
Approximation in (Poly-) Logarithmic Space
Arindam Biswas
The Institute of Mathematical Sciences, HBNI, Chennai, India
barindam@imsc.res.in

Venkatesh Raman
The Institute of Mathematical Sciences, HBNI, Chennai, India
vraman@imsc.res.in

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Bergen, Norway
saket@imsc.res.in

Abstract
We develop new approximation algorithms for classical graph and set problems in the RAM model
under space constraints. As one of our main results, we devise an algorithm for d–Hitting Set that
runs in time nO(d2+(d/ε)), uses O

(
(d2 + (d/ε)) logn

)
bits of space, and achieves an approximation

ratio of O((d/ε)nε) for any positive ε ≤ 1 and any constant d ∈ N. In particular, this yields a
factor-O(d logn) approximation algorithm which uses O

(
log2 n

)
bits of space. As a corollary, we

obtain similar bounds on space and approximation ratio for Vertex Cover and several graph
deletion problems. For graphs with maximum degree ∆, one can do better. We give a factor-2
approximation algorithm for Vertex Cover which runs in time nO(∆) and uses O(∆ logn) bits of
space.

For Independent Set on graphs with average degree d, we give a factor-(2d) approximation
algorithm which runs in polynomial time and uses O(logn) bits of space. We also devise a
factor-O

(
d2) approximation algorithm for Dominating Set on d-degenerate graphs which runs

in time nO(logn) and uses O
(
log2 n

)
bits of space. For d-regular graphs, we observe that a known

randomized algorithm which achieves an approximation ratio of O(log d) can be derandomized to
run in polynomial time and use O(logn) bits of space.

Our results use a combination of ideas from the theory of kernelization, distributed algorithms
and randomized algorithms.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation→ Graph algorithms analysis; Theory of computation→ Streaming, sublinear
and near linear time algorithms

Keywords and phrases approximation, logspace, logarithmic, log, space, small, limited, memory,
ROM, read-only

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.16

Related Version A full version of this paper is available at https://arxiv.org/abs/2008.04416.

1 Introduction and Motivation

This paper examines the classical approximation problems Vertex Cover, Hitting Set
and Dominating Set in the RAM model under additional polylogarithmic space constraints.
We devise approximation algorithms for these problems which use polylogarithmic space in
general and O(logn) bits of space on certain special input types.

In the absence of space constraints, the greedy heuristic is a good starting point for
many approximation algorithms. For Set Cover, it even yields optimal (under certain
complexity-theoretic assumptions) approximation ratios [2, 17]. However, the heuristic
inherently changes the input in some way. In a space-constrained setting however, this is

© Arindam Biswas, Venkatesh Raman, and Saket Saurabh;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4721-7971
mailto:barindam@imsc.res.in
https://orcid.org/0000-0001-8123-0980
mailto:vraman@imsc.res.in
https://orcid.org/0000-0001-7847-6402
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.MFCS.2020.16
https://arxiv.org/abs/2008.04416
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Approximation in (Poly-) Logarithmic Space

asking for too much: the input is immutable, and the amount of auxiliary space available
(polylogarithmic in our case) is not sufficient to register changes to the input.

Linear programming is another tool that plays a central role in the design of approximation
algorithms. While it yields competitive approximations in polynomial time when space is
not constrained, it is known that under logarithmic-space reductions, it is P-complete to
approximate the Linear Programming problem to any constant factor [39]. Such a result
can be shown even for positive linear programming [42].

Machine Model. We use the standard RAM model with an additional polylogarithmic
space constraint. For inputs n bits in length, memory is organized as words of length
O(logn), which allows the entire input to be addressed using a single word of memory.
Integer arithmetic operations on pairs of words and single-word memory access operations
take constant time. The input (a graph or family of sets) is provided to the algorithm using
some canonical encoding, which can be read but not modified, i.e. the algorithm has read-only
access to the input.

The algorithm uses some auxiliary memory, to which it has read-write access, and in the
setting of this paper, the amount of such memory available is bounded by a polynomial in
logn. Output is written to a stream: once something is output, the algorithm cannot read it
back at a later point as it executes. We count the amount of auxiliary memory used in units
of 1 bit, and the objective is to use as little auxiliary memory as possible.

Our Results

d–Hitting Set and Vertex Deletion Problems. An instance of the d–Hitting Set problem
consists of a universe and a family of size-d subsets of the universe, and the objective is to
find a subset of the universe that has a non-empty intersection with each set in the family.

We develop a factor-O((d/ε)nε) approximation algorithm for d–Hitting Set which runs
in time nOhd2+(d/ε) and uses O

(
(d2 + (d/ε)) logn

)
bits of space (Section 3), where ε ≤ 1

is an arbitrary positive number and d is a fixed positive integer. In particular, this yields
a factor-O(d logn) approximation algorithm for the problem which uses O

(
log2 n

)
bits of

space. As an application, we show how the algorithm can be used to approximate various
deletion problems with similar space bounds. From this, we derive a factor-O((1/ε)nε)
(for arbitrary positive ε ≤ 1) approximation algorithm for Vertex Cover that runs in
time nO(1/ε)) and uses O((1/ε) logn) bits of space.
We give a simple factor-2 approximation algorithm for Vertex Cover on graphs
with maximum degree ∆ which runs in time nO(∆) and uses O(∆ logn) bits of space
(Section 3.1).

Dominating Set. In the Dominating Set problem, the objective is to find a vertex set of
minimum size in a graph such that all other vertices are adjacent to some vertex in the set.

We give a factor-O(
√
n) approximation algorithm for graphs excluding C4 (a cycle on 4

vertices) as a subgraph, which runs in polynomial time and uses O(logn) bits of space
(Section 4.1).
Graphs of bounded degeneracy form a large class which includes planar graphs, graphs of
bounded genus, graphs excluding a fixed graph H as a (topological) minor and graphs of
bounded expansion. For graphs with degeneracy d, we give a factor-O

(
d2) approximation

algorithm which uses O
(
log2 n

)
bits of space. (Section 4.2).

A. Biswas, V. Raman, and S. Saurabh 16:3

Additionally, for graphs in which each vertex has degree d, i.e. d-regular graphs, we
exhibit a factor-O(log d) approximation algorithm for Dominating Set (Section 4.3)
which is an adaptation of known results to the constrained-space setting.

Independent Set. An instance of the Independent Set problem consists of a graph, and
the objective is to find an independent set of maximum size i.e. a set of vertices with
no edges between them. We show how a known factor-(2d) approximation algorithm for
Independent Set on graphs with average degree d can be implemented to run in polynomial
time and use O(logn) bits of space (Section 5).

Related Work

Small-space models such as the streaming model and the in-place model have been the subject
of much research over the last two decades (see [27, 15, 13] and references therein). In the
streaming model, in addition to the space constraint, the algorithm is also required to read
the input in a specific (possibly adversarial) sequence in one or more passes. The in-place
model, on the other hand, allows the memory used for storing the input to be modified.
The read-only RAM model we use is distinct from both these models. Historically, the
read-only model has been studied from the perspective of time–space tradeoff lower bounds,
particularly for problems like Sorting [8, 9, 5, 31, 30] and Selection [28, 20, 29, 34].

The earliest graph problems studied in this model were the undirected and directed graph
reachability problems (resp. USTCON and STCON) in connection with the complexity
classes L and NL. Savitch [38] showed that on input graphs with n vetices, STCON (and
therefore also USTCON) can be solved in O

(
log2 n

)
bits of space. This bound was gradually

whittled down over more than two decades, a process culminating in the result of Reingold [37]
which shows that USTCON can be solved using O(logn) bits of space.

Reif [36] showed that the problems of recognizing bipartite, chordal, interval and split
graphs are reducible to USTCON. Later on, Allender and Mahajan [1] showed that planarity
testing also reduces to USTCON. Thus, Reingold’s result put all these problems in L. More
recently, Elberfeld and Kawarabayashi [18] showed that the problems of recognizing and
canonizing bounded-genus graphs were in L. The model was also studied by Yamakami [44]
in relation to the complexity of search problems solvable in polynomial time, and by
Tantau [40], who studied the approximation properties of search problems that can be
solved in nondeterministic logarithmic space.

The other direction in which small-space problems and even the approximation problems
we study have been investigated previously is in the context of fast parallel algorithms. By a
known reduction, algorithms for these problems have sequential implementations that use
polylogarithmic space. The PRAM algorithm of Luby [25] for finding maximal independent
sets in a graph can be used to 2-approximate Vertex Cover (recall that a better than
2-approximate algorithm is known to be unlikely [23]). Implemented in the sequential RAM
model, it uses O

(
log2 n

)
bits of space. There have been attempts to generalize Luby’s

algorithm to hypergraphs, and to the best of our knowledge, an efficient deterministic parallel
algorithm (an NC algorithm) to find maximal independent sets in hypergraphs is not known to
exist (see [6] and references therein). Our scheme for d–Hitting Set trades approximation
factor against space used to obtain a family of algorithms that use O

(
(d2 + (d/ε)) logn)

)
bits

of space to obtain O((d/ε)nε)-approximate solutions for any positive ε ≤ 1. As a corollary, we
obtain an O(d logn)-approximation algorithm that uses O

(
log2 n

)
bits of space. On graphs

with maximum degree ∆, our approximation algorithm for Vertex Cover uses O(∆ logn)
bits of space to obtain 2-approximate solutions.

MFCS 2020

16:4 Approximation in (Poly-) Logarithmic Space

Berger et al. [7] gave a PRAM algorithm for Set Cover which can be implemented in the
sequential RAM model to O(logn)-approximate Dominating Set in O

(
log4 n

)
bits of space.

See also [41, 26], which give parallel approximation algorithms for Linear Programming,
and see [24], which gives tight approximation ratios for CSP’s using semi-definite programming
in the PRAM model. Our algorithms for Dominating Set are simpler and more direct,
and work for a large class of graphs while using O

(
log2 n

)
bits of space.

Our Techniques

As noted earlier, the greedy heuristic causes changes to the input, which our model
does not permit. To get around this, we use a staggered greedy approach in which the
solution is constructed in a sequence of greedy steps to approximate Vertex Cover on
graphs of bounded degree (Section 3.1). By combining this with data reduction rules
from kernelization algorithms, we also obtain approximations for Vertex Cover and
more generally d–Hitting Set (Section 3), and restricted versions of Dominating Set
(Sections 4.1 and 4.2). In Sections 4 and 5, we use 2-universal hash families constructible in
logarithmic space to approximate Independent Set on graphs of bounded average degree
(Section 5) and Dominating Set on regular graphs (Section 4.3) in logarithmic space.

Full Version. Details for all items marked † can be found in the full version of this paper
at https://arxiv.org/abs/2008.04416.

2 Preliminaries

Notation. N denotes the set of natural numbers {0, 1, . . .} and Z+ denotes the set of positive
integers {1, 2, . . .}. For n ∈ Z+, [n] denotes the set {1, 2, . . . , n}. Let G be a graph. Its
vertex set is denoted by V(G), and its edge set by E(G). The degree of a vertex v is denoted
by deg(v), and for a set S ⊆ V(G) or a subraph H of G, degS(v) denotes the degree of v in
G[S] and degH(v) denotes the degree of v in H.

Known Results. We begin by considering the following result, which arises from a
logarithmic-space implementation of the Buss kernelization rule [10] for Vertex Cover
combined with the observation that the kernel produced is itself a vertex cover.

I Proposition 1 (Cai et al. [11], Theorem 2.3). There is an algorithm which takes as input
a graph G and k ∈ N, and either determines that G has no vertex cover of size at most k
or produces a vertex cover of size at most 2k2. The algorithm runs in time O

(
n2) and uses

O(logn) bits of space.

The Vertex Cover problem is a special case of d–Hitting Set (d ∈ N, a constant),
an instance of which comprises a family F of size-d subsets of a ground set. The objective
is to compute a minimum hitting set for F , i.e. a subset of the ground set which intersects
each set in F . The next proposition shows that a result similar to the one above also holds
for this generalization.

I Proposition 2 (Fafianie and Kratsch [19], Theorem 1). There is an algorithm which takes
as input a family F of d-subsets (d ∈ N, a constant) of a ground set U and k ∈ N, and either
determines that F has no hitting set of size at most k or produces an equivalent subfamily of
the original family which has size O

(
(k + 1)d

)
. The algorithm runs in time nO(d2) and uses

O
(
d2 logn

)
bits of space.

https://arxiv.org/abs/2008.04416

A. Biswas, V. Raman, and S. Saurabh 16:5

2.1 Presenting modified graphs using oracles
Our algorithms repeatedly “delete” vertices or sets of vertices, but as they only have read-only
access to the graph (or family of sets), we require a way to implement these deletions using a
small amount of auxiliary space. Towards that, we prove the following theorem.

I Theorem 3. Let G = G0 = (V,E) be a graph with n vertices, and let Gi (i ∈ [k]) be
obtained from Gi−1 by deleting a set Si ⊆ V(Gi−1) consisting of all vertices v ∈ V(Gi−1)
which satisfy a property that can be checked (given access to Gi−1) using O(logn) bits of
space.

Given read-only access to G, one can, for each i ∈ [k], enumerate and answer membership
queries for Si, Vi = V(Gi) and Ei = E(Gi) in time nO(i) using O(i logn) bits of space.

Proof. For each i ∈ [k] let Checki(Gi−1, v) be the algorithmic check which, given (oracle)
access to Gi−1, determines whether v ∈ Vi−1 satisfies the condition for inclusion in Si. Note
that this condition may be something that depends on the graph Gi−1, i.e. Gi−1 must be
accessible to Checki.

To provide oracle access to Gi, Vi and Ei, it suffices to compute, for v ∈ V and uw ∈ E,
the predicates [v ∈ Vi] and [uw ∈ Ei]. A vertex is in Vi if and only if it is in Vi−1 and it is
not in Si. Similarly, an edge is in Ei if and only if it is in Ei−1 and neither of its endpoints
are in Si. Thus, we have the following relations.

[v ∈ Vi] ≡ [v ∈ Vi−1] ∧ ¬Checki(Gi−1, v) (1)
[uw ∈ Ei] ≡ [uw ∈ Ei−1] ∧ ¬(Checki(Gi−1, u) ∨ Checki(Gi−1, w)) (2)

To compute each of these predicates for Gi, we require oracle access to Gi−1, which in
turn involves computing the predicates [v ∈ Vi−1] and [uw ∈ Ei−1]. Suppose the number
of operations needed to compute Checki(Gi−1, v) is r(n), where r is a polynomial (it uses
O(logn) bits of space, so it is polynomial-time). Let pi (resp. qi) be the amount of space
used to compute the predicate [v ∈ Vi] (resp. [uw ∈ Ei]), and let si (resp. ti) be the time
needed to compute the predicate [v ∈ Vi] (resp. [uw ∈ Ei]). From Relations 1 and 2 and the
fact that Checki accesses Gi−1 at most r(n) times, we see that these quantities satisfy the
following relations.

pi = pi−1 + O(logn), qi = qi−1 + O(logn) (3)
si = si−1 + O(r(n)(si−1 + ti−1)), ti = ti−1 + O(r(n)(si−1 + ti−1)) (4)

It is easy to see that these recurrences solve to pi, qi = O(i logn) and si, ti = nO(i), so
both predicates can be computed in time nO(i) using O(i logn) bits of space.

With oracle access to Gi−1, the predicate [v ∈ Si] can be computed simply as
Checki(Gi−1, v), from which enumerating Vi (resp. Ei and Si) is straightforward: enu-
merate V (resp. E and V) and suppress vertices v (resp. edges uw and vertices z) which fail
the predicate [v ∈ Vi] (resp. [uw ∈ Ei] and [z ∈ Si]). As the most space-hungry operations are
the membership queries, the enumeration can also be performed using O(i logn) bits of space.
The enumeration needs time nO(i) for each element of V and E, and since |V |, |E| = O

(
n2),

the total time needed is also nO(i). J

2.2 Universal Hash Families
Some of our algorithms use the trick of randomized sampling to obtain a certain structure
with good probability and then derandomize this procedure by using a 2-universal family of

MFCS 2020

16:6 Approximation in (Poly-) Logarithmic Space

hash functions. A 2-universal hash family is a family F of functions from [n] to [k] (n, k ∈ N
and k ≤ n) such that for any pair i and j of elements in [n], the number of functions from F
that map i and j to the same element in [k] is at most |F|/k.

The following proposition is a combination of a result of Carter and Wegman [12] showing
the existence of such families, and the observation that these families can be computed in
logarithmic space [43]. Later on, we use it to derandomize sampling procedures in some of
our algorithms.

I Proposition 4 (Carter and Wegman [12], Proposition 7). Let n, k ∈ N with n ≥ k. One can
compute a 2-universal hash family for [[n]→ [k]] in polynomial time using O(logn) bits of
space.

3 Hitting Sets and Π-Deletion Problems

The d–Hitting Set problem is a generalization of Vertex Cover in which an instance
consists of a family F of d-subsets of a ground set U , and the objective is to find a subset of
U of minimum size which intersects all sets in F .

Algorithms for the problem are useful as subroutines in solving various deletion problems,
where the objective is to delete the minimum possible number of vertices from a graph so
that the resulting graph satisfies a certain property. The following result is a corollary to
Proposition 2.

I Corollary 5. Let F be a family of d-subsets of a ground set U with n elements. One
can compute an O

(
dn1−1/d)-approximate minimum hitting set for F in time nO(d2) using

O
(
d2 logn

)
bits of space.

Proof. Consider the following algorithm. Starting at k = 1, run the algorithm of Proposition 2
and repeatedly increment the value of k until k = n1/d or the algorithm returns a solution
of size O

(
d(k + 1)d

)
(i.e. it does not return a NO answer) for the first time. If k is

incremented until n1/d, then simply return the entire universe as the solution. Clearly,
the approximation ratio is n1−1/d, as OPT ≥ n1/d (and so the size of the solution returned
is n = n1−1/d · n1/d ≤ n1−1/d ·OPT , where OPT is the size of the minimum hitting set).

If k < n1/d, then the size of the solution produced is O
(
d(k + 1)d

)
, and we know

that OPT ≥ k, since the algorithm had returned NO answers until this point. So
the size of the solution produced is O

(
d(k + 1)d

)
= O

(
d(k + 1)d−1 · (OPT + 1)

)
=

O
(
dn1−1/d · (OPT + 1)

)
. Thus, we have an O

(
dn1−1/d)-approximation. The bounds on

running time and space used follow from the fact that the algorithm of Proposition 2 runs in
time nO(d2) and uses O

(
d2 logn

)
bits of space. J

The next result is one of our main results en route to developing a space-efficient
approximation algorithm for d–Hitting Set.

I Lemma 6. Let ε ≤ 1 be a positive number. There is an algorithm which takes as input
a family F of d-subsets of a ground set U of n elements and k ∈ N, and either determines
F has no hitting set of size at most k or produces a hitting set of size O

(
(d/ε)k1+ε). The

algorithm runs in time nO(d2+(d/ε)) and uses O
(
(d2 + (d/ε)) logn

)
bits of space.

Proof. Let i = d(d− 1)/εe. The algorithm performs i rounds of computation, each using
O(logn) bits of space to determine a set of elements (accessible by oracle) to be removed in
the next round, or determine that F has no hitting set of size at most k.

A. Biswas, V. Raman, and S. Saurabh 16:7

1. Use the algorithm of Proposition 2 to obtain a subfamily F ′ ⊆ F over the ground set
U ′ ⊆ U such that
|F ′| ≤ c(k + 1)d, |U ′| = cd(k + 1)d, and
there exists a hitting set S ⊆ U of size at most k in F if and only if there exists a
hitting set S′ ⊆ U ′ and S′ is a hitting set for F ′.

2. Set U0 = U ′ and F0 = F ′. For j = {1, 2, . . . , i− 1}, perform the following steps.
Determine Sj , the set of all elements in Uj−1 which appear in at least c(k + 1)d−1−jε

sets in Fj−1.
Let Uj = Uj−1 \ Sj and Fj = {A ∈ Fj−1 | A ∩ Sj = ∅}. If there are more than
c(k + 1)d−jε sets in Fj , then return NO.

3. Determine Si, the set of all elements in Ui−1 which are in some set in Fi−1. Output
S =

⋃i
j=1 Sj .

We now prove the correctness of the algorithm. In Step 1, the algorithm obtains the
ground set U ′ and the familyF ′, using the algorithm of Proposition 2. Let l ∈ [i− 1] such
that the algorithm answers NO in Step 2 for j = l, and otherwise let l = i if it never returns a
NO answer in Step 2.

B Claim 7. For all j ∈ [l], Fj has at most c(k + 1)d−jε sets.

Consider the case when the algorithm does not return a NO answer. Observe that the claim
holds for the base case j = 1: F0 has c(k + 1)d sets, and since the algorithm does not
return a NO answer, we have |F1| ≤ c(k + 1)d−jε. For induction, observe that whenever
|Fj | ≤ c(k + 1)d−jε, the algorithm ensures that |Fj+1| ≤ c(k + 1)d−(j+1)ε; otherwise, it
returns a NO answer.

Suppose the algorithm returns a NO answer at some value of j in Step 2, then there are
more than c(k + 1)d−jε sets in Fj , which have survived the repeated removal of sets from F0
up to this point, and they cannot be hit by any k of the elements in Uj , since each element
can hit at most c(k + 1)d−1−jε sets in Fj . Thus, the algorithm correctly infers that the input
does not have a hitting set of size at most k.

Once the algorithm has reached Step 3, the number of sets in the residual family, Fi−1
is at most (k + 1)d−(d(d−1)/εe−1)·ε

< kd−((d−1)/ε−1)·ε = k1+ε. The set Si of elements in Ui−1
that appear in some set in Fi−1 is trivially also a hitting set. Observe that the sets of
elements removed in earlier stages, i.e. S0, . . . , Si−1 together hit all sets in F not appearing
in Fi−1. Thus, the set S =

⋃i
j=0 Sj output by the algorithm is a hitting set for F .

B Claim 8. The set S output by the algorithm has at most ((d− 1)/ε+ d)k1+ε elements.

For each j ∈ [i − 1], the algorithm ensures that |Fj−1| ≤ c(k + 1)d−(j−1)ε (otherwise, it
returns a NO answer). Thus, the number of elements which appear in at least c(k + 1)d−1−jε

sets is at most
(
c(k + 1)d−(j−1)ε

)
/
(
c(k + 1)d−1−jε

)
= k1+ε, i.e. |Sj | ≤ k1+ε.

In Step 3, the algorithm ensures that |Fi−1| ≤ kd−(i−1)ε ≤ k1+ε. Each set in Fi−1 edges
and each of these edges can span at most d elements. Thus, the number of elements in Ui−1
which appear in some set in Fi−1 dk

1+ε, i.e. |Si| ≤ dk1+ε. Therefore, the total number of
elements output by the algorithm in all three phases is |S| =

∑i
j=1|Sj | ≤ (i−1)k1+ε+dk1+ε ≤

(d(d− 1)/εe+ d)k1+ε.

B Claim 9. The algorithm runs in time nO(d2+(d/ε)) and uses O
(
(d2 + (d/ε)) logn

)
bits of

space.

MFCS 2020

16:8 Approximation in (Poly-) Logarithmic Space

Observe that in Step 1, the family F0 is obtained using the algorithm of Proposition 2, which
runs in time nO(d2) and uses O

(
d2 logn

)
bits of space (for any constant d). The output of

the algorithm can now be used as an oracle for G0.
In Step 2, each successive family Fj (j ∈ [i− 1]) is obtained from Fj−1 by deleting sets

containing elements which appear in at least k1−jε sets (this test can be performed using
O(logn)) bits of space. Thus, given oracle access to Fj−1, an oracle for Fj can be provided
which runs in polynomial time and uses O(logn) bits of space.

Step 3 involves writing out all elements in Ui−1 that appear in some set in Fi−1, which
can also be done in O(logn) bits of space given oracle access to Gi−1. Since the number
of oracles created in Step 2 is i− 1, the various oracles together run in time nO(i) and use
O(i logn) = O((d/ε) logn) bits of space (Theorem 3). Combined with the nO(d2) time and
O
(
d2 logn

)
bits of space used by the oracle of Step 1, this gives bounds of nO(d2+(d/ε)) on

the running time and O
(
(d2 + (d/ε)) logn

)
bits on the total space used by the algorithm. J

The next theorem follows from the above lemma.

I Theorem 10. Let ε ≤ 1 be a positive number. For instances (U,F) of d–Hitting Set
with |U | = n, one can compute an O((d/ε)nε)-approximate minimum hitting set in time
nO(d2+(d/ε)) using O

(
(d2 + (d/ε)) logn

)
bits of space.

Proof. Starting with k = 1, iteratively apply the algorithm of Lemma 6 and increment
k’s value until the algorithm returns a family of size O

(
(d/ε)k1+ε) or k = n1−ε. When

k = n1−ε return the entire universe as the solution. As, in this case, OPT ≥ n1−ε, the size
of the solution produced, which is n ≤ nεOPT , and so we have a factor-nε approximation
algorithm.

When the algorithm returns a family of size O
(
(d/ε)k1+ε) for some k, note that OPT ≥ k

(as the algorithm returned NO so far), and so the solution produced is of size O((d/ε)kεk),
which is O((d/ε)nεOPT) resulting in a factor-O((d/ε)nε) approximation algorithm. As we
merely reuse the procedure of Lemma 6, the running time is O

(
(d2 + (d/ε)) logn

)
and the

amount of space used is O
(
(d2 + (d/ε)) logn

)
bits. J

The above theorem allows us to devise space-efficient approximation algorithms for a
number of graph deletion problems. Let Π be a hereditary class of graphs, i.e. a class closed
under taking induced subgraphs. Let Φ be a set of forbidden graphs for Π such that a graph
G is in Π if and only no induced subgraph of G is isomorphic to a graph in Φ. Consider
the problem Del–Π (described below), defined for classes Π with finite sets Φ of forbidden
graphs.

Instance G, a graph
Solution a set of vertices smallest size whose deletion yields a graph in Π

The next result is a combination of the fact that Del–Π can be formulated as a certain
hitting set problem and the procedure of Theorem 10.

I Lemma 11. † Let ε ≤ 1 be a positive number. On graphs with n vertices, one can compute
O((1/ε)nε)-approximate solutions for Del–Π in time nO(1/ε) using O((1/ε) logn) bits of
space.

By setting ε to a small positive constant or (1/ logn), we obtain the following corollary,
owing to the fact that for all problems appearing in it, the target graph classes are known to
be characterized by a finite set of forbidden induced subgraphs (see e.g. Cygan et al. [16])
and so the problems can be formulated as Del–Π.

A. Biswas, V. Raman, and S. Saurabh 16:9

I Corollary 12. † On graphs with n vertices, one can compute
O(nε)-approximate solutions in time nO(1/ε) = nO(1) using O((1/ε) logn) = O(logn) bits
of space for any positive constant ε ≤ 1, and
O(logn)-approximate solutions in time nO(logn) using O

(
log2 n

)
bits of space

for the problems Vertex Cover, Triangle-Free Deletion, Threshold Deletion,
Cluster Deletion, Split Deletion, Cograph Deletion and Tournament FVS.

3.1 Vertex Cover on Graphs of Bounded Degree
We begin this section with the observation that in a directed graph with maximum outdegree
1, every connected component contains (as an induced subgraph or otherwise) at most one
(undirected) cycle. For such a directed graph D, consider the graph G obtained by ignoring
arc directions. Because every connected component in G also has at most one cycle, one
can find a minimum vertex cover for G in polynomial time and logarithmic space using a
modified post-order traversal procedure on the connected components. The following lemma
formalizes this discussion.

I Lemma 13. † Let D be a directed graph on n vertices with maximum outdegree 1 and
let G be the undirected graph obtained by ignoring the arc directions in D. One can find a
minimum vertex cover for G in polynomial time using O(logn) bits of space.

We now prove that by layering multiple applications of the above lemma, one can compute
a 2-approximate minimum vertex cover in a bounded-degree graph. Our approach is inspired
by a local distributed algorithm of Polishchuk and Suomela [33] which computes factor-3
approximations.

I Theorem 14. There is an algorithm which takes as input a graph G on n vertices in which
every vertex has degree at most ∆, and computes a 2-approximate minimum vertex cover for
G. The algorithm runs in time nO(∆) and uses O(∆ logn) bits of space.

Proof. Set G0 = G and V0 = V(G). The algorithm works in stages 1, . . . ,∆ as follows. In
Stage i, it enumerates the subgraph Hi−1 of Gi−1 in which each vertex of u of Gi−1 only
retains the edge to its ith neighbour v (if it exists) in G. Observe that directing every such
edge from u to v yields a directed graph R with maximum outdegree 1.

Applying the procedure of Lemma 13 with D = R and G = Hi−1, the algorithm now
computes a minimum vertex cover Si for Hi−1 in polynomial time using O(logn) bits of
space. It then produces the graph Gi by removing the vertex set Si from Gi−1 and outputs
the vertices in Si. At the end of Stage ∆, the algorithm terminates.

We now prove the bounds in the claim. Observe that the vertex set of Gi (i ∈ [∆]) is
precisely V(Gi−1) \ Si. In Stage i, the algorithm only considers the vertices in Gi−1, so the
vertex cover generated by it has no neighbours in vertex covers generated in earlier stages,
i.e. Si ∩ Sj = ∅ for j < i.

For each Hi−1, consider a maximal matching Mi in Hi−1. From the way the various
sets Si are generated, it is easy to see that S =

⋃∆
i=1 Si forms a vertex cover for G and

additionally, M =
⋃∆
i=1Mi is a maximal matching in G. Observe that the each set Si also

covers the matching Mi in Hi−1. Since Si is a minimum vertex cover for Hi−1, and the
endpoints of edges in Mi form a vertex cover for Hi−1, we have |Si| ≤ 2|Mi|.

As M is a maximal matching in G, the endpoints of edges in M form a vertex cover for
G, and we have |S| =

∑∆
i=1|Si| ≤ 2 ·

∑∆
i=1|Mi| ≤ 2 ·

∑∆
i=1 τ(G), where τ(G) is the vertex

cover number of G. Thus, the set S output by the algorithm is a 2-approximate vertex cover.

MFCS 2020

16:10 Approximation in (Poly-) Logarithmic Space

Now observe that for all i ∈ [∆], Gi and Si satisfy the hypothesis of Theorem 3. Thus,
one can compute each of the sets Si in time nO(i) using O(i logn) bits of space. Since
the maximum value i takes on is ∆, the algorithm runs in time nO(∆) and uses a total of
O(∆ logn) bits of space. J

4 Dominating Sets

In this section, we describe approximation algorithms for Dominating Set restricted to
certain graph classes. A problem instance consists of a graph G = (V,E) and k ∈ N, and the
objective is to determine if there is a dominating set of size at most k, i.e. a set S ⊆ V of at
most k vertices such that S ∪N(S) = V .

The first result of this section concerns graphs excluding C4 (a cycle on 4 vertices) as a
subgraph. On such graphs, one can compute O(

√
n)-approximations using O(logn) bits of

space using a known kernelization algorithm [35].

4.1 C4-Free Graphs
Any vertex v ∈ V(G) of degree at least 2k + 1 must be in any dominating set of size at most
k, as any other vertex (including a neighbour of v) can dominate at most 2 vertices in the
neighbourhood (as there will be a C4 otherwise). Using this, we establish the following result.

I Lemma 15. † There is an algorithm which takes as input a C4-free graph G on n vertices
and k ∈ N, and either determines that G has no dominating set of size at most k, or outputs
a dominating set of size O

(
k2). The algorithm runs in polynomial time and uses O(logn)

bits of space.

The proof of the following corollary uses arguments very similar to those in the proof of
Theorem 10, so we omit it.

I Corollary 16. There is an algorithm which takes as input a C4-free graph G on n vertices,
and computes an O(

√
n)-approximate minimum dominating set for G. The algorithm runs

in polynomial time and uses O(logn) bits of space.

4.2 Graphs of Bounded Degeneracy
A graph is called d-degenerate if there is a vertex of degree at most d in every subgraph of
G. A graph with maximum degree d is clearly d-degenerate. Planar graphs are 5-degenerate.
There is a generalization of the polynomial kernel for Dominating Set on C4-free graphs
to Ki,j-free graphs for any fixed i, j ∈ N [32] (Ki,j is the complete bipartite graph with i
vertices in one part and j vertices in the other). The class of Ki,j-free graphs includes C4-free
graphs and for i ≤ j, (i+ 1)-degenerate graphs.

This kernel however, does not seem amenable to modifications that would allow its use in
computing approximate solutions using logarithmic or even polylogarithmic space. To design
a space-efficient approximation algorithm for d-degenerate graphs, we resort instead to the
O
(
d2)-approximation algorithm of Jones et al. [22]. To achieve an O

(
log2 n

)
bound on the

space used, several adaptations are necessary.
Let G be a d-degenerate graph on n vertices. As every subgraph of G has a vertex with

degree at most d, the number of edges in G is at most dn. It follows that

I Observation 1. In any subgraph of p vertices of a d degenerate graph, at least p/2 vertices
are of degree at most 2d.

A. Biswas, V. Raman, and S. Saurabh 16:11

The algorithm starts by picking the neighbours of all vertices of degree at most 2d, and
works by repeatedly finding such vertices in smaller and smaller sugraphs of G and picking
all their neighbours in the solution. As the vertex or one of its neighbours must be in any
dominating set, this will result in an O(d) approximation if we manage to find a vertex that
dominates (at least one and) at most 2d of the undominated vertices. This may not happen
in the intermediate steps as more and more vertices are dominated by those vertices picked
earlier. So we do some careful partitioning of the vertices and find low degree vertices in
appropriate subgraphs.

Let Y be the set of vertices picked at any point, B be the set of vertices (other than
those in Y) dominated by Y , and W be the set of vertices in V \ (Y ∪ B). The goal is
to dominate vertices in W , and we try to do so by finding (the neighbours of) low degree
vertices from B ∪W . So we start finding low degree (at most 2d) vertices in B ∪W to pick
their neighbours. First we look for such vertices in B, and so we further partition B into Bh,
those vertices of B with at least 2d+ 1 neighbours in W and Bl = B \Bh.

First, we remove (for later consideration) vertices of W that have no neighbours in
W ∪Bh, let they be Wl and focus on the induced subgraph G[Bh ∪Wh] where Wh = W \Wl.
Here, we are bound to find low degree vertices from Wh (as vertices in Bh have high degree)
as long as Wh is non-empty, and so we repeat the above procedure of picking the neighbours
of all low degree vertices from Wh. Finally, when Wh is empty, if Wl is non-empty, we simply
pick all vertices of Wl into the solution. This completes the description of the algorithm.

If we treat a round as the step where we find all vertices inWh with at most 2d neighbours
in Wh, then as at least a fraction of the vertices of Wh are dominated in each round due
to Observation 1, the number of rounds is O(logn). Each round just requires identifying
vertices based on their degrees in the resulting subgraph, the i-th round can be implemented
in O(i logn) bits using Theorem 3 resulting in an O

(
log2 n

)
bits implementation.

The approximation ratio of O
(
d2) can be proved formally using a charging argument

(see Jones et al. [22], Theorem 4.9). We give an informal explanation here. First we argue
the approximation ratio of (2d+ 1) for the base case when Wh is empty. Isolated vertices
in Wl are isolated vertices in G and hence they need to be picked in the solution. The
number of non-isolated vertices in Wl is at most 2d|Bl| as their neighbours are only in Bl
(otherwise, by definition, those vertices will be in Wh). As vertices in Bl have degree at most
2d, |Wl| ≤ 2d|Bl| and as at least one vertex of Bl ∪Wl must be picked to dominate a vertex
in Wl, we have the approximation ratio of (2d+ 1) for those vertices.

In the intermediate step, if we did not ignore vertices in Bl to dominate a vertex in Wh,
a (2d+ 1)- approximation is clear. For, a vertex or one of its at most 2d neighbours must
be picked in the dominating set. However, a vertex in Wh maybe dominated by a vertex in
Bl, but by ignoring Bl, we maybe picking 2d vertices to dominate it. As a vertex in Bl can
dominate at most 2d such vertices of Wh, we get an approximation ratio of O

(
d2).

The next theorem formalizes the above discussion.

I Theorem 17. † There is an algorithm which takes as input a d-degenerate graph G on n
vertices and computes an O

(
d2)-approximate minimum dominating for G. The algorithm

uses O
(
log2 n

)
bits of space and runs in time nO(logn).

4.3 Regular Graphs
On regular graphs, we can achieve a better approximation ratio in logarithmic space by
derandomizing a result of Alon and Spencer [3] on the size of a dominating set on graphs
with minimum degree d.

MFCS 2020

16:12 Approximation in (Poly-) Logarithmic Space

I Proposition 18 (Alon and Spencer [3], Theorem 1.2.2). Any graph on n vertices with
minimum degree d has a dominating set of size at most n(log (d+ 1) + 1)/(d+ 1).

On a d-regular graph, because the size of any dominating set is at least n/(d+ 1), the
approximation ratio achieved is log (d+ 1) + 1.

Now we outline the proof of the above proposition to show how it can be derandomized.
Consider a d-regular graph G on n vertices. Picking each vertex of G with probability
p = log (d+ 1)/(d + 1) yields a set S with expected size E[|S|] = np. By adding in the
vertices not dominated by S, we obtain a dominating set W = S ∪ (V \ (S ∪ N(S))). The
expected size of this set is E[|W |] ≤ n(p+ (1− p)d+1), and it can be shown that this quantity
is n(log (d+ 1) + 1)/(d+ 1).

Note that the expectation bounds only need the sampling of the vertices to be
pairwise independent. Consider a 2-universal hash family F for [[n]→ [d+ 1]], and define
Sf = {v ∈ V(G) | f(v) ≤ log (d+ 1) + 1} and Wf = Sf ∪ (V \ (Sf ∪N(Sf))). Over functions
f = F , the sampling probability P(v ∈ Sf) is b(log (d+ 1) + 1)/(d+ 1)c. Because F is a
2-universal hash family, there is a function f ∈ F for which Wf achieves the expectation
bound for |W | above.

The sampling procedure can now be derandomized as follows. Compute F in logarithmic
space using Proposition 4 and enumerate it. For each f ∈ F , determine |Wf |, and output
Wf for the first function f for which |Wf | ≥ n(log (d+ 1) + 1)/(d+ 1).

We thus have the following result.

I Theorem 19. There is an algorithm which takes as input a d-regular graph G on n vertices,
and computes a (log (d+ 1) + 1)-approximate minimum dominating set for G. The algorithm
runs in polynomial time and uses O(logn) bits of space.

5 Independent Sets by Randomization

In this section, we consider the Independent Set problem restricted to graphs with bounded
average degree. On general graphs, the problem is unlikely to have a non-trivial (factor-(n1−ε))
approximation algorithm [21]. However, if the graph has average degree d, then an independent
set satisfying the bound of the next lemma is a (2d)-approximate solution. Note that graphs
of bounded average degree encompass planar graphs and graphs of bounded degeneracy. It
is also known that 2d is the best approximation ratio possible up to polylogarithmic factors
in d [4, 14].

I Proposition 20 (Alon and Spencer [3], Theorem 3.2.1). If a graph on n vertices has average
degree d, then it has an independent set of size at least n/(2d).

In what follows, we develop a logarithmic-space procedure that achieves the above bound.
Let G = (V,E) be a graph on n vertices with average degree d. Consider a set S ⊆ V

obtained by picking each vertex in V independently with probability p = 1/d. Let mS be the
number of edges with both endpoints in S. The following bound appears as an intermediate
claim in the proof of Proposition 20 (see Alon and Spencer [3], Theorem 3.2.1). We use it
here without proof.

I Lemma 21. E[|S| −mS] = n/(2d).

Consider the set I obtained by arbitrarily eliminating an endpoint of each edge in
G[S]. Observe that G[I] has no edges, i.e. I is an independent set whose expected size is
E[|S| −mS] = n/(2d).

A. Biswas, V. Raman, and S. Saurabh 16:13

Derandomizing this sampling procedure is simple: simply run through the functions of
a 2-universal hash family F for [[n]→ [d]] and for each f ∈ F , pick a vertex v ∈ V into S
if and only if f(v) = 1. Because the range of the functions is [d], the sampling probability
is P(v ∈ S) = 1/d. Recall that Lemma 21 only requires the sampling procedure to be
pairwise independent, so the expectation bound remains the same: E[|S| −mS] = n/(2d).
While going through F , select the function f ∈ F which maximizes |S| − mS , where
S = {v ∈ V | f(v) = 1} and mS is the number of edges uv ∈ E with f(u) = f(v) = 1. Using
the construction of Proposition 4, this step can be performed in polynomial time using
O(logn) bits of space and f can be used as an oracle for S at the same space cost.

The next step, in which vertices are deleted arbitrarily from each pair of adjacent vertices
in the sample S, is tricky to carry out in small space. This is because for any edge uv in G[S],
it is not possible to determine whether either of the endpoints survive the deletion procedure
without additional information about the other edges incident with u and v. However, there
is a simple fix for this: retain only those vertices in S which are the smallest vertices in their
neighbourhoods in G[S]. Using this, we prove the following lemma.

I Lemma 22. † Let T be the set of vertices v ∈ S such that v is the smallest vertex (in the
original arbitrary labelling) in its neighbourhood in G[S]. The set T is independent in G, has
size |T | ≥ |S| −mS, and one can compute S in polynomial time using O(logn) bits of space.

We now have the following theorem as a direct consequence of the above results.

I Theorem 23. There is a an algorithm which takes as input a graph G on n vertices with
average degree d, and computes a (2d)-approximate maximum independent set in G. The
algorithm runs in polynomial time and uses O(logn) bits of space.

6 Conclusion

We devised space efficient approximation algorithms for d–Hitting Set (and its restriction
Vertex Cover), Independent Set and Dominating Set in some special classes of
graphs.

We consider our contribution as simply drawing attention to a direction in the study of
approximation algorithms, and believe that it should be possible to improve the approximation
ratios and the space used for the problems considered here. Obtaining a constant-factor
or even factor-O(logn) approximation algorithm for Vertex Cover and a factor-O(logn)
approximation algorithm for Dominating Set on general graphs using O(logn) bits of
space are some specific open problems of interest.

References
1 Eric Allender and Meena Mahajan. The complexity of planarity testing. Information and

Computation, 189(1):117–134, February 2004. doi:10.1016/j.ic.2003.09.002.
2 Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of sets for k-

restrictions. ACM Transactions on Algorithms, 2(2):153–177, April 2006. doi:10.1145/
1150334.1150336.

3 Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, Hoboken, NJ, USA, third
edition, 2008.

4 Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of Vertex Cover and
Independent Set in Bounded Degree Graphs. Theory of Computing, 7(1):27–43, March
2011. doi:10.4086/toc.2011.v007a003.

5 Paul Beame. A general Sequential Time-Space Tradeoff for Finding Unique Elements. SIAM
Journal on Computing, 20(2):270–277, April 1991. doi:10.1137/0220017.

MFCS 2020

https://doi.org/10.1016/j.ic.2003.09.002
https://doi.org/10.1145/1150334.1150336
https://doi.org/10.1145/1150334.1150336
https://doi.org/10.4086/toc.2011.v007a003
https://doi.org/10.1137/0220017

16:14 Approximation in (Poly-) Logarithmic Space

6 Ioana O. Bercea, Navin Goyal, David G. Harris, and Aravind Srinivasan. On Computing
Maximal Independent Sets of Hypergraphs in Parallel. ACM Transactions on Parallel
Computing, 3(1):1–13, January 2017. doi:10.1145/2938436.

7 Bonnie Berger, John Rompel, and Peter W. Shor. Efficient NC algorithms for set cover
with applications to learning and geometry. Journal of Computer and System Sciences,
49(3):454–477, December 1994. doi:10.1016/S0022-0000(05)80068-6.

8 Allan Borodin and Stephen A. Cook. A Time-Space Tradeoff for Sorting on a General
Sequential Model of Computation. SIAM Journal on Computing, 11(2):287–297, May 1982.
doi:10.1137/0211022.

9 Allan Borodin, Michael J. Fischer, David G. Kirkpatrick, Nancy A. Lynch, and Martin Tompa.
A time-space tradeoff for sorting on non-oblivious machines. Journal of Computer and System
Sciences, 22(3):351–364, June 1981. doi:10.1016/0022-0000(81)90037-4.

10 Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM Journal on
Computing, 22(3):560–572, June 1993. doi:10.1137/0222038.

11 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of
parameterized tractability. Annals of Pure and Applied Logic, 84(1):119–138, March 1997.
doi:10.1016/S0168-0072(95)00020-8.

12 J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18(2):143–154, April 1979. doi:10.1016/0022-0000(79)
90044-8.

13 Sankardeep Chakraborty, Anish Mukherjee, Venkatesh Raman, and Srinivasa Rao Satti.
A Framework for In-place Graph Algorithms. In 26th Annual European Symposium on
Algorithms, volume 112, pages 13:1 – 13:16, Helsinki, Finland, August 2018. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/lipics.esa.2018.13.

14 Siu On Chan. Approximation Resistance from Pairwise-Independent Subgroups. Journal of
the ACM, 63(3):1–32, September 2016. doi:10.1145/2873054.

15 Timothy M. Chan, J. Ian Munro, and Venkatesh Raman. Selection and Sorting in the “Restore”
Model. ACM Transactions on Algorithms, 14(2):1–18, June 2018. doi:10.1145/3168005.

16 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer-Verlag,
Cham, Switzerland, 2015.

17 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the
46th Annual Symposium on Theory of Computing, pages 624–633, New York, NY, USA, May
2014. ACM Press. doi:10.1145/2591796.2591884.

18 Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and canonizing graphs of bounded
genus in logspace. In Proceedings of the 46th Annual Symposium on Theory of Computing,
pages 383–392, New York, NY, USA, May 2014. ACM Press. doi:10.1145/2591796.2591865.

19 Stefan Fafianie and Stefan Kratsch. A Shortcut to (Sun)Flowers: Kernels in Logarithmic
Space or Linear Time. In Mathematical Foundations of Computer Science, volume 9235, pages
299–310, Milan, Italy, August 2015. Springer-Verlag. doi:10.1007/978-3-662-48054-0_25.

20 Greg N. Frederickson. Upper bounds for time-space trade-offs in sorting and selection. Journal
of Computer and System Sciences, 34(1):19–26, February 1987. doi:10.1016/0022-0000(87)
90002-X.

21 Johan Håstad. Clique is hard to approximate within n(̂1 - ε). Acta Mathematica, 182(1):105–142,
March 1999. doi:10.1007/BF02392825.

22 Mark Jones, Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Ondřej Suchý.
Parameterized Complexity of Directed Steiner Tree on Sparse Graphs. SIAM Journal on
Discrete Mathematics, 31(2):1294–1327, January 2017. doi:10.1137/15M103618X.

23 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2 - ε.
Journal of Computer and System Sciences, 74(3):335–349, May 2008. doi:10.1016/j.jcss.
2007.06.019.

https://doi.org/10.1145/2938436
https://doi.org/10.1016/S0022-0000(05)80068-6
https://doi.org/10.1137/0211022
https://doi.org/10.1016/0022-0000(81)90037-4
https://doi.org/10.1137/0222038
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.4230/lipics.esa.2018.13
https://doi.org/10.1145/2873054
https://doi.org/10.1145/3168005
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/2591796.2591865
https://doi.org/10.1007/978-3-662-48054-0_25
https://doi.org/10.1016/0022-0000(87)90002-X
https://doi.org/10.1016/0022-0000(87)90002-X
https://doi.org/10.1007/BF02392825
https://doi.org/10.1137/15M103618X
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1016/j.jcss.2007.06.019

A. Biswas, V. Raman, and S. Saurabh 16:15

24 Jason Li and Ryan O’Donnell. Bounding Laconic Proof Systems by Solving CSPs in Parallel.
In Proceedings of the 29th Annual Symposium on Parallelism in Algorithms and Architectures,
pages 95–100, Washington, DC, USA, July 2017. ACM Press. doi:10.1145/3087556.3087557.

25 Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM
Journal on Computing, 15(4):1036–1053, November 1986. doi:10.1137/0215074.

26 Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear
programming. In Proceedings of the 25th Annual Smposium on Theory of Computing, pages
448–457, San Diego, CA, USA, May 1993. ACM Press. doi:10.1145/167088.167211.

27 Andrew McGregor. Graph stream algorithms: A survey. ACM SIGMOD Record, 43(1):9–20,
May 2014. doi:10.1145/2627692.2627694.

28 J. Ian Munro and Michael S. Paterson. Selection and sorting with limited storage. Theoretical
Computer Science, 12(3):315–323, November 1980. doi:10.1016/0304-3975(80)90061-4.

29 J. Ian Munro and Venkatesh Raman. Selection from read-only memory and sorting with
minimum data movement. Theoretical Computer Science, 165(2):311–323, October 1996.
doi:10.1016/0304-3975(95)00225-1.

30 Rasmus Pagh and Jakob Pagter. Optimal time-space trade-offs for non-comparison-based
sorting. In Proceedings of the 13th Annual Symposium on Discrete Algorithms, pages 9–18,
Philadelphia, PA, USA, January 2002. SIAM. doi:10.5555/545381.545383.

31 Jakob Pagter and Theis Rauhe. Optimal time-space trade-offs for sorting. In Proceedings of
the 39th Annual Symposium on Foundations of Computer Science, pages 264–268, Palo Alto,
CA, USA, November 1998. IEEE Comput. Soc. Press. doi:10.1109/SFCS.1998.743455.

32 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for dominating
set in graphs of bounded degeneracy and beyond. ACM Transactions on Algorithms, 9(1):1–23,
December 2012. doi:10.1145/2390176.2390187.

33 Valentin Polishchuk and Jukka Suomela. A simple local 3-approximation algorithm for vertex
cover. Information Processing Letters, 109(12):642–645, May 2009. doi:10.1016/j.ipl.2009.
02.017.

34 Venkatesh Raman and Sarnath Ramnath. Improved upper bounds for time-space trade-offs
for selection. Nordic Journal of Computing, 6(2):162–180, June 1999. doi:10.5555/762350.
762354.

35 Venkatesh Raman and Saket Saurabh. Short Cycles Make W-hard Problems Hard: FPT
Algorithms for W-hard Problems in Graphs with no Short Cycles. Algorithmica, 52(2):203–225,
October 2008. doi:10.1007/s00453-007-9148-9.

36 John H. Reif. Symmetric Complementation. Journal of the ACM, 31(2):401–421, March 1984.
doi:10.1145/62.322436.

37 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):1–24,
September 2008. doi:10.1145/1391289.1391291.

38 Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4(2):177–192, April 1970. doi:
10.1016/S0022-0000(70)80006-X.

39 Maria Serna. Approximating linear programming is log-space complete for P. Information
Processing Letters, 37(4):233–236, February 1991. doi:10.1016/0020-0190(91)90194-M.

40 Till Tantau. Logspace Optimization Problems and Their Approximability Properties. Theory
of Computing Systems, 41(2):327–350, August 2007. doi:10.1007/s00224-007-2011-1.

41 Luca Trevisan. Parallel Approximation Algorithms by Positive Linear Programming.
Algorithmica, 21(1):72–88, May 1998. doi:10.1007/PL00009209.

42 Luca Trevisan and Fatos Xhafa. The Parallel Complexity of Positive Linear Programming. Par-
allel Processing Letters, 08(04):527–533, December 1998. doi:10.1142/S0129626498000511.

43 Heribert Vollmer. Introduction to Circuit Complexity. Springer-Verlag, Berlin, Germany, 1999.
44 Tomoyuki Yamakami. Uniform-Circuit and Logarithmic-Space Approximations of Refined

Combinatorial Optimization Problems. In Combinatorial Optimization and Applications,
volume 8287, pages 318–329, Chengdu, China, December 2013. Springer-Verlag. doi:
10.1007/978-3-319-03780-6_28.

MFCS 2020

https://doi.org/10.1145/3087556.3087557
https://doi.org/10.1137/0215074
https://doi.org/10.1145/167088.167211
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1016/0304-3975(80)90061-4
https://doi.org/10.1016/0304-3975(95)00225-1
https://doi.org/10.5555/545381.545383
https://doi.org/10.1109/SFCS.1998.743455
https://doi.org/10.1145/2390176.2390187
https://doi.org/10.1016/j.ipl.2009.02.017
https://doi.org/10.1016/j.ipl.2009.02.017
https://doi.org/10.5555/762350.762354
https://doi.org/10.5555/762350.762354
https://doi.org/10.1007/s00453-007-9148-9
https://doi.org/10.1145/62.322436
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/0020-0190(91)90194-M
https://doi.org/10.1007/s00224-007-2011-1
https://doi.org/10.1007/PL00009209
https://doi.org/10.1142/S0129626498000511
https://doi.org/10.1007/978-3-319-03780-6_28
https://doi.org/10.1007/978-3-319-03780-6_28

	Introduction and Motivation
	Preliminaries
	Presenting modified graphs using oracles
	Universal Hash Families

	Hitting Sets and Pi-Deletion Problems
	Vertex Cover on Graphs of Bounded Degree

	Dominating Sets
	C_4-Free Graphs
	Graphs of Bounded Degeneracy
	Regular Graphs

	Independent Sets by Randomization
	Conclusion

