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by measurement noise reduction

Angelos-Theodoros Athanasiou1
& Thomas Nussbaumer2 & Stefan Kummer3 & Martin Hofer1 & Iain G. Johnston4

&

Moritz Staltner1 & Daniela M. Allmer1 & Milcah C. Scott5 & Claus Vogl6 & Joelle M. Fenger7 & Jaime F. Modiano5
&

Ingrid Walter3,8 & Ralf Steinborn1

Received: 4 October 2019 /Revised: 28 February 2020 /Accepted: 12 March 2020 /Published online: 15 April 2020
# The Author(s) 2020

Abstract
Intrinsic biological fluctuation and/or measurement error can obscure the association of gene expression patterns between RNA
and protein levels. Appropriate normalization of reverse-transcription quantitative PCR (RT-qPCR) data can reduce technical
noise in transcript measurement, thus uncovering such relationships. The accuracy of gene expression measurement is often
challenged in the context of cancer due to the genetic instability and “splicing weakness” involved. Here, we sequenced the
poly(A) cancer transcriptome of canine osteosarcoma using mRNA-Seq. Expressed sequences were resolved at the level of two
consecutive exons to enable the design of exon-border spanning RT-qPCR assays and ranked for stability based on the coefficient
of variation (CV). Using the same template type for RT-qPCR validation, i.e. poly(A) RNA, avoided skewing of stability
assessment by circular RNAs (circRNAs) and/or rRNA deregulation. The strength of the relationship between mRNA expression
of the tumour marker S100A4 and its proportion score of quantitative immunohistochemistry (qIHC) was introduced as an
experimental readout to fine-tune the normalization choice. Together with the essential logit transformation of qIHC scores, this
approach reduced the noise of measurement as demonstrated by uncovering a highly significant, strong association between
mRNA and protein expressions of S100A4 (Spearman’s coefficient ρ = 0.72 (p = 0.006)).

Key messages
• RNA-seq identifies stable pairs of consecutive exons in a heterogeneous tumour.
• Poly(A) RNA templates for RT-qPCR avoid bias from circRNA and rRNA deregulation.
• HNRNPL is stably expressed across various cancer tissues and osteosarcoma.
• Logit transformed qIHC score better associates with mRNA amount.
• Quantification of minor S100A4 mRNA species requires poly(A) RNA templates and dPCR.
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Abbreviations
circRNAs Circular RNAs
Cq Cycle of quantification
CV Coefficient of variation
dPCR Digital PCR
E Amplification efficiency of qPCR
GO Gene ontology
NCBI National Center for Biotechnology

Information
NF Normalization factor
qIHC Quantitative immunohistochemistry
mRNA-Seq Poly(A) RNA sequencing
RT-qPCR Reverse-transcription quantitative PCR
SEG Stably expressed gene
S100A4 S100 calcium binding protein A4
UTR Untranslated region

Introduction

High-quality data quantifying different levels of gene expression
are indispensable for the complete understanding of biological
processes. Multiple processes beyond transcript concentration
contribute to establishing the expression level of a protein.
Tumour phenotypes often show comparatively little correlation
between mRNA and protein expression levels (Spearman’s cor-
relation coefficient (ρ) of ~ 0.50 [1]). In addition to biological
variation, various measurement errors may compromise predict-
ability of abundance of a cellular protein from its transcript ex-
pression level. For example, a targeted proteomics approachmin-
imized technical error in protein measurement by introducing
parallel reaction monitoring of spike-in peptides and a gene-
specific RNA-to-protein conversion factor, and hence signifi-
cantly improved predictability of protein copy numbers from
mRNA levels (median Pearson’s r of 0.93; [2]).

Here, we aimed at reducing the technical error of transcript
expression measurement by RT-qPCR, exemplarily demon-
strated for the pathophysiological context of canine osteosar-
coma and the metastasis-promoting S100A4 protein.
Osteogenic sarcoma, or osteosarcoma, represents a cancerous
bone tumour that is rare, spontaneous, aggressive and malig-
nant, produces an osteoid matrix and appears in six subtypes
or their combinations [3]. A comparative approach to studying
osteosarcoma has highlighted many clinical and biological
aspects of the disease that are similar between dogs and
humans. On the other hand, there are important species-
specific differences that are becoming increasingly recognized
[4]. The comparative nature of the orthologous diseases of
man and dog is supported by shared findings such as the
higher odds of metastasis determined for trunk osteosarcomas
at diagnosis compared to those with lower limb osteosarcomas
[5], broad genomic similarity with recurrent copy number ab-
errations in oncogenes and tumour suppressor genes such as

MYC, CDKN2A/B, RB1 and PTEN [6], low point mutation
burden, high structural complexity, frequent mutations in
TP53, PI3K and MAPK pathways and low expression of
immune-associated genes [7], common starting genes of chi-
meric transcripts [8] as well as some overlapping transcrip-
tional programs [9].

Our molecular target, S100A4, is a member of the S100
protein family that is expressed in a variety of cells, such as
stem cells, fibroblasts, neutrophils, monocytes, lymphocytes
and malignant cells. Like many other members of the S100
family, it shows intracellular and extracellular localization
[10]. Under non-pathological conditions the protein is mostly
localized inside the cell [11]. Noncancerous inflammatory in-
dications as well as metastatic progression of cancer are ac-
companied with increased translocation of the protein into the
extracellular space [10].

Here, technical error in RT-qPCR measurement, which is
challenged by the extensive genetic and expression heteroge-
neity of the tumour condition, was reduced by the following
critical parameters. The first was the generation ofmRNA-Seq
data for the study condition and selection of stably expressed
sequences at exon-level resolution. The second was the con-
sistent use of poly(A) RNA templates across both steps of the
analysis pipeline, i.e. selection and verification of exon se-
quences by mRNA-Seq profiling and RT-qPCR. In addition,
a nonlinear transformation commonly used to transform
proportion data in other fields of science and economy
was extended to qIHC analysis. Logit transformation of
qIHC proportion data approximated normality with little
variation in variances, such that powerful linear models
could be applied. Together, the improvements revealed the
association between the number of mRNA copies of the
S100A4 gene and the abundance of the translated protein
expressed as qIHC score.

Materials and methods

Biological material

Normal canine osteoblasts (Cell Applications Inc., San Diego,
CA, USA) were cultured in a canine osteoblast medium (Cell
Applications Inc.).

Samples of spontaneously developed osteosarcoma were
collected from large- and medium-sized dog breeds during
routine medical treatment at the College of Veterinary
Medicine of the University of Minnesota or at the Animal
Hospital of the University of Veterinary Medicine of Vienna,
following the rules of the local ethical committees. For tran-
script profiling by mRNA-Seq or RT-qPCR, experimental
specimens were grouped into two cohorts, termed set 1 and
set 2, respectively.
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Set 1 included ten osteosarcoma tissues (#0320, #0460,
#1033, #1091, DOS-8, DOS-71, DOS-73, DOS-119, DOS-
126 and DOS-127) and five primary cell lines (OSCA-8,
OSCA-30, OSCA-32, OSCA-40 and OSCA-78) derived from
newly diagnosed patients prior to treatment with cytotoxic
chemotherapy drugs (Table S1).

Set 2 comprised exclusively tumour tissue (n = 13,
Table S2). Clinical and pathological data of the sample cohort
are listed in Tables S1 and S2, respectively. Aliquots of oste-
osarcoma tissue were snap-frozen at − 170 °C or preserved in
an RNA-stabilizing buffer (RNAlater; Qiagen, Hilden,
Germany) and stored in the gas phase over liquid nitrogen.

Short tandem repeat DNA profile analysis for cell line
authentication

To exclude cross-contamination and other causes of misidentifi-
cation, the five osteosarcoma cell lines used in this study were
genotyped at 15 short tandem repeat (microsatellite) loci.
Profiling of microsatellites was performed by IDEXX
BioResearch (www.idexxbioresearch.com). For authenticating
genetic relatedness between donor (tumour tissue or original
cell line) and the cell line at the respective passage used for this
study, we adopted a threshold of at least 80% matching alleles
[12]. This percentage match criterion was based on the idea that
the microsatellite profile from a malignant tissue can vary with
loss of heterozygosity and an elevated incidence of microsatellite
instability and complexity, and allowed for some genetic drift
with increasing passage number of a cell line. The match value
was obtained by dividing the number of shared alleles by the
total number of alleles in the questioned profile.

Our authenticating genotype data included one to two de-
viating microsatellite alleles, mostly loss of heterozygosity
rather than a change in the allele length (Data S1).

Extraction of total RNA

RNA of normal osteoblasts and a part of the tissues of sample
set 1 was isolated using the TRIzol™ Reagent, a monophasic
solution of phenol and guanidine isothiocyanate (Thermo
Fisher Scientific, Waltham, MA, USA). RNA of tissues of
set 2 and cultured osteosarcoma cells of set 1 was extracted
with a silica-based membrane combined with micro-spin
technology.

The concentration of RNA subjected to mRNA-Seq anal-
ysis was measured using the fluorescent dye-based Quant-
iT™ RiboGreen® RNA Assay Kit (Thermo Fisher
Scientific). Its integrity was assessed by capillary electropho-
resis on the 2100 Bioanalyzer instrument (Agilent
Technologies, Santa Clara, CA, USA). Next-generation se-
quencing libraries were prepared only from samples that ex-
hibited an RNA Integrity Number (RIN) value of at least 8 and
a quantity higher than 1 μg.

Concentration and purity of RNAs subjected to profiling
by RT-qPCR were determined on the NanoDrop™ 2000c
spectrophotometer (Thermo Fisher Scientific). Minimum
RNA intactness assessed at the 4200 TapeStation System
(Agilent Technologies) was set at a value of ≥ 6.4 RNA integ-
rity number equivalent (RINe).

Transcriptome profiling by mRNA-Seq

Sequencing libraries focused on poly(A) RNAwere generated
from 1 μg total RNA using the TruSeq RNA library prepara-
tion kit v2 (Illumina, San Diego, CA, USA) and sequenced
with sequencing-by-synthesis technology on the HiSeq™
2000 Sequencing System (Illumina).

Primary analysis and demultiplexing of mRNA-Seq data
was performed using the CASAVA software version 1.8.2
(Illumina). For hierarchical clustering of expression patterns,
sequence reads were aligned to the reference genome of the
dog (Canis lupus familiaris) or the dingo (Canis lupus dingo)
using the genome assemblies CanFam3.1 or ASM325472v1,
respectively, downloaded from the Ensembl genome browser
and the Spliced Transcripts Alignment to a Reference (STAR)
software version 2.7.3a ([13]; https://github.com/alexdobin/
STAR/releases).

For selection of stable exons, we used TopHat (https://ccb.
jhu.edu/software/tophat/index.shtml), another popular, but
less recent splice-aware aligner.

Expression stability ranking of single and neighbour
exons based on CV

The stability of exonic sequences in the mRNA-Seq expres-
sion data was ranked in ascending order based on the CV,
defined as the ratio of the standard deviation to the mean.
Individual CV values were calculated for single exons and
three exon-neighbour combinations, namely, a pair of direct
neighbours (i and i + 1), a trio of direct neighbours (i, i + 1 and
i + 2) and an exon paired with its neighbour after next (i and
i + 2). Calculation was performed using R package version
3.5.5 (www.R-project.org/).

Enrichment analysis for gene ontology (GO) terms

The most stable genes were annotated by one or more GO
terms using the Blast2Go tool (www.blast2go.com). Briefly,
Standard Protein BLAST (https://blast.ncbi.nlm.nih.gov/
Blast.cgi?PAGE=Proteins) was performed against the non-
redundant database of NCBI for all mammals (taxon 40674).
Only the first 20 alignments passing the E value cut-off of 1.
0E-3 with a coverage of at least 90% against the subject se-
quences were considered for annotation. The GO terms re-
trieved by InterPro scanning at the web server of the
European Bioinformatics Institute (www.ebi.ac.uk/interpro/)
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were converted and merged with the annotation. The annex
function was employed to assign the GO terms obtained by
GOmapping to the query sequences. Finally, “slimming”was
carried out to identify the most representative biological
processes that were subsequently subjected to enrichment
analysis. The annotations of all known canine proteins were
used as a background list to create a 2 × 2 contingency table
for calculating the Fisher’s exact test in Microsoft Excel
(https://udel.edu/~mcdonald/statfishers.xls). Enriched GO
terms with a false discovery rate of less than 0.01 were
reported. Concordance of the enrichment results was
evaluated at the GeneMANIA database (http://genemania.
org) using human genomics and proteomics data as
orthologous substitute for the dog and the “GO biological
process” as the weighting method.

RT-qPCR

Total cellular RNA or its poly(A)-RNA fraction extracted with
paramagnetic oligo (dT)25 beads of the NEBNext® Poly(A)
mRNA Magnetic Isolation Module (New England Biolabs,
Ipswich, MA, USA) was used as the template for cDNA
synthesis.

First-strand cDNA was synthesized in duplicate using a
reaction volume of 20 μl and the Transcriptor High Fidelity
cDNA Synthesis Kit (Roche Life Science, Vienna, Austria).
The reaction contained 1 × Transcriptor RT reaction buffer,
20 U Protector RNase inhibitor, 1 mM dNTP mix, 60 μM
random hexamers or 2.5 μΜ oligo(dT)18 primer in case of
poly(A)-RNA templates, 10 U Transcriptor Reverse
Transcriptase and 500 ng total RNA or 500 pg poly(A) RNA.

Putative contamination with genomic DNAwas monitored
by a reaction lacking reverse transcriptase. RTwas performed
at 55 °C for 60min and terminated at 85 °C for 5 min using the
MJ Research PTC-200 Thermal Cycler (Bio-Rad, Hercules,
CA, USA). The undiluted cDNAs were stored at − 20 °C until
further analysis.

Oligonucleotide sequences of the qPCR assays (Table S3)
were designed using the program Primer Express 2.0 (Applied
Biosystems, Foster City, CA, USA). The chance of amplifying
co-isolated genomic DNA was reduced by designing a PCR
product that spanned an exon-intron boundary or flanked an
intron of at least 750 bp. Putative primer dimerization was eval-
uated with NetPrimer (Premier Biosoft International, Palo Alto,
CA, USA; www.premierbiosoft.com/netprimer/). The secondary
structure of the PCR amplicon was predicted on the Mfold Web
Server (http://unafold.rna.albany.edu/?q=mfold/DNA-Folding-
Form). Amplicon specificity was evaluated by NCBI's Primer-
Blast (www.ncbi.nlm.nih.gov/tools/primer-blast/) using the
“non-redundant” database of the dog (taxid number 9615).

The qPCR performed in a volume of 15 μl was composed
of 1 × PCR buffer B2 (Tris-HCl, (NH4)2SO4 and Tween-20;
Solis Biodyne, Tartu, Estonia), 1 × dNTP mix that partially

replaced dTTP with dUTP for putative removal of carry-
over contamination by uracil DNA glycosylase (0.2 mM of
each dATP, dCTP and dGTP, 0.08 mM of dUTP and 0.12 mM
of dTTP; Solis Biodyne), 0.4 × EvaGreen I dye (Biotium,
Fremont, CA, USA) or 200 nM hydrolysis probe (Integrated
DNA Technologies, Leuven, Belgium) depending on the as-
say, 3.5 mM MgCl2, 200 nM of each primer, 1 U HOT
FIREPol® DNA polymerase (Solis Biodyne) and 1.5 μl or
6 μl of diluted cDNA. For target quantification in total cellular
RNA or poly(A)-RNA templates, cDNAs were ten- or sixfold
diluted, respectively. All qPCR assays that were run in dupli-
cates (or triplicates in case of the S100A4 transcript variants)
included a minus-RT control and a no-template control to rule
out cross-contamination of reagents and surfaces.
Amplification andmonitoring of fluorescencewere performed
on the Corbett Rotor-Gene 6000 Real Time PCR System
(Qiagen) operated by the software version Rotor-Gene Q
2.1.0.9. Cycling conditions consisted of an initial 15-min in-
cubation step at 95 °C for polymerase activation and template
denaturation, followed by 50 cycles of 95 °C denaturation for
15 s, 60 °C annealing for 20 s and 72 °C elongation for 20 s.
Finally, a dissociation curve was recorded over the range of 60
to 95 °C at increments of 1 °C every 5 s. In case of the probe-
based qPCR format, amplification was achieved over 50 cy-
cles consisting of a 15-s denaturation step at 95 °C and com-
bined annealing and elongation for 60 s at 60 °C. A qPCR
assay was considered unaffected by co-amplification of geno-
mic DNA if the minus-RT control produced an efficiency-
adjusted ΔCq value of at least 5.

In addition to the amplicon melting profile, specificity of
amplification primers was validated by electrophoresis on a
1% agarose gel (Fig. S1) using 1 × sodium borate buffer
(10 mM NaOH, pH adjusted to 8.5 with boric acid), 8.75 μl
GelGreen™ Nucleic Acid Stain (Biotium) per 100 ml gel and
the “100-bp DNA Ladder” (Solis Biodyne) for determination
of DNA fragment size.

Determination of qPCR amplification efficiency
and outlier treatment

For target sequences of at least moderate abundance, efficiency
of qPCR amplification (E) can be determined from raw fluo-
rescence data without the need of a standard curve. For each
well, an individual efficiency was calculated from the exponen-
tial phase of the raw (i.e. not baseline-corrected) amplification
curve using the Real-time PCR Miner (http://ewindup.info/
miner/). The mean of individual efficiencies, Efi, served to
adjust Cq values measured at an amplification efficiency of
less than 100% according to the term Cq × log10 (Efi + 1)/
log10(2). Following efficiency correction of Cq values,
outliers from quadruplicate RT-qPCR measurements, i.e.
qPCR replicates for both cDNA duplicates, were identified
and handled as follows. In case of quadruplicate Cq values,
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we removed the technical replicate that caused a standard devi-
ation of more than 0.5 cycles. If the means of the qPCR dupli-
cates run for each of the two cDNA replicates differed by more
than one cycle, the cDNA replicate that exhibited the highest
deviation from the global average of the sample cohort was
removed from analysis (n = 7, validation of reference exons
by RT-qPCR).

RT-qPCR measurement of exon’s expression stability

The two steps of an RT-qPCR assay were run in duplicates
starting with the RT reaction. The average of the duplicate’s
raw Cq values was efficiency-adjusted and assessed for expres-
sion stability using four common statistical algorithms, geNorm
implemented in the qbase+ software 3.1 (www.qbaseplus.com),
the Microsoft Excel-based programs NormFinder (https://
moma.dk/normfinder-software) and BestKeeper (www.gene-
quantification.de/bestkeeper.html) as well as the Comparative
ΔCqmethod accessed via the web-based tool RefFinder (www.
hea r t cu re .com.au / re f f inde r / ) . The ranks of the
individual algorithms were aggregated into a final
weighted rank using the R package RankAggreg version 3.4.
4 for Windows (https://CRAN.R-project.org/package=
RankAggreg), run with the implemented cross-entropy Monte
Carlo algorithm with Spearman’s footrule distance. The R code
for rank aggregation analysis is provided as File S1.

The minimum gene set for RT-qPCR normalization was
determined by the geNorm algorithm. The software sorts
genes in ascending order according to their expression stabil-
ity measure (M), computes a NF for each gene set using the
geometric mean of their expression values and determines the
optimal number of normalizers based on pairwise variation
(Vn/Vn + 1) between two sequential factors, NFn and NFn + 1.
The common cut-off value of Vn/Vn+ 1 < 0.15 determined the
lowest number of genes for accurate normalization. This min-
imum gene number was adopted to compose the NFs for the
other stability algorithms. In another round of stability assess-
ment with the RankAggreg package, we computed consensus
ranks for the single genes and the added four NFs.

Co-regulated gene relationship of the gene pair composing
the best NF was evaluated based on information for the dog
contained in version 7.3 of the gene co-expression database
COXPRESdb (http://coxpresdb.jp).

In silico analysis of alternative polyadenylation
in the 3’ untranslated region (UTR) of canine S100A4
mRNA

Hexanucleotide motifs signalling canonical (AAUAAA) as
well as non-canonical (AUUAAA, AGUAAA or UAUAAA)
polyadenylation were used as query sequences for in silico
analysis by “Poly(A) Signal Miner” integrated in DNA func-
tional site miner (http://dnafsminer.bic.nus.edu.sg).

Counting S100A4 mRNA copies by digital PCR (dPCR)

The copy number concentration of a cDNA target se-
quence was determined by dPCR on the Applied
Biosystems QuantStudio™ 3D Digital PCR System
(Thermo Fisher Scientific) using the QuantStudio™ 3D
Digital PCR MasterMix and oligonucleotide sequences
developed in this work (Table S3). The highest expressor
of S100A4 mRNA (sample #2097) was used for “trans-
lating” the sample’s Cq values measured by the various
S100A4 RT-qPCR assays into numbers of transcript
copies.

Assignation of biochemical processes using gene
ontology classification

Molecular functions of the gene pair regarded as the most appro-
priate NF were derived from the Gene Ontology Database (re-
lease: 1st of January 2019; http://amigo.geneontology.org/amigo).

Quantitative immunohistochemistry (qIHC)
for S100A4

The area fraction of (brown) colour pixels resulting from im-
munohistochemical staining against S100A4 was automati-
cally scored by quantitative image analysis.

Paraffin sections were rehydrated and blocked by 1.5% nor-
mal goat serum to minimize unspecific binding of the primary
antibody. Sections were heated in 0.1 M citrate buffer (pH 6) for
30 min for heat-induced epitope retrieval and incubated over-
night with the monoclonal anti-S100A4 antibody produced in
the mouse (Sigma-Aldrich, Vienna, Austria; catalogue number
AMAb90599, Prestige Antibodies®, clone CL0240, 1:3000 di-
lution). Antibodies of this serieswere developed and validated by
the Human Protein Atlas project (www.proteinatlas.org), an
international program for systematic exploration of the human
proteome using (monospecific) antibody-based proteomics. The
antibody binds to an epitope located within the peptide sequence
“CNEFFEGFPD” present in the C-terminal region of canine
S100A4 identically encoded by all three validated transcript var-
iants (NCBI’s accession numbers: NM_001003161.3, NM_
001363554.1 and NM_001362597.3). Polyclonal anti-mouse
IgG (H + L) antibody produced in the goat (Immunologic,
Duiven, Netherlands; Poly-HRP anti-mouse IgG (ready-to-
use)) was applied as secondary antibody for 30 min at room
temperature. Staining with diaminobenzidine (DAB) produced
a brownish HRP/DAB-complex. For nuclear counterstaining
haematoxylin was used. In general, the complete tumour area
was subjected to qIHC scoring performed as follows. The image
of the stained tissue was digitized using a slide scanner (Aperio
Scanscope, San Diego, CA, USA) at 20-fold magnification and
converted to a tagged image file format with a resolution of
1 μm/pixel. The percentage of tissue area positively stained with
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DAB was calculated in relation to the whole tissue area using a
self-made script (File S2) run under the open-source platform for
biological-image analysis FIJI (https://imagej.net/Fiji). In brief,
the tumour area was selected and its area measured. Colour
deconvolution, i.e. unmixing using the predefined colour
vectors for DAB and haematoxylin, separated the colours of
the target signal and the nuclei. A bilateral filter was applied to
the image showing the DAB signal for removing noise. White
intensity values of more than 200 were considered as
background. Applying a particle size of at least 15μm2 reduced
granular-staining artefacts.

Statistical analysis

Normality of transcript expression values of stably expressed
genes (SEGs) was examined by the Kolmogorov-Smirnov nor-
mality test. If the null hypothesis of the test (that the distribution of
data is normal) could not be rejected, outlying values were iden-
tified based on theGrubb’s test run using the R package “outliers”
(https://cran.r-project.org/web/packages/outliers/index.html).
Strength and direction of the monotonic relationship between two
given variables was evaluated by Spearman’s ρ recommended for
use with data that are skewed or have outliers. The strength of a
linear relationship between two variables was quantified with
Pearson’s r. If not otherwise indicated, statistical analysis was
performed in the GraphPad Prism demo version 5 for Windows
(GraphPad Software, Inc., La Jolla, CA, USA).

Logit transformation, one of two most common variance-
stabilizing transformations, was applied to the score of qIHC.
Being a proportion, the score is constrained to lie between 0
and 1, and its possible variance hence depends on its mean value
(more spread is possible at a mean proportion of 0.5 than at
proportions of zero and one). Logit transformation calculated
according to logit(p) = loge(p/(1-p)), where p is the proportion
value of qIHC, expands the ends of the scale allowing variances
at different mean values to be more naturally compared.

Observing that the normalized S100A4 transcript levels
varied almost over two orders of magnitude across the cohort
of osteosarcomas, we decided to seek correlations between the
transformed qIHC scores and the logarithm of the normalized
mRNA abundances. Both gene expression levels were thus
subjected to a logarithmic-style transformation.

Results

Unsupervised hierarchical clustering of themRNA-Seq
data

The poly(A) fraction of the transcriptome was extracted as
template for mRNA-Seq-based selection of exon sequences
showing uniform expression across canine osteosarcomas.
Hierarchical cluster analysis of mRNA-Seq expression data

visualized by a heatmap (Fig. 1) stratified the ten osteosarco-
ma tissues and five osteosarcoma cell lines analysed (set 1:
Table S1) into three main clusters represented by five, four and
six tissues or cells (top, middle and bottom clusters, respec-
tively). The same main clusters were obtained when the
mRNA-Seq data was aligned to the genome of the
(Australian) dingo (Canis lupus dingo) instead of the dog
(Fig. S2).

Noticeable, the osteosarcoma tissue DOS-8 and the cell
line derived from it, OSCA-8, did not cluster together
(Fig. 1). This difference in transcriptional programs might be
due to changes in epigenetic marks that would likely be more
sensitive to culture conditions than DNA sequences [14], to
some loss of heterozygosity coming with increasing passage
number of cell culture (Data S1) and/or the absence of stromal
cell-specific signature from the cell line’s expression profile.
Likewise, it can be caused by clonal expansion of aneuploidy
[15], i.e. genomic heterogeneity in the cell line’s tumour of
origin.

Ranking mRNA-Seq data based on stability
of expression

Single or neighbouring exons determined by mRNA-Seq profil-
ing were ranked for stability based on their CVof expression. A
lower value indicated a more stable expression across the condi-
tion.We limited the analysis to aCVof ≤ 1 and the following four
exon combinations: single exons (i), pairs of direct exon-
neighbours (i, i + 1), pairs of the exon i together with the exon
skipping the one thereafter (i, i+ 2) and three consecutive exon
neighbours (i, i + 1, i + 2). The fraction of neighbour exons

Fig. 1 Canine osteosarcoma samples segregate into three main clusters
according to unsupervised hierarchical cluster analysis of mRNA-Seq
data. The decreasing level of expression correlation is illustrated by red
to blue colour (Spearman’s ρ of 1 to 0.8, respectively). Samples: set 1. T:
osteosarcoma tissue, C: primary cell culture of osteosarcoma
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accounted for 30, 20 and 29% of the top 10, 100 and 1000
sequences, respectively (Fig. 2). Next, we compared the tran-
scriptional stability of several normalizers that were formerly
recommended for use in canine osteosarcoma without
transcriptome-wide expression profiling for this context such as
OAZ1 [16] or B2M, HNRNPH, RPS5 and RPS19 [17]
(Table S5). This set consisted of classical normalizers that were
derived from educated guesswork (e.g. B2M) and reference
genes showing a more universal expression uniformity across
mammalian cells and tissues, e.g. OAZ1 [18]. In a single case,
gene selection was guided by genomic data produced for the
pathophysiological study condition (OASL, formerly termed
C26H12orf43, [19]). We obtained considerably lowerCV values
for our novel sequences (0.14–0.17 versus 0.29–0.99) indicating
a clearly higher stability of transcript expression (Fig. 2).
Common classical SEGs, such as GAPDH and HPRT1, even
exceeded the threshold of CV ≤ 1 (details in Data S2).

To identify overrepresented GO categories among the most
stable genes, we composed a list that exemplarily comprised a
number of 100 genes with the highest stability of transcript
expression. Each of the genes was represented by either a
single exon or a combination of neighbouring exons ranked
top for expression stability. Pathway enrichment analysis per-
formed for this gene set and calibrated by the total number of
genes with detectable expression delivered the by far best
statistical support for the biological process of protein trans-
port followed by the GO term of mRNA processing (false-
discovery rates of 5.9E-28 and 6.0E-10, respectively; Fig. 3).
Analysing the gene panel independently at the GeneMANIA
database identified “mRNA processing” as the most enriched
biological process (FDR of 3.2E-13).

RT-qPCR-based validation of expression stability
for the exonic sequences

Eleven neighbour exons and two single exons showing
highest expression stability according to mRNA-Seq anal-
ysis were validated by RT-qPCR (Fig. 4) using a second set
of osteosarcomas (set 2, n = 7, Table S2). To avoid con-
founding by deregulation at the level of circRNAs and/or
rRNAs, validation started from the same type of template,
i.e. the poly(A) fraction of the transcriptome. For compar-
ison, we included C26H12orf43 that was supported by ge-
nomic data produced for the experimental condition (for-
merly termed LOC611555 [19]). We regarded the delayed
(efficiency-adjusted) Cq value obtained for sample #1336
in the assay against the single HNRNPL exon a possible
case of an outlying late amplification (Grubb’s test: p =
0.07) that might be caused by a polymorphic primer-
binding site [20] or a structured amplicon [21]. CV values
of down to 2.5–4.1% calculated for the novel sequences
indicated an exceptional high uniformity of expression
(Data S3). To identify suitable gene combinations for com-
posing a NF, exons were evaluated for expression stability
by the four common statistical algorithms geNorm,
BestKeeper, NormFinder and the comparativeΔCqmethod
(Data S4). Based on the pairwise-variation cut-off of Vn/Vn

+ 1 < 0.15 recommended by geNorm for two consecutive
normalization factors, NFn and NFn + 1, we concluded that
two genes were sufficient for normalization (V2/3 = 0.07,
Fig. S3). This minimum gene number was adopted to com-
pose the NFs for the other statistical tools. The rank lists
calculated by the four statistical tools were subjected to

Fig. 2 Stability of single exons or pairs of neighbour exons based on CV
in mRNA-Seq data of canine osteosarcoma (sample set 1). CV values
were plotted against mRNA abundance representing log2-transformed
transcripts per kilobase million. Single exons and pairs of neighbour
exons used for RT-qPCR validation were depicted by grey plus signs
and filled dots of light blue colour, respectively. Gene symbols highlight
SEGs used in previous RT-qPCR studies of canine osteosarcoma derived
from educated guessing (B2M, RPS5, RPS19, HNRNPH), from

interspecies expression stability assessment of transcriptome data
(OAZ1) or by array-based comparative genomic hybridization for the
context (C26H12orf43) (references in Table S5). Their most stable two
consecutive exons are exemplarily depicted. Common traditional normal-
izers such asGAPDH andHPRT1 even exceeded the threshold of CV ≤ 1
(data not shown). Note that the Ensembl Genome Browser used for read
mapping does not list OASL and C26H12orf43 as separate genes in con-
trast to the NCBI database
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rank aggregation analysis using the RankAggreg package
(Data S4). This pre-screening identified the consecutive
exon pairs of the genes LSM14A, THOC5 and HNRNPL
as most stable. Next, we analysed how much the genes
and their pairwise NF combinations impacted the quantita-
tive relationship between the transcript abundance of
S100A4 and the expression of the translated protein
expressed as qIHC score. This experimental “readout”
identified the NF composed of THOC5 and HNRNPL as
the most appropriate normalization choice (Data S5).

While sharing molecular functions like RNA and protein
binding (GO classifications 0003723 and 0005515, respec-
tively), the two genes participate in different biological pro-
c e s s e s (THOC5 : mRNA expo r t f r om nu c l e u s
(GO:0006406), HNRNPL: regulation of alternative
mRNA splicing, via spliceosome (GO:0000381)) and are
poorly co-expressed according to the gene co-expression
database COXPRESdb. Hence, they represent an appropri-
ate NF combination to normalize RT-qPCR data of canine
osteosarcoma at the template level of poly(A) RNA.

Fig. 4 Tukey box plot depicting the abundance range of single or
neighbouring exons for canine osteosarcoma tissues (sample set 2).
Boxes represent the lower and upper quartiles centered on the median.
Whiskers indicate the Tukey confidence intervals. Blue and grey: exon
pair or single exon identified by mRNA-Seq analysis, respectively (this

study), red: RT-qPCR normalizers identified by array-based comparative
genomic hybridization for the biological context [19]. Numbering of the
respective exons is provided in Table S3. The R code used for generating
the plot is provided as File S3

Fig. 3 The hundred most stable
genes are enriched in key
biological processes. Ranking of
genes and biological processes is
based on CV and false discovery
rate (FDR), respectively. P values
were obtained by Fisher’s exact
test and corrected by the
Benjamini-Hochberg post hoc
method. Gene number: number of
genes from the input list assigned
to a certain process category.
Frequency: number of genes of
the input list annotated to a par-
ticular GO term divided by its to-
tal gene number (illustrated by the
size of sectors in the pie chart)
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THOC5 andHNRNPL are also choices of normalization for
studies that involve normal osteoblasts as indicated by similar
Cq values (data not shown; template type: poly(A) RNA).

Demonstrations of improved RT-qPCR data
normalization: pairwise co-expression of mRNA
variants of S100A4 and the gene’s relationship
between transcript and protein expression levels

As a first demonstration of technical noise reduction in transcript
quantification achieved by our improved normalization strategy,
we evaluated the extent of pairwise co-expressions among the
S100A4 transcripts a, b and c across canine osteosarcomas
(Fig. 5a). Proving their expression in the study context required
a decision upon the template type for RT-qPCR, total cellular
RNA or its fraction enriched for poly(A) RNA. On total RNA
templates, we found a consistent expression of the major tran-
script species a across the 13 samples of the cohort (range of Cq
values for quantification: 25.1 to 34.1, Data S6). However, pro-
filing the less-abundant variants b and c on the same templates
resulted in single-negative or even double-negative amplification
events (variant b: samples #1278 and #1943; variants b and c:
#0649 and #1346; Data S6). Therefore, we considered to reduce
the high level of nonspecific background RNA that was previ-
ously shown to negatively affect the conversion efficiency of the
RT enzyme, particularly in the case of a rare target [22]. We
argued that switching to a poly(A) RNA template type would
diminish this background effect, and thus, could reveal false-
negative detection. Indeed, on the less dense template, the minor
S100A4 mRNA variants b and c were consistently detected
(Fig. 5b, Data S6, n= 13). Remarkably, the more sensitive de-
tection of the minor variants was achieved, although only about
one-ninth of the mRNA amount was used as template, a calcu-
lation that assumed a 3 to 7%proportion of themRNA fraction in
total cellular RNA [23]. Samples #1186–1 and #1278 did not
reach the limit of quantification in the assays against S100A4
transcripts b and c. Therefore, their expression was alternatively
determined by dPCR (Data S7). Partitioning into many indepen-
dent PCR sub-reactions applied by dPCR provides accuracy
even for rare targets [24]. Copy number counting based on
dPCR also confirmed that transcript a represented the by far most
abundant species of S100A4 (Fig. 5d, p < 0.001). The minor
transcript variants b and c individually contributed just 2.5% to
the total amount of S100A4 transcripts (Data S6). Combining
qPCR and dPCR data and normalizing with the novel NF re-
vealed strong or even extraordinarily strong pairwise co-
expression across the S100A4 transcript variants (a with either
b or c: ρ= 0.81/ 0.76, r= 0.92/ 0.90; bwith c: ρ = 0.93, r = 0.99;
Fig. 5e and data not shown).

As a second demonstration of the technical-noise reduction
in transcript measurement, we sought to uncover the associa-
tion between the overall abundance of S100A4 transcripts and
the amount of the S100A4 protein expressed as spatially

resolved quantitative distribution across a thin tumour section
(qIHC score, exemplified in Fig. 6). Since the level of S100A4
transcript expression was high enough, we could favour total
RNA as the cheaper and easier to isolate, hence more common
template over poly(A) RNA (Fig. S4). We converted the rel-
ative S100A4 transcript expression values determined by RT-
qPCR into copy numbers using a calibrator sample measured
by qPCR as well as dPCR (Data S7).

As a starting point, we normalized the abundance of S100A4
mRNA with the mass of the RT template. However, we were
unable to detect a relationship between the two gene expression
levels of S100A4 using this approach (p = 0.13, ρ= 0.45,
Spearman’s correlation; p= 0.23, r= 0.36, Pearson’s correlation)
(Fig. 7b left, Data S8). This might be caused by technical varia-
tion between samples andmeasurements (extraction, quality (pu-
rity and integrity) and concentration assessment of RNA, cDNA
sample loading as well as different efficiencies of cDNA synthe-
sis and subsequent exponential amplification). Alternatively, we
assessed the outcome of normalization with one or more stably
expressed internal control genes. As candidates, we selected the
three normalizersHNRNPL, THOC5 and LSM14A that exhibited
the most stable expression in poly(A) RNA templates (Data S4)
and their pairwise NF combinations. Correlation analysis be-
tween the expression intensity of S100A4 at the mRNA and
protein levels was used as the experimental “readout” or “post-
control” for their re-evaluation. This was required to compensate
for attributing the same weight to every stability algorithm, a
practical option without any biological meaning that is arguable
because some of the analytical approaches applied here for sta-
bility assessment include redundant information [25], as well as
to compensate for changing the type of RNA template and the
composition of the RNA cohort. We found that the choice of
normalization strongly impacted the uncovering of relationship
between expression intensity of S100A4 at the mRNA and pro-
tein levels. Three of the six normalization choices resulted in a
significant or even highly significant strong positive correlation
between the expression levels (HNRNPL: p= 0.006, Spearman’s
ρ = 0.72; NF1: p = 0.009, ρ = 0.69; NF2: p = 0.014, ρ = 0.66;
Fig. 7a and Data S5). In contrast, we could not establish a rela-
tionship by normalizing with the other three choices (NF3: p=
0.078, ρ = 0.51; THOC5: p = 0.086, ρ = 0.50; LSM14A: p =
0.117, ρ= 0.46). We note that the corresponding Pearson’s coef-
ficients were very similar (Data S5). We also note that the aggre-
gate rank order of the gene stability algorithms was partly differ-
ent from the list obtained by our experimental “readout”
(Fig. 7a). Based on the latter, we regarded HNRNPL as the best
RT-qPCR normalizer for canine osteosarcoma at the level of total
RNA templates (Spearman’s correlation: p = 0.006, ρ = 0.72;
Pearson’s correlation: p= 0.004, r= 0.73; Fig. 7a and b right,
Data S5). Expectedly, the logit transformation of qIHC scores
improved Pearson’s correlation (poly(A) RNA templates: r =
0.47; p = 0.108 versus r = 0.65 (p= 0.016); total RNA templates:
r= 0.64 (p = 0.019) versus r= 0.73 (p= 0.004)).
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Fig. 5 S100A4mRNAs in canine osteosarcoma: structure, copy numbers
and pairwise correlation of variants. a Exon-intron structure of validated
S100A4 transcripts a, b and c (GenBank IDs: NM_001003161.3, NM_
001363554.1 and NM_001362597.2, respectively). The length of the 3′
UTR and the common distance between the canonical poly(A) signal
AAUAAA and the poly(A) stretch (~ 21 nucleotides) were confirmed
by Sanger sequencing of amplicons produced by Rapid Amplification
of 3’ cDNA Ends (consensus primers: GenBank accession number
MK138547, primers against transcript variant c: MK584633). A
putative proximal, non-canonical signal for alternative polyadenylation
predicted in silico (Table S7) is not presented.We note that the N-terminal
peptide extension predicted for the dog/dingo (GenBank accessions NP_

001349526.2 and XP_025284715, respectively) or feline species
(Acinonyx jubatus: XP_014941010.1, Panthera pardus: XP_
019287133.1) still awaits experimental validation. b Dynamic ranges of
qPCRs applied to quantify the S100A4mRNAs. c dPCR plot of a sample
that did not reach the limit of quantification in the respective qPCR assay
(sample: #1186–1, assay against minor variant b). d Copy numbers of
S100A4 mRNAs normalized by the novel NF (geometric mean of two
consecutive exons of HNRNPL and THOC5) and assessed for
significance by the nonparametric Wilcoxon Signed Rank Test for
paired data. e Pairwise co-expressions across variants evaluated by
Spearman’s rank correlation coefficient (blue to red: fair to perfect
correlation)

Fig. 6 Automatic quantification of S100A4 distribution in paraffin-
embedded sections of canine osteosarcoma by qIHC. Representative
samples with high, moderate and low frequencies of positive areas (areas

with brown staining) are depicted from right to left. Leftmost: negative
control without primary antibody
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Out of the three mRNAs of canine S100A4, transcript var-
iant a showed the highest strength of association with the
qIHC score of the translated protein (Fig. S5), a finding that
is not surprising given its 95% contribution to the overall
abundance of S100A4 transcripts (Fig. 5d). Also note that
for the large tumour of sample #0649, we determined two
qIHC scores (Section 1: 3.1%; Section 2: 10.0%) and included
only the score that yielded a better linear regression between
the expression levels.

Discussion

The correlation between mRNA and protein abundances de-
pends on various biological and technical factors. Here we
reduced the error of transcript measurement, exemplarily dem-
onstrated for the target gene S100A4 and dog osteosarcoma, a
comparative oncology model. This facilitated uncovering as-
sociation between the gene’s transcript expression and the
abundance of the resulting protein measured in the context
of tissue morphology (qIHC score). Two crucial parameters
minimized the technical artefact in RT-qPCR data normaliza-
tion required to accurately quantify the expression of a target
mRNA, (i) selecting SEGs from mRNA-Seq data that were
produced for the pathophysiological study condition and
mined at exon-level resolution and (ii) using poly(A) RNA
also as the template type for their confirmation by RT-qPCR
(Fig. 8).

Expression profiling by next-generation sequencing offers
the option to identify SEGs at exon resolution [26, 27]. This
level of sequence resolution reduces interference from puta-
tive alternative splicing events (reviewed in [28]) that are

hallmarks of cancer and determinants for its progression
[29]. In this study, we asked whether an exon-neighbour pair
would exhibit high expression stability irrespective of the het-
erogeneity and mutational burden reported for tumour pheno-
types [30]. The splice junction between the two exons would
facilitate a robust, intron-spanning qPCR assay design.
Indeed, we found 11 genes that contributed pairs of consecu-
tive exons to the top 100 most stable expressors (Data S2).
Irrespectively of the heterogeneous nature of the osteosarcoma
tumour model studied, our SEGs selected by mRNA-Seq with
exon-level resolution showed a rather narrow range of expres-
sion variation across osteosarcoma tissues (CVs: 10.4 to
17.1%, n = 10, Table S8). This stability was similar to that
reported for relatively homogeneous samples comprised of
cells and tissue of a non-pathological condition (CVs of ~
15% [31] and 8 to 18% [27]). More heterogeneous material,
e.g. various cancer types can produce similar expression sta-
bilities (~ 10% for normal and malignant prostate tissue and >
13% or > 16% for two types of lung cancer [32]), but also, a
considerably higher variation in the case of neuroblastoma,
where high cellular heterogeneity is a hallmark (~ 30%;
[31]). Notably, expression variation across the 13 exonic nor-
malizer sequences was found to be lower when quantified by
RT-qPCR (2.5 to 4.1%, Data S3) compared to mRNA-Seq
measurement (Data S2). We note that each dataset was pro-
duced from an independent cohort of osteosarcoma tissues
randomly sampled (n = 7 and 10, respectively). Therefore,
the discrepancy should be attributed to the higher technical
noise putatively associated with traditional mRNA-Seq proto-
cols including the one applied in our study. Such protocols can
skew quantification due to inherent errors of PCR amplifica-
tion required to obtain sufficient material for quantification.

Fig. 7 Noise reduction in transcript normalization uncovered association
between mRNA and protein expressions of S100A4 in canine
osteosarcoma. a “Pearl” diagram presenting the stability of the three
reference genes (depicted by colour) most stably expressed at the
template level of poly(A) RNA in comparison to their two-gene combi-
nations (NF1 to NF3) (depicted by bicolour circles). The best normaliza-
tion choice for total RNA templates was determined by rank aggregation.
The noise reduction of transcript measurement resulting from better nor-
malization of target gene expression is illustrated by the increased circle

radius that is proportional to the Spearman’s rank correlation coefficient
(ρ) obtained for the linear association between mRNA abundance of
S100A4 and proportion of tumour area positive for its protein (Fig. 7b).
b Copy number of S100A4 mRNA was normalized by either the input
amount of template in cDNA synthesis (left) or the best normalizer iden-
tified by using expression correlation analysis as the experimental “read-
out” (Fig. 7a, Data S5). ρ: Spearman’s rank correlation coefficient; r:
Pearson’s correlation coefficient; p: significance value
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More recently, more accurate gene expression resulted from
introduction of unique molecular indices into library construc-
tion [33].

Irrespectively of the highly heterogeneous nature of our tu-
mour condition, just two reference sequences were sufficient for
reliable normalization of RT-qPCR data according to expression
stability assessment using the statistical algorithm geNorm.
Typically, such remarkably high stability is reported only for less
complex physiological contexts (Table S6). In other terms, our
stable exons varied only little in expression according to the RT-
qPCR data (osteosarcoma tissues of set 2, n = 7). For example,
the genes that composed the final NF, THOC5 and HNRNPL,
showed a 3.6- and 3.7-fold difference between minimum and
maximum expression. Slightly less variation of expression (~ 2-
fold) was determined earlier at our facility when selecting SEGs
for the intestine of laboratory mice [34]. To enable optimal pre-
cision, both studies used cDNA replication and a qPCR assay
setup automated by a liquid handling system. We attributed the
slightly higher fluctuation in our tumour context to the prolonged

time required for processing an osteosarcoma tissue compared to
intestine tissue derived from a laboratory animal model such as
the mouse and to the general intrinsic heterogeneity and genetic
instability of tumours. We also note that HNRNPL was recently
declared as consensus reference gene for a range of human can-
cer types based on large-scale expression datasets [35].

Another key requirement of our transcript measurement ap-
proach was the consistent use of poly(A) RNA as template type
across selection and verification of SEGs performed by mRNA-
Seq and RT-qPCR analyses, respectively. This avoided interfer-
ence from altered proportions of mRNA to rRNA [36]. The two
transcriptome fractions are synthesized by different RNA poly-
merases, polymerases I and II, and show different proportions in
various physiological or disease contexts related to proliferation
and cellular biogenesis. For example, rRNA expression can be
affected by biological factors such as viral infections [37], drugs
[38], cancer [39] and exercise [40]. The use of poly(A) RNA
instead of total RNA as the template in RT-qPCR considers the
generally assumed fact that tumour cells overexpress rRNA

Fig. 8 Methodology to select stable sequences for accurate normalization
of RT-qPCR data in the context of canine osteosarcoma. The grey section
shows the identification of neighbouring exon pairs with stable expres-
sion based on their CV in poly(A)-transcriptome sequencing by mRNA-
Seq (grey box). To validate their expression stability by RT-qPCR, the
same template type as of mRNA-Seq, i.e. poly(A) RNA was targeted
(upper dashed box), and multiple statistical algorithms were applied (blue
box). The exon pairs of HNRNPL, THOC5 and LSM14A (Fig. 7a) were
most stably expressed in poly(A) RNA templates according to rank ag-
gregation (RankAggreg algorithm [48]). Together with their pairwise
combinations (NFs) they were re-evaluated on the template level of total
RNA. Strength of relationship between the expression intensity of

S100A4 at the mRNA and protein levels was used as the experimental
“readout” for re-evaluation. We introduced this “post-control” to enable
compensation for attributing the same weight to every stability algorithm,
a practical option without any biological meaning that is arguable because
some of the analytical approaches applied here for stability assessment
include redundant information [25], as well as to compensate for chang-
ing the type of RNA template (right dashed box) and the composition of
the RNA cohort. HNRNPL, a gene that exhibits a predominantly consis-
tent expression across a wide range of human cancers [35], alone or
together with THOC5 was proposed by the workflow as normalization
choice for total RNA or poly(A) RNA templates isolated from osteosar-
comas (red boxes)
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species and that the processing of the polycistronic 45S rRNA
transcript into the mature 28S, 18S and 5.8S rRNA species is a
multistep process subject to many potential modes of regulation
[41]. The quantitative dominance of rRNAs species in total cel-
lular RNA can cause altered rRNA-to-mRNA ratios across tu-
mour samples of different grading and staging and can finally
impair identification of SEGs [42]. Our study context, osteosar-
coma, belongs to the tumour types where high proliferation is
accompanied by a remarkable reduction of the number of 45S
rDNA repeats [43] that give rise to the three most abundant
components of cellular RNA 28S, 5.8S and 18S. The species
can be individually modulated and be aberrantly expressed be-
tween tumour and normal tissues [41] or even across specimens
of the same type of tumour [36]. In addition, using poly(A)
templates across SEG selection and validation avoids confound-
ing from non-polyadenylated circRNAs that are derived by back-
splicing from pre-mRNAs [44] and are practically absent from
mRNA-Seq data. Except of the unique back-splice junction se-
quence, non-polyadenylated circRNAs are indistinguishable
from the mRNA sequence and thus can distort the matching
between mRNA-Seq and RT-qPCR data if the latter was pro-
duced on total RNA templates [45]. Taken together, we regarded
template-type similarity as a key and obvious requirement to
select and verify SEGs that should not be neglected.
Irrespectively of the arguments listed above, this important point
was commonly ignored by earlier studies identifying SEGs from
mRNA-Seq data (Table S6).

The power of our novel normalization choice was exem-
plarily demonstrated by quantifying the abundance of a cho-
sen target transcript (S100A4 mRNA) using RT-qPCR. We
found that the novel normalizer, HNRNPL, produced a shift
from no to high significance for the correlation between
mRNA abundance and the qIHC score of the tumour marker
S100A4 compared to normalization by RNA input mass
(Fig. 7b right). The fact that the qIHC score represents a pro-
portion, and thus is constrained to lie between 0 and 1, means
that care must be taken in its statistical analysis, because the
possible qIHC variance depends on its mean level. In our
study, we used a logit transformation to account for this struc-
ture, allowing variances from different mean qIHC scores to
be more naturally compared. This was essential to uncovering
the association between S100A4 transcript abundance and the
proportion of S100A4-positive tumour area. However,
variance-stabilizing transformations have been previously
neglected when regressing a target mRNAwith the qIHC pro-
portion score of the corresponding protein. The association
between the two gene expression levels of S100A4 was un-
covered even though the extracellular localization of S100A4
is increased in the state of cancer [46] and transcript counts
and qIHC scores originated from different sections of a tu-
mour tissue, frozen or formalin-fixed, paraffin-embedded
(FFPE) sections, respectively. Future investigation should
clarify whether replicated qIHC measurement would provide

potential to further improve quality of correlation between
mRNA and protein expression. For PCR-based DNA ampli-
fication, technical replication represents an intrinsic require-
ment due to its exponential nature. Technical replication in
qPCR-based quantification, for example, allows exclusion of
bad data points, e.g. outlying Cq values in case of more than
two replicates. Currently, replicate measurement of a sample’s
qIHC score is not common. This might be explained by the
attempt to avoid resource allocation conflicts that occur when
competing needs require the use of scarce or valuable tumour
material, the linear character of the immunostaining signal or
the higher experimental costs. Although true technical repli-
cation is nearly impossible in qIHC analysis due to the spatial
heterogeneity of a tumour, future investigation should issue
the potential of replicate qIHC scoring for fine-tuning linear
regression between mRNA counts and qIHC scores of a par-
ticular gene. For example, the coefficient of determination (r2)
could be used as indicator of how well the experimental data
fit the regression line. The maximum r2 could point to paired
cryosections and FFPE tissue samples derived from a certain
tumour sample that fit best with the regression line and thus
could assist in the removal of the less-matching qIHC repli-
cate. A related approach is commonly used to determine the
optimal fluorescence threshold to generate the best fitting
curve from serial standard dilutions in qPCR [47].
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