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Abstract. High variability of wind in the farm areas causes a drastic instability in the
energy markets. Therefore, precise forecast of wind speed plays a key role in the optimal
prediction of offshore wind power. In this study, we apply two deep learning models, i.e.
Long Short-Term Memory (LSTM) and Nonlinear Autoregressive EXogenous input (NARX),
for predicting wind speed over long-range of dependencies. We use a four-month-long wind
speed/direction, air temperature, and atmospheric pressure time series (all recorded at 10
m height) from a meteorological mast (Vigra station) in the close vicinity of the Havsul-I
offshore area near Ålesund, Norway. While both predictive methods could efficiently predict
the wind speed, the LSTM with update generally outperforms the NARX. The NARX suffers
from vanishing gradient issue and its performance declines by abrupt variability inherited in
the input data during training phase. It is observed that this sensitivity will significantly
decrease by integrating, for example, the wind direction at low frequencies in the learning
process. Generally, the results showed that the predictive models are robust and accurate in
short-term and somewhat long-term forecasting of wind.

1. Introduction
Nowadays, wind energy is one of the most prospective sources of renewable energy due to global
awareness on climate change, steady increase in the global population, and the environmental,
political and economical issues related to the fossil fuels [1]. As it is essential maximizing
production while reducing the structural loads to turbines and mitigating the wake losses
(same as maximizing production), the high variability of wind in the farm areas can cause
a drastic instability in the energy markets [2]. Therefore, precise forecast of wind speed and
correspondingly the wind power generation plays a critical role on the optimal dispatch plans of
grid control applications.

To tackle the challenges related to the wind speed forecasting, several studies have been
conducted for forecasting of the wind speed in very short, short (i.e. 30 min to few hours),
medium, and long term (i.e. more than a day). The proposed models are physical models [3],
data-driven and statistical methods [4, 5], and hybrid models [7, 8]. The physical predictive
models rely on governing equations of motions that have predictive ability across abroad range
of spatial/temporal scales. However, these models are computationally expensive. Data-
driven models rely on training of their weights based on past available train data and are
more effective for short-term forecast, and hybrid models gain the performance by employing
both models in there predictions. Comparative analyses have demonstrated that well-developed
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data-driven/hybrid models may achieve better (or at least equivalent) prediction accuracy than
physical models, see for example [9, 10].

Artificial Neural Network (ANN) with various configurations has been used for the short-term
wind forecast, where forecasts beyond the last observations collected in the training data are only
reliable for few time steps [6]. ANN (consisting of input layer, hidden layer and output layer) is
called shallow if it uses only one hidden layer and deep if the number of hidden layers is more
than one. Specifically, the internal structure of deep neural networks, such as Recurrent Neural
Network (RNN), makes it possible to recover complicated nonlinearities in the data [11]. RNNs
contain memory blocks with ability to remember information at each time from the previous
samples. The Long Short-Term Memory (LSTM) is one of the most common kind of RNN for
processing time series that can retain information for a long period of time during the learning
process [12]. While ANN-based techniques are able to capture the nonlinear tendencies in the
wind data, their performance is sensitive to the choice of reliable criteria (e.g. the network
topology and the number of hidden neurons) which control the structure of the ANN. Nonlinear
Autoregressive Networks with EXogenous input (NARX) is another kind of RNN in which multi-
step forecast of wind speed can be performed by wind speed along with additional meteorological
time series such as air temperature, atmospheric pressure, and wind direction [13].

In this study, we examine the predictability of wind at 10 m height using two different deep
learning data-driven methodologies, i.e. LSTM and NARX, Section 3. In particular, we apply
these methods to the wind time series of a meteorological mast in the Northwest coast of Norway
between November 2011 and February 2012, Section 2. For the NARX approach in addition to
the wind speed, we use the air temperature, pressure, and wind direction. Finally, we discuss in
details the performance of models in forecasting wind by the means of their ability to capture
the statistical properties of wind speed, i.e. Section 4.

2. Measurement site and data
The measurement site is in very close vicinity of the Havsul-I offshore area off the west coast
of Norway (Fig. 1) which was the first site in Norway with a concession for construction of an
offshore wind farm due to the wind potential of the region. Ancillary atmospheric data at 10 m
height were logged from a meteorological station, i.e. Vigra station, with coordinates: 62.83oN
and 6.15oE, Fig. 1.

Samples used in the predictive models correspond to an approximately five-month of hourly
measurements of: wind speed (m/s), wind direction (o), air temperature (oC), and atmospheric
pressure (bar) from October 15, 2011, to March 12, 2012, including 3577 pieces of data for each
mentioned variable. Figure 2-a shows the wind speed time series used in this study. Wind is
blowing on average from southeast and southwest, and wind speed in the range between 1 to 15
m/s contains several events, see more details in [14]. The maximum air temperature is about 15
oC for couple of days, i.e. Fig. 2-b. Moreover, high pressure fronts pass over the station during
this period, Fig. 2-c.

.

3. Methods
The (point) forecast procedure for the wind speed u can be written as follows:

ût+H|t = g(current information) (1)

= g(ut, ut−1, · · · , ut−tu , Xt, Xt−1, · · · , Xt−tX ), (2)

where ût+H|t denotes the wind speed forecast at time t and H is the forecast horizon. g is either
deterministic/stochastic or machine learning based functional map that makes a bridge between
the current input information (e.g. wind speed and other atmospheric data) and the output
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Figure 1. Location of the measurement site (i.e. meteorological station Vigra) close to the
Havsul-I offshore area.

information corresponding to the future information. Ω = {ut, ut−1, · · · , ut−tu , Xt, · · · , Xt−tX}
is information set in which Xt, Xt−1, · · · , Xt−tX are all other exogenous time series used in the
forecast. tu and tX are values of first instant of input used in the learning process. As an
example for H = 1, the forecast function g, in an univariate statistical form, can be simply
defined by ût+1|t = ut for Ω = {ut} or using rolling average with the same forecast horizon as

ût+1|t = Σt
k=t−myk/m for Ω = {yt, · · · , yt−m} to utilize information from the last m samples.

Typically in the real world, there is no analytical form to explain g due to all uncertainties/noise
involved in the data measurements or modelling. Furthermore, these data may not meet
some underlying assumptions required by the traditional statistical methods (e.g. stationarity
requirement). Machine learning approaches have, however, introduced new paradigms to model
forecast function g through a layered learning hierarchy which is not relying on time-ordering as
it is essential for the statistical models [7]. While the statistical models in terms of processing
are straightforward, the machine learning based approaches depend on different factors such
as network structure design, model training, and hyper-parameter tuning, as well as quality of
training historical/past information (i.e. their uncertainty and noise content). In this Section,
we investigate both the LSTM and NARX methods due to their great learning ability to predict
various time series.

3.1. LSTM
Feed forward neural networks process the relationships between each input and output
independently. This may cause an issue so-called vanishing gradient (short-term memory) where
the information from the previous learning is disappeared over the large time interval [15]. LSTM
addresses the short-term memory issue of RNN by employing internal mechanisms to control
flow of information to learn long-term dependencies. It generally contains 4 interacting layers:
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Figure 2. Time series of: (a) wind speed U10 (black) and wind direction (red markers) at 10
m height measured at Vigra station (see Fig. 1); (b) air temperature (black). Shaded areas in
this plot are portions of data used for the training (red) and the test (green). They correspond
to 90% and 10% of the total number of data, respectively; and (c) time series of atmospheric
pressure.

input, hidden, output layers, and cell state (memory block) as a special structure for neurons.
This architecture is simply a memory cell to remember information within the neurons in the
hidden layer and three gates, Fig. 3-a. The cell state allows forward flow of data through
applying a series of linear transformations, and add-to or removed-from the cell operators using
sigmoid gates [12]. A gate, like a layer, contains individual weights.

As shown, the LSTM consists of an input gate, it, a forget gate, ft, a cell gate ct, and an
output gate, ot. This internal gate mechanism can solve the vanishing gradient problem in the
training process by learning which data needs to be kept or discarded from the sequence. The
input, output, and forget gates control the flow of data into and out of the cell. The general
relationships for different gates are given as

Xt = σ(WX · [ht−1, xt] + bX), (3)

where X = {i, f, g, o} contains the name of different gates, σ denotes the activation sigmoid
function, and [ht−1, xt] is the concatenated input signal. The sigmoid function is calculated by
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Figure 3. (a) Structure of a typical LSTM network; and (b) a typical NARX network with
three layers. Linear and nonlinear (sigmoid function) activation functions are usually used for
the output and hidden layers, respectively. b represents the bias, and W0, W1 and W2 are weights
at hidden/output layers. Neurons are connected by weights that their values become updated
during the training phase of learning process.

σ(x) = ex/(1 + ex) and tanh is given by (ex − e−x)/(ex + e−x). WX are the weight matrices, b
represents the bias. At each time step, the hidden state and the cell state, that remembers the
previous values over arbitrary time period, are calculated as:

ct = ft � ct−1 + it � gt, (4)

ht = ot � σ(ct), (5)

where � represents the element-wise multiplication. In short, the first step in the LSTM
identifies which data will be excluded from the cell via the sigmoid function by utilizing
information of previous hidden layer ht−1 at time t − 1 and the input xt at present time t,
i.e. the forget gate ft. Deciding and storing information in the cell state use the sigmoid
layer (deciding between omitting and updating) and the tanh layer (determining the level of
importance of information by weighting them between (−1, 1). The two values from deciding
and updating steps are multiplied and then added to old memory ct−1 to obtain new cell state ct.
Final step creates the output values of ht based on values of ot and ct using a sigmoid gate and a
tanh layer, respectively, i.e. Eq. (4). The LSTM network as shown in Fig. 3-a has great ability
to approximate the forecasting function g in Eq. (2). Furthermore, we standardize the data (i.e.
zero mean and standard deviation of 1) before using them in the algorithm. This improves the
effective learning and convergence rate of LSTM network, and shortens the training time of the
network. In the case of multiple meteorological inputs, the normalization step makes the same
time scales and structures for different input variables. In constructing LSTM model, one needs
to carefully select training parameters such as learning rate, optimizer, and number of epochs.
One epoch is equivalent with passing, only once, the data forward and backward through the
network. In this study, we set different values of epochs to check the forecast error rate, and
select ”Adam” algorithm for optimization that employs a stochastic gradient descent procedure
to update the weights of LSTM network [12]. Finally, the predictive ability of the LSTM can
be substantially enhanced if the observed values are used for updates instead of predictions.
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3.2. NARX
The learning process and convergence rate in the NARX are more effective/faster than other
ANN techniques. Figure 3-b shows the structure of a standard NARX network including: a two-
layer feed-forward network, delay lines to memorize the previous values of the input samples, a
linear transfer function in the output layer, and a sigmoid transfer function in the hidden layer.
The training data are passed through the delay lines. Here, the input meteorological data to the
NARX are atmospheric pressure, air temperature, wind direction, i.e. exogenous input, as well
as wind speed as endogenous input. The output is wind speed. This network gains from the
memory ability (using previous values of predicted or true sample) that improves substantially
its performance in the forecast scenarios.

For training of this network in order to update weights/biases, a back propagation method-
ology (based on computing gradients) is employed by the use of the Levenberg–Marquardt
optimization. This optimization method minimizes a combination of the mean of the squared
weights (biases) and the mean-squared errors for all neurons in the network to provide an esti-
mate of g [13, 8]. As part of NARX architecture, the output at each time is fed back to the input
of the network, Fig. 3-b. Moreover, feeding the target output during training, {ut, · · · , ut−tu},
can also improve the efficiency of the network optimization. It is noted that the NARX networks
suffer from the vanishing gradient issue.

4. Results
Performance of forecasting models is evaluated through three metrics: The Nash–Sutcliffe
Efficiency (NSE) [16], the Root Mean Square Error (RMSE), and the Mean Absolute Error
(MAE) as:

NSE = 100×
(

1−
∑

i(ui − ûi)2∑
i(ui − ū)2

)
, (6)

RMSE =

√√√√ 1

N

N∑
i=1

(ui − ûi)2, (7)

MAE =
1

N

N∑
i=1

|ui − ûi|, (8)

where N denotes the total number of data, ui, ûi, and ū present the observed, the predicted,
and the mean wind speed, respectively at discrete time ti. In this section, we aim to compare the
performance and accuracy of NARX and LSTM (with update) neural network for 17-day-ahead
forecast for Vigra station. The training sequence is selected for the first ∼90% of the time series,
see Fig. 2-b. Here, the key difference between configuration of LSTM and NARX is associated
with input time series as the NARX uses external data (i.e. air temperature, pressure, and wind
direction) to improve forecast by accounting for external dependencies in addition to the wind
speed.

Figure 4-a shows the predicted time series from the LSTM model along with absolute errors of
forecast (Figs. 4-b and c) for the conditions where the network is not updated (i.e. LSTM-NU,
red markers) and the network updated with observations (i.e. LSTM-WU, black line) against
the wind speed observations (blue line). It is evident that with no-update, the prediction is
quite acceptable for a few time steps (here about few hours). The RMSE error is 2.5 m/s
and the absolute error has a peak with value of 6 m/s. After training of the LSTM network,
we can replace the predicted values by the observed ones to update the LSTM network in the
testing phase (when observations are available). This leads to a significant improvement in the
predictions and notable reduction of RMSE error. The RMSE error becomes around 1 m/s and
the maximum value of the absolute error reaches ∼ 4 m/s.
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Figure 4. (a) Comparisons between observation (black) and prediction from LSTM-WU (blue)
and LSTM-NU (red dotted line) in the test phase; (b) the absolute error of prediction from
LSTM-NU; and (c) the absolute error of prediction from the LSTM-WU. The green shaded
areas in (a) and (b) denote roughly the forecast horizon for the LSTM-NU.

Depending on the problem, the training error rates can be used as a criterion to determine
near optimum values of hyper-parameters like number of epochs, number of neurons and hidden
layers, and effects of the LSTM update with observations (i.e. LSTM-WU). In Fig. 5, we show
comparisons between 4 LSTM simulations with the same values of hyper-parameters except
different values of epochs. It is evident that increasing number of epochs will not necessarily
lead to better quality of forecast. Specifically, the forecast for the LSTM-WU reaches better
performance and accuracy when using epochs value of 60 (i.e. correlation coefficient of 0.89 and
RMSE of 1.4 m/s), Figs. 5-a and b. The same can be concluded for the conditions when the
neural network is not updated. In this case, we select only 18 hours of prediction for the purpose
of comparison.

We use a NARX network with three hidden layers consisting of 40 neurons and set epoch to
60 in this study. This number of neurons has been selected based on trial and error to minimize
the (mean-square) error (there is possibility to achieve satisfactory results by different network
configuration and topology). Performance of network is calculated by the use of Eqs. (6-8), see
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Figure 5. Scatterplots between observation and: (a) prediction from LSTM-WU with epochs
number of 60; (b) prediction from LSTM-WU with epochs number of 300; (c) prediction from
LSTM-NU with epochs number of 60; and (d) prediction from LSTM-NU with epochs number
of 300. R denotes the correlation coefficient. Figures (c) and (d) are made for few time steps
beyond the last recorded observations due to the short-horizon forecasting characteristics of
LSTM-NU. For plots of LSTM-NU cases, we select only 18 hours of prediction.

Table 1. Learning rate and momentum hyper-parameters are set to 0.003 and 0.3, respectively.
Finally, training algorithm uses Levenberg-Marquardt backpropagation training algorithm. We
use hourly air temperature, atmospheric pressure, and wind direction with the same vector
sizes as input and wind speed as output. Figure 6-a shows time series comparison between the
measured and the predicted wind speed for ∼ 17 days. Two time series are highly in agreement
with correlation value of 0.66. While the absolute error is low for the vast majority of points,
there are few events that cause notable jump in the values of error, see the shaded green areas. In
search to find out the reason for such behaviour, we noticed high correlation between this event
and sharp variation in the wind direction data occurring at the same time. These events might



EERA DeepWind'2020

Journal of Physics: Conference Series 1669 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1669/1/012017

9

be caused by the wind gustiness or the lack of adequate quality data selection and treatment. To
resolve the issue, we replaced the original wind direction time series with the low-passed filtered
(smoothed) time series, Fig. 6-b black line. The effects of smoothing out such events has led to
substantial improvement in the accuracy and performance of NARX as shown in Fig. 6-c.

Figure 6. (a) Comparison between the observed (black) and the NARX-based prediction of
the wind speed without smoothing the wind direction to damp out the steep variations (red);
(b) comparison between the original (red) and the smoothed (black) wind directions; and (c)
comparisons between the observed (black) and the NARX-based prediction of wind speed after
applying low-passed filter to the wind direction input array (red). Here, R denotes correlation
coefficient and epochs number sets to 60.

It is obvious from the scatterplots in Figs. 7-a and b that the NARX-WF (i.e. NARX
with filter) produces better estimates of wind speed than the ones from the NARX-NF (i.e.
NARX with no filter) so that the effect of low-passed filtering of wind direction leads to an
increase of correlation between the observed and predicted wind speeds. The smoothing will
further improve the pattern of correlation (i.e. scatters) between both time series. This example
highlights importance of applying appropriate pre-processing procedures on input data to achieve
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good feature expressions.

Figure 7. Regression analysis for following cases: (a) Between observation and the NARX
prediction of U10 without smoothing (no low-passed filtering) of the wind direction, NARX-NF;
(b) between observation and the NARX prediction with smoothing (with low-passed filtering),
i.e. NARX-WF; (c) between the LSTM-WU prediction and the NARX-NF prediction; and
(d) between the LSTM-WU prediction and the NARX-WF prediction. R denotes correlation
coefficient, and vertical axes contain equations of regression lines. In this example, we set epochs
number to 60 for both LSTM and NARX networks.

Table 1 quantifies further the comparison results between the predicted and the observed
wind speed from the LSTM and the NARX networks as shown in Fig. 7. The accuracy of
the LSTM model (NSE value) reaches well above 14% with an average error of 1.11 m/s (MAE
value) and RMSE value of 0.68 m/s. This again suggests that the LSTM with update is the most
accurate model in this study. Furthermore, smoothing the wind direction in the NARX model
has a significant impact on the performance and accuracy of the NARX-based predictions.

5. Conclusions
In this study, we investigated the predictability of wind speed time series using two deep
learning algorithms, i.e. Long Short Term Memory (LSTM) and Nonlinear Autoregressive with
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Table 1. Quantitative comparisons of predictive models using performance and accuracy
measures defined by Eqs. (6–8) in the testing phase.

accuracy

Method RMSE [m/s] NSE [%] MAE [m/s]

LSTM-WU 0.676 14.22 1.113
NARX-NF 2.791 3.67 1.984
NARX-WF 1.663 7.00 1.267

EXogenous input (NARX). Both methods were trained and applied for the time series collected
from a meteorological mast located in the close vicinity of Havsul-I offshore area in the west
coast of Norway. While LSTM used only wind speed for the training and testing, the NARX
used atmospheric pressure, air temperature, and wind direction as exogenous data in addition to
the wind speed. We have shown that the LSTM model without update can predict successfully
for at least a few time steps (i.e. short-term forecast with horizon of few hours), while updating
the LSTM network with observation could significantly improve the long-term (i.e. more than
a day) prediction. We showed that the NARX can successfully predict wind speed with high
performance. It has been also observed that abrupt variability (e.g. from either strong wind
gustiness or lack of sufficient accuracy of temporal features in data) can decline the accuracy and
performance of the NARX model. The issue was resolved by using the wind direction data at low
frequencies during the learning process (to avoid very extreme variations between local minima
and maxima). A shortcoming associated with the forecast using NARX in this study is the lack
of using the solar irradiation data as input for the learning process. This is because adding good
quality solar irradiation data provides further information on regionality and diurnal variability
that could potentially improve effective prediction of wind speed.

To validate all model results, we applied some criteria such as NSE value, RMSE value, as well
as mean absolute error value. Both updated LSTM and NARX showed very good performance in
forecasting wind speed using test data. However, the updated LSTM outperformed the NARX
model. It is worth to mention, the accuracy and performance of single-input LSTM model
without update in forecasting of more complex wind speed time series will increase if we employ
multiple meteorological variables as input data or integrate LSTM with other data-driven or
statistical models.
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