
Building Large k-Cores from Sparse Graphs
Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
fomin@uib.no

Danil Sagunov
St. Petersburg Department of V.A. Steklov Institute of Mathematics, Russia
JetBrains Research, St. Petersburg, Russia
http://danilka.pro
danilka.pro@gmail.com

Kirill Simonov
Department of Informatics, University of Bergen, Norway
kirill.simonov@uib.no

Abstract
A popular model to measure network stability is the k-core, that is the maximal induced subgraph
in which every vertex has degree at least k. For example, k-cores are commonly used to model
the unraveling phenomena in social networks. In this model, users having less than k connections
within the network leave it, so the remaining users form exactly the k-core. In this paper we study
the question of whether it is possible to make the network more robust by spending only a limited
amount of resources on new connections. A mathematical model for the k-core construction problem
is the following Edge k-Core optimization problem. We are given a graph G and integers k, b and
p. The task is to ensure that the k-core of G has at least p vertices by adding at most b edges.

The previous studies on Edge k-Core demonstrate that the problem is computationally
challenging. In particular, it is NP-hard when k = 3, W[1]-hard when parameterized by k + b + p

(Chitnis and Talmon, 2018), and APX-hard (Zhou et al, 2019). Nevertheless, we show that there are
efficient algorithms with provable guarantee when the k-core has to be constructed from a sparse
graph with some additional structural properties. Our results are

When the input graph is a forest, Edge k-Core is solvable in polynomial time;
Edge k-Core is fixed-parameter tractable (FPT) when parameterized by the minimum size of
a vertex cover in the input graph. On the other hand, with such parameterization, the problem
does not admit a polynomial kernel subject to a widely-believed assumption from complexity
theory;
Edge k-Core is FPT parameterized by the treewidth of the graph plus k. This improves upon
a result of Chitnis and Talmon by not requiring b to be small.

Each of our algorithms is built upon a new graph-theoretical result interesting in its own.
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1 Introduction

The k-core in an undirected graph G is the maximal induced subgraph of G in which all
vertices have degree at least k. This concept has been applied in various areas including
social networks [5, 10, 11], protein function prediction [30], hierarchical structure analysis
[3], graph visualization [2], and network clustering and connectivity [1, 19].
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35:2 Building Large k-Cores from Sparse Graphs

In online social networks users tend to contribute content only when a certain amount
of their friends do the same [6], or in other words, when the formed community is a k-core
for some threshold parameter k. Interestingly, losing even a small amount of users or links
can bring to the cascade of iterated withdrawals. A classical example of such phenomena is
the example of Schelling from [28]: Consider a cycle on n vertices, which is a 2-core with
n vertices. Missing just one edge from this graph turns it into in a path and triggers the
withdrawals that results in dismounting of the whole network. On the other hand, adding a
small number of extra links can create a large k-core and thus prevent users from withdrawal.
We consider the following mathematical model for this problem. For a given a network,
the assumption is that a user leaves the network when less than k his/her friends remain
within it. We would like to prevent unraveling of the network, so that at least p users remain
engaged in it. To achieve this, we are given a budget to establish at most b new connections
between the users of the network. More precisely, the problem is stated as follows.

Input: A simple undirected graph G and integers b, k, and p.
Task: Decide whether there exists B ⊆

(
V (G)

2

)
\E(G) of size at most b such that

the k-core of the graph (V (G), E(G) ∪B) is of size at least p.

Edge k-Core

The Edge k-Core problem was introduced by Chitnis and Talmon in [9] as a model
of preventing unraveling in networks. For instance, in a P2P network, any user benefiting
from the network should be linked to at least k other users exchanging resources. In this
scenario the Edge k-Core model could be used to find extra connections between users
to provide a better service for larger number of users [9, 33]. Other potential application
of Edge k-Core in real-life networks include friend recommendation in social networks,
connection construction in telecom networks, etc. We find the Edge k-Core problem to
be interesting from the theoretical perspective too: it has strong links to the well-studied
family of problems, where one seeks a modification of a graph satisfying certain conditions
on vertex degrees, see [12] for further references. Our interest in the study of the problem is
of a theoretical nature.

The k-core in a graph can be found by a simple “shaving” procedure: If a graph contains
a vertex of degree less than k, then this vertex cannot be in its k-core and thus can be safely
removed. Apparently, solving Edge k-Core is more challenging. In particular, Chitnis
and Talmon in [9] proved that Edge k-Core is NP-complete even for k = 3 and when the
input graph G is 2-degenerate.1 Moreover, the problem is W[1]-hard being parameterized by
k + b + p. On the other hand, they show that if the treewidth of the graph G is tw, then the
problem is solvable in time (k + tw)O(tw+b) · nO(1) and hence is fixed-parameter tractable
(FPT) parameterized by k + tw + b. These results of Chitnis and Talmon are the departure
point for our study.

Our results. We study the algorithmic complexity of Edge k-Core on three families of
sparse graphs: forests, graphs with bounded vertex cover number and graphs of bounded
treewidth. Each of our algorithms is based on one of the common algorithmic paradigms:
dynamic programming for forests and treewidth, and ILP for vertex cover. The interesting
part here is that in each of the cases, the successful application of an algorithmic paradigm
crucially depends on a new combinatorial result. We show the following.

1 Recall that a graph is d-degenerate if its every induced subgraph contains a vertex of degree at most d.
Thus the d-core is the maximum subgraph which is not d− 1 degenerate.
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Growing from forest. We prove (Theorem 5) that Edge k-Core is solvable in time O(k ·
|V (G)|2), when the input graph G is a forest. The algorithm is based on a dynamic
programming over subtrees. The crucial part of the work is to make this algorithm run in
polynomial time. For that we need a new graph-theoretical result, Theorem 4. The theorem
states that for any integer k, a forest F on at least k + 1 vertices can be completed into a
graph of minimum degree k by adding at most⌈1

2
∑

v∈V (F )

max{0, k − deg(v)}
⌉

edges. Moreover, this bound is tight, any forest requires such amount of edge additions
to grow into a k-core. The proof of Theorem 4 is non-trivial and exploits an interesting
connection between the cores in a graph and sufficient conditions on the existence of a large
matching in a graph. Here the recent combinatorial theorem of Henning and Yeo [23] on
matchings in graphs of bounded degrees becomes handy.
Bounded vertex cover. We prove that the problem is FPT parameterized by the minimum
size of a vertex cover in a graph. More precisely, in Theorem 14, we give an algorithm of
running time 2O(vc ·3vc) · nO(1), where vc is the vertex cover number of the input graph. Let
us note that every graph is vc-degenerate. We solve the problem by reducing it to an integer
linear program (ILP), whose number of variables is bounded by some function of vc. This
allows to apply Lenstra’s algorithm [25], see also [24, 18], to solve Edge k-Core. Nowadays
ILP is a commonly used tool for designing parameterized algorithms, see e.g. [13, Chapter 6].
However, just like in the case of forests, the application of an algorithmic paradigm is not
direct. In order to encode the problem as ILP with the required number of variables, we
need a new combinatorial result (Lemma 13) about degree sequences of a graph. One of
the components in the proof of Lemma 13 is the classical Erdős-Gallai theorem [16] about
graphic sequences. We complement FPT algorithm by lower bounds on the size of the kernel.

Bounded treewidth. Chitnis and Talmon in [9] have shown that Edge k-Core is FPT
parameterized by tw + k + b, where tw is the treewidth of the input graph. Even in the
case when the treewidth and k are constants, this does not mean that the problem is
solvable in polynomial time. We enhance this result by proving that Edge k-Core is FPT
parameterized by tw + k. As the algorithm of Chitnis and Talmon in [9], our algorithm is a
dynamic programming on graphs of bounded treewidth, but again, in order to make it work,
we need a new combinatorial result (Theorem 20). When the budget b is small (of order
k3), the algorithm of Chitnis and Talmon suffices. When the budget b is large, we are able
to approach the problem in an interesting new way. Here Theorem 20 provides us with a
criteria how a subset of vertices can be turned into a k-core “optimally”. This key insight
allows us to show that the problem is FPT parameterized by tw + k.

Related work. The usability of k-cores in the study of network unraveling phenomena was
popularized by the influential paper of Bhawalkar et al. [4] who suggested the model of
forcing a limited number of users of a network to stay in order to maximize the size of the
k-core. The same problem was further studied in [7], where new computational results were
obtained and some results of [5] were strengthened. Also, Chitnis, Fomin and Golovach
studied this problem applied to networks where the underlying graph is directed [8]. Heuristic
algorithms for this problem are discussed in [31].

MFCS 2020



35:4 Building Large k-Cores from Sparse Graphs

Edge k-Core was introduced in [9], where also a number of complexity and algorithmic
results about the problem were established. Zhou et al. [33] provide some non-approximability
results for Edge k-Core as well as some heuristics. The work [32] is devoted to the “dual”
problem of disengaging a limited number of users from a network in order to minimize its
k-core size. Another work in this context is the work of Luo, Molter and Suchy [26].

More generally, Edge k-Core fits into a large class of edge modification problems, where
one is seeking for an optimum modification to some desired graph property [12]. In particular,
a significant part of literature in parameterized complexity is devoted to related problems of
graph modification to graphs with some vertex degree properties like being regular, Euler, or
to some degree sequence [17, 21, 20, 22, 27].

2 Preliminaries

All graphs considered in this paper are simple undirected graphs. We use standard graph
notation and terminology, following the book of Diestel [14]. We write G + F to denote the
simple graph obtained by adding the edges from F ⊆

(
V (G)

2
)
\ E(G) to a graph G. If not

specified otherwise, we use n to denote the number of vertices of the graph G in an input
instance of Edge k-Core.

Throughout this paper, we use the following terms. In the following definitions, we
assume that k is fixed.

I Definition 1 (Deficiency). For a graph G, and its vertex v ∈ V (G), let dfG(v) = max{0, k−
degG(v)} denote the deficiency of v in G. By df(G) =

∑
v∈V (G) dfG(v) we denote the total

deficiency in G.

Note that an addition of an edge between two vertices of G can decrease df(G) by at
most two. It also does not make any sense to add edges that do not decrease deficiency if we
aim to complete G to a graph of minimum degree k. We distinguish added edges by whether
they decrease deficiency by two or one.

I Definition 2 (Good/bad edges). For nonadjacent vertices u, v ∈ V (G) a new added edge
uv is good if both dfG(u) > 0 and dfG(v) > 0. If dfG(u) = 0 and dfG(v) > 0, then uv is
bad.

Thus adding a good edge decreases the total deficiency by 2 and adding a bad one by 1.

I Definition 3 (A k-core graph). We say that a graph G is a k-core if G is the k-core of
itself. We also say that a vertex set H in G induces a k-core in G if G[H] is a k-core.

Note that whenever there is a vertex set H of size at least p which induces a k-core in G,
the k-core of G has also size at least p, since it is the unique maximal induced subgraph of
G which is a k-core. We often use this simple observation throughout the paper whenever
we show that the k-core is large by presenting a large vertex set which induces a k-core.

Due to the space restrictions, some of the proofs in this paper are omitted. The results
with omitted proofs are marked with the ‘?’ sign. Missing proofs can be found in the full
version of this paper.

3 Growing from forest

In this section we present our polynomial time algorithm for Edge k-Core on forests and
the underlying graph-theoretical result.
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The algorithm itself is a dynamic programming over subtrees. Normally, an algorithm
like this would go from leaves to larger and larger subtrees, storing for every subtree a list
of possible configurations a solution could induce on this subtree. In the Edge k-Core
problem, naturally we want to store information about edges added inside the subtree and
vertices from the subtree which we may later connect to something outside.

Naively, this would take exponential space, as it seems we have to store at least the
degrees of the selected vertices in the subtree. However, the following theorem, which is the
central technical result of this section, helps greatly.

I Theorem 4. For any integer k, any forest T on at least k + 1 vertices can be completed to
a graph of minimum degree k by adding at most⌈1

2
∑

v∈V (T )

max{0, k − deg(v)}
⌉

edges, and this cannot be done with less edge additions. Moreover, in the case k ≥ 4, it can
be done in a way that the added edges form a connected graph on the vertices they cover.

For our algorithm, Theorem 4 means that whenever we fix the subset of vertices H, we
have to add exactly ddf(T [H])/2e edges in order to induce a k-core on H. Thus it is enough
to find a subset of vertices H of size at least p with the smallest possible df(T [H]). This
objective turns out to be simple enough for the bottom-top dynamic programming. Namely,
for a subtree Tv rooted at v, it is enough to store the size of H ∩ Tv, the total deficiency of
these vertices, whether v is in H and how many neighbors in H ∩Tv it has. Since v separates
Tv from the rest of the tree, the deficiency of other vertices in H ∩Tv is unchanged no matter
how H looks like in the rest of the tree.

The discussion above ultimately leads to a polynomial time algorithm, stated formally in
the next theorem.

I Theorem 5 (?). Edge k-Core is solvable in time O(kn2) on the class of forests.

The algorithm follows a fairly standard technique, so the detailed description of the algorithm
and the proof of its correctness are omitted from this extended abstract. Instead for the
remaining part of this section we focus on the proof of Theorem 4.

Proof of Theorem 4. The theorem says that completion of T to a graph of total deficiency
0 can be done using d 1

2 df(T )e edge additions. Note that this bound is tight because a single
edge addition decreases the total deficiency by at most two. When df(T ) is even, we have to
prove that it is possible to complete T by adding only good edges. When df(T ) is odd, we
have to complete T to a graph of total deficiency 1 adding b 1

2 df(T )c good edges and then
add one bad edge. Fixing deficiency 1 with one bad edge is always possible, since the only
deficient vertex u has degree k − 1 and so must have a non-neighbor. In the case k ≥ 4 this
can be also done in a way that connects u to the already added good edges. Thus, from now
on, it suffices to prove that we can add b 1

2 df(T )c good edges, in a connected way for k ≥ 4.
For k = 1, vertices with non-zero deficiency are exactly the isolated vertices of T . In this

case pairing isolated vertices arbitrarily provides the required b 1
2 df(T )c good edges.

For k ≥ 2, it is sufficient to prove the theorem statement for the case when T is connected,
i.e. T is a tree. If T is a forest consisting of at least two trees, one may reduce the number of
trees in T . This can be done by picking two leaf vertices of distinct connected components
in T and adding an edge between them. Clearly, such an edge addition is good since any leaf
vertex has non-zero deficiency, and it reduces the number of connected components in T .

MFCS 2020



35:6 Building Large k-Cores from Sparse Graphs

Moreover, for k = 2, vertices with non-zero deficiency are exactly the leaves of T . Since T

is a tree with at least three vertices, an edge connecting any two leaves can be added. Thus,
as in the case k = 1, pairing the leaves arbitrarily suffices.

Now, for every integer k ≥ 3, we prove Theorem 4 by induction on the number of vertices
in the tree. The fact that the graph on the added edges must be connected in the case k ≥ 4
will be useful for the induction.

Base case. Let T be a tree on n = k + 1 vertices. The only way to complete T to
a graph of minimum degree k is to turn it into a complete graph, i.e. add every possible
missing edge between vertices in V (T ). Clearly, each edge addition in such completion is
good, thus the completion requires exactly 1

2 df(T ) edge additions. Suppose there are two
connected components formed by the added edges. Then T must contain all edges between
these components, so it also contains a cycle, since each of the components has at least two
vertices. Thus the connectivity condition must be satisfied.

Inductive step. Suppose that Theorem 4 holds for all trees on n vertices, and let T be a
tree on n + 1 vertices. We prove that Theorem 4 holds for T . Let v be a leaf of T and let
T ′ = T − v be the tree obtained by deleting v from T . By the induction hypothesis, T ′ can
be completed to a graph of total deficiency (df(T ′) mod 2) using b 1

2 df(T ′)c edge additions.
Let A′ be the graph on the deficient vertices of T ′ formed by the good edges added during
the completion.

Our ultimate goal is to transform A′ in such a way that it accounts for the new vertex
v as well. We shall do this by first removing edges from A′, and then adding good edges
between vertices which are not yet adjacent. In the case k ≥ 4, we must also end up with a
connected graph on the added edges.

Briefly explained, our technique of adding and removing edges is as follows. Take an edge
st ∈ E(A′), such that 1) s 6= v, t 6= v and 2) sv and tv are not yet in the graph. Delete the
edge st, and add both edges sv and tv. This operation preserves deficiencies of both s and
t, while it decreases the deficiency of v by two. Note that s and t also remain connected
through v. We can do the same with a matching instead of a single edge, thus we need a
matching of size roughly k/2 to nullify the deficiency of v.

The rest of the proof is structured in two parts. First, we show that there is indeed a
sufficiently large matching in A′. Second, we give a detailed description of how to reroute
the edges of the matching to the new vertex v, and carefully verify the correctness of the
procedure.

Finding a matching. We will need the following properties of A′.

If k ≥ 4, A′ is connected. (1)

The correctness of (1) follows from the induction hypothesis. Because each vertex in T ′ has
deficiency at most k − 1 and each edge addition is good, we have that

∆(A′) ≤ k − 1. (2)

Also

|E(A′)| ≥ n(k − 2) + 1
2 , (3)

since there must be at least nk−1
2 edges in the graph after the completion to deficiency

(df(T ′) mod 2), and only n− 1 of the edges are in T ′.

|V (A′)| ≥ k. If n > k + 1, then |V (A′)| > k. (4)
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The inequality (4) follows from (2), (3), and the fact that 2 · |E(A′)| ≤ ∆(A′) · |V (A′)|. For
the detailed proof, we direct the reader to the full version of this paper.

We now use these properties of A′ to show that there is a large matching in A′. For
lower bounds on the size of a maximum matching we rely on the recent work of Henning and
Yeo [23].

I Proposition 6 ([23]). For any integer t ≥ 3, any connected graph G with |V (G)| = n,
|E(G)| = m and ∆(G) ≤ t, contains a matching of size at least(

t− 1
t(t2 − 3)

)
n +

(
t2 − t− 2
t(t2 − 3)

)
m− t− 1

t(t2 − 3) , if t is odd,

or at least
n

t(t + 1) + m

t + 1 −
1
t
, if t is even.

We shall use Proposition 6 to show that A′ contains a matching of size roughly k
2 , as

stated in the following claim.

B Claim 7 (?). When k is odd and n = k + 1, A′ has a matching of size at least k−1
2 .

Otherwise, A′ has a matching of size at least dk
2 e.

The proof is by a careful application of Proposition 6 to (1), (2), (3) and (4), it can be
found in the full version of this paper.

Rerouting the edges. Now we shall use the matching provided by Claim 7 to conclude
the inductive step. Denote by G′ the graph obtained after the completion of T ′ to a graph
of total deficiency (df(T ′) mod 2). That is, V (G′) = V (T ′) and E(G′) = E(T ′) tE(A′). If
df(T ′) is odd, G′ has a single vertex with deficiency one, denote it by u. For every other vertex
s ∈ V (G′), dfG′(s) = 0. Our goal is to transform G′ into a graph G that will correspond to
the graph obtained after the completion of T using only good edge additions.

We initialize G with G′. Let us remind that v is a leaf of T and T ′ = T − v. We denote
the only neighbor of v in T by p. Since G is missing vertex v, we introduce v to G, which is
now isolated in G. Now V (G) = V (T ), so it is left to add missing edges to G, while probably
removing some of the existing edges. Of course, these added edges should include the edge
pv, since E(T ) ⊆ E(G) must hold. Similarly, we should not remove any edges of T ′ from G.
Thus, we can remove edges in E(A′) only. We denote by A the graph of added edges in G,
analogously to A′ in G′.

As was explained before, our basic technique is to remove the edges of the matching in
A′, and connect their endpoints to v. However, there are several issues to deal with. First, if
p is in V (A′), we have to ensure that one of the edges in E(A′) incident to p gets removed,
otherwise one of the edge additions is wasted on p. This edge removal may in turn disconnect
A′. Second, depending on the parity of df(T ′) we may have to deal with the already-deficient
vertex u of G′, and the parity of k comes into play as well. Thus, in the rest of the proof we
go over five different cases and show that in each of them the rerouting is possible. The case
analysis is technical, and we dedicate the details to the full version. For the reference, we list
the cases here.

Case (a). k is even and p ∈ V (A′).
Case (b). k is even and p /∈ V (A′).
Case (c). k is odd and p /∈ V (A′).
Case (d). k is odd and p ∈ V (A′), there is no deficient vertex in G′.
Case (e). k is odd and p ∈ V (A′), dfG′(u) = 1.

MFCS 2020
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(c)

pu

v

(d) p

v

(e) u
p

v

Figure 1 The cases of rerouting for k = 3. Solid edges denote the edges of G′. Straight black
edges denote the edges of T ′, and curved red edges denote the edges of A′. Edges of the matching in
A′ that are deleted in G are highlighted bold. Dashed edges denote the newly-added edges in G.

Clarifying pictures for cases (c), (d) and (e), corresponding to odd k, are presented in
Figure 1. Considering each case required to accomplish the inductive step concludes the
proof of Theorem 4. J

Since the class of forests is exactly the class of 1-degenerate graphs, it is reasonable to
ask whether Edge k-Core is polynomially solvable on other classes of graphs of bounded
degeneracy. The answer is negative, and it was shown by Chitnis and Talmon in [9], where
they provided a reduction from Clique to Edge k-Core. We note that they used this
reduction to prove that Edge k-Core is W[1]-hard when parameterized by the combined
parameter b + p, even when k = 3.

I Proposition 8 ([9]). Edge k-Core is NP-hard even on the class of 2-degenerate graphs
for k = 3.

4 Vertex Cover

This section is dedicated to Edge k-Core parameterized by the minimum size of a vertex
cover of the input graph G. We show that this problem admits an FPT algorithm and
complement this result by ruling out the existence of a polynomial kernel. We start with the
high level description of the main ideas behind our algorithm.

High-level description of the algorithm. In order to prove that Edge k-Core is FPT
parameterized by the vertex cover number of the input graph, we construct an FPT-time
Turing reduction from Edge k-Core to an instance of integer linear program (ILP) whose
number of variables is bounded by some function of the vertex cover. While reducing to ILP
is a common approach in the design of parameterized algorithms, see [13, Chapter 6], the
reduction for Edge k-Core is not straightforward. In order to make the whole approach
applicable, we need a new combinatorial result, Lemma 13. The proof of this lemma strongly
exploits the refinement of Tripathi and Vijay [29] of the classical theorem of Erdős and Gallai
about degree sequences [16].

The reduction target is the following Integer Linear Programming Feasibility
(ILP) problem.

Input: Matrix A ∈ Zm×` and vector b ∈ Zm.
Task: Is there a vector x ∈ Z` such that A · x ≤ b?

ILP parameterized by `
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ILP is FPT by the celebrated result of Lenstra [25].

I Proposition 9 ([24, 25, 18]). ILP can be solved using O(`2.5`+o(`) ·L) arithmetic operations
and space polynomial in L. Here L is the number of bits in the input.

Let G be a simple undirected graph on n vertices and b, k, and p be integers. Let vc
be the minimum size of a vertex cover in an n-vertex graph G. Our FPT Turing reduction
constructs in time 2O(vc2) · nO(1) at most 2O(vc2) instances of ILP. Each instance of ILP
has ` = 2O(vc) variables. Moreover, at least one of the constructed instances of ILP is
a yes-instance if and only if one can build a k-core of size p in G by adding at most b

edges. Thus by applying Proposition 9 to each of the instances of ILP, we obtain an FPT
(parameterized by vc) algorithm for Edge k-Core.

Recall that in Edge k-Core we are looking for a vertex subset H ⊆ V (G) of size at least
p such that G[H] can be completed to a graph of minimum degree at least k using at most b

edge additions. In what follows, we describe the reduction from Edge k-Core to ILP.
We start with computing a minimum vertex cover C of G. It is well-known that a simple

branching algorithm does this job in time 2|C| · nO(1), see e.g. [13]. We simplify our task a
bit by assuming that C ⊆ H: we just branch into 2|C| possible options of H ∩ C. For each
option we delete vertices C \H from G. We use the following notion of vertex types.

I Definition 10 (Vertex types). Let G be a graph and C be its vertex cover. For S ⊆ C and
a vertex v 6∈ C, we say that v has type S if NG(v) = S.

We encode the choice of H (up to isomorphism of G[H]) using only 2|C| positive integers:
for each S ⊆ C we just need to indicate how many vertices of type S are in H. That is, the
values of 2|C| variables xS := |{v ∈ H | NG(v) = S, v /∈ C}| uniquely define the graph G[H].
Then inequality |C|+

∑
S⊆C xS ≥ p ensures that |H| ≥ p.

The non-trivial part of the proof is to encode in ILP that G[H] can be completed to
a k-core graph using at most b edges. In graph G[H], the vertex set C is a vertex cover
and the set I = H \ C is an independent set. Assume that G[H] can be completed into a
k-core graph by making use of a set of edges B, |B| ≤ b. The set B can be partitioned into
B = BC ∪BI . Here BC are the edges with at least one endpoint in C, and BI ⊆

(
I
2
)
are the

remaining edges. Every edge of BI has two endpoints in I. We encode the sets BC and BI

in ILP in different ways.
It is convenient to assume that BC contains no edges with both endpoints in C. We reach

this condition by branching into 2(|C|
2 ) = 2O(vc2) possible options of which edges between

vertices in C are added to G. For each such guess we also update the value b and the
conditions on degrees of vertices in C.

The next step in the reduction to ILP is to encode the graph G[H] + BC . Since we do not
have edges with both endpoints in C anymore, BC consists only of edges between C and I.
Since C is also a vertex cover of G[H] + BC , there are at most 2|C| different types of vertices
in H \ C in the graph G[H] + BC . A vertex v of type S′ in G[H] + BC has type S ⊆ S′ in
the graph G[H]. Let yS,S′ (for S ⊆ S′ ⊆ C) denote the number of vertices of type S in G[H]
that become vertices of type S′ in G[H] + BC . Then the set of equations

∑
S′⊇S yS,S′ = xS ,

for each S ⊆ C, ensures that these values correspond to the actual structure of G[H]. The
cardinality of BC is then encoded as

∑
S′⊆C

∑
S⊆S′ |S′ \S| ·yS,S′ . Since for each vertex v ∈ C

the graph G[H] + BC contains all edges incident to v in G[H] + B, the resulting degree of v

can be checked immediately. Formally, degG[C](v) +
∑

S′3v

∑
S⊆S′ yS,S′ ≥ k is equivalent to

degG[H]+B(v) ≥ k.
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We proceed with the description of how we encode the edge set BI . For that we need to
ensure that for each vertex of I its degree in G[H] + (BC ∪BI) is at least k. Since adding
edges between vertices in I could significantly increase the vertex cover of G[H], we cannot
do the encoding in the same way as for the edges in BC . However, I remains to be an
independent set in G[H]+BC . Therefore, BI can be any set of edges subject to the condition
that in G[I] + BI the degree of every vertex v ∈ I is at least dfG[H]+BC

(v). Thus, to ensure
that BI is an appropriate set all we need to consider are the deficiencies of vertices in I.

The deficiencies of vertices in I are integers within the range [max{0, k − |C|}, k]. Since
G[I] is an empty graph, it is not necessary to know the deficiency of each particular vertex
in I. Knowing the number of vertices in I of each particular deficiency is sufficient for
our purposes. For i ∈ [max{0, k − |C|}, k], let si denote the number of vertices in I with
deficiency i. These variables can be encoded with ILP equations using the variables yS,S′ .

We arrive to the most interesting and non-trivial part of the reduction. While the
inequalities we have built so far are necessary for encoding the information about the set
BI , they are not sufficient. The reason is that not every sequence of integers corresponds
to a sequence of vertex degrees in a graph. There is a classical theorem of Erdős and
Gallai providing a characterization of graphic sequences. However, if we use this theorem to
encode graphic sequences in ILP, the resulting integer program could have unbounded (by a
function of vc) number of variables. To overcome this obstacle, we need Lemma 13, a new
combinatorial result about graphic sequences.

We want to encode the property that there exists a set of edges BI of size at most b−|BC |
such that the edges of BI form a graph with at least sk vertices of degree at least k, at least
sk−1 other vertices of degree at least k − 1, and so on down to smax{0,k−|C|}. One technical
obstacle here is that we ask for si vertices of degree at least i, not of degree exactly i. In
what follows, for clarity, we explain only how to encode the existence of an edge set forming
a graph with ti vertices of degree exactly i for each i ∈ [max{0, k−|C|}, k]. For the “at least”
case we need to do more work, but the main idea remains the same. Note that the case we
explain here (requiring ti vertices of degree exactly i) is achieved automatically if all edges
in BI are good edges (that is, consecutive addition of edges from BI decreases deficiencies of
exactly two vertices by one) and the cardinality of this set is found easily as 1

2
∑

i ti.
Let us remind the following classical graph-theoretical notion.

I Definition 11 (Graphic sequences). A sequence d1, d2, . . . , dn of n non-negative integers. is
called graphic if there exists a graph G with V (G) = {v1, v2, . . . , vn}, such that degG(vi) = di

for each i ∈ [n].

In terms of this notion, our task is to check that a sequence consisting of integers from
[max{0, k − |C|}, k], where the integer i appears exactly ti times, is a graphic sequence. The
problem of determining that a given sequence is graphic was approached by Erdős and Gallai
in their famous work [16].

I Proposition 12 (Erdős-Gallai Theorem, [16]). A sequence of non-negative integers d1 ≥ d2 ≥
. . . ≥ dn is graphic if and only if

∑n
i=1 di is even and

∑t
i=1 di ≤ t ·(t−1)+

∑n
j=t+1 min{dj , t}

for each t ∈ [n].

However, the statement of Proposition 12 does not allow us to encode corresponding
inequalities in ILP with the number of variables bounded by |C|. We need a refined version
of this proposition, Lemma 13. This combinatorial result on graphic sequences of integers in
a short range is crucial in constructing ILP inequalities with bounded number of variables.
The proof of the lemma is based on the modification of the Erdős-Gallai theorem due to
Tripathi and Vijay [29].



F. V. Fomin, D. Sagunov, and K. Simonov 35:11

I Lemma 13 (?). Let d1 ≥ d2 ≥ . . . ≥ dn be a sequence of non-negative integers, such that
for each j ∈ [n] dj ∈ [k − a, k], for some integers 0 ≤ a ≤ k < n. For each i ∈ [k − a, k], let
ti = |{j | dj = i}| be the number of integers equal to i in the sequence. For each D ∈ [k−a, k],

let TD =
k∑

i=D

ti.

Then d1, d2, . . . , dn is graphic if and only if
∑k

i=k−a i ·ti is even and for each D ∈ [k−a, k]
at least one of the following holds:
1. TD < k − a, or
2. TD > k, or

3.
k∑

i=D

i · ti ≤ TD · (TD − 1) +
D−1∑

i=k−a

min{i, TD} · ti.

Lemma 13 still does not yield directly the desired encoding in ILP. Though TD can be
expressed as a sum of ti’s, the summand TD · (TD − 1) is not allowed in a linear equation
with TD being a variable. However, since the number of TD’s is at most |C|+ 1, for each TD

the algorithm can guess whether TD > k, TD < k−|C| or the exact value of TD ∈ [k−|C|, k].
For each TD it leads to at most |C|+3 options, so there are at most |C|O(|C|) possible options
in total. This allows us to use the values of TD’s in ILP as constants. Since the variables of
type ti are the only remaining variables, we can write the corresponding constraints as linear
inequalities.

We are now ready to state the main result of this section. Its formal proof is given in the
full version of the paper and accumulates ideas discussed above in this section. The proof
also contains the full description of the constructed linear program.

I Theorem 14 (?). Edge k-Core admits an FPT algorithm when parameterized by the
vertex cover number. The running time of this algorithm is 2O(vc·3vc) · nO(1), where vc is the
minimum size of a vertex cover of the input n-vertex graph.

To complement our FPT algorithm, we show that Edge k-Core does not admit a
polynomial kernel when parameterized by the combined parameter vc + k + b + p. It was
shown in [15] that the Bounded Rank Disjoint Sets problem does not admit a polynomial
kernel, and our proof is by reduction from this problem.

I Theorem 18 (?). Unless NP ⊆ coNP/poly, Edge k-Core does not admit a polynomial
kernel when parameterized by the combined parameter vc + k + b + p.

5 Treewidth

In this section, we give an FPT-algorithm for Edge k-Core parameterized by tw + k. This
improves upon the following result of Chitnis and Talmon, and we also use their algorithm
as a subroutine.

I Proposition 19 ([9]). Edge k-Core can be solved in time (k + tw)O(tw+b) · nO(1).

We start with the central combinatorial result of this section which allows the algorithmic
improvement. Namely, we show that whenever the total deficiency of a graph G exceeds a
polynomial in k, G can be completed to a graph of minimum degree k using the minimum
possible number of edges. Also, the required edge additions can be identified in polynomial
time.

We believe that this result is interesting on its own, since it considerably simplifies the
problem whenever the budget is sufficiently high compared to k. If we are trying to identify

MFCS 2020



35:12 Building Large k-Cores from Sparse Graphs

the best vertex set H which induces a k-core, we have to only care about the total deficiency
of G[H], and not of any particular structure on it.

I Theorem 20. For any integer k ≥ 2, any graph G with df(G) ≥ 3k3 can be completed to a
graph of minimum degree k using d 1

2 df(G)e edge additions with a polynomial-time algorithm.

Proof. It is enough to prove that we can satisfy all deficiencies by adding only good edges,
except if df(G) is odd, exactly one edge addition is bad.

We constructively obtain a graph G′ of form G + B, initially B = ∅. The construction is
a polynomial time algorithm.

First, we exhaustively apply the following rule, which always does one good edge addition.
If there are two distinct vertices u, v ∈ V (G′) such that dfG′(u) > 0, dfG′(v) > 0, and
uv /∈ E(G′), then add the edge uv to B. Assume that the rule is no longer applicable. Let
us denote C = {v ∈ V (G)|dfG′(v) > 0}, by the conditions of the rule, C induces a clique in
G′. Then, |C| ≤ k, since otherwise vertices in C could not have positive deficiency.

Now we exhaustively apply the new rule. Fix two vertices u, v ∈ C, such that either u and
v are distinct, or u = v and dfG′(u) ≥ 2. Then find two distinct vertices u′, v′ ∈ V (G′) \ C

such that u′v′ ∈ B and uu′, vv′ /∈ E(G′). Since u′v′ is in B, u′ and v′ have degree exactly k,
as previously we have only added good edges and u′, v′ /∈ C. Delete u′v′ from B, now u′ and
v′ have positive deficiencies. Add edges uu′ and vv′ to B, by the choice of u′ and v′ these
edges are not in E(G′), and also both these additions are good.

We claim that when the new rule is no longer applicable, the size of C is at most one,
and df(G′) is also at most one. Suppose it is not true, in this case there is always a proper
choice of u, v ∈ C. Then there are no u′, v′ ∈ V (G) \C satisfying the conditions above. Then
each edge u′v′ ∈ B is of one of the following kinds:
1. u′, v′ ∈ C, since |C| ≤ k, there are at most

(
k
2
)
such edges;

2. one of u′, v′ is in C and the other is not in C, there are at most k(k − 1) edges of this
kind, since |C| ≤ k and degrees in C are less than k;

3. u′, v′ /∈ C, and either uu′ ∈ E(G′) or vv′ ∈ E(G′); there are at most k(k − 1) vertices
adjacent to C, and each of them has at most k incident edges from B, so there are at
most k2(k − 1) such edges.

Then the size of B is at most
(

k
2
)
+k(k−1)+k2(k−1) < 2k3. However, df(G) = 2|B|+df(G′),

and df(G′) ≤ |C| · k ≤ k2. So df(G) < 3k3 contradicting the statement.
Therefore, by the constructed sequence of good additions we reached the situation when

|C| and df(G′) are both at most one. If C is empty, we are done. If C consists of one vertex u,
then its deficiency is one. Since df(G) = 2|B|+ df(G′), df(G) is odd, and we have one more
edge addition. Then we add to B an edge from u to any other vertex v such that uv /∈ E(G′);
this is always possible since degG′(u) < k, and V (G) > k because df(G) ≥ 3k3. J

The intuition to our FPT algorithm is as follows. When we can obtain a sufficiently large
k-core by adding a number of edges b < 3k3, the algorithm from Proposition 19 suffices.
Otherwise b ≥ 3k3 and by Theorem 20 we can focus on finding a vertex subset in G of size
at least p minimizing the total deficiency of the induced subgraph. We show how to do that
with a dynamic programming over a tree decomposition.

I Lemma 22 (?). Given an n-vertex graph G of treewidth tw and integers k, p, the value

min{df(G[Ŝ]) : Ŝ ⊆ V (G), |Ŝ| ≥ p}

can be computed in time kO(tw) · nO(1).
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All pieces together give the main algorithmic result of this section.

I Theorem 23 (?). Edge k-Core admits an FPT algorithm when parameterized by the
combined parameter tw + k.
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