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Fluid flow in the subsurface is fundamental in a variety of geological processes including volcanism, metamorphism, and mineral
dissolution and precipitation. It is also of economic and societal significance given its relevance, for example, within groundwater
and contaminant transport, hydrocarbon migration, and precipitation of ore-formingminerals. In this example-based overview, we
use the distribution of iron oxide precipitates as a proxy for palaeofluid flow to investigate the relationship between fluid flow,
geological structures, and depositional architecture in sedimentary rocks. We analyse and discuss a number of outcrop examples
from sandstones and carbonate rocks in New Zealand, Malta, and Utah (USA), showing controls on fluid flow ranging from
simple geological heterogeneities to more complex networks of structures. Based on our observations and review of a wide range
of the published literature, we conclude that flow within structures and networks is primarily controlled by structure type (e.g.,
joint and deformation band), geometry (e.g., length and orientation), connectivity (i.e., number of connections in a network),
kinematics (e.g., dilation and compaction), and interactions (e.g., relays and intersections) within the network. Additionally,
host rock properties and depositional architecture represent important controls on flow and may interfere to create hybrid
networks, which are networks of combined structural and stratal conduits for flow.

1. Introduction

It is well known that besides the intrinsic rock and fluid
properties (i.e., porosity, permeability, fluid density, and
viscosity), geological structures such as faults, fractures, and
deformation bands may also strongly influence fluid flow
(e.g., [1–4]). Understanding the interaction between fluid
flow and geological structures is key for the comprehension
of flow-and-reaction-related phenomena that tend to localize
around faults and fractures (e.g., [5, 6]), and hence funda-
mental for a variety of geological processes such as volcanism
and metamorphism, as well as mineral dissolution and pre-
cipitation. Understanding subsurface fluid flow and reactions
is also of economic and/or societal significance, given its rel-
evance for the exploration and exploitation of ore mineral
deposits, hydrocarbons, geothermal energy, contaminant
transport, carbon storage, and groundwater aquifer manage-
ment (e.g., [7–17]).

Different types of structures have different effects on flow.
Open fractures, such as joints, may be highly conductive,
whereas cemented fractures (veins) or deformation bands
may be nonconductive or have very low permeability (e.g.,
[18–20]). Being able to identify and separate between differ-
ent types of structures is therefore essential since they may
have different effects on flow. Geological structures may act
as conduits or barriers for fluid flow, or as a combination of
the two. They may also have strongly anisotropic flow prop-
erties, e.g., acting as a barrier for cross-fault flow but as a con-
duit for fault-parallel flow (see [21–25]). It is common that
flow properties of faults and fractures are transient and/or
cyclic in nature, as faults and fractures vary between being
open and closed for fluid flow through alternating fracturing,
cementation/sealing, and refracturing (the so-called crack-
seal behaviour; [26–30]). Numerous studies have offered
insight into how single structures, or pairs of interacting
faults and their damage zones, may affect flow [13, 31, 32].
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However, faults and fractures commonly occur in networks
[33–35]. The relationship between fault and fracture network
properties (topology, connectivity) on one hand, and fluid
flow in rocks on the other, is still poorly constrained (e.g.,
[36]). Furthermore, it is well recognized that depositional
architecture may strongly affect flow (e.g., [37]), yet there
are few studies that address the interaction of depositional
architecture and geological structures and their influence
on fluid flow in and around fracture networks (e.g., [38]).

Motivated by the above, the main aim of this work is to
give an overview, exemplify, and investigate both the deposi-
tional, architectural, and structural controls on fluid-rock
interactive phenomena. To do this, we examine the spatial
relationship between faults and fractures, fracture network
topology, depositional architecture, and the distribution of
Liesegang-type reaction-diffusion systems (Liesegang bands,
e.g., [39]) and iron oxide deposits (collectively referred to
herein as iron oxide precipitates (IOPs)).

In a recent study [40], we investigated the role of fracture
network connectivity in controlling localized calcite cemen-
tation along small-scale faults and damage zones in lime-
stone. Here, we investigate a fuller range of controls on flow
as we discuss how fluid flow is affected by (i) host rock prop-
erties and depositional architecture and (ii) geological struc-
tures and structure networks, as well as their anisotropy,
geometry, connectivity, kinematics, and mutual interaction.
Finally, we look at the effect of hybrid networks of stratal
and structural conduits. To do this, we study a variety of geo-
logical structures, both fractures, joints, and deformation
bands, from New Zealand, Malta, and Utah (Figure 1), where
IOPs represent a record of paleofluid flow in sandstones and
limestones. Given the recent advances in fracture network
analysis (e.g., [35, 41–44]), our overview of geologic controls
on fluid flow, that also incorporates and quantifies the role of
network properties on flow, is pertinent.

2. Terminology

We follow the structural terminology defined in Peacock
et al. [45], but for clarification, we additionally provide a
short explanation of some important terms used herein:

(1) Fractures: encompasses both joints and faults, as
some of the studied fracture networks form parts of
the damage zones of small-scale faults (displacements
of <1m), and comprises a combination of joints and
faults. The joints and faults are hard to distinguish in
an outcrop because of the centimeter-scale and lack
of displacement markers

(2) Hybrid network: used herein to describe networks
where geological structures such as joints or faults
interact with more permeable layers or beds of a
heterogenic sedimentary rock to increase the connec-
tivity and create conduit networks

(3) Deformation bands: described as tabular, millimeter-
wide zones of localized but nondiscrete and distrib-
uted shear and/or compaction, and are typically
low-permeable structures (generally 2-3, but occa-

sionally up to 6 orders of magnitude lower perme-
ability than host rock) that adversely affect flow
properties [2, 46–51]

(4) Iron oxide precipitates (IOPs): used herein as a term
to cover both Liesegang-type reaction-diffusion sys-
tems (Liesegang bands, e.g., [39]) and other iron
oxide deposits (e.g., [20, 52]). IOPs are a common
by-product of fluid flow in rocks such as sandstone,
limestone, and mudstone. Where IOPs occur prefer-
entially in association with depositional heterogene-
ities (e.g., specific facies, strata, or bounding
surfaces) and/or structural heterogeneities (e.g., faults
and/or other types of fractures) in rocks, they may be
used to infer the history of paleofluid flow and recon-
struct how such heterogeneities acted to control flow
[16, 39, 52–55]

3. Geological Framework of the Study Sites

New data presented herein are collected from various sites in
New Zealand, Malta, and Utah. We combine qualitative field
photographs of examples of simple structures like single frac-
tures and deformation bands from New Zealand and Utah,
with a more quantitative study of more complex fracture net-
works mainly from Malta but also from New Zealand.

3.1. Tongaporutu, Taranaki Basin, New Zealand. Present-day
New Zealand is an active plate boundary that accommodates
oblique convergence of the Australian and Pacific plates [56,
57]. Deformation band examples presented herein are from
coastal exposures of faulted deep-water turbidites of the
Upper Miocene Mount Messenger Formation in the Tara-
naki Basin on the West Coast of New Zealand’s North Island
(Figure 1(a)) [58–60]. The Taranaki Basin, exposed onshore
along the Taranaki coastline, initially formed in Late Creta-
ceous times as a result of extension related to Gondwanan
continental breakup and opening of the Tasman Sea (e.g.,
[61, 62]). The basin has since seen a complex history, ranging
from initial rift and passive margin phases, oblique reactiva-
tion, and overprint by convergent and extensional tectonics
in Neogene times (e.g., [59, 63]). Deformation bands in the
Mount Messenger Formation have previously been described
by Childs et al. [64] and Nicol et al. [65]; included in this
study are examples of cataclastic shear bands in the cliffs
along the Taranaki coast.

3.2. Hokianga, Northland Allochthon, New Zealand. The
second study area in New Zealand is located on the southern
shores of Hokianga in Northland (Figure 1(a)). Here, the
Late Cretaceous Punakitere Sandstone [66–68] consists of
massive to well-bedded sandstones with occasional conglom-
erate horizons, and sits within the Northland Allochthon [69,
70], the low-angle emplacement that occurred at the
Oligocene-Miocene boundary [71]. The Punakitere
Sandstone in Hokianga is affected by small-scale fracture
networks, oriented NNE-SSW and NE-SW with associated
IOPs.
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3.3. Ras ir Raheb, Malta. The Maltese archipelago, consisting
of the islands of Malta, Gozo, and Comino (Figure 1(b)), is
situated on the north-eastern shoulder of the ESE-WNW-
trending Pantelleria rift system [72], which formed as a
response to back-arc extension related to Apennine-
Maghrebian subduction in Late Miocene-Early Pliocene
times [73–76]. The back-arc extension also led to the forma-
tion of ENE-WSW-trending horsts and grabens, which
dominate the Maltese structural framework (e.g., [74, 77,
78]). The localities studied at Ras ir Raheb on the west coast
of Malta, are situated approximately 1 km into the footwall of
the Victoria Lines Fault (VLF) (Figure 1(b); [40, 78, 79]), which
is a normal fault with a maximum displacement of c. 90m
[80]. The fault and fracture networks (displacement < 1m)
examined here may be considered to be subsidiary faults
in the damage zone of the Victoria Lines Fault [40, 81].
The host rocks are Miocene-age, syn-rift, fine-grained fora-
miniferal limestones of the Middle Globigerina Limestone
Member [74, 80].

3.4. Marsalforn, Gozo. Like the main island of Malta, Gozo is
also characterized by ENE-WSW striking normal faults.
However, the north-western part of the island stands out,
as regional extensional strain related to the Pantelleria rifting
event is expressed here as arrays of strike-slip faults [82]. The
faults at the studied locality at Marsalforn (Figure 1(b)) occur
in the Lower Globigerina Limestone Member, which out-
crops as a yellow to orange, massive wackestone, packed with
foraminifera and bivalves [80].

3.5. Arches National Park, Utah, USA. The last study areas are
located close to the entrance of Arches National Park in SE
Utah, USA (Figure 1(c)). Examples from here include defor-
mation band clusters in the hanging wall of the Moab Fault
and an anisotropic fracture network studied in a limestone
bed in the footwall of the fault, just 5-15m from the fault plane
[18, 83, 84]. The deformation bands are found in the aeolian
Entrada sandstone, which forms part of the latest Triassic to

Early Jurassic San Rafael Group [85, 86]. It consists of aeolian
dunes and interdunes deposited in a hot and arid coastal envi-
ronment in Mid-Jurassic times [84, 86, 87].

4. Data and Methods

Fieldwork involved the acquisition of structural field data
and digital imagery from hand-held cameras. IOPs, and the
extent of these, were mapped from photographs and field
sketches, and length-displacement profiles were recorded
for fractures that exhibited evidence for shear displacement.

For analysis of the fracture network examples, high-
resolution photography was used to digitize the networks
using the NetworkGT toolbox in ArcGIS [88]. This was done
to quantify the node and branch topology of the studied
networks [44, 89]. The elements in the two-dimensional
networks are divided into nodes and branches, where nodes
are ends or intersection points of fractures, and branches
are segments of a fracture trace, bound by a node at each
end (Figure 2) [42, 44]. The degree of connectivity of the
network can be determined by the proportion of different
nodes and branches, as elaborated in Sanderson and Nixon
[44]. From the digitized maps of the networks, we used the
Kernel Density tool in the built in ArcToolbox in ArcGIS to
extract contour maps of (i) fracture intensities, which repre-
sent the total branch length per square meter (m/m2), and (ii)
the connecting node frequencies, to illustrate the frequency
of connections per square meter (NC/m2) [44]. These maps
provide a good visualisation of the internal variations of the
network complexity and connectivity.

5. Examples of Fluid Flow Relationships with
Structures and Networks: Field Observations
and Characterization

5.1. Depositional Architecture. We studied the relationship
between depositional architecture and paleofluid flow at
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Figure 1: (a) Overviewmap of New Zealand, showing the field areas at Hokianga and the Taranaki coast on the North Island (after Sporli and
Rowland, 2007). (b) Overviewmap of the Maltese Islands, showing the location of the field areas at Ras ir Raheb andMarsalforn (after [20, 79,
80]). (c) Overview map of the area of Arches National Park in SW Utah, USA, showing the field location by the entrance of Arches National
Park (after Doelling, 1985; [53]).
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several locations around New Zealand’s North Island, and
two were chosen as examples herein. Figure 3(a) shows a
photo from an outcrop along the Hokianga coast, where
millimeter- to centimeter-scale depositional structures create
heterogeneities in the otherwise homogenous Punakitere
Sandstone. Parts of the rock have a brown-orange colour,
due to IOPs, which stands out against the grey sandstone.
An ~15 cm long joint cuts through the depositional
structures in the middle of the photograph. This joint is asso-
ciated with a highly localized IOP envelope that tapers out
ahead of the joint tip. This IOP envelope is also to some
extent controlled by sedimentological heterogeneity, in that
its upper boundary follows a sandstone crossbed. This
illustrates how fluid flow may be influenced by both deposi-
tional heterogeneities and structural heterogeneities in one
example. The second example, Figure 3(b), is showing
centimeter-sized crossbedding in a cliff along the Taranaki
coast. The muddy sandstone is mainly grey in colour, but
some IOPs have stained parts of the rock, filling in the cross-
beds in the uppermost part of the photo. Both of these exam-

ples illustrate how depositional architecture can create spatial
heterogeneities in porosity/permeability producing local flow
paths through otherwise homogenous rocks.

5.2. Simple Geological Structures. Figure 4 shows examples of
joints and their relationship to IOPs from Hokianga, North
Island, New Zealand. The first example (Figure 4(a)) shows
two subparallel joints—one through-going joint from left to
right and another joint, ~10 cm above, coming in from the
left and terminating at a tip to the right. An envelope of IOPs
encloses the joints, staining the surrounding sandstone
brown-orange, and clearly deflects and narrows ahead of
the terminating joint tip. This illustrates the fact that the
spatial distribution of iron oxide deposits can be controlled
by multiple (two) fractures: the envelope is widest where it
is controlled by two main joints, and narrowest where it is
only controlled by one. Another example from Hokianga
shows a joint set comprising two right-stepping segments
(Figure 4(b)). This joint set is associated with a brown-
orange iron oxide envelope, which closely trails the segmented

Figure 2: (a) Example of a fracture network from the field at Ras ir Raheb, Malta. (b) Topological characterization of the example shown in
(a), using topological nomenclature proposed by Sanderson and Nixon [44]. We differentiate between different types of nodes and branches.
Nodes are classified as isolated nodes (I-nodes), abutting or splaying nodes (Y-nodes), or as crossing nodes (X-nodes). Branches are classified
as isolated (I-I), partly connected (I-C), or fully connected (C-C). (c) Network showing only the connecting nodes. (d) Illustration of the
connecting node frequency (connecting nodes/m2) of the fracture network.

Fracture
Front of IOPs

Front of IOPs

(a)

Fronts of IOPs
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Figure 3: (a) Example of how a fracture (white arrow) can control the formation and extent of iron oxide precipitates (black, dashed line) and
how depositional architecture (blue arrow) may control the flow of oxidizing fluids (blue, dashed line); Hokianga, New Zealand. (b) Another
example of how depositional architecture, here in the form of crossbedding, can control the extent of iron oxide precipitates; Taranaki, New
Zealand.
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joint system. Where the joint system steps right-laterally, the
envelope similarly makes a gentle right-lateral shift. Hence,
the IOPs, and inferred paleofluid flow, are clearly affected by
the joints, as the fronts of the IOPs follow the extent of the
joints. These examples show how simple geological structures
can act as conduits, controlling and localizing the distribution
and flow of fluids.

Figure 5 presents an example of deformation bands
formed within the Entrada sandstone in Utah. The locality
shows a NW-SE-oriented cluster of deformation bands on a
gently SW-sloping pavement. The cluster stretches tens of
meters in length with a variable width of up to ~1m. The
front of IOPs are located on the pavement immediately down
dip of the cluster, towards the SW, locally forming orange-
coloured half circles in the sandstone. These represent pond-
ing of fluids against the deformation band cluster which has
acted as a barrier to fluid flow.

Examples of deformation bands were also documented
in the cliffs along the Taranaki coast, New Zealand
(Figure 6). In Figures 1(c) and 6(b), two oblique deforma-
tion bands cross each other with an intersection angle of
approximately 60 degrees. One deformation band is visible
as a distinct grey line crossing the photograph from left to
right and appears to have no associated IOPs. Whereas
the second deformation band has a clear association with
IOPs, visible as a rusty orange line crossing the grey
deformation band. An additional example in Figures 6(c)
and 6(d) shows a single deformation band crossed by a
series of IOP fronts, which are clearly not affected by the
deformation band. Even though these are all examples of
deformation bands, they show very different relationships
with fluids, i.e., some act as conduits localizing flow, some
act as barriers, and others have little or no effect on the dis-
tribution of IOPs.

Front of IOPs

Fracture

(a)

Fracture

Front of IOPs

(b)

Figure 4: (a) Example of fracture tip interaction, where the front of the iron oxide precipitates (black, dashed line) curves out where the
fracture tips overlap; Hokianga, New Zealand. (b) Example of how iron oxide precipitates respond to fracture-tip interaction: the front of
the iron oxide precipitates (black, dashed line) narrows as the fractures (white arrows) tip out; Hokianga, New Zealand.
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Figure 5: (a) Field photo and (b) sketch of deformation band cluster causing ponding of iron oxide precipitates (IOPs) found in Arches
National Park, Utah, USA.
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5.3. Simple Structural Networks. As previously mentioned,
geological structures can interact and form networks. Within
the Punakitere Sandstone at Hokianga, New Zealand, we
documented a fracture network comprising two orthogonal
joint sets; one systematic joint set (trending right to left;
Figure 7(a)) abutted by a set of cross-joints (trending top to
bottom; Figure 7(a)). Elongated haloes of orange-coloured
IOPs form around the systematic joint set whereas the
cross-joints are unaffected by IOPs. A similar example is
shown in Figure 7(b), which comprises two orthogonal frac-

ture sets that mutually cross-cut and abut one another in a
limestone bed, located in the footwall of the Moab Fault in
Arches National Park, Utah. Again in this example, one frac-
ture set is surrounded by a brown-red halo of IOPs (trending
right to left; Figure 7(b)), whereas the orthogonal cross-
cutting fracture set (trending top to bottom; Figure 7(b))
has no association with IOPs. Both examples illustrate that
not all structures within a network are conductive to flow,
which is important as it will produce an anisotropy in the
flow properties of a fractured rock mass.
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Figure 6: (a) Field photo and (b) sketch of a deformation band functioning as a capillary conduit controlling oxidation (red arrows) and a
deformation band without any oxidation at all (black arrows: horizontal in picture, dipping away from perspective); Taranaki coast, New
Zealand. (c) Field photo and (d) sketch of example where bands of iron oxide precipitates (pointed out by red arrow) clearly ignore a
deformation band (black arrows); Taranaki coast, New Zealand.
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Figure 7: Not all fractures act as conduits for fluid flow, and hence iron oxide precipitates do not surround all fractures. Along-strike
variability of the fractures may cause along-strike variability in the distribution of iron oxide precipitates. Examples from (a) Hokianga,
New Zealand and (b) the footwall of the Moab Fault in Arches National Park. White arrows point to the areas of fractures associated with
iron oxide precipitates, while the red arrows point towards some of the fractures which do not promote formation of iron oxide precipitates.
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5.4. Complex Structural Networks. The examples in Figure 7
are relatively simple fracture networks with two orthogonal
sets. However, fractures often form more complex networks
consisting of different fracture types as well as a range of frac-
ture sizes and orientations. In the following examples
(Figures 8, 9, 10 and 11), we explore more complex fracture
networks and investigate the relationships between different
fracture network attributes (e.g., fracture intensity, connec-
tivity, and displacement) and the distribution of IOPs. These
examples of more complex fracture networks are associated
with a number of mesoscale fault systems formed in carbon-
ate rocks located in Malta. The first example consists of two
intersecting segments (I and II; Figure 8(a)), each comprised
of several joints and minor normal faults with displacement
of up to ~2.5 cm. The N-S-oriented segment I comprises
two smaller, hard-linked fault segments. The E-W-oriented
segment II continues 2-3 meters towards the east, outside
of the area covered by Figure 8, where it tips out and overlaps
with another segment to form a relay ramp (see Figure 1(a) in
the supplementary materials (available here)). Distinct, red

IOPs are widest around the intersection point of segments I
and II. The intersection is also characterized by higher
branch intensities and connecting node frequencies
(Figures 8(b) and 8(c)). The strong IOP front tapers off to
the south and east along segment I and segment II, respec-
tively. Although some local, smaller maxima in branch inten-
sity and node frequency are found further south and east
along the main segments, outside the intersection, only
weaker, discontinuous fronts are observed locally and often
around fracture tips.

In Figure 9, we have an example of a normal fault system
with an outcropping trace length of ~22m and a maximum
displacement of ~25 cm (see also Figure 2 in the supplemen-
tary materials). The fault system consists of a network of
small faults and fractures that trend SE-NW and dip ~60°
towards the SW. For ease of description, the system is divided
into two distinct main segments (segments I and II;
Figure 9(a)), which are linked through a more intensely frac-
tured zone. Contour maps of fracture intensity and connect-
ing node frequency are presented in Figures 9(b) and 9(c),
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Figure 8: (a) Digitized map of the fracture network at Ras ir Raheb, Malta, with iron oxide precipitates shown as red dashed lines. A photo of a
clear front of iron oxide precipitates is included. (b) The branch intensity map indicates higher density in complex zones. (c) Connecting node
frequency map of the locality shows that zones with high branch intensity generally tend to coincide with high connecting node frequency.
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respectively, generally showing that high connecting node
frequencies correspond with areas of high fracture intensity.
A series of profound red-stained IOP fronts, predominantly
in the footwall of the fault system, form an envelope of
~50 cm around the main fault segments (see inset in
Figure 9(a)). Weaker, discontinuous fronts can be observed
locally further away from the main segments, as well as a
few, discontinuous fronts in the hanging wall (Figures 9(a)–
9(c) and Figure 2(b) in the supplementary materials). A wid-
ening of the IOP front can be observed at the linkage of the

two fault segments. However, this is the only location where
IOP width coincides with increases in fracture intensity and
connecting node frequency. Instead, the width of the IOP
fronts appear to reflect relative changes in displacement
along strike of the fault system (Figure 10).

The final complex fracture network example is a 2m
section of a longer strike-slip fault system with decimeter-
scale displacements (Figure 11). The fault system comprises
NNE-trending right-lateral strike-slip segments that separate
a series of ENE-striking centimeter–decimeter-scale pull-
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Figure 9: (a) Digitized map of the fracture network at Ras ir Raheb, Malta, with iron oxide precipitates shown as red dashed lines. (b) The
branch intensity map indicates higher density in the areas of segment linkage. (c) Map of the connecting node frequency, which also
increases in the areas where fault segments link indicating higher connectivity in linkage areas.
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apart structures (see also Figure 3 in the supplementary
materials). Branch intensity and connecting node frequency
maps in Figures 11(b) and 11(c) show peaks where the main
strike-slip faults intersect; however, there is no obvious corre-
lation between IOP distributions. Instead, zones of bleachin-
g/reduction of iron in the limestone can be observed along
the pull-apart structures, followed by a zone of higher IOPs
(Figure 11(a)), indicating that these pull-apart structures
were the main flow conduits along the fault system.

5.5. Hybrid Structural Networks. At Hokianga, New Zealand,
we documented a hybrid network where fractures are
interacting with highly permeable layers (Figure 12). This
hybrid network consists of a fracture network with a conju-
gate set of fractures trending NNE-SSW and NE-SW, inter-
secting at an angle of approximately 70° (Figures 12(a) and
12(b)). In this example, the orange-brown colour of the IOPs
are not only localized along fractures but also along selected
facies/strata in the host sandstone. Contour maps of the con-
necting node frequency and branch intensity of the fracture
network show local highs distributed across the network
(Figures 12(c) and 12(d)). When the highly permeable layers
are also included, making it a hybrid network, there is an
obvious increase in the connecting node frequencies and
branch intensities (Figures 12(e) and 12(f)). In this case, the
later fracture network appears to provide connections
between the highly permeable layers, thus creating a hybrid
network of flow conduits.

6. Discussion

In the following subchapters, we will first discuss how simple
geological heterogeneities affect fluid flow, before moving on
to fracture network properties and their spatial variations.

6.1. How Do Simple Geological Heterogeneities Affect Flow?

6.1.1. Controls of Depositional Architecture on Fluid Flow.
Fluid flow, and therefore also the distribution of IOPs, are
sensitive to the inherent pore network variability in the host

rocks in which they occur. The depositional architecture of
a sediment or sedimentary rock is the end product of deposi-
tional processes and following diagenesis, which control the
distribution of grain type, size, sorting, cementation, alter-
ation, and therefore also host rock properties and the config-
uration of the pore space (i.e., porosity and permeability) in a
rock. Contrasts in flow properties across bounding surfaces,
facies boundaries, bed sets, and individual laminae may be
significant and may thus be considered a first-order control
on variations in flow behaviour (see e.g., [90, 91]). For exam-
ple, Chandler et al. [92] reported permeability contrast span-
ning 5 orders of magnitude in a 41m thick aeolian sandstone
succession, and 1-2 magnitude-order permeability contrast
between individual crossbeds within a single aeolian dune
unit. Fluid flow and iron oxide deposition can hence be spa-
tially controlled by depositional architecture, as illustrated in
Figure 3(a) (lower part of image) and Figure 3(b), where IOPs
are delineated by crossbeds in sandstone. Depositional archi-
tecture as such represents a fundamental control on fluid
flow in sedimentary rocks; appreciating the controls of depo-
sitional architecture on flow, and the effect of depositional
heterogeneities, is a prerequisite that should go hand-in-
hand with considering structural controls on flow.

6.1.2. Structure Type: Conduit or Barrier? Having briefly dis-
cussed the controls of depositional architectural variability,
we move on to structural controls on flow and iron oxide
deposition. Structures such as faults, other types of fractures,
and deformation bands also represent an important control
on fluid flow, and whereas joints and unsealed faults may
form significant conduits for fluid flow, cataclastic deforma-
tion bands, veins, and sealing faults (e.g., faults with shale
smear, cataclastic fault rocks, and cementation) may repre-
sent effective seals or baffles for flow (e.g., [2, 93, 94]).

Any open or permeable fracture (e.g., an uncemented
extension fracture or fault) may transmit fluid flow [95–97].
By localizing fluid flow, fractures may therefore cause iron
oxide precipitates to be deposited locally around them (e.g.,
[5, 39, 52, 98]). The examples in Figures 3 and 4 illustrate this
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nicely. The IOP envelope in Figure 3(a) is highly localized to
the joint, as it closely follows its extent and tapers out ahead
of the tip. We can hence assume that the joint has served as a

fluid flow conduit. The example in Figure 4 is similar, but
illustrates the fact that the spatial distribution of iron oxide
deposits can be controlled by multiple (two) fractures. Here,

Increased fluid flowNo fluid flow

N

50 cm
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(a) Fracture network

(b) Branch intensity

(c) Connecting node frequency Branch intensity
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Figure 11: (a) Digitized map of a fracture network at Marsalforn, Malta, with iron oxide precipitates shown as red dashed lines and a front of
bleaching shown with a green dashed line. (b) Branch intensity map indicating higher density in complex zones. (c) Connecting node
frequency map of the locality. There is no obvious correlation between iron oxide precipitates and higher branch intensity/connecting
node frequency in this example; the iron oxide precipitates are rather localized along the pull-apart segments.
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Figure 12: (a) Field photo of a simple cross-cutting fracture network from Hokianga, New Zealand, interacting with highly permeable layers
in the host rock. (b) A digitized fracture network (black lines) and highly permeable layers (blue lines), surrounded by iron oxide precipitates
(orange). Red arrows point to examples of where more permeable layers work as conduits between fractures. (c) Map of the connecting node
frequency of the studied part of the fracture network. (d) Map of the branch intensity of the studied part of the fracture network. (e) Map
showing the connecting node frequency, including connection points between fractures and highly permeable layers, forming a hybrid
network. (f) Branch intensity of the studied network, including the highly permeable layers in the host rock forming a hybrid network.
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the IOP envelope also follows the extent of the joints, but
widens where two joints are present, indicating enhanced
fluid flow.

As opposed to creating space for enhanced fluid flow,
structures may also act as barriers. This is often due to clay
smear or juxtaposition of impermeable layers, but also
through cementation of fractures or low-permeable deforma-
tion bands (e.g., [20, 94, 99, 100]). Deformation bands typi-
cally have a different effect on flow and iron oxide
deposition compared to open fractures, and are capable of
baffling and/or redirecting flow (e.g., [101–103]). This is
exemplified in Figure 5, where the front of IOPs form a half
circle underneath the deformation band cluster. The defor-
mation bands seem to have served as a barrier for fluids,
which have ponded against the low-permeable cluster.

However, because of changes in grain size/shape and
pore space within deformation bands, capillary properties
also change. Despite having a low permeability, some defor-
mation bands can therefore work as capillary conduits in
the vadose zone [104, 105]. Iron oxide-bearing fluids may
thus saturate relatively low-permeability bands and precipi-
tate localized iron oxide deposits exclusively to the band
itself. This is shown in Figures 6(a) and 6(b), where a defor-
mation band highly affected by the IOPs can be seen along-
side a second deformation band which in contrast is
completely unaffected by the fluids.

Finally, many structures have little or no effect on fluid
flow; in such cases, IOPs may be distributed across and irre-
spective of any structures present. Figures 6(c) and 6(d)
exhibit an example of this, where bands of oxidized iron cut
right across a deformation band; the deformation band
appears to have had no effect on fluid flow, or at least not
on the deposition/distribution of IOPs. Deformation bands,
fractures, and faults may have little or no effect on flow if
the contrast between the flow properties of rocks and struc-
tures is low. Additionally, structures that do exhibit a high
permeability contrast to host rock may also have a limited
practical effect on flow. For example, if the structures are iso-
lated or poorly connected with other low-permeable struc-
tures (the fluids will flow around the tips) and the host rock
is too highly permeable for any structure to affect flow to
any significant degree. In such cases, the effects of structure
will be highly dependent on how structures form part of frac-
ture networks, the properties of which may strongly contrib-
ute to controlling flow [13, 40]. This is discussed further in
the following section.

6.2. How Do Fracture Network Properties and Their Spatial
Variations Affect Flow?

6.2.1. Anisotropic Fracture Populations. Although the above
examples mainly highlight fractures that either positively
localize and conduct flow or clearly prohibit flow, the effect
of fractures on flow can be highly variable. As stated earlier,
in a population of fractures some fractures may be conduc-
tive whereas others may not, or if a population is comprised
of two or more fracture sets one set may be conductive while
the other sets may not be conductive (e.g., [106]). The latter is
exemplified in Figure 7(a), where one out of two orthogonal

fracture sets in the sandstone is associated with IOPs. Note
also that the IOPs in the example (Figure 7(a)) are only local-
ized to parts of the along-strike extent of each fracture in this
set. A similar situation can be observed in Figure 7(b), where
IOPs are localized along a restricted part of one out of two
interacting fracture sets in a limestone bed, showing that this
is not restrictive to certain lithologies. The irregular distribu-
tion of IOPs may be related to along-strike variability of
flow properties of the fractures (cf; [107, 108]), which
can be significant over short distances; only parts of the
fracture may be conductive at the time of fluid migration,
whereas other parts may have too low permeability for
fluid transmission.

6.2.2. Geometry and Connectivity in Fracture Networks. The
geometry of fractures and fracture networks is another
key control on flow in sedimentary rocks (e.g., [36, 40,
109]). The length, orientation, segmentation, and intensity
of fractures determine their effect on flow. For example,
fracture length and intensity determine the total amount
of fractures (length and/or volume of fractures/fractured
rock), which translates to the amount of fluid conduits
or fluid barriers, present in the rock [36, 110]. The geom-
etry of fractures affects the dynamics of flow and the local-
ization of fluid-rock interaction, such as seen in the
examples presented in Figures 4(a) and 4(b). The length,
orientation, and intensity of fractures also determine how
they interact in networks, and hence, the geometry con-
trols the connectivity, which is another crucial control on
fluid flow in a fracture network as it governs its percola-
tion potential [36, 88].

This is highlighted by the example shown in Figure 8,
where the widest front of IOPs is located around the intersec-
tion point of the two fault segments. The intersection is also
characterized by areas of higher branch intensity and con-
necting node frequency (Figures 8(b) and 8(c)), which con-
firms this as an area of higher connectivity, hence having
the potential to be an area for increased fluid flow. A high
concentration of connecting nodes in the southern end of
segment I is on the other hand not associated with, or affect-
ing, the IOPs. We propose that this is caused by the lower
connectivity (as reflected by the lack of connecting nodes)
along the middle part of segment I, or anisotropy along the
segment such as potential cementation prohibiting flow
along the southernmost part of segment I.

Similar examples have previously been presented in the
literature, where fluid flow is directly associated with fault
and fracture intersections. Nixon et al. [111] investigated a
normal fault relay at Kilve, UK, and illustrated that calcite
veins, which represent past conduits, with larger apertures
occur at intersections and in areas with high vein intensity
(frequency of veins with apertures >1mm per unit length).
Dockrill and Shipton [10] present another example where
they looked at structural controls on leakage from a natural
CO2 storage site along the Little Grand Wash fault and Salt
Wash faults in Utah. CO2-charged groundwater precipitates
travertine mounds when reaching the surface, and field
observations show how these mounds tend to localize at fault
intersections. Dockrill and Shipton [10] also use traces of
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iron-oxide reduction as evidence of paleofluid flow in rela-
tion to the faults and their associated damage zones. Other
precipitates that have served as proof of fluid flow and
revealed fault and fracture intersections as conduits are sta-
lactites. Stalactites in carbonate caves indicate high amount
of fluid flow in dilational jogs and fracture intersections,
where the stalactites are larger than along the rest of the frac-
tures [112].

6.2.3. The Effects of Kinematics and Interaction on Flow. The
kinematics of structures are also important. The rates, distri-
bution, timing, and magnitude of slip may control the extent
to which faults act as conduits for flow. Greater slip is gener-
ally associated with greater deformation and, therefore, also a
greater tendency to transmit fluids, such as seen in the exam-
ple in Figure 9, where the general width distribution of IOP
bands around the fracture network appears to correlate with
displacement distribution on the main normal fault in the
network (Figure 10). The prominent, red-stained IOPs in
the footwall exhibit an overall widening from E to W, taper-
ing towards the E. This general westward widening of the oxi-
dation fronts is matched by a corresponding westward
increase in normal displacement. Timing and episodicity of
slip are also important; for example, fault reactivation and
rejuvenated slip are known to cause reopening of sealed faults
(e.g., [25, 32, 113]).

For most fracture and deformation band types, it is gen-
erally true that structures affected by a net volume gain (e.g.,
joints and dilation bands) have a tendency to positively affect
flow, whereas structures affected by a net volume loss (e.g.,
stylolites and compaction bands) may reduce flow properties
(e.g., [19, 114, 115]). Structures affected by shear movement
may form conduits or barriers to flow depending on the pres-
ence of low-permeable fault rocks, any aperture/opening
present, or cements. This is highlighted in the example
shown in Figure 11, where the distribution and extent of
the IOPs show that they are preferentially localized along
the opening-dominated pull-apart segments of the fracture
network, whereas they are not present around the shear-
dominated strike-slip segments. This corresponds with pre-
vious findings, from both the field and modelling, of fluid
flow localizing particularly at fault/fracture jogs or intersec-
tions (e.g., [15, 115, 116]).

Furthermore, the relative orientation of fracture sets
versus past and present stress fields may also determine
their flow properties; fractures that are favourably oriented
relative to the axes of maximum principal stress may be
kept open (conductive), whereas those unfavourably ori-
ented may be closed (nonconductive) [117]. This can
cause some fracture sets in a network to form open con-
duits, whereas other fracture sets in the same network
are nonconductive. This is one possible explanation for
the contrasting behaviours of the two fracture sets shown
in Figures 7(a) and 7(b). The behaviour may also reflect
properties that change through time and space, as some
fractures change between being open and closed due to
cementation and dissolution/refracturing, and depending
on the relative timing of fluid flow, cementation, and
deformation at the time fluids are present in the system

(e.g., [53, 93, 94]). However, a more complex fault or frac-
ture network, as often found in relay zones of fault linkage
zones, would increase the possibility of open fractures as it
includes higher fracture intensity with a wider range of
fracture orientations making the chance of favourably ori-
ented fractures present higher [40, 107].

6.2.4. Hybrid Networks of Conduits. The different aspects
discussed in the previous sections are all independently
important controls on fluid flow. However, it is often the
interplay between all of the above effects that is key to con-
trolling fluid flow, i.e., the interaction between depositional
and structural heterogeneities. This has been treated in previ-
ous studies, and may for example affect (i) production-
related fluid flow in petroleum reservoirs (e.g., [37]), (ii)
dolomitization in rift basins [28], and (iii) diagenetic alter-
ation of fault-bound clastic deposits in rift basins (e.g.,
[25]). However, the interaction between depositional and
structural controls on flow can also be considered from a net-
work perspective (sensu [44]), a relationship which is poorly
documented in literature, and hence the contribution herein
is a novel addition to the research database.

Through Figure 12, we present an example of a hybrid
network of structural and depositional conduits, where the
IOPs follow both the fractures in the network as well as
some layers of the sandstone. This combination of facies-
selective and fracture-controlled IOPs portrays a complex
network of palaeoconduits. The example shows that a
combination of open fractures and high-permeable layers
can provide a very well-connected hybrid network of fluid
conduits, as demonstrated through the increased branch
intensity (compare Figure 12(e) with Figure 12(f)) and
connecting node frequency (compare Figure 12(c) with
Figure 12(d)), where the fracture network contributes to
create a connection between the permeable layers and vice
versa. This highlights the interaction between fracture-
controlled conduits and facies-controlled conduits, and
illustrates how considering depositional or structural
elements in isolation may lead to an incomplete under-
standing of potential paleofluid conduits (Figures 12(c)
and 12(e)).

6.3. Implications for Assessing Fluid Flow in the Subsurface.
This paper presents a new perspective on structural and
stratigraphic controls on fluid flow, incorporating network
analysis into an overview on geologic controls on flow in
sedimentary rocks. An understanding of fluid flow through
geological structures and fracture networks is important
for a wide range of reasons. This includes hydrocarbon
seal risk assessment, hazard maps for radon gas, prediction
of earthquake localization, resource management in con-
nection to groundwater and geothermal energy, and more.
For example, Gartrell et al. [93] examined fault intersec-
tions as hydrocarbon leakage zones through numerical
modelling, and they found that zones of high dilation were
generated close to fault intersections, leading to highly
permeable zones with a concentration of open fractures
ideal for fluid migration. As such, understanding the loca-
tions of fluid conduits, which we have listed and presented
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examples of herein, can be of economic importance in
terms of understanding the risk for hydrocarbon leakage
or locating economically significant ore deposits [8, 13,
17, 96, 118].

Understanding the relationship between fluid flow, struc-
tures, and depositional architecture in sedimentary rocks also
strongly applies to environmental issues, like storage of CO2,
radioactive waste disposal contaminant transport, and flow
patterns of groundwater [7, 10, 16]. Mechanisms associated
with deeper situated (below groundwater table), high-level
radioactive waste, e.g., groundwater radiolysis, can form
fronts of IOPs around the zones with high-level radioactive
waste [6, 16, 52]. This makes fluid flow, and hence IOPs,
important for the understanding of radioactive waste migra-
tion. Another fluid stored in underground repositories is
CO2, which is also highly dependent on conduits or barriers.
Shipton et al. [119] examined evidence of CO2 migration
along normal faults and found that geysers and hydrocarbon
seep were localizing along faults. Their observations are
supported by Dockrill and Shipton [10], who investigated
the structural control on CO2 leakage from a natural stor-
age site and did field observations of bleaching and miner-
alization indicating that the paleofluid flow followed the
fracture network in the damage zone of the faults. Those
results show the importance of knowledge about the struc-
ture characteristics to prevent CO2 leakage into the
atmosphere.

The understanding and prediction of fluid flow in sedi-
mentary rocks are also highly valuable in subsurface model-
ling [7, 11, 16, 82, 96, 120–122]. As such, a quantification of
fluid flow in relation to fractures, fracture networks, and
depositional structures can help to improve our understand-

ing and prediction of fluid flow in the subsurface, and is of
high value.

7. Conclusions

In this paper we have discussed the key structural controls on
fluid flow in sedimentary rocks and the relationship between
fluid flow, structures, and depositional architecture. In par-
ticular, we focused on the role of fracture network properties
on flow, and the role of hybrid networks, which is poorly doc-
umented. Our study offers an overview of simple, direct
observational evidence for the different controls on fluid
flow, using iron oxide precipitates (IOPs) as evidence of
paleofluid flow patterns. The examples herein are assembled
in a schematic illustration in Figure 13. Along with the liter-
ature review, these examples allow us to identify some key
factors that are instrumental in controlling fluid flow pat-
terns in sedimentary rocks globally:

(1) Depositional architecture and host rock properties
represent a first-order control on fluid flow in sedi-
mentary rocks, and flow property contrasts associ-
ated with different bounding surfaces, facies, beds,
and individual laminae may be sufficient to control
and redirect flow

(2) The conduit and/or barrier potential of geological
structures such as faults, fractures, and deformation
bands are key to their effect on flow; whereas joints
and unsealed faults may form significant conduits
for fluid flow, cataclastic deformation bands, veins,
and sealing faults (e.g., faults with shale smear,

(ii) Single fracture

(iv) Fracture tip interaction

(v) Fault with increasing displacement

(iv) Fracture network

(i) Preferential conduit along
highly permeable bed

(i) Crossbed control flow

(iii) Anisotropic 
fracture network

(v) Preferential flow
at pull aparts

(vi) Hybrid conduit network

(ii) Ponding against low-permeable
deformation band

Geological
structures

Depositional
architecture

Lithology

+

+
+

Figure 13: Schematic illustration of the examples of controls on fluid flow in sedimentary rocks presented herein, using iron oxide
precipitates (orange) as indicator of palaeofluid flow. The fluid flow controls are divided into six groups based upon the main control: (i)
host rock properties and depositional architecture, as shown in Figure 3; (ii) geological structures as conduits or barriers, as shown in
Figures 4, 5 and 6; (iii) anisotropy in fracture populations, as shown in Figure 7; (iv) geometry and connectivity, as shown in Figure 8; (v)
kinematics and interaction, as shown in Figures 9 and 11; (vi) hybrid depositional-structural conduit networks, as shown in Figure 12. All
of these controls may also interact with each other, as illustrated in the top left corner.
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cataclastic fault rocks, and cementation) may repre-
sent effective seals or baffles for flow

(3) Anisotropy in fracture populations, such as where
fracture properties vary spatially and/or temporally
along single structures or within a network, may
cause differential effects on flow

(4) In fracture networks, geometry and connectivity of
the fractures forming part of the network are key to
understanding flow. The length, orientation, and
intensity of fractures determine how individual frac-
tures interact in the network, which in turn controls
network connectivity and therefore percolation
threshold and flow properties within the network

(5) Kinematics and interaction within a network are
other key factors controlling flow. Whereas structures
dominated by opening-mode displacement generally
have a positive effect on flow, closing-mode displace-
ment generally reduces flow, and structures affected
by shear movement may form conduits or barriers
depending on the presence of low-permeable fault
rocks, existing aperture, or cements

(6) Finally, we have shown that hybrid networks repre-
sent a strong control on flow, as structural and stratal
conduits can interact to form a well-connected net-
work of conduits

Besides these factors, structural controls on fluid flow are
highly dependent on timing, as the properties of both rocks
and geological structures may transiently and cyclically vary
over time.
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