))

ψY,M (g ◦ h)((a • b) • c)

ψX,M (g)(FMG(h)(a •(b • c)))

ψY,M (g ◦ h)(a •(b • c))

ψY,M (g ◦ h)(a) •M (ψY,M (g ◦ h)(b) •M ψY,M (g ◦ h)(c))

θψ((a • b) • c) ≡ (θψ(a) •M θψ(b)) •M θψ(c)

apψY,M (g◦h)(α)αM

apψX,M (g)◦FMG(h)(α) αM

θψ(a) •M (θψ(b) •M θψ(c)) ≡ θψ(a •(b • c))

1

3

2

Figure 7 The underlying homotopy θψ in the proof of naturality of ψX,M in X is achieved via the
elimination rules of ψX,M and FMG; these require certain 2-paths inM to be provided, corresponding
to the 1-path constructors of FMG(Y ). This figure shows the 2-path α′ for associativity. The 2-paths
(1) and (3) are given by the computation rules of ψX,M and FMG(h); (2) is filled by naturality of
αM . The 2-paths λ′ and ρ′ in M corresponding to the constructors for unitality are proved similarly.

(ψX,M (φX,M (G))(a) •M ψX,M (φX,M (G))(b)) •M ψX,M (φX,M (G))(c)

ψX,M (φX,M (G))((a • b) • c)

ψX,M (φX,M (G))(a •(b • c))

(G(a) •M G(b)) •M G(c) G(a) •M (G(b) •M G(c))

G(a • b) •M G(c) G(a) •M G(b • c)

G((a • b) • c) G(a •(b • c))

αM

refl •M G2(b, c)

G2(a, b • c)

G2(a, b) •M refl

G2(a • b, c)

apG(α)

apψX,M (φX,M (G))(α)

αM

χ(a) •M (χ(b) •M χ(c))
(χ(a) •M χ(b)) •M χ(c)

1

2

3

Figure 8 The 2-path in M providing α′ in the definition of χ using the elimination principle of
FMG(X). The 2-path (1) is given by a computation rule of ψX,M ; (2) is an instance of naturality of
αM ; (3) is an instance of Gα. The vertical paths correspond to the ones given by •′, after application
of the interchange law between path concatenation and the action of •M on paths. The 2-paths for
λ′ and ρ′ are obtained similarly.
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Figures relevant to the Proof of Theorem 7 (Coherence for Monoidal Groupoids)

(J(nil) • J(l2)) • J(l3) J(nil) •(J(l2) • J(l3))

(e • J(l2)) • J(l3) e •(J(l2) • J(l3))

J(l2) • J(l3) e • J(l2 ++ l3)

J(l2 ++ l3) J(l2 ++ l3)

J((nil ++ l2) ++ l3) J(nil ++(l2 ++ l3))

α

refl • J2(l2, l3)

λ

λ • refl

J2(l2, l3)

apJ(αlist) ≡ refl

λ

λ

1

2

3

(a) The 2-path Jα(nil, l2, l3) in the inductive definition of Jα. The 2-path (1) is an instance of the
additional coherence diagram in Figure 1c; (2) is an instance of naturality of λ; (3) is trivial.

(J(x : : l) • J(l2)) • J(l3) J(x : : l) •(J(l2) • J(l3))

((ι(x) • J(l)) • J(l2)) • J(l3) (ι(x) • J(l)) •(J(l2) • J(l3))

(ι(x) •(J(l) • J(l2))) • J(l3)

(ι(x) • J(l++ l2)) • J(l3) (ι(x) • J(l)) • J(l2 ++ l3)

ι(x) •(J(l++ l2) • J(l3)) ι(x) •(J(l) • J(l2 ++ l3))

ι(x) • J((l++ l2) ++ l3) ι(x) • J(l++(l2 ++ l3))

J(x : : ((l++ l2) ++ l3))

J(((x : : l) ++ l2) ++ l3)

J(x : : (l++(l2 ++ l3)))

J((x : : l) ++(l2 ++ l3))

. . .. . .

α

(refl • refl) • J2(l2, l3)

α

refl • J2(l, l2 ++ l3)

α • refl

(refl • J2(l, l2)) • refl

α

refl • J2(l++ l2, l3)

apJ(αlist) ≡
apJ(ap(x : : −)(αlist))

refl • apJ(αlist)

α

. . .

α

. . .

refl •α

1

2

3

4

5

(b) Jα(x : : l, l2, l3) in the inductive definition of Jα. The 2-path (1) is an instance of ; (2) and (3) are
instances of naturality of α, where the omitted paths are refl •(J2(l, l2) • refl) and refl •(refl • J2(l2, l3))
respectively; (4) is given by reflι(x) • Jα(l, l2, l3); (5) is an instance of (4.1).

Figure 9 Construction of the 2-path Jα(l1, l2, l3) by induction on l1, after unfolding the definition
of J2 (appearing on the vertical sides) and some path algebra.

TYPES 2019
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e • J(l) J(l)

e • J(l) J(l)

J(nil) • J(l) J(nil ++ l)

λ

refl • refl

λ

apJ(λlist) ≡ refl

Figure 10 The 2-path Jλ(l), after unfolding the definitions of J0 (left side) and J2 (bottom side),
is trivial.

e • e e

e • e e

J(nil) • e J(nil)

J(nil) • J(nil) J(nil ++ nil)

ρe

refl

λe

apJ(ρlist) ≡ refl

(a) The 2-path Jρ(nil) in the inductive definition of Jρ can be obtained by the additional coherence
diagram in Figure 1e.

(ι(x) • J(l)) • e ι(x) • J(l)

ι(x) •(J(l) • e)

(ι(x) • J(l)) • e ι(x) •(J(l) • e) ι(x) • J(l++ nil)

J(x : : l) • e J(x : : l)

J(x : : l) • J(nil)

J(x : : (l++ nil))

J((x : : l) ++ nil)

ρ

refl

α refl • J2(l, nil)

apJ(ρlist) ≡
apJ(ap(x : : −)(ρlist))

refl • apJ(ρlist)

refl

refl • ρ

J2(x : : l, nil)

1

2

3

(b) The 2-path Jρ(x : : l) in the inductive definition of Jρ. The 2-path (1) is an instance of the additional
coherence diagram in Figure 1d; (2) is given recursively by reflι(x) • Jρ(l); (3) is an instance of (4.1).

Figure 11 The construction of the 2-path Jρ(l) by induction on l, after unfolding the definitions
of J0 (left side) and J2 (bottom side) and some path algebra.
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(a • b) • c a •(b • c)

(J(K(a)) • J(K(b))) • J(K(c)) J(K(a)) •(J(K(b)) • J(K(c)))

J(K(a) ++K(b)) • J(K(c)) J(K(a)) • J(K(b) ++K(c))

J((K(a) ++K(b)) ++K(c)) J(K(a) ++(K(b) ++K(c)))

J(K((a • b) • c)) J(K(a •(b • c)))

apid(α)

α
η(a) •(η(b) • η(c))

refl • J2(K(b),K(c))

J2(K(a),K(b) ++K(c))

(η(a) • η(b)) • η(c)

α

J2(K(a),K(b)) • refl

J2(K(a) ++K(b),K(c))
apJ(αlist)

apJ(apK(α))

apJ◦K(α)

1

2

3

4

5

Figure 12 The 2-path α′ in the definition of η. The vertical path on the left is equal to η((a • b) • c)
using the interchange law between path concatenation and the action of • on paths; similarly, the
vertical path on the right is equal to η(a •(b • c)). The 2-paths (1) and (5) are given by path algebra;
(2) is an instance of naturality of α; (3) is an instance of Jα; (4) is given by a computation rule of K.

e • b b

e • J(K(b)) J(K(b))

J(nil ++K(b)) J(K(b)) J(K(b))

J(K(e • b)) J(K(b))

apid(λ)

λ η(b)η(e) • η(b)
≡ refl • η(b)

λ

J2(nil,K(b))
≡ λ

apJ(λlist)

apJ(apK(λ))

apJ◦K(λ)

1

2

3

4

5

Figure 13 The 2-path λ′ in the definition of η; the vertical path on the left is by definition
η(e • b). The 2-paths (1) and (5) are given by path algebra; (2) is an instance of naturality of λ; (3)
is trivial, as λlist

K(b) ≡ refl; (4) is given by a computation rule of K.
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a • e a

J(K(a)) • e J(K(a))

J(K(a)) • J(K(e)) J(K(a)) • J(nil)

J(K(a) ++ nil) J(K(a))

J(K(a • e)) J(K(a))

apid(ρ)

ρ
η(a)η(a) • η(e)

≡ η(a) • refl

ρ

J2(K(a),K(e))

refl • J0 ≡ refl

J2(K(a), nil)
apJ(ρlist)

apJ(apK(ρ))

apJ◦K(ρ)

1

2

3

4

5

6

7

Figure 14 The 2-path ρ′ in the definition of η; the vertical path on the left is by definition
η(a • e). The 2-paths (1) and (7) are given by path algebra; (2) is an instance of naturality of ρ; (3)
and (4) are trivial; (5) is an instance of Jρ; (6) is given by a computation rule of K.

a bJ(K(a)) J(K(b))

p

q

η(a) η(b)

apJ(apK(p))

apJ(apK(q))

2
3

4

FMG(X)

K(a) K(b)

apK(p)

apK(q)

1

list(X)

Figure 15 Proof of coherence. For any two paths p, q : a = b in FMG(X), there is a 2-path (1) in
list(X), since this is a 0-type. By functoriality, we obtain a 2-path in FMG(X) corresponding to the
outer diagram (2). The 2-paths (3) and (4) are obtained by path induction (on p and q respectively),
yielding a term in p = q corresponding to the unmarked 2-path.
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