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SUMMARY

Tool use is a striking aspect of animal behavior, but it is hard to infer how the ca-
pacity for different types of tool use emerged across animal taxa. Here we
address this question with HyperTraPS, a statistical approach that uses contem-
porary observations to infer the likely orderings in which different types of
tool use (digging, reaching, and more) were historically acquired. Strikingly,
despite differences linked to environment and family, many similarities in these
appear across animal taxa, suggesting some universality in the process of tool
use acquisition across different animals and environments. Four broad classes
of tool use are supported, progressing from simple object manipulations
(acquired relatively early) to more complex interactions and abstractions
(acquired relatively late or not at all). This data-driven, comparative approach
supports existing and suggests new mechanistic hypotheses, predicts future
and possible unobserved behaviors, and sheds light on patterns of tool use
emergence across animals.

INTRODUCTION

Tool use forms a central part of the behavioral repertoire of many phylogenetically diverse animals. The

study of tool use can reveal principles of behavioral ontogeny, ecology, and cognition (Tomasello and

Call, 1997; Povinelli, 2000; Emery and Clayton, 2009; Seed and Byrne, 2010), as well as the evolution of ma-

terial culture (Van Schaik et al., 1999) and indeed human behavior (Byrne, 2004). The complicated processes

involved in different types of tool use also place it as a valuable but underexplored case study in the evo-

lution of biological complexity (Heylighen et al., 1999; McShea, 1991).

Despite this interdisciplinary centrality, the observation and quantitative analysis of the emergence of tool use

present challenges. Here and throughout, we use emergence to refer to the appearance over time of the ca-

pacity for particular modes of tool use in members of a given animal family. Although detailed catalogs of

observed tool use behavior in animals exist and continue to expand (Beck, 1980; Shumaker et al., 2011), these

observations typically constitute records of tool use instances in individual species, lacking a unifying analytical

framework. Although some taxa, notably primates and birds (Emery and Clayton, 2009; Shumaker et al., 2011),

have been studied in particular depth (Seed and Byrne, 2010), data-driven approaches amalgamating tool use

information across a broad range of animal taxa are more limited. Among these comparative data approaches,

Van Schaik et al. (1999) consider a cross-section of observations across primate species to propose a qualitative

model for the features required for development of tool use. This model consists of a hierarchical set of behav-

ioral, social, and intelligence traits, which were explored through experiment and assigned a putative phyloge-

netic embedding. Another comparative analysis (Hunt et al., 2013) estimated the number of independent oc-

currences/innovative events of tool use in different taxa, scaled by the number of species in a given taxon.

Not unexpectedly, primates have the highest degree of independent occurrences, an order of magnitude

higher than the next most innovative taxon, birds. Comparisons across two closely related primate species (bo-

nobos and chimpanzees) have also been used to explore possible evolutionary inheritance of tool use (Gruber

et al., 2010). A review of tool use across birds and mammals (Emery and Clayton, 2009) considered the relation-

ship between tool use and physical intelligence, finding that despite a correlation between tool use and brain

size in birds and primates (Lefebvre et al., 2002; Reader and Laland, 2002), tool use is not a clear predictor of

physical intelligence. In agreement with this picture, Hunt et al. postulate a more important role for working

memory in propensity for tool use (Hunt et al., 2013).
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The complexity and nuance of tool use classification (Beck, 1980; Hunt et al., 2013; Shumaker et al., 2011; St

Amant and Horton, 2008) and the numerous types of behavior observed in different lineages can challenge

the expansion of such comparative approaches. Specifically, it remains unclear how best to harness and

unify the available ‘‘snapshots’’ of specific tool use instances in diverse species to provide an understanding

of the emergence of tool use across animals. The large and debated number of different modes of

observed tool use (for example, dig, scratch, reach, and more [Table S1]), and their potential interactions,

present a substantial hurdle to building an overall theoretical picture of this emergence.

In a groundbreaking early catalog of observations, Beck (1980) notes that ‘‘the evolution of tool behavior

appears to represent a complex parallelism and convergence that is resistant to a simple phyletic analysis’’

[emphasis added]. To quantitatively resolve such evolutionary questions regarding the parallel acquisition

of many discrete, coupled traits, the HyperTraPS (hypercubic transition path sampling) algorithm has

recently been developed (Johnston and Williams, 2016; Greenbury et al., 2019; Williams et al., 2013).

In this context, HyperTraPS takes a set of observations of features across organisms and infers the possible

orderings in which these features were most likely acquired. For example, if many species employ affix but

few employ symbolize, we may infer that the capacity to affix is likely to be acquired before the capacity to

symbolize. Of course, evolutionary history influences the details of this inference, and is accounted for in

HyperTraPS (Johnston and Williams, 2016; Greenbury et al., 2019). More generally, HyperTraPS efficiently

infers the historical orderings by which a set of features may be progressively acquired in a system—in this

study, the orderings in which the capacities for different modes of tool use may be acquired over evolu-

tionary time, which we refer to as dynamic pathways. HyperTraPS can infer dynamics of, and influences be-

tween, dozens of features that may or may not interact, and, importantly, can harness diverse contemporary

observations (for example, patterns of tool use modes in different animal families) to infer past dynamic

pathways with quantified uncertainty.

Here, we use a detailed compilation of observed tool use behavior across the animal kingdom (Shumaker

et al., 2011) in conjunction with HyperTraPS to reveal the structure of, and variability in, dynamic pathways

of animal tool use emergence. We identify several distinct and well-defined pathways of tool use emer-

gence, conserved across animal taxa, and characterize their links with environmental and taxonomic fea-

tures. We find that the dynamic acquisition of tool use modes is qualitatively linked with the complexity

of interactions that they involve, and use this Bayesian framework to make predictions about future and un-

observed modes of tool use behavior.
RESULTS

Dynamic Pathways of Tool Use Emergence

We obtained data on observed modes of tool use across animal taxa from Shumaker et al. (2011) and used

the NCBI Taxonomy Common Tree tool (Federhen, 2011) to embed these on a putative phylogeny (Fig-

ure 1). We note that these modes of tool use are open to interpretation; we choose the modes from Shu-

maker et al. (2011) as a systematically constructed set that encompasses a very broad range of possible tool

use behaviors, and give that study’s specific definitions of these modes and associated terms in Table S1.

Tool use varies across individuals and populations within species according to ecological and other fea-

tures (Shumaker et al., 2011) (for example, Fujii et al., 2015; Humle and Matsuzawa, 2001; McGrew, 1992;

Ottoni and Izar, 2008), so an observation of a particular mode of tool use in a particular species demon-

strates that that species has the capacity to employ that mode of tool use but does not imply that all indi-

viduals within that species will employ it. We take this coarse-grained perspective to allow a comparative

analysis across different animal species, noting that our results can be interpreted with substantial flexibility

in the subset of these modes in which the reader is interested (see below and Discussion). The structure of

these data immediately highlights the diverse modes of tool use observed in primates and (presenting

more of a taxonomic outlier) birds (Van Schaik et al., 1999; Emery and Clayton, 2009).

We used HyperTraPS to infer the dynamic pathways by which tool use has emerged across animal taxa. Hy-

perTraPS considers different ‘‘states’’ corresponding to every possible pattern of tool use (that is, every

combination of presence or absence for each mode). Each state is labeled by L= 22 binary digits denoting

whether a particular mode of tool use is associated with that state or not. For example, the state 1000 .

corresponds to only the first mode of tool use (affix in the default ordering, shown in Figure 1) being

observed in a given species. Modes of tool use are modeled as irreversibly acquired once ‘‘discovered.’’
2 iScience 23, 101245, June 26, 2020



Figure 1. Observations of Tool Use Modes across Taxa

Horizontal axis gives the 22 modes of tool use classified in Shumaker et al. (2011). Vertical axis gives groups in which these

modes have been observed, connected by a coarse-grained taxonomy from NCBI Taxonomy Common Tree (Federhen,

2011). After Shumaker et al. (2011), a black pixel denotes an observation of a mode of tool use in the wild by a taxonomic

group; a gray pixel denotes an observation in which human influence cannot be discounted; a white pixel denotes

absence of that observation. NW, New World; OW, Old World.
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HyperTraPS functions by constructing a model of how each state (each pattern of acquired tool use modes)

may transition to any new state over evolutionary time and using observations to parameterize this model,

so that themost likely transitions between states are supported. HyperTraPS thus learns the probabilities of

possible evolutionary transitions by which an ancestor demonstrating no modes of tool use (state 0000 .)

can acquire the various modes that lead to patterns observed in biology. This approach is Bayesian, with

the output consisting of posterior probability distributions over the transition-rate parameters in this

model.

These output distributions can be interpreted in a number of ways. First, as a set of specific pathways (for

example, first affix, then throw, then pry, and so on), each with an associated probability of being the true

order in which a given evolutionary lineage acquired modes of tool use. Second, as a summary of ‘‘acqui-

sition propensities’’ over these pathways, reporting the probability that a given mode is acquired at a given

ordering in an evolutionary lineage. Here, a given mode may display largely early acquisition (a high prob-

ability that it is acquired before other modes in any given evolutionary lineage), late acquisition (a high

probability that it is acquired after other modes, if at all), or other more complex distributions of acquisition

ordering.

Figure 2 shows the inferred transition probabilities from our tool use dataset in these two ways. Figure 2A

gives the probabilities with which each given mode of tool use is the nth mode to be acquired, over the

possible pathways learned from the data. Clear structure is visible, with some modes having a high prob-

ability of early acquisition, some intermediate, and some late; we will discuss this structure in more detail in

the next section. Figure 2B illustrates specific high-probability pathways through the (hypercubic) space

connecting all possible states. This embedding clearly shows a branched structure in emergence pathways.

Several competing branches (occupied by, for example, amphibians and gastropods, or ungulates and

prosimians) diverge at early stages of tool use acquisition and further disperse into more specific pathways
iScience 23, 101245, June 26, 2020 3



Figure 2. Inferred Pathways of Tool Use Emergence across Taxa

(A) Posterior orderings of mode acquisition. The radius of a disk is proportional to the posterior probability that a given

mode (horizontal axis) is acquired at a given step (vertical axis) in a pathway starting with no acquired modes. Blue disks

give posteriors from inference given the phylogenetic relationship in Figure 1; red circles give (similar) posteriors from

inference assuming convergent acquisitions (independent taxa). Numbers correspond to ‘‘classes’’ in the text,

distinguished by higher probabilities of early (1) to late (4) acquisition; asterisks denote notably bimodal distributions.

(B) High-probability subset of pathways through the hypercubic space of tool mode acquisitions. Each node is a state

corresponding to a specific pattern of mode presence or absences. State a is the state of no modes; state b is the state of

all modes acquired (thus including chimpanzees, orangutans, NWmonkeys). Nodes corresponding to different observed

taxa are highlighted; nodes are colored red-violet according to number of acquired modes. Edge width is proportional to

the posterior probability of the corresponding transition between states. Two pathway groups closely following state a

can be observed, which further branch into pathways occupying the core and periphery of the plot. NW, NewWorld; OW,

Old World.
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occupied by other groups (for example, insects and arachnids, or rodents). These further pathways broadly

divide the hypercubic space into two regions: one (visible around the top right in Figure 2B) more enriched

for mammalian observations and the other (around the bottom left in Figure 2B) enriched for non-mamma-

lian groups. Some fanning out of individual pathways occurs in regions of the hypercube between two ob-

servations: this fanning reflects the fact that several possible pathways are comparably likely between these

observations.

These data must be viewed with several potentially confounding factors in mind. Beck (1980) draws explicit

attention to the fact that the behavior of every taxon has not been studied with equal effort, by observers

with equal sensitivity to tool behavior, or under conditions equally favorable for observing tool behavior

(although the importance of these sampling effects has been questioned, particularly in avian research

[Lefebvre and Nicolakakis, 2000]). Human influence may also itself affect the dynamics of tool use emer-

gence. Furthermore, the phylogenetic embedding of these observations raises a degree of freedom:

should the same observation in sibling clades be treated as evidence of convergent evolution or an in-

herited trait? And how can we incorporate the markedly different taxonomic levels at which observations

are reported into our analysis?

We first address the question of inherited versus convergent evolution. Rather than attempting to find the

specific most supported distribution of inherited and convergent traits, we instead consider the two

limiting cases: first, where all traits shared across sibling clades are assumed to be inherited, and second,

where all traits in each observed clade are assumed to have been acquired independently and conver-

gently. As seen in Figure 2A, the inferred dynamics of trait acquisition do not display dramatic differences

in these two limiting cases; their general properties can thus be assumed to hold regardless of the true in-

heritance patterns. Themajor effect distinguishing the inherited and convergent pictures is associated with

primate-orientated modes, particularly block and hang. As the convergent picture treats each primate

clade independently, primate-specific observations are weighted more heavily in this picture, leading to

the observed (minor) reweighting of the posteriors.

To account for the fact that not all modes of behavior may have been observed by humans in all species, we

next asked how robust our observations were to missing and erroneous observations. To this end, we
4 iScience 23, 101245, June 26, 2020
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produced several artificially resampled datasets. First, random additional positives were inserted into the

observed data. Second, random perturbations were made to the observation set. Third, particular features

were systematically undersampled. Fourth, two distinct model evolutionary pathways were simulated to

generate synthetic observations reflecting a mixture of evolutionary dynamics. We found that observation

noise levels up to 20% produced little qualitative change in the inferred dynamics (Figure S1), particularly in

the more pertinent case of additional positives (modeling unobserved modes of tool use). Furthermore,

systematic undersampling of a subset of modes still allowed the general dynamics to be recovered (Fig-

ure S2), and we found that HyperTraPS readily identified and could separate different evolutionary dy-

namics underlying different synthetic taxa (Figure S3). This robustness of inferred pathway structure to

point perturbations in observations mirrors HyperTraPS behavior in other biological contexts (Williams

et al., 2013; Johnston and Williams, 2016).

Two related points for investigation concern the taxonomic structure of our source data. The source data

from Shumaker et al. (2011) samples some taxa (particularly primates) more densely than others. Howev-

er, HyperTraPS naturally controls for heterogeneous sampling, appropriately weighting densely sampled

small steps and sparsely sampled large steps to build an unbiased overall picture of the underlying dy-

namic pathways (Johnston and Williams, 2016), as we see in a focus on bird behavior (see below).

Furthermore, there is a difference in levels at which observations are reported, which range from species

to orders. The reporting of observations at higher taxonomic levels allows for some ambiguity in the

data. For example, does an order wherein modes A and B are reported mean that a species within

that order has acquired both A and B, or that two different species have, respectively, acquired A and

B separately? HyperTraPS accounts for this ambiguity by, in the absence of further information, assigning

all possible intermediate dynamics equal weighting (in this example, B/A;B/B;A/A+B;B/A+B

would be equally weighted). However, we wished to verify that this equal weighting did not contribute

artifacts to our inferred posteriors that were not compatible with observations. In addition to the general

approach above, where perturbations of up to 20% in the dataset did not lead to substantial inferred

differences, we therefore also considered a rearrangement of the source data so that only observations

resolved at the family level or below were included. We found good agreement with the posteriors from

the original dataset (Figure S4), with the discrepancies explained by the omission of some taxa from the

rearranged set.

Next, we asked whether different patterns of emergence were evident in behavior observed in the wild,

compared with behaviors observed with some human influence. We note that Figure 1 clearly shows

that more modes of behavior have been observed under human influence but does not show whether

the acquisition of wild and human-influenced behaviors follow different patterns. Interestingly, the inferred

emergence dynamics from exclusively wild observations did not dramatically differ from those inferred

from all observations (Figure S5). The most notable differences were in the inferred ordering of hang,

bait, club, reach, and prop-climb, all of which are observed more rarely in the wild (hang is observed exclu-

sively under human influence) and thus have their ordering posteriors shifted to later times. Compensatory

shifts occur in cut, wave-shake, and block, which show a shift in their late-ordering posterior density to

earlier times. However, the overall structure of the inferred dynamics is remarkably comparable between

cases. This consistency points to a picture where, rather than reshaping the dynamics of tool use acquisi-

tion, human influence simply facilitates more modes (for example, by making more manipulable objects

available) and increased observation.
Dynamically Identified Classes of Tool Use Complexity

The inferred dynamic pathways of emergence reveal four broad classes of tool use, running in decreasing

order of acquisition propensity, labeled in Figure 2A. Class 1 modes have posterior ordering distributions

weighted toward early acquisition times. Functionally, class 1 broadly corresponds to the simplest ways of

moving objects in an environment. These include affix, throw, reach, and drag-roll. Basic exploitation of ob-

ject-environment interactions (bait and contain) and the simplest possible modification of objects (scratch)

also fall within this class.

Class 2 modes have posterior ordering distributions with more even weighting across orderings and are

thus likely to occur at intermediate points on emergence pathways. Class 2 broadly involves more sophis-

ticated ways of moving objects in an environment. These modes include prop-climb, insert-probe, and

drop.
iScience 23, 101245, June 26, 2020 5
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Class 3 modes have posterior ordering distributions skewed toward later acquisition times. Class 3 involves

exploiting the physical properties of one object to achieve a goal involving another. These include pound,

club, absorb, wipe, and jab-stab.

The final class 4 involves harnessing less simple, and even abstract, physical properties of objects to achieve

a goal. These modes with posterior orderings strongly weighted to late acquisition, demonstrated exclu-

sively by advanced primates, involve hang (invoking a three-dimensional object-environment interactions),

symbolize, and cut.

Several modes, marked with asterisks in Figure 2A, do not fall naturally into these simple classes; instead,

they display bimodal posterior distributions of acquisition ordering. Such bimodality is the signature of

distinct evolutionary pathways in a system, where a feature may be acquired either early or late but not

at intermediate orderings (Williams et al., 2013; Greenbury et al., 2019). These modes include wave-shake,

dig, block, and pry, although limited bimodality can be observed in several of the modes above. Hence,

distinct emergence pathways exist where, for example, wave-shake may be acquired either early or late

in two different pathway types. We explore potential causes of these structurally distinct pathways below.

Taken together, these posterior orderings suggest a dynamic scheme for tool use emergence following

intuitive concepts of complexity, potentially linked with stereotypical versus flexible modes (Hunt et al.,

2013). The first modes to emerge involve simple manipulations of objects, then more sophisticated manip-

ulations, followed by exploiting simple, and then more complex, properties of objects to achieve a goal

involving a separate target.
Environmental and Lineage Influence on Tool Use Emergence

The visible separation of distinct emergence pathways in Figure 2B suggests that multiple distinct dynamic

pathways of tool use emergence exist. Given the observed bimodality in posterior ordering for several

modes in Figure 2A, we next asked whether the acquisition patterns of particular tool use modes could

explain this distinctive dynamic structure.

Figure 3A shows instances where different tool use modes have been acquired through the distinct emer-

gence pathways found in Figure 2B. We immediately observe that the two sets of pathways making up the

‘‘left’’ and ‘‘right’’ regions in the hypercube embedding are almost perfectly distinguished by the presence

or absence of wave-shake and block. One set of pathways, enriched for non-primate groups, involves the

early acquisition of block; the other set, enriched for primate species, does not acquire block until nearly all

other modes have been acquired. block is indeed observed across a range of non-primate animals, reflect-

ing, for example, octopuses blocking oyster shells open with coral (Lane, 1957), rooks blocking drainage

holes with plugs (Reid, 1982), elephants blocking previously dug water holes to prevent rival animals using

them (Gordon, 1966), and species including ground squirrels, beavers, badgers, and naked mole rats

blocking tunnels and burrows (McLean, 1978; Aeschbacher and Pilleri, 1983; Shuster and Sherman, 1998;

Michener, 2004).

The two distinct branching pathways in the hypercubic network are then distinguished by the presence of

wave-shake and, to a slightly lesser extent, pry. One pathway (occupied by amphibians, gastropods, ceph-

alopods, birds) involves the early acquisition of pry but notwave-shake; the other (occupied by crustaceans,

rodents, prosimians, elephants) involves early acquisition of wave-shake but not pry. The first of these path-

ways reflects, for example, birds using tools to pry out insects from holes, bark from trees, seeds from

feeders, and even to pry apart human toes in play (Shumaker et al., 2011; Merlen and Davis-Merlen,

2000); the second reflects examples including boxer crabs waving captive anemones for defense and

food capture (Bürger, 1903), lemurs waving scent at rivals for intimidation (Jolly, 1966), and elephants

‘‘fly switching’’ with waved branches (cited in Shumaker et al. [2011] as perhaps the first documentation

of animal tool use, by Harris [1838]). These two branching pathways further disperse through the block-

separated regions above.

Each of these pathway-differentiating modes displays pronounced bimodality in its corresponding ordering

posterior (Figure 2A), illustrating the correspondence between bimodality and distinct pathway structures.

We next asked whether this bimodality could be explained by different emergence dynamics experienced

by animal groups from different lineages, or in different environments (Visalberghi et al., 2005).
6 iScience 23, 101245, June 26, 2020



Figure 3. Structure and Predictors of Distinct Emergence Pathways

(A) The high-probability pathways from Figure 2, with states labeled according to the presence or absence of specific modes. Acquisition of wave-shake

distinguishes pathways in different regions of the space (here left, where wave-shake is acquired late, and right, where it is acquired early). Pound, as a

counterexample, does not separate regions of space to the same extent, being acquired at a similar stage in pathways in all regions. Block and pry also

display different acquisition orders in different regions.

(B and C) Posterior orderings inferred using subsets of the data. Gray (top right) arcs give the posterior probabilities inferred from the full dataset (Figure 2);

red and blue arcs give posteriors inferred using the two subsets. Some subsets have no observations of some modes: in these cases, the uniform prior is

recovered, which is not plotted here. Specific modes, discussed in the text, displaying posterior differences between subsets are highlighted. (B) Aquatic

and non-aquatic subsets; (C) primate and non-primate subsets.
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We first considered environmental influences and studied perhaps the largest environmental difference

in our dataset: aquatic versus terrestrial taxa. To examine environmental influence on tool use emer-

gence, we split the original dataset into two subsets, corresponding to aquatic and terrestrial taxa. We

performed HyperTraPS inference with both these subsets independently, and compared the resulting

posteriors with each other and with that from the original superset. Several notable differences between

the umbrella inference and the aquatic subset are immediately observed (Figure 3B). Aquatic taxa have

moderately early acquisition orderings for wave-shake (found above to distinguish emergence pathways

on the hypercube) and for contain and dig (which also displays some bimodality above). These modes

reflect, for example, the aforementioned crabs waving anemones (Bürger, 1903), octopuses excavating

shelters with water jets (Mather, 1995), and dolphins using sponges while digging for fish (Krützen

et al., 2005). Aquatic taxa also show a comparatively early acquisition of wipe, reflecting, for example,

the observed behavior of captive dolphins wiping their aquarium windows, with a feather (Tayler and

Saayman, 1973). When considering only behavior observed in the wild, the aquatic-land discrepancy in

wave-shake is somewhat reduced, but other trends remain clear (Figure S6); a later acquisition of drop
iScience 23, 101245, June 26, 2020 7
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in aquatic organisms is also apparent. These discrepancies are mirrored in the inferred posteriors for non-

aquatic taxa.

We next compared primate and non-primate taxa (Figure 3C). In primates, a more uniform ordering of

several early modes including affix and throw is observed. block is notably acquired comparatively late

among primates, whereas several otherwise later modes (including drop, reach, absorb) are acquired

earlier. Correspondingly, in the non-primate case, early class 1 modes like affix and throw have an even

higher early weighting, whereas class 4 modes are not observed at all. These trends remain robust when

only behaviors observed in the wild are considered (Figure S6), reflecting the point above that the number,

but not necessarily the patterns, of modes of primate tool use are different in the wild.

Shumaker et al. (2011) provides a further detailed analysis of tool use in the next most tool-using taxon,

birds. To examine emergence patterns at a different taxonomic scale, we used these data to perform a

similar analysis of pathway inference using data only from bird species (Figure S7). Comparing avian tool

use emergence with other species (Figure S7) highlighted the early emergence of avian modes including

pry, dig, insert-probe, and jab-stab, and late emergence of throw, intuitively linking with avian physiology.

bait also displayed a relatively early acquisition propensity.

Taken together, these results suggest that the distinct pathways resulting from splitting bimodal wave-

shake (and dig) distributions reflect different emergence dynamics in aquatic and non-aquatic environ-

ments. Aquatic organisms acquire these modes earlier, whereas some non-aquatic organisms acquire

them late (if at all). The distinct pathways resulting from splitting block seem to correlate in part with pri-

mate versus non-primate taxa. Furthermore, the more limited bimodality associated with pry may in part

be explained by its early acquisition in birds compared with other taxa (Figure S7). These splits differentiate

the broadest classes of pathways on the hypercube (Figure 3A). The inferred acquisition ordering of several

other modes of tool use appear quite consistently across environments (for example, early acquisition of

affix in both aquatic and non-aquatic cases), suggesting similarities in the acquisition of tool use across en-

vironments and families (see Discussion).
Prediction of Future and Unobserved Behaviors

The Bayesian nature of HyperTraPSmeans that predictions, with quantified uncertainty, can bemade about the

behavior of the underlying dynamic system. First, we asked which modes in which groups may correspond to

extant, but presently unobserved, tool use characteristics. To this end, we simulated pathways on the inferred

hypercube and recorded every time a state was encountered that had the same pattern of observed modes as

an animal group (i.e., the same pattern of presence markers, but not necessarily the same pattern of absence

markers). For each of these compatible states, we recorded which of the other modes were present and which

were absent, iterating over many pathways to obtain the posterior probabilities with which each unobserved

mode was present or absent in states that could correspond to each observation.

More speculatively, we also asked which tool use modes may be expected to emerge next in the future,

given the inferred pathways of tool use emergence across taxa. To this end, we simulated evolution on

the inferred hypercubic posteriors, and every time a state corresponding to a real observation was encoun-

tered (i.e., those states highlighted in Figure 2B), we recorded which mode was next acquired in that simu-

lation. Over many simulations, we thus obtain the probability associated with each mode being acquired

next from each observed state.

Figure 4 shows the resulting probabilities. Notable pathway dependence is visible in these predictions.

Intuitively, modes that are generally acquired early (like affix and throw) are assigned a high probability

of being present in those groups where they remain unobserved. Several class 1 and class 2 modes are as-

signed a high presence probability in cetaceans and ungulates; probabilities across other groups are

generally lower. We also see pathway dependence in future acquisition predictions, observing, for

example, a reasonable probability for class 1 affix in gibbons, but not for fish, which have proceeded

down a different pathway (linked to their aquatic environment) and are thus inferred to be more likely to

acquire other modes first. For the same reason, some class 2 and class 3 modes (for example, drop and

club) are likely to be acquired next by groups that have not acquired many other modes, potentially

once more linked to the implicitly learned stereotypical versus flexible distinction in tool use acquisition

(see Discussion).
8 iScience 23, 101245, June 26, 2020



Figure 4. Prediction of Unobserved and Future Behavior

Crosses mark those modes (horizontal axis) already observed in given groups (vertical axis). Red-gray: potential

unobserved modes of tool use. With prior belief that all negative observations are equally likely to represent present but

unobserved modes of tool use, circles give the posterior probability that a given mode is present but unobserved. Red

circles denote a posterior probability over 90%. Blue: potential future emergence of tool use. Assuming that negative

observations reflect genuine absences, circles give the posterior probability that a given mode will be the next to be

observed in a given group. NW, New World; OW, Old World.
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DISCUSSION

We have used HyperTraPS, an approach for the inference of evolutionary pathways, to characterize the dy-

namic pathways by which observed patterns of tool use have emerged across animal taxa. The structures of

these pathways are strikingly conserved across animals, and their posterior orderings reveal different clas-

ses of tool use mode, with decreasing propensity linked to a qualitative theme of increasing complexity.

Modes involving the simplest manipulations of objects are highly likely to be acquired early; modes

involving more sophisticated interactions between objects and individuals are likely to be acquired later.

Several structurally distinct pathways of emergence are readily identified by HyperTraPS, distinguished

largely by one or two modes; these distinct pathways are linked to specific physical environments (aquatic

or non-aquatic) and lineages (primates or non-primates).

Given the taxonomic diversity of species considered here, it is notable that these pathway structures

appear with some consistency across taxa. Certainly the observation dataset (Figure 1) displays some struc-

ture, but the canalization of the branching emergence pathways revealed by HyperTraPS (Figure 2) is rather

more striking than in previous biological questions studied with this method (Johnston and Williams, 2016;

Williams et al., 2013). Several of the most pronounced differences between the different canalized path-

ways are linked to the environment or ecological niche that a species occupies (Figure 3), as expected

from studies within species (Shumaker et al., 2011; Fujii et al., 2015; Humle and Matsuzawa, 2001). Here,

these different pathways are typically distinguished by differences in the acquisition ordering of a relatively

small number of modes, which display bimodal distributions of acquisition ordering (for example, wave-

shake and block). Many other modes display rather consistent acquisition ordering across taxa and environ-

ments. This consistency suggests that similar principles may apply to the emergence of tool use across a

wide range of taxa and environments, and that the acquisition dynamics of different modes have a substan-

tial component of convergency. Furthermore, the presence of some similarities between the emergence

pathways inferred across taxa, those inferred from family-level observations (Figure S4), and those inferred

using exclusively avian observations (Figure S7) suggest a scale-free structure to our results that holds

across different phylogenetic levels. We hope to demonstrate that more cross-taxa comparative study

of tool use emergence has the potential to shed light on these general principles.

Of course, there is substantial debate and flexibility in what constitutes tool use, or a specific mode within

that class (Hunt et al., 2013; Shumaker et al., 2011; St Amant and Horton, 2008). The source of our dataset,
iScience 23, 101245, June 26, 2020 9
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for example, does not insist upon dynamic mechanical interactions, which some literature considers as an

essential part of tool use (Hunt et al., 2013; St Amant and Horton, 2008). Different modes are often consid-

ered (for example, cleave as an intermediate between pound and cut [St Amant and Horton, 2008]). To ac-

count for this flexibility, we performed inference using a selection of perturbed datasets, reflecting variable

definitions and observations, and found that the pathway trends we observed were robust to these pertur-

bations. Beck (1980) and Shumaker et al. (2011) consider a set of broad functional classes of tool mode use:

extending the user’s reach, amplifying force, augmenting display, controlling fluids or small objects, and

comfort. However, we found a stronger link between our ‘‘complexity’’-based classes and the emergence

dynamics we observe.

We underline that complexity in biology, and particularly in behavior, is a highly nuanced topic (Schuster,

1996; McShea, 1991; Sambrook andWhiten, 1997). It is not clear that the concept of a quantitative definition

of complexity is even well posed in many instances, and such a quantitative definition is a prerequisite for

any robust statistical analysis. Rather than claiming any direct link to a given measure of complexity, we

quantitatively report the inferred structure of the pathways we observe and simply note that the dynamic

classes that emerge align with an intuitive, qualitative concept of complexity. This intuitive link could be

more formally explored in future by, for example, using an appropriate measure of complexity to compare

the cognigrams associated with different modes of tool use emergence (Haidle, 2010; Hunt et al., 2013). In

addition, this notion of complexity in tool use may not be unrelated to that of stereotypical versus flexible

tool use (Hunt et al., 2013). Stereotypical tool use is characterized by what is likely a minor adaptation of

non-tool use behavior, is limited to a specific scenario, and is widespread or fixed in a given species

(bearing a greater resemblance to instinctive rather than learned behavior). This is the predominant tool

use type in taxa where tool use is rare (for example, insects and gastropods). In contrast, flexible tool

use is more adaptable to different circumstances, can be patchy in terms of intraspecific distribution, is

likely perpetuated by learning from conspecifics, and probably requires some level of prior conception

of the external problem to be addressed by the tool. This category is mostly limited to primates, and, to

a lesser extent, to birds such as New Caledonian crows, plausibly evolving late and requiring a greater de-

gree of working memory capacity.
Limitations of the Study

Substantial work exists using model-driven approaches to explore the emergence of tool use (Hunt et al.,

2013). We do not intend to compete with this wide and expert literature; rather, we intend our data-driven

approach to complement these more mechanistic considerations. By providing a platform where current

observed evidence can be unified and trends identified, we hope to provide a valuable comparative

approach to support and refine mechanistic models.

In seeking breadth, we have used a catalog of available data at varying taxonomic levels across animals. As

discussed above, these differing levels mean that we lack species-specific dynamic information in some

cases and must instead assign equal probabilities across a set of different possible transitions. These

data also omit the finer-grained dynamics of tool use acquisition in individual animals, instead reporting

the capacity for a species to develop a particular mode of tool use. The possibilities of convergent evolu-

tion and human influences on these observations must also be borne in mind. We have attempted to quan-

tify the impact of these various features and possibilities on our results, generally finding that our results

remain robust across these possibilities.

HyperTraPS also facilitates the prediction of unobserved and future behaviors. As this is a purely data-driven

approach, functional considerations are not taken into account and some predictions may therefore be unfea-

sible: it is perhaps hard to imagine echinoderms employing throw, for instance (Figure 4A). However, the

Bayesian nature of these predictions means that functional considerations can readily be taken into account

by adjusting the prior belief associated with each of these predicted modes. Expert knowledge may be used

to limit or remove prior support for particular modes, and the posterior predictions will be naturally adjusted

accordingly. On a related note, as our HyperTraPS approach does not account for reversibility (traits are

modeled as irreversibly acquired once ‘‘discovered’’), further observational data will be required to characterize

the loss of tool use traits if they occur. More broadly, further and more detailed observations will always help

refine the inferred posteriors and associated theory: we hope to demonstrate that HyperTraPS provides a useful

platform to integrate and harness more detailed future observations and that such ongoing observation of an-

imal behavior can be used to test and refine the picture developed here.
10 iScience 23, 101245, June 26, 2020
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Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Iain Johnston (iain.johnston@uib.no).

Materials Availability

This study did not generate new materials.

Data and Code Availability

All data and code for this project are freely available on Github at github.com/StochasticBiology/tool-use.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplementary Figures

Figure S1: Robustness of inferred posteriors to observation variability (related to Fig. 2). Grey circles give posteriors inferred using
original dataset; red segments give posteriors inferred using three different synthetically perturbed datasets. Single points in upper plots show
means of inferred posteriors. (A) General observation noise: both presence and absence observations are randomly perturbed with probability
10% (B) Occluded observations: absence observations are changed to presence observations with probability 10%. (C-D) As (A-B), but with
perturbation probability 20%.
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Figure S2: Effects of systematic undersampling (related to Fig. 2). Synthetic experiments with 22 modes and 22 observations, modelling
the data used in this study. Two randomly generated datasets (red and blue) are used. (A) Original synthetic dataset supporting a single
evolutionary pathway. (B) Even-numbered modes are systematically undersampled by 10%. (C) Even-numbered modes are systematically
undersampled by 20%.
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Figure S3: Detecting different evolutionary pathways (related to Fig. 3). Two synthetic evolutionary pathways are used to generate
these data, one involving (i) simple one-by-one acquisitions from the first to the last feature, and one involving (ii) acquisitions from first to last
except every third feature. One class of ‘organism’ is simulated for each pathway. (A) The inferred posterior orderings for the amalgamated
dataset of both classes together: the different pathways give rise to bimodality in the overall posteriors. (B) Inferred posterior orderings for
the two classes analysed separately. The different evolutionary dynamics (blue (i) and red (ii)) are readily identified and separated, and their
contributions to the amalgamated posterior clearly observed.
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Figure S4: Inferred posteriors for observations restricted to be unambiguous at the family level (related to Fig. 2). Blue posteriors are
from the original inference process; red posteriors are those from a rearranged dataset involving only family-level (or otherwise unambiguous)
observations. Single points in upper plots show means of inferred posteriors. General structures are similar; throw and bait (highlighted
red) display more bimodality in the family-level data, and wave-shake (highlighted blue) displays more bimodality in the original data. These
differences largely reflect taxa omitted from the family-level data. For example, insects, arachnids, and cephalopods display throw and few
other modes, suggesting it to be an earlier acquisition, but these groups are omitted from the family-level inference, pushing the mean inferred
acquisition ordering to later times.
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Figure S5: Robustness of inferred posteriors to wild, versus human-influenced, behavioural observations (related to Fig. 2). Blue
posteriors give emergence pattern inferred from all observations; red posteriors show those inferred using only observations of behaviour in
wild animals. Some modes are comparatively rarely observed in the wild (especially hang, only observed under human influence) and these
posteriors are shifted to marginally later times (black stars). Compensatory shifts (grey stars) occur in some other modes. However, the
patterns of emergence remain comparable for both datasets.
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Figure S6: Environmental and lineage correlates using only wild behavioural observations (related to Fig. 3). (A) Aquatic-terrestrial
and (B) primate-nonprimate comparisons of emergence patterns. Darker posteriors (‘all’) are those in the main text, inferred from the full set
of behavioural observations. Lighter posteriors (‘wild’) are those inferred using only behavioural observations in wild animals. Most differences
between the classes in (A) and (B) remain comparable in both cases (for example, block is acquired later in primates than non-primates for
both datasets). Departures from these patterns are discussed in the main text.
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Figure S7: Emergence patterns of tool use modes in birds and other species (related to Fig. 2). (left) Data on tool use in different bird
species, after Shumaker et al. (2011). As in the original dataset, symbolize is missing from this set of observations (no birds display this mode).
(right) Inferred posteriors from bird tool use. Blue posteriors give emergence pattern inferred from all observations; red posteriors show those
inferred using only observations of behaviour in birds.

Figure S8: Convergence of MCMC chains (related to Fig. 2). The Gelman-Rubin diagnostic (Gelman et al., 1992) for the MCMC chains
in our inference process. Values are calculated for each parameter in the model and counts are binned. Values of 1 is the limit of perfect
convergence; values under 1.1 are often interpreted as good evidence for convergence.
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Supplementary Tables
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Drop Cause an object to fall. The object is propelled primarily by gravity.
Throw Propel an object through open space. Can be aimed or unaimed. The object is propelled by the

user’s own energy.
Drag Pull an object while walking or running; the object touches the substrate.
Roll Propel an object such that it turns over repeatedly on the substrate.
Kick Propel an object with foot through space or on the substrate.
Slap Hit an object or another organism with a flattened appendage.
Push over Deflect an attached vertical object.
Brandish Conspicuously display an object away from the body.
Wave Move an unattached object repeatedly up and down or side to side.
Shake As in Wave, but the object is attached.
Bait, Entice Manipulate or place, and conspicuously display, an object such that it attracts prey or a potential

interactant to approach.
Club, Beat Hit another organism antagonistically with an object. The object (the tool) can be another

organism or a part thereof.
Pound,
Hammer

Hit an object or prey item forcefully, often repeatedly, with a second, relatively hard object (the
tool).

Pry, Apply
Leverage

Push or pull on an object (the tool), using a fulcrum.

Dig Excavate the substrate, usually earth.
Jab Use the distal end of an object to forcefully push another object or organism away, or to animate

another organism; synonymous with prod.
Stab Use the distal end of an elongate object to forcefully puncture or perforate another organism so

as to harm it.
Penetrate Use the distal end of an object, usually elongate, to forcefully puncture or perforate a surface or

an inanimate object. Often followd by Insert and Probe. May be combined with Reach to allow
retrieval of the object.

Reach Use an elongate object to touch or retrieve another object when the user’s prehensive structures
are too short, or use objects of any shape to avoid touching the target object. Tool held throughout
use. Can be followed by Scratch or Rub when affected body surfaces are inaccessible.

Insert,
Probe

As in Reach, but when the target object is embedded in a hole or behind a restricted opening.
Can include Insertion in bodily orifices.

Scratch,
Rub

Move an object across a bodily surface, often repeatedly, while applying pressure. Includes
tickling. Can follow Reach, if a body surface is inaccessible without the tool. Can be combined
with Insert and Probe within a bodily orifice.

Cut Movement, usually repeated and back and forth, of an object with a sharp edge to incise another
object or surface.

Block Place an object to prevent or impede movement or action of another object, fluid, or organism.
Prop, climb Place and stabilise an elongate object vertically or diagonally against another object or surface,

and then move up or climb up the object. Distal end of propped object touches the other object or
surface. Stable.

Balance,
climb

Place an elongate object vertically and then move up or climb the object. The distal end of the
balanced object does not touch another object or surface. Unstable.

Bridge Place an elongate object or organism over water or open space such that each end rests on a
surface on opposite sides of the water or spatial gap. User locomotes on the object. Stable.

Reposition Relocate and climb on an object or organisms. Includes rafting (placing a buoyant object on water
to support user’s weight).

Hang Suspend the object(s) from an overhead substrate or surface. User locomotes or rests on the
object.

Contain Place fluids or objects into or on top of another object (the tool) to control and/or transport them.
Absorb Soak up and move fluid. May be combined with Wipe.
Wipe Mechanically displace and remove fluid, soft solids, or small solids. May be combined with Absorb.
Affix Attach an object to the body, a surface, or another organism with adhesive.
Apply Attach a fluid or an object to the body, a surface, or another organism without adhesive.
Drape Place an object on the body or on a surface temporarily.

Table S1: Definitions of different modes of tool use (related to Figs. 1-4). Taken from Shumaker et al. (2011).
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Transparent Methods

All data and code for this project are freely available on Github at github.com/StochasticBiology/tool-use.

Data

The catalogue we use defines tool use as “the external employment of an unattached or manipulable attached
environmental object to alter more efficiently the form, position, or condition of another object, another organism,
or the user itself, when the user holds and directly manipulates the tool using or prior to use and is responsible for
the proper and effective orientation of the tool” (Shumaker et al., 2011). It identifies 22 different modes of tool use,
given in figures throughout the article and described in Table S1. We manually labelled the data for wild versus
human-influenced observations based on the qualitative description of each observation.

HyperTraPS

We consider the set of all possible states consists of every possible pattern of presence or absence for each of
our L = 22 modes of tool use. The progressive acquisition of modes of tool use is modelled as a pathway through
this space, moving from less recent to more recent states. For example, the first step on a pathway may involve
a move from an initial state of 000... (no modes of tool use acquired) to the next state 100... (only the first mode,
affix, acquired). We only allow transitions corresponding to the acquisition of exactly one mode at a time.

The model underlying HyperTraPS uses a set of parameters to describe the relative probabilities of acquiring
traits (here, modes of tool use) in any given state (here, existing patterns of tool use modes). For example, under
one parameterisation, in state 000... we may have a probability of 0.4 of moving to state 100... as in the example
pathway above. There may be a probability of 0.2 of moving to state 010..., 0.1 for moving to 001..., and other
possibilities. The product of the probabilities corresponding to the patterns of tool use observed in a dataset give
the likelihood associated with a given parameterisation (Johnston and Williams, 2016; Greenbury et al., 2019).

HyperTraPS simulates a set random walkers travelling on these probabilistic pathways to estimate the likelihood
associated with a set of observations for a given parameterisation. We then use MCMC to explore the space
of possible parameterisations and, given some uninformative prior belief about these parameters, to build up a
posterior distribution describing our belief about these parameters given a set of observations (Johnston and
Williams, 2016; Greenbury et al., 2019). This posterior distribution reflects the parameterisations of the model that
are most compatible with our data. Typically, the absolute values of these parameters are not of central interest,
but rather we interrogate the different behaviours that these parameter sets support. This is the approach we use
to build up the posterior plots of orderings and pathways in the main text (see below).

Here, we use the L2 parameterisation scheme for HyperTraPS described in (Johnston and Williams, 2016),
allowing the possibility of every mode’s acquisition independently influencing the acquisition propensity of every
other (although such influence is not assumed, and can be zero). This scheme represents individual transition
rates as P(gain i |state s) ∝ exp(θii +

∑
j 6=i θijsj). Here, θii is the logarithm of a basal rate of acquiring mode i ,

and θij describes the multiplicative influence of sj (the presence of mode j in current state s) on this basal rate for
mode i . These rate parameters are used in constructing possible orderings of feature acquisitions for comparison
with data, but their absolute values do not here correspond to experimental observables. Our subsequent analysis
focusses on the sets of behaviours supported by observations, rather than the specific values of these parameters.

HyperTraPS is a Bayesian approach, allowing prior information and assumptions to be naturally included in
the analysis of data. However, in this project, we had no prior information about tool use evolution that we
wished to use, and indeed wished to make no prior assumptions about these dynamics. We therefore use
‘uninformative’ priors that reflect an absence of prior assumptions. Specifically, our priors were uniform over all
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transition weights mij ∼ U(−10, 10)∀ i , j ; the prior ordering plot is thus a set of uniform distributions over time, and
the prior hypercube plot is simply a hypercube with all outward edges from a given node having the same weight.
HyperTraPS uses a set of simulated biased random walkers on a proposed transition matrix to characterise the
probability of observed transitions; the amount of bias required to observe the required transition is recorded
through each walker’s progress, then this set of samples are used to compute a likelihood estimate. Here, we used
Nh = 200 simulated walkers for each observed transition, allowing good convergence of the likelihood estimates
(Johnston and Williams, 2016; Greenbury et al., 2019) (Fig. S8). MCMC chains were constructed using a Normal
perturbation kernel of mean 0 and standard deviation 0.25 over each of the L2 parameters θ (hence moving
linearly in a logarithmic space of transition rates). Chains consisted of 106 iterations, of which 105 were discarded
as burn-in (Johnston and Williams, 2016); we used the Gelman-Rubin diagnostic (Gelman et al., 1992) with three
independent chains to test that MCMC chains were mixing well (Fig. S8).

Posterior analysis

Posterior plots were produced by simulating 103 random walkers on each posterior sample of hypercube edge
weights. Reduced hypercube state space plots were produced by sampling the 300 most observed pathways from
these simulations and recording each transition in this set of pathways. A spring-electrical force layout was used to
embed the graph in two dimensions, with artificial forces separating the ‘start’ and ‘end’ states a and b. Posterior
predictions for unobserved traits were obtained, as in the text, by recording every state in these simulations where
presence markers matched those in a given observation, and recording the state of each other trait (Williams et al.,
2013). Posterior predictions for future steps were obtained by recording the next step taken after a given state was
reached, recorded over all simulated walkers.
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