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Abstract

In order to treat multiplicative phenomena in twisted (co)homology, we introduce a new point-set-
level framework for parametrized homotopy theory. We provide a convolution smash product that
descends to the corresponding ∞-categorical product and allows for convenient constructions of
commutative parametrized ring spectra. As an immediate application, we compare various models
for generalized Thom spectra. In a companion paper, this approach is used to compare homotopical
and operator algebraic models for twisted K -theory.

2010 Mathematics Subject Classification: 55P43 (primary); 55P42 (secondary)

1. Introduction

Stable parametrized homotopy theory originally arose from the study of transfer
maps and fiberwise duality for generalized (co)homology theories. To analyze
these phenomena, Clapp and Puppe [13] introduced a first homotopy category
of parametrized spectra. Later, May and Sigurdsson [37] studied a more refined
model category of orthogonal parametrized spectra over a base space B enjoying
favorable point-set topological properties. Both these approaches relate duality to
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a smash product obtained by first forming an external fiberwise smash product
lying over B × B and then internalizing it by pullback along the diagonal B →
B × B.

When studying cross and cup products in twisted (co)homology through the
representing parametrized spectra, one needs a different symmetric monoidal
structure. Suppose that the base space B has a homotopy coherent commutative
multiplication, that is, an E∞ structure. Then one can also attempt to internalize
the external fiberwise smash product over B × B by pushout along the
multiplication µ : B × B → B. We will refer to this type of product as a
convolution smash product to distinguish it from the fiberwise smash product
considered above. However, the setup of May–Sigurdsson does not provide such
a symmetric monoidal convolution smash product unless the multiplication of B
is strictly associative and commutative, ruling out the parameter spaces of many
interesting parametrized spectra, such as those representing twisted K -theory or
bordism theories. Ando et al. [1] implemented the convolution smash product in
the ∞-categorical setup from [2] and showed how it, for example, gives rise to
twisted Umkehr maps.

The primary aim of the present paper is to introduce a convenient point-set-level
category of parametrized spectra that admits a symmetric monoidal convolution
smash product descending to the∞-categorical product of [1]. Our main new idea
is to also allow the base space to vary for the different levels of a parametrized
spectrum. More precisely, the base spaces will assemble to an I-space, that
is, a functor from the category I of finite sets n = {1, . . . , n}, n > 0, and
injective maps to the category of spaces S . Replacing the cartesian product of
base spaces, the category SI of I-spaces is equipped with a symmetric monoidal
Day convolution product � induced by the concatenation in I and the cartesian
product of spaces. We call commutative monoids with respect to � commutative
I-space monoids.

It is proved in [42] that every E∞ homotopy type arises as the homotopy
colimit MhI = hocolimI M for a commutative I-space monoid M . We think
of MhI as the underlying E∞ space of M . This point of view often leads
to simple and explicit models of E∞ spaces. Working with symmetric spectra
parametrized over commutative I-space monoids allows us to implement the
notion of a convolution smash product in a convenient fashion. Different point-
set frameworks for parametrized homotopy theory were recently developed, for
example, in [11, 19], but, to our knowledge, these approaches again do not allow
for a convolution smash product in sufficient generality for the applications we
have in mind.

In a companion paper [21], the first named authors use the setup developed
here to prove that twisted K -theory as defined via operator algebraic methods
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coincides with the version defined via homotopy theoretic methods. More
specifically, it is shown that these theories agree as commutative parametrized
ring spectra with respect to the convolution smash product. In this case, the
commutative I-space monoids serving as base spaces model the classifying space
of the projective orthogonal group of a Hilbert space.

1.1. Symmetric spectra in retractive spaces. To implement our approach,
we first consider the category SR of retractive spaces. Objects of SR are pairs of
spaces (U, K ) with structure maps K → U → K that compose to the identity.
Morphisms in SR are pairs of maps making the two obvious squares commutative.
The external fiberwise smash product Z provides a symmetric monoidal structure
on SR with unit (S0, ∗). On base spaces, this Z-product is just the cartesian
product.

Following the work of Hovey [26], we form the category SpΣR of symmetric
spectrum objects in SR with − Z (S1, ∗) as the suspension functor. It comes with
a local model category structure whose fibrant objects are Ω-spectra. (We avoid
the term stable since in lack of a zero object, Ho(SpΣR) is not stable in the technical
sense.) The category SpΣR inherits a symmetric monoidal product Z from SR that
will play the role of the external smash product. An object (E, X) of SpΣR is a
sequence of retractive spaces (En, Xn) with an action of the symmetric group
Σn and structure maps (En, Xn) Z (S1, ∗) → (En+1, Xn+1) compatible with the
Σn-actions. Inspecting definitions, the projection πb : SR → S to the base space
induces a projection πb : SpΣR → SI to base I-spaces. If X is an I-space, we
define the category of X-relative symmetric spectra SpΣX to be the fiber of πb

over X . We stress that unless X is constant, SpΣX is not the category of symmetric
spectrum objects in some base category since the levels of (E, X) take values in
different categories.

A map of I-spaces f : X → Y induces an adjunction f! : SpΣX � SpΣY : f ∗

where f ∗ denotes degreewise pullback. We say that f is an I-equivalence if the
map of homotopy colimits fhI : XhI → YhI is a weak homotopy equivalence and
note that the I-equivalences are the weak equivalences in an I-model structure
on SI (see [42]).

THEOREM 1.2. Let X be an I-space. The category SpΣX of X-relative symmetric
spectra admits a local model structure where a map is a cofibration, fibration, or
weak equivalence if and only if it is so as a map in SpΣR.

With respect to the local model structure, ( f!, f ∗) is a Quillen adjunction that
is a Quillen equivalence if f is an I-equivalence. In particular, SpΣX is Quillen
equivalent to the stabilization of the category of spaces over and under XhI .
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Consequently, SpΣX models the same homotopy theory as the category of XhI-
parametrized spectra in the sense of May–Sigurdsson [37] or [2]. We also show
that R f ∗ : Ho(SpΣY ) → Ho(SpΣX ) admits a right adjoint R f∗ that does, however,
not arise from a right Quillen functor.

We do, in fact, provide two versions of the local model structure in the theorem,
an absolute and a positive one, where as usual the positive version is necessary to
lift the model structures to categories of commutative monoids (see (1.4)). The
theorem also has a much easier unstable analogue: the category of retractive
spaces SR inherits a model structure from the category of spaces where a map
is a weak equivalence if both of its components are, and the standard model
structure on the category of spaces SK over and under K can be viewed as a
‘restriction’ of this model structure to the subcategory SK of SR. However, the
proof of Theorem 1.2 turns out to be not as easy as it may look. The problem
is that the factorizations needed for the model category structure on SpΣX are not
inherited from SpΣR since the factorizations in the latter category may change the
base object. To circumvent this problem, we give an intrinsic description of the
category SpΣX and its local model structure in terms of section categories and then
show that its cofibrations, fibrations, and weak equivalences are detected in SpΣR.

It is also useful to note that the model category SpΣR can be recovered from
the SpΣX for varying X . As a category, SpΣR is equivalent to the Grothendieck
construction of the pseudofunctor X 7→ SpΣX sending an I-space X to SpΣX and
a map f : X → Y to f!. Harpaz and Prasma [20] have identified conditions
under which a model structure on the base category and model structures on the
values of a pseudofunctor assemble to a so-called integral model structure on the
Grothendieck construction, and we verify these conditions in the case at hand.

THEOREM 1.3. The I-model structure on SI and the local model structures on
the SpΣX induce an integral model structure on the Grothendieck construction of
X 7→ SpΣX . Under the equivalence of the Grothendieck construction with SpΣR, the
integral model structure corresponds to the local model structure on SpΣR.

This theorem is again analogous to the unstable situation where it is easy to
check that SR is equivalent to the Grothendieck construction of the pseudofunctor
K 7→ SK on S and that the integral model structure exists and is equivalent to the
model structure on SR considered earlier.

The fiberwise smash product on SR induces a fiberwise smash product Z on
SpΣR that is the �-product on the base I-spaces. Therefore, it restricts to an
external fiberwise smash product SpΣX × SpΣX → SpΣX�X . For a commutative
I-space monoid M , we can now use the pushforward along the multiplication
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µ : M � M → M to define a symmetric monoidal convolution product

SpΣM × SpΣM
Z
−→ SpΣM�M

µ!
−→ SpΣM (1.4)

on the category of M-relative symmetric spectra.
Now any parametrized spectrum (E, X) ∈ SpΣR gives rise to a parametrized

(co)homology theory as expected. To define it, recall that there is an I-
spacification functor S/XhI → SI/X, τ 7→ τI that is homotopy inverse to
hocolimI [45, Section 4]. We then set

(E, X)n : S/XhI −→ Ab, (τ : A→ XhI) 7−→ πn(LΘ)(Rτ ∗I)(E, X) and
(E, X)n : S/XhI −→ Ab, (τ : A→ XhI) 7−→ π−n(RΓ )(Rτ ∗I)(E, X),

where, for any I-space Y , the functors LΘ,RΓ : Ho(SpΣY ) → Ho(SpΣ) denote
the left and right adjoint, respectively, of the derived pullback functor along the
unique map Y → ∗.

Let (R,M) be a parametrized ring spectrum, that is, a monoid object in SpΣR.
Then we obtain the cross product displayed as the upper horizontal arrow in the
following square:

(R,M)∗(K , τ )⊗ (R,M)∗(L , σ )
×
//

��

(R,M)∗(K × L , τ × σ)

��

(R,M)∗(L , σ )⊗ (R,M)∗(K , τ )
×
// (R,M)∗(L × K , σ × τ)

When (R,M) is commutative, the square commutes up to the usual sign where the
right-hand vertical map is induced by the essentially unique homotopy between
the following two maps arising from the E∞-structure on MhI :

L × K
tw
−→ K × L

τ×σ
−−→ MhI × MhI

µ
−→ MhI

L × K
σ×τ
−−→ MhI × MhI

µ
−→ MhI

An analogous statement holds for the cup and cross products in cohomology.

1.5. Comparison to the ∞-categorical setup. We can also use Theorem 1.3
to compare the categories SpΣX to the ∞-categorical setup of parametrized
homotopy theory. There the category of parametrized spectra over a space K
is given by Fun(K ,Sp

∞
), and these categories also assemble into a category

of parametrized spectra with varying base space by Lurie’s higher categorical
version of the Grothendieck construction. The resulting category is also known as
the tangent category TS∞ of the ∞-category of spaces S∞, and we shall adopt
this name to ease notation in the comparison results.
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THEOREM 1.6. For an I-space X, the underlying ∞-category of the local
model structure on SpΣX is canonically equivalent to Fun(XhI,Sp

∞
), which

translates the Quillen adjunction ( f!, f ∗) for any map f : X → X ′ into its ∞-
categorical counterpart. Therefore, as X varies, these equivalences assemble into
an equivalence between (SpΣR)∞ and TS∞.

Furthermore, this equivalence is symmetric monoidal with respect to the
exterior smash product on both sides, and for M a commutative I-space
monoid, the equivalence SpΣM ' Fun(MhI,Sp

∞
) is symmetric monoidal for the

convolution smash product on the left and Day convolution on the right.

In fact, as far as we know, the symmetric monoidal structure on TS∞ has
not appeared in the literature before. Therefore, extending the recent work of
Nikolaus [38], we provide the necessary material on the stabilization of fibrations
of∞-operads needed to construct it, which may be of independent interest.

1.7. Universal bundles and Thom spectra. When R is a (sufficiently fibrant)
commutative symmetric ring spectrum, then its underlying multiplicative infinite
loop space and its units arise as commutative I-space monoids GLI

1 R ⊂ ΩI(R)
(see [44]). By definition, we have ΩI(R)(n) = Ωn Rn with structure maps and
multiplication maps induced by those of R, and GLI

1 R is the subobject whose
path components represent units in π0(R). The underlying E∞ space of GLI

1 R
is a model of what is usually denoted by GL1 R. Writing G for (a suitable
cofibrant replacement of) GLI

1 R, the inclusion G → ΩI(R) is adjoint to a map
of commutative symmetric ring spectra SI

[G] → R from the spherical monoid
ring of G.

There also is a parametrized suspension spectrum SI
t [G] of G with G as base

commutative I-space monoid. The above map SI
[G] → R and the projection

to the terminal I-space G → ∗ induce commutative SI
t [G]-algebra structures on

S and R that allow us to form the two-sided bar construction BZ(S,SI
t [G], R)

in commutative parametrized ring spectra. Its base commutative I-space monoid
is the bar construction BG of G with respect to � which models the infinite
loop space B GL1 R. We write γR for (a suitable fibrant replacement of) BZ(S,
SI

t [G], R) and view this BG-relative commutative symmetric ring spectrum as
the universal R-line bundle over BG. It only depends on the stable equivalence
type of R and is mapped to the ∞-categorical version of the universal R-line
bundle from [1] under the equivalence from Theorem 1.6 (including multiplicative
structures). Moreover, γR gives rise to an R-module Thom spectrum functor

T I
R : SI/BG → ModR, ( f : X → BG) 7→ (X → ∗)!( f ∗γR)

on I-spaces over BG that is homotopy invariant and lax symmetric monoidal.
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Symmetric spectra in retractive spaces 7

Precomposing with the I-spacification S/(BG)hI → SI/BG mentioned above,
we also get a Thom spectrum functor TR : S/(BG)hI → ModR defined on maps
of spaces to (BG)hI ' B GL1 R.

The functor T I
R provides a different construction of the R-module Thom spectra

studied by Ando et al. [2, 3] making the underlying parametrized spectra explicit
on the point-set level. We give the following multiplicative comparison of these
two and the multiplicative Thom spectrum functors studied by Basu et al. [6].

THEOREM 1.8. The Thom spectrum functor TR defined in terms of parametrized
spectra, the R-module Thom spectrum functor TEG from [6], and the Thom
spectrum functor from [2] are all equivalent, and the equivalences respect the
monoidal structures and the operad actions preserved by these functors.

Over the sphere spectrum S, we provide a new interpretation of the ‘classical’
Thom spectrum functor considered in [33, 45]: Let F(n) denote the topological
monoid of basepoint preserving homotopy equivalences of Sn . Letting n vary,
we show that the usual one-sided bar construction on F(n) gives rise to a
commutative parametrized symmetric ring spectrum B×(∗, F,S) that is locally
equivalent to the universal line bundle for S. Using this, we get an explicit
multiplicative equivalence relating the classical description of the Thom spectrum
functor to the parametrized approach in the present paper.

1.9. Homotopical and operator algebraic models for twisted K -theory. As
mentioned, in a companion paper [21], the first two authors use the framework
developed here to relate operator algebraic models for various twisted K -theory
spectra to their homotopical counterparts defined in terms of pullbacks of the
universal bundle just discussed. To obtain the comparison, there we generalize the
construction of B×(∗, F,S) by considering actions on symmetric ring spectra of
what we term cartesian I-monoids, that is, I-diagrams in topological monoids.
For such an action of H on R, one can produce a homotopy quotient spectrum
R � H ∈ SpΣB×(H), where B×(H) denotes the bar construction of H with respect
to the cartesian product on SI . In particular, B×(∗, F,S) = S � F . When H is
grouplike and R and H are fibrant, we establish a comparison between R � H and
the pullback of γR along a certain map B H → B GLI

1 (R) induced by evaluating
the action of H on the unit of R [21, Proposition 4.2]. When R, H , and the
action are suitably commutative, then this comparison is one of the commutative
parametrized ring spectra.

The whole construction can then be applied to actions of the cartesian I-
monoid PO formed by the projective orthogonal groups of the Hilbert spaces
L2(Rn) on the K -theory spectra introduced by Joachim in [28], and this action
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satisfies the commutativity assumptions mentioned above. The spectrum KO�PO
is easily related to operator algebraic definitions of twisted K -theory, whereas by
the comparison results we produce here, the pullback of γKO is an incarnation of
the homotopy theoretic definition. This allows us to deduce the equivalence of
the usual definitions of twisted K -theory as considered by operator algebraists
and homotopy theorists. Furthermore, we describe the resulting map BPO →
B GLI

1 KO in purely homotopical terms, completing partial results by Antieau
et al. [4].

1.10. Organization. In Section 2, we recall the category of retractive spaces
and describe the relevant features of its model structure. In Section 3, we then
introduce our categories of parametrized spectra and their level model structures
both in the absolute setting and relative to an I-space. After discussing the
external fiberwise and convolution smash products in the short Section 4, we
establish the local model structures in Section 5. In Section 6, we compare the
different local model structures, prove Theorems 1.2 and 1.3, and show how
the positive local model structures lift to commutative parametrized ring spectra.
Section 7 is about the (co)homology theories associated with parametrized
spectra. In Section 8, we introduce the universal line bundle. Section 9 is about
Thom spectra and provides the proof of Theorem 1.8. Section 10 compares
our constructions to the ∞-categorical approach and provides the proof of
Theorem 1.6.

1.11. Notations and conventions. We write S for the category of spaces,
which can either be the category of compactly generated weak Hausdorff spaces
Top or the category of simplicial sets sSet. We will only distinguish between the
simplicial and the topological case when arguments differ. Moreover, we freely
use the language of model categories and refer to [23] as our primary source.

2. Retractive spaces

In this section, we collect basic results about retractive spaces. This material
is mostly easy and, for example, treated in [11, Section 1.1]. We carry out some
details for later reference and to fix notations.

DEFINITION 2.1. A retractive space is a pair of spaces (U, K ) with structure
maps K → U and U → K that compose to the identity of K . A map of retractive
spaces (U, K )→ (V, L) is a pair of maps U → V and K → L such that the two
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Symmetric spectra in retractive spaces 9

squares in
K
��

// U
��

// K
��

L // V // L

commute. We refer to U as the total space of the retractive space (U, K ), call K
its base space, and write SR for the category of retractive spaces.

CONSTRUCTION 2.2. Spaces and retractive spaces are related in various ways.
The following diagram summarizes the constructions relevant for us:

S
ιd //

ιt

))

Ar(S)
ιar
��

πd
oo

πc
// S

ιcoo

ιb

uu

SR

Θ
��

SR

πar

OO

πb

55

πt

ii

S∗

πpt

OO

Here Ar(S) is the arrow category of S , πd(V → L) = V and πc(V → L) = L
are the forgetful functors projecting to the domain and codomain, and ιc(K ) =
(∅ → K ) and ιd(K ) = idK are their left adjoints. The forgetful functor
πar(V, L) = (V → L) remembers only the projection to the base and has
a left adjoint ιar( f : A→ B) = (B q A, B) with structure maps given by
inclB : B→ BqA and (idB, f ) : BqA→ B. Consequently, we obtain composite
functors πb(V, L)= L and πt(V, L)= V projecting to base and total space. Their
left adjoints are given by ιb(K )= (K , K ) and ιt(K )= (KqK , K ). A based space
T can be viewed as a retractive space (T, ∗) = (∗→ T →∗) that we often denote
by T . The functor πpt : S∗→ SR, T 7→ T is right adjoint to Θ(U, K ) = U/K .

LEMMA 2.3. The functor ιb : S → SR is both left and right adjoint to πb.

The category of retractive spaces SR is complete and cocomplete since it can
be viewed as a category of functors with values in S . The last lemma implies that
both ιb and πb preserve limits and colimits.

2.4. Retractive spaces as a model category. In the following, we use the
standard model structures on S = sSet and S = Top with weak equivalences
the weak homotopy equivalences. We say that a map of retractive spaces
(U, K )→ (V, L) is

• a weak equivalence if both K → L and U → V are weak equivalences in S ,

• a cofibration if both K → L and U ∪K L → V are cofibrations in S , and

• a fibration if both K → L and U → V ×L K are fibrations in S .
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F. Hebestreit, S. Sagave and C. Schlichtkrull 10

PROPOSITION 2.5. These classes of maps provide a model structure on SR.

Proof. This follows from standard model category arguments. Alternatively, one
can identify SR with the diagrams in S indexed by a Reedy category with
two objects B and T , one nonidentity degree raising morphism s : B → T ,
one nonidentity degree lowering morphism r : T → B, and one nonidentity
endomorphism sr of T . With this, the proposition follows from the general theory
of Reedy model structures (see, for example, [23, Theorem 15.3.4]).

To establish more properties of the model category SR, we note that the
following lifting properties hold.

LEMMA 2.6. Let i : A → B and (U, K ) → (V, L) be maps in S and SR,
respectively.

(i) The maps i : A→ B and K → L have the lifting property in S if and only if
the maps ιb(i : A → B) = ((A, A)→ (B, B)) and (U, K )→ (V, L) have
the lifting property in SR.

(ii) The maps i : A→ B and U → V ×L K have the lifting property in S if and
only if ιar(i → idB) = ((B q A, B)→ (B q B, B)) and (U, K )→ (V, L)
have the lifting property in SR.

If S is a set of maps in S , we write SR for the set

{ιb(i) | i ∈ S} ∪ {ιar(i → idB) | i : A→ B ∈ S}

of maps in SR. Moreover, we let I and J be the standard sets of generating
cofibrations and generating acyclic cofibrations for S .

PROPOSITION 2.7. The model category SR is cofibrantly generated with
generating cofibrations IR and generating acyclic cofibrations JR.

We refer to [23, Definition 12.1.1] or [26, Appendix A] for the notion of a
cellular model category. This property is useful because left proper cellular model
categories admit left Bousfield localizations [23, Theorem 4.1.1].

PROPOSITION 2.8. The model category SR is proper and cellular.

Proof. It is easy to see that the properness of SR is inherited from S . Cellularity
is inherited since S is cellular and the projection SR→ S × S which forgets the
structure maps preserves and detects colimits and limits and sends cofibrations in
SR to objectwise cofibrations in S × S .
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Symmetric spectra in retractive spaces 11

2.9. Retractive spaces as a Grothendieck construction. Recall that

πb : SR→ S, (U, K ) 7→ K (2.10)

denotes the projection to the base space. Let SK be the fiber of πb over a space
K , that is, the subcategory of SR whose objects have K as the base space and
whose morphisms are the identity on the base. The category SK is equivalent to
the category of spaces over and under K , that is, to the category of pointed objects
in the over-category S/K . Other common notations for SK are (S/K )∗ or SK

K .
Every map of spaces f : K → L induces an adjoint pair of functors

f! : SK � SL : f ∗. (2.11)

The left adjoint sends (U, K ) to (U ∪K L , L) with its canonical structure maps,
and the right adjoint sends (V, L) to ( f ∗(V ), K ) with its canonical structure
maps.

We write Cat for the ‘category’ of (not necessarily small) categories. Recall
that a pseudofunctor C : K → Cat on a category K consists of categories CK for
every object K of K and functors α! : CK → CL for every morphism α : K → L
of K. The condition that C− is a pseudofunctor (rather than a functor) amounts
to saying that there are coherent isomorphisms (rather than identities) idCK

∼=

(idK )! and g! f! ∼= (g f )! for composable morphisms f and g in K. We refer to [8,
Definition 7.5.1] for a complete definition.

The universal property of the pushout implies:

LEMMA 2.12. The categories SK assemble to a pseudofunctor S → Cat given
by

K 7→ SK , ( f : K → L) 7→ ( f! : SK → SL). (2.13)

The Grothendieck construction of a pseudofunctor F : K→ Cat is the category
K
∫

F with objects the pairs (K ,U ) with K ∈ ObK and U ∈ Ob F(K ).
Morphisms (K ,U ) → (L , V ) are pairs of morphisms f : K → L in K and
F( f )(U ) → V in F(L), and the composite is defined in the obvious way [50,
Definition 3.1.2].

LEMMA 2.14. The Grothendieck construction of (2.13) is equivalent to SR.

Proof. If (U, K ) → (V, L) is a morphism in SR, then its map of total spaces
factors as U → (K → L)!(U )→ V where the second map is over and under L .
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REMARK 2.15. Equivalently, one checks that the projection (2.10) is a (cartesian)
fibration; see, for example, [9, Definition 8.1.2 and Theorem 8.3.1].

We equip the categories SK with the standard model structures where a map
is a cofibration, fibration, or weak equivalence if the map of total spaces has
this property in S . With these model structures, the categories SK are cofibrantly
generated, cellular, and proper [24]. The following homotopical properties of the
adjunction (2.11) easily follow from the properness of S:

LEMMA 2.16. Let f : K → L be a map of spaces.

(i) The adjunction ( f!, f ∗) is a Quillen adjunction.

(ii) If f is a weak equivalence, then ( f!, f ∗) is a Quillen equivalence.

(iii) If f is an acyclic cofibration, then f! preserves weak equivalences.

(iv) If f is an acyclic fibration, then f ∗ preserves weak equivalences.

Next we recall the terminology of [20, Definition 3.0.4].

DEFINITION 2.17. Let K be a model category and let F : K → Cat be a
pseudofunctor such that each F(K ) is equipped with a model structure and
such that F maps each morphism f : K → L in K to a left Quillen functor
F( f ) : F(K ) → F(L). We write f! for F( f ) and f ∗ for its right adjoint. We
say that a morphism in K

∫
F consisting of f : K → L and f!(U )→ V is

• an integral cofibration if f and f!(U )→ V are cofibrations,

• an integral fibration if f and U → f ∗(V ) are fibrations, and

• an integral weak equivalence if f is a weak equivalence and for any cofibrant
replacement U cof

→ U in F(K ), the composite of f!(U cof)→ f!(U )→ V is
a weak equivalence.

It is shown in [20, Theorem 3.0.12] that these classes of maps form a model
structure when F is a proper relative pseudofunctor (in the language of [20,
Section 3]). This amounts to requiring that the conditions of Lemma 2.16 hold
for F . Applying this discussion to the pseudofunctor (2.13) thus provides the
following statement.

PROPOSITION 2.18. These classes form a model structure on the Grothendieck
construction of K 7→ SK , called the integral model structure. Under the
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equivalence of Lemma 2.14, it coincides with the model structure on SR
considered earlier.

2.19. The monoidal structure on retractive spaces. Let (U, K ) and (V, L)
be retractive spaces. Their structure maps induce a commutative diagram

U × V U × Loo // K × L

U × V
=

OO

=
��

K × L

OO

��

oo // K × L
=

OO

=
��

U × V K × Voo // K × L .

(2.20)

DEFINITION 2.21. Let U Z V be the colimit of (2.20). It is the total space of
the fiberwise smash product (U, K ) Z (V, L) = (U Z V, K × L) of (U, K ) and
(V, L). Its structure maps are induced by the universal property of the pushout
and the structure maps of (U, K ) and (V, L). (We stress that we use the symbol
Z both for the fiberwise smash product in SR and for its total space.)

Equivalently, U Z V is the iterated pushout obtained by first forming the vertical
pushouts in (2.20) and then forming the pushout of the resulting diagram

U × V ← ((U × L) ∪K×L (K × V ))→ K × L . (2.22)

Writing W V for the cotensor in S , there is an internal Hom-functor

HomR : Sop
R × SR→ SR, ((V, L), (W,M)) 7→ (W V

×(W L×M L MV ) M L,M L),

(2.23)
where the latter pair of spaces has the obvious structure maps making it an object
of SR.

PROPOSITION 2.24. The fiberwise smash product is a closed symmetric monoidal
product on the category of retractive spaces SR with monoidal unit S0. In
particular, there is a natural isomorphism

SR((U, K )Z (V, L), (W,M)) ∼= SR((U, K ),HomR((V, L), (W,M))). (2.25)

Proof. It is clear that the fiberwise smash product is symmetric monoidal. To
establish the adjunction isomorphism (2.25), we note that on both sides, a
morphism is given by a pair of maps U × V → W and K × L → M in S
such that the following three diagrams commute:
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U × V

��

// W

��

U × L

��

// U × V

$$

K × V //

��

U × V

$$
K × L // M K × L // M // W K × L // M // W

REMARK 2.26. The Hom-object considered here is an ‘external’ one in that the
base space of HomR((V, L), (W, L)) is L L and not L . It does not appear to give
rise to an ‘internal’ Hom-object in the category SL . While the latter ‘internal’
Hom is not relevant for our work, it plays an important role in the approach by
May–Sigurdsson. Implementing it requires them to deal with considerably more
involved point-set topological issues (see, for example, [37, Section 1.3]).

For later reference, we describe some Z-products of retractive spaces
considered so far. In the notation of Construction 2.2 and Lemma 2.6, we
have

(A, A) Z (V, L) ∼= (A × L , A × L) (2.26)
(B q A, B) Z (V, L) ∼= ((B × L)q(A×L) (A × V ), B × L) (2.27)

(B q A, B) Z (B ′ q A′, B ′) ∼= ((B × B ′)q (A × A′), (B × B ′)) (2.28)

PROPOSITION 2.27. The model category SR satisfies the pushout product axiom.

Proof. By [48, Lemma 3.5(i)], it suffices to verify the pushout product axiom
for the generating (acyclic) cofibrations IR and JR in Proposition 2.7. Using the
above isomorphisms (2.26), (2.27), and (2.28), the claim follows from the pushout
product axiom for S .

LEMMA 2.28. Let (U, K ) and (V, L) be retractive spaces, and let f : K → K ′

and g : L → L ′ be maps in S . Then there is a natural isomorphism

( f!(U ), K ′) Z (g!(V ), L ′)
∼=
−→ (( f × g)!(U Z V ), K ′ × L ′).

Proof. The products f!(U )×g!(V ) and K ′×L ′ can be identified with the colimits
of the following diagrams:

K ′×V K ′×L //oo K ′×L ′

K×V

OO

��

K×L //oo

OO

��

K×L ′
OO

��

U×V U×L //oo U×L ′

K ′×L K ′×L //oo K ′×L ′

K×L

OO

��

K×L //oo

OO

��

K×L ′
OO

��

K×L K×L //oo K×L ′

Moreover, ( f!(U ) × L ′) ∪K ′×L ′ (K ′ × g!(V )) is isomorphic to the colimit of the
following diagram:
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K ′×L K ′×L //oo K ′×L ′

K×L

OO

��

K×L //oo

OO

��

K×L ′

OO

��

U×L U×L //oo U×L ′

←


K ′×L K ′×L //oo K ′×L ′

K×L

OO

��

K×L //oo

OO

��

K×L ′

OO

��

K×L K×L //oo K×L ′

→


K ′×V K ′×L //oo K ′×L ′

K×V

OO

��

K×L //oo

OO

��

K×L ′

OO

��

K×V K×L //oo K×L ′


Hence, taking the colimit of each of the five 3 × 3-diagrams and then forming
the iterated colimit as in (2.22) provides f!(U ) Z g!(V ). Since colimits commute
among each other, we may alternatively first form the colimit as in (2.22) in each
of the nine entries of the 3×3-diagrams and then form the colimit of the resulting
3× 3-diagram:

K ′×L K ′×L //oo K ′×L ′

K×L

OO

��

K×L //oo

OO

��

K×L ′
OO

��

UZV K×L //oo K×L ′

The colimit of the latter diagram is isomorphic to ( f × g)!(U Z V ).

The fiberwise smash product also commutes with base change.

LEMMA 2.29. Let (U, K ) and (V, L) be retractive spaces, and let f : K ′ → K
and g : L ′→ L be maps in S . Then there is a natural isomorphism

( f ∗U, K ′) Z (g∗V, L ′)→ (( f × g)∗(U Z V ), K ′ × L ′). (2.30)

Proof. It is clear that ( f × g)∗(U ×V ) ∼= f ∗(U )× g∗(V ). Moreover, as a functor
between the underlying categories of sets, ( f × g)∗ preserves the pushouts that
are used to form the fiberwise smash products. This shows the claim if S = sSet.

When S = Top, the argument is more involved since forming colimits in
compactly generated weak Hausdorff spaces may change the underlying sets.
By [32, Proposition 1.3], base change along a map of compactly generated
weak Hausdorff spaces preserves colimits in compactly generated spaces. The
pushout in compactly generated spaces of a diagram of compactly generated
weak Hausdorff spaces in which one map is a closed inclusion coincides with its
pushout in compactly generated weak Hausdorff spaces, and the cobase change
of the closed inclusion is again a closed inclusion in this case [30, Appendix A,
Proposition 7.5]. The structure map from the base to the total space of a retractive
space (in compactly generated weak Hausdorff spaces) is a closed inclusion [37,
Lemma 1.6.2] and closed inclusions are preserved under products. Hence, the
pushout defining (U× L)∪K×L (K ×V ) is preserved under base change. Because
K → U and L→ V are closed inclusions, so is (U×L)∪K×L (K×V )→ U×V ,
and it follows from the description in (2.22) that the pushout defining U Z V is
preserved under base change.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.11
Downloaded from https://www.cambridge.org/core. University of Bergen, on 22 Mar 2021 at 09:12:49, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.11
https://www.cambridge.org/core


F. Hebestreit, S. Sagave and C. Schlichtkrull 16

REMARK 2.31. Given retractive spaces (U, K ) and (L , V ) and points x ∈ K and
y ∈ L , the proposition shows that the fiber of U Z V → K × L over (x, y) is
isomorphic to the smash product of the fiber of U → K over x with the fiber of
V → L over y. This justifies the name fiberwise smash product.

2.32. Simplicial structure of SK . The symmetric monoidal structure on SR
can be used to define simplicial and pointed simplicial structures on the category
SK for a fixed space K . If Q is an unbased simplicial set, we define a functor

Q ⊗−: SK → SK , (U, K ) 7→ (Q+, ∗) Z (U, K ).

Here we implicitly compose with the cobase change along K × {∗}
∼=
−→ K and

apply the geometric realization to Q when working with topological spaces.

PROPOSITION 2.33. This action equips SK with the structure of a simplicial
model category.

Proof. An application of [17, Lemma II.2.4] shows that SK becomes a
simplicial category. The compatibility with the model structure follows from
Proposition 2.27 and the compatibility of the model structures on SK and
SR.

Since SK is pointed, its simplicial structure induces a pointed simplicial
structure. The tensor of (U, K ) with a pointed simplicial set P is the pushout
of (K , K ) ← {∗} ⊗ (U, K ) → P ⊗ (U, K ). It follows that this tensor is
(P, ∗) Z (U, K ). Consequently, the cotensor is HomR((P, ∗), (U, K )), and we
deduce from (2.23) that it has the total space U P

×(U×K P ) K . So a point in the
total space consists of a map h : P → U whose image is contained in a single
fiber and which sends the basepoint of P to the canonical basepoint of the fiber.

3. Twisted symmetric spectra

We will now introduce a generalized form of symmetric spectra for which we
allow the individual levels of a symmetric spectrum X to take values in different
categories. We will also construct level model structures on these categories that
we will use in Section 5 to build the local model structures we are really after. Both
the level and the local model structures come in an absolute and a positive version
with different cofibrations. The positive version will be needed to get a lifted
model structure on commutative parametrized ring spectra (see Section 6.16).

Let I be the category with objects the finite sets m = {1, . . . ,m}, m > 0, and
morphisms the injections. The ordered concatenation m t n = m+ n of finite
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sets makes I a symmetric strict monoidal category with unit 0. Its symmetry
isomorphism is the shuffle χm,n : mtn → ntm moving the first m elements
past the last n elements.

We first recall some notions needed for a description of symmetric spectra
using the category I (see, for example, [45, Section 3.1]). This viewpoint will
be convenient for the discussion of convolution products in Section 4. Given a
finite set P , we let SP

=
∧

P S1 be the P fold smash power of S1. If α : m→ n is
a morphism in I , we write n− α for the complement of its image. The canonical
extension of α to a bijection mq (n− α)→ n induces a homeomorphism

Sm
∧ Sn−α ∼=

−→ Sn. (3.1)

More generally, if α : m→ n and β : n→ p are composable morphisms in I , then
the canonical bijection (n− α)q (p− β)→ p− βα induces a homeomorphism

Sn−α
∧ Sp−β ∼=

−→ Sp−βα. (3.2)

3.3. Quillen I-categories. The next definition again uses the language of
pseudofunctors [8, Definition 7.5.1] with values in Cat.

DEFINITION 3.4. A Quillen I-category is a pseudofunctor C : I → Cat
with each Cm equipped with a cofibrantly generated model structure and each
α! : Cm → Cn left Quillen.

REMARK 3.5. This notion of a Quillen I-category corresponds to the ‘right
Quillen presheaves’ of [5, Definition 2.21] given by contravariant pseudofunctors
on I that send maps to right Quillen functors. We use the present terminology
since our examples below make it more natural to treat the left adjoints as primary
data.

DEFINITION 3.6. Let C : I → Cat be a Quillen I-category. Its section category
CI has as objects X families of objects Xm in Cm equipped with structure maps
α!Xm → Xn for every α : m→ n in I such that the structure map (idm)!Xm →

Xm is the isomorphism given by the pseudofunctor and such that the square

β!(α!Xm) //

∼=
��

β!Xn

��

(βα)!Xm // Xp

commutes for all maps α : m → n and β : n → p in I . Here the left-hand
vertical map is the coherence isomorphism of the pseudofunctor C, while the
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three other maps are the structure maps associated with α, β, and βα. Morphisms
X → Y in CI are families of morphisms Xm→ Ym that make the obvious squares
commutative.

If C : I → Cat is a Quillen I-category and m is an object in I , we get an
adjunction

Fm : Cm � CI
: Evm (3.7)

with right adjoint the evaluation functor sending X in CI to Xm. The left adjoint
is given in level n by

(Fm(Z))n =
∐

α : m→n

α!Z , (3.8)

where the coproduct is indexed over I(m,n) and formed in Cn. The composition
in I induces structure maps turning the (Fm(Z))n into an object of CI .

3.9. Level model structures. Let f : X → Y be a morphism in the
section category of a Quillen I-category. Then f is an absolute level fibration
(respectively level equivalence) if fm : Xm → Yn is a fibration (respectively weak
equivalence) in Cm for all m. Positive level fibrations and level weak equivalences
are defined by only requiring this condition if |m| > 1. The absolute (respectively
positive) level cofibrations are the maps with the left lifting properties against
all maps that are both absolute (respectively positive) level fibrations and level
equivalences. The next statement is analogous to [5, Theorem 2.28].

PROPOSITION 3.10. Let C : I → Cat be a Quillen I-category. Then the above
classes of maps form absolute and positive level model structures on CI . Both
level model structures are cofibrantly generated, and they are proper if each Cm
is.

Proof. For the absolute level model structure, we define

I = {Fm(i) |m ∈ I, i ∈ Im} and J = {Fm( j) |m ∈ I, j ∈ Jm}, (3.11)

where Im (respectively Jm) is a set of generating (respectively generating acyclic)
cofibrations for Cm. Now we apply the recognition theorem for cofibrantly
generated model structures [25, Theorem 2.1.19]. The least obvious condition
to check is that the relative J -cell complexes are absolute level equivalences. To
see this, we use that colimits in CI are formed levelwise and deduce from (3.8)
that for j ∈ Jm and n in I , the map Fm( j)n is an acyclic cofibration in Cm because
the α! are left Quillen. The fact that transfinite compositions of cobase changes
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of acyclic cofibrations in Cn are weak equivalences shows that the relative J -cell
complexes are absolute level equivalences.

To treat the positive level model structure, we write I>1 for the full subcategory
of I on the objects m with |m| > 1, define

I = {Fm(i) |m ∈ I>1, i ∈ Im} and J = {Fm( j) |m ∈ I>1, j ∈ Jm}, (3.12)

and argue as before. The statement about the relative J -cell complexes in the
absolute case implies the one in the positive case.

EXAMPLE 3.13. We now discuss how various well-known categories of
relevance for us can be expressed in terms of Quillen I-categories C : I → Cat.
Here S and S∗ are equipped with the standard model structures, and SR and SK

are equipped with the model structures discussed in the previous section.

(i) Let Cm = S and α! = id for all m and α. Then the section category
CI is the functor category SI of I-spaces, and the model structures of
Proposition 3.10 are the absolute and positive level model structure on I-
spaces that arise from [42, Proposition 6.7].

(ii) For each m in I , let Cm be the category of based spaces S∗. The functor
α! : S∗ → S∗ induced by α : m → n is defined to be − ∧ Sn−α, the smash
product with the sphere Sn−α indexed by the finite set n − α. We note that
the coherence isomorphism of the smash product and the isomorphisms (3.2)
equip C with the structure of a pseudofunctor. The section category of this
pseudofunctor is equivalent to the usual category of symmetric spectra SpΣ .
Here the structure maps in the definition of the section category correspond
to the generalized structure maps of symmetric spectra (see, for example, [45,
Section 3.1]). Under this equivalence of categories, the model structures
of Proposition 3.10 correspond to the absolute and positive level model
structures on SpΣ .

(iii) Analogously to (i), the section category of the constant pseudofunctor with
value SR is equivalent to SI

R, the category of I-diagrams in retractive
spaces which is in turn equivalent to the category of retractive objects in I-
spaces. Under the latter equivalence, the model structures of Proposition 3.10
correspond to the model structures on retractive objects in the absolute or
positive level model structures on SI that arise by the argument in the proof
of Proposition 2.5.

(iv) Let X be an I-space. We define Cm to be SX (m), the category of spaces
over and under X (m), and α! = (X (m) → X (n))! : SX (m) → SX (n) as
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in (2.11). The universal property of the pushout gives rise to coherence
isomorphisms making this a pseudofunctor. Its section category is equivalent
to SI

X , the category of I-spaces over and under X . The model structures of
Proposition 3.10 correspond to those induced by the absolute and positive
I-model structure on the category of objects over and under X in the usual
way.

By mixing (ii) and (iii), we obtain a pseudofunctor with each Cm the category of
retractive spaces SR and with α! : SR → SR being the functor − Z Sn−α (where
Sn−α is a shorthand notation for (Sn−α, ∗); see Construction 2.2).

DEFINITION 3.14. The section category of this pseudofunctor defines the
category of symmetric spectra in retractive spaces SpΣR.

Explicitly, an object (E, X) in SpΣR is a sequence of retractive spaces (E, X)m
for m in I with structure maps α! : (E, X)mZSn−α

→ (E, X)n for each α : m→ n
in I such that the obvious diagrams commute. As we will see (and heavily exploit)
below, the base spaces X (m) of (E, X) assemble to an I-space. Analogous to
the discussion in (ii), one can check that the category SpΣR is equivalent to the
category SpΣ(SR, S1) of symmetric spectrum objects in SR with suspension
functor − Z S1; see [26, Definition 7.2]. Under this equivalence, the absolute
level model structure on SpΣR corresponds to the level model structure established
in [26, Theorem 8.2].

Let C and D be Quillen I-categories and let Φ : C → D be a pseudonatural
transformation [8, Definition 7.5.2], that is, a family of functors Φm : Cm → Dm

together with natural isomorphisms α!Φm
∼=
−→ Φnα! of functors Cm → Dn that

are compatible with the coherence isomorphisms of C and D. Then Φ induces a
functorΦ : CI

→DI of section categories. For X in CI , the objectΦ(X) consists
of the family of objects Φm(Xm) together with structure maps

α!(Φm(Xm))
∼=
−→ Φn(α!(Xm))→ Φn(Xn)

induced by the structure maps of X and the coherence isomorphism of Φ.

LEMMA 3.15. Let Φ : C → D be a pseudonatural transformation of Quillen I-
categories with each Φm : Cm → Dm a left Quillen functor. Then Φ : CI

→ DI

is a left Quillen functor with respect to the absolute and positive level model
structures.

Proof. We fix right adjointsΨn and units and counits for each of these adjunctions.
The inverses of the coherence isomorphisms α!Φm → Φnα! and the units and
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counits give rise to natural maps α!Ψm → Ψnα! that equip the Ψm with the
structure of a left op-lax natural transformation in the sense of [50, Definition
3.1.2]. The Ψm induce a functor Ψ : DI

→ CI on section categories where Ψ (Y )
has structure maps α!Ψm(Ym)→ Ψnα!(Ym)→ Ψn(Yn). Then Φ : CI � DI

: Ψ is
an adjunction, and it is immediate from the definition of the fibrations and weak
equivalences that Φ is right Quillen.

CONSTRUCTION 3.16. We will now apply Lemma 3.15 to various pseudonatural
transformations relating the Quillen I-categories appearing in Example 3.13(i)–
(iii) and in Definition 3.14. Using the functors of Construction 2.2 and Lemma 2.3,
the values of the pseudonatural transformations are the horizontal arrows in the
following diagrams where all squares commute up to isomorphism:

m
α
��

S ιt //

id��

SR
id��

S ιb //

id��

SR
−ZSm

//

id��

SR
πb //

−ZSn−α
��

S
id��

n S ιt // SR S ιb // SR
−ZSn

// SR
πb // S

Hence, we get left Quillen functors

SI ιt // SI
R SI ιb // SI

R
SIR // SpΣR

πb // SI . (3.17)

Explicitly, the values of the functors ιt and ιb on an I-space X are

ιt(X)(m) = (X (m)q X (m), X (m)) and ιb(X)(m) = (X (m), X (m)),

and their right adjoints SI
R → SI are the projections to the base and total I-

spaces. The functor SI
R sends an object (Z , X) in SI

R to the symmetric spectrum
in SR given in degree m by (Z(m), X (m)) Z Sm. Its right adjoint ΩI

R is given by
ΩI

R(E, X)(m)= HomR((Sm, ∗), (E, X)(m)). We obtain two composite functors

SI
b = SI

R ◦ ιb : SI
→ SpΣR and SI

t = SI
R ◦ ιt : SI

→ SpΣR.

Their evaluations on an I-space X are given in level m by

SI
b [X ]m = (X (m), X (m)) and SI

t [X ]m = (X (m)× Sm, X (m)). (3.18)

Their right adjoints πb and ΩI
t are given by composing ΩI

R with the projection
to the base and total I-space. Finally, the functor πb in (3.17) is the projection to
the underlying I-space X of a symmetric spectrum in retractive spaces (E, X).

LEMMA 3.19. The functor SI
b : SI

→ SpΣR is both left and right adjoint to πb and
both left and right Quillen with respect to the absolute and positive level model
structures.
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Proof. The adjunction statement follows from Lemma 2.3. The two adjunctions
(SI

b , πb) and (πb,SI
b ) are Quillen adjunctions since SI

b = SI
R ◦ ιb and πb are left

Quillen.

3.20. The category of X-relative symmetric spectra. Let X be an I-space.
By combining parts (ii) and (iv) of Example 3.13, we get another Quillen I-
category with values Cm = SX (m) on objects. In this case, we define α! : SX (m) →

SX (n) to be the composite

SX (m)
X (α)!
−−→ SX (n)

−Z(Sn−α)
−−−−−→ SX (n). (3.21)

The universal property of the pushout, the coherence isomorphism of the
symmetric monoidal product Z on SR and the isomorphisms (3.2) provide the
coherence isomorphisms for this pseudofunctor.

DEFINITION 3.22. Let X be an I-space. Then the section category of the
previous Quillen I-category is the category of X-relative symmetric spectra SpΣX .
We will also refer to it as the category of symmetric spectra parametrized by X .

When K is a space, the category SpΣK = SpΣconstI K is equivalent to the category
SpΣ(SK , S1) of symmetric spectrum objects in the category SK of spaces over
and under K , and the absolute level model structure on SpΣK corresponds to the
level model structure from [26, Theorem 8.2].

LEMMA 3.23. A map of I-spaces f : X → Y induces a Quillen adjunction

f! : SpΣX � SpΣY : f ∗ (3.24)

with respect to the absolute and positive model structures.

Proof. We apply Lemma 3.15 to the functors f (m)! : SX (m)→ SY (m).

Analogous to Lemma 2.12, we obtain a pseudofunctor

X 7→ SpΣX , ( f : X → Y ) 7→ ( f! : SpΣX → SpΣY ). (3.25)

LEMMA 3.26. The Grothendieck construction of (3.25) is equivalent to SpΣR.

Proof. This follows from a levelwise application of Lemma 2.14.

Under this equivalence, the category SpΣX corresponds to the fiber of πb over
X . This identification of SpΣX allows us to give a different description of the
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adjunction (3.24): there are natural isomorphisms

f!(E, X) ∼= (E, X) ∪SIb [X ] S
I
b [Y ] and f ∗(F, Y ) ∼= (F, Y )×SIb [Y ] S

I
b [X ],

(3.27)
where the pushouts and pullbacks are formed in SpΣR. In other words, f!
corresponds to the cobase change along SI

b [ f ], and f ∗ corresponds to the base
change along SI

b [ f ].

We write FSpΣR
m : SR→ SpΣR, FSpΣX

m : SX (m)→ SpΣX , and FSI

m : S → SI for the
free functors obtained by implementing (3.7) in the categories SpΣR, SpΣX , and SI .

For later use, we record how the free functors to SpΣR and SpΣX are related.

LEMMA 3.28. Let (V, L) be an object in SL , let f : FSI

m (L)→ X be a map
in SI , and let f̃ : L → X (m) be the adjoint of f . Then there is a natural
isomorphism FSpΣX

m ( f̃!(V, L)) ∼= f!F
SpΣR
m (V, L).

Applying Definition 2.17 to the pseudofunctor (3.25), the absolute and positive
level model structures on SI and the SpΣX give rise to integral cofibrations,
fibrations, and weak equivalences on the Grothendieck construction.

PROPOSITION 3.29. These classes of maps form absolute and positive integral
level model structures on the Grothendieck construction. Under the equivalence
with SpΣR, they correspond to the absolute and positive level model structures on
SpΣR.

Proof. Inspecting the generating cofibrations of SI , we see that a cofibration in
the absolute level model structure on SI is levelwise a cofibration in S . A similar
result holds for the absolute level model structure on SpΣX . It follows that the
analogue of Lemma 2.16 holds for the adjunction (3.24). Hence, [20, Theorem
3.0.12] applies and shows the existence of the integral model structure. It matches
with the absolute level model structure on SpΣR since the fibrations and weak
equivalences are the same. The case of the positive model structures is analogous.

This proposition, the definition of the integral model structure, and the
identification of SpΣX with the fiber of πb : SpΣR → SI over X imply the
following.

COROLLARY 3.30. A map in the absolute (respectively positive) level model
structure on SpΣX is a cofibration, fibration, or weak equivalence if and only if it is
so when viewed as a map in the absolute (respectively positive) model structure
on SpΣR.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.11
Downloaded from https://www.cambridge.org/core. University of Bergen, on 22 Mar 2021 at 09:12:49, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.11
https://www.cambridge.org/core


F. Hebestreit, S. Sagave and C. Schlichtkrull 24

4. The convolution smash product

The reason for using I as an indexing category in the definition of a Quillen I-
category is that this allows us to define symmetric monoidal products on section
categories.

In the case of I-spaces mentioned in Example 3.13(i), the monoidal product
X � Y of two functors X, Y : I → S is the left Kan extension of the I × I-
diagram (m,n) 7→ X (m) × Y (n) along the concatenation − t −: I × I → I .
This is an example of a Day convolution product, and more explicitly, we have

(X � Y )(p) = colimmtn→p X (m)× Y (n)

with the colimit taken over the over-category −t− ↓ p. The �-product provides
a symmetric monoidal product on SI with unit ∗ = FSI

0 (∗) ∼= I(0,−) ∼=
constI(∗).

DEFINITION 4.1. A commutative I-space monoid is a commutative monoid in
(SI,�, ∗).

Equivalently, a commutative I-space monoid is a lax symmetric monoidal
functor (I,t, 0) → (SI,�, ∗). Every E∞ space can be represented by a
commutative I-space monoid in the sense explained in [42, Corollary 3.7].

In the case of symmetric spectra mentioned in Example 3.13(ii), the monoidal
product is the well-known smash product of symmetric spectra. In this description
of symmetric spectra employing I , the smash product E ∧ F of E, F is in level
p given by the colimit

(E ∧ F)p = colimα : mtn→p Em ∧ Fn ∧ Sp−α

taken over the over-category−t− ↓ p. The maps in the colimit system arise from
the structure maps of E and F , the isomorphism (3.1), and the isomorphism

S(n1tn2)−(α1tα2) ∼= Sn1−α1 ∧ Sn2−α2 (4.2)

that is induced by the canonical bijection

(n1 − α1)q (n2 − α2)→ (n1 t n2)− (α1 t α2)

associated with a pair of morphisms α1 : m1 → n1 and α2 : m2 → n2 in I . The
structure maps of E ∧ F also arise from (3.1).
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4.3. The monoidal structure on symmetric spectra in retractive spaces. In
analogy with the smash product in SpΣ and the �-product of I-spaces, there is a
symmetric monoidal product

− Z−: SpΣR × SpΣR→ SpΣR

given in level p by the colimit

((E, X) Z (F, Y ))p = colimα : mtn→p(Em, Xm) Z (Fn, Xn) Z Sp−α

in SR taken over the category −t− ↓ p. The maps in the colimit system and the
structure maps of (E, X) Z (F, Y ) are defined as for symmetric spectra. We also
note that there are natural isomorphisms

FSpΣR
m (U, K ) Z FSpΣR

n (V, L) ∼= FSpΣR
mtn ((U, K ) Z (V, L)). (4.4)

PROPOSITION 4.5. The Z-product defines a closed symmetric monoidal structure
on SpΣR with unit S that satisfies the pushout product axiom with respect to the
absolute and positive level model structures.

Proof. Since the pushout product axiom can be checked on the generating
(acyclic) cofibrations, it follows from the isomorphisms (4.4) and the pushout
product axiom for SR established in Proposition 2.27. The Z-product on SpΣR
is closed because (SR,Z, S0) is closed by Proposition 2.24 (compare [26,
Section 7]).

We write E Z F for the total space of (E, X) Z (F, Y ). Observing that its base
I-space can be identified with X � Y , we have

(E, X) Z (F, Y ) = (E Z F, X � Y ).

LEMMA 4.6. If (E, X) and (F, Y ) are objects in SpΣR and f : X → X ′ and
g : Y → Y ′ are morphisms in SI , then there is an isomorphism

f!(E, X) Z g!(F, Y )
∼=
−→ ( f � g)!((E, X) Z (F, Y )).

It is natural with respect to the coherence isomorphisms ( f ′ f )! ∼= f ′
!

f! for
composable maps of I-spaces f and f ′.

Proof. Commuting the colimit over − t − ↓ p with the pushout computing the
total space identifies the total space in level p of the right-hand expression with
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colimα : mtn→p ( f (m)× g(n))! (Em Z Fm Z Sp−α). Composing it with the colimit
over α in − t− ↓ p of the natural isomorphisms

f (m)!(Em, X (m)) Z g(n)!(Fn, Y (n)) Z Sp−α

∼=
−→ ( f (m)× g(n))!((Em, X (m)) Z (Fn, F(n)) Z Sp−α)

provided by Lemma 2.28 gives the desired isomorphism.

As a consequence, we note that given maps of I-spaces f : X ′ → X and
g : Y ′ → Y as well as objects (E, X) in SpΣX and (F, Y ) in SpΣY , there is a chain
of maps

f ∗(E, X) Z g∗(F, Y )→ ( f � g)∗( f � g)!( f ∗(E, X) Z g∗(F, Y ))
∼=
−→ ( f � g)∗( f! f ∗(E, X) Z g!g∗(F, Y ))→ ( f � g)∗((E, X) Z (F, Y ))

(4.7)

induced by the adjunction unit of (( f � g)!, ( f � g)∗), the isomorphism of
Lemma 4.6, and the adjunction counits of ( f!, f ∗) and (g!, g∗). We will show
in Proposition 7.3 that this morphism descends to an isomorphism between the
derived functors in the homotopy category.

The category SI
R of I-diagrams in SR has a Day convolution product induced

by the Z-product on SR and the concatenation in I . Analogously, the cartesian
product on Ar(S) induces a Day convolution product on (Ar(S))I that coincides
with the objectwise�-product in SI under the identification (Ar(S))I ∼= Ar(SI).
In the next diagram, the first adjunction is induced by the corresponding space
level adjunction from Construction 2.2 and the second is from Construction 3.16.

Ar(SI)
ιar // SI

R

SIR //

πar
oo SpΣR

ΩI
R

oo (4.8)

LEMMA 4.9. The left adjoint functors ιar and SI
R in (4.8) are strong symmetric

monoidal; hence, so is their composite SI
ar = SI

R ◦ ιar, and the right adjoints πar,
ΩI

R, and ΩI
ar = πar ◦Ω

I
R are lax symmetric monoidal.

4.10. The monoidal structure on M-relative symmetric spectra. Let X and
Y be I-spaces. Via the identification of SpΣX ,SpΣY , and SpΣX�Y with subcategories
of SpΣR, the Z-product on SpΣR induces an external product

− Z−: SpΣX × SpΣY → SpΣX�Y . (4.11)
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If M is a commutative I-space monoid, then this external product and the
multiplication µ : M � M → M of M induce a symmetric monoidal convolution
product

SpΣM × SpΣM → SpΣM�M
µ!
−→ SpΣM . (4.12)

Let ι : ∗ → M be the unit and write SM = ι!(S), where S = (S, ∗) is the monoidal
unit in SpΣ= SpΣ

∗
. It follows from Lemma 4.6 that SM is the monoidal unit

for SpΣM .

PROPOSITION 4.13. This symmetric monoidal product satisfies the pushout
product axiom with respect to the absolute level model structure on SpΣM .

Proof. This follows from the pushout product axiom for SpΣR and the fact that µ!
preserves cofibrations and acyclic cofibrations by Lemma 3.23.

In a similar fashion, the category SI
M of I-spaces over and under M inherits

a symmetric monoidal product from SI
R. For later use, we note the following

compatibility.

LEMMA 4.14. The functor SI
R : SI

M → SpΣM is strong symmetric monoidal.

If M → N is a morphism of commutative I-space monoids, then Lemma 4.6
implies that the induced functor (M → N )! : SpΣM → SpΣN is strong symmetric
monoidal. In particular,

Θ = (M → ∗)! : SpΣM → SpΣ

is strong symmetric monoidal so that commutative monoids in SpΣM give rise to
commutative symmetric ring spectra if their base I-space is collapsed.

4.15. The simplicial structure on X-relative symmetric spectra. Let X be
an I-space. If Q is an unbased simplicial set, we define a functor

Q ⊗−: SpΣX → SpΣX , (E, X) 7→ FSpΣR
0 (Q+) Z (E, X).

Here we again identify SpΣX with a subcategory of SpΣR, view Q+ as the retractive
space (Q+, ∗), and apply geometric realization to Q when working with S = Top.

PROPOSITION 4.16. This action turns SpΣX into a simplicial model category.

Proof. An application of [17, Lemma II.2.4] shows that SpΣX becomes a
simplicial category since Z is a closed symmetric monoidal structure on SpΣR. The
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compatibility with the model structure follows from the pushout product axiom
for (SpΣR,Z) established in Proposition 4.5 and the compatibility of the model
structures on SpΣX and SpΣR established in Corollary 3.30.

It follows from the definitions that (Q ⊗ (E, X))n can be identified with the
tensor Q ⊗ (En, Xn) in SXn (see Proposition 2.33). Since the category SpΣX has
a zero object, the tensor structure over sSet induces a tensor over sSet∗, and one
can check that for a based simplicial set B, the based tensor is just the levelwise
Z-product with (B, ∗). Particularly, the suspension is the levelwise Z-product
with S1.

4.17. Tensor structures over I-spaces. There is a functor

SI
× SpΣR→ SpΣR, (Y, (E, X)) 7→ SI

t [Y ] Z (E, X) (4.18)

that exhibits SpΣR as a category tensored over (SI,�, ∗), meaning that SpΣR is
a SI-module in the sense of [25, Definition 4.1.6]. For the applications in [21]
and in Section 9.15, it is important that SpΣR is also tensored over (SI,×, ∗), that
is, I-spaces with the cartesian product. To define this tensor, we first introduce a
monoidal product on the category SI

R of I-diagrams in SR and an accompanying
tensor structure on SpΣR. The monoidal structure on SI

R is the degreewise Z-
product and will be denoted by ∧̃. Its unit is ιt(∗) = constI(S0, ∗), and the functor
ιt : (SI,×, ∗) → (SI

R, ∧̃, ιt(∗)) sending X to (X q X, X) is strong symmetric
monoidal by (2.28).

The category SpΣR is tensored over (SI
R, ∧̃, ιt(∗)) with tensor structure

−∧̃−: SI
R×SpΣR→ SpΣR, ((Z , Y ), (E, X)) 7→ (n 7→ (Z , Y )(n)Z(E, X)(n)).

(4.19)
Here the structure maps act diagonally, that is, α : m→ n acts via

(Z , Y )(m) Z (E, X)(m) Z Sn−α α∗Zα∗
−−−→ (Z , Y )(n) Z (E, X)(n).

Restricting (4.19) along ιt in the first variable, we get the desired tensor structure
of SpΣR over (SI,×, ∗) given by

−×−: SI
× SpΣR→ SpΣR (4.20)

with (Y×(E, X))(n) ∼= (Y (n)×En, Y (n)×X (n)). The latter isomorphism results
from (2.27) and justifies the symbol×. Although× admits this easier description,
we have chosen to define it via ∧̃ since this makes the structure maps of the object
Y × (E, X) more transparent. We shall primarily use the action × when (E, X)
is just a symmetric spectrum E viewed as the object E = (E, ∗) of SpΣR.

Now we relate this tensor structure to that of (4.18).
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CONSTRUCTION 4.21. There is a natural transformation

ρY,(E,X) : SI
t [Y ] Z (E, X)→ Y × (E, X) (4.22)

of functors SI
× SpΣR → SpΣR. On the term in the colimit system defining the

Z-product that is indexed by α : k t l→ n, it is given by the composite

(ιt Y )(k) Z Sk Z (E, X)(l) Z Sn−α ∼=
−→ (ιt Y )(k) Z (E, X)(l) Z Sn−α|l

→ (ιt Y )(n) Z (E, X)(n) = (Y × (E, X))(n).

Here the first map interchanges the two inner factors and uses the isomorphism of
spheres induced by the bijection k t (n − α)→ (n − α|l) defined by α, and the
second map is given by the action of α|k and the structure map of (E, X).

It is shown in [21, Proposition 4.1] that under suitable conditions on Y and
(E, X), the map (4.22) is a local equivalence in the sense of Section 5.7. The
latter result plays a central role in our applications to models of twisted K -theory
spectra in [21]. We also note that on base I-spaces, ρY,(E,X) is just the natural map
Y � X → Y × X studied in [43, Proposition 2.27].

It will also be useful to know that the different products are related by the
following commutative square:

SI
t [Y ]Z(E, X)ZSI

t [Y
′
]Z(E ′, X ′)

∼= //

ρY,(E,X)ZρY ′,(E ′,X ′)
��

SI
t [Y � Y ′]Z(E, X)Z(E ′, X ′)
ρY�Y ′,(E,X)Z(E ′,X ′)

��

(Y × (E, X))Z(Y ′ × (E ′, X ′)) δ // (Y � Y ′)×(E, X)Z(E ′, X ′)
(4.23)

The vertical maps are instances of (4.22), the upper horizontal map is
the composite of the twists of the middle terms and the isomorphism
SI

t [Y ] Z SI
t [Y

′
] → SI

t [Y�Y ′], and the lower horizontal map δ is the distributivity
map induced by the maps

(Y (k)× (E, X)(k)) Z (Y ′(l)× (E ′, X ′)(l)) Z Sn−α

→ (Y � Y ′)(n)× ((E, X) Z (E ′, X ′))(n)

for α : k t l→ n in I which are given by the twist of the middle factors and the
canonical maps to the � and Z-products.

5. Local model structures

Let C : I → Cat be a Quillen I-category. If α : m → n is a map in I and Z
is an object in Cm, then the inclusion α!Z →

∐
β : m→n β!Z = (Fm(Z))n of the
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summand indexed by α gives rise to an adjoint map

αZ : Fn(α!Z)→ Fm(Z) (5.1)

in the section category CI . We define SC to be the set of maps αZ where α : m→ n
is any morphism in I and Z is the cofibrant replacement of a domain or codomain
of a generating cofibration of Cm. Writing I+ for the full subcategory of I on the
objects m with |m| > 1, we let S+C be the subset of SC where α runs through the
morphisms in I+.

Our aim is to form the left Bousfield localizations [23, Section 3] of the level
model structures on CI at SC and S+C . We need an additional hypothesis to ensure
their existence and say that a Quillen I-category C is cellular and left proper if
each Cm is.

PROPOSITION 5.2. Let C : I → Cat be a cellular and left proper Quillen I-
category. Then the left Bousfield localizations of the absolute level model structure
on CI at the set SC and the positive level model structure at S+C exist and are
cellular and left proper again.

Proof. This follows from [23, Theorem 4.1] once we verified that the absolute
level model structure on CI is cellular and left proper. Since cofibrations in CI

are in particular cofibrations in each level and colimits in CI are formed levelwise,
this is immediate.

DEFINITION 5.3. The model structures from the previous proposition are called
the absolute and positive local model structures on the section category CI .

LEMMA 5.4. An object X in CI is fibrant in the absolute (respectively positive)
local model structure if and only if for each α in I (respectively I+), the adjoint
structure map Xm→ α∗(Xn) is a weak equivalence between fibrant objects in Cm.

Proof. We write MapCI and MapCm
for the homotopy function complexes in CI

and in Cm (see [23, Section 17.4]). By definition, an object X is fibrant in the
absolute local model structure on CI if and only if it is absolute level fibrant
and MapCI (αZ , X) is a weak equivalence of simplicial sets for all αZ in SC .
Since homotopy function complexes are compatible with Quillen adjunctions [23,
Proposition 17.4.15], the latter condition is equivalent to asking that the map
MapCm

(Z , Xm) → MapCm
(Z , α∗(Xn)) is a weak equivalence of simplicial sets

when Z is the cofibrant replacement of a domain or codomain of a generating
cofibration for Cm and α : m → n is a map in I . By [14, Proposition A.5], for
fixed α and varying Z , this condition is equivalent to Xm→ α∗(Xn) being a weak
equivalence in Cm. The positive case is analogous.
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The argument in the last proof also implies the following statement.

COROLLARY 5.5. If Z is any cofibrant object in Cm and α is a map in I
(respectively I+), then αZ is a weak equivalence in the absolute (respectively
positive) local model structure on CI .

The identifications of the model structures in the next example uses the fact
that a model structure is determined by its cofibrations and fibrant objects [29,
Proposition E.1.10].

EXAMPLE 5.6. (i) In the situation of Example 3.13(i), the absolute and positive
local model structures are the absolute and positive I-model structures
on SI ; see [42, Proposition 3.2]. The weak equivalences in these model
structures are called I-equivalences and are given by the maps X → Y that
induce weak homotopy equivalences XhI → YhI on the (Bousfield–Kan)
homotopy colimits of the I-diagrams X and Y .

(ii) In the situation of Example 3.13(ii), the absolute and positive local model
structures are the respective stable model structures on SpΣ ; see [27,
Theorem 3.4.4] and [36, Section 14].

(iii) In the situation of Example 3.13(iii), we obtain absolute and positive I-
model structures on the category SI

R of I-diagrams in SR. They can also
be constructed by identifying SI

R with the category of retractive objects
in SI and applying the argument in the proof of Proposition 2.5 to the I-
model structures on SI . Moreover, the absolute local model structure on SI

R
coincides with the hocolim model structure obtained from [14, Theorem 5.2].

(vi) In the situation of Example 3.13(iv), the absolute local model structure on SI
X

corresponds to the model structure on the category (SI)X of I-spaces over
and under X induced by the I-model structure on SI . To see this, we note
that the explicit description of the I-fibrations in SI in terms of homotopy
cartesian squares [42, Section 3.1] implies that the fibrant objects in (SI)X

match the local objects in SI
X .

5.7. Local model structures on symmetric spectra in retractive spaces.
Next we consider the category of symmetric spectra in retractive spaces
SpΣR introduced in Definition 3.14. An object is fibrant in the resulting
absolute (respectively positive) local model structure if and only if it is
absolute (respectively positive) level fibrant and the adjoint structure maps
(E, X)(m) → HomR((Sn−α, ∗), (E, X)(n)) are weak equivalences in SR for
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all α in I (respectively I+). In view of the definition of the cotensor in (2.23),
the latter condition means that the horizontal maps in the following diagram are
required to be weak equivalences:

Em
//

��

(En)
Sn−α
×En×X (n)Sn−α X (n)

��

X (m) // X (n)

(5.8)

Our absolute and positive local model structures on SpΣR coincide with the
corresponding model structures on symmetric spectra in SR considered elsewhere
in the literature (compare, for example, [18, 26]).

PROPOSITION 5.9. The weak equivalences in the absolute and positive local
model structures on SpΣR coincide.

Proof. This follows from [18, Theorem 10].

REMARK 5.10. We resist from calling the model structures from Proposition 5.2
stable since they are not necessarily stable in the sense that suspension becomes
invertible on the homotopy category. In fact, SI and SpΣR have no zero objects
and cannot be stable in the latter sense.

PROPOSITION 5.11. The absolute and positive local model structures on SpΣR
satisfy the pushout product axiom with respect to Z.

Proof. The absolute case follows from [26, Theorem 8.11]. Using Proposition 5.9,
the positive case follows from the pushout product axiom for the absolute local
and the positive level model structure.

LEMMA 5.12. The left adjoint functors ιt , ιb,SI
R, and πb introduced in (3.17)

are left Quillen functors with respect to the absolute and positive local model
structures.

Proof. For the functor SI
R, we observe that SI

R[F
SI
R

n (α!Z)] ∼= FSpΣR
n (α!(Z Z Sm))

where the first α! is part of the pseudofunctor defining SI
R and the second is

part of the pseudofunctor defining SpΣR. Since Z Z Sm is cofibrant in SR if Z
is, Corollary 5.5 and [23, Proposition 3.3.18(1)] show that SI

R is left Quillen. The
other cases are analogous (but easier).
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COROLLARY 5.13. Both (SI
b , πb) and (πb,SI

b ) are Quillen adjunctions with
respect to the absolute and positive local model structures.

The absolute and positive I-model structures on SI give rise to injective model
structures on Ar(SI)where a map is a cofibration or weak equivalence if and only
if its two components have this property in SI .

LEMMA 5.14. The adjunction ιar : Ar(SI) � SI
R : πar from (4.8) is a Quillen

adjunction with respect to the absolute or positive model structures on Ar(SI)

and the respective local model structures on SI
R.

5.15. The local model structures on X-relative symmetric spectra. Let X
be an I-space. Then Proposition 5.2 gives rise to absolute and positive local
model structures on the category SpΣX of X -relative symmetric spectra. When
K is a space, then these local model structures on SpΣK = SpΣconstI K correspond
to the absolute and positive stable model structure on SpΣ(SK , S1), and the
fibrant objects are the absolute (respectively positive) Ω-spectra in the latter
category. For a general base I-space X , an object (E, X) is fibrant in the absolute
(respectively positive) local model structure on SpΣX if and only if it is absolute
(respectively positive) level fibrant and the square (5.8) is homotopy cartesian for
all α in I (respectively I+). Although their base I-space may not be constant, we
think of the fibrant objects as fiberwise (positive) Ω-spectra.

REMARK 5.16. In lack of a symmetric monoidal structure on SpΣX , we cannot
directly apply [18, Theorem 10] to show that the weak equivalences in the
absolute and positive local model structures coincide. We will derive this from
the corresponding result for SpΣR in Corollary 6.5.

LEMMA 5.17. If f : X → Y is a map of I-spaces, then f! : SpΣX � SpΣY : f ∗

is a Quillen adjunction with respect to the absolute and positive local model
structures. If f : X → Y is an absolute (respectively positive) level equivalence,
then ( f!, f ∗) is a Quillen equivalence with respect to the absolute (respectively
positive) local model structures.

Proof. An adjunction argument shows that the cobase changes f! : SpΣX → SpΣY
and f! : SX (m) → SY (m) commute with the free functors. Since the standard
generating cofibrations for SX (m) have cofibrant domains [24], it follows from
Corollary 5.5 and [23, Proposition 3.3.18(1)] that f! is left Quillen with respect
to the local model structures. For the Quillen equivalence statement, it is by [25,
Proposition 1.1.13] sufficient that the derived unit and counit of the adjunction
( f!, f ∗) are natural weak equivalences. For the derived counit, the claim follows
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because ( f!, f ∗) is a Quillen equivalence in all (respectively all positive) levels.
For the derived unit, it is sufficient to show that (E, X) → f ∗( f!(E, X)loc-fib)

is a weak equivalence when (E, X) is both cofibrant and fibrant in the local
model structure. The fibrancy condition implies that a level fibrant replacement
of the object f!(E, X) is already a fibrant replacement in the local model
structure, and so the map in question is an absolute (respectively a positive)
level equivalence because ( f!, f ∗) is a Quillen equivalence in all (respectively
all positive) levels.

The less obvious result that ( f!, f ∗) is already a Quillen equivalence if f is an
I-equivalence will be shown in Corollary 5.23.

LEMMA 5.18. The absolute and positive local model structures on SpΣX are
simplicial.

Proof. This follows from Proposition 4.16 and [23, Theorem 4.1.1(4)].

PROPOSITION 5.19. The absolute and positive local model structures on SpΣX are
stable.

Proof. Since the positive case is analogous, we only discuss the absolute case.
The suspension on SpΣX is the based tensor with S1, which is isomorphic to

the functor FSpΣR
0 (S1) Z−: SpΣX → SpΣX arising from restricting the Z-product on

SpΣR. The latter functor is a left adjoint since SpΣR is a closed monoidal, and left
Quillen by the previous lemma. We need to show that it induces an equivalence
on homotopy categories. The inclusion ι : 0→ 1 induces a map

i : FSI

1 (∗)� X → FSI

0 (∗)� X
∼=
−→ X.

This i is an I-equivalence by [42, Proposition 8.2]. We consider the composite

D = i!(F
SpΣR
1 (S0) Z−) : SpΣX → SpΣX .

Lemma 4.6 implies that both composites of FSpΣR
0 (S1) Z− and D are isomorphic

to the functor I = i!(F
SpΣR
1 (S1) Z −) : SpΣX → SpΣX . The functors D and I are

left adjoint since the symmetric monoidal structure of SpΣR is closed. They are
left Quillen with respect to the absolute level model structures by Lemma 3.23,
Corollary 3.30, and Proposition 4.5. To see that they are left Quillen with respect
to the absolute local model structures, we note that Lemmas 3.28 and 4.6 as well
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as the isomorphism (4.4) give rise to natural isomorphisms

i!(F
SpΣR
1 (Sk) Z FSpΣX

m (Z)) ∼= (F SI

1tm(X (m))→ X)!F
SpΣR
1tm (S

k Z Z)

∼= FSpΣX
1tm(((ι tm)∗ : X (m)→ X (1 tm))!(Sk Z Z)).

(5.20)

Hence, the functor i!(F
SpΣR
1 (Sk) Z −) sends the maps αZ used to form the local

model structures to (1 t α)Y with Y = ((ι tm)∗ : X (m)→ X (1 tm))!(Sk Z Z),
and (1tα)Y is a local equivalence by Corollary 5.5. Combining this identification
for k = 0 and k = 1 with [23, Proposition 3.3.18(1)] implies that D and I are left
Quillen with respect to the absolute local model structures.

Since FSI

1 (∗)→ FSI

0 (∗) is the map of base spaces underlying ιS1 : FSpΣR
1 (S1)→

FSpΣR
0 (S0) = S, the latter map and the identification (3.27) induce a natural

transformation I → id of endofunctors of SpΣX . Since both functors are left
Quillen, a cell induction argument reduces the claim to showing that I → id is
a local equivalence when evaluated on the domains and codomains of generating
cofibrations. To see this, we note that the isomorphism (5.20) implies that the
evaluation of I → id on FSpΣX

m (Z) is isomorphic to the map (ι tm)Z , which is a
local equivalence by construction.

We now consider the diagram

SI
X

//

��

SpΣXoo

��

SpΣ(SI
X , S1) //

OO

SpΣ(SpΣX , S1)oo

OO

where the vertical adjunctions are the stabilizations [26, Theorem 9.1] and the
horizontal left adjoints are given by SI

R and its induced functor on symmetric
spectrum objects. The left adjoints and the right adjoints commute up to
isomorphism.

LEMMA 5.21. With respect to the absolute and positive local model structures,
the two adjunctions SpΣX � SpΣ(SpΣX , S1) and SpΣ(SI

X , S1) � SpΣ(SpΣX , S1)

are Quillen equivalences. In particular, SI
R models the stabilization of SI

X .

Proof. For SpΣX � SpΣ(SpΣX , S1), this follows from Proposition 5.19 and [26,
Theorem 9.1]. For the second adjunction, we note that the category of symmetric
spectrum objects in SI

X is equivalent to the section category of the Quillen
I-category m 7→ SpΣ(SX (m), S1) whose structure maps are induced by those
discussed in Example 5.6(iv). Inspecting the cofibrations and fibrant objects, it
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follows that the stable model structure on SpΣ(SI
X , S1) corresponds to the local

model structure associated with this Quillen I-category where the categories
SpΣ(SX (m), S1) are equipped with the stable model structure. Analogously, we can
identify SpΣ(SpΣX , S1) with the section category of m 7→ SpΣ(SX (m), S1) where
now the structure maps are the spectrifications of the structure maps (3.21) for
SpΣX . Again, the stable model structure corresponds to the local model structure
on the section category. Under these identifications, the adjunction in question is
induced in level m by the left adjoints SmZ−: SpΣ(SX (m), S1)→ SpΣ(SX (m), S1)

in the way explained in Lemma 3.15. By stability, the latter functor participates
in a Quillen equivalence, and the claim follows by a similar argument as in the
proof of Lemma 5.17.

REMARK 5.22. The lemma implies that the model category SpΣX we are interested
in is also equivalent to SpΣ(SI

X , S1). However, the latter category is more
complicated in that it has separate I- and spectrum directions, and it is less suited
for the approach to Thom spectra in Section 9.1 and the analysis of parametrized
spectra carried out in [21, Section 5].

COROLLARY 5.23. If f : X → Y is an I-equivalence, then f! : SpΣX � SpΣY : f ∗

is a Quillen equivalence with respect to the absolute and positive local model
structures.

Proof. We know from Lemma 5.17 that ( f!, f ∗) is a Quillen adjunction. By
properness of the I-model structures on SI (see [42, Proposition 3.2]) and the
discussion in Example 5.6 (iv), it follows that f induces a Quillen equivalence
SI

X � SI
Y . By [26, Theorem 9.3], this Quillen equivalence induces a Quillen

equivalence on the stabilization. The claim follows by the last lemma and 2-out-
of-3 for Quillen equivalences.

Let again XhI = hocolimI X denote the Bousfield–Kan homotopy colimit
of an I-space X : I → S and let X be the bar resolution of X , that is, the
homotopy left Kan extension of X along idI . Then the adjoint of the isomorphism
colimI(X) ∼= XhI and the canonical map X → X provide a zig-zag of I-
equivalences constI XhI ← X → X (see, for example, [45, Section 4]). Using
this, the previous corollary implies the following.

COROLLARY 5.24. Let X be an I-space. Then there is a chain of Quillen
equivalences relating SpΣX and SpΣXhI

with the absolute local model structures.
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6. Comparison with the local integral model structure

Our next aim is to prove a version of Proposition 3.29 for the local model
structures, that is, we show that the I-model structures on SI discussed in
Example 5.6(i) and the local model structures on the SpΣX assemble to the local
model structures on SpΣR.

LEMMA 6.1. Let X be an absolute (respectively a positive) I-fibrant I-space and
let (E, X) be an object in SpΣX . Then (E, X) is fibrant in the absolute (respectively
positive) local model structure on SpΣR if and only if it is fibrant in the absolute
(respectively positive) local model structure on SpΣX .

Proof. An object (E, X) is absolute local fibrant in SpΣR if and only if it is absolute
level fibrant and the horizontal maps in the square (5.8) are weak equivalences for
all α in I . Under the assumptions on X , this holds if and only if (E, X) is absolute
level fibrant in SpΣX and (5.8) is homotopy cartesian for all α in I . The positive
case is analogous.

LEMMA 6.2. Let K be a cofibrant space, let (U, K ) be cofibrant in SK , and let
α : m→ n be a map in I . Then α(U,K ) : FSpΣK

n ((U, K ) Z Sn−α)→ FSpΣK
m (U, K ) is

a local weak equivalence in SpΣR.

Proof. We consider the commutative diagram:

FSpΣR
n ((U, K ) Z Sn−α)

∼
��

SI
b [F

SI

n (K )]
∼
��

//oooo SI
b [constI(K )]

=

��

FSpΣR
m (U, K ) SI

b [F
SI

m (K )] //oooo SI
b [constI(K )]

The left-hand vertical map is a local weak equivalence in SpΣR by Corollary 5.5.
The middle vertical map is because FSI

n (K )→ FSI

m (K ) is an I-equivalence and
SI

b is left Quillen by Lemma 5.12. Since (U, K ) and (U, K ) Z Sn−α are cofibrant

and SI
b [F

SI

m (K )] ∼= FSpΣR
m (K , K ), the left-hand horizontal maps are cofibrations

in SpΣR. Since SpΣR is left proper by Proposition 5.2, Lemma 3.28 implies the
claim.

LEMMA 6.3. Let K be cofibrant in S . With respect to the absolute or positive
local model structures, the inclusion functor SpΣK → SpΣR preserves acyclic
cofibrations with fibrant codomain.

Proof. Given a map αZ in the set of maps we use to form the local model structure
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on SpΣK , we use the mapping cylinder construction resulting from the simplicial
structure of SpΣK to factor it into a cofibration αc

Z followed by an absolute level
equivalence. We let J be the set of maps in SpΣK that is the union of the generating
acyclic cofibrations for the absolute level model structure and the maps of the
form αc

Z ⊗ i where i = (∂Dn
→ ∆n) runs through the generating cofibrations

sSet and αZ runs through the maps we are localizing at. Writing X = constI K , an
object (E, X) is fibrant in SpΣK if and only if (E, X)→ SI

b [X ] has the right lifting
property with respect to J (compare [23, Proposition 4.2.4] for an analogous
statement using cosimplicial resolutions). The domains of the maps in J are small
relative to J -cell complexes because this property is inherited from the cofibrantly
generated model category SK (and preserved by forming the mapping cylinder).
Hence, we can apply the small object argument to see that the fibrant replacement
in the local model structure on SpΣK is the retract of a J -cell complex.

By Lemma 6.2 and Proposition 5.11, the maps in J are acyclic cofibrations
in the absolute local model structure on SpΣR. Since the inclusion SpΣX → SpΣR
preserves pushouts and filtered colimits, it follows that J -cell complexes are also
acyclic cofibrations in SpΣR. The claim follows because the fibrant objects in SpΣK
and SpΣR coincide by Lemma 6.1.

PROPOSITION 6.4. A map in SpΣX is a weak equivalence in the absolute or
positive local model structure if and only if it is so as a map in SpΣR.

Proof. We consider a map ϕ : (E, X)→ (E ′, X) and prove the claim by gradually
allowing more and more general cases. When X = constI K is the constant I-
diagram on a cofibrant space K and both (E, X) and (E ′, X) are locally fibrant in
SpΣK , then they are also locally fibrant as objects in SpΣR by Lemma 6.1, and the
claim follows since in both categories, weak equivalences between fibrant objects
are level equivalences. When (E, X) and (E ′, X) are not necessarily fibrant in
SpΣK , we apply the fibrant replacement in SpΣK to ϕ and use Lemma 6.3 to see that
it is also a fibrant replacement in SpΣR. Hence, the claim reduces to the previous
case.

In the next step, we assume that X is absolute (respectively positive) cofibrant
as an I-space. Setting K = colimI X , the adjunction counit provides an I-
equivalence f : X → constI K . Now given a map ϕ : (E, X) → (E ′, X) of
cofibrant objects in SpΣX , we apply Corollary 5.23 to see that ( f!, f ∗) is a Quillen
equivalence and deduce that ϕ is a local weak equivalence in SpΣX if and only
if f!(ϕ) is a local weak equivalence in SpΣK . Left properness of the level model
structure on SpΣR, the identification (3.27), and Corollary 5.13 imply that ϕ is
a local weak equivalence in SpΣR if and only if f!(ϕ) is. So we have reduced
the claim to the previous step. Since the cofibrant replacement in SpΣX is a level
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equivalence, we may drop the cofibrancy assumption on (E, X) and (E ′, X) in
the previous argument.

In the last step, we consider a general X and let f : X c
→ X be an absolute

(respectively positive) acyclic fibration with absolute (respectively positive)
cofibrant domain. Since f is a level equivalence and S is proper, ( f!, f ∗) is a
Quillen equivalence with respect to the level model structures. Hence, our test
map ϕ : (E, X)→ (E ′, X) is level equivalent to the image of a map of cofibrant
objects ϕc

: (E c, X c) → (E ′c, X c) in SpΣXc under f!. Since ( f!, f ∗) is a Quillen
equivalence with respect to the local model structures by Corollary 5.13, ϕ is a
local equivalence in SpΣX if and only if ϕc is a local equivalence in SpΣXc . Since the
level model structures on SpΣR are right proper by Proposition 3.10, ϕ and ϕc are
level equivalent in SpΣR. This reduces the general claim to the previous case.

COROLLARY 6.5. The weak equivalences in the absolute and the positive local
model structures on SpΣX coincide.

Proof. This follows by combining Propositions 5.9 and 6.4.

COROLLARY 6.6. Let f : X → Y be a map of I-spaces. If f is an acyclic
cofibration (respectively acyclic fibration) in the absolute I-model structure, then
f! : SpΣX → SpΣY (respectively f ∗ : SpΣY → SpΣX ) preserves weak equivalences of
the local model structures. An analogous statement holds in the positive case.

Proof. If f : X → Y is an acyclic cofibration, then SI
b [ f ] is an acyclic cofibration

in the local model structure on SpΣR by Corollary 5.13. The claim follows by the
first isomorphism in (3.27) and Proposition 6.4. The statement about f ∗ can be
proved by arguing in a dual way.

Applying Definition 2.17 to the pseudofunctor X 7→ SpΣX from (3.25), the
absolute (respectively positive) I-model structure and the absolute (respectively
positive) local model structure on the SpΣX give rise to absolute (respectively
positive) local integral cofibrations, fibrations, and weak equivalences on the
Grothendieck construction.

THEOREM 6.7. These classes of maps form an absolute (respectively positive)
integral local model structure on the Grothendieck construction. Under the
equivalence with SpΣR, it coincides with the absolute (respectively positive) local
model structures on SpΣR.

Proof. Combining Lemma 5.17, Corollary 5.23, and Corollary 6.6, the existence
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of the integral model structure follows from [20, Theorem 3.0.12]. For the
comparison, we note that the cofibrations and fibrant objects of the two model
structures coincide by Proposition 3.29 and Lemma 6.1. Hence, the claim follows
from [29, Proposition E.1.10].

The last theorem and the definition of the integral model structure imply the
next two statements.

COROLLARY 6.8. A map in SpΣX is a cofibration, fibration, or weak equivalence
in the absolute or positive local model structure if and only if it is so as a map in
SpΣR.

COROLLARY 6.9. Let (E, X) → (F, Y ) be a map in SpΣR with f : X → Y as
map of base I-spaces. Then the following are equivalent:

(i) The map (E, X)→ (F, Y ) is a local weak equivalence in SpΣR.

(ii) f is an I-equivalence and a cofibrant replacement (E c, X) → (E, X) in
SpΣX induces a local weak equivalence ( f!(E c), Y )→ ( f!(E), Y )→ (F, Y )
in SpΣY .

(iii) f is an I-equivalence and a fibrant replacement (F, Y )→ (F f , Y ) in SpΣY
induces a local weak equivalence (E, X)→ ( f ∗(F), X)→ ( f ∗(F f ), X) in
SpΣX .

We have now proved the main results about the local model structures stated in
Section 1.

Proof of Theorems 1.2 and 1.3. Theorem 1.2 is a combination of Corollary 6.8,
Lemma 5.17, and Corollaries 5.23 and 5.24. Theorem 1.3 is Theorem 6.7.

REMARK 6.10. Using [12, Theorem 4.2], Theorem 6.7 also implies that the
functors f! and f ∗ satisfy the homotopical Beck–Chevalley condition formulated
in [12, Definition 4.1].

Let M be a commutative I-space monoid. It is now easy to see that the
symmetric monoidal product on SpΣM discussed in (4.12) is also compatible with
the local model structures.

PROPOSITION 6.11. The category SpΣM satisfies the pushout product axiom with
respect to the absolute and positive local model structures.
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Proof. Since µ! : SpΣM�M → SpΣM is left Quillen, Corollary 6.8 and the pushout
product axiom in SpΣR provide the pushout product axiom for SpΣM .

By the discussion following Theorem 10.6, the previous proposition provides
a symmetric monoidal model for the stabilization of the category of spaces over
and under a given E∞ space.

REMARK 6.12. In view of Corollary 6.8, one may wonder if one can simply
use the local model structure on SpΣR to define the local model structures on the
subcategories SpΣX and avoid many of the intermediate steps in our construction.
The problem with this approach is that the factorizations in SpΣR do not necessarily
give rise to factorizations in SpΣX . Moreover, the important property that an I-
equivalence f : X → Y induces a Quillen equivalence f! : SpΣX � SpΣY : f ∗ does
not appear to be a consequence of the local model structure on SpΣR since this
would require a form of right properness of SpΣR.

6.13. Comparison of simplicial and topological variants. When developing
our model structures, we allowed the underlying category of spaces S to be either
the category sSet of simplicial sets or the category of compactly generated weak
Hausdorff spaces Top. The Quillen adjunction

|−| : sSet� Top : Sing

relating them induces an adjunction

|−| : SpΣR(sSet)� SpΣR(Top) : Sing

on the associated categories of symmetric spectra in retractive spaces with |−|
strong symmetric monoidal and Sing lax symmetric monoidal.

PROPOSITION 6.14. The adjunction SpΣR(sSet) � SpΣR(Top) is a Quillen
equivalence with respect to the absolute and positive levels and local model
structures.

Proof. This can be checked from the definitions or deduced from [26, Theorem
9.3].

Now let X be an I-diagram of simplicial sets, Y an I-diagram of topological
spaces, and |X | → Y a map with adjoint X → Sing(Y ). Then the two composites

SpΣX (sSet)
|−|

−→ SpΣ
|X |(Top)

(|X |→Y )!
−−−−→ SpΣY (Top) and

SpΣY (Top)
Sing
−−→ SpΣSing(Y)(sSet)

(X→Sing(Y))∗
−−−−−−−→ SpΣX (sSet)
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define an adjunction SpΣX (sSet) � SpΣY (Top). Taking |X | → Y or its adjoint to
be the identity gives adjunctions SpΣX (sSet) � SpΣ

|X |(Top) and SpΣSing(Y )(sSet) �
SpΣY (Top).

PROPOSITION 6.15. The last two adjunctions are Quillen equivalences with
respect to the absolute and positive levels and local model structures.

Proof. This follows from Proposition 6.14 and Corollaries 3.30 and 6.8.

It is also easy to check that these adjunctions respect the convolution
product (4.12) if the base is a commutative I-space monoid.

6.16. Model structures on parametrized commutative ring spectra. Next,
we explain how to lift the previously constructed local model structures to
commutative ring spectra, and for this, we wish to apply the general theory
from [41]. Since this theory is only applicable in the simplicial setting, we shall
limit ourselves to working simplicially when discussing model structures on
commutative ring spectra. Thus, for the rest of this section, we specify that the
underlying category S of spaces be the category sSet of simplicial sets. We briefly
comment on the topological setting in Remark 6.21.

We write CSpΣR for the category of commutative ring spectra in SpΣR, that is, for
commutative monoid objects in (SpΣR,Z,S).

THEOREM 6.17. The category CSpΣR admits a positive local model structure
where a map is a fibration or weak equivalence if and only if the underlying map
in SpΣR is.

Proof. We first note that the absolute and positive model structures can also
be constructed using [41, Theorem 3.2.1]. For this, we have to show that the
category sSetR of retractive simplicial sets satisfies the requirements of [41,
Definition 2.1]. This holds since sSetR is locally presentable, all objects are
cofibrant, the domains and codomains of the generating cofibrations are finitely
presentable, and sSetR satisfies the pushout product axiom. The theorem then
follows from [41, Theorem 4.1].

REMARK 6.18. In fact, the result in [41] shows that the positive local model
structure on SpΣR has favorable monoidal properties [41, Proposition 3.5.1] that
allow it to be lifted to algebras over general colored symmetric operads. In
particular, there is also a lifted model structure on associative parametrized ring
spectra.
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Now let M be a commutative I-space monoid and consider the category SpΣM
with the symmetric monoidal product (4.12). We write CSpΣM for the category of
commutative M-relative symmetric ring spectra, that is, the commutative monoid
objects in (SpΣM ,Z,SM).

THEOREM 6.19. The category CSpΣM admits a positive local model structure
where a map is a fibration or weak equivalence if and only if the underlying map
in SpΣM is.

The proof of this statement is more difficult because SpΣM not being equivalent
to symmetric spectrum objects in some category prevents us from applying the
results of [41] directly. Instead, we rely on the following lemma. To formulate it,
we let CR

: SpΣR → CSpΣR, CM
: SpΣM → CSpΣM , and CI

: SI
→ CSI be the free

functors which are left adjoint to the respective forgetful functors. We also note
that there is a canonical inclusion functor CSpΣM → CSpΣR that identifies CSpΣM
with the fiber of the projection functor πb : CSpΣR → CSI and that SI

b induces a
functor SI

b : CSI
→ CSpΣR.

LEMMA 6.20. Let (A,M) be an object in CSpΣM and consider the maps
f : (D,M)→ (E,M) and g : (D,M)→ (A,M) in SpΣM . Let g̃ : CR(D,M)→
(A,M) and ĝ : CM(D,M) → (A,M) be the adjoints of g with respect to
the above adjunctions. Then the cobase change of CM( f ) along ĝ in CSpΣM is
isomorphic to the cobase change of CR( f ) along g̃ in CSpΣR.

Proof. The underlying commutative I-space monoid of CR(D,M) is CI(M).
Inspecting the universal properties of the free functors shows that CM(D,M) is
isomorphic to CR(D,M) ZSIb [CI(M)] SI

b [M], the cobase change of CR(D,M)
along the map given by applying SI

b to the adjoint CI(M) → M of idM .
Commuting pushouts in CSpΣR, we see that

(A,M) ZCM (D,M) CM(E,M)
∼= ((A,M) ZSIb [M] S

I
b [M]) Z(CR(D,M)ZSIb [CI (M)]

SIb [M]) (C
R(E,M) ZSIb [CI (M)] SI

b [M])

∼= (A,M) ZCR(D,M) CR(E,M).

As the inclusion functor CSpΣM → CSpΣR preserves pushouts, the claim follows.

Proof of Theorem 6.19. We apply [23, Theorem 11.3.2] to the free/forgetful
adjunction CM

: SpΣM � CSpΣM : U . Let J be a set of generating acyclic
cofibrations for the positive local model structure on SpΣM and let CM(J ) be
its image under CM . The nontrivial part is to show that relative CM(J )-cell
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complexes are local equivalences. Lemma 6.20 and the fact that filtered colimits
in CSpΣM and CSpΣR are both created in SpΣR imply that this follows from the
corresponding property for CSpΣR resulting from Theorem 6.17.

REMARK 6.21. We expect that there are analogous model structures on
associative and commutative ring spectra in SpΣR and SpΣM in the topological
setting. However, the construction of such model structures will most likely
require an elaborate analysis of h-cofibrations that we wish to avoid in the
present paper. (Even the associative case is not an immediate consequence of [48,
Theorem 4.1(3)] since we do not know if the topological SR, SpΣR or SpΣM satisfies
the monoid axiom.)

Nonetheless, we note that our results suffice to fibrantly replace associative
or commutative parametrized ring spectra in the topological SpΣR: combining
Lemma 5.4 with the fact that the geometric realization |−| : sSet→ Top preserves
fibrations and weak equivalences, it follows that |−| : SpΣR(sSet) → SpΣR(Top)
preserves locally fibrant objects. Thus, applying the singular complex, forming a
fibrant replacement, and then passing to the realization gives a topological fibrant
replacement functor for associative or commutative parametrized ring spectra that
is related to the identity functor by a zig-zag of local equivalences.

Since the left adjoint functors ιt : SI
→ SI

R and SI
R : SI

R → SpΣR from
Construction 3.16 are strong symmetric monoidal, they induce adjunctions

ιt : CSI � CSI
R : πt and SI

R : CSI
R � CSpΣR : Ω

I
R.

LEMMA 6.22. These adjunctions and their composite SI
t : CSI � CSpΣR : Ω

I
t

are Quillen adjunctions with respect to the positive local model structures.

Proof. Arguing with the right adjoints, the claim follows from Lemma 5.12.

7. Parametrized homology and cohomology

In this section, we define the parametrized (co)homology theories associated
with a parametrized spectrum that were outlined in Section 1. Concrete examples
arise from the universal line bundle (see Section 8 and Proposition 10.18) and the
twisted K -theory spectra studied in [21].

Key ingredients for the definition of parametrized (co)homology are the
adjoints of the derived restriction that we discuss now. If f : Y → X is a map
of I-spaces, then f ∗ : SpΣX → SpΣY is right Quillen with respect to the absolute
local model structures and thus induces a right derived functor R f ∗ : Ho(SpΣX )→
Ho(SpΣY ) with left adjoint L f! : Ho(SpΣY )→ Ho(SpΣX ).
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PROPOSITION 7.1. The functor R f ∗ : Ho(SpΣX )→ Ho(SpΣY ) is also a left adjoint.

The proposition will be proved at the end of this section.

DEFINITION 7.2. We write R f∗ : Ho(SpΣY ) → Ho(SpΣX ) for the right adjoint of
R f ∗ that results from the previous proposition. When X = ∗, we use the notation
RΓ for the functor R(Y → ∗)∗ : Ho(SpΣY )→ Ho(SpΣ) and the notation LΘ for
L(Y → ∗)! : Ho(SpΣY )→ Ho(SpΣ).

We stress that since f ∗ : SpΣX → SpΣY is, in general, not left Quillen, the functor
R f∗ is not the right derived functor of a right Quillen functor. In the context
of topological spaces, an explicit description of RΓ in a useful special case is
given in Lemma 7.27. We also point out that when working over simplicial sets,
deriving the left adjoint Θ = (Y → ∗)! is not really necessary since it preserves
level equivalences and thus sends local equivalences to stable equivalences.

The following statement will also be shown at the end of this section.

PROPOSITION 7.3. Given maps of I-spaces f : X ′ → X and g : Y ′ → Y , the
lax monoidal structure map f ∗(E, X) Z g∗(F, Y )→ ( f � g)∗((E, X) Z (F, Y ))
from (4.7) induces the following natural isomorphism in Ho(SpΣR):

(R f ∗)(E, X) ZL (Rg∗)(F, Y )
∼=
−→ (R( f �L g)∗)((E, X) ZL (F, Y )). (7.4)

For objects (E ′, X ′) and (F ′, Y ′) in SpΣR, the isomorphism (7.4) and the units
and counits for the adjunctions resulting from Proposition 7.1 applied to f, g, and
f � g induce natural maps

R f∗(E ′, X ′) ZL Rg∗(F ′, Y ′)→ R( f �L g)∗((E ′, X ′) ZL (F ′, Y ′)) (7.5)

in Ho(SpΣR) that are associative, commutative, and unital.

7.6. I-spacification. To be able to define parametrized (co-)homology and
Thom spectra from space level data, we now recall from [45, Section 4.2] and [6,
Section 4.1] how one can pass from spaces to I-spaces. For any I-space X , there
is an I-spacification functor

PX : S/XhI → SI/X, (τ : K → XhI) 7→ (PX (τ ) : Pτ (K )→ X) (7.7)

that is a homotopy inverse of the homotopy colimit functor. We briefly recall
its definition. Writing X for the homotopy left Kan extension of X along idI ,
the canonical map t : X → X is a natural level equivalence that we refer to as

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.11
Downloaded from https://www.cambridge.org/core. University of Bergen, on 22 Mar 2021 at 09:12:49, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.11
https://www.cambridge.org/core


F. Hebestreit, S. Sagave and C. Schlichtkrull 46

the bar resolution. There is a natural isomorphism colimI X ∼= XhI with adjoint
π : X → constI XhI . A map of spaces τ : K → XhI gives rise to a map of I-
spaces

constI K ×constI XhI X
pr
−→ X

t
−→ X.

This construction can be viewed as a functor S/XhI → SI/X . In the
topological case, the homotopy invariant I-spacification functor (7.7) is
defined by precomposing it with the standard Hurewicz fibrant replacement
Γ (τ) : Γτ (K ) → XhI of τ (not to be confused with the meaning of Γ in
Definition 7.2). In the simplicial case, we replace the Γ by the functor sending a
map of simplicial sets τ : K → XhI to the map Γ (τ) defined by the right-hand
pullback square in the diagram

Sing |K | ∼ // SingΓ|τ |(|K |) // // Sing |XhI |

K
∼

OO

∼ // Γτ (K )
∼

OO

Γ (τ)
// // XhI .

∼

OO

The lower left-hand map arises from the universal property of the pullback.
Compared to a replacement by fibration obtained from the small object argument,
this functor Γ has the advantage of being lax monoidal and preserving operad
actions. Both in the simplicial and the topological cases, the resulting I-
spacification functor PX then sends weak equivalences to I-equivalences. When
M is a commutative I-space monoid, MhI is an algebra over the Barratt–Eccles
operad, and PM preserves actions of operads augmented over the Barratt–Eccles
operad and is lax monoidal.

We also note the following naturality statement for later use.

LEMMA 7.8. If ρ : M → N is a map of commutative I-space monoids, then
there is a natural map ρ ◦ PM(τ ) → PN (ρhI ◦ τ) of spaces over N that is an
I-equivalence if ρ is.

7.9. Parametrized homology and cohomology. To define the parametrized
(co)homology groups associated with a parametrized spectrum (E, X), we use
the I-spacification discussed in (7.7). Given a map τ : K → XhI , we use the
shorthand notation τI = PX (τ ) : Pτ (K ) → X and write Rτ ∗I : Ho(SpΣX ) →
Ho(SpΣPτ (K )) for the induced functor. Moreover, for any I-space Y , the functors
LΘ,RΓ : Ho(SpΣY ) → Ho(SpΣ) denote the left and right adjoints, respectively,
of R(Y → ∗)∗, the derived pullback functor along the unique map Y → ∗.
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DEFINITION 7.10. For a parametrized spectrum (E, X) ∈ SpΣR, the associated
parametrized (co)homology theories are given by

(E, X)n : S/XhI −→ Ab, (τ : K → XhI) 7−→ πn(LΘ)(Rτ ∗I)(E, X) and
(E, X)n : S/XhI −→ Ab, (τ : K → XhI) 7−→ π−n(RΓ )(Rτ ∗I)(E, X).

The functoriality of parametrized homology (respectively cohomology) results
from the adjunction counit of (L f!,R f ∗) (respectively the adjunction unit of
(R f ∗,R f∗)).

Instead of directly verifying the usual properties of a (co)homology theory
(including the construction of relative terms and boundary maps), let us proceed
by comparing these definitions with those of May and Sigurdsson [37, Definition
20.2.4], which they show satisfy a version of the usual axioms for a (co)homology
theory. In Proposition 10.18, we will also compare Definition 7.10 with the ∞-
categorical counterparts from [1, 2].

PROPOSITION 7.11. For a constant I-space X = constI B, a fiberwise
orthogonal spectrum E ∈ SpO

B (in the sense of [37, Ch. 11]), and τ : K →
XhI = B × BI , there is a canonical isomorphism between our (E, X)∗(K , τ )
and (E, X)∗(K , τ ) on the one hand and the definitions from [37, Definition
20.2.4] applied to K

τ
−→ XhI

pr
−→ B on the other.

REMARK 7.12. Since in the situation of the proposition, the forgetful functor
SpO

B → SpΣX induces an equivalence on homotopy categories by the conjunction
of [1, Theorem B.2], our Corollary 5.24, and Lemma 10.2, we can find a
weakly equivalent orthogonal spectrum to an arbitrary (E, X) ∈ SpΣX . Thus, we
can deduce the (co)homological consequences of the proposition without the
orthogonality assumption. Investing Corollary 5.24 also for nonconstant X , we
can then also deduce them for arbitrary (E, X) ∈ SpΣR. We leave the details to the
reader.

Proof of Proposition 7.11. Let us first recall the definitions: For a fiberwise
orthogonal parametrized spectrum E over a space B as in [37, Definition 11.2.3]
and a map σ : K → B, May and Sigurdsson set

En(K , σ ) = πn(LΘ)(LΣ∞B K+ ∧L
B E)

and
En(K , σ ) = π−n(RΓ )(RFB(LΣ∞B K+, E)),

where we have adapted those functors to our notation that have occurred in
our presentation. The remaining ones are LΣ∞B (−)+ : Ho(S/B) → Ho(SpO

B)
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which adds a disjoint base section and then takes the suspension spectrum,
the functor ∧L

B : Ho(SpO
B) × Ho(SpO

B) → Ho(SpO
B), which is the fiberwise

smash product obtained by internalizing the external smash product by pullback
along the diagonal, and RFB : Ho(SpO

B)
op
× Ho(SpO

B) → Ho(SpO
B), which takes

fiberwise function spectra (and has no direct counterpart in our setup; compare
Remark 2.26).

Now, from [37, Proposition 13.7.4], we find LΣ∞B K+ ∼= Lσ!(SK ), where SK

denotes the trivially parametrized sphere spectrum over K that is the unit for ∧K .
Then the projection formulas [37, (11.4.5) and (11.4.6)] (verified for the derived
functors in [37, Proposition 13.7.5] or investing the comparison theorem [1,
Theorem B.2] also in [1, Proposition 6.8]) show that the formulas of May and
Sigurdsson can be rewritten as

En(K , σ ) = πn(LΘ)(Rσ ∗)(E, B) and En(K , σ ) = π−n(RΓ )(Rσ ∗)(E, B).

But then the conjunction of our comparison in Lemma 10.3 with [1, Theorem
B.2] imply that for X = constI B, we may interpret the above formulas in our
categories SpΣX ,SpΣconstI K , and SpΣ . The commutative diagram

constI K //

constI τ **

constI Γτ (K )
����

Pτ (K )oo

τI
��

constI XhI
constI pr

// constI B = X

with pr : XhI = B × BI → B the projection then provides the desired
isomorphisms

(E, X)n(K , τ ) ∼= En(K , pr ◦ τ) and (E, X)n(K , τ ) ∼= En(K , pr ◦ τ).

Let (R,M) be a parametrized ring spectrum in SpΣR with multiplication on base
I-spaces µ : M � M → M . Our next aim is to define pairings

×: (R,M)n(K , τ )⊗ (R,M)m(L , σ ) −→ (R,M)n+m(K × L , τ ×µ σ)
×: (R,M)n(K , τ )⊗ (R,M)m(L , σ ) −→ (R,M)n+m(K × L , τ ×µ σ),

(7.13)

where τ ×µ σ refers to the composite K × L
τ×σ
−−→ MhI ×MhI

µhI
−−→ MhI in which

the second map is the multiplication of the monoid MhI in spaces. It follows
from Remarks 6.18 and 6.21 that we may assume, without loss of generality, that
(R,M) is fibrant. Furthermore, if (R,M) is commutative, we may assume that
it is fibrant as a commutative parametrized ring spectrum by Theorem 6.17 and
Remark 6.21.
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CONSTRUCTION 7.14. We observe that there is a natural chain of maps

τ ∗I(R,M) Z σ ∗I(R,M)→ (τI � σI)
∗((R,M) Z (R,M))

→ (τI � σI)
∗µ∗(R,M)→ (τ ×µ σ)

∗(R,M) (7.15)

in SpΣR where the first map is an instance of (4.7), the second map is the canonical
map induced by µ, and the last map is induced by the monoidal structure map of
the I-spacification (see [45, Proposition 4.17] or [6, Lemma 4.5]). Precomposing
this chain with cofibrant replacements of the Z-factors in the source and using that
(R,M) is assumed to be fibrant gives a map

Rτ ∗I(R,M) ZL Rσ ∗I(R,M)→ R(τ ×µ σ)∗I(R,M)

on the homotopy category level. Precomposing it with the lax monoidal structure
of LΘ resulting from Lemma 4.6 and passing to homotopy groups induces
the first pairing in (7.13). Using the monoidal structure map for RΓ resulting
from (7.5) instead of that for LΘ provides the analogous pairing in cohomology.
Independence from the choices made during the construction, associativity and
the fact that the unit of (R,M) gives the unit 1 ∈ E0(∗, u) for the above product
are now readily checked.

REMARK 7.16. Proposition 10.19 compares these pairings with the ∞-
categorical variants from [1, 2].

Now we assume, in addition, that (R,M) is commutative and check that these
products are graded commutative. In order to give meaning to this, we first define
an explicit twist homomorphism

tw : (R,M)∗(K × L , τ ×µ σ)→ (R,M)∗(L × K , σ ×µ τ). (7.17)

Since M is supposed to be commutative, MhI inherits the structure of an E∞ space
with a canonical action of the Barratt–Eccles operad. Hence, there is an essentially
unique homotopy MhI × MhI × I → MhI starting at the multiplication µhI and
ending at µhI ◦ tw. After precomposing with τ × σ , we get a homotopy H from
τ ×µ σ to σ ×µ τ ◦ tw. Now we pull back (R,M) via the I-spacification of H to
obtain a chain of local equivalences

(τ ×µ σ)
∗

I(R,M)
i0
−→ H ∗I(R,M)

i1
←− (σ ×µ τ ◦ tw)∗I(R,M)

tw
−→ (σ ×µ τ)

∗

I(R,M)
(7.18)

in which i0 and i1 denote the endpoint inclusions. Applying LΘ , we get a diagram
of stable equivalences, and (7.17) is the induced map of homotopy groups. Clearly,
the latter does not depend on the choice of H .
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PROPOSITION 7.19. The square

(R,M)n(K , τ )⊗ (R,M)m(L , σ )
×
//

tw
��

(R,M)n+m(K × L , τ ×µ σ)
tw
��

(R,M)m(L , σ )⊗ (R,M)n(K , τ )
×
// (R,M)m+n(L × K , σ ×µ τ)

commutes up to the sign (−1)nm . An analogous statement holds for parametrized
cohomology groups.

Proof. It suffices to consider the topological setting. Let us write τI �µ σI for
the composition of τI � σI with the multiplication µ : M � M → M . The
commutativity assumption on (R,M) implies that the first square in the diagram

τ ∗I(R,M) Z σ ∗I(R,M) //

tw
��

(τI �µσI)∗(R,M) //

tw
��

(τ ×µ σ)
∗

I(R,M)

σ ∗I(R,M) Z τ ∗I(R,M) // (σI �µτI)∗(R,M) // (σ ×µ τ)
∗

I(R,M)

is commutative. Here the horizontal maps are defined as in (7.15). It follows
from the proof of [45, Lemma 6.7] that the maps π : M → constI MhI and
t : M → M going into the definition of the I-spacification functor are compatible
with the actions of the Barratt–Eccles operad on these I-spaces. Hence, there is a
commutative diagram of homotopies

M � M × I //

π�π×I
��

M
π
��

constI(MhI × MhI × I ) // constI MhI

where the bottom homotopy is the one used to define the homotopy H in
(7.18) and the upper homotopy starts at µ̄ and ends at µ̄ ◦ tw. Furthermore, the
composition of the upper homotopy with t is the constant homotopy on t ◦ µ̄.
Using both of these homotopies, we get a natural map of I-spaces

Pτ (K )� Pσ (L)× I → PH (K × L × I ),

where the notation Pτ (K ) denotes the domains for the I-spacifications as in
(7.7). This is, in fact, a map of I-spaces over M when we augment the left-hand
side via the constant homotopy on τI �µ σI . Pulling back (R,M) along these
augmentations, we end up with the commutative diagram
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(τI �µσI)∗(R,M) //

i0 ��

(τ ×µ σ)
∗

I(R,M)
i0
��

(τI �µσI)∗(R,M) Z SI
t [constI I ] // H ∗I(R,M)

(τI �µσI)∗(R,M) //

i1

OO

tw
��

(σ ×µ τ ◦ tw)∗I(R,M)
i1

OO

tw
��

(σI �µτI)∗(R,M) // (σ ×µ τ)
∗

I(R,M).

Applying LΘ and identifying Θ(SI
t [constI I ]) with S ∧ I+, we get a homotopy

commutative diagram from which we deduce the statement in the proposition.
The cohomological statement follows by applying RΓ instead of LΘ .

7.20. Derived restriction as a left adjoint. We now begin to prepare for the
proofs of Propositions 7.1 and 7.3. These proofs will rely on the following three
lemmas which require us to work over simplicial sets and do not have direct
topological counterparts. This will not lead to limitations for the propositions
since they make statements about the homotopy category.

LEMMA 7.21. If f : L → K is a Kan fibration in sSet, then the restriction
functor f ∗ : sSetR/ιb(K ) → sSetR/ιb(L) preserves weak equivalences and is
left Quillen.

Proof. Since we are working over simplicial sets, f ∗ has a right adjoint by the
corresponding statement for the category of sets. Since base change preserves
colimits and monomorphisms of sets, f ∗ preserves cofibrations and colimits of
simplicial sets and hence cofibrations in sSetR by their definition. Since sSet is
right proper, base change along the Kan fibration f preserves weak equivalences.
Thus, f ∗ is left Quillen.

LEMMA 7.22. The functor (constI f )∗ : SpΣR/SI
b [constI K ] → SpΣR/SI

b [constI L]
is left Quillen with respect to the absolute local model structures provided that
f : L → K is a Kan fibration of Kan complexes.

Proof. The functor (constI f )∗ is a left adjoint by the corresponding statement
for SR established in Lemma 7.21. Let m,n be objects of I , let (W, P)→ ιb(K )
be a map in SR, and let FSpΣR

m (W, P)→ SI
b [constI K ] be the resulting object in

SpΣR/SI
b [constI K ]. Then there is a natural isomorphism
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((constI f )∗FSpΣR
m (W, P))(n) = (constI f )∗

( ∐
α∈I(m,n)

(W, P) Z Sn−α
)

∼=
−→

∐
α∈I(m,n)

f ∗(W, P) Z Sn−α
= FSpΣR

m ( f ∗(W, P))(n) (7.23)

where the coproducts are taken in SR and the base change on the right-hand
side is formed along (W, P) → ιb(K ). Since the cofibrations and generating
acyclic cofibrations of the absolute level model structure on SpΣR/SI

b [constI K ]
are obtained from those of SpΣR by allowing all possible augmentations [24],
the claim for the level model structure follows from the isomorphism (7.23) and
Lemma 7.21. Since we assume K to be fibrant, SI

b [constI K ] is fibrant in SpΣR so
that we can use [46, Proposition 3.4] to deduce that the local model structure on
SpΣR/SI

b [constI K ] can be viewed as the left Bousfield localization at a set of maps

whose domains and codomains are of the form FSpΣR
m (W, P) → SI

b [constI K ].
So (7.23) implies that (constI f )∗ is also left Quillen with respect to the local
model structure.

REMARK 7.24. The preceding lemma does not hold in general if we consider the
base change along SI

b [g] for an arbitrary map of I-spaces g since in this case, the

different levels of g∗FSpΣR
m (W, P) are coproducts over g(m)∗(W, P) which may

vary in m.

Recall that if K is a space, SpΣK = SpΣconstI K is the stabilization of SK .

LEMMA 7.25. The functor (constI f )∗ : SpΣK → SpΣL is left Quillen if f : L→ K
is a fibration of Kan complexes.

Proof. The functor (constI f )∗ is a left adjoint since we are working with
simplicial sets. The homotopical statement follows from Lemma 7.22 and
Corollary 6.8 (or by adapting the argument in Lemma 7.22 to SpΣK and SpΣL ).

We have now developed enough tools to verify the statements about
f ∗ : SpΣX → SpΣY and its monoidal behavior made in the beginning of this
section.

Proof of Proposition 7.1. Using Proposition 6.15, it suffices to verify the claim in
the simplicial case. Since X is I-equivalent to X ′ = constI(Xfib(0)), the Quillen
equivalences relating SpΣX to SpΣX ′ allow us to assume that f is of the form constI g
for a map of Kan complexes g : L → K . We factor g as an acyclic cofibration
k : L → P followed by a fibration h : P → X . Then (constI h)∗ is left Quillen
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by Lemma 7.22, and applying (constI h)∗ to objects that are both cofibrant and
fibrant shows that L(constI h)∗ = R(constI h)∗. Since (constI k)∗ participates
in a Quillen equivalence by Lemma 5.17, R(constI k)∗ is an equivalence of
categories. Hence,

R(constI g)∗ = R(constI k)∗ ◦ R(constI h)∗ = R(constI k)∗ ◦ L(constI h)∗

is a left adjoint.

Given maps of cofibrant I-spaces f : X ′ → X and g : Y ′ → Y as well as
cofibrant and fibrant objects (E, X) in SpΣX and (F, Y ) in SpΣY , there is a chain of
maps

f ∗(E, X)cof Z g∗(F, Y )cof
→ f ∗(E, X) Z g∗(F, Y )

→ ( f � g)∗((E, X) Z (F, Y ))→ ( f � g)∗((E, X) Z (F, Y ))fib (7.26)

induced by cofibrant replacements in SpΣX ′ and SpΣY ′ , the map (4.7), and a fibrant
replacement in SpΣX�Y .

Proof of Proposition 7.3. For the statement of the proposition, it is sufficient to
show that the map (7.26) is a local equivalence. Arguing in SpΣR with arguments
analogous to those in the proof of Proposition 7.1, we may assume that f =
constI f̃ and g = constI g̃, where f̃ : K ′→ K and g̃ : L ′→ L are Kan fibrations
of Kan complexes. Then f �g ∼= constI( f̃ × g̃), and it follows from Lemma 7.25
that the first and the last map in (7.26) are local equivalences. Working over a
constant base, Lemma 2.29 and the fact that base change preserves pullbacks
show that the map (4.7) is even an isomorphism.

We conclude with an explicit description of the topological version of RΓ =
R(Y → ∗)∗ and its monoidal structure in an important special case. This will
become relevant in [21].

By [32, Proposition 1.5], the functor f ∗ : SpΣconstI K → SpΣconstI L admits a right
adjoint if and only if the map f : L→ K is open. This is certainly the case for the
map r : K → ∗ and the adjoint Γ is given by sending a parametrized spectrum
(E, constI K ) to the spectrum whose mth level is given by the section space of
the projection E(m)→ K .

LEMMA 7.27. Suppose that K is a cell complex or more generally cofibrant.
Then Γ : SpΣconstI K → SpΣ preserves (positive) level equivalences between
parametrized spectra whose projections are Serre fibrations. In particular, Γ
preserves local equivalences between (positive) locally fibrant spectra and carries
these to (positive) fibrant spectra.
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Proof. This is immediate from the fiber sequence Γ (B, E) → E B
→ B B ,

whenever E → B is a Serre fibration and B is a cell complex, and the fact that
(−)B preserves weak equivalences. The last claim follows since Γ commutes with
taking (fiberwise) loops by adjunction.

Thus, RΓ (E, constI K ) is represented by Γ (Efib, constI K ), the value of Γ on
a locally fibrant replacement of E . Furthermore, by construction, the map

RΓ (E, constI K ) ∧L RΓ (F, constI L)→ RΓ (E ZL F, constI K × L)

is represented by the natural map

Γ (E, constI K ) ∧ Γ (F, constI L) −→ Γ (E Z F, constI K × L) (7.28)

taking products of sections, whenever (E, constI K ) and (F, constI L) are
bifibrant.

A similar description still applies when we are presented with a (positive) level
equivalence f : X → constI K . For (E, X) ∈ SpΣX , we then find

RΓ (E, X) ∼= RΓR f∗(E, X) ∼= Γ (L f!(E, X))fib, (7.29)

an observation which is made use of in the comparison of operator algebraic and
homotopical twisted K -theory in [21, Proposition 6.2].

8. The universal line bundle

In this section, we construct an important example of a commutative
parametrized ring spectrum, namely the universal line bundle γR associated
with a commutative symmetric ring spectrum R. We are interested in γR for
several reasons. In Section 10.12, we show that it represents its ∞-categorical
counterpart studied in [1, 2]. This leads to a multiplicative comparison of the
parametrized (co)homology groups from Section 7 with the ∞-categorical ones
from [1]. The universal line bundle also allows us to relate multiplicative point-
set-level Thom spectrum functors to ∞-categorical ones (see Theorem 1.8).
Finally, it also plays a prominent role in the multiplicative comparison of twisted
K -theory spectra in [21].

8.1. The construction of the universal line bundle. In the following, we use
the notion of commutative I-space monoids from Definition 4.1, the positive
I-model structure on the resulting category of commutative I-space monoids
CSI [42, Section 3], and the adjunction SI

: CSI � CSpΣ : ΩI relating them
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to commutative symmetric ring spectra [42, (3.9)]. Moreover, we say that a
commutative I-space monoid M is grouplike if the monoid π0(MhI) is a
group [42, Section 3.17].

Let R be a positive fibrant commutative symmetric ring spectrum. Its
multiplicative E∞ space is modeled by the commutative I-space monoid
ΩI(R), and its units GLI

1 R are given by the subcommutative I-space monoid
of invertible path components of ΩI(R). The fibrancy condition on R is needed
to ensure that ΩI(R) and GLI

1 R capture a well-defined homotopy type. It can
be enforced by applying a fibrant replacement to R (and could be relaxed to only
asking R to be positive level fibrant and semistable [6, Remark 2.6]).

We let G = (GLI
1 R)cof be a cofibrant replacement in the positive I-model

structure on CSI . The adjoint of G→ GLI
1 R→ΩI(R) is a map of commutative

symmetric ring spectra SI
[G] → R. Via the strong symmetric monoidal functor

SI
t from Lemma 6.22, G also gives rise to a commutative monoid SI

t [G] =
SI
R[ιt(G)] = SI

R[G q G,G] in SpΣR whose base commutative I-space monoid
is G. The unique map G → ∗ induces a commutative monoid map (G q G,G)
→ (∗ q G, ∗) in SI

R, and the composite

SI
t [G] → SI

R[∗ q G, ∗]
∼=
−→ SI

[G] → R

allows us to view R as a commutative SI
t [G]-algebra in SpΣR. We may also view

S = SI
t [∗] as a commutative SI

t [G]-algebra via the map induced by G → ∗.
Altogether, this allows us to form the two-sided bar construction

BZ(S,SI
t [G], R) = |[q] 7→ S Z SI

t [G]
Zq Z R|.

Being the realization of a simplicial object in CSpΣR, it is itself a commutative
parametrized ring spectrum. Its underlying commutative I-space monoid is
BG = B(∗,G, ∗), the bar construction of G with respect to �. As explained
in [6, Section 2.9], BG classifies G-modules. Its underlying E∞ space (BG)hI '
B(GhI) models the usual classifying space B GL1 R of the units of R.

DEFINITION 8.2. Let R be a positive fibrant commutative symmetric ring
spectrum in simplicial sets. Its universal line bundle is defined to be

γR =(BZ(S,SI
t [G], R))fib,

a fibrant replacement of BZ(S,SI
t [G], R) in the positive local model structure on

CSpΣBG .

It follows from Lemmas 8.7 and 8.8 and the fact that G is flat as an I-
space [42, Proposition 3.15(i)] that a stable equivalence R→ R′ of positive fibrant
commutative symmetric ring spectra induces a local equivalence γR → γ ′R .
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REMARK 8.3. The above construction can also be carried out for not-
necessarily commutative ring spectra R by using associative cofibrant and
fibrant replacements instead of commutative ones. In this case, γR is only an
R-module and no longer a parametrized ring spectrum. The constructions from
Section 7.9 still produce twisted R-(co)homology functors, but these are no
longer equipped with products.

REMARK 8.4. For a positive fibrant commutative symmetric ring spectrum in
topological spaces, we cannot directly implement Definition 8.2 because we have
not established the topological version of the model structure on CSpΣBG (and the
topological counterparts of Lemmas 8.7 and 8.8). Rather than going through this,
we content ourselves with the following construction: Given a positive fibrant
commutative symmetric ring spectrum R in topological spaces, we apply the
above construction to Sing R and define γR to be |γSing R|. Then the realization
of the simplicial BG models the topological one by the discussion in Section 9.4,
and |γSing R| is locally fibrant by Remark 6.21.

We again work over simplicial sets and let E be an R-module spectrum.
Then we can view E as an SI

t [G]-module by restriction along SI
t [G] → R

and generalize γR by considering γE = (BZ(S,SI
t [G], E))fib. Here the fibrant

replacement is taken in a lifted model structure on BZ(S,SI
t [G], R)-module

spectra that exists by [41, Proposition 3.4.2]. Based on this notion, we now
describe the behavior of universal bundles under pullback. On the one hand, this
is crucial for the applications in [21], and on the other, it shows that the fiber of
γE over the basepoint of BG is just E itself, as should be expected.

PROPOSITION 8.5. We work in simplicial sets and let H → G be a map of I-
space monoids with H flat and grouplike. Then the canonical map

BZ(S,SI
t [H ], E)→ (B H → BG)∗(γE)

is a local equivalence of parametrized spectra. When E = R and H is
commutative, it is a local equivalence of commutative B H-relative parametrized
ring spectra.

The proof requires some preparation and will be given at the end of this section.

8.6. Homotopy invariance properties. We now establish a series of lemmas
needed for the homotopy invariance of γR , the proof of Proposition 8.5, and
the next section. For this, we work again only over I-spaces and (parametrized)
symmetric spectra of simplicial sets.
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The realization of simplicial objects in SpΣR can be defined by diagonalizing
along the two simplicial directions and immediately lifts to a realization functor
Fun(∆op, CSpΣR)→ CSpΣR.

LEMMA 8.7. Let ϕ : (E, X)• → (F, Y )• be a natural transformation between
simplicial objects in SpΣR with each (E, X)q → (F, Y )q a local equivalence. Then
the realization of ϕ is a local equivalence.

Proof. We consider the Reedy model structure on Fun(∆op,SpΣR) induced by the
absolute local model structure. The realization of a Reedy cofibrant replacement
is a level equivalence by applying the realization lemma for simplicial sets. The
claim follows because realization preserves weak equivalences between Reedy
cofibrant objects.

We say that an ordinary symmetric spectrum E is flat if it is cofibrant in the
flat (or S-) model structure on symmetric spectra (see [47, 49]). This notion is
useful because E ∧− preserves stable equivalences if E is flat and the underlying
symmetric spectra of cofibrant objects in the positive stable model structure
on CSpΣ are flat. Analogously, there is the notion of a flat I-space such that
X �− preserves I-equivalences if X is flat and underlying I-spaces of cofibrant
commutative I-space monoids are flat [42, Section 3.8].

LEMMA 8.8. Let (E, X) be cofibrant in SpΣR, let F be a flat symmetric spectrum,
and let Z be a flat I-space. Then (E, X) Z −, F Z −, and SI

t [Z ] Z − preserve
local equivalences as functors SpΣR→ SpΣR.

Proof. By [41, Propositions 2.3.10 and 3.3.6], the category SpΣR also has a flat
absolute local model structure with more cofibrations and with weak equivalences
the local equivalences. We call the cofibrant objects in this model structure flat
and note that the Z-product with flat objects preserves local equivalences by
the flatness statement subsumed in [41, Proposition 3.4.2]. Hence, (E, X) Z −
preserves local equivalences. One can check on the generating cofibrations that
both SI

t : SI
→ SpΣR and the inclusion functor SpΣ → SpΣR preserve the

cofibrations of the flat model structures and thus flat objects.

COROLLARY 8.9. If (E, X) is an object in SpΣR and f : Y → Y ′ is an I-
equivalence between flat I-spaces, then SI

t [ f ] Z (E, X) is a local equivalence.

Proof. Taking a cofibrant replacement of (E, X), this follows from the previous
lemma by two out of three for local equivalences.
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Our next aim is to obtain homotopy invariance results for restriction functors
beyond what can be deduced directly from Lemma 7.22.

LEMMA 8.10. If f : Y → X is a fibration between fibrant objects in the absolute
I-model structure on SI , then f ∗ : SpΣR/SI

b [X ] → SpΣR/SI
b [Y ] preserves local

equivalences.

Proof. Since absolute I-fibrant I-spaces are naturally level equivalent to constant
I-spaces, we may assume that f is a fibration of fibrant and constant I-spaces.
Then f ∗ is left Quillen by Lemma 7.22 and right Quillen by general model
category theory. Hence, f ∗ preserves weak equivalences.

We now consider the following commutative diagram in SpΣR where the right-
hand horizontal maps are the identity on the base:

SI
b [Y ]

SIb [ f ] //

SIb [p] ��

SI
b [X ]

SIb [q] ��

(E, X)oo

��

SI
b [Y

′
]

SIb [g] // SI
b [X

′
] (E ′, X ′)oo

The next proposition uses the description of f ∗ from (3.27) and essentially
states that the local model structure satisfies a weak form of right properness
where the fibrations are only allowed to be in the image of SI

b . Its proof is based
on Bousfield’s observation that it is sufficient to check right properness of model
categories on fibrations between fibrant objects [10, Lemma 9.4].

PROPOSITION 8.11. If f and g are absolute I-fibrations, p and q are I-
equivalences, and (E, X) → (E ′, X ′) is a local equivalence, then the induced
map of pullbacks f ∗(E, X) → g∗(E ′, X ′) is a local equivalence. The same
statement holds when working over topological spaces.

Setting p = id and q = id in the proposition implies that the statements of
Lemmas 7.22 and 8.10 hold without the fibrancy conditions on the objects.

Proof. Since the topological statement follows from the simplicial one by
applying the singular complex, it suffices to verify the latter. By choosing a
replacement of f by an I-fibration between I-fibrant objects f̃ : Ỹ → X̃ ,
Lemma 3.19 provides the left-hand square in the following commutative diagram:

SI
b [Y ]

SIb [ f ] // //

SIb [ j] ∼��

SI
b [X ]

SIb [i] ∼��

(E, X)uoo

k ∼��

SI
b [Ỹ ]

SIb [ f̃ ] // // SI
b [X̃ ] (Ê, X̂)voooo
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The right-hand square is obtained by factoring (E, X) → SI
b [X̃ ] as a local

equivalence followed by a fibration. We get the following sequence of maps where
(−)∗ denotes the base change along the respective map in SpΣR:

SI
b [ f ]

∗(E, X) ∼= u∗(SI
b [Y ])

∼

−→ u∗(SI
b [i]

∗(SI
b [Ỹ ]))

∼=
−→ SI

b [ f̃ ]
∗(E, X)

∼

−→ (Ê, X̂).

Here the first map is a local equivalence since u∗ is right Quillen when viewed
as a functor SpΣR /SI

b [X ] → SpΣR /(E, X) and SI
b [Y ] → SI

b [i]
∗(SI

b [Ỹ ]) is a weak
equivalence between fibrant objects in SpΣR /SI

b [X ] because the I-model structure
on SI is right proper. The last map is a local equivalence by Lemma 8.10. Hence,
we have shown that the pullback of the top row is locally equivalent to the pullback
of the bottom row, and the latter is homotopy invariant since both maps are
fibrations with fibrant codomain. Since this construction can be arranged to be
natural with respect to (E, X)→ (E ′, X ′) and Y → Y ′, the claim follows.

LEMMA 8.12. Let f : (Z , Y )→ (Z ′, Y ′) be a map in SI
R such that both Z → Z ′

and Y → Y ′ are absolute level (respectively I-) equivalences in SI . Then SI
R[ f ]

is an absolute level (respectively local) equivalence in SpΣR.

Proof. Since − Z Sm
: SR → SR preserves weak equivalences as we work over

sSet, SI
R preserves level equivalences. Since SI

R is left Quillen with respect to the
local model structures, arguing with a cofibrant replacement shows the second
claims.

LEMMA 8.13. Let f : Y → X be an absolute I-fibration in SI , let Z → X be
a map of I-spaces, and let E be a flat symmetric spectrum. Then the canonical
map

SI
R[Y q f ∗(Z), Y ] Z E → f ∗(SI

R[X q Z , X ] Z E)

is a local equivalence.

Proof. Arguing with the absolute I-model structure on SI and the Quillen
equivalence colimI : SI � S : constI , we can construct a commutative diagram

Y
����

Y c

����

∼oo ∼ // constI(L)
����

X X c∼oo ∼ // constI(K )

Z

OO

Z c

OO

∼oo ∼ // constI(P)

OO

with the I-fibrations and I-equivalences as indicated. Arguing with this diagram,
Lemmas 8.8 and 8.12 and Proposition 8.11 reduce the claim to the case where all
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I-spaces are constant. In this situation, the map in question is an isomorphism by
Lemma 2.29 and the explicit description of SI

R in Construction 3.16.

Proof of Proposition 8.5. By Lemmas 8.7 and 8.8, both sides send cofibrant
replacements of R and E to local equivalences. Thus, we may assume E to be
a cofibrant module over a cofibrant commutative ring spectrum and therefore to
be flat as a symmetric spectrum. Next we choose a factorization of f : B H → BG
into an acyclic cofibration g : B H → Y followed by a fibration h : Y → BG in
the absolute I-model structure and consider the following diagram:

BZ(SI
R[B H q B(∗, H,G), B H ],SI

[G], E)
∼
��

∼ // BZ(S,SI
t [H ], E)

��

g∗((BZ(SI
R[Y q h∗B(∗,G,G), Y ],SI

[G], E))fib)

∼
��

f ∗((BZ(SI
R[BG q B(∗,G,G), BG],SI

[G], E))fib)
∼ // f ∗(γE)

The top horizontal map arises by identifying SI
R[B H q B(∗, H,G)] with the

bar construction BZ(S,SI
t [H ],SI

[G]), commuting bar constructions, and using
the map induced by the canonical stable equivalence B(SI

[G],SI
[G], E)→ E .

The resulting map is a local equivalence since BZ(S,SI
t [H ],−) preserves local

equivalences by Lemmas 8.7 and 8.8. The lower horizontal map arises in the same
way by setting H = G and taking fibrant replacements and base change along the
right Quillen functor f ∗ in addition. The map

BZ(SI
R[Y q h∗B(∗,G,G), Y ],SI

[G], E)
→ BZ(SI

R[BG q B(∗,G,G), BG],SI
[G], E)

is a local equivalence by Lemmas 8.7 and 8.13. Since h∗(γE) is fibrant, we can
extend the resulting local equivalence to h∗(γE) over a fibrant replacement of
the domain and apply g∗ to get the lower left-hand vertical local equivalence.
The upper left-hand vertical equivalence arises from the fact that B(∗, H,G)
→ h∗B(∗,G,G) is an I-equivalence since G and H are grouplike [6, Proof of
Proposition 3.15], the homotopy invariance of SI

R established in Lemma 8.12
and that of B(−,SI

[G], E) resulting from Lemmas 8.7 and 8.8 and from
Corollary 6.9. It follows that the right-hand vertical map is a local equivalence.

9. Point-set-level Thom spectrum functors

We now explain how our approach to parametrized spectra gives rise to a
multiplicative R-module Thom spectrum functor. As an application, we compare
it to various other approaches to generalized Thom spectra.
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9.1. Generalized Thom spectra via universal bundles. Let R be a
commutative ring spectrum in simplicial sets that is positive fibrant or, more
generally, level fibrant and semistable (cf. [6, Remark 2.6]). We now write
(SpΣ)R for the category of (right) R-modules in SpΣ and (SpΣR)R for the category
of (right) R-modules in SpΣR. Via the composite R → BZ(S,SI

t [G], R) → γR ,
we can view the universal line bundle γR as a commutative R-algebra, that is,
a commutative monoid with respect to the resulting product ZR in (SpΣR)R . We
obtain a Thom spectrum functor

T I
R : SI/BG → (SpΣR)R → ModR,

( f : X → BG) 7→ Θ( f ∗γR) = (X → ∗)!( f ∗γR).

This functor takes values in right R-modules since γR is a right R-module and
both base change and the collapse of base space functor Θ preserve right R-
module structures as follows from the monoidality in Lemma 4.6 and (4.7).
Precomposing T I

R with the I-spacification PBG provides a space level Thom
spectrum functor

TR : S/(BG)hI → ModR, (τ : K → (BG)hI) 7→ T I
R(τI) (9.2)

that sends weak equivalences to stable equivalences and preserves actions of
operads augmented over the Barratt–Eccles operad. Since γR is fibrant and Θ
coincides with its left derived functors, the homotopy groups πn(TR(τ )) are just
the parametrized homology groups associated with the universal line bundle γR

and the map τ .

PROPOSITION 9.3. The functor T I
R is lax symmetric monoidal and sends I-

equivalences over BG to stable equivalences of R-modules. It preserves colimits,
tensors with simplicial sets, and actions of operads in simplicial sets.

Proof. We get a natural map f ∗(γR) ZR g∗(γR) → ( f � g)∗(γR) since γR is
a commutative R-algebra. This exhibits SI/BG → (SpΣR)R, f 7→ f ∗(γR) as
a lax symmetric monoidal functor. Since Θ is strong symmetric monoidal by
Lemma 4.6, it follows that T I

R is lax symmetric monoidal. For the homotopy
invariance, we note that an I-equivalence g : Y → X and a map f : X → BG
give rise to a map ( f g)∗(γR) = g∗ f ∗(γR) → f ∗(γR) that is a local equivalence
by the fibrancy assertion on γR and Corollary 6.9. The functor Θ maps this local
equivalence to a stable equivalence T I

R( f g) → T I
R( f ). Compatibility with the

tensor and colimits follows since the individual functors have this property.

If R → R′ is a stable equivalence between positive fibrant objects, we get a
natural stable equivalence between the resulting Thom spectrum functors that is
induced by the above local equivalence γR → γ ′R .
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9.4. Generalized Thom spectra via classifying spaces for G-modules. We
begin by reviewing the Thom spectrum functor introduced in [6]. In the latter
paper, the focus is on the topological setting, but the analogous construction works
equally well in the simplicial setting; cf. [6, Remark 3.7]. Thus, in the following
discussion, the underlying category of spaces S can be either sSet or Top.

Let R be a positive fibrant and flat commutative symmetric ring spectrum, write
GLI

1 R for its I-space units, and let G → GLI
1 R be a cofibrant replacement in

CSI . We define EG by choosing a factorization of the form

B(∗,G,G) // ∼ //EG // //BG (9.5)

in the positive model structure of CSI . Now let U : SI/BG → ModG be the
functor to G-modules in SI sending a map f : X → BG to the pullback U ( f )

of the diagram X
f
−→ BG ← EG where both X and BG carry the trivial G-

module structure. The fibrant replacement in (9.5) ensures that U preserves I-
equivalences.

The I-space version of the Thom spectrum functor [6, Definition 3.6] is the
composite

T I
EG : SI/BG

U
−→ ModG

SI
−→ ModSI [G]

B(−,SI [G],R)
−−−−−−−→ ModR (9.6)

where we use the subscript EG to distinguish it from T I
R. Precomposing T I

EG with
the I-spacification (7.7) defines a space level Thom spectrum functor

TEG : S/BGhI → ModR

with favorable properties; see [6, Section 4.6]. It is proved in [6, Proposition 4.6]
that TEG is homotopy invariant by our assumption that R is flat.

REMARK 9.7. In [6], the commutative I-space monoids G and EG were defined
using the so-called flat I-model structure on CSI . For the definition of the Thom
spectrum functors T I

EG and T I
EG , we may equally work well with the projective

I-model structure used in the present paper since the latter model structure has
fewer cofibrations.

We now explain why the simplicial and topological versions are equivalent.
First, geometric realization and singular complex induce Quillen equivalences
between the simplicial and topological versions of commutative symmetric
ring spectra and commutative I-space monoids. Up to isomorphism, geometric
realization commutes with SI and thus Sing commutes with ΩI . Moreover,
geometric realization preserves positive fibrant objects. When R is a topological
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positive fibrant commutative symmetric ring spectrum, then Sing(GLI
1 R) ∼=

GLI
1 Sing(R). If R is a positive fibrant commutative symmetric ring spectrum in

simplicial sets and G → GLI
1 R is a cofibrant replacement of its units, then the

adjoint of SI
[|G|]

∼=
−→ |SI

[G]| → |R| exhibits |G| as a cofibrant replacement of
GLI

1 |R| since its image under Sing participates as the upper left-hand horizontal
arrow in the commutative diagram

Sing |G| // SingΩI(|R|)
∼= // ΩI Sing |R|

G
∼

OO

// ΩI(R).
∼

OO

Hence, |BG| models B(GLI
1 |R|)

cof. Since realization also preserves positive I-
fibrations, |EG| models its topological counterpart for |R|.

PROPOSITION 9.8. Let R be a positive fibrant commutative symmetric ring
spectrum in simplicial sets and let f : X → BG be a map of I-spaces, also
in simplicial sets. Defining the topological Thom spectrum functor T I

|EG| for
|R| using |G| and |EG| as explained above, there is a natural isomorphism
|T I

EG( f )| ∼= T I
|EG|(| f |). It induces a monoidal natural stable equivalence

|TEG(τ )| → T|EG|(|τ |) of space level Thom spectra preserving actions of operads
augmented over the Barratt–Eccles operad.

Proof. The statement for T I
EG follows since geometric realization preserves

pullback and is strong symmetric monoidal both for I-spaces and symmetric
spectra. The space level version results from the natural I-equivalence
|PBG(τ )| → P|BG|(|τ |) induced by the adjunction (| − |,Sing).

Conversely, let R be a topological positive fibrant commutative symmetric
ring spectrum and G → GLI

1 (Sing R)cof be a cofibrant replacement of the
units of a cofibrant replacement of Sing R in commutative ring spectra. Given
any map f : X → |BG|, a homotopy pullback construction provides a map
f ′ : X ′ → BG such that |X ′| and X are weakly equivalent over |BG| so that
|T I

EG( f ′)| ' T I
EG( f )' T I( f ) as modules over |(Sing R)cof

| ' R. This shows that
the topological Thom spectrum functor can be expressed in terms of the simplicial
one.

9.9. Comparing R-module Thom spectra. Our next aim is to compare the
simplicial version of T I

EG to the Thom spectrum functor T I
R of Section 9.1. For

this, we consider the following commutative diagram in SpΣBG :
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BZ(SIR[BGqB(∗,G,G), BG],SI [G], R)
∼ ��

∼ // BZ(SIR[BGqEG, BG],SI [G], R)
v∼ ��

SIR[BGqB(∗,G,G), BG] ZSI [G] R
∼= ��

// ∼ // SIR[BGqEG, BG] ZSI [G] R
∼ u
��

BZ(S, SIt [G], R)
∼ // γR .

(9.10)
The two upper horizontal maps are induced by B(∗,G,G)→ EG. The upper one
is a local equivalence by Lemmas 8.7 and 8.12. To analyze the second, we again
use the functor SI

ar = SI
R ◦ ιar : Ar(SI)→ SpΣR from (4.8). It induces a functor

(G → ∗) ↓ Ar(CSI)→ SI
[G] ↓ CSpΣR

from commutative (G → ∗)-algebras in Ar(SI) to commutative SI
[G]-

algebras in SpΣR. With respect to the injective model structure on Ar(CSI)

(cf. Lemma 5.14), it sends the acyclic cofibration B(∗,G,G) → EG over BG
to an acyclic cofibration of commutative SI

[G]-algebras in SpΣR. Extending
the latter map along SI

[G] → R shows that the middle horizontal map in
the diagram is an acyclic cofibration in CSpΣR. The upper vertical maps are
instances of the natural map from the two-sided bar construction to the relative
Z-product. The lower left-hand isomorphism results from commuting SI

R with
the bar construction (compare the argument in the proof of Proposition 8.5). The
left-hand vertical composite can be identified with the map

BZ(S,SI
t [G], BZ(SI

[G],SI
[G], R))→ BZ(S,SI

t [G], R)

and is thus a weak equivalence by Lemmas 8.7 and 8.8. So v is a local equivalence
by two out of three. The lower horizontal map is the fibrant replacement
defining γR . Finally, u arises as a lift in the positive local model structure on
CSpΣR.

Given a map of I-spaces f : X → BG, we get a natural map

BZ(SI
R[X q f ∗(EG), X ],SI

[G], R)

→ f ∗BZ(SI
R[BG q EG, BG],SI

[G], R)→ f ∗(γR) (9.11)

where the first map results from the universal property of f ∗ and the second map
is induced by the composite uv in (9.10).

LEMMA 9.12. The composite map in (9.11) is a local equivalence in SpΣX .

Proof. We first suppose that f : X→ BG is an absolute I-fibration. Then the first
map in (9.11) is a local equivalence by Lemmas 8.7 and 8.13 since both SI

[G]
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and R are flat. The second map in (9.11) is a local equivalence by Proposition 8.11
and the above observation that uv is a local equivalence. Since U ( f ) = f ∗(EG)
is a homotopy pullback, both sides send I-equivalences to local equivalences, and
the map is a local equivalence for all f .

Applying the collapse of base space functor Θ to (9.11) provides maps

T I
EG( f )→ T I

R( f ) and TEG(τ )→ TR(τ ) (9.13)

where the second is obtained from the first by precomposing with the I-
spacification.

PROPOSITION 9.14. The first map T I
EG → T I

R in (9.13) is a natural lax
symmetric monoidal stable equivalence of functors SI/BG → ModR , and the
second is a natural lax monoidal stable equivalence TEG → TR of functors
S/(BG)hI→ModR that respects actions of operads augmented over the Barratt–
Eccles operad.

Proof. Since the composite uv in (9.10) is a map of parametrized commutative
ring spectra, T I

EG(−)→ T I
R(−) is a lax symmetric monoidal transformation. By

the homotopy invariance of Θ and Lemma 9.12, it is a stable equivalence. The
second statement then follows from the properties of the I-spacification discussed
in Section 7.6.

9.15. Thom spectra over the sphere spectrum. We now consider the case of
the sphere spectrum S, work over topological spaces, and write F = GLI

1 (S) for
the units of S. (Since S is semistable, [6, Lemma 2.5] implies that we do not need
to replace it fibrantly before forming GLI

1 (S) and applying our Thom spectrum
functor constructions.) In this case, F(m) ⊆ ΩI(S)(m) = Ωm(Sm) is the space
of self-homotopy equivalences of Sm which is a monoid under composition. The
multiplications of the F(m) assemble to an associative and unital multiplication
map F × F → F in SI . The canonical F(m)-action on the Sm assemble to
an action F × S → S in SpΣR where × now denotes the action introduced
in (4.20). This action and the multiplication of F allow us to form the two-sided
bar construction

B×(∗, F,S) = |[q] 7→ ∗ × F×q
× S|

in SpΣR. Its evaluation at m is the classifying space for sectioned fibrations
with fiber equivalent to Sm which was considered in [33, Section IX] (see
also [45, Section 2]). Writing T I

B F : TopI/B F → SpΣ for the Thom spectrum
functor introduced in [45, Definition 3.3], we thus obtain a natural isomorphism
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T I
B F( f ) ∼= Θ( f ∗B×(∗, F,S)). It follows from [45, Corollaries 4.13 and 6.9] that

the space level counterpart TB F = T I
B F ◦ PB F is a monoidal homotopy functor on

TopI/B FhI that respects actions by operads augmented over the Barratt–Eccles
operad.

Our goal is to compare TB F to the Thom spectrum functor TR in (9.2) with
R = Sing S. We first observe that the restriction of the multiplication F × F →
F of F along the map F � F → F × F arising from Construction 4.21 (or
from [43, Section 2.24]) provides the commutative I-space monoid structure of
F . A cofibrant replacement G → F = GLI

1 (S) in commutative I-space monoids
and the maps from Construction 4.21 induce comparison maps SI

t [G]
Zq Z S →

F×q
× S for every q > 0. Using (4.23), one can check that these are compatible

with the simplicial structure maps and induce a well-defined map of commutative
parametrized ring spectra

BZ(S,SI
t [G],S)→ B×(∗, F,S). (9.16)

We write ρ : BG → B×(F) for the underlying map of commutative I-space
monoids.

PROPOSITION 9.17. The map BZ(S,SI
t [G],S) → B×(∗, F,S) is a local

equivalence.

Proof. As a first step, we show that the degeneracy maps in the underlying
simplicial objects are levelwise h-cofibrations on the base and the total spaces.
For BZ(S,SI

t [G],S), this follows from [42, Proposition 12.7 and Lemma 7.7]
and the explicit description of SI

t in (3.18). For B×(∗, F,S), this holds because
F is well based [31, Theorem 2.1].

Next we show that ρ is an I-equivalence. Since we checked that the underlying
simplicial object of base I-spaces is good, it is sufficient to show that for fixed
q , the map of I-spaces G�q

→ F×q is an I-equivalence. For q = 2, it can be
identified as the composite of the morphism ρG,G : G � G → G × G considered
in [43, Section 2.24] and the level equivalence G × G → F × F induced by ρ.
Since G is semistable and flat by construction, ρG,G is an I-equivalence by [43,
Proposition 2.27]. The assertion for q > 2 follows by an inductive argument based
on [43, Proposition 2.27].

To check that (9.16) is a local equivalence, we form a commutative diagram

BZ(S,SI
t [G],S)
��
∼
��

// B×(∗, F,S)
��
∼
��

(E, BG) // ρ∗(E ′, B×(F)) // (E ′, B×(F))
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where the vertical maps are fibrant replacements in the absolute local model
structures on SpΣBG and SpΣB×(F) and the lower left-hand horizontal map arises
by extending the resulting map BZ(S,SI

t [G],S)→ ρ∗(E ′, B×(F)) in SpΣBG over
the left-hand acyclic cofibration. By Corollary 6.9, it is sufficient to show that the
map of fibrant objects (E, BG)→ ρ∗(E ′, B×(F)) is a local equivalence in SpΣBG .

Let ι : ∗ → BG be the unit. As in the discussion preceding Proposition 9.8, we
may assume that G is the realization of a cofibrant replacement of GLI

1 (SingS)
and that SI

[G] → S factors through |SingS| → S. Togetherwith the above
statement about h-cofibrations, this implies that the map

BZ(S,SI
t [G], |Sing S|)→ BZ(S,SI

t [G],S)

is an absolute level equivalence. Using this, it follows from Proposition 8.5 that
the canonical map S → ι∗(E, BG) is a stable equivalence. To get an analogous
statement for ρ∗(E ′, B×(F)), we use the absolute I-model structure and the
standard levelwise replacement by a Hurewicz fibration to factor ρι as an I-
equivalence j : ∗ → X followed by a map q : X→ B×(F) that is both an absolute
I-fibration and a levelwise Hurewicz fibration. This factorization gives rise to a
commutative square

(ρι)∗(B×(∗, F,S))
��

// q∗(B×(∗, F,S))
��

(ρι)∗(E ′, B×(F)) // q∗(E ′, B×(F)).

The right-hand vertical map is a local equivalence by Proposition 8.11 and thus
a stable equivalence after applying LΘ . The top horizontal map is a stable
equivalence after applying LΘ by [45, Theorem 1.4] (where the T -goodness
assumption is taken care of by [45, Lemmas 2.2 and 2.3]). Since j is an I-
equivalence and (E ′, B×(F)) is fibrant, Corollary 6.9 implies that the bottom
horizontal map is a local equivalence. Hence, S ∼= (ρι)∗(B×(∗, F,S)) →
(ρι)∗(E ′, B×(F)) is a stable equivalence.

It follows that (E, BG) → ρ∗(E ′, B×(F)) induces a stable equivalence after
pullback along ι. Since the fibers areΩ-spectra, the induced map of fibers is even
a level equivalence. By inspecting the simplicial object defining BG, each BG(n)
is connected. The long exact sequences of homotopy groups of the Serre fibrations
En → BG(n) and ρ(n)∗E ′n → BG(n) show that (E,G)→ ρ∗(E ′, B×(F)) is a
level equivalence and hence a local equivalence.

We now explain how the proposition leads to a comparison of Thom spectrum
functors. Let R = SingS and let G → GLI

1 R be a cofibrant replacement of
its I-space units. (This is homotopically meaningful since R is level fibrant and
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semistable.) By the discussion before Proposition 9.8, we get a map SI
[|G|] → S

and note that |G| can be used as a model for the cofibrant replacement of the units
of the sphere spectrum in topological spaces.

Next we consider γ S, the bar resolution of BZ(S,SI
t [G], R). It is the object in

SpΣR defined by

(γ S)n = hocolimα : k→n BZ(S,SI
t [G], R)k Z Sn−α

where the homotopy colimit is taken over the category I ↓ n. The base I-space
of γ S is the bar resolution of BG used in the I-spacification. As in the case of
symmetric spectra (see [7, Section 7.3]), there is a canonical level equivalence
γ S → BZ(S,SI

t [G], R). Applying realization, composing this map with the
fibrant replacement defining γR , and using Proposition 9.17 give a zig-zag of local
equivalences

|γR| ← |γ S| → B×(∗, F,S). (9.18)

Let τ : K → BGhI be a map of simplicial sets. We note that its I-spacification
τI : Pτ (K )→ BG factors by definition as an absolute I-fibration τI : Pτ (K )→
BG and the canonical map t : BG → BG. This factorization, the maps (9.18),
and the map from Lemma 7.8 give rise to a zig-zag

|TR(τ )| = |T I
R(τI)| ← |Θ(τ

∗

I (γ S))| → T I
B F((ρhI ◦ |τ |)I) = TB F(ρhI ◦ |τ |).

(9.19)
Here we use the bar resolution in the middle term since τI being a fibration
ensures that τ ∗I (γ S) captures a well-defined homotopy type without γ S being
locally fibrant.

PROPOSITION 9.20. The maps in (9.19) are natural monoidal stable
equivalences that respect actions of operads augmented over the Barratt–Eccles
operad.

Proof. The claim about monoidality and operad actions is clear since all
constructions involved preserve these structures. To see that the first map
in (9.19) is a stable equivalence, we factor τI as an I-equivalence followed by an
absolute fibration and use Corollary 6.9, Proposition 8.11, and the fact that the Θ
in simplicial sets sends local equivalences to stable equivalences. For the second
map, we argue as in the proof of the previous proposition, factor (ρhI ◦ |τ |)I as
an I-equivalence followed by a map that is both an absolute I-fibration and a
levelwise Hurewicz fibration, and apply Proposition 9.17, the I-equivalence part
of Lemma 7.8, Proposition 8.11, and [45, Theorem 1.4].
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Together with the ∞-categorical comparison to be proved in Section 10.12,
these results now combine to give the statement of Theorem 1.8.

Proof of Theorem 1.8. This is a combination of Propositions 9.8, 9.14, and 9.20,
the∞-categorical comparison in Lemma 10.3, and Proposition 10.15.

10. Comparison to ∞-categorical parametrized spectra

If C is a model category, we write C∞ for the underlying ∞-category of C.
In particular, we write S∞ (respectively Sp

∞
) for the ∞-category of spaces

(respectively spectra). When C is a symmetric monoidal model category, then C∞
inherits the structure of a symmetric monoidal∞-category from C [35, Example
4.1.7.6]. More specifically, the localization functor C → C∞ is lax symmetric
monoidal and strong symmetric monoidal when restricted to cofibrant objects;
see [22, Proposition 3.2.2] and also [40, Appendix A].

10.1. Comparison of categories. The next lemma is closely related to [1,
Proposition B.1 and Theorem B.4].

LEMMA 10.2. Let X be an I-space. Then the∞-category (SpΣX )∞ resulting from
the local model structure on SpΣX is equivalent to Fun(XhI,Sp

∞
), the∞-category

of functors from the underlying∞-groupoid of XhI to the∞-category of spectra.

Proof. By [35, Remark 1.4.2.9], stabilization commutes with the passage to
presheaf categories. Hence, Fun(XhI,Sp

∞
) is equivalent to Sp(Fun(XhI,S∞)),

the stabilization of the category of space-valued functors on XhI . The∞-category
Fun(XhI,S∞) is equivalent to S∞/XhI ' (S/XhI)∞ by [34, Theorem 2.2.1.2].
The fact that stabilization commutes with the passage to underlying∞-categories
and [26, Corollary 10.4] imply that Sp((S/XhI)∞) is equivalent to (SpΣXhI

)∞. The
claim follows from the Quillen equivalence between SpΣX and SpΣXhI

established
in Corollary 5.24.

In the next step, we show that the equivalence in the last lemma is natural so that
we can identify the functors between SpΣX and SpΣY induced by f : X → Y with
their∞-categorical counterparts including coherences between compositions.

LEMMA 10.3. The functors (SI)∞ → Cat∞ given by Fun((−)hI,Sp
∞
) and

(SpΣ(−))∞ are equivalent.
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Proof. Our strategy is to show that they classify equivalent bicartesian fibrations.
For this, we first show that (up to replacement by categorical fibrations) the
functors

(SpΣR)∞
u
−→ Ar(SI)∞

p
−→ (SI)∞

induced by the right Quillen functors ΩI
ar = π

I
ar ◦Ω

I
R and πb (see Corollary 5.13

and Lemmas 5.12 and 5.14) exhibit u as the stable envelope of p in the sense
of [35, Definition 7.3.1.1]. For [35, Definition 7.3.1.1(1)], we note that both
p and pu are presentable fibrations because the fibers are the underlying ∞-
categories of combinatorial model categories (using the simplicial version of our
categories) and they are cartesian and cocartesian by [20, Proposition 3.1.2] and
(the dual of) [34, Corollary 5.2.2.5]. For the condition [35, Definition 7.3.1.1(2)],
we need the following observation: By [34, Proposition 2.4.4.3], a morphism
( f, g) : (E, X) → (E ′, X ′) in (SpΣR)∞ is pu-cartesian if (after (co)fibrant
replacement of source and target, respectively) the induced map ( f, id) : (E, X)
→ g∗(E ′, X ′) is a local equivalence and similarly for the case of p-cartesian
morphisms. But this condition is preserved by u since g∗πI

arΩ
I
X ′
∼= ΩI

Xπ
I
ar g∗

for any map g : X → X ′ and all functors involved are right Quillen.
For [35, Definition 7.3.1.1(3)], we note that [35, Example 7.3.1.4] and
Lemma 5.21 imply that u restricts to a stable envelope on fibers.

Now, ∫
S∞

Fun(−,Sp
∞
)

∫
Ω∞

−−→

∫
S∞

Fun(−, (S∞)∗)
pr
−→ S∞

is also well known to be a stable envelope. Thus, the uniqueness theorem [35,
Proposition 7.3.1.7(3)] reduces the claim to the corresponding space level
statement. The latter is obtained from the Quillen equivalence

colimI : S � SI
: constI

and the equivalences

Ar(S∞)
ev1 ))

' //
∫
S∞S∞/−

' //

πb
��

∫
S∞Fun(−,S∞)

ttS∞

of bicartesian fibrations where the right equivalence follows from the
unstraightening equivalence [34, Theorem 2.2.1.2], and the left is immediate
from the main theorem of [20] together with the compatibility between diagram
categories of model and∞-categories.
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Next we give an ∞-categorical interpretation of the category of symmetric
spectra in retractive spaces SpΣR. To do so, let us denote

TS∞ =
∫
S∞

Fun(−,Sp
∞
),

the ∞-categorical Grothendieck construction of Fun(−,Sp
∞
) : S∞ → Cat∞,

which is a model for the tangent bundle of the category S∞ as in [35, Section
7.3.1].

PROPOSITION 10.4. The ∞-category (SpΣR)∞ resulting from the local model
structure on SpΣR is canonically equivalent to TS∞.

Proof. Combining [20, Proposition 3.1.2], Theorem 6.7, and Lemma 10.2, we
see that the∞-category (SpΣR)∞ is equivalent to the∞-categorical Grothendieck
construction of (SpΣ(−))∞ : (SI)∞ → Cat∞. By Lemma 10.3, we can identify it
with the∞-categorical Grothendieck construction of

Fun(−,Sp
∞
) : (SI)∞→ Cat∞.

The claim follows because SI and S are Quillen equivalent [42, Theorem 3.3].

10.5. Comparison of symmetric monoidal categories. When C is a
symmetric monoidal∞-category, then the Day convolution product gives rise to
a symmetric monoidal structure on Fun(C,S∞); see [16]. Using [15, Theorem
5.1] and the equivalence Sp(Fun(C,S∞)) ' Fun(C,Sp

∞
), we thus get a uniquely

determined symmetric monoidal structure on Fun(C,Sp
∞
).

If M is a commutative I-space monoid, then MhI inherits an action of
the Barratt–Eccles operad [45, Proposition 6.5]. By [39, Proposition 4.1],
the underlying ∞-groupoid of MhI represents a symmetric monoidal ∞-
groupoid, and Fun(MhI,Sp

∞
) is a symmetric monoidal ∞-category by the

above discussion.

THEOREM 10.6. Let M be a commutative I-space monoid. Then the symmetric
monoidal∞-category (SpΣM)∞ resulting from the absolute or positive local model
structures on SpΣM and Fun(MhI,Sp

∞
) are equivalent as symmetric monoidal∞-

categories.

REMARK 10.7. There is a functorial rigidification (−)rig of E∞ spaces (in their
incarnation as spaces with an action of the Barratt–Eccles operad) to commutative
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I-space monoids so that M ' (M rig)hI as E∞ spaces [42, Corollary 3.7]. In
this situation, the previous theorem implies that SpΣM rig represents the symmetric
monoidal∞-category Fun(M,Sp

∞
).

The existence of a rigidification of Fun(M,Sp
∞
) is also implied by [39,

Theorem 1.1], but the above construction provides a smaller model.

Proof of Theorem 10.6. We show that the assignments M 7→ Fun(MhI,Sp
∞
)

and M 7→ (SpΣM)∞ are equivalent as functors (CSI)∞ → SymMonCat
∞

. By
Lemma 10.3, they are equivalent as functors to Cat∞. So it remains to compare
the symmetric monoidal structures. For this, we adapt the argument given in the
proof of [39, Proposition 2.4]. The only change that is necessary to apply it in the
case at hand is that we have to argue with the forgetful functor U : (CSI)∞→ S∞
rather than with the one SymMonCat

∞
→ Cat∞.

In order to compare our construction of the universal bundle γR with that
of [2], we also have to compare the monoidal structures on SpΣR and TS∞. We
are, however, not aware of a construction of the requisite symmetric monoidal
structures on tangent categories in the literature ([35, Example 7.3.1.15] only
gives the cartesian monoidal structure on TS∞). To describe it, consider therefore
the following general situation: Suppose we are given cocartesian fibrations of
∞-operads

C⊗ p
//

$$

D⊗
χ
��

NFin∗,

admitting finite operadic limits. In particular, by definition, C and D are then
symmetric monoidal∞-categories (see [35, Example 2.1.2.18]). The example of
relevance for us is D⊗ = S×

∞
and C⊗ = Ar(S∞)× with p the projection to the base

space. We are then looking for a left exact map of∞-operads u : E⊗ → C⊗, that
is, a lax symmetric monoidal functor, that exhibits E⊗ as a fiberwise stabilization
of p in the following sense. We require that E is a stable D-monoidal∞-category
in the sense of [35, Definition 7.3.4.1], and for all other stable D-monoidal ∞-
categories B, postcomposition with u induces an equivalence

Oplex
/D(B, E) −→ Oplex

/D(B, C)

where we have used Oplex to denote the category of operads with finite operadic
limits and operad maps preserving these (as in [38, Definition 2.3]). The case D =
pt (that is, D⊗ = NFin∗, χ = id) is extensively discussed in both [35, Sections
6.2.4–6.2.6] and [38, Section 4]. The construction in [35, Section 6.2.5] provides
a candidate u : Stχ (p) → C⊗ for such a fiberwise stabilization also in our case.
We will review this construction in the next proof.
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Already for χ = id, however, the construction in general does not provide
a map u such that pu is cocartesian but rather only locally so, for example,
if C is the category of pointed spaces under the cartesian product; see [35,
Example 6.2.4.17].

A useful criterion for pu to be cocartesian is established in [38, Proposition 4.9].
This result readily generalizes to give the following.

PROPOSITION 10.8. Let p : C⊗ → D⊗ be a cocartesian fibration of ∞-
operads between symmetric monoidal ∞-categories. Assume further that C
is differentiable and that for any multimorphism (d1, . . . , dn) → d ′ in D⊗, the
induced functor Cd1 × · · · × Cdn → Cd ′ commutes with colimits in each variable.

Then pu : Stχ (p) → D⊗ makes Stχ (p) a cocartesian fibration of∞-operads.
In particular, the composite χpu makes Stχ (p) into a symmetric monoidal ∞-
category and u : Stχ (p)→ C⊗ is a map of∞-operads, that is, it is lax symmetric
monoidal. Furthermore, the D-algebra structure on Stχ (p) satisfies the same
commutation with colimits as that of C; in particular, the symmetric monoidal
structure commutes with colimits in each variable. Finally, u exhibits Stχ (p) as a
fiberwise stabilization of p in the sense above.

Note that as cocartesian fibrations, both p and pu automatically preserve
cocartesian lift of morphisms in NFin∗ and are therefore strong symmetric
monoidal.

REMARK 10.9. Contrary to another claim in [35, Example 6.2.4.17], [38,
Proposition 4.9] or [35, Examples 6.2.1.5 or 6.2.3.28] implies that the composite
pu is a cocartesian fibration for C⊗ = (S∗)∧∞, the category of pointed spaces with
the smash product.

Proof of Proposition 10.8. Let us recall the definition of Stχ (p) from [35,
Construction 6.2.5.20]. Consider first the simplicial set q : PStχ (p)→ D⊗ given
by the universal property that for all simplicial sets K over D⊗, we have

HomD⊗(K , PStχ (p)) ∼= HomD⊗(K ×NFin∗ (Sfin
∗
)∧, C⊗).

Then DStχ (p) is given as the full simplicial subset of PStχ (p) spanned by those
vertices v that correspond to product functors∏

χq(v)\{∗}

Sfin
∗
' (Sfin

∗
)∧χq(v) −→ C⊗q(v) '

∏
i∈χq(v)\{∗}

Cqi (v),

and Stχ (p) is spanned by those vertices corresponding to product functors whose
factors are reduced and excisive. The structure map u : DStχ (p) ⊆ PStχ (p)→
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C⊗ is given by taking K = PStχ (p)→ D⊗ in the universal property above and
precomposing the map corresponding to the identity with the section NFin∗ →
(Sfin
∗
)∧ that witnesses the E∞-structure of the unit S0. By construction, we have

q = pu.
Now the restriction of q to DStχ (p) is a cocartesian fibration just as in [16,

Lemma 2.10] (which treats the case D = pt). It follows that in order to recognize
DStχ (p) as a symmetric monoidal category, we only have to verify the Segal
condition for χq , but this is immediate (compare [16, Proposition 2.11]). By
definition, q is then a cocartesian fibration of operads. Part (2) of [35, Proposition
2.2.1.9] (which should have O⊗ instead of NFin∗ as the target of p|D⊗) applied to
the localization functor provided by [35, Theorem 6.1.1.10] (precomposed with
reduction) therefore implies the same for the restriction of q to Stχ (p), as desired;
the assumptions of [35, Theorem 2.1.1.9] follow from the chain rule for the first
derivative [35, Theorem 6.2.1.22]. That u is lax symmetric monoidal follows just
as in [38, Corollary 3.8], and for the restriction to Stχ (p), it then follows from [35,
Proposition 2.2.1.9(3)]. Commutation with colimits for the operad structure on
DStχ (p) can be verified as in [16, Lemma 2.13], and for Stχ (p), it follows
from [35, Proposition 2.2.1.9(3)].

Finally, to see that u indeed exhibits Stχ (p) as a stabilization of p, we note that
Stχ (p) is stable by part (3) of [35, Theorem 6.2.5.25], and, in particular, u is left
exact. To finish the proof, we invoke part (3) of [35, Theorem 6.2.6.6] and need
to check that a left exact decomposition-stable functor F : E⊗ → Stχ (p) with
fiberwise stable source is a map of∞-operads if and only uF : E⊗ → C⊗ is. But
this can be shown almost verbatim as in the proof of [35, Theorem 6.2.6.2] on the
same page.

We apply the above to the cocartesian fibration of operads πc : Ar(S∞)× −→
S×
∞

projecting to the codomain. It produces a symmetric monoidal structure on
TS∞ that models the exterior smash product Z.

THEOREM 10.10. The categories (SpΣR)∞ and TS∞ are canonically equivalent
as stable (S∞)×-monoidal categories and thus, in particular, as symmetric
monoidal∞-categories.

Proof. To avoid confusion, we shall denote the monoidal structure on TS∞ by
the generic ⊗ with unit 1 in the present proof.

Let (SI)�
∞

denote the∞-operad underlying the symmetric monoidal structure
on SI given by the �-product. By Propositions 5.19 and 5.11, πb : (SpΣR)∞ →
(SI)�

∞
exhibits (SpΣR)

Z
∞

as a stable (SI)�
∞

-monoidal category. By Lemmas 4.9,
5.12, and 5.14, the functor (ΩI

ar)∞ : (SpΣR)
Z
∞
→ Ar(SI)�

∞
is left exact and a map
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of∞-operads, that is, lax symmetric monoidal. From the equivalence (SI)�
∞
'

S×
∞

and Proposition 10.8, we therefore obtain a left exact map of∞-operads

c : (SpΣR)
Z
∞
−→ TS⊗

∞
,

that is, a lax symmetric monoidal functor. By the universal property of
stabilizations, it agrees with that from Proposition 10.4 when restricted to
(SpΣR)∞. Once we show that c is in fact strong symmetric monoidal, then [35,
Remark 2.1.3.8] implies that it is an equivalence of symmetric monoidal ∞-
categories.

To see the latter, we need to verify that the canonical maps

1→ c(S) and c(X)⊗ c(Y )→ c(X Z Y )

are equivalences, where 1 denotes the unit of TS∞. To do so, we note that the
functor Ω∞ : TS∞ → Ar(S∞) admits a strong symmetric monoidal adjoint Σ∞

+
.

To construct it, recall the map of ∞-operads u : DStχ (t) → Ar(S∞)× from the
previous proof. We then invoke [35, Corollary 7.3.2.12] for u and [35, Proposition
2.2.1.9] for the restriction to the localization TS∞ = Stχ (ev1) of DStχ (ev1). Their
assumptions are verified just as in [38, Corollary 3.8 and Proposition 4.9]. This
argument immediately shows that the map between unit objects is an equivalence
as the sphere S ∈ SpΣR is also given by the left adjoint SI

R ◦ ι
I
ar : Ar(SI)→ SpΣR

evaluated on the unit ∗ → ∗ of Ar(SI). The second claim follows since the class
of pairs of spectra, for which the map in question is an equivalence, is closed
under colimits in either variable and contains pairs of suspension spectra by the
monoidality of Σ∞

+
.

REMARK 10.11. When applied to the example of the target fibration

Ar(AlgE∞(Sp
∞
))⊗ −→ AlgE∞(Sp

∞
)⊗

considered in detail in [35, Section 7.3], the symmetric monoidal structure
from Proposition 10.8 on T (AlgE∞(Sp

∞
)) is also readily identified: under the

equivalence of T (AlgE∞(Sp
∞
)) with the category of all modules over E∞-ring

spectra [35, Theorem 7.3.4.18], it corresponds to the smash product on both the
rings and the modules.

We have now verified all parts of the∞-categorical theorem from Section 1.

Proof of Theorem 1.6. This is a combination of Lemma 10.3, Proposition 10.4,
and Theorems 10.6 and 10.10.
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10.12. Comparison of universal bundles. In order to formulate the
comparison, we will denote objects and functors corresponding on the infinity
categorical side to objects of the same nature as those introduced in the previous
sections by the same name without the decoration I .

Let us then first recall the definition of B GL1 R in the ∞-categorical
setting. For an E∞-ring spectrum R, the invertible R-module spectra and
their equivalences span a sub-∞-groupoid Pic(R) ∈ S∞ in the ∞-category of
all R-module spectra. This groupoid inherits a symmetric monoidal structure
from the tensor product of R-modules, making it an E∞-space with unit R. The
component of the unit R is usually denoted by Pic0(R) and as a mere space is
clearly also defined for an E1-ring spectrum R.

LEMMA 10.13. Let R be an E1 (respectively E∞) ring spectrum and let (Ω∞R)×

be the subspace of Ω∞R corresponding to the units in the multiplicative E1

(respectively E∞) structure. Then there are canonical equivalences

Pic0(R) ' BAutR(R) ' B(Ω∞R)×

in S∞ (respectively AlgE∞(S∞)).

We shall refer to any of these equivalent spaces as B GL1 R.

Proof. By definition of mapping space, there is, for every pair of objects x, y of
an∞-category C, a cartesian diagram in Cat∞

HomC(x, y) //

��

C/y

��

∗
x // C.

If now C ∈ S∞ is an∞-groupoid and x = y, C/y is a contractible∞-groupoid
and we obtain an equivalence ΩxC ' AutC(x) and consequently Cx ' BAutC(x),
where Cx denotes the path component of x in C. Furthermore, if C is symmetric
monoidal and x its unit, then C/x inherits a symmetric monoidal structure from C,
and the diagram defines an E∞-structure on AutC(x) and then becomes cartesian
in AlgE∞(S∞). Applied to C = Pic0(R) and x = R, we obtain the first desired
equivalence.

For the second, we have to distinguish the two cases: If R is an E∞-ring
spectrum, it arises from the adjunction equivalence

Ω∞(R) ' HomS(S, R)
−∧R
−−→ HomR(R, R ∧ R)

µ
−→ EndR(R)

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.11
Downloaded from https://www.cambridge.org/core. University of Bergen, on 22 Mar 2021 at 09:12:49, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.11
https://www.cambridge.org/core
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since the functor − ∧ R is symmetric monoidal and the multiplication of R is an
E∞-map.

In the case of an E1-ring spectrum R, the middle term does not carry an evident
multiplication, so we have to argue differently. We can obtain a map of E1-ring
spectra R → endR(R) from [35, Corollary 4.7.1.41 and Remark 7.1.2.2]; here,
we apply the corollary to R considered as a left R-module spectrum in the ∞-
category of right R-module spectra, which is tensored over and consequently
enriched in the∞-category of spectra (see [35, Proposition 4.2.1.33 and Remark
4.8.2.20]). Applying the (symmetric) monoidal functorΩ∞ ' HomS(S,−) to the
above arrow produces a map Ω∞R → EndR(R) of E1-spaces, which equals the
above composite and is therefore an equivalence.

It remains to check that the E1-structure constructed on AutR(R) above via the
identification withΩPic0(R) agrees with the restriction of that just constructed on
EndR(R) to its units. But this is clear since lifts of the functorΩ : ∗/S>1

∞
→ S∞ to

E1-monoids correspond to comonoid structures on S1. Under the equivalence of
∗/S>1

∞
with E1-groups, these correspond to cogroup structures on the integers, of

which there are only two, corresponding to forwards and backwards concatenation
of loops (and the above constructions evidently give the same concatenation map
up to homotopy).

REMARK 10.14. For an En-ring spectrum with n > 2, the category of left R-
modules is En−1-monoidal, so Pic(R) is an En−1-space in this case, as is BΩ∞R.
The method we gave for the E∞-case identifies these as En−2-spaces and one can
check that the argument we gave for E1-ring spectra identifies the remaining E1-
structures in a compatible fashion. In total, one thus obtains an identification as
En−2 ⊗ E1 ' En−1-spaces.

The space B GL1 R comes equipped with the canonical functor

FR : B GL1 R ' Pic0(R) −→ R-Mod −→ Sp
∞
,

which witnesses the action of GL1 R on R.

PROPOSITION 10.15. For any symmetric ring spectrum R, the equivalence from
Proposition 10.4 carries γR ∈ SpΣR to the image under the inclusion

Fun(B GL1 R,Sp
∞
) −→

∫
S∞

Fun(−,Sp
∞
) = TS∞

of the functor FR . If R is commutative, then FR is a lax symmetric monoidal
functor, and the same is true as E∞-monoid objects of TS∞.
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As preparation, we record the following.

LEMMA 10.16. Let R be a positive fibrant symmetric ring spectrum and G a
cofibrant replacement of GLI

1 R. Then the image of BG under the equivalence
SI
∞
' S∞ is B GL1 R and the evaluation map S[G] → R corresponds to the

canonical map S[GL1 R] → R. When R is commutative, the same identifications
hold in the∞-categories (CSI)∞ ' AlgE∞(S∞) and (CSpΣ)∞ ' AlgE∞(Sp

∞
).

Proof. All of the assertions follow immediately from the previous lemma and the
commutative square

(SpΣ)∧
∞

' //

ΩI
��

Sp∧
∞

Ω∞
��

(SI)�
∞

' // S×
∞

of symmetric monoidal ∞-categories and symmetric monoidal functors (lax
in the case of the vertical functors): By the monoidality of the horizontal
functors, the objects ΩI R and Ω∞R correspond as E1/E∞ objects and the
units are given by the same restriction to path components. The respective
bar constructions then agree as simplicial objects by the cofibrancy assumption
on G and Hinich’s result on the strong monoidality on cofibrant objects of
the localization functor from a monoidal model category to its underlying
∞-category; see [22, Proposition 3.2.2] and also [40, Appendix A]. Finally,
geometric realization in a simplicial model category models the colimit in its
underlying ∞-category by [34, Theorem 4.2.4.1], which gives the claim about
B GL1 R.

The maps from the spherical group rings to R are the counits of the vertical
adjunction with the suspension functor, and so also correspond under the above
equivalences.

Proof of Proposition 10.15. The idea is to specify both γR and FR in terms of
data pinned down by Theorem 10.10 and the previous lemma. Namely, we
will show that both objects are given by the relative Z-product of the diagram
S← St [GL1 R] → R (with the appropriate interpretations in (SpΣR)∞ and TS∞,
respectively). Note that this really is determined by the lemma since the map
St [GL1 R] → R factors by definition (as an E1/E∞-map as appropriate) through
the tautological map St [GL1 R] → S[GL1 R]. For γR ∈ (SpΣR)∞, the identification
with the relative Z-product holds by [35, Theorem 4.4.2.8(ii)] since relative tensor
products are computed by the bar construction.

In case R is commutative, we first note that [35, Example 3.2.4.4, Proposition
3.2.4.7 and Theorem 4.5.2.1] together say that for an E∞-ring spectrum A, the
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coproduct of E∞-algebras in A-modules is given by the relative tensor product.
Combining this with the facts that E∞-algebras in A-modules are the same thing
as E∞-algebras under A [35, Corollary 3.4.1.7] and that coproducts in slice
categories are computed as pushouts in the original category, it follows that the
above relative tensor product inherits an E∞-structure which makes it the pushout
of E∞-rings. In particular, this structure is again determined by data preserved
under the equivalence of Theorem 10.10. By applying [35, Theorem 4.4.2.8] to
both the category of parametrized spectra and E∞ algebras therein, we find that
the E∞ structure on the relative tensor product agrees with that coming from the
termwise one on the bar construction (the forgetful functor from E∞ algebras
commutes with geometric realization by [35, Proposition 3.2.3.1]). We therefore
find that the E∞ structure on γR ∈ (SpΣR)∞ agrees with that on the relative tensor
product.

For the case of FR ∈ T S∞, we argue by identifying both FR and the relative
Z-product as colimits of the functor

G R : B GL1 R
FR
−→ Sp

∞
−→ TS∞ (10.17)

whose second part is the inclusion over the one point space. If R is commutative,
it will be an identification as E∞-algebras. This has meaning since FR and thus
G R are lax symmetric monoidal in this case, whence the colimit of G R inherits an
E∞-structure, for example, by [38, Proposition 3.3 and Corollary 3.8].

To see that colim G R ' FR , we employ one direction of [35, Proposition
7.3.1.12(1)]. Informally speaking, it says that

colim
b∈B GL1 R

FR(b) ' colim
b∈BGl1 R

(ιb)!FR(b),

where ιb : ∗ → B GL1 R denotes the inclusion of b. Formally, the right-hand
side arises as follows: Choose a colimit extension of G R to the cone category
B GL1 RB and consider the lifting problem consisting of the solid parts of

B GL1 RB × {0}
G R //

��

TS∞
πb
��

B GL1 RB ×∆1 //

22

B GL1 RB
πbG R // S∞,

using the map B GL1 RB × ∆1
→ B GL1 RB that is the evident projection on

B GL1 RB × {0} and collapses B GL1 RB × {1} to the cone point. By (the duals
of) [34, Remark 2.4.1.9 and Propositions 3.1.2.1], there exists an essentially
unique diagonal filler mapping every edge {b} × ∆1 to a cocartesian edge since
πb is cocartesian. The restriction HR of this filler to B GL1 R × {1} canonically
factors through the inclusion Fun(B GL1 R,Sp

∞
) → TS∞ since πb ◦ HR is
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the constant functor with value B GL1 R by the reverse implication of [35,
Proposition 7.3.1.12(1)]. Regarded as a functor HR : B GL1 R → Fun(B GL1 R,
Sp
∞
), the HR then defines the right-hand side in the original assertion (10.17) and

the agreement of the two colimits is an instance of [34, Proposition 4.3.1.10]. Now
HR is adjoint to ∆!FR : B GL1 R × B GL1 R → Sp

∞
: The value of the adjoint of

HR on a pair of objects (b, b′) ∈ B GL1 R×B GL1 R is by construction the colimit
of the functor

ιb/b′ −→ {b}
FR
−→ Sp

∞
,

where ιb : ∗ → B GL1 R denotes the inclusion of b again, whereas the left Kan
extension along∆ : B GL1 R→ B GL1 R× B GL1 R by definition evaluates to the
colimit of

∆/(b, b′) −→ B GL1 R
FR
−→ Sp

∞
.

But taking products with idb induces an equivalence ιb/b′ → ∆/(b, b′) making
the above triangle commute, from which the claim follows by the uniqueness of
Kan extensions. We thus find

HomB GL1 R(colim HR,−) ' HomB GL1 R×B GL1 R(∆!FR, pr∗2−)
' HomB GL1 R(FR,−)

as functors on Fun(B GL1 R,Sp
∞
), the first by definition and the second by the

adjunction (∆!,∆∗). It follows that colimG R ' colimHR ' FR as desired.
For R commutative, the functor G R extends to a map G⊗R : (B GL1 R)∧ →

(TS)Z witnessing the lax monoidality of G R . Repeating the same argument then
shows that, in this case, colim G R ' FR as lax symmetric monoidal functors.

To see that the relative Z-product is also a colimit of G R , we follow the proof
of [2, Proposition 3.26]: They consider the inclusion of the category B GL1 R
into the category Fun(B GL1 R,S∞) of all GL1 R-spaces as the automorphisms of
GL1 R. Then the diagram

BAutFun(B GL1 R,S∞)(GL1 R) //

��

Fun(B GL1 R,S∞)
��

BAutR−Mod(R)
G R // TS∞

with the vertical maps given by St [−] ZSt [GL1 R] R is commutative. Since the
left vertical map is an equivalence of ∞-groupoids, the colimit over G R may
equally well be computed using the upper composite. Since the right vertical map
preserves colimits, this amounts to computing the relative Z-product of R with
the suspension spectrum of the colimit of the inclusion

BAutFun(B GL1 R,S∞)(GL1 R)→ Fun(B GL1 R,S∞).
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This is the terminal object by the argument preceding [2, Proposition 3.26], and
we obtain the desired identification.

In case R is commutative, all functors in sight are lax symmetric monoidal
(for the Day convolution on the upper right corner), whence the identification of
colimits preserves E∞-structures.

We can now also compare our definition of twisted (co)homology from
Section 7 with the∞-categorical one given in [1, 2].

PROPOSITION 10.18. Let R be a positive fibrant symmetric ring spectrum, let
G → GLI

1 (R) be a cofibrant replacement, and let (γR, BG) be the universal line
bundle. Given a map τ : K → BGhI , there are canonical isomorphisms relating
our (γR, BG)n(K , τ ) and (γR, BG)n(K , τ ) with [1, Definition 1.2] applied to

K
τ
−→ {n} × B GL1 R→ Pic(R).

In the formulation, we have again used Lemma 10.16 to identify BGhI with
the∞-categorical B GL1 R.

Proof. By the suspension isomorphism, it suffices to consider the case n = 0. Let
us then recall the relevant definitions (in our notation) for σ : L → B GL1 R:

R0(L , σ ) = π0 F R(Θσ̌ ∗γR, R) and R0(L , σ ) = π0 F R(R,Θσ ∗γR),

where F R denotes the spectrum of R-linear maps and σ̌ denotes the composite

L
σ
−→ B GL1 R

(−)−1

−−→ B GL1 R.

The functor Θ being left adjoint to pullback along the constant map makes it the
∞-categorical colimit. In the∞-category of spectra, we then have

F R(Θσ̌ ∗γR, R) ' F R
L (σ̌

∗γR, RL) ' F R
L (RL, σ

∗γR) ' F R(R, Γ σ ∗γR),

where (−)L denotes the constant diagram functor Sp
∞
→ Fun(L ,Sp

∞
), and the

second equivalence is given by fiberwise smashing (over R and L) with σ ∗γR

and the remainder by the definition of Θ and Γ as adjoints to (−)L . Identifying
F R(R,−) with the identity functor on R-module spectra, we therefore obtain
from Lemma 10.3 and Proposition 10.15 that both the definitions of homology
and cohomology agree with ours.

Finally, we record the agreement of our products (7.13) with their ∞-
categorical counterparts.
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PROPOSITION 10.19. Let R be a positive fibrant commutative symmetric ring
spectrum. Then the products (7.13) agree with those from [1, Theorem 4.21] under
the isomorphisms from Proposition 10.18.

Proof. This follows immediately from the conjunction of Theorem 10.6,
Proposition 10.16, and Proposition 10.15 by unwinding the definitions.
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