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Abstract

A function f(x) from the finite field GF(pn) to itself is said to be differentially δ-
uniform when the maximum number of solutions x ∈ GF(pn) of f(x + a) − f(x) = b for
any a ∈ GF(pn)∗ and b ∈ GF(pn) is equal to δ. Let p = 3 and d = 3n − 3. When n > 1 is
odd, the power mapping f(x) = xd over GF(3n) was proved to be differentially 2-uniform
by Helleseth, Rong and Sandberg in 1999. For even n, they showed that the differential
uniformity ∆f of f(x) satisfies 1 ≤ ∆f ≤ 5. In this paper, we present more precise results
on the differential property of this power mapping. For d = 3n−3 with even n > 2, we show
that the power mapping xd over GF(3n) is differentially 4-uniform when n ≡ 2 (mod 4) and
is differentially 5-uniform when n ≡ 0 (mod 4). Furthermore, we determine the differential
spectrum of xd for any integer n > 1.

Index Terms Power mapping, Differential cryptanalysis, Differential uniformity, Dif-
ferential spectrum.
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1 Introduction

Let GF(pn) denote the finite field with pn elements and GF(pn)∗ = GF(pn) \ {0}, where p is a

prime. Let f(x) be a mapping from GF(pn) to GF(pn). Define

Nf (a, b) =
∣∣ {x ∈ GF (pn) | f(x+ a)− f(x) = b}

∣∣ (1)

where a, b ∈ GF(pn), and let

∆f = max {Nf (a, b) | a ∈ GF(pn)∗, b ∈ GF(pn)} .

Nyberg defined a mapping f(x) to be differentially δ-uniform if ∆f = δ [11]. Differential

uniformity is one of the most important notions in symmetric cryptography. It quantifies

∗Department of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074,
China. Y. Xia is also with the Hubei Key Laboratory of Intelligent Wireless Communications, South-Central
University for Nationalities, Wuhan 430074, China (e-mail: xia@mail.scuec.edu.cn).
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway (e-mail: chunlei.li@uib.no,

tor.helleseth@uib.no)

1



the security of S-boxes used in block ciphers with respect to the differential attack [1]. For

practical applications, cryptographic functions are desirable to have low differential uniformity.

A function f(x) is said to be almost perfect nonlinear (APN) if ∆f = 2 and perfect nonlinear

(PN) if ∆f = 1. It is clear that when the finite field has characteristic 2, the solutions in (1)

come in pairs. Hence PN functions only exist in finite fields of odd characteristic.

Power mappings with low differential uniformity serve as good candidates for the design of

S-boxes since they usually have lower implementation costs in hardware environments. Besides,

their particular algebraic structure makes the determination of their differential properties

relatively easier. Given a cryptographic function f(x), the differential spectrum of f(x), namely

the value distribution of Nf (a, b) for a ∈ GF(pn)∗ and b ∈ GF(pn), is also an important notion

for estimating its resistance against variants of differential cryptanalysis [2, 3, 5, 6]. For a

power mapping f(x) = xd with some positive integer d, by (1) we have Nf (a, b) = Nf (1, b
ad

)

for all a 6= 0. Thus, the differential spectrum of f(x) can be completely determined by the

values of Nf (1, b), b ∈ GF(pn), which enables us to simplify the differential spectrum of a

power mapping as follows.

Definition 1 With the notation introduced above, let f(x) = xd be a power mapping over

GF(pn). Denote by ωi the number of output differences b that occur i times:

ωi = | {b ∈ GF(pn) | Nf (1, b) = i} |.

The differential spectrum of f(x) is defined as the multi-set

S = {ω0, ω1, · · · , ωδ} ,

where δ is the differential uniformity of f(x).

It is easily seen that the differential spectrum defined as above has the following properties

δ∑
i=0

ωi = pn and

δ∑
i=0

(i× ωi) = pn. (2)

Utilizing these properties, the following results can be easily derived.

Proposition 1 ([16, Proposition 1]) (i) If p is odd and f(x) = xd is PN over GF(pn), then

its differential spectrum is

{ω0 = 0, ω1 = pn } ;
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(ii) if f(x) = xd is APN over GF(2n), then its differential spectrum is

{
ω0 = 2n−1, ω1 = 0, ω2 = 2n−1

}
.

Recently, the differential spectra of several families of power functions over GF (2n) with

differential uniformity 4, 6 and 8 were determined [2, 3, 4, 14, 15]. For power functions

defined over finite fields of odd characteristic, there are also some classes of power functions

whose differential spectra have been calculated [8, 7, 16]. In [8], for an odd integer n and

d = 2 · 3
n−1
2 + 1, the differential spectrum of the ternary power function xd over GF(3n) was

determined, and the result was used to study the cross-correlation between two ternary m-

sequences of period 3n − 1. In this paper, we investigate a ternary power function f(x) = xd

over GF(3n) with d = 3n− 3, where n > 1. The differential spectrum of this power function is

determined. Our main results are given in the following theorem.

Theorem 1 Let d = 3n − 3 and f(x) = xd be a power mapping over GF(3n). When n > 2,

the differential uniformity ∆f of f(x) is given by

∆f =


2, if n is odd,
4, if n ≡ 2 (mod 4),
5, if n ≡ 0 (mod 4).

Furthermore, the corresponding differential spectra are given by

(i)
{
ω0 = 3n−3

2 , ω1 = 3, ω2 = 3n−3
2

}
if n is odd;

(ii)
{
ω0 = 3n−9

4 , ω1 = 2 · 3n−1 + 3, ω2 = 0, ω3 = 0, ω4 = 3n−1−3
4

}
if n ≡ 2 (mod 4);

(iii)
{
ω0 = 3n−1

4 , ω1 = 2 · 3n−1 + 1, ω2 = 0, ω3 = 0, ω4 = 3n−1−11
4 , ω5 = 2

}
if n ≡ 0 (mod 4).

In particular, when n = 2, xd is PN over GF(3n).

A more general form of the above mapping is f(x) = xp
n−3 over GF (pn) with p being a

prime. The differential properties of this power mapping have been discussed in the literature.

By the setting 1
02

:= 0, this power mapping can be written as f(x) = 1
x2

. When p = 2, it is

linearly equivalent to the inverse function 1
x over GF(2n). Hence, the differential spectrum of

f(x) is the same as that of the inverse function 1
x , which has been determined in [2, Example

1]. When p is an odd prime, the differential uniformity of f(x) has been investigated in [9].
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More specifically, it is proved in [9, Theorem 7] that the differential uniformity ∆f satisfies

1 ≤ ∆f ≤ 5; in particular, for p = 3 and odd n, it is proved that ∆f = 2 by investigating

the Gröbner basis of certain equations. In this paper, we use a different approach to further

studying the differential property of the power mapping x3
n−3 over GF(3n). As a result, we

not only obtain the exact differential uniformity of this function, but also completely determine

its differential spectrum, which settled the open problem in [9].

The remainder of this paper is organized as follows. Section 2 introduces some preliminaries

and notation. Section 3 is dedicated to the proof of our main result. The conclusive remarks

are given in Section 4.

2 Preliminaries

In order to prove our main result in Theorem 1, we need to make some preparations. Let

p be an odd prime, and α a primitive element of GF(pn). Let C0 and C1 denote the sets of

squares and nonsquares in GF(pn)∗, respectively. The cyclotomic number (i, j) for i, j ∈ {0, 1}

is defined as the cardinality of the set Eij = (Ci + 1) ∩ Cj .

Lemma 1 ([12, Lemma 6]) The cyclotomic numbers (i, j) are given as follows:

(i) if pn ≡ 1 (mod 4), then

(0, 0) =
pn − 5

4
, (0, 1) = (1, 0) = (1, 1) =

pn − 1

4
;

(ii) if pn ≡ 3 (mod 4), then

(0, 0) = (1, 0) = (1, 1) =
pn − 3

4
, (0, 1) =

pn + 1

4
.

Indeed, the elements in Eij for i, j ∈ {0, 1} can be fully characterized [7]. The following

lemma characterizes the elements of E00.

Lemma 2 ([7, Lemma 2]) Let p be an odd prime, and α a primitive element of GF(pn). Then,

each element x in E00 has the following representation

x =

(
αk − α−k

2

)2

,

where k ∈ {1, · · · , p
n−5
4 } if pn ≡ 1 (mod 4) and k ∈ {1, · · · , p

n−3
4 } if pn ≡ 3 (mod 4).
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Let q be a prime power, and denote the polynomial ring over GF(q) by GF(q)[x]. The

following lemma about the quadratic equations over finite fields will be frequently used in this

paper, and its proof is trivial.

Lemma 3 [10, Exercise 5.24] The polynomial Q(x) = x2 + ax + b ∈ GF(q)[x], q odd, is

irreducible in GF(q)[x] if and only if a2− 4b is a nonsquare in GF(q). In particular, if a2− 4b

is a nonzero square in GF(q), Q(x) has two distinct roots in GF(q).

For a square s in the finite field GF(q) with odd q, we will use
√
s and −

√
s to denote the two

square roots of s throughout the paper.

3 The proof of the main theorem

In this section, our main goal is to give the proof of Theorem 1. Let d = 3n − 3 and we shall

investigate the following equation

(x+ 1)d − xd = b (3)

in GF(3n). For simplicity, we use N(b) instead of N(1, b) to denote the number of solutions of

(3) in GF(3n). Calculating the differential spectrum of xd can be reduced to determining the

value distribution of N(b) as b runs through GF(3n).

For b ∈ GF(3), N(b) can be easily determined. For b ∈ GF(3n) \ GF(3), the situation

becomes more difficult. If b ∈ GF(3n)\GF(3), one can immediately conclude that the solutions

of (3) are not in GF(3). Thus, in this case x(x+ 1) 6= 0 and (3) becomes

(1 + x)−2 − x−2 = b,

which can be rewritten as

x4 + 2x3 + x2 +
2

b
x+

1

b
= 0.

Replacing x by (x− 1
2), we get the main equation in this paper as follow:

x4 + x2 − ux+ 1 = 0, (4)

where u = 1
b . Note that b (resp. x) ∈ GF(3n) \GF(3) if and only if u (resp. x− 1

2) ∈ GF(3n) \

GF(3). Thus, N(b) is equal to the number of solutions of (4) in GF(3n) \ GF(3). Therefore,
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in order to determine the value distribution of N(b) for b ∈ GF(3n) \GF(3), it is equivalent to

studying the roots of the polynomial

hu(x) = x4 + x2 − ux+ 1 (5)

in GF(3n), where n > 1 and u ∈ GF(3n) \GF(3).

Note that the derivative h′u(x) of hu(x) is x3−x−u, and gcd(h′u(x), hu(x)) = gcd(x2−1, u),

which is equal to 1 when u 6= 0. This implies that hu(x) has no multiple roots in its splitting

field for u ∈ GF(3n) \GF(3). Moreover, it is clear that hu(x) can not have exactly three roots

in GF(3n) since in that case the fourth root belongs to GF(3n) as well. Thus, we have the

following proposition.

Proposition 2 Let u ∈ GF(3n) \GF(3) and hu(x) be the polynomial defined as in (5). Then,

(i) if r0 is a root of hu(x) in GF(3n), then r0 has multiplicity 1 and belongs to GF(3n)\GF(3);

(ii) for each u ∈ GF(3n)\GF(3), the possible numbers of distinct roots of hu(x) in GF(3n) are

0, 1, 2 and 4.

Next we consider the number of u ∈ GF(3n) \GF(3) such that hu(x) has two (resp. four)

distinct roots in GF(3n). Before we proceed, we give some useful facts as follows. Let α be

a primitive root of GF(3n). It follows that −1 = α
3n−1

2 is a square in GF(3n) if and only if

n is even, since 3n ≡ 1 (mod 4) for even n and 3n ≡ 3 (mod 4) for odd n. Moreover, when

n is even, one has 3n ≡ 1 (mod 8), which implies that ±
√
−1 = ±α

3n−1
4 are also squares in

GF(3n). Furthermore, the squares ±
√
−1 are fourth powers in GF(3n) when n ≡ 0 (mod 4)

since 3n ≡ 1 (mod 16) if and only n ≡ 0 (mod 4).

The following results build the foundation to compute the differential spectrum of f(x) in

Theorem 1.

Lemma 4 Let F (x) = x3−x2−1, C0 be the set of squares in GF(3n)∗ and E00 = (C0 +1)∩C0.

(i) When n is odd, the polynomial F (x) has no root in C0.

(ii) When n is even, the polynomial F (x) has no root in the set

A =

{
(t2 − 1)2

t2(t2 + 1)
| t2 ∈ T

}
,
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where the set T is given by

T =

{
E00 \ {1}, if n ≡ 2 (mod 4),

E00 \ { 1, 1± c, 1±
√

1− c, 1±
√

1 + c }, if n ≡ 0 (mod 4),

with c =
√
−1.

Proof: For the polynomial

F (x) = x3 − x2 − 1 = (x+ 1)(x2 − 2x+ 2), (6)

its divisor x2 − 2x + 2 ∈ GF(3)[x] has discriminant −1. Thus, it is an irreducible polynomial

over GF(3), and all its roots are in GF(32).

(i) When n is odd, F (x) has only one root −1 in GF(3n). In this case, −1 is a nonsquare

in GF(3n), and thus F (x) 6= 0 for any x ∈ C0.

(ii) When n is even, −1 is a square in GF(3n) and x2 − 2x + 2 has two roots 1 ±
√
−1 in

GF(3n). Then, in this case F (x) has exactly three roots in GF(3n), which are −1, 1 + c and

1 − c, where c =
√
−1. Notice that (1± c)2 = ∓c which are fourth powers in GF(3n) if and

only if n ≡ 0 (mod 4). Thus, 1± c are squares in GF(3n) if n ≡ 0 (mod 4) and nonsquares if

n ≡ 2 (mod 4). Notice that A is a subset of C0. In what follows we will show that none of the

three roots of F (x) belongs to the set A. We consider the following two cases:

Case 1: n ≡ 2 (mod 4). Then, 1 ± c are nonsquares in GF(3n) and thus they are not in

A. By (6), F (x) has only one root −1 in C0. We observe that −1 6∈ A. Otherwise, −1 can be

written in the form

−1 =
(t2 − 1)2

t2(t2 + 1)
,

which implies t2(t2 + 1) = 1. Then, we obtain that t2 = 1 ± c. This leads to a contradiction

since 1± c are nonsquares in GF(3n) in this case. Thus, −1 6∈ A and F (x) 6= 0 for any x in A.

Case 2: n ≡ 0 (mod 4). From the above discussion, we know that F (x) has roots −1,

1 + c and 1 − c in C0. Next we show that none of these roots belongs to A. Our discussion

proceeds with three subcases.

Subcase 2.1: Suppose that the root −1 can be written in the form −1 = (t2−1)2
t2(t2+1)

. Then,

we have t2(t2 + 1) = 1, which implies t2 = 1 ± c. Note that when n ≡ 0 (mod 4), 1 ± c are
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squares in GF(3n) and (1± c) + 1 = −1± c are also squares. The elements 1± c belong to E00
but not to T . Thus, −1 is not in A .

Subcase 2.2: If the root 1 + c can be written in the form 1 + c = (t2−1)2
t2(t2+1)

= 1 + 1
t4+t2

,

then we have t4 + t2 − 1
c = t4 + t2 + c = 0, which implies t2 = 1±

√
1− c. Next we show that

1±
√

1− c ∈ E00. First, we need to show that 1±
√

1− c are squares in GF(3n). Suppose that

1 +
√

1− c = γ2 for some γ ∈ GF(3n), which can be transformed into γ2 − 1 =
√

1− c. By

repeated squaring both sides, we have

γ8 + 2γ6 + γ4 + 1 = (γ4 + γ3 + 2)(γ4 − γ3 + 2) = 0.

Note that the associated polynomials x4 + x3 + 2 and x4 − x3 + 2 are irreducible over GF(3),

and their roots are all in the subfield GF(34) of GF(3n) when n ≡ 0 (mod 4). Therefore,

there exists a γ ∈ GF(3n) such that 1 +
√

1− c = γ2. This shows that 1 +
√

1− c is a

square in GF(3n), and one can further derive that 1−
√

1− c is also a square in GF(3n) since

(1 +
√

1− c)(1−
√

1− c) = c is a square. Note that (1±
√

1− c) + 1 = −(1∓
√

1− c), which

are also squares in GF(3n). Thus, 1 ±
√

1− c ∈ E00. These two values have been excluded

from E00 and are not in T . Hence we have 1 + c 6∈ A.

Subcase 2.3: Suppose that 1 − c can be written in the form 1 − c = (t2−1)2
t2(t2+1)

. Then we

can similarly show that the corresponding elements t2 = 1 ±
√

1 + c belong to E00 but not to

T . Thus 1− c is not in A. �

Lemma 5 Let u ∈ GF(3n)\GF(3) and hu(x) be the polynomial defined as in (5). Then, hu(x)

has two (resp. four) roots in GF(3n) if and only if

u = ±a2
√
a2 − 1, (7)

with a ∈ GF(3n)∗ satisfying the following three conditions:

(i) a2 − 1 is a square in GF(3n)∗;

(ii) one and only one of −1 + a√
a2−1 and −1 − a√

a2−1 is a square in GF(3n)∗ (resp. both

−1 + a√
a2−1 and −1− a√

a2−1 are squares in GF(3n)∗);

(iii) a6 − a4 − 1 6= 0.
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Proof: If hu(x) has two or more roots in GF(3n), then hu(x) has the following factorization

over GF(3n)

hu(x) =
(
x2 + ax+ b

) (
x2 − ax+ b−1

)
, (8)

where a ∈ GF(3n) and b ∈ GF(3n)∗ satisfying

b+ b−1 = a2 + 1,

u = a(b− b−1).
(9)

The discriminants of the two quadratic polynomials x2 + ax+ b and x2 − ax+ b−1 in (8) are

a2− b and a2− b−1, respectively. By Proposition 2, hu(x) has no multiple roots. Thus, neither

of the two discriminants can be equal to zero. By Lemma 3, hu(x) has exactly two roots in

GF(3n) if one and only one of the two discriminants is a square in GF(3n)∗, and hu(x) has

exactly four roots in GF(3n) if both of them are squares in GF(3n)∗.

The first equation in (9) is equivalent to

(
b+ (a2 + 1)

)2
= a2(a2 − 1). (10)

If a2 = 0 or 1, then we can derive the equality b = b−1 from (10), which leads to u = 0, a

contradiction to the assumption. Thus, to ensure that (9) holds, a(a2−1) 6= 0 and a2−1 must

be a square in GF(3n)∗, which is the desired condition (i).

Furthermore, solving the first equation in (9), we obtain

b = −(a2 + 1)± a
√
a2 − 1. (11)

Substituting the above solutions into the second equation of (9), we get

u = ±a2
√
a2 − 1,

where a ∈ GF(3n)∗ satisfies that a2− 1 is a square in GF(3n)∗. By (11), the two discriminants

a2 − b and a2 − b−1 become exactly (a2 − 1)(−1± a√
a2−1), respectively. The desired result (ii)

follows immediately since a2 − 1 is already a square.

Since u ∈ GF(3n)\GF(3), we have u2 6= 1, which implies that a4(a2−1)−1 = a6−a4−1 6= 0.

Thus, we obtain the desired condition (iii). The proof of the necessity is thus finished.
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Conversely, for a given u of the form (7) with a ∈ GF(3n)∗ satisfying the conditions (i)-(iii)

in this lemma, we can determine b and b−1 from (10), and then get the factorization of hu(x) as

(8). Finally, considering the two discriminants of the polynomials x2+ax+b and x2−ax+b−1,

we obtain the desired result.

�

Based on Lemmas 4 and 5, we can prove the following proposition.

Proposition 3 Let u ∈ GF(3n) \GF(3) and hu(x) be the polynomial defined as in (5). Then,

(i) when n > 1 is odd, hu(x) cannot have four roots in GF(3n) and in this case the number of

u ∈ GF(3n) \GF(3) such that hu(x) has exactly two roots in GF(3n) is equal to 3n−3
2 ;

(ii) when n is even, hu(x) cannot have exactly two roots in GF(3n) and in this case the number

of u ∈ GF(3n) \ GF(3) such that hu(x) has exactly four roots in GF(3n) is equal to 3n−1−3
4 if

n ≡ 2 (mod 4) and 3n−1−11
4 if n ≡ 0 (mod 4) .

Proof: In this proof, we always assume that hu(x) has two or more roots in GF(3n). Using the

notation introduced in Lemma 5, we have(
−1 +

a√
a2 − 1

)(
−1− a√

a2 − 1

)
=
−1

a2 − 1
. (12)

It is convenient to distinguish the cases of even and odd n.

(i) n is odd. Then, −1 is a nonsquare in GF(3n), and so is −1
a2−1 . It follows from (12) that

one of {−1± a√
a2−1 } is a square in GF(3n) and the other is a nonsquare. Thus, in this case,

hu(x) cannot have four roots, and moreover, according to Lemma 5, hu(x) has two roots in

GF(3n) if and only if u = ±a2
√
a2 − 1 with a ∈ GF(3n)∗ satisfying the conditions (i) and (iii)

in Lemma 5.

Let C0 and E00 = (C0 + 1) ∩ C0 be the notation introduced in Lemma 4. Assume that

a2−1 = t2 ∈ C0. Then, it requires that t2 ∈ E00. By Lemma 4 (i), when n is odd, a6−a4−1 6= 0

for any a ∈ GF(3n). Thus, when n is odd, the condition (iii) in Lemma 5 always holds.

Therefore, when n is odd, for u ∈ GF(3n) \ GF(3), hu(x) has exactly two roots in GF(3n) if

and only if u = ±a2
√
a2 − 1 with a2 = t2 + 1 and t2 ∈ E00.

Now we consider the number of such elements u. Let

U0 = {u ∈ GF(3n) \GF(3) | hu(x) has exactly two roots in GF(3n) }.
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Since an element u ∈ U0 if and only if u = ±a2
√
a2 − 1 = ±(t2 + 1)t for some t ∈ F3n with

t2 ∈ E00, the set U0 can be rewritten as U0 = {u | u = ±t(t2 + 1), t2 ∈ E00}. Moreover, if

t31+ t1 = t32+ t2, then (t1− t2)((t1− t2)2+1) = 0, which implies t1 = t2 since −1 is a nonsquare;

if t31+t1 = −(t32+t2), one similarly obtains t1 = −t2 . This means that each t2 ∈ E00 corresponds

to two u’s ∈ U0. Hence, it follows from Lemma 1 that |U0| = 2|E00| = 2× 3n−3
4 = 3n−3

2 .

(ii) n is even. Then −1 is a square in GF(3n), and so is −1
a2−1 . Then from (12), it follows

that both −1 + a√
a2−1 and −1 − a√

a2−1 are squares or nonsquares in GF(3n)∗. Thus, hu(x)

cannot have exactly two roots in GF(3n) in this case. Next we consider the number of u ∈

GF(3n) \GF(3) such that hu(x) has exactly four roots in GF(3n). Define

U = {u ∈ GF(3n) \GF(3) | hu(x) has exactly four roots in GF(3n) }. (13)

According to Lemma 5, u ∈ U if and only if u = ±a2
√
a2 − 1 with a ∈ GF(3n)∗ satisfying the

corresponding conditions (i)-(iii) in Lemma 5. When n is even, the condition (ii) in Lemma 5

is equivalent to that 1 + a√
a2−1 is a square in GF(3n)∗.

Assume that a√
a2−1 + 1 = t2 for some t2 ∈ C0. Then, we have

a2 =
(t2 − 1)2

t2(t2 + 1)
and a2 − 1 =

1

t2(t2 + 1)
.

To ensure that a2 ∈ C0 and a2 − 1 ∈ C0, t2 + 1 should also belong to C0 and t2 6= 1. Then,

we conclude that a ∈ GF(3n)∗ satisfying the corresponding conditions (i) and (ii) in Lemma

5 if and only if a2 = (t2−1)2
t2(t2+1)

with t2 ∈ E00 \ {1}. In order to ensure that the condition (iii)

in Lemma 5 also holds, some additional restrictions on t2 ∈ E00 \ {1} should be imposed as

follows.

Let

A =

{
a2 =

(t2 − 1)2

t2(t2 + 1)
| t2 ∈ E00 \ {1} and a6 − a4 − 1 6= 0

}
.

By Lemma 4 (ii), the above set can be rewritten as

A =

{
a2 =

(t2 − 1)2

t2(t2 + 1)
| t2 ∈ T

}
, (14)
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where the set T is given by

T =

{
E00 \ {1}, if n ≡ 2 (mod 4),

E00 \ { 1, 1± c, 1±
√

1− c, 1±
√

1 + c }, if n ≡ 0 (mod 4),
(15)

with c =
√
−1. Here one should note that if n = 2, then E00 \ {1} is empty due to Lemma 1.

This means that when n = 2, hu(x) cannot have four roots in GF(3n).

Summarizing the above discussions, we conclude that u ∈ U if and only if u = ±a2
√
a2 − 1

with a2 ∈ A, where A is given in (14). Notice that

u = ±a2
√
a2 − 1 =

(
±
√
a2 − 1

)3
+
(
±
√
a2 − 1

)
.

In order to simplify the above expression for u, we define

B = {w | w2 = a2 − 1 with a2 ∈ A}. (16)

Then, u ∈ U if and only if u = w3 + w with w ∈ B.

It is obvious that |B| = 2|A|. Now we consider the relationship between T and A. For

s2, t2 ∈ T , (t2−1)2
t2(t2+1)

= (s2−1)2
s2(s2+1)

if and only if s2 = t2 or s2 + t2 = −1. In addition, when n is

even, the set E00 \ {1} has the following property: if t2 ∈ E00, then −1− t2 also belong to E00.

Thus, the correspondence a2 = (t2−1)2
t2(t2+1)

between t2 ∈ T and a2 ∈ A is 2-to-1. This means that

|A| = |T |/2. Moreover, by the definition of T in (15), we have |T | = |E0,0|−1 if n ≡ 2 (mod 4)

and |T | = |E0,0| − 7 if n ≡ 2 (mod 4). Then, by Lemma 1, we have

|B| = |T | =


3n−9
4 , if n ≡ 2 (mod 4),

3n−33
4 , if n ≡ 0 (mod 4).

(17)

Now we determine the cardinality of U . We will show that the correspondence u = w3 +w

between B and U is 3-to-1, and then |U| = |B|/3. According to the relationship between U in

(13) and B in (16), for a given u ∈ U , there exists an element w ∈ B such that u = w3 + w.

For such given u, the polynomial

x3 + x− u = x3 + x− (w3 + w) = (x− w)(x2 + wx+ (w2 + 1))
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has exactly three roots in GF(3n), which are precisely w, w− c and w+ c, where c =
√
−1. In

what follows we will prove that for such given u ∈ U , w ± c also belong to B. Combining (14)

and (16), the set B can also be represented as

B =

{
w | w2 =

1

t2(t2 + 1)
with t2 ∈ T

}
. (18)

To show that w± c belong to B, we only need to show that (w± c)2 can be written in the form

1
t20(t

2
0+1)

for some t20 ∈ T by (18).

First, we make some preparations. By the definition of B in (18), we assume that w2 =

1
t2(t2+1)

for some t2 ∈ T . By Lemma 2 and using the notation introduced there, assume

t2 = (αk − α−k)2 for some integer k. Then, we can rewrite w2 as 1
(y2−y−2)2

, where y = αk.

Without loss of generality, assume that w = 1
y2−y−2 . Then,

w(w − c) =
1

y2 − y−2
(−c)

(
c+ y2 − y−2

y2 − y−2

)
=

1

(y2 − y−2)2
(−c)

(
y − cy−1

)2
, (19)

which is a nonzero square in GF(3n) since −c is a square in GF(3n) when n is even. Now we

consider the following equation

w + c =
1

x2 − x−2
, (20)

which is equivalent to

x4 − 1

w + c
x2 − 1 = 0. (21)

Note that ∆ = 1
(w+c)2

+ 1 = 1
(w+c)2

w(w − c) is a nonzero square in GF(3n) duo to (19). By

Lemma 3, we have

x2 = − 1
w+c ±

√
∆

= −
(

1∓
√
w(w−c)
w+c

)
,

(22)

where
√

∆ denote a square root of ∆ in GF(3n). In order to show that (22) has solutions in

GF(3n), we need to verify that the right hand side of (22) is a square in GF(3n). Note that

c =
√
−1 is a square in GF(3n) when n is even. Thus,

√
c ∈ GF(3n). By (19), without loss

13



of generality, assume that
√
w(w − c) = 1

y2−y−2 c
√
c(y − cy−1). Substituting it into the right

hand side of (22), we have

−
(

1∓
√
w(w−c)
w+c

)
= −

(
1∓c
√
c(y−cy−1)/(y2−y−2)
1/(y2−y−2)+c

)
= −

(
(y2−y−2)∓c

√
c(y−cy−1)

1+c(y2−y−2)

)
= −

(
y−2

c ·
(y4−1)∓c

√
c(y3−cy)

(y2−y−2)+2c

)
= −

(
1
cy2
· y

4∓c
√
cy3∓

√
cy−1

(y+cy−1)2

)
= −

(
1
cy2
· (y∓c

√
c)4

(y+cy−1)2

)
= 1

(c
√
cy)2
· (y∓c

√
c)4

(y+cy−1)2
,

which is indeed a square in GF(3n). Thus, (22) has solutions in GF(3n), and the solutions

are not equal to ±1 by (21). Combining (20)-(22), one knows that there exists an element

x ∈ GF(3n)∗ \ {±1} such that (w + c)2 = 1
(x2−x−2)2

. Let x be the element given by (22) and

t20 = (x−x−1)2. It is obvious that t20 belongs to E00 due to Lemma 2. Hence (w+c)2 = 1
t20(t

2
0+1)

.

Note that the value t20 = (x− x−1)2 must belong to T . Otherwise, it will lead to

u = (w + c)3 + (w + c) = w3 + w ∈ GF(3),

a contradiction. By (18), we conclude that w+c ∈ B. Similarly, we can derive that (w+c)+c =

w − c ∈ B.

The above argument has shown that for each u ∈ U , there are three w’s ∈ B such that

u = w3 + w. On the other hand, the polynomial x3 + x − u ∈ GF(3n)[x] has at most three

roots in GF(3n). Thus, the correspondence u = w3 + w between w ∈ B and u ∈ U is 3-to-1.

Together with (17), we have

|U| =


3n−1−3

4 , if n ≡ 2 (mod 4),

3n−1−11
4 , if n ≡ 0 (mod 4).

(23)

Note that as mentioned before, when n = 2, E00 \ {1} is empty and so is T . Thus |U| = 0, and

the formula in (23) is also valid for n = 2. �

With the above preparations, we can now give the proof of the main theorem.
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Proof of Theorem 1. As stated at the beginning of this section, let N(b) denote the number

of solutions of (3) in GF(3n).

If b = 0, then (3) is equivalent to

(
1 +

1

x

)d
= 1,

which has only one solution x = 1 in GF(3n). Thus, N(0) = 1.

If b = 1, in addition to the solution x = 0, the other roots of (3) satisfy

(1 + x)−2 − x−2 = 1, (24)

where x 6= 0 and x 6= −1. We can rewrite (24) as

x4 + 2x3 + x2 + 2x+ 1 = 0. (25)

The polynomial on the left hand side of (25) is irreducible over GF(3), and its four roots are

all in GF(34) but not in any subfield of GF(34). Thus, N(1) = 5 when n ≡ 0 (mod 4) and

N(1) = 1 otherwise.

Similarly, if b = −1, in addition to the solution x = −1, the other roots of (3) satisfy

(1 + x)−2 − x−2 = −1,

which can be rewritten as

x4 + 2x3 + x2 + x+ 2 = 0. (26)

The polynomial on the left hand side of (26) is also irreducible over GF(3). Therefore, we have

N(−1) = 5 when n ≡ 0 (mod 4) and N(−1) = 1 otherwise.

Now we consider N(b) when b ∈ GF(3n) \ GF(3). As stated before, in this case, N(b) is

equal to the number of solutions of (4) in GF(3n) \ GF(3), where u = 1
b . We consider the

following cases.

Case 1: n > 1 is odd. In this case, we already have N(0) = N(−1) = N(1) = 1. By

Proposition 3, we know that for each b ∈ GF(3n) \GF(3), N(b) is equal to 0, 1 or 2, and the

number of b such that N(b) = 2 is equal to 3n−3
2 . Let ωi denote the number of b ∈ GF(3n)
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such that N(b) = i, i ∈ {0, 1, 2}. By (2), we have


ω0 + ω1 + ω2 = 3n,

ω1 + 2ω2 = 3n,

ω2 = 3n−3
2 .

Solving above equation system gives the desired result.

Case 2: n ≥ 2 and n ≡ 2 (mod 4). Then, N(b) = 1 for each b ∈ GF(3). By Proposition 3,

the possible values of N(b) are 0, 1 or 4 for b ∈ GF(3n)\GF(3), and the number of b ∈ GF(3n)

such that N(b) = 4 is 3n−1−3
4 . Similarly, by (2), we have



ω0 + ω1 + ω4 = 3n,

ω2 = ω3 = 0,

ω1 + 4ω4 = 3n,

ω4 = 3n−1−3
4 ,

where ωi is the number of b such that N(b) = i, i ∈ {0, 1, · · · , 4}. Solving this equation system,

we also get the desired result. Note that when n = 2, w4 = 0. Thus, in this case xd is PN, and

its differential spectrum obtained here is in accordance with Proposition 1.

Case 3: n ≡ 0 (mod 4). Then, N(0) = 1 and N(1) = N(−1) = 5. By Proposition 3, N(b)

is equal to 0, 1 and 4 for b ∈ GF(3n) \GF(3) and ω4 = 3n−1−11
4 . Similarly, we have



ω0 + ω1 + ω4 + ω5 = 3n,

ω1 + 4ω4 + 5ω5 = 3n,

ω2 = ω3 = 0,

ω4 = 3n−1−3
4 ,

ω5 = 2.

Solving the equation above, we obtain the desired result. �
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4 Conclusion

In this paper, we conducted a comprehensive investigation on the differential spectrum of

xp
n−3 for p = 3 and settled the open problems in [9]. Nevertheless, the calculation process relies

heavily on the characteristic p = 3, and we didn’t manage to extended the technique to a general

odd prime p. It is worth noting that the study of ternary functions with desired cryptographic

properties is of practical interest: the IOTA foundation is currently developing new computer

chips built around base-3 logic (https://cryptobriefing.com/iota-new-hash-function/).
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