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Abstract

Directed Feedback Vertex Set (DFVS) is a fundamental computational problem that has
received extensive attention in parameterized complexity. In this paper, we initiate the study of a
wide generalization, the H-SCC Deletion problem. Here, one is given a digraph D, an integer
k and the objective is to decide whether there is a vertex set of size at most k whose deletion
leaves a digraph where every strong component excludes graphs in the fixed finite family H as (not
necessarily induced) subgraphs. When H comprises only the digraph with a single arc, then this
problem is precisely DFVS.

Our main result is a proof that this problem is fixed-parameter tractable parameterized by the
size of the deletion set if H only contains rooted graphs or if H contains at least one directed path.
Along with generalizing the fixed-parameter tractability result for DFVS, our result also generalizes
the recent results of Göke et al. [CIAC 2019] for the 1-Out-Regular Vertex Deletion and
Bounded Size Strong Component Vertex Deletion problems. Moreover, we design algorithms
for the two above mentioned problems, whose running times are better and match with the best
bounds for DFVS, without using the heavy machinery of shadow removal as is done by Göke et al.
[CIAC 2019].
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1 Introduction

In the Directed Feedback Vertex Set (DFVS) problem, the input is a digraph D and
an integer k and the objective is to decide whether there is a set X ⊆ V (D) of size at most k
such that D−X is acyclic. DFVS is a fundamental computational problem that has received
extensive attention in various subdomains of algorithmics. The parameterized complexity
of this problem was a long standing open problem in the area until Chen et al. [2] gave a
fixed-parameter tractable (FPT) algorithm with running time O(k!4kk4nm). Here, n and m
denote the number of vertices and arcs in the digraph respectively. Although subsequent
work [9] has improved the dependence on the input size to linear, it remains an open problem
whether the 2O(k log k) dependence on k is asymptotically the best possible.

The result of Chen et al. and the techniques used therein also helped kick off a line of
research in parameterized complexity where the goal is to understand how far the fixed-
parameter tractability of DFVS can be extended to various generalizations of DFVS. Chitnis
et al. [3] obtained an FPT algorithm for the Subset DFVS problem, where the goal is to
delete at most k vertices that intersect all directed cycles passing through a specified subset
of vertices. A general and abstract formulation of the powerful directed shadow removal
technique first designed by Chitnis et al. [4], was developed in this work and it has found
several applications in subsequent work [8, 1, 10, 5]. Lokshtanov et al. [10] studied the
Directed Odd Cycle Transversal problem where the objective is to delete at most k
vertices that intersect all directed odd cycles in the given digraph. They proved that this
problem is W[1]-hard and so is unlikely to admit an FPT algorithm. Moreover, they used the
shadow removal technique to obtain a fixed-parameter 2-approximation algorithm for this
problem. More recently, Göke et al. [5] studied the problems of deleting at most k vertices
to (i) obtain a digraph where every strong component is of bounded size and (ii) obtain a
digraph where every strong component induces a graph where every vertex has out-degree
exactly 1, i.e. is a 1-out-regular digraph.

In this paper, we extend this line of research by initiating the study of a wide general-
ization of the problems studied by Göke et al., which we call the H-Strong Connected
Component Deletion (H-SCC Deletion) problem and define below. Here, H is a fixed
finite family of digraphs.

Input: A digraph D, an integer k.
Parameter: k

Problem: Does there exist a set S of at most k vertices such that no strong component of
D-S contains a graph in H as a subgraph?

H-SCC Deletion

In all our results, n denote the number of vertices in the input graph and h = maxH∈H
|V (H)|. Rooted H-SCC Deletion (r-H-SCC Deletion) denotes the special case of
H-SCC Deletion where every graph in H contains an arborescence. An arborescence is
a rooted directed tree where every vertex except the root has in-degree exactly 1 and the
root has in-degree 0. Notice that r-H-SCC Deletion already generalizes several problems
described above including DFVS (H comprises the graph with a single arc), obtaining strong
components of size at most s (H comprises all arborescences of size s + 1) and obtaining
strong components with out-degree at most 1 (H comprises the star with two leaves and
both arcs oriented away from the centre). Our main result gives a unified proof of the
fixed-parameter tractability of these problems.
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I Theorem 1. r-H-SCC Deletion can be solved in time 2O(k3 log k) · hO(k) · nO(h).

Theorem 1 also holds for H-SCC Deletion in the case where, for every graph in H
there is a vertex that is reachable from every other vertex. One can infer this by simply
reversing both the input graph and the forbidden graphs and applying the main theorem.
We also remark that in general, the nO(h) dependence in the running time of the algorithm
of Theorem 1 is very likely unavoidable. Indeed, consider the following reduction from the
Clique problem where the input is an undirected graph G and ` ∈ N, and the objective is
to decide whether G contains a clique of size `. We orient all edges in G arbitrarily, add a
universal sink vertex v? and then a universal source vertex u? and the arc (v?, u?) to obtain a
strongly connected digraph, set k = 0, and set H to be the set of all tournaments on exactly
`+ 2 vertices. Then, an FPT algorithm for r-H-SCC Deletion parameterized by k and `
would imply an FPT algorithm for Clique parameterized by `, which cannot exist unless
FPT=W[1].

When H only comprises of the star with d+ 1 leaves with all arcs oriented away from
the centre, a closer inspection of the algorithm of Theorem 1 demonstrates that it can be
implemented in a way that implies a fixed-parameter algorithm parameterized by both k
and d for this problem. We call this problem, d-Out-Degree SCC Deletion. In this
problem, the objective is to decide whether k vertices can be deleted from a given digraph to
ensure that the graph induced by each strong component has out-degree at most d.

I Theorem 2. d-Out-Degree SCC Deletion can be solved in time 2O(k3 log k) ·dO(k) ·nO(1).

Our next result concerns the Path H-SCC Deletion (p-H-SCC Deletion) problem,
which is the special case of H-SCC Deletion where H contains at least one directed path.
We show that with an appropriate fixed-parameter preprocessing routine, this problem can
be reduced to r-H-SCC Deletion where H only comprises of the path of length g(H) for
some function g. Invoking Theorem 1 then leads us to the following result.

I Theorem 3. p-H-SCC Deletion can be solved in time 2O(k3 log k) · hO(k) · 2h6 · nO(h3).

We then pay special attention to the r-H-SCC Deletion problem when H contains
only the out-directed 2-star, i.e., the 1-Out-Degree SCC Deletion problem. Notice
that a strongly connected graph with at least two vertices that excludes this graph as a
subgraph must be a simple cycle, and so is 1-out-regular. A 1-out-regular digraph is a digraph
where every vertex has out-degree exactly 1. Therefore, this special case of r-H-SCC
Deletion is precisely the 1-Out-regular Deletion problem where one is given a digraph
D and an integer k and the objective is to decide whether there is a set of vertices of size at
most k whose deletion leaves a digraph where every strong component induces a 1-out-regular
subgraph. Göke et al. [5] recently gave an algorithm for this problem with running time
2O(k3) ·nO(1). We give an improved algorithm for this problem with an asymptotic dependence
on k that matches that of the current best algorithm for DFVS [2], which is a special case of
1-Out-regular Deletion.

I Theorem 4. 1-Out-regular Vertex Deletion can be solved in time 2O(k log k) · nO(1).

Finally, we also study the special case of r-H-SCC Deletion when H is the set of all
arborescences on exactly s + 1 vertices. Notice that the strongly connected graphs that
exclude the graphs in H as subgraphs are precisely the strongly connected graphs of size
at most s. This problem when H is the set of all arborescences on exactly s + 1 vertices
is called the Bounded Size Strong Component Vertex Deletion (BSSCVD). We
improve upon the result of Göke et al. [5] who gave an algorithm for BSSCVD with running
time 4k(ks+ k + s)! · nO(1).
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I Theorem 5. BSSCVD can be solved in time 2O(k(log k+log s)) · nO(1).

We now give an overview of the techniques used to prove our results.

Algorithm for r-H-SCC Deletion. We begin by using the technique of iterative compression
to obtain a tuple (D,S = (S1, . . . , Sq),W, k) such that W is a solution for the instance
(D, k+1) of r-H-SCC Deletion, S1, . . . , Sq partitionW and moreover, if there is a solution
for (D, k), then there is a solution that is disjoint from W and intersects Si-Sj paths for
i < j. We note that this step is standard when dealing with directed cut problems [12].

A commonly used technique subsequent to this step (albeit one that we do not employ) is
the directed shadow removal technique introduced by Chitnis et al. [4] where one identifies a
set of vertices Z such that for some hypothetical solution X, Z is disjoint from X and contains
the set of vertices that are either unable to reach W or are unreachable from W in D −X.
This set is then removed in a problem specific way while preserving all obstructions. While
this can be easily achieved for certain simple obstructions, we are dealing with an arbitrary
family of digraphs with the only assumption being that they are rooted. Consequently, it is
not at all clear how one could implement the removal of vertices in Z and that makes our
task significantly more challenging. To avoid this obstacle, we forgo the technique of shadow
removal and directly design an intricate branching algorithm.

The crux of this algorithm is the observation that for a special type of solution X, for
every forbidden subgraph F , either X intersects V (F ) or X contains an S1-{r(F )} separator
(r(F ) denotes a fixed root of F ) or X contains a {u}-W separator for some vertex u ∈ V (F ).
We then show that there is always an efficiently computable forbidden subgraph upon which
we can branch exhaustively using the above observation in such a way that we always make
progress. The fact that such a subgraph can always be identified efficiently is far from obvious
and proving it is one of our main technical challenges.

Algorithm for p-H-SCC Deletion. We show that for every finite family of digraphs H,
there exists another (infinite) family H∗, such that the H-SCC Deletion problem is
equivalent to the problem of deleting at most k vertices to exclude all graphs in H∗ as
subgraphs in the remaining graph (not necessarily in a single strong component). Moreover,
we show that when H contains a directed path, then the family H∗ can be partitioned into
two, say H∗1 and H∗2 such that H∗1 is finite and the problem of deleting at most k vertices to
exclude all graphs in H∗2 as subgraphs in the remaining graph is equivalent to the r-X -SCC
Deletion where X only contains a directed path whose length depends on H. This allows
us to branch on all subgraphs isomorphic to graphs in H∗1 and then invoke Theorem 1.

Improved algorithms for 1-Out-Regular Vertex Deletion and BSSCV. Here, we begin
in the same way as for r-H-SCC Deletion by obtaining a tuple (D,S = (S1, . . . , Sq),W, k)
such that if there is a solution for (D, k), then there is a solution that is disjoint from W and
intersects all Si-Sj paths for i < j. In the case of 1-Out-Regular Vertex Deletion,
the main new contribution that results in a speedup over Theorem 1 is a lemma that shows
that if we consider an S1-W \ S1 separator C such that every vertex reachable from S1 in
D − C has out-degree at most 1 in D, then there is a solution whose intersection with this
set of reachable vertices is contained within an efficiently computable set of O(k) vertices.
This gives us a branching algorithm where we essentially compute a “furthest” S1-W \ S1
separator C of size at most k in time 2O(k) · nO(1) and then branch on deleting a vertex of
C or one of these O(k) vertices in the reachable set. In the case of BSSCV, we show that
if for some x ∈ S1, D contains a subgraph of size s + 1 with an arborescence rooted at x,
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then at least one of these vertices must either be deleted or must have all its paths to W
deleted when removing a solution. In the latter case, we will be able to branch on an {x}-W
important separator [11] of size at most k.

Further Remarks. The results of Göke et al. [5] crucially use the technique of covering the
shadow which adds a factor of 2O(k2) ·nO(1) to the running time of any algorithm that uses it.
Thus, our 2O(k log k) · nO(1) algorithm (Theorem 13) is an improvement over what is currently
possible using the shadow covering technique. Moreover, although all our results are stated
for the vertex deletion version of the problems, we would like to mention that these results
will apply for the corresponding arc deletion versions of the problems as well, as all our
proofs go through for the later case also. Due to space constraints, we only discuss the proof
of Theorems 1 and 2 in this version. The proofs of the remaining theorems and the missing
proofs of the lemmas in this version can be found in the appended full version of the paper.

2 Preliminaries

We use standard notion regarding digraphs. Given two digraphs D1, D2 we denote the
digraph D1 ∪D2 as the digraph with vertex set V (D1) ∪ V (D2) and arc set A(D1) ∪A(D2).
By D1 ⊆ D2, we mean that D1 is a subdigraph of D2. We use |D| as a shorthand for |V (D)|.
A strongly connected component (or strong component) of a digraph D is a maximal set
S ⊆ V (D) such that for any pair u, v of vertices in S, there is a path from u to v and from v

to u in D. For any X ⊆ V (D), D[X] denotes the subdigraph of D induced by X. For any
S, T ⊆ V (D), by an S-T path in D we mean a path from some vertex of S to some vertex of
T in D. For a subset S ⊆ V (G), by N+(S) we denote the set

⋃
v∈S N

+(v) \ S. By N+[S]
we denote N+(S)∪S. Similar definition hold for N−(S) and N−[S]. Given a directed graph
D and subsets S, T, C ⊆ V (D) such that S ∩ T = ∅, we say that C is an S-T separator if
there is no directed S-T path in D−C and C ∩ S = C ∩ T = ∅. For an S-T separator C, by
RD(S,C) we denote the set of vertices v such that there exists an S-{v} path in D − C. By
RD(S,C) we denote the set V (D) \RD(S,C), that is the set of vertices that are unreachable
from S after removing C. Note that for any set R ⊆ V (D) such that S ⊆ R, R ∩ T = ∅
and N+(R) ∩ T = ∅, if R is reachable from S in D[R], then the set C = N+(R) is an S-T
separator such that RD(S,C) = R. We say that an S-T separator C covers an S-T separator
C ′ if RD(S,C) ⊇ RD(S,C ′). We say that C tightly covers C ′ if C covers C ′ and there does
not exist a C ′′ that covers C ′ and is covered by C. Two S-T separators are incomparable
if neither covers the other. λD(S, T ) denotes the size of a minimum S-T separator in D.
It is well known [2] that there exists a unique minimum S-T separator Cmin(S, T ) and a
unique minimum S-T separator Cmax(S, T ) such that for every minimum S-T separator
C, Cmin(S, T ) is covered by C and Cmax(S, T ) covers C. We call Cmin(S, T ) the closest
minimum S-T separator and Cmax(S, T ) the furthest minimum S-T separator. Moreover,
we define Rmin(S, T ) = RD(S,Cmin(S, T )) and Rmax(S, T ) = RD(S,Cmax(S, T )). All four of
these sets can be computed in polynomial time using max-flow computations (see [11]).

An arborescence is a rooted directed tree where every vertex except the root has in-degree
exactly 1 and the root has in-degree 0. A digraph D is said to be rooted at v ∈ V (D) if D
contains as a subdigraph on V (D) an arborescence rooted at v. That is, there is a directed
v-w path in D for every w ∈ V (D). A digraph D is simply said to be rooted if it is rooted at
some vertex. By r(D), we denote the vertex that is the root of D. If there are multiple roots
for D, we canonically fix one vertex for r(D). For a digraph D and a family of digraphs
H (potentially containing rooted digraphs), we say that a subset S ⊆ V (D) is H-free if

MFCS 2020



75:6 On the Parameterized Complexity of H-SCC Deletion

D[S] does not contain any graph in H as a subgraph. When S = V (D), we say that D is
H-free. In the case when every graph in H is a rooted graph, we say that S is root-H-free if
the root of every subgraph of D that is isomorphic to a graph in H is not contained in S.
Observe that if a set S is root-H-free then it is also H-free. We say that a set X ⊆ V (D) is
an H-deletion set for D if there is no subgraph isomorphic to a graph in H that is contained
in any strong component of D −X. Furthermore, we say that X is a solution for the tuple
(D, k) if X is an H-deletion set and |X| ≤ k.

I Lemma 6. [9] There is a polynomial-time algorithm that, given a digraph D and an S-T
separator C in D, either correctly concludes that C = Rmax(S, T ) or outputs a minimum
S-T separator that tightly covers C.

I Lemma 7. [7] Let D be a digraph and let S, T ⊆ V (D) be disjoint. Let C be the closest
(resp. furthest) S-T separator in D and let v be a vertex in RD(S,C) (resp. RD(S,C)).
Then every S-(T ∪{v}) (resp. (S ∪{v})-T ) separator is of size strictly greater than λD(S, T ).

I Lemma 8. Let D be a digraph and let S, T be disjoint subsets of V (D). Let C1 = N+(R1)
and C2 = N+(R2) be two minimum S-T separators such that C2 covers C1 and C1 6= C2.
Let u ∈ C1 and v ∈ R2 \N [R1]. Then every (S ∪{u})− (T ∪{v}) separator is of size strictly
greater than λD(S, T ).

3 The FPT algorithm for rooted H-SCC Deletion

We use the standard technique of Iterative Compression ([13]) to reduce the task of solving
our instance of r-H-SCC Deletion to that of solving at most 2k+1n instances of the
Disjoint r-H-SCC Deletion Compression (r-H-SCC DC) problem, where we are
given a digraph D and a solution W of size at most k + 1 and the goal is to compute a
solution of size at most k that is disjoint from W , if one exists. We further solve r-H-SCC
DC by making 2O(k log k) calls to a subroutine that is allowed to assume the existence of
a specific type of solution for instances of the r-H-SCC Partitioned Compression (r-
H-SCC PC) problem, which is described below. An instance of r-H-SCC PC is a tuple
(D,S = (S1, . . . , Sq),W, k), where W is a solution for the instance (D, k + 1) of H-SCC
and S is an ordered partition of W . A set X ⊆ V (D) is said to be a solution for the instance
(D,S = (S1, . . . , Sq),W, k) of r-H-SCC PC if X is a solution for the instance (D, k) of
H-SCC, X ∩W = ∅, and X intersects all Si-Sj paths in D, for every j > i. Observe that
every solution of the instance (D,S,W, k) of r-H-SCC PC, is also a solution of (D,W, k)
of r-H-SCC DC. We now define a special kind of solution for r-H-SCC PC, which we
call a nice solution, and as we will see soon, it turns out that it is enough to look for nice
solutions for our purpose. Let (D,S = (S1, . . . , Sq),W, k) be an instance of r-H-SCC PC.
A solution X for this instance is said to be nice if for every subgraph F ⊆ D such that F is
isomorphic to a graph in H, and each i ∈ [q], one of the following holds: (1) X intersects
V (F ), or (2) r(F ) /∈ R(Si, X), or (3) ∃v ∈ V (F ) such that there is no {v}-Si path in D−X.
Observe from the definition above, that if X is a solution of r-H-SCC PC such that after
its deletion each Si is in exactly one strong component, then X is a nice solution. One
can formalize the above discussion (refer to the full version for details) to conclude that
(D,W, k) is a yes-instance of r-H-SCC DC if and only if (D,S = (S1, . . . , Sq),W, k) has a
nice solution for some ordered partition S = (S1, . . . , Sq) of W . Thus, to prove Theorem 1 it
is enough to prove the following lemma. Recall that h = maxH∈H |V (H)|.

I Lemma 9. There is an algorithm that, given an instance (D,S = (S1, . . . , Sq),W, k) of
r-H-SCC PC, runs in time 2O(k3 log k) · hO(k) · nO(h) and either correctly concludes that
there is no nice solution for (D,S,W, k) or outputs some solution (not necessarily nice) for
(D,S,W, k).
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Recall that the most challenging aspect in our strategy (see overview of our algorithm for
r-H SCC Deletion in Section 1) is the identification of appropriate “branchable” forbidden
subgraphs. Specifically, we need to identify particular subgraphs F such that the natural
exhaustive branchings reduce some measure depending on the parameter. The way we
identify such subgraphs is the following: the algorithm will maintain a set Q such that Q is
root-H-free, with Q = ∅ initially. The algorithm will try to “grow” the set Q until the entire
graph is covered by Q. Initially, when Q = ∅, we try to grow it to the set Rmin(S, T ) (where
S = S1 and T = X \ S1), the closest minimum S-T separator. We prove that if we find a
forbidden subgraph whose root lies in Rmin(S, T ), that subgraph is good for us in the sense
that all branches will drop our measure. Once all roots have been removed from Rmin(S, T ),
we set Q = Rmin(S, T ). Then we recurse and grow Q further towards T . To formalize the
above strategy in Section 3.2, we next describe two crucial tools, in the form of pushing
lemmas in the next section.

3.1 The Pushing Lemmas
Let (D,S = (S1, . . . , Sq),W, k) be an instance of r-H-SCC PC. Let X be some solution for
this instance. Suppose, for instance, one had a hold on the set of vertices, say R, that are in
the strong components containing S1 inD−X. Then, one could argue that there is some other
solution that picks an important R-(W \ S1) separator (see Marx’ survey [11] for definition)
of size at most k. In this case, one can branch of these important sets. Unfortunately, the
above mentioned set R is far from being found efficiently. However growing on this idea,
our first pushing lemma, Lemma 10, says that even if one is able to find a “weaker” set, viz.
some superset of the vertices that are reachable from S1 after the deletion of the solution,
do not contain a graph of H inside them and their out-neighbourhood forms a minimum
S1-(W \ S1), then one can always construct another solution that picks the out-neighbours
of this set.

I Lemma 10 (Pushing-Routine-1). Let I = (D,S = (S1, . . . , Sq),W, k) be an instance
of r-H-SCC PC. Consider a H-free set S1 ⊆ Q ⊆ V (D) \ (W \ S1) such that N+(Q) is a
minimum S1-(W \S1) separator. Let X be a solution of I such that RD(S1, X)∩N+(Q) = ∅.
Then, there is a solution X ′ for I that contains N+(Q).

For our second pushing lemma, we first borrow definitions of shadows for directed graphs
from [4]. Note that what we do with the concept of shadows in our article is very different
from the way it has been used so far. More specifically, we do not resort to the shadow removal
technique that has often been an effective technique to design FPT algorithms for directed
cut problems. In fact, for the general problems that we consider, it is not at all clear how the
shadow removal technique could be helpful. Let (D,S = (S1, . . . , Sq),W, k) be an instance
of r-H-SCC PC and let X ⊆ V (D) \W . Then, F-Shadow(X) denotes the set of those
vertices u /∈ X such that there is no {u}-W path in D-X. Similarly, R-Shadow(X) denotes
the set of those vertices u /∈ X such that there is no W -{u} path in D-X. F-Shadow(X) is
called the forward shadow of X with respect to W and R-Shadow(X) is called the reverse
shadow of X with respect to W . Notice that with these definitions, we have that if X is a
nice solution for the instance (D,S = (S1, . . . , Sq),W, k), then for any subgraph F ⊆ D that
is isomorphic to a graph in H and any i ∈ [q], either X intersects V (F ) or r(F ) /∈ R(Si, X)
or V (F ) ∩ F-Shadow(X) 6= ∅. Moreover, when q = 1, this implies that X intersects V (F ) or
r(F ) ∈ R-Shadow(X) or V (F ) ∩ F-Shadow(X) 6= ∅. Our second pushing lemma, guarantees
the existence of a set to branch on, provided we have identified some vertex in the forward
or reverse shadow of X with respect to W .
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I Lemma 11 (Pushing-Routine-2). There is an algorithm that, given an instance I =
(D,S,W, k) of r-H-SCC PC and a vertex u ∈ V (D) such that either there is a u-W path
or a W -u path in D, runs in time 4k · nO(1) and outputs a non-empty set Z ⊆ V (D) of
size at most 4k · 2k with the following property: if there is a solution X for I such that
u ∈ F-Shadow(X) ∪ R-Shadow(X), then there is a solution X ′ for I such that X ′ ∩ Z 6= ∅.

3.2 Solving instances of r-H-SCC PC
Towards the proof of Lemma 9, we first find a set Ẑ such that Ẑ intersects some solution
for I = (D,S,W, k) (if one exists) and |Ẑ| = O(h) · 2O(k2 log k). Observe that, having such a
set Ẑ at hand, one can proceed with a branching algorithm that branches on the vertices
of Ẑ, thereby producing an algorithm with running time O(|Z|k) · nO(1). We call the set Ẑ,
the branch set for the instance I. The rest of the section is devoted to computing a branch
set for I of the desired size. Henceforth, h denotes maxH∈H |V (H)|.

I Lemma 12. Given an instance I = (D,S,W, k) of r-H-SCC PC, there is an algorithm,
that runs in time O(h)·2O(k2 log k) ·nO(h) and outputs a branch set for I of size O(h)·2O(k2 log k)

if I has a nice solution.

The algorithm of Lemma 12 has two parts: we first design a simple algorithm when q = 1 by
exploiting the structure of a nice solution to identify a vertex that belongs to the shadow of
the solution, thereby allowing the applicability of Lemma 11 to find a branch set. We defer
the details of this part to the full version. The second part, when q > 1, is tricky. We design
a recursive algorithm for the proof of Lemma 12 when q > 1, whose details we describe next.
To maintain the recursive invariants, we enhance the instance of r-H-SCC PC.

I Definition 13 (Extended Instance of r-H-SCC PC). An instance Iext = (D,S =
(S1, . . . , Sq),W, k, S, T,Q,NQ) is called an extended instance of r-H-SCC PC if the following
holds:
1. (D,S = (S1, . . . , Sq),W, k) is an instance of r-H-SCC PC,
2. S1 ⊆ S ⊆ V (D) \ (W \ S1) and W \ S1 ⊆ T ,
3. either Q = ∅ or, S ⊆ Q ⊆ V (D) \T such that Q is root-H-free and N+(Q) is a minimum

S-T separator in D, and
4. NQ ⊆ N+(Q).

I Definition 14 (Solution of an extended instance of r-H-SCC PC). For an extended instance
Iext = (D,S = (S1, . . . , Sq),W, k, S, T,Q,NQ) of r-H-SCC PC, X ⊆ V (D) \W is said to
be a solution for Iext if the following holds.
1. X is a nice solution for (D,S,W, k),
2. X is an S-T separator,
3. S ⊆ RD(S1, X),
4. NQ ∩RD(S,X) = ∅ and,
5. X ∩ (S ∪ T ) = ∅.

The idea behind extending an instance of r-H-SCC PC in the way defined earlier is
to get the situation closer to the applicability of Lemma 10. In fact, as we will see, this
will form the base case for our arguments. To be more specific, the sets S, T defined in
the definition correspond to the set of vertices that one has guessed to be reachable and
unreachable, respectively from S1 in D −X, where X is a solution for the original instance.
Thus, any solution for the original instance is an S-T separator. Note that, since X is a
solution for (D,S,W, k), the set S1 itself is reachable from S1 and W \ S1 is unreachable
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from S1 in D −X. Therefore we could assume that S1 ⊆ S and (W \ S1) ⊆ T . The set Q
in the extended instance is such that N+(Q) is a minimum S-T separator and Q itself is
root-H-free (and hence H-free). The set NQ is meant to be the subset of N+(Q) that one
has guessed to be unreachable from S in D −X. The algorithm aims to slowly “grow” Q
using Lemma 6 until we find a subgraph F in D that is isomorphic to some graph in H
and whose root lies in Q (i.e. Q is no longer root-H-free). Then using the fact that a nice
solution exists, one can construct the desired branch set by branching of instances with a
smaller, appropriately defined, measure.

For the convenience of arguments, we further enhance an extended instance of r-H-SCC
PC. The idea behind this is to avoid asking that NQ has to be unreachable from S in D−X
where X is a solution of the extended instance. As we see below, a slight modification to the
digraph D and T help us achieve this, thereby easing the arguments used in the final proof.

I Definition 15 (Auxiliary Instance of r-H-SCC PC). Given an extended instance Iext =
(D,S = (S1, . . . , Sq),W, k, S, T,Q,NQ) of r-H-SCC PC, we define an auxiliary instance
Iaux = (Daux,S = (S1, . . . , Sq),W, k, S, T aux, Q,NQ) of r-H-SCC PC as follows: Daux is a
supergraph of D that is obtained from D by adding a new vertex taux in D and adding arcs
(u, taux), for each u ∈ NQ; T aux = T ∪ {taux}.

I Definition 16 (Solution of an auxiliary instance of r-H-SCC PC). Let Iaux = (Daux,S =
(S1, . . . , Sq),W, k, S, T aux, Q,NQ) be an auxiliary instance of r-H-SCC PC obtained from
Iext = (D,S = (S1, . . . , Sq),W, k, S, T,Q,NQ), then X ⊆ V (D) \W is said to be a solution
for Iaux if the following holds:
1. X is a nice solution for (D,S,W, k),
2. X is an S-T aux separator in Daux,
3. S ⊆ RDaux(S1, X) and,
4. X ∩ (S ∪ T aux) = ∅.

One can prove (details in the full version) that a solution to an extended instance of
r-H-SCC PC is also a solution for the corresponding auxiliary version. This together with
the discussion above, concludes that it is enough to prove the following lemma.

I Lemma 17 (Find-Branch-Set). Given an auxiliary instance Iaux = (Daux,S =
(S1, . . . , Sq),W, k, S, T aux, Q,NQ) of r-H-SCC PC where q > 1, there is an algorithm
that runs in time O(h) · 2O(k2 log k) · nO(h) and returns a branch set of (D,S,W, k) of size
O(h) · 2O(k2 log k) if Iaux has a solution.

Proof. Let I = (D,S,W, k). We will design a recursive algorithm Find-Branch-Set. To
analyse the depth of recursion, we associate a measure µ with an instance Iaux = (Daux,S =
(S1, . . . , Sq),W, k, S, T aux, Q,NQ) as µ(Iext) = k2 + k − λDaux(S, T aux)2 − |NQ|. For the
sake of convenience, we will denote λDaux(S, T aux) by λ(Iaux). In what follows, we give an
exhaustive list of cases, and say what the algorithm outputs in each such case, give a proof
of correctness for the same, point out the branching width of the recursive calls and argue
that the measure µ drops for each of the instances called in each of the recursive calls.
Base Case: Observe that for any auxiliary instance Iaux, if λ(Iaux) > k, then Iaux has no

solution. If k ≤ 0, then check if any strong component ofD has a graph isomorphic to some
graph in H. If it does, then Iaux has no solution, otherwise, return ∅. Another case that
is handled as a base case is when either µ(Iaux) ≤ 0 or |NQ| = λ(Iaux). If µ(Iaux) ≤ 0,
we first claim that |NQ| = |N+(Q)| = λ(Iaux). Since |N+(Q)| = λ(Iaux), it is enough
to prove that |NQ| = λ(Iaux). Since NQ ⊆ N+(Q), we have that |NQ| ≤ λ(Iaux). For
the sake of contradiction, suppose that |NQ| < λ(Iaux). Since µ(Iaux) ≤ 0, we have that

MFCS 2020



75:10 On the Parameterized Complexity of H-SCC Deletion

k2 + k ≤ λ(Iaux)2 + λ(Iaux). This implies that |NQ| ≥ λ(Iaux), which is a contradiction.
Thus, we have that |NQ| = λ(Iaux). In this case, Find-Branch-Set(Iaux) returns
N+(Q). We now prove that N+(Q) is indeed a branch set for Iaux. First observe that,
in this case NQ = N+(Q). From the construction of Daux, there is an arc (u, taux)
for each u ∈ NQ. Thus, in any solution X of Iaux, NQ ∩ RDaux(S,X) = ∅, that is,
N+(Q) ∩RDaux(S,X) = ∅. Since any solution X of Iaux is also a solution for I, we have
that there exists a solution X to I, such that N+(Q) ∩RDaux(S,X) = ∅. Then, observe
that I, Q,N+(Q), X satisfy the properties of Lemma 10, and hence there exists a solution
to I that contains a vertex of N+(Q). That is, N+(Q) is a branch set for I. Note that
the size of the set outputted in this case is λ(Iaux) ≤ k. We now proceed to the recursive
cases.

Case 1: [Q = ∅] The algorithm first computes the unique minimum closest S-T aux separator
C. It then checks if there exists F ⊆ D such that F is isomorphic to some graph in H
and r(F ) ∈ RD(S,C).

Case 1.1: [@ a subgraph F ⊆ D such that F is isomorphic to a graph in H and
r(F ) ∈ RD(S, C)] In this case, the algorithm returns Find-Branch-Set(Daux,S,W,
k, S, T aux, RD(S,C), ∅).
Correctness: Let X be a solution of Iaux. Note that in this case Q is root-H-free and
N+(Q) is a minimum S-T aux separator in Daux. Thus, X is a solution for the auxiliary
instance (Daux,S,W, k, S, T aux, RD(S,C), ∅).
Branching width: It is 1.
Measure drop: Let I ′aux = (Daux,S,W, k, S, T,RD(S,C), ∅). Since the branching width
is 1, in this case it is enough to prove that this case cannot occur more than n times
and the measure does not increase whenever this case arises. Since in the new instance
I ′aux, the size of Q has strictly increased, as it was an empty set before, the resulting
instance I ′aux does not fall into this case again (as we will see later that in all the
cases the set Q only grows). Since k,NQ remains the same in both the instances, and
λ(I ′aux) ≥ λ(Iaux) because T aux ∪ {r(F )} ⊇ T aux, we conclude that µ(I ′aux) ≤ µ(Iaux).

Case 1.2: [∃F ⊆ D that is isomorphic to a graph in H, and r(F ) ∈ RD(S, C)] In
this case, the algorithm returns V (F ) ∪ Find-Branch-Set(Daux,S,W, k, S, T aux ∪
{r(F )}, ∅, ∅) ∪

⋃
u∈V (F ) Pushing-Routine-2(D,S,W, k, u).

Correctness: Let X be a solution for Iaux. Since by definition, X is a nice solution of I,
either V (F )∩X 6= ∅, or X contains an S1-{r(F )} separator or if it does not satisfy either
of the above two conditions, then it must contain a {u}-S1 separator, for some u ∈ V (F ).
In the first case, since the returned set contains V (F ), we are done. In the second case,
if X contains an S1-{r(F )} separator and S ⊆ RD(S1, X) (from the definition of an
auxiliary solution), then X must also contain an S-{r(F )} separator. Thus, in this case
X must also be a solution to Find-Branch-Set(Daux,S,W, k, S, T aux ∪ {r(F )}, ∅, ∅).
From induction hypothesis, (Daux,S,W, k, S, T aux ∪ {r(F )}, ∅, ∅) returns a branch set for
(D,S,W, k), and we are done. In the last case, if neither of the above two cases hold,
then X contains a {u}-S1 separator for some u ∈ V (F ). We will prove that u in in the
forward shadow of X with respect to W . Suppose, for the sake of contradiction, that
there is a path from u to a vertex v ∈ W in D −X. Note that v 6∈ S1 as X contains a
{u} − S1 separator. Since r(F ) is reachable from S1 in D −X (because the second case
does not apply), X is disjoint from V (F ), and there is a path from r(F ) to u contained
in V (F ) as F is rooted, it follows that u is reachable from S1 in D −X. Furthermore,
there is a path from u to v in D−X and thus v ∈W \ S1 is reachable from S1 in D−X.
This is a contradiction to the fact that X is a solution for I. Therefore, it follows that u
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is in the forward shadow of X with respect to W . Moreover, since there is an S1-{r(F )}
path in D, by rooted-ness there is an S1-u path and since S1 ⊆W , there is a W -u path
in D. By Lemma 11, Pushing-Routine-2(D,S,W, k, u) returns a branch set for I.
Branching width: It is 1.
Measure drop: Let I ′aux = (Daux,S,W, k, S, T aux ∪ {r(F )}, ∅, ∅). Since the branching
width is 1 and in the new instance I ′aux the size of T aux grows, this case does not happen
more than n number of times because, if T aux \ taux becomes equal to V (D) \ S1, then
there is a no solution to the problem and we stop. Again, since the branching width is
1, in this case, we only need to show that µ(I ′aux) ≤ µ(Iaux). Since k,NQ remains the
same in both the instances, and λ(I ′aux) ≥ λ(Iaux) because T aux ∪ {r(F )} ⊇ T aux, we
conclude that µ(I ′aux) ≤ µ(Iaux).

Case 2: [Q 6= ∅] The algorithm proceeds by invoking Lemma 6 and either finds a separator C ′
that tightly covers N+(Q) in Daux or concludes that N+(Q) is the furthest minimum
S-T aux separator in Daux.

Case 2.1: [N+(Q) is the furthest minimum S-T aux separator in Daux] In this case,
the algorithm returns N+(Q) ∪

⋃
v∈N+(Q)\NQ

Find-Branch-Set(Daux,S,W, k, S ∪
{v}, T aux, ∅, ∅).
Correctness: Let Iaux

v = (Daux,S,W, k, S ∪ {v}, T aux, ∅, ∅). Let X be a solution for Iaux.
Suppose there exists v ∈ N+(Q) \NQ that is reachable from S in Daux−X, then observe
that X is also a solution for Iaux

v . Thus, Find-Branch-Set(Iaux
v ) returns a branch set

for I. Now we look at the case when no vertex in N+(Q) \NQ is reachable from S in
Daux −X. Recall that NQ cannot be reachable from S in Daux −X. Thus the entirety
of N+(Q) is unreachable from S in Daux −X. In this case, observe that I, Q,N+(Q), X
satisfy the conditions for Lemma 10, and thus, N+(Q) is a branch set for I.
Branching width: It is at most |N+(Q)| = λ(Iaux) ≤ k.
Measure drop: For each v ∈ N+(Q) \ NQ, we show that µ(Iaux

v ) < µ(Iaux). From
Lemma 7, the λ(Iaux

v ) ≥ λ(Iaux)+1. However the size of NQ in the new instance decreases
to 0. Thus, the drop in µ is at least (k2+k−λ(Iaux)2−|NQ|)−(k2+k−(λ(Iaux)+1)2−0) =
λ(Iaux)2 − |NQ| − (λ(Iaux) + 1)2 = 2λ(Iaux) + 1− |NQ|. Since |NQ| ≤ λ(Iaux), the drop
is ≥ λ(Iaux) + 1.

Case 2.2: [N+(Q) is not the furthest minimum S-T aux separator in Daux] From
Lemma 6, the algorithm first finds a separator C ′ that tightly covers N+(Q). Let
Q′ = RD(S,C ′) that is C ′ = N(Q′). It then checks if there exists F ⊆ D such that F is
isomorphic to some graph in H and r(F ) ∈ Q′.

Case 2.2.1: [@ a subgraph isomorphic to a graph in H whose root is in Q′] In this case,
the algorithm returns Find-Branch-Set(Daux,S,W, k, S, T aux, Q′, NQ).
Correctness: Let I ′aux = (Daux,S,W, k, S, T aux, Q′, NQ). From construction, N(Q′) is
a minimum S − T aux separator and Q′ is root-H-free. Also since N+(Q′) covers N+(Q)
and is an S-T aux separator and for each v ∈ NQ, (v, t∗) is an arc in Daux, it follows that
NQ ⊆ N+(Q′). Thus, if X is a solution to Iaux, then it is also a solution to I ′aux.
Branching width: It is 1.
Measure drop: Since the branching width is 1 and Q′ ⊃ Q, it is enough to prove that
the measure does not increase. This is indeed the case, as k,NQ remain the same in both
the instances. Also, since S and T aux remain the same, λ(Iaux) = λ(I ′aux).

Case 2.2.2: [∃F ⊆ D that is isomorphic to a graph inH and r(F ) ∈ Q′] In this case, the
algorithm returns V (F ) ∪ Find-Branch-Set(Daux,S,W, k, S ∪ (N+(Q) \NQ), T aux ∪
{r(F )}, ∅, ∅) ∪

⋃
v∈N+(Q)\NQ

Find-Branch-Set(Daux,S,W, k, S, T aux, Q,NQ ∪ {v}) ∪⋃
v∈V (F ) Pushing-Routine-2(D,S,W, k, u).
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Correctness: Let X be a solution of Iaux. Since X is a nice solution of I, either
X ∩ V (F ) 6= ∅ or, X contains an S1-{r(F )} separator or, X contains a {v}-S1 separator,
for some v ∈ V (F ). In the first case, since V (F ) is present in the set returned, we
are done. In the second case, since S is reachable from S1 in Daux − X, it follows
that X is an S-{T ∪ r(F )} separator. If there exists a vertex v ∈ N+(Q) \NQ that is
unreachable from S in Daux−X, then observe that X is also a solution for Find-Branch-
Set(Daux,S,W, k, S, T aux, Q,NQ ∪ {v}). Thus, we are done. Otherwise, N+(Q) \ NQ

is reachable from S in Daux −X. In this case, X is also a solution for Find-Branch-
Set(Daux,S,W, k, S∪ (N+(Q)\NQ), T aux∪{r(F )}, ∅, ∅), and hence, we are done. In the
third case, X contains a {v}-S1 separator, for some v ∈ V (F ). Using a similar argument
as in Case 1, it follows that u is in the forward-shadow of X with respect to W and that
there is a W -u path in D. Thus, from Lemma 11, Pushing-Routine-2(D,S,W, k, u)
returns a branch set for I.
Branching width: It is at most |N+(Q)|+ 1 ≤ λ(Iaux) + 1 ≤ k + 1.
Measure drop: Consider the instance I ′aux = (Daux,S,W, k, S ∪ (N+(Q) \NQ), T aux ∪
{r(F )}, ∅, ∅). We show that µ(I ′aux) < µ(Iaux). From Lemma 8, the minimum
(S ∪ (N+(Q) \NQ))-(T ∪ {r(F ), taux}) separator is of size greater than λ(Iaux). Thus,
λ(I ′aux) > λ(Iaux). However the NQ (the last variable in the instance) for I ′aux is
an empty set. Therefore µ drops by at least (k2 + k − λ(Iaux)2 − |NQ|) − (k2 + k −
(λ(Iaux) + 1)2 − 0) = λ(Iaux)2 − |NQ| − (λ(Iaux) + 1)2 = 2λ(Iaux) + 1 − |NQ|. Since
|NQ| ≤ λ(Iaux), the drop is at least λ(Iaux)+1. For each v ∈ V (F ), consider the instance
Iaux

v = (Daux,S,W, k, S, T aux, Q,NQ∪{v}). We now show that µ(Iaux
v ) < µ(Iaux). Since

|NQ ∪ {v}| = |NQ|+ 1 and λ(Iaux
v ) = λ(Iaux), we conclude that the measure drops by

one in this case.

This concludes the description of the recursive algorithm together with its correctness.
To bound the number of nodes in the recursion tree, since the maximum branching width
of the recursion tree is at most k + 1 and the depth of the recursion tree is at most
µ(Iaux) = k2 + k − λ(Iaux)2 − |NQ| ≤ k2 + k, we conclude that the number of nodes in the
recursion tree is (k+ 1)k2+k = 2O(k2 log k). Since the size of the set returned at the leaf nodes
of the recursion tree is at most k and at each level of the recursion tree a set of size at most
h+ kh+ 1 is added to the set obtained from the recursive calls, we conclude that the size of
the set that the algorithm outputs is at most (h+kh+ 1) ·2O(k2 log k) = O(h) ·2O(k2 log k). J

Given an instance (D,S,W, k) of r-H-SCCPC, the algorithm of Lemma 9 creates an extended
instance Iext = (D,S,W, k, S1,W \ S1, ∅, ∅) of r-H-SCCPC and calls Find-Branch-Set
on Iaux, which is an auxiliary instance of Iext. The proof of Lemma 9 then follows from
Lemma 17. As already argued, Lemma 9 implies Theorem 1. This completes the description
and the proof of our FPT algorithm for r-H-SCC Deletion. Observe that the only place
where we incur a nO(h) factor in the running time of this algorithm is for checking whether
there exists a subgraph of D isomorphic to a graph in H. If this can be done in time
g(h) ·nO(1), then our algorithm will run in time g(k, h) ·nO(1). In particular, if H comprises of
only the (d+ 1)-out-star, the algorithm will run in time that is FPT in k and d (Theorem 2).

4 Conclusions

We have initiated the study of the parameterized complexity of H-SCC Deletion problem,
where the objective is to compute a maximum subdigraph where no strong component contains
a forbidden subgraph from the family H. We have obtained fixed-parameter algorithms
for this problem when H either contains at least one path or only contains rooted graphs,
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thus unifying several known fixed-parameter tractability results including the one for DFVS.
Furthermore, we also have results that, for a pair of previously studied special cases of this
problem, yield faster FPT algorithms by using our general strategy tailored to these special
cases. Our algorithms are FPT parameterized by k for fixed families H (that contain a path
or only rooted digraphs) while an FPT algorithm for this problem parameterized by both k
and h (h being the size of the largest graph in H) is unlikely to exist in general.

Our work identifies some natural directions for future research. In particular, can we
completely characterize those finite families H for which this problem is fixed-parameter
tractable? In a parallel line of research, Göke, Marx and Mnich [6] gave a fixed-parameter
algorithm for the case where H is the set of all cycles of length at least a given positive
integer s.
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