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Abstract
Ensemble methods are remarkably powerful for quantifying geological uncertainty. However, the use of the ensemble of
reservoir models for robust optimization (RO) can be computationally demanding. The straightforward computation of
the expected net present value (NPV) requires many expensive simulations. To reduce the computational burden without
sacrificing accuracy, we present a fast and effective approach that requires only simulation of the mean reservoir model with
a bias correction factor. Information from distinct controls and model realizations can be used to estimate bias for different
controls. The effectiveness of various bias-correction methods and a linear or quadratic approximation is illustrated by two
applications: flow optimization in a one-dimensional model and the drilling-order problem in a synthetic field model. The
results show that the approximation of the expected NPV from the mean model is significantly improved by estimating the
bias correction factor, and that RO with mean model bias correction is superior to both RO performed using a Taylor series
representation of uncertainty and deterministic optimization from a single realization. Use of the bias-corrected mean model
to account for model uncertainty allows the application of fairly general optimization methods. In this paper, we apply a
nonparametric online learning methodology (learned heuristic search) for efficiently computing an optimal or near-optimal
robust drilling sequence on the REEK Field example. This methodology can be used either to optimize a complete drilling
sequence or to optimize only the first few wells at a reduced cost by limiting the search depths.

Keywords Robust optimization · Bias correction · Geological uncertainty · Ensemble-based methods · Drilling sequence
optimization · Sequential-decision making

1 Introduction

In the development of a hydrocarbon field, optimization
is an important process that can substantially improve the
profitability through reduction in production and develop-
ment costs or by increasing or accelerating the production
of hydrocarbons. The increase in profitability of a field for a
given change in controls is predicted using a reservoir sim-
ulation model, in which the geological uncertainties such

� Lingya Wang
liwa@norceresearch.no

Dean S. Oliver
deol@norceresearch.no

1 NORCE Norwegian Research Centre, P.O. Box 22, 5838
Bergen, Norway

2 Department of Mathematics, University of Bergen, P.O. Box
7800, 5020 Bergen, Norway

as porosity, permeability, and fault transmissibility have
critical effects on production forecasts. Ensemble meth-
ods are remarkably powerful for quantifying the geological
uncertainty. Van Essen et al. [39] demonstrated that robust
optimization (RO) performed using the expectation of NPV
by averaging over an ensemble of reservoir models out-
performs the nominal optimization (NO) from a single
realization. However, the straightforward computation of
the expected value requires many expensive simulations for
each control variable setting.

Many approaches have been proposed to reduce the
cost of simulation-based RO. These methods can be
mainly classified into two categories: accelerating the
reservoir model simulations and reducing the number
of simulations required to obtain the maximum. A
simplified model such as one obtained from reduced-
order modeling and upscaling model parameters [4, 5,
13, 20, 38] is a computationally inexpensive substitute
for full reservoir simulation. However, such a proxy
model is generally less accurate due to the challenges
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posed by the high nonlinearity in the reservoir model;
consequently, RO performed in a simplified model is
likely to yield a suboptimal solution [11]. Techniques for
reducing the number of simulations needed for optimization
of the expected value of an objective function can be
further classified into two main categories: improving the
optimization algorithms for certain problems and reducing
the cost of evaluating the expected value.

Ensemble-based optimization [6, 14] is an efficient
gradient-based approach for fairly general RO problems
with continuous variables. The cost of evaluating the
gradient of the expected value of the objective function
is reduced by using the same ensemble to represent the
reservoir model uncertainty and to compute the gradient
of the expectation of the objective function with respect
to control variable settings. One downside to a gradient-
based approach is that it is easily possible to get stuck in a
local minimum (or maximum). For optimization problems
with discrete control variables, Wang and Oliver [40]
proposed a nonparametric online learning methodology
with heuristic controls to efficiently solve sequential
decision-making problems. This approach can reduce the
number of iterations required during the optimization
process. Nevertheless, the amount of computation required
for RO performed using sample average approximation
(SAA) over a large ensemble could still be expensive since
the cost increases linearly with the number of realizations
required to represent the uncertainty in model properties.

There are several possible ways to compute the expected
value at a lower cost than SAA. One is to reduce the
representation of uncertainty through model selection,
in which a subset of the ensemble members are used
for optimization [22, 32, 37]. A small subset of model
realizations may not span the uncertainties accurately,
leading to a sub-optimal solution. To address this issue,
Barros et al. [2] proposed an automated scenario reduction
approach for selecting a subset that contains an optimal
number of realizations that are able to capture the range
of the uncertainties of the full ensemble. A much faster
approach is to evaluate the objective function in the mean
reservoir model. Chen et al. [7] obtained relatively good
results by using the ensemble mean model updated from
the ensemble Kalman filter (EnKF) data assimilation for
production optimization. Their optimized design increased
the expected NPV compared to the reference case, but was
not as good as the optimized results obtained using SAA.
One major drawback to direct use of the mean model is the
large bias in predicted reservoir behavior that may result
from the use of a model with reduced heterogeneity, in
which case the mean model may offer a poor estimate of the
expected NPV. To improve this approximation, one possible
approach is to modify the representation of uncertainty
using a Taylor series expansion of the objective function

[1, 3, 8–10]. The first term of Taylor expansion can be
inexpensively obtained using the mean of reservoir model
realizations. To accurately estimate the expected value,
the Taylor series expansion generally includes higher-order
terms (e.g., a quadratic or cubic term). The computation
of higher-order derivatives is impractical for most real
reservoir applications, however.

Instead of using higher-order terms to improve the
estimation accuracy, we develop a fast and efficient
approach to correcting the bias in the NPV obtained from
the mean reservoir model by estimating a multiplicative
bias correction factor based on the information from
distinct controls and individual model realizations. To
accurately estimate the expected NPV, we apply distance-
based localization to estimate the bias for specific controls,
considering the similarity between samples and control
variables in terms of the bias correction factor. To avoid poor
estimates caused by sampling error due to small sample
sizes, a regularization term based on the average value and
the variance of the bias correction factor is used to reduce
the sensitivity of the estimates to the taper length, thereby
allowing more accurate estimates to be generated for a
wider range of taper lengths. The initial sampling of control
and model realizations is used to create an ensemble of
partial corrections factors. During the RO phase, when it
is necessary to estimate the expected value of NPV for a
control, we only require simulation of the control applied
to the mean model. The bias correction factor is estimated
from partial bias correction factors on similar controls.
Hence, after creation of the initial ensemble, RO performed
using bias-correction methods requires only one additional
simulation of the mean reservoir model at each iteration,
which is much less than the effort required in SAA. This
bias-correction methodology can be applied to fairly general
problems of optimizing the expected value of an objective
function. But an appropriate distance metric to measure the
similarity of controls in terms of the bias correction factor
is required, which is specific to the problem at hand.

The performance of various bias-correction methods
and a linear or quadratic approximation is investigated
in two applications. The objective in the first example
is to locate an injection well such that flow rate for a
fixed pressure in a one-dimensional model is minimized;
this problem is small enough that we can evaluate both
linear and quadratic Taylor approximations of the objective
function. The second example is to maximize the expected
NPV in a synthetic field model by optimizing the drilling
sequence of wells at fixed locations. Here we use well-
position based distance to measure the similarity of drilling
sequences for the bias correction factor. We formulate the
sequential drilling optimization problem as one of finding
a path with the maximum reward in a decision tree, and
apply learned heuristic search [40] with mean model bias
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correction (MMBC) to compute the RO drilling sequence
under geological uncertainty and to optimize only the first
few wells at a reduced cost by limiting the search depths.

This paper is organized as follows. Section 2 describes
the bias-correction methods for estimating the expected
NPV and the learned heuristic search method for optimizing
either a complete drilling sequence or only the first few
wells. Sections 3 and 4 describe two numerical case
studies (i.e., flow optimization in a one-dimensional model
and drilling-order problem in a synthetic model). The
conclusions are presented in Section 5.

2Methodology

2.1 Estimation of expected value

Correction factor In this work, we use maximization of the
NPV as the objective for an optimal reservoir management
problem. Because reservoir characterization is always
incomplete, the optimization problem is based on a reservoir
model with uncertainty in parameter values. An appropriate
approach to account for the uncertainty is to use the
expected NPV over an ensemble of reservoir models that
have been sampled from the probability distribution for
model parameters. The expected value of the objective can
be written as:

E[f (x, m)] ≈ f̄ (x) = 1

Ne

Ne∑

j=1

f (x, mj ), (1)

where x is a vector of control inputs; m ∈ Rm is an
m-dimensional vector of uncertain model parameters; j is
the index of individual realizations; and Ne indicates the
number of reservoir models.

This ensemble-based average value can provide a good
approximation of the expected NPV if the ensemble
of model realizations is sufficiently large [23, 25].
RO performed using such straightforward estimation of
the expected NPV, however, requires many expensive
simulations when the ensemble size Ne or the number
of iterations needed for the optimization process is large.
Instead of computing the expectation of the objective
function by using SAA, one could consider optimizing the
expectation for a linear or quadratic approximation of the
objective function [1, 3, 9, 10]. To second order, the Taylor
expansion of the objective function is:

f quad(x, m) = f (x, m̄) + fm(x, m̄)(m − m̄)

+1

2
(m − m̄)Tfmm(x, m̄)(m − m̄), (2)

where we have neglected higher-order terms in the
expansion. fm and fmm are first and second derivatives of f

with respect to uncertain model parameter m, respectively.
If m is distributed as multivariate Gaussian with mean m̄

and covariance C, then the expected value of the quadratic
approximation of the objective can be shown [31] to be:

E[f quad(x, m)] = f (x, m̄) + 1

2
tr(C1/2fmm(x, m̄)C1/2).

(3)

A possible advantage of this approach to approximating the
expected value of the objective function is that optimization
of the expectation does not require evaluation of controls
applied to a large number of Monte Carlo samples [1].
Computing f (x, m̄) in Eq. 3 will be easy as it only requires
the mean of the realizations. Computing fmm(x, m̄) is more
difficult as it requires the second derivative of the objective
function with respect to model parameters. Although it
might be possible in some cases to approximate the second
derivative, computing second derivatives will be impractical
for most reservoir applications. The linear approximation
seems more likely to be feasible in practice:

f lin(x, m) = f (x, m̄) + 〈fm(x, m̄), m − m̄〉. (4)

Assuming that m is distributed as Gaussian, the expectation
over m of the linear approximation to the objective is simply
a function of m̄ and x:

E[f lin(x, m)] = f (x, m̄). (5)

The key point of this is that the mean of the ensemble
can be used for the optimization, instead of performing the
optimization on the ensemble of realizations.

Such an approach has a major advantage over SAA in that
it significantly reduces the number of simulations required
for evaluating the expected value. However, since the NPV
is generally not a linear function of the uncertain model
parameters m, NPV from the mean model is generally not
the same as the expected value over uncertainty space,
f (x, E[m]) �= E[f (x, m)]. If we want to use the mean
model for optimization problems without sacrificing the
accuracy of the estimated expected NPV, we need a method
for improving the approximation of expected NPV from the
mean model.

In this paper, we compute a multiplicative correction
factor between the ensemble average of values f̄ (xi) and
the value obtained from the mean model f (xi, m̄) at a fixed
control xi :

f̄ (xi) = α(xi)f (xi, m̄), (6)

where α(xi) is the correction factor for a fixed control
xi . Instead of directly computing the ensemble average
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of values of the objective function, we develop an
approximation of expected value f̄ (x) by estimating the
correction factor α(xi) of control xi . If it were feasible to
compute the value of the NPV at control xi for all samples
of model parameters, then α(xi) could be computed in the
following way:

α(xi) = 1

Ne

Ne∑

j=1

f (xi, mj )

f (xi, m̄)
, (7)

where f (xi, mj ) is the economic value at control xi of an
individual realization mj .

For each individual model realization mj and control xi ,
we define a partial correction factor β(xi, mj , m̄):

βij = β(xi, mj , m̄) = f (xi, mj )

f (xi, m̄)
. (8)

The correction factor α(xi) at control xi of all ensemble
realizations (7) can be written in terms of the partial
correction factors:

α(xi) = 1

Ne

Ne∑

j=1

βij . (9)

We also define the mean value of the correction factor
α(xi):

ᾱ ≈ 1

Nx

Nx∑

i=1

α(xi) = 1

NxNe

Nx∑

i=1

Ne∑

j=1

f (xi, mj )

f (xi, m̄)

= 1

NxNe

Nx∑

i=1

Ne∑

j=1

βij , (10)

where Nx is the number of relevant controls. Straight-
forward application of Eq. 10 requires Nx × (Ne + 1)

evaluations of f (x, m) to compute the average correction
factor ᾱ from Nx different controls on an ensemble of Ne

model realizations.
A Monte Carlo estimate of ᾱ can be obtained at a much

lower cost by sampling control xj uniformly from the space
of all possible controls, and sampling reservoir realizations
mk from the space of conditional realizations. Then ᾱ can
be estimated using the following formula:

ᾱ ≈ 1

Nx

Nx∑

j=1

f (xj , mj )

f (xj , m̄)
= 1

Nx

Nx∑

j=1

β(xj , mj , m̄), (11)

where β(xj , mj , m̄) is the observed value at control xj ,
which requires two simulations, i.e., apply control xj to a
random individual realization mj and apply control xj to
the mean reservoir model m̄. Therefore, it would require

2 × Nx simulations to obtain a set of observations β from
Nx distinct controls.

For Ne reservoir model realizations, we can sample
Ne distinct controls to obtain observations of β so that
each realization will provide one observed value of β.
In that case, the number of observed values of β is the
same as the ensemble size (i.e., Nx = Ne). In some
cases, more observations might be needed to obtain a good
approximate of ᾱ (e.g., obtain two observations of β from
each realization (i.e., Nx = 2Ne) or use a larger ensemble
size). If the value of β is similar for most realizations, we
can use information from a subset of the ensemble members
and a smaller number of distinct controls (i.e., Nx < Ne ) to
estimate the bias.

Although an estimate of ᾱ can be efficiently obtained
from the observed values of β, the accuracy of an estimate
of the expected NPV obtained using ᾱ for correction is
limited by the variability in α. Use of the bias correction
factor obtained by averaging samples of β (11) will result
in the same correction factor being used for all controls,
even though the correct values of α for some of the controls
may be far from ᾱ. In such a case, the accuracy level of
the estimates from different controls is limited by the actual
ᾱ value. Nevertheless, if the variability in α(xi) is small as
control xi is varied, then it is possible that ᾱ can provide a
useful approximation to α(xi) for estimation of the value of
f̄ (xi) from the value of f (xi, m̄).

Distance-based localization In general, however, we expect
that an estimate of the correction factor will be better if
it is primarily based on information from similar control
variables. Thus, we expect that a weighted estimate will
be better than an unweighted estimate. In our work, we
use weighted linear estimation. Suppose that Ne distinct
controls are applied to Ne individual realizations and the
mean model for generating a set of observations β. The
weighted linear estimate α̂(xi) at control xi is defined as:

α̂(xi) =
∑Ne

j=1 ω(xi, xj )β(xj , mj , m̄)
∑Ne

j=1 ω(xi, xj )
, (12)

where β(xj , mj , m̄) is the observed correction factor at a
random control xj applied to an individual realization mj

and the mean model m̄, and ω(xi, xj ) is the weight for
β(xj , mj , m̄). The weights, ω(xi, xj ), should depend on a
measure of similarity, or distance measure, between controls
xi and xj .

With an appropriate measure of distance between control
sequences, weights are assigned such that β(xj , mj , m̄) at
shorter distances will have higher weights while partial
correction factors for controls that are more dissimilar
will have smaller weights. Lacking information about the
correlation of β with distance between control sequences,
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we use the Gaspari-Cohn taper function [16] to compute
distance-dependent weights:

ρ (δ, L) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(
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(
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(
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L

)3 − 5
3

(
δ
L

)2 + 1

for 0 ≤ δ ≤ L

1
12

(
δ
L

)5 − 1
2

(
δ
L

)4 + 5
8

(
δ
L

)3 + 5
3

(
δ
L

)2 − 5
(

δ
L

)

+4 − 2
3

(
δ
L

)−1
for L < δ ≤ 2L

0 for δ > 2L

(13)

where ρ (δ, L) is the distance-based weight and varies from
0 and 1; δ is the distance between controls; L is the taper
length determining the distance at which the weighting
drops to approximately 0.2, and 2L is the critical distance,
beyond which the weighting is zero.

For the drilling-order problem, the control variables
x have no physical locations but are permutations of
sequences of possible actions, in which case an order-
based encoding is appropriate. We have chosen to use the
permutation encoding [34] of the drilling sequence. In this
encoding, each integer value in the vector encodes the
relative ordering of the drilling of a specific well. Consider,
for example, two possible control sequences xi and xj in
which four wells are drilled, i.e., Sxi

= [W1, W2, W3, W4]
and Sxj

= [W3, W1, W4, W2]. The permutation encodings
for these two sequences are Pxi

= [1, 2, 3, 4]T and Pxj
=

[2, 4, 1, 3]T , respectively.
Distance between two control sequences is then mea-

sured by the distance between the vectors Pxi
and Pxj

.
Appropriate distance measures for ordering problems
include the “edit” distance [30], which is the minimum
number of operations required to transform one sequence
to another sequence, and the “swap” or Jaro-Winkler dis-
tance [21], which counts the minimum number of swaps of
two elements required to transform one sequence to another.
Because computation of swap and edit distances are rela-
tively expensive, it is common to use fitness-distance mea-
sures as surrogates for the permutation distances [35]. The
Hamming distance [17] between two sequences of equal
length is the number of positions at which the correspond-
ing actions are different, i.e., the number of wells that have
different positions in the drilling sequence. The Manhat-
tan distance (also known as the “position-based distance”)
measures the sum of the absolute differences between posi-
tions of the elements. In terms of the permutation encoded
vectors, the Manhattan distance is:

δ(xi, xj )L1
= ‖Pxi

− Pxj
‖1 =

Nw∑

k=1

|Pxi,k − Pxj ,k|, (14)

where the kth elements in Pxi
and Pxj

are Pxi,k and Pxj ,k ,
respectively, which are the positions of a fixed well Wk . Nw

is the number of wells.
In addition to the Hamming and Manhattan distance

measures for permutation encodings, we initially considered
the use of two standard distance metrics on vector spaces.
The Euclidean distance is defined as:

δ(xi, xj )L2
= ‖Pxi

− Pxj
‖2 =

√√√√
Nw∑

k=1

|Pxi,k − Pxj ,k|2 (15)

and the cosine distance [26, 36] is a correlation-based
distance measure defined as:

δ(xi, xj )cos = 1 − cos(Pxi
,Pxj

)

= 1 − Pxi
· Pxj

‖Pxi
‖‖Pxj

‖

= 1 −
∑Nw

k=1 Pxi,k · Pxj ,k√∑Nw

k=1 P 2
xi ,k

√∑Nw

k=1 P 2
xj ,k

. (16)

When the lengths of all sequences are identical, as they
are when the sequences are all perturbations of a base
sequence, then the cosine distance is simply a scaled version
of the Euclidean distance:

‖Pxi
− Pxj

‖2
2

2‖Pxi
‖2

2

= 1 − cos(Pxi ,Pxj) (17)

consequently, there is no need to consider both the
Euclidean and cosine distance measures.

The choice of an appropriate distance measure to use as a
measure of similarity is problem specific. In the application
section, we show that the Manhattan, Euclidean, and cosine
distance metrics are all very similar when applied to the well
ordering problem. They are all superior to the Hamming
distance in explaining similarity of drilling-order sequences
in terms of the bias correction factor.

Taper window selection The performance of localization
for estimation of correction factor depends not only on the
choice of distance measure but also on the taper parameter L

which affects the weights and the effective sample size [24]
used for computation of correction factor. A good distance
measure will effectively identify control variables with
similar correction factors so that the number of realizations
used for estimation is maximized and sampling error is
reduced.

Suppose that Ne is the number of observed values of β,
then:

neff =
(∑Ne

j=1 ωj

)2

∑Ne

j=1 ω2
j

, (18)

is a common approximation of the effective sample size
[12, 33]. In this equation, ωj is the weight on the j th
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partial correction factor. If all weights are identical, then
the effective sample size is equal to Ne, while if one
of the normalized weights is equal to one and all others
are zero, the effective sample size is 1. neff is a measure
of the equivalent number of equally weighted samples.
The weights are determined by the distance between the
estimation location and the j th drilling sequence.

The accuracy of the estimate of the correction factor
for control variable sequence, xi , is influenced both by the
effective sample size, neff , and the bias resulting from the
use of partial correction factors based on random control
variables with different values of α. Reducing the taper
length will decrease the bias by only including values from
control variable sequences with very similar values of the
correction factor, but will also increase the sampling error
by decreasing the effective sample size. Because the optimal
taper length is not known a priori, we generally apply
regularization to reduce the effect of a non-optimal choice
of taper length.

Regularization The major disadvantage of pure distance-
based localization is that use of a taper length that is
smaller than optimal one may result in an estimate of α

that is far from the correct value due to sampling error
resulting from the small number of samples within a small
distance of the estimation point. Instead of using a long
taper length to avoid such a situation, it is generally possible
to improve the accuracy of estimated α value by adding
a regularization term based on the average value and the
variance of correction factor to reduce the sensitivity of
the estimate to taper length while still generating accurate
estimates.

A regularized estimate of α(xi) is obtained by minimiz-
ing an objective function with both a local and a global
term:

S (αr (xi)) = neff

σ 2
β

(
αr(xi) −

∑Ne

j=1 ω(xi, xj )β(xj , mj , m̄)
∑Ne

j=1 ω(xi, xj )

)2

+ 1

σ 2
α

(αr (xi) − ᾱ)2 . (19)

In Eq. 19, σ 2
α is an estimate of the variance of α over the

domain of interest, σ 2
β is the variance of β, and neff is the

effective sample size for the observations of β (18). The
regularized estimate, α̂r (xi), is obtained by solving ∇αS =
0, obtaining:

α̂r (xi ) =
(

1 + σ 2
β

neffσ 2
α

)−1 (∑Ne

j=1 ω(xi , xj )β(xj ,mj , m̄)
∑Ne

j=1 ω(xi , xj )
+ σ 2

β

neffσ 2
α

ᾱ

)

=
(

1 + σ 2
β

neffσ 2
α

)−1 (
α̂loc(xi ) + σ 2

β

neffσ 2
α

ᾱ

)
. (20)

Note that the regularized objective function is a weighted
average of the localized estimate α̂loc(xi) from Eq. 12 and
the mean value of α. When the effective sample size is large
compared to the ratio σ 2

β/σ 2
α , the regularized estimate will

be based primarily on the local samples of β.
Estimation with regularized localization has a major

advantage over an approach that relies only on localized
estimation: by improving the accuracy of the estimated
values that are obtained with an inappropriate distance
measure or taper length, regularized estimate α̂r is
potentially more accurate than ᾱ for a wider range of taper
lengths. When the variance of α is unknown, it might
be difficult to select the optimal value, but as shown in
experiments, results are not strongly sensitive to the exact
choice.

Optimal weights Here we show how the optimal weights
can be estimated if the covariance of partial correction
factors is known. In that case, an estimate of α at a fixed
control x0 is calculated based on a linear combination of
observations βij with weights wi . In vector notation, the
estimate is written as:

α̂(x0) =
∑N

j=1 ω(x0, xj )β(xj , mj , m̄)
∑N

j=1 ω(x0, xj )
= wT b, (21)

where elements in vector b are the observed values of βjk

from random controls and realizations. The collection of
observations will be denoted by the vector b, i.e.:

b = [
β11 β22 · · · βNN

]T
.

Although the notation is different, Eq. 21 is identical to
Eq. 12.

The quantity α(x0), that is to be estimated, is defined to
be the linear combination of β0j at the estimation location:

α(x0) = 1

N
1T b0, (22)

where the jth element of b0 is β0j at a fixed control x0

of an individual realization mj that is sampled from the
probability distribution for model parameters, i.e.:

b0 = [
β01 β02 · · · β0N

]T
.

Imposing the constraint wT 1 = 1 provides an unbiased
estimate for which the expected error is 0. The optimal
weights for estimating α(xi) from a set of random
observations β are obtained by minimizing the expected
variance of the estimate, constrained to the unbiasedness
condition. For estimation of α(x0), the variance of the
expected error is:

Sw(w) = E

[(
1

N
1T b0 − wT b

)2
]

(23)
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To minimize the variance in estimation error, subject to the
constraint that wT 1 = 1, we define a Lagrangian function:

S(w, λ) = Sw(w) − 2λ
(
wT 1 − 1

)
,

where λ is the Lagrangian parameter and Sw(w) is the
variance of the estimator error (23). The optimal weights are
then obtained by solving for w that minimizes S(w, λ):

∇w,λS = 0.

Straightforward computation shows that:

∇wS = 2 cov(b,b)w − 2

N
cov(b,b0)1 − 2λ1 (24)

and

∇λS = 1T w − 1. (25)

Then the weights w can be found from the following
systems of linear equations for ∇w,λS = 0, which can be
written in matrix form:
[

cov(b,b) −1
−1T 0

] [
w
λ

]
=
[ 1

N
cov(b,b0)1

−1

]
, (26)

where cov(b,b) denotes the covariance of the variables β in
b, and each element in cov(b,b0) is the covariance function
between the corresponding observed values of β in b and b0

(Appendices 1 and 2).

2.2 Learned heuristic search

Heuristic function Heuristic search [19] is an efficient
approach for solving sequential decision-making problems
by repeatedly expanding the partial path with the largest
estimated value until a complete path for which the true
objective-function value is higher than the estimated values
of all evaluated partial paths is found. The estimated value
of a partial path could be obtained using an evaluation
function f (ns), which estimates the value of objective-
function for the optimal complete path constrained to the
previous actions. This estimated objective-function value
consists of two elements:

f (ns) = g(ns) + h(ns), (27)

where g(ns) is the true reward from the initial state to a
specific state ns through a set of selected actions, and h(ns)

is a heuristic function that estimates the maximum reward
from current state ns to a goal state.

For drilling-order problem, the objective of robust
optimization is maximization of expected NPV over
uncertainty by optimizing the drilling sequence of wells.
The expected NPV computed using mean model bias

correction (MMBC) can be mathematically represented as:

J = α(xi)

⎧
⎨

⎩

T∑

j=1

(
qm̄
o,j ro − qm̄

w,j rw − qm̄
wi,j rwi

)
Δtj

(1 + b)tj /τ

−
Nw∑

n=1

Wn

(1 + b)tn/τ

}
, (28)

where qm̄
o,j , qm̄

w,j , and qm̄
wi,j denote the rates of produced

oil, produced water, and injected water, respectively, from
the mean model in m3/day; ro, rw, and rwi are the oil
price, water production cost, and water injection cost,
respectively; T represents the number of time steps; tj is the
cumulative time in days up to time step j ; Δtj is the time
interval in days; b is the discount rate for a certain reference
time τ (365 days); Nw is the total number of drilling wells;
Wn denotes the cost of drilling the nth well; tn is the
cumulative time in days up to the open time for each well;
α(xi) is the bias correction factor for the corresponding
control xi .

The cost of finding a strong and admissible heuristic for
drilling-problem can be prohibitive since the evaluation of
heuristic function requires simulations. In this paper, we use
a heuristic function in which all remaining wells are drilled
simultaneously at the next step [28, 40], as this estimate
can be obtained inexpensively and generally provides an
overestimate of the NPV. Such a heuristic is guaranteed to
find the true optimal drilling order. However, it might lead
to an exhaustive search due to large estimated values.

Online learning techniques To efficiently find a solution
that is optimal or near optimal, the evaluation function
f (n) in Eq. 27 should be close to the true maximum value
f ∗(n). It is difficult to design a heuristic function that is
accurate in all situations, but a crude heuristic function can
be improved by online-learning techniques, i.e., estimate
the error of the initial approximate value by learning the
observations from previous decision steps. From a set of
available online-learning mechanisms Φ1, Φ2, Φ3, . . . , Φn,
the best-improved evaluation function f̂Φ(n) with multiple
online-learning techniques is defines as:

f̂Φ(n) = max
(
f̂Φ1(n), f̂Φ2(n), f̂Φ3(n), . . . , f̂Φn(n)

)
,

(29)

which might not be the most accurate value, but it is more
likely to overestimate the actual maximum value and guide
the heuristic search close to the optimal solution.

Wang and Oliver [40] have proposed two possible
online-learning techniques (i.e., single-step adjustment and
multiple-time-periods learning) for improving the initial
approximate values obtained from heuristic sequences (i.e.,
all the remaining wells are drilled simultaneously and
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opened at the next time step) by estimating a set of forecast
errors of f (n) and h(n) for the remaining decision steps.

The single-step adjustment is defined as:

f̂ (ns) = f (ns)

ngoal∏

n=ns

γ̂f n = f (ns)

d(ns)∏

i=1

γf ns μ̄
i
ns

= f (ns)γ
d(ns)
f ns

μ̄
(d(ns )+1)d(ns )

2
ns

, (30)

where d(ns) is the number of remaining actions at ns , and
γ̂f n is the forecast error of f (n) in future decision step n,
which is estimated by using the ratio γf ns associated with
f (ns) and f (ns−1) and the mean single-step ratio μ̄ns of
γf n1 , γf n2 , . . . , γf ns along the current optimal path.

Multiple-time-periods learning is calculated by correct-
ing the heuristic values of various time periods simultane-
ously:

f̂ (ns) = hΔtΦ1
(ns)

ngoal∏

n=ns

γ̂h
ΔtΦ1

(n) +
NL∑

i=2

(
hΔtΦi

(ns)

ngoal∏

n=ns

γ̂h
ΔtΦ

i
(n)

)
.

(31)

Note that estimated value hΔtΦ1
(ns) of the first learning

period ΔtΦ1 contains both true contribution to the expected

NPV at time periods ts = ∑Ns

i=1 Δti from Ns sequentially
drilled wells and heuristic values at a certain time period
ΔtΦ1 − ts when all wells are open.

To summarize, multi-learned heuristic search with space
reduction (MLHS-SR) based on the economic indicator

[15] and improved evaluation function f̂Φ(n) (29) can
be used to find a solution to an optimization problem
faster without losing quality [40]. Figure 1 shows the
flowchart of using MLHS-SR with the bias-corrected mean
model for the drilling-order optimization problem under
geological uncertainty. To estimate the bias correction
factor α for different drilling sequences, we first sample
Nx distinct controls and apply them to individual model
realizations to obtain the initial observations of β. This
step requires 2 × Nx simulations. Both bias-correction
methods (i.e., improve the estimates of expected NPV)
based on the observations from distinct controls and model
realizations, and online learning techniques (i.e., improve
the estimates of maximum expected NPV) based on the
observations from previous drilling steps do not require
any simulations. Hence, we only need to perform one
additional simulation in the mean model at each iteration for
evaluating the expected NPV of one specific control. The
use of bias correction applied to the mean model allows the
application of fairly general optimization methods. During
the optimization process, it requires only simulations in
the mean model for obtaining initial estimates of expected
NPV. For an ensemble with Ne realizations, we assume
that the information from Ne distinct controls is used to
estimate the bias correction factor, and the optimization
process requires Niter iterations (i.e., Niter different controls
have to be evaluated to obtain the optimal solution). Then,
the total number of simulations required in RO is Ntot =
2Ne + Niter, in which 2Ne simulations are performed to
obtain Ne observed values of β and Niter simulations are

Fig. 1 Flowchart of using
MLHS-SR with mean model
bias correction
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performed in the mean reservoir model to obtain the initial
approximations of expected NP for Niter different controls.
If Niter different controls were to be evaluated using SAA,
the cost in RO would be Ntot = Ne × Niter, which is much
more expensive and will increase linearly with the ensemble
size Ne and the number of iterations Niter.

Depth-limited search The reservoir model will almost
certainly be updated based on information obtained from
drilling the first few wells. After model updating, the
optimal order of the remaining wells will differ from
the initial estimate of optimal order. It is therefore more
important to correctly identify the first few wells to be
drilled rather than provide an entire drilling sequence. One
advantage of using learned heuristic search for the drilling-
order problem is that a partial solution of the first wells can
be obtained at a reduced cost by cutting off the search at a
specified depth.

The most straightforward approach to partial sequence
optimization is through the depth-limited search (DLS) [27],
in which the learned heuristic search is terminated at a
certain depth. To find the solution of the first Ns wells,
we prefer to terminate the search at the first-visited best
partial path with Ns + 1 selected wells, because online
learning techniques with more observations along a longer
path can further improve the approximations and potentially
generate a better solution. Note that the last well along the
first selected partial path of Ns + 1 wells might not be the
optimal well because the search might change direction after
evaluating its extended paths.

A faster approach to finding the partial solution is to use
iterative depth-limited search (IDLS). It works by iteratively
optimizing the next well based on the first selected partial
path with two more wells until a solution of Ns + 1 selected
wells is found. Because only the partial paths extended
from previous decisions are considered, this approach can
avoid evaluating unnecessary paths along other directions
caused by underestimated values. Learned heuristic search
with accurately estimated values generally will not change
direction frequently, so that the optimized sequence of the
first few wells with a limited depth is likely to be near the
final optimized drilling sequence.

3 Case study 1: Flow optimization
in one-dimensional model

The purpose of this simple example is to thoroughly
investigate methods of efficient optimization on a flow
problem for which the dependence of the objective function
on the model parameters is highly nonlinear. The problem is
chosen to be small enough that we can evaluate both linear

and quadratic Taylor series approximations of the objective
function, and can evaluate the correct optimal solution.

The objective in this example is to locate an injection
well, operating at fixed pressure in a one-dimensional flow
domain with uncertain permeability, such that the total flow
rate out of the reservoir through fixed pressure boundaries is
minimized. The reservoir is discretized with 150 grid cells
(i.e., 150 possible injector locations), each of length Δx, and
cross-sectional area A. The permeability ki is distributed as
log-gaussian. Pressures at both ends of the grid are fixed at
0. An injector is located at the interface between cells i =
iw − 1 and i = iw, where the pressure is fixed at P = Pw.
Instead of permeability, we use the log-permeability θi as a
parameter in the problem, ki = exp(θi).

In this notation, the total flow rate is the sum of the flow
to the left and flow to the right:

q(iw, θ)= APw

μΔx

(
iw−1∑

i=0

exp(−θi)

)−1

+ APw

μΔx

⎛

⎝
Nx∑

i=iw

exp(−θi)

⎞

⎠
−1

(32)

where all variables are in consistent units. Because the
permeability is uncertain, we minimize the expected value
of flow rate q, by adjusting the location of the injection
well, iw. To avoid a problem in which the optimal
injector location is at the center of the reservoir because
of symmetry, we modify the prior probability for θ

by assuming observations of θ at four locations (x =
10, 30, 50, 70). The mean of the posteriori distribution for
θ is shown as the orange curve in Fig. 2a, along with the
true log-permeability (blue). Ten realizations of the log-
permeability field from the posteriori distribution are shown
in Fig. 2b.

The most straightforward approach to approximating the
expected value of the objective function is through the use
of SAA or averaging of Monte Carlo samples from the
posterior distribution for θ . We use SAA with 400 samples
for each control location as a benchmark for other methods.
Hence, the SAA method uses 150×400 function evaluations
to generate the expected value of q(iw, θ) for optimization.

Taylor series expansions of the objective function provide
much less expensive approximations of the expected value
of q(iw, θ). For the linear approximation, the expected
value of q(iw, θ) is approximated using the mean of the
log-permeability field (5). The quadratic approximation is
considerably more expensive as it requires computation of
the second derivative of the objective function with respect
to well location. For this 1D steady flow problem, that is still
a manageable computation. Figure 3 compares the linear
and quadratic Taylor series approximations of the expected
value of flow rate to the sample average approximation.
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(a) True log-permeability field and best approximation
after observations

(b) Samples of the log-permeability distribution
after conditioning.

Fig. 2 a, b Light blue curve shows the true θ that generated observations. Blue squares show observations of θ with noise added. Correlation
range of prior distribution for log-permeability is 26

Although there is clearly a large bias in the values from
both the linear and quadratic approximations, the shapes are
quite similar to the SAA, and the location of the minimum
for each curve is also approximately the same. For this
particular problem (minimizing total flow rate), a uniform
bias does not affect the optimization result.

To correct the nonuniform bias in α, we use a regularized
localization approach (20) in which higher weights are
given to samples that are closer to the control variable
for which the bias correction is being estimated. In this
optimization problem, the actual distance between well
locations is an appropriate measure of similarity. The
variability of values of β is quite large (Fig. 4a) because
the rate is strongly affected by the occurrence of low
permeability values between the injector and the boundary.
The variability in α is much smaller than the variability in

Fig. 3 The expected value of the total injection rate, E[q(x, θ ],
computed using the sample average approximation, and two levels of
Taylor series approximation

β (Fig. 4b). Unfortunately, while the variability in β can be
estimated from samples, the variability in α will generally
be unknown. Because it is computed by averaging over
samples of β, however, we should expect it to generally be
smaller than the variability in β, so that the ratio σ 2

α/σ 2
β

which appears in Eq. 20 will generally be substantially
smaller than 1.

In Figure 5, we compare the optimal well locations
obtained using three different methods. In the SAA
approach, we use Ne samples of the permeability field
for each well location between 35 and 115 to compute
an approximation of the expected value of flow rate. In
the linear approximation, we simply compute the flow rate
using the mean of the log-permeability field, and for the
bias-correction approach, we used regularized localization
with γ = neffσ 2

α /σ 2
β

and a taper length of 20 to obtain a bias-

correction to the linear approximation of expected value of
flow rate. Each experiment was repeated 100 times to reduce
the effect of sampling error. For both ensemble sizes, the
bias-correction approach give better results than the linear
approximation, although the difference is more apparent at
larger ensemble size because the spread in the results is
reduced in that case.

The most important criterion for judging success of
the methodology is the ability to actually minimize the
flow rate. Figure 6 compares the distribution of total flow
rates obtained from the optimal well locations applied
to the truth case for each of the methods. The test was
repeated 100 times so there are 100 different truth cases
and 100 “optimal” locations for each method. Note that
the bias-correction method is now clearly superior to the
linear approximation, even in this example in which the
optimization depends only on relative differences in the
value of the objective function. Optimization of the well
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(a) 400 random samples of β (b) Sample average approximation of
each injector location.

α for

Fig. 4 a, b Variability of the partial bias correction β and the bias correction factor α for the 1D flow problem

location based on single realizations from the posterior
distribution for model parameters gives very poor results
(Fig. 6b).

4 Case study 2: Drilling-order problem in
synthetic model

4.1 Reservoir model

In this example, we design a set of experiments to
study the bias properties of the drilling-order problem
applied to the synthetic REEK Field model [18, 29, 40],
and the performances of various methods for estimating
the bias for both complete and heuristic sequences by
using the information from distinct controls and individual
realizations. The objective of the robust optimization
problem is maximization of the 10-year expected NPV with
respect to the drilling schedule of wells. Learned heuristic
search applied to the mean model with bias correction is
used to optimize the drilling sequence under geological
uncertainty. To illustrate the quality of the robust optimal

Fig. 5 Optimized well locations for three different methods and two
ensemble sizes

solution, we compute both optimal solution based on
SAA and deterministic solutions of individual realizations.
Moreover, we also investigate the possibility of optimizing
the first few wells by using learned heuristic search with
limited search depths.

The REEK model is a three-phase black-oil reservoir
model with 40 × 64 × 14 grid cells, of which 34,770 are
active cells. An ensemble of 100 geologically consistent
model realizations is used to empirically represent uncer-
tainty in the porosity field, permeability field, and fault
transmissibility multipliers. Table 1 shows the reservoir
properties and control variables in REEK field. For the
test problem, we assume that eight vertical fully penetrat-
ing wells (5 producers and 3 injectors) with fixed locations
need to be drilled sequentially, and the first well is drilled
at the beginning of simulation. The assumed drilling period
is 6 months for all wells and wells begin operating imme-
diately after drilling. Figure 7 shows the well locations and
initial oil saturation of one randomly chosen model real-
ization. The injectors are positioned around the oil-water
contact and controlled by a maximum injection rate of
10,000 m3/day and a maximum BHP of 320 bars. The pro-
ducers are distributed throughout the oil-containing area and
controlled by a maximum production rate of 6000 m3/day
and a minimum BHP of 250 bars.

4.2 Estimation of correction factor

Properties of α and β We randomly select 5 different
complete drilling sequences and apply them to the entire
ensemble of realizations and the reservoir mean model to
obtain the actual values of the multiplicative bias correction
factor α (7) and their partial correction factor β of individual
realizations (8). Figure 8 shows the observed values in α

and β from 5 random complete drilling sequences. Symbols
that are in the same color indicate the partial correction
factor β(xi, mj , m̄) at a fixed drilling sequence xi applied
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(a) Injection rates on 400 “true” permeability fields
for three robust optimization methods.

(b) Injection rates for three robust optimization
methods and a non-robust method.

Fig. 6 a, b Values of the objective function from optimization of well location in the 1D flow problem (Small values are better)

to different reservoir models and the mean model. The x-
axis displays the index j of a single reservoir model mj .
We observe that β(xi, mj , m̄) at a fixed control changes
significantly with geological uncertainty, but β(xi, mj , m̄)

at a fixed reservoir model changes slightly with different
controls. The horizontal dashed lines represent the bias
correction factors αi for the 5 drilling sequences, computed
by averaging over samples of β. The variability in αi for
these 5 drilling sequences is very small and the mean for
each is close to 1.1.

To obtain more statistically reliable results, we sample
560 different drilling sequences for studying the bias
properties. For 5 producers and 3 injectors, there are 56
possible combinations of drilling sequences based on the
types of wells (e.g., [P, P, P, P, W, P, W, W], [P, P, W,
P, P, P, W, W]). We randomly select 10 distinct drilling
sequences from each combination and compute their actual
values of α and β. Figure 9 shows the distributions of α

Table 1 Reservoir properties and control variables in REEK model

Field REEK model

Number of grid blocks 40 × 64 × 14

Number of active cells 34770

Permeability (md) 0 to 3500 (average 733)

Porosity 0 to 0.45 (average 0.159)

Fault transmissibility multiplier 0 to 1 (average 0.105)

Number of geological realizations 100

Number of wells (all vertical wells) 8 (5 producers and 3 injectors)

Number of all possible drilling 8! = 40320

sequences

Maximum production rate (m3/day) 6000

Minimum BHP of producers (bars) 250

Maximum injection rate (m3/day) 10000

Maximum BHP of injectors (bars) 320

and β values obtained from these 560 random complete
drilling sequences. α has a value near 1.108 for most
of the drilling sequences (Fig. 9a), indicating that SAA
of NPV is almost 10% higher than the NPV computed
using the mean model. To accurately estimate the expected
NPV, it is necessary to correct the bias in the initial
approximation that is obtained in the reservoir mean model.
Out of the 560 drilling sequences, only 22 (approximately
4%) sequences have α values lower than 1.09, whereas
β changes between 0.6 and 1.5 with a larger variability
(Fig. 9b). Interestingly, almost all of the drilling sequences
with atypical bias correction factor α are from two extreme
drilling sequences, i.e., either all producers or all injectors
are drilled first. The results of these two combinations are
plotted in yellow. This finding was unexpected and suggests
that to more accurately estimate the bias for general drilling
sequences, we should avoid sampling controls from these
two extreme combinations since they seem to provide less
useful information and vice versa.

Figure 10 compares the distributions of variance in β at
a fixed reservoir model and a fixed control after eliminating
two extreme combinations (i.e., [P, P, P, P, P, W, W, W]
and [W, W, W, P, P, P, P, P]). As previously observed
in Fig. 8, the variability of β among different drilling
sequences at a fixed reservoir model is smaller than the
variability of β among different reservoir models at a fixed
drilling sequence. The average value of α can be estimated
by averaging all observed values in β from distinct controls.
In this example, the variance in α is only 0.000058 for
general drilling sequences. The estimates of expected NPV
with a bias correction factor ᾱ could be accurate for most
of the drilling sequences, but this will not always be the
case in other problems. For the case of large variability in
α, we should consider the similarity between the samples
and control variables for estimating the bias for specific
controls. In this case, the variability in β is much larger than
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Fig. 7 Well locations and initial
oil saturation in one realization
of the REEK model ensemble

Fig. 8 Comparison of bias
correction factor α and partial
correction factor β of 5 different
complete drilling sequences

(a) Distribution of bias correction factor α (b) Distribution of partial correction factor β

Fig. 9 a, b Comparison of the distributions of α and β of 560 different complete general drilling sequences
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Fig. 10 Distribution of variance
in β at a fixed model or a fixed
control

the variability in α for general complete drilling sequences,
and the ratio σ 2

β/σ 2
α is almost 267. For a small number of

samples, local estimates α̂loc based on β (12) might be away
from the actual bias correction factor. The error of local
estimates caused by sampling error due to small sample
size could be as large as 40%. Hence, it is critical for this
problem to use a taper length with a relatively large effective
sample size for pure distance-based localization or apply
regularized localization to avoid generating estimates that
are far away from ᾱ.

To measure the similarity of drilling sequences for
the bias correction factor, we investigate the use of four
different distance metrics (i.e., the Manhattan, Euclidean,
cosine, and Hamming distances). Figure 11a shows the
empirical variograms of α for these four distance metrics.
We observe that all four variograms show an approximately
linear increase with distance over most of their ranges.

Overall, each of these four distance metrics can measure the
similarity of drilling sequences for expected NPV. For the
purpose of identifying similar drilling sequences, a measure
of distance is better than another if it correlates better over
larger numbers of samples.

Figure 11b shows the cumulative fraction of drilling
sequences within an upper bound on the variogram of α.
Among a set of random controls, very few of them will
have small Hamming distances. We note that, compared
with the other three distance metrics, the Hamming
distance yields fewer similar drilling sequences at a fixed
threshold variance of α. In other words, when a fixed
fraction of samples is considered for local estimation,
drilling sequences extracted by the Hamming distance
will potentially have more significant variability in α. By
contrast, the Manhattan, Euclidean, and cosine distance
metrics have similar behaviors and all perform better than

(a) Empirical variogram of the bias correction factor α as obtained using
different distance metrics

(b) Cumulative fraction of sequences within a certain upper bound on
the variogram of α

Fig. 11 a, b Performance comparison of four distance metrics applied in the drilling-order problem
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the Hamming distance for local estimation based on the
observations from randomly selected drilling sequences. In
our subsequent experiments, we use the Manhattan distance
to measure the distance between two drilling sequences for
estimating α values for specific controls.

Accuracy of estimates of α In this experiment, we compare
various methods for estimating the bias correction factor α

of different drilling sequences. We first sample a number
(Nx) of distinct general drilling sequences to obtain a set
of observations of β, which requires 2 × Nx simulations.
To evaluate the quality of each of the three approaches (i.e.,
average bias correction factor, pure-distance localization,
and regularized localization), we use each method to
estimate α for 540 different drilling sequences. Estimation
of α for various drilling sequences using these approaches
does not require additional samples of β, but to estimate
the expected NPV of a specific drilling sequence, we need
to perform one additional simulation using the mean model
to obtain the initial approximate value of expected NPV.
In other words, the amount of computation required for
computing the expected NPV of 540 sequences by using
the information from 100 distinct controls and individual
realizations is 2 × 100 + 540 = 740 simulations, which is
much less than the cost for SAA (54,000 simulations). In
this experiment, we use the accuracy of the estimated α as a
criterion for judging the quality of the expected NPV based
on the reservoir mean model with bias correction.

Figure 12 shows RMSE of the estimates of the 540
values of α based on a set of 100 observed values in β.
The black horizontal line indicates the result from a fixed
estimated α obtained by averaging samples of β (11). Pure
distance-based localization and regularized localization are
applied with different taper lengths between 1 and 200
(for reference, the maximum Manhattan distance between

complete sequences with eight wells is 32). We observe
that purely local estimates α̂loc are potentially more accurate
than the estimates computed by averaging over samples of
β when a taper length of L > 26 is used. In this case, the
effective sample size is relatively large (neff > 80), and the
best value of the taper length in this test is approximately
34. When the taper length extends over 170, all samples are
assigned high weights and the performance is close to the
approximation of ᾱ. On the contrary, the quality of local
estimates is very sensitive to the taper length because of
sampling error when the taper length is small (e.g., neff ≈
10 at L = 15). The error of estimated values resulting from
the small number of samples is significant.

Since our estimate of optimal weighting in regularized
estimation of α depends on the value of σ 2

α , which we are
unlikely to know accurately, we investigated the sensitivity
of results to variation in the magnitude of the weighting
term. Three different levels of the ratio of the variance
of α and β (i.e., λ = 0.1 · σ 2

β/σ 2
αneff, σ 2

β/σ 2
αneff, and

10 · σ 2
β/σ 2

αneff) were evaluated. For λ = 10 · σ 2
β/σ 2

αneff,
the regularized estimates α̂r are close to ᾱ and the RMSE is
similar. For λ = 0.1 · σ 2

β/σ 2
αneff, the effect of regularization

is small; consequently, the estimates at a small taper
length are inaccurate due to sampling errors. However, the
results show that λ = σ 2

β/σ 2
αneff reduces the sensitivity

of the estimates to the taper length, while still generating
more accurate values even for cases with a small number
of samples. As a result, the corresponding regularized
estimates are potentially more accurate for a wider range of
taper lengths.

To reduce the influence of sampling error on the
conclusions, we repeat each experiment 100 times, each
time using a fresh sample of controls to obtain observations
of β. For every single test, we apply three different sample
sizes (Nx = 100, 200, and 400) to investigate the effect of

Fig. 12 Comparison of the
RMSEs of estimates of α

obtained using different
approaches based on 100
observed values of β
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the sample size on the accuracy of the estimated α and the
best value of the taper length for distance-based localization.
Figure 13 shows the RMSEs of α estimates obtained using
different approaches with the three different sample sizes
after repeating each test 100 times. In general, the estimates
are improved by using more samples. The improvement,
however, is small for estimates obtained without localization
(horizontal dashed lines) as the estimate of the mean for β

is already quite accurate for Nx = 200.
Distance-based localization offers a further increase in

accuracy, and the improvement is more significant with a
larger sample size. In this example, we observe that the
RMSE of the local estimates at the optimal taper length is
close to that of the estimates computed from the optimal
weights based on the covariance of the partial correction
factors (26). For the drilling-order problem, the well-
position based distance distribution obtained from a fixed
set of random controls changes slightly when the control
variable for estimating the bias correction factor is varied.
In such a case, the distributions of elements in covariance
matrix cov(b,b0) (42) in terms of the distance are stable.
The variance of the correction factor increases almost
linearly with distance, making the optimal weight based on
the covariance of partial correction factors decreases with
the distance of the samples. As a result, the optimal weights
would be close to the local weights at the optimal taper
length for the drilling-order problem.

As observed previously, regularization with λ =
σ 2

β/σ 2
αneff appears to always produce more accurate

estimates of α than those obtained by averaging of all
values of β. When the taper length is greater than a certain
threshold, it seems that pure distance-based localization
slightly outperforms regularized localization. The reason
for this is that local estimates are potentially more

accurate than ᾱ with large effective sample sizes; however,
the regularization term reduces the effect of localization
and results in estimates that are closer to ᾱ. Both the
variance of α and the best value of the taper length are
generally unknown. Therefore, instead of using regularized
localization based on an uncertain value of σ 2

α/σ 2
β , for this

problem, we use pure distance-based localization with a
relatively large effective sample size to estimate α values for
different controls.

We investigated the effect of taper length on the error
in the estimate of bias correction factor, α, for three
different sample sizes. For each sample size, we repeated
the experiment 100 times to obtain reliable estimates. The
results show that the optimal taper length for local estimates
of α decreases as the sample size increases (Fig. 13).
As the optimal taper length is also subject to sampling
error, we investigated the variability. Figure 14 compares
the frequency distributions of the optimal taper lengths for
each ensemble size. When only 100 samples are used to
estimate α, the best value of taper length is shown to be
highly sensitive to the initial samples (histogram in blue). In
approximately 1/3 of the cases, the optimal taper length is
larger than 200, which means that the average value of all β

will provide a better estimate than a purely distance-based
weighting with a small taper length. For some controls, the
actual α values might be very close to ᾱ, such that more
samples will be required for local estimation to provide
any further improvement in accuracy. When Nx is increased
from 100 to 400, the optimal taper length is less variable,
varying between 25 and 30 in most cases (histogram in
green). It seems that for cases with sample sizes larger
than the ratio σ 2

β/σ 2
α , the best value of the taper length is

likely to lie near a point where the value of σ 2
β/σ 2

αneff is
approximately 1. In that case, the variability in the local

Fig. 13 RMSEs of estimates of
α with three different sample
sizes
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Fig. 14 Distribution of the optimal taper length for the pure distance-
based localization

estimates will be close to the variability in the actual α

values. When the variance of α is unknown, it might be
difficult to select the best value of the taper length. However,
the results show that the local estimates are not highly
sensitive to the taper length when the effective sample size is
relatively large, in which case local estimates are still more
accurate than estimates obtained using the average value of
β.

Correction factors for heuristic sequences During the
heuristic search process, a set of heuristic sequences with
different numbers of selected wells is used in combination
with online learning techniques to estimate the maximum
value among the possible complete drilling sequences con-
strained by previous wells. Hence, we need to compute
the expected NPVs of some specific heuristic sequences
to optimize either an entire drilling sequence or only the
first few wells when applying a learned heuristic search.
In this experiment, we study the bias properties of heuris-
tic sequences and the possibility of using mean model bias
correction to accurately estimate their expected NPVs.

Figure 15a and b show the distributions of α and β

from 550 random heuristic sequences, 400 of which have
fewer than four selected wells (i.e., all possible heuristic
sequences with Ns ≤ 3 are considered). The histogram
in orange represents the bias from the heuristic sequences
in which either all producers or all injectors are drilled
sequentially first. Figure 15c compares the distributions
of the variance of β for a fixed reservoir model and a
fixed heuristic sequence after the elimination of controls
from those two extreme combinations. Relative to the
observations for complete drilling sequences, the bias for
heuristic sequences has some similar properties: (1) the
ᾱ for heuristic sequences is close to that for complete
sequences, but the variability in α is smaller; (2) heuristic
sequences in which either all producers or all injectors

(a) Distribution of the bias correction factor α

(b) Distribution of the partial correction factor β

(c) Distributions of the variance ofβ for a fixed model and a fixed heuristic
sequence

Fig. 15 a–c Distributions of α, β, and σ 2
β of heuristic drilling

sequences

are drilled first have atypical and relatively smaller values
of α; (3) β values for heuristic and complete sequences
have similar distributions, and the variability in β is much
larger than the variability in α; and (4) the variance of β

among different heuristic sequences for a fixed model is
much smaller than that among different realizations for a
fixed heuristic sequence. We observe that the variance of
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α for heuristic sequences is only 0.0000168. In this case,
the expected NPV that is estimated from the mean model
with ᾱ will have a high level of accuracy. Distance-based
localization might require a large number of samples to
improve the estimates, and even then, the improvement will
be small.

Figure 16 shows the empirical variogram of α for
heuristic sequences based on the Manhattan distance.
The number of selected wells constrains the distance
between heuristic sequences. For eight wells, the maximum
Manhattan distance between heuristic sequences with fewer
than four selected wells is only 12. For the sequences in
which at least half of the wells are drilled simultaneously
(Ns ≤ 4), while the variance of α increases with distance,
the correlation of α is still strong even for the sequences
with the largest distance. For Ns ≤ 5 and Ns ≤ 6, however,
the variance of α decreases beyond a certain distance.
The main reason for this is that heuristic sequences with
a significant gap in Ns generally have a large distance,
but they might also have similar values of α. If we
sample heuristic sequences with a large Ns (i.e., in which
most of the wells are drilled sequentially) to estimate the
bias for sequences with a small Ns (i.e., in which most
of the wells are drilled simultaneously), distance-based
localization might not significantly improve the estimates
even with a large number of samples, since most of the
samples will be at long distances, but may still have similar
α values. Therefore, to ensure the effectiveness of distance-
based localization, we should use samples with a small gap
in Ns to estimate the bias for specific heuristic sequences
with Ns selected wells.

Figure 17 shows the RMSEs of the estimated α values
for heuristic sequences with different numbers of selected
wells obtained by using the information of distinct heuristic
controls. As in the previous section, to reduce the sampling
error, we repeat each experiment 100 times. As expected,
the results show that the average value of β is a good

approximation of α for most heuristic sequences due to the
small variability in α. The error in the estimates can be
only slightly reduced from 0.0034 to 0.0032 by increasing
the sample size from 100 to 400, but at the cost of 600
additional simulations. In this case, it is not necessary to
use a larger sample size to improve the estimates. The
estimated α based on 100 observed values of β is already
very close to the actual α values, although this might
not always be the case in other problems. The effect of
distance-based localization is small even if we use Nx =
400, which means that more samples would be needed for
distance-based localization to improve the estimates further.
As observed in the case of complete drilling sequences,
the regularized estimates obtained from heuristic sequences
also prove that a regularization term based on ᾱ with
a parameter of σ 2

β/σ 2
αneff reduces the sensitivity of the

estimates to the taper length, such that the estimates are
potentially more accurate for a wider range of taper lengths.
The results for both complete and heuristic sequences
illustrate the effectiveness of using MMBC to estimate
the expected NPV. Although the effect of localization on
improving the estimates is relatively small in this example,
this might not always be the case in other problems. For
cases with considerable variability in α, the improvement in
accuracy achieved by using distance-based localization with
an appropriate taper length or regularized localization will
be more significant.

4.3 Robust optimization under geological
uncertainty

Optimization of complete sequences In this experiment, we
apply learned heuristic search with MMBC to compute
the RO drilling sequence under geological uncertainty.
A set of 100 random heuristic drilling sequences with
different numbers of selected wells is used to generate 100
observations of the partial correction factor β. This requires

Fig. 16 Empirical variogram of
α for heuristic sequences based
on the Manhattan distance
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Fig. 17 RMSEs of estimates of
α for heuristic sequences
obtained using different
approaches

200 simulations, as the NPV must be computed for the
drilling sequence run using the mean model, and for a model
realization. Because the variance of α is unknown, we apply
pure distance-based localization to estimate the bias for
different drilling sequences. To avoid inaccuracy in the local
estimates caused by sampling error due to a small sample
size, we choose a taper length near 50, which is large enough
to ensure that the effective sample size is relatively large.
To evaluate the effectiveness of the various approaches,
we compute the “gold standard” RO strategy based on
SAA and the NO strategies of individual realizations. The
performance of RO/NO optimal strategies is investigated by
comparing their NPV distributions in the entire ensemble of
100 realizations with that of 560 random complete drilling
sequences.

Figure 18 shows MLHS-SR search strategy applied to the
mean model with bias correction. To speed up the search
process while maintaining the highest possible solution
quality after space reduction, we consider at least half of
the remaining wells with high economic indicator values
as the next possible actions (i.e., prior space reduction)
and preserve three partial paths with the highest estimated
expected NPVs for the remaining search process (i.e.,
posterior space reduction). For nodes marked in orange,
the paths through them have the highest estimated expected
NPV for complete sequences and have been expanded in
the most promising directions. For each selected direction,
only the partial paths go through blue nodes (or orange
nodes if the paths have been extended), and black nodes are
evaluated after prior space reduction. However, the paths
with black nodes are pruned in the process of posterior space
reduction due to their lower estimated values and will not be
considered during the search process. In this case, the search
evaluates 46 paths through 13 decision steps to optimize

an entire drilling sequence: [OP 3, WI 1, WI 2, OP 1,
OP 4, WI 3, OP 2, OP 5]. Considering the cost of obtaining
the partial correction factor β (200 simulations), only
246 simulations are required to compute the RO drilling
sequence for eight wells. For comparison, when MLHS-
SR is used with SAA, it is necessary to perform more than
3000 simulations to obtain a solution with the same quality.
By more extensively reducing the search space, we can
find the same solution faster (235 simulations). However,
excessive space reduction (e.g., searching along only one
direction) will lead to a drilling sequence with a less-than-
optimal value (− 0.71%). Because a large fraction of the
cost is a result of estimation of the bias correction factor,
the cost reduction achieved by evaluating fewer controls
might not be very significant, especially for small fields
with large ensemble sizes. In such cases, it is not advisable
to prune the space significantly to reduce the cost, because
the computational cost might be reduced only slightly while
yielding a solution with a suboptimal value.

The percentage presented near each node in Fig. 18
represents the error of the estimated expected NPV of each
partial path (i.e., heuristic sequences) compared with SAA.
The average error of the estimated expected NPV from the
mean model is reduced from − 9.20 to 0.21% by estimation
of the bias correction factor. The maximum error on the
estimated expected NPV is only 0.54%. In this example, by
using the information from only 100 samples of the drilling
sequence and individual model realizations, the expected
NPVs of different drilling sequences can be accurately
estimated. The optimal drilling order from the learned
heuristic search is computed by repeatedly expanding the
search in the directions with the highest estimated values.
Because the bias correction factor for the drilling-order
problem in the REEK Field is relatively stable, adding such
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Fig. 18 Search strategy of
MLHS-SR

a multiplicative factor does not significantly change the
initial ranking of the heuristic sequences in the mean model.
Hence, we observe that MLHS-SR performed directly in
the mean model (i.e., linear approximation) finds the same
solution obtained using the bias-corrected mean model.
However, for the cases with considerable variability in α, a
learned heuristic search with MMBC can potentially find a
better drilling sequence than that obtained using the linear
approximation.

Figure 19 shows the error on the maximum expected
NPV of the complete drilling sequence along the optimal
path that is estimated by using heuristic sequences with
MMBC and online learning techniques. We first remove
the bias in the initial approximations of the expected
NPV obtained from the mean model by estimating a bias
correction factor α (green curve → blue curve), and we
then correct the estimates of the maximum expected NPV
obtained from heuristic sequences through online learning

Fig. 19 Error of estimates of
maximum NPV along the
optimal path
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mechanisms (blue curve → orange curve). We notice that
the initial estimates of the maximum expected NPV from
heuristic sequences (blue curve) always overestimate the
actual maximum value for the complete sequence and show
an exponentially decaying trend with an increasing decay
factor throughout the search process. However, the accuracy
of the estimated maximum expected NPV is significantly
improved by learning the errors on approximate values
obtained from previous drilling steps (orange curve). In this
case, the average error along the optimal path is only 0.22%.
With such accurate estimates, the final optimized sequence
is very likely to have a high expected NPV and to be near
the true optimal sequence. When MLHS is applied without
any space reduction, the average NPV of the optimized
sequence is 0.60% lower than that of the solution obtained
with space reduction. The main reason for this is that some
estimated values underestimate the actual maximum value
(e.g., the error for the partial path with three selected wells is
− 1.03%), meaning that if the expected NPV of the current
solution is higher than all of these underestimated values,
the search will terminate with the current solution. In this
experiment, an appreciable amount of space reduction (e.g.,
at least half of the remaining wells are considered as the
next possible action) is shown to effectively prune paths that
are less likely to correspond to the optimal drilling order,
leading to a better solution with a lower cost.

Figure 20 compares the NPV distributions for RO/NO
sequences and a set of 560 random drilling sequences. The
results show that the average NPV is significantly increased
by optimizing the drilling sequence with a learned heuristic
search. RO sequence has a higher average NPV than either
the NO solutions or the set of random drilling sequences,
being as much as 25.86% higher than the average NPVs of
some of the random drilling sequences. Table 2 summarizes
the optimization results for each of the approaches. At the

cost of approximately 200 additional simulations, the RO
strategy obtained from the mean model with bias correction
is shown to be significantly better than the deterministic
solutions for individual realizations. We observe many of
the NO strategies have similar NPV distributions over a set
of 100 realizations. It seems that in the REEK model, the
optimal drilling sequence does not vary significantly with
the geological uncertainty.

Although the geological properties vary significantly
from realization to realization, the optimized deterministic
well sequences for 100 model realizations have common
characteristics. In particular, the optimized sequence for
each single realization always starts with one producer and
one injector, in that order. For 92 of the 100 individual
realizations, the last well drilled in the optimal sequence
is a producer. In most cases, Producer OP 3 and Injector
WI 1 are drilled first, and Producer OP 5 is the last well
drilled. In the REEK Field case, with five producers and
three injectors, the optimal wells for these three drilling
positions appear to be nearly independent of the geological
properties. As a result, the RO solution is likely to be near
several deterministic optimal solutions for this field. It is
clear that this will not always be the case for other fields.

Partial optimization Wang and Oliver [40] have shown that
learned heuristic search is a viable means of solving the
sequential drilling-order problem for complete sequences.
In many cases, however, only the first few wells in the
drilling sequence may be needed. As shown in Fig. 18,
the optimal partial path will not always extend in only
one direction during the search. In such cases, it is not
guaranteed that the first few wells can always be optimized
along the final optimal complete sequence by limiting the
depth of the search path. In this experiment, we investigate
the possibility of optimizing the first few wells without

(a) Average NPVs of RO/NO solutions and random drilling sequences (b) PDFs based on a set of 100 realizations of RO/NO optimal solutions
and random drilling sequences

Fig. 20 a, b Results obtained through learned heuristic search strategies compared with random drilling sequences
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Table 2 Comparison of robust
and nominal optimization
results

Average NPV (E09 USD) Simulations Percentage change

Robust optimization 8.15 246 Ref

Nominal optimization 7.66 to 8.15 22 to 49 − 6.04 to 0%

Random sequences 6.04 to 8.12 – − 25.86 to − 0.36%

finding the entire optimal sequence by performing learned
heuristic search with a limited depth (i.e., a depth-limited
search and an iterative depth-limited search).

Figure 21 shows the search strategies for the first two
and three wells using MLHS-SR with depth-limited search
(DLS). To optimize the first few wells, we terminate the
search with the first selected partial path that includes one
additional well. Figure 21a shows that the first optimal
partial path with three selected wells is [OP 3, WI 1, OP 2],
which indicates that the optimized sequence of the first two
wells is [OP 3, WI 1]. The path through Producer OP 3 and
Injector WI 1 has been previously expanded as the most
promising direction in the second decision step; however,
the search changes direction after the evaluation of the
extended partial paths due to their underestimated values.
Seven additional decision steps are required to guide the
search back to the path along the final optimized complete
sequence. In this case, if the search were to be stopped
immediately with the first selected partial path with two
wells (i.e., [OP 3, WI 1] ), then the same solution for the
first two wells could be obtained faster (i.e., 26 simulations
would be eliminated). However, this will not always be
the case for other search depths. Figure 21b shows that

although the first expanded direction with three selected
wells is [OP 3, WI 1, OP 2], the path with four wells [OP 3,
WI 1, WI 2, OP 1] provides a better solution for the first
three wells (i.e., [OP 3, WI 1, WI 2]) since with more
observations from longer paths, online learning mechanisms
can improve the estimated values and guide the search
closer to the true optimal solution. A total of 234 and 240
simulations are required to optimize the first two and three
wells, respectively, under geological uncertainty, of which
34 and 40 simulations, respectively, are performed during
the search process.

Figure 22 shows the search strategies for the first two
and three wells using MLHS-SR with iterative depth-limited
search (IDLS). In each decision step, we consider only the
paths extended from the previous decisions and optimize the
next well based on the first selected partial path with two
more wells. We optimize the first well based on the first-
visited best partial path with two selected wells (i.e., [OP 3,
WI 1]), then we compute the second well based on the
paths starting with OP 3. In contrast to the search strategies
obtained using DLS, as shown in Fig. 21, the paths starting
with Injector WI 1 and Producer OP 4 are pruned, thus
avoiding 14 simulations. Figure 23 shows the numbers of

(a) Depth-limited search strategy of the first two wells (b) Depth-limited search strategy of the first three wells

Fig. 21 a, b Optimization of the first two and three wells using MLHS-SR with DLS

496 Comput Geosci (2021) 25:475–501



(a) IDLS strategy for the first two wells (b) IDLS strategy for the first three wells

Fig. 22 a, b Optimization of the first two and three wells using MLHS-SR with IDLS

simulations needed to optimize the first few wells by using
MLHS-SR with DLS and IDLS. The results for this example
show that both methods can be used to optimize the first
few wells along the final optimized complete sequence by
controlling the search depth, but IDLS finds a solution faster
by eliminating some unnecessary node evaluations caused
by underestimated values.

The performance of DLS and IDLS depends on the
online learning techniques applied. When the estimated
values are sufficiently accurate such that the search process
will expand the path in only one direction, both DLS and
IDLS can optimize the first few wells along the final optimal

complete drilling sequence at the same cost. However,
the estimated values are generally less accurate earlier in
the search process due to the lack of previous sequential
observations, meaning that the search might later change
direction. Compared with DLS, IDLS is more likely to
optimize the first few wells faster without any loss of
the solution quality since paths with low NPV generally
will not continue to be extended when appropriate online
learning mechanisms are used. In this case, because only
246 simulations are needed to optimize an entire sequence
for eight wells via MLHS-SR, the cost reduction achieved
by optimizing only the first few wells is not very significant.

Fig. 23 Comparison of the costs
of optimizing the first few wells
using MLHS-SR with DLS and
IDLS
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For larger fields, however, MLHS-SR with IDLS can be
used to efficiently optimize only the first few wells in the
sequence.

5 Conclusions

In this paper, we presented a methodology for robust
optimization of the expected value of an expensive-to-
compute objective function for which the uncertainty
is characterized by an ensemble of model realizations.
A straightforward approach using sample averaging to
approximate the expected value is prohibitively expensive
in most real reservoir applications. In our approach, we
compute a multiplicative bias correction to the value of
the objective function computed from the first term of the
Taylor series expansion. Computation of the bias correction
requires two function evaluations for each random sample
of the control variables: one evaluation using the mean
reservoir model and a second evaluation using a random
model realization. Our results show that the information
from distinct controls and individual realizations can be
used to accurately estimate the bias in the approximation
of expected NPV obtained from the mean model and
that robust optimization can be performed with good
approximations of the expected NPV while requiring many
fewer simulation runs than SAA. Based on our experiments,
we arrive at the following conclusions:

– Approximations of the expected NPV obtained using
the mean reservoir model are generally poor compared
with estimates obtained using SAA, but approximations
from the mean model can be significantly improved
by estimating a multiplicative bias correction factor,
which is estimated by simulating a modest number
of randomly selected controls on both reservoir
realizations and the mean reservoir model.

– Distance-based localization can improve the estimated
values of the correction factor. The performance of this
approach the estimation of the bias-correction factor
depends on the distance measure and the taper length,
both of which must be estimated.

– Regularized localization with an appropriate parameter
based on the variance of the bias correction factor
reduces the sensitivity of the estimates to the taper
length; consequently, regularized estimates are accurate
for a wider range of taper lengths. When the variance
of the bias correction factor is known, regularized
localization is the preferred method.

– The RO solutions obtained using MMBC and SAA
are of similar quality and are both superior to the
deterministic solutions for individual realizations and
the mean reservoir model (i.e., linear approximation).

– A learned heuristic search can be performed either to
optimize complete drilling sequences or to optimize
only the first few wells in the sequence at a reduced
cost by limiting the search depth. Compared with DLS
approach, a solution of the same quality can be found
faster by performing an IDLS with effective online
learning techniques.

The major advantage of using mean model bias correction
is that we only need to perform simulation using the mean
model to obtain an initial approximate value of expected
NPV, for which the bias will be corrected by a multiplicative
correction factor estimated based on the observations of partial
corrections from similar controls. Although the methodology
was applied to the problem of determining optimal drilling
order, the methodology is fairly general and does not require
that the objective function be general or that the control
variables be continuous. The effect of localization of the
estimate could be significant in the case of large variability
in the bias correction factor, especially when the ensemble
size is large such that more observations from distinct
controls and individual realizations could be used for bias
estimation. However, to ensure the effectiveness of distance-
based localization for bias correction, we need to design
appropriate distance measures for identification of sets of
similar controls. For the drilling-order problem, a distance
metric based on the well position can effectively measure
the similarity between drilling sequences. In this work, we
presented a method for efficiently estimating the expected
value of an objective function by applying a multiplicative
bias correction to the value obtained from the mean model.
It would not be difficult to modify the bias-correction
method for use in multiple objective optimizations under
uncertainty (e.g., standard deviation, percentiles, expected
value). For example, it would be possible to compute an
estimate of the variance of the objective-function value,
by squaring the value of the objective function from
the mean model and multiplying it by the variance of
partial corrections, which can also be estimated by using
information from distinct controls and individual model
realizations.
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Nomenclature f ∗, Actual expected objective function value of
optimal control; α, Bias correction factor; ᾱ, Average value of bias
correction factor; m̄, Expected value of model parameter; μ̄ns , Mean
single-step ratio of variability in estimated value; β, Partial correction
factor for individual realizations; Δt , Time interval; Δx, Length
interval; δ, Distance between controls; γ , Single-step ratio of estimated
value; α̂loc, Local estimate; α̂r , Regularized estimate; γ̂ , Forecast error
of initial evaluation function value; f̂ , Learned evaluation function;
λ, Regularization parameter/Lagrangian parameter (depending on
context); b0, Vector of β at a fixed control x0; b, Vector of
β from random controls and realizations; P, Vector of drilling
sequence; w, Weight vector of β; μ, Viscosity of fluid; ω, Weight;
ρ, Distance-based weight; σ 2

α , Variance of bias correction factor α;
σ 2

β , Variance of partial correction factor β; θ , Permeability; A, Cross-
sectional area; b, Discount rate; C, Covariance of model parameter;
d, Number of remaining actions; E, Expected value of objective
function; f , Objective function/evaluation function (depending on
context); fm, First derivatives of objective function with respect to
model parameter; fmm, Second derivatives of objective function with
respect to model parameter; g, Actual economic value from previous
actions; h, Heuristic function/estimated maximum future value; k,
Log-permeability; L, Taper length; m, Model parameter; neff, Effective
sample size; ns , Environment state at decision stage; Ne, Total number
of model realizations; Ns , Number of selected wells; Nw , Total number
of wells; Nx , Total number of random controls; NPV , Net present
value; P , Pressure; q, Production/injection rate; r , Reward/cost; T ,
Total number of time steps ; t , Time; W , Cost of drilling well; x,
Control variable.

Subscripts ΔtΦ , Learning time period; Φ, Learning technique index;
fn, Evaluation function at a specific state; hn, Heuristic function
at a specific state; i, Control index/learning period index/cell
index (depending on context); j , Model realization index/time step
index(depending on context); k, Well index; o, Oil ; s, Decision stage;
w, Water/well (depending on context); wi, Water injection; cos, Cosine
distance; L1, Manhattan distance; L2, Euclidean distance; eff, Effective
sample size.

Superscripts m̄, Reservoir mean model; Φ, Learning; i, Injection; p,
Production; lin, Linear approximation; quad, Quadratic approxima-
tion.

Appendix 1

To derive Eq. 24, recall that:

E[bbT ] = cov(b,b) + E[b]E[bT ] (33)

Assuming stationarity, this simplifies to:

E[bbT ] = cov(b,b) + ᾱ211T (34)

Similarly:

E[bbT
0 ] = cov(b,b0) + ᾱ211T (35)

The unbiasedness condition gives that:

ᾱ211T w = 1

N
ᾱ211T 1. (36)

Appendix 2

The covariance function C is related to the variance and the
semivariogram:

C(h) = σ 2 − γ (h), (37)

where σ 2 is the variance, h is the distance between two
observations, and γ (h) is the semivariogram at distance h.

Since the observation β is obtained from random controls
of individual realizations, we need to model the covariance
function of β with two terms, i.e., variability in β at a fixed
model realization and variability in β at a fixed control
variable:

Cβ = Cβ(hx) + Cβ(hm), (38)

where Cβ(hx) is the covariance function for β at fixed
model realization; hx is distance between observations;
Cβ(hm) is the covariance function for β at fixed control
variable; hm is the distance of realizations corresponding to
the observed controls, i.e., hm = 0 if observed values are
from the same realization, hm = 1 if observed values are
from different realizations.

Cβ(hx) can be obtained from the average variogram of β

of all ensemble realizations:

Cβ(hx) = 1

N

N∑

j=1

σ 2
β (mj ) − 1

N

N∑

j=1

γ (hx, mj ), (39)

where σ 2
β (mj ) and γ (hx, mj ) are the variance and

variogram of β at a fixed realization mj , respectively.
For fixed control variable, the values of βij and βij ′ will

be correlated for model realizations mj and mj ′ at a small
distance. Here, we assume that the model realizations are
far enough apart such that the observed values of β from
different realizations are independent. Then the covariance
function for β for fixed control variable can be described as:

Cβ(hm) =
{

1
Nx

∑Nx

k=1 σ 2
β (xk) if hm = 0

0 if hm = 1,
(40)

where σ 2
β (xk) is the variance of observed β from different

realizations at a fixed control xk .

cov(bbT ) =

⎡

⎢⎢⎢⎣

cov(β11, β11) cov(β11, β22) · · · cov(β11, βNN)

cov(β22, β11) cov(β22, β22) cov(β22, βNN)

...
. . .

...
cov(βNN , β11) cov(βNN , β22) · · · cov(βNN , βNN)

⎤

⎥⎥⎥⎦

(41)
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cov(bbT
0 ) =

⎡

⎢⎢⎢⎣

cov(β11, β01) cov(β11, β02) · · · cov(β11, β0N)

cov(β22, β01) cov(β22, β02) cov(β22, β0N)

...
. . .

...
cov(βNN , β01) cov(βNN , β02) · · · cov(βNN , β0N)

⎤

⎥⎥⎥⎦

(42)
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