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Abstract
In the Directed Feedback Vertex Set (DFVS) problem, the input is a directed
graph D and an integer k. The objective is to determine whether there exists a set
of at most k vertices intersecting every directed cycle of D. DFVS was shown to
be fixed-parameter tractable when parameterized by solution size by Chen et al. (J
ACM 55(5):177–186, 2008); since then, the existence of a polynomial kernel for this
problem has become one of the largest open problems in the area of parameterized
algorithmics. Since this problem has remained open in spite of the best efforts of
a number of prominent researchers and pioneers in the field, a natural step forward
is to study the kernelization complexity of DFVS parameterized by a natural larger
parameter. In this paper, we study DFVS parameterized by the feedback vertex set
number of the underlying undirected graph. We provide two main contributions: a
polynomial kernel for this problem on general instances, and a linear kernel for the
case where the input digraph is embeddable on a surface of bounded genus.
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1 Introduction

Feedback Set problems are fundamental combinatorial optimization problems. Typ-
ically, in these problems, we are given a graph G (directed or undirected) and a
positive integer k, and the objective is to select at most k vertices, edges or arcs to
hit all cycles of the input graph. Feedback Set problems are among Karp’s 21
NP-complete problems [28] and have been a topic of active research from algo-
rithmic [1–3,7–11,14,15,21,24,26,29,31,34,39] as well as structural points of view
[20,27,30,33,35–37]. In particular, such problems constitute one of the most impor-
tant topics of research in parameterized algorithms [7,9–11,14,15,26,29,31,34,39],
spearheading the development of several new techniques. In this paper, we study the
DFVS problem, where the objective is to find a set of k vertices that intersects all
directed cycles in a given digraph.

For over a decade resolving the fixed-parameter tractability ofDFVS (whether there
is an algorithm running in time f (k) · nO(1) for some computable function f ) was
considered the most important open problem in parameterized complexity. In fact,
this problem was posed as an open problem in the first few papers on fixed-parameter
tractability (FPT) [17,18]. The problem can be formally stated as follows.

Directed Feedback Vertex Set (DFVS)
Instance: A digraph D and a positive integer k.

Parameter: k
Question: Does there exist a vertex subset of size at most k

that intersects every cycle in D?

DFVS was shown to be fixed-parameter tractable in a breakthrough paper by Chen
et al. [10] in 2008.One of themost natural follow-up questions once a problemhas been
classified as fixed-parameter tractable is ‘does it admit a polynomial kernel?’. A poly-
nomial kernel is essentially a polynomial-time preprocessing algorithm that transforms
the given instance of the problem into an equivalent one whose size is bounded poly-
nomially in the parameter. Following the resolution of the fixed-parameter tractability
of DFVS, the question of whether the problem admits a polynomial kernel was raised
and has since become one of the main open problems in the area of parameterized
complexity.

Themost frequently usedwayof parameterizing problems, like in the case ofDFVS,
is taking the solution size as the parameter. An alternate method of parameterization
is choosing a parameter that never exceeds the solution size but can potentially be
much smaller. A classical example of this approach is parameterizing the Vertex
Cover problem by the feedback vertex set (FVS) number. Clearly, the number of
vertices required to make a graph acyclic never exceeds the number of vertices needed
to make the graph edgeless. On the other hand, the feedback vertex set number could
be arbitrarily smaller than the size of the smallest vertex cover. This problem was first
studied by Bodlaender and Jansen [25], who showed thatVertex Cover parameter-
ized by the feedback vertex number has a polynomial kernel. This was later extended
by Cygan et al. [13] who systematically studied several generalizations of this problem
and obtained several positive as well as negative results with respect to the existence
of polynomial kernels.
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While this kind of an alternate parameterization is interesting for problems which
are known to have polynomial kernels when parameterized by the solution size, it is
the exact opposite approach which is useful when dealing with problems for which
this question has been answered negatively or remains open. This paper deals with
such a parameterization for DFVS as an intermediate step towards answering the
main question, that of a polynomial kernel for DFVS. To this end, we chose a natural
parameter which is never less than the solution size, in particular the feedback vertex
set number of the undirected graph underlying the given digraph. The problem we are
interested in can formally be stated as follows.

Directed Feedback Vertex Set parameterized by FVS (DFVS[FVS])
Instance: A digraph D, an integer p, and an UFVS F of D.

Parameter: |F |
Question: Does there exist a vertex subset of size at most p

that intersects every cycle in D?

Since every UFVS (undirected feedback vertex set) of D is also a DFVS (directed
feedback vertex set) of D, we may assume without loss of generality that p ≤ |F | for
every instance of DFVS[FVS]. Furthermore, we use k to denote the size of F . Our
first result is a polynomial kernel for DFVS[FVS], formally stated below.

Theorem 1 There is a kernel with O(k4) vertices for DFVS[FVS].

The overall approach for proving Theorem 1 is inspired by the result of Bodlaender
and Van Dijk [6] on kernelizing the undirected feedback vertex set problem. However,
several obstacles needed to be overcome for the techniques to be applicable in the
directed setting.

Interestingly, the existence of a polynomial kernel for DFVS parameterized by the
solution size remains open even in the restricted setting of planar graphs. While our
Theorem 1 naturally also provides a polynomial kernel for DFVS[FVS] on planar
graphs, as our second main contribution we show that one can in fact obtain a sig-
nificantly stronger result not only on planar graphs, but on all graphs embeddable on
orientable surfaces.

Theorem 2 There is a kernel with O(k) vertices for DFVS[FVS] when the input
digraph is embeddable on a surface of constant genus.

We note that the existence of such a linear kernel can also be obtained from the
Meta-Kernelization framework [5] by observing that DFVS[FVS] has finite integer
index. However, the framework is non-constructive; unlike our Theorem 2, it does not
provide a concrete kernelization algorithm for the problem.

2 Preliminaries

Graphs and Digraphs We consider undirected and directed graphs that may contain
self-loops and multiple edges and mostly use standard notation that can be found, for
instance, in the textbook by Diestel [16]. For an undirected or directed graph D we
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denote by V (D) its vertex set and by E(D) its edgeset (or arcset). For a set of vertices
A ⊆ V (D), we denote by D\A the (di-)graph obtained from D after deleting all
vertices in A as well as all arcs/edges incident to some vertex in V . Moreover, D[A]
denotes the graph D\(V (D)\A). We say that a vertex u is a neighbor of a vertex v in
D if {u, v} ∈ E(D) (in the case that D is undirected) or at least one of (u, v) ∈ E(D)

or (v, u) ∈ E(D) holds (in the case that D is directed). We denote by ND(v) (or by
N (v) if D is clear from the context) the set of all neighbors of v in D and refer to
|ND(v)| as the degree of v in D (if D is undirected) or as the total degree of v in D (if
D is directed). For a set of vertices A, we denote by ND(A) the set (

⋃
a∈A ND(a))\A.

In the following let D be a directed graph (or simply digraph). A vertex u is an
in-neighbor or out-neighbor of a vertex v in D if (v, u) ∈ E(D) or (u, v) ∈ E(D),
respectively. We denote by N−

D (u) and N+
D (u) the set of all in-neighbors and out-

neighbors of v in D, respectively. Again we drop the subscript D if it can be inferred
from the context and for a vertex set A ⊆ V (D) we write N−

D (A) and N+
D (A) to

denote the sets (
⋃

a∈A N−
D (a))\A and (

⋃
a∈A N+

D (a))\A, respectively. A directed
path or simply path P in D from a vertex u to a vertex v is a sequence (v0, . . . , vl)

such that v0 = u, vn = vl , (vi , vi+1) ∈ E(D) for every i with 0 ≤ i < l, and
apart from the pair (v0, vl) all pairs of vertices in P are disjoint. We call v0 and vl
the endpoints of P and the vertices v1, . . . , vl−1 the internal vertices of P . For two
vertex sets A and B we say that there is a directed path from A to B if there are a ∈ A
and b ∈ B such that D has a directed path from a to b. We say that a set of paths is
vertex disjoint if no two paths in the set share an internal vertex. We denote by D the
undirected graph obtained from D after replacing every arc (u, v) ∈ E(D) with an
edge {u, v}; note that if there are arcs in both directions between u and v, in this case
we also say that there is a bidirectional arc between u and v, then D will contain two
parallel edges between u and v. Given an arc (u, v) ∈ E(D), we say that the directed
graph D′ is obtained from D after contracting the arc (u, v) if D′ is obtained from D
after replacing u and v in D with a new vertex n and adding all arcs (w, n) for every
in-neighbor w of u or v in D as well as all arcs (n, w) for every out-neighbor w of u
or v in D.

In the following let G be an undirected graph. A undirected path of simply path in
G (as well as the related notions of endpoints, internal vertices, and vertex disjoint)
is defined as in the case for digraphs only that the condition (vi , vi+1) ∈ E(D) is
replaced with the condition {vi , vi+1} ∈ E(D). Given an edge {u, v} ∈ E(D), we say
that the graph G ′ is obtained from G after contracting the edge {u, v} if G ′ is obtained
from G after replacing u and v in G with a new vertex n and adding all edges {n, w}
for every neighbor w of u or v in G. We say that a graph H is a minor of G if H is
isomorphic to a graph obtained from a subgraph of G using edge contractions. We say
that a graph G is H -minor-free if G has no minor isomorphic to H . For n,m ∈ N,
we denote by Kn,m the complete bipartite graph with n vertices on one side and m
vertices on the other side.

Topology A surface is a connected 2-dimensional manifold without a boundary. The
sphere with g handles (respectively h crosscaps) attached forms a model for orientable
surfaces of genus g (nonorientable surfaces of genus h) and is denoted by Sg (Nh).
Indeed, the classification theorem for orientable (nonorientable) surfaces states that
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for any orientable (nonorientable) surface there is exactly one g ≥ 0 such that S is
homeomorphic with Sg (exactly one h ≥ 1 such that S is homeomorphic with Nh)
[23]. The number g (respectively h) is called the orientable (nonorientable) genus of
the surface. For instance, S0 is the sphere, S1 is the torus, and N1 is the projective
plane.

The orientable (nonorientable) genus of a graph G is the minimum orientable
(nonorientable) genus of a surface into which G can be embedded and is denoted by
γ (G) (γ̃ (G)).

Proposition 1 ([23]) The orientable and nonorientable genus, denoted by γ and γ̃ , of
complete bipartite graphs is given by the following formulae:

γ (Km,n) =
⌈

(m − 2)(n − 2)

4

⌉

, m, n ≥ 2;

γ̃ (Km,n) =
⌈

(m − 2)(n − 2)

2

⌉

, m, n ≥ 2.

Corollary 1 If G is a graph such that γ (G) ≤ g and γ̃ (G) ≤ h for some constants g
and h, then G does not contain K3,4g+3 nor K3,2h+3 as a minor.

For a more detailed treatment of topological graph theory, we refer the reader to
[23].
ParameterizedAlgorithms andKernelizationFor a detailed illustration of the following
facts the reader is referred to [12,19]. A parameterized problem is a language Π ⊆
Σ∗ × N, where Σ is a finite alphabet; the second component k of instances (I , k) ∈
Σ∗ × N is called the parameter. A parameterized problem Π is fixed-parameter
tractable if it admits a fixed-parameter algorithm, which decides instances (I , k) of
Π in time f (k) · |I |O(1) for some computable function f .

A kernelization for a parameterized problemΠ is a polynomial-time algorithm that
given any instance (I , k) returns an instance (I ′, k′) such that (I , k) ∈ Π if and only
if (I ′, k′) ∈ Π and such that |I ′| + k′ ≤ f (k) for some computable function f . The
function f is called the size of the kernelization, and we have a polynomial kerneliza-
tion if f (k) is polynomially bounded in k. It is known that a parameterized problem is
fixed-parameter tractable if and only if it is decidable and has a kernelization. However,
the kernels implied by this fact are usually of superpolynomial size.

A reduction rule is an algorithm that takes as input an instance I = (D, p, F) of
DFVS[FVS] and outputs an instance I ′ = (D′, p′, F ′) of the same problem. We say
that the reduction rule is sound if I is a yes-instance if and only if I ′ is a yes-instance.
In order to describe our kernelization algorithm, we present a series of reduction
rules. We prove the soundness of each reduction rule immediately after presenting
its description, unless the soundness is obvious. The reduction rules we present will
be executed in the order in which they appear. That is, if at any point we may apply
Reduction Rule i as well as Reduction Rule j where i < j , we will execute Reduction
Rule i .
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3 A Polynomial Kernel for DFVS[FVS]

Note that every FVS of D is also a DFVS of D. Given an instance D of DFVS, our ker-
nelization algorithm for DFVS parameterized by FVS first computes a 2-approximate
FVS S of D (using for instance the algorithm given in [1]) and then uses S to reduce the
instance in polynomial-time into an equivalent instance with at mostO(|S|4) vertices.

Hence in the following we will assume that D is a directed graph and S is a FVS
of D (and hence also a DFVS of D) of size k. Our first two reduction rules are sound
because (a) neither sinks nor sources can appear on a directed cycle and (b) if a vertex
v has exactly one in-neighbor u in D then every directed cycle containing v has to use
the arc (u, v) (a symmetric statement holds for verticeswith exactly one out-neighbor).

Reduction Rule 1 Delete all sources and sinks from D.

Reduction Rule 2 Let l be an arbitrary vertex in D.

– If N+(l) = {p}, then we contract the arc (l, p) into a new vertex l∗.
– If N−(l) = {p}, then we contract the arc (p, l) into a new vertex l∗.

After the exhaustive application of these two rules, we may assume without loss of
generality that the digraph D has no sinks or sources, and that every vertex has at least
2 in-neighbors and at least 2 out-neighbors. We now state one of our main reduction
rules.

Reduction Rule 3 Let u and v be two (not necessarily distinct) vertices in S such that
there are at least k + 1 internally vertex-disjoint directed u-v paths in D. Then,

– if u �= v and (u, v) /∈ E(D), we add an arc from u to v to D, or
– if u = v, we remove u from D and decrease the parameter k by one.

Proof of Soundness Let u, v ∈ S be as above and let D′ be the digraph obtained from
D after applying the reduction rule. If u = v then clearly every DFVS for D of size
at most k contains u, which shows the soundness of the reduction rule.

If on the other hand u �= v, we will show that a set S′ ⊆ V (D) = V (D′) of size at
most k is a DFVS for D if and only if it is also a DFVS for D′. The backward direction
is trivial because D is a subgraph of D′. For the forward direction let S′ be a DFVS
for D of size at most k and assume for a contradiction that S′ is not a DFVS for D′.
Then D′\S′ contains a directed cycle C that contains the arc (u, v). Hence D′\S′ and
thus also D\S′ contains a directed v-u path P . Moreover, since S′ has size at most k
and there are at least k + 1 vertex-disjoint directed u-v paths in D, we conclude that
there is a u-v path P ′ in D\S′. But then P ∪ P ′ must contain a directed cycle, which
is also a directed cycle in D\S′, a contradiction to our assumption that S′ is a DFVS
of D. 
�

Wewill use Reduction Rule 3 to reduce the number of vertices in D\S that ‘directly
contribute’ to (pairs of) vertices in S.We formalize this idea in the following definition.

Definition 1 Let (u, v) be an ordered pair of vertices in S. If u �= v, then we refer to
(u, v) as a potential arc in D[S] and if additionally (u, v) /∈ D then we refer to (u, v)
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as a non-arc. If on the other hand u = v, then we refer to (u, v) as a self-loop. We
say that a vertex v ∈ V (D)\S contributes to a potential arc or self-loop (u, w) , if
(u, v) ∈ E(D) and (v,w) ∈ E(D).

After the exhaustive application of Reduction Rule 3, we have the following struc-
tural observation regarding the input.

Observation 1 For every u ∈ S there are at most k internally vertex-disjoint u-u paths
in D; moreover for every two distinct vertices u and v in S with (u, v) /∈ E(D), there
are at most k vertex disjoint u-v paths in D. As a result, for every non-arc or self-loop
(u, v), there are at most k vertices that contribute to (u, v).

Since S has at most k vertices and at most k(k − 1) ordered pairs of vertices,
Observation 1 implies the following.

Observation 2 There are at most k2(k − 1) vertices in D\S that contribute to some
non-arc of D[S]. Moreover, there are at most k2 vertices in D\S that contribute to
some self-loop of D[S].

Our next aim is to bound the number of vertices in A = D\S in terms of k. Towards
achieving this we will distinguish these vertices in terms of their degree in D\S. We
therefore denote by A0, A1, A2, and A≥3 the sets of all vertices in A that have total
degree 0, 1, 2, and at least 3, respectively, in D\S.

3.1 Bounding A0, A1 and A≥3.

Note that Observation 2 already provides a bound for the number of vertices in A0
that contribute to some self-loop of D[S]. Hence, in order to bound A0, it is sufficient
to provide a bound for the remaining vertices, in the following denoted by A′

0, in A0.
In the following let v be a vertex in A′

0. Because of Rule 1 v must have at least one
in-neighbor and one out-neighbor in S. Consequently, v contributes to at least one
potential arc of D[S].
Reduction Rule 4 If v ∈ A′

0 does not contribute to a non-arc of D[S], then we remove
v from D.

Proof of Soundness Let v be as above and let D′ be the directed graph obtained from
D after deleting v. We show that a set S′ ⊆ V (D) is a DFVS for D if and only if S′ is
a DFVS for D′. The forward direction of this claim is trivial because D′ is a subgraph
of D. Towards showing the backward direction let S′ be a DFVS for D′ and assume
for a contradiction that S′ is not a DFVS for D. Then there must exist a directed cycle
C in D\S′ that contains v as well as two arcs (s, v) and (v, s′) for some s, s′ ∈ S.
Because v does not contribute to a self-loop of D[S], we have that s �= s′. Because
v does not contribute to a non-arc of D[S], it follows that (s, s′) ∈ E(D). Hence the
arc (s, s′) together with the directed path from s′ to s contained in C forms a directed
cycle in D′\S′, a contradiction to our assumption that S′ is a DFVS for D′. 
�
After the exhaustive application of the above rule, we obtain that v contributes to some
non-arc of D[S] and hence together with Observation 2, we obtain the following.
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Observation 3 There are at most k2(k − 1) vertices in A′
0.

Bounding A1. We now present the reduction rules we use to bound the size of A1,
i.e., the number of leaves in A. Again it is sufficient to bound the number of vertices
in A1 that do not contribute to some self-loop of D[S], in the following denoted by
A′
1. Namely, we will introduce a reduction rule that ensures that every vertex in A′

1
contributes to at least one non-arc in D[S]. Together with Observation 2 this then
bounds the size of A′

1. Recall that at this point every vertex in D has at least two
in-neighbors and at least two out-neighbors and since moreover every vertex in A′

1
does not contribute to a self-loop, we obtain that every vertex in A′

1 has at least one
in-neighbor and at least one out-neighbor in S that are distinct. Hence we obtain:

Observation 4 Every vertex in A′
1 has at least one in-neighbor and at least one out-

neighbor in S and hence every vertex in A′
1 contributes to a potential arc of D[S].

The next reduction rule reduces leaves that do not contribute to a non-arc of D[S].
Reduction Rule 5 If l ∈ A′

1 does not contribute to a non-arc of D[S], then:
– if l is a source in D\S, then we delete all arcs from l to vertices in S,
– if l is a sink in D\S, then we delete all arcs from vertices in S to l.

Proof of Soundness We only show the soundness of the first part since the proof for
the soundness of the second part is analogous. Let D′ be the directed graph obtained
from D after deleting all arcs from l to vertices in S. We will show that any set
S′ ⊆ V (D) = V (D′) is a DFVS of D if and only if S′ is a DFVS of D′. The forward
direction of this claim is trivial because D′ is a subgraph of D. Towards showing the
backward direction let S′ be a DFVS for D′ and assume for a contradiction that S′ is
not a DFVS for D. Then there is a cycle C in D\S′ that contains exactly one of the
deleted arcs, say the arc (l, s′) with s′ ∈ S, from l to some vertex in S. Because the
only incoming arcs of l in D are arcs from vertices in S, the cycle C must also contain
exactly one arc from some vertex say s ∈ S to l. Because l does not contribute to any
non-arc of D[S], we conclude that (s, s′) ∈ E(D). But then the directed path from
s′ to s contained in C together with the arc (s, s′) forms a directed cycle in D′\S′, a
contradiction to our assumption that S′ is a DFVS for D′. 
�

Note that after application of Rule 5, l will only have either in-neighbors or out-
neighbors in S and can hence be reduced further using Rule 2. Consequently, after
the exhaustive application of the above rules, we conclude that every vertex in A′

1
contributes to at least one non-arc of D[S]. Due to Observation 2 we conclude that
there are at most k2(k−1) vertices in A′

1. Finally, since D\S is a forest and the number
of vertices of degree at least 3 in a forest is at most equal to the number of leaves minus
two, we get the following.

Observation 5 There are at most k3 − 2 vertices in A≥3.

Note that at this point, we have bounded the size of the sets A0, A1 and A≥3 and the
only set that remains is A2.
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3.2 Bounding A2

Our next aim is to bound the number of vertices in A2.

Definition 2 Let v be a vertex in A2. We say that v is a sink-vertex or a source-vertex if
the two arcs of D\S incident on it are both incoming arcs or outgoing arcs respectively.
Otherwise we say that v is a balanced-vertex.

Note that due to Reduction Rule 2, there are no balanced vertices in D\S which
have no neighbors in S. This is because otherwise, we would have already contracted
one of the two arcs incident to v in D\S. The same holds for all sink and source
vertices, because of Reduction Rule 1. Therefore, at this point, we infer the following.

Observation 6 Every vertex in A2 has at least one neighbor in S.

Definition 3 Let P = (v1, . . . , vr ) be an inclusion-wise maximal directed path in
D\S whose internal vertices are in A2. Then we say that P is a path segment in D\S.
We say that P is an outer path segment if at least one of its endpoints is not in A2,
otherwise we say that P is an inner path segment.

Note that path segments are by definition directed paths. Our strategy now is to
obtain a bound on the total number of path segments and then proceed to bound the
length of each path segment.

We first bound the number of outer path segments in D\S as follows. Let G be the
undirected graph obtained from D\S after contracting all edges which are incident to
at least one vertex of degree 2 . Then the number of outer path segments in D\S is
equal to two times the number of edges ofG. BecauseG is a forest without degree two
vertices it holds that the number of edges of G is equal to the number of leaves plus
the number of non-leaves in G minus one. Hence the number of outer path segments
is at most 2(|A′

1∪ A≥3|−1), which together with the already obtained bound on these
sets and Observation 5 allows us to infer the following.

Observation 7 The number of outer path segments in D\S is at most 4k2(k − 1) +
2k2 − 6.

In order to bound the number of inner path segments, we need to introduce a new
reduction rule. We begin by defining the notion of a path segment ‘contributing’ to a
potential arc.

Definition 4 We say that a path segment P = (v1, . . . , vr ) contributes to a potential
arc (s, s′) of D[S] if there are i and j with 1 ≤ i ≤ j ≤ r such that (s, vi ) ∈ E(D)

and (v j , s′) ∈ E(D). Moreover, we say that P contributes to a self-loop if there are
i and j with 1 ≤ i ≤ j ≤ r such that (s, vi ) ∈ E(D) and (v j , s) ∈ E(D) for some
s ∈ S.

Reduction Rule 6 If an inner path segment does not contribute to a non-arc or to a
self-loop of D[S], then we remove all internal vertices of P.
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Proof of Soundness Let P = (v1, . . . , vr ) and let D′ be the directed graph obtained
from D after deleting all internal vertices of P . We claim that a set S′ of size at most
k is a DFVS for D if and only if it is a DFVS for D′. The forward direction is trivial
since D′ is a subgraph of D. For the backward direction let S′ be a DFVS for D′ of
size at most k and suppose for a contradiction that S′ is not a DFVS for D. Then there
is a directed cycle C in D\S′ that contains at least one internal vertex of P . Moreover,
because P is an inner path segment (and hence both of its endpoints are either sink- or
source-vertices) the path P can only be entered and left by the cycle C via vertices in
S. Hence C contains at least one directed subpath that enters P from some vertex say
s ∈ S and leaves P through some vertex say s′ ∈ S. Because P does not contribute
to a self-loop, we infer that s �= s′ for every such directed subpath of P . Furthermore,
because P does not contribute to a non-arc of D[S], we have that (s, s′) ∈ E(D)

for every such directed subpath of C . It follows that we can replace all directed s-s′
subpaths inC with s, s′ ∈ S and all internal vertices from P , with the arc (s, s′)which
we know by our assumption, exists in D[S] and thereby obtain a cycle C ′ in D′\S′, a
contradiction to our assumption that S′ is a DFVS for D′. 
�

After the exhaustive application of the above rule, we obtain:

Observation 8 Every inner path segment contributes to at least one non-arc or self-
loop of D[S] .
Because every pair of inner path segments that contribute to some non-arc or self-loop
(s, s′) of D[S] increase the number of disjoint paths between s and s′ in D by at least
one, Observation 1 implies that for every non-arc or self-loop (s, s′) of D[S] there
are at most 2k inner path segments that contribute to (s, s′). Finally, because S has at
most k vertices and at most k(k − 1) ordered pairs of vertices, we conclude that there
are at most 2k2(k − 1) + 2k2 inner path segments in D\S. Having obtained a bound
on the number of inner path segments too, we conclude the following.

Observation 9 The number of path segments in D\S is at most 6k2(k − 1) + 4k2 − 6.

Our next aim is to provide a bound on the overall length of path segments and use
it to bound the size of A2. Towards this aim we introduce reduction rules that allow us
to bound the in-degree and the out-degree w.r.t. S of any vertex occurring internally
in path segments.

Definition 5 Let s ∈ S and let P = (v1, . . . , vr ) be an induced directed path in D\S,
whose internal vertices are in A2 and that satisfies:

– (s, v1) ∈ E(D) and (s, vr ) ∈ E(D) and v1 is a balanced vertex in A2,
– for every i with 1 < i < r , it holds that (s, vi ) /∈ E(D).

If P satisfies the above properties we call P an out-segment for s. We say that P
contributes to a potential arc or self-loop (s, s′) in D[S] if there is an index i with
1 ≤ i < r such that (vi , s′) ∈ E(D) for some s′ ∈ S.

We now introduce a reduction rule that allows us to preprocess and reduce certain
out-segments.
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Reduction Rule 7 Let s ∈ S and let P = (v1, . . . , vr ) be an out-segment for s. If P
does not contribute to any non-arc or self-loop of D[S], then we remove the arc (s, v1).

Proof of Soundness Let D′ be the directed graph obtained from D after removing the
arc (s, v1). We show that a set S′ of size at most k is a DFVS for D if and only if it is
a DFVS for D′. The forward direction is trivial because D′ is a subgraph of D.

For the backward direction let S′ be a DFVS for D′ and assume for a contradiction
that S′ is not a DFVS for D. Then there is a directed cycle C in D\S′ that uses the
arc (s, v1). Because v1 is a balanced vertex the cycle C has to continue on P after
using the arc (s, v1); the cycle might only use v1 from P . That is, there is a subpath
of C which is (s, v1, . . . , vq) for some q < r . We now consider the following two
exhaustive cases.

Case 1: The cycle leaves P at some vertex vi with 1 ≤ i < r . Then, C leaves
P and enters some vertex s′ ∈ S. In other words, C has a subpath PC =
(s, v1, . . . , vi , s′). Because P does not contribute to a self-loop of D[S], we
have that s �= s′. Moreover, because P does not contribute to a non-arc of
D[S] we obtain that (s, s′) ∈ E(D). Hence we can replace the subpath PC
in C with the arc (s, s′) and thereby obtain a cycle C ′ that is also a cycle in
D′\S′ contradicting our assumption that S′ is a DFVS for D′.

Case 2: The cycle leaves P only at vr . In the second case we obtain a cycle C ′ from
C by replacing the arc (s, v1) plus the segment of C in P with the arc (s, vr ).
Because C ′ is also a cycle in D′\S′, this contradicts our assumption that S′
is a DFVS for D′.

Having obtained a contradiction in either case, we conclude that S is indeed a DFVS
for D. 
�

After the exhaustive application of the above rule, we obtain the following.

Observation 10 For each s ∈ S, there are at most k2 out-segments for s.

Proof Since Rule 7 does not apply, every out-segment for s contributes to at least one
non-arc or self-loop of D[S]. Furthermore, every out-segment for s that contributes to
some non-arc or self-loop (s, s′) of D[S] increases the number of internally vertex-
disjoint paths s-s′ paths in D by one. Observation 1 implies that for every non-arc or
self-loop (s, s′) of D[S], there are at most k out-segments for s in D\(S ∪ B) that
contribute to (s, s′).

Finally, because every vertex s is contained in at most a single self-loop and in at
most k−1 non-arcs of D[S], we infer that there are at most k(k−1)+k out-segments
for s. This completes the proof of the observation. 
�

We are now ready to bound the size of the set A2.

Observation 11 The number of vertices in A2 is at most 12k4 − 2k3 − 12k.

Proof Webegin by arguing that for every s ∈ S, s has atmost 12k3−2k2−12 neighbors
in A2. Note that every vertex in A2 lies on some path segment. Moreover, every out-
neighbor of s on a path segment can either be associated to the path segment itself (if s
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has only one out-neighbor on thewhole path segment) or to an out-segment. Therefore,
the number of out-neighbors of s in A2 is atmost the number of path segments (bounded
byObservation 9) plus the number of out-segments for s (bounded byObservation 10),
we obtain an upper bound of 6k2(k − 1) + 4k2 − 6 + k2 = 6k3 − k2 − 6 on the size
of the out-neighborhood (and by symmetry, the in-neighborhood) of s in A2.

Consequently, the total number of neighbors of vertices in S to vertices in A2
and thus (because of Observation 6) the total number of vertices in A2 is at most
2k · (6k3 − k2 − 6) = 12k4 − 2k3 − 12k. 
�

We are now ready to prove a bound on the size of the kernel. Recall that thus far
we have obtained the following bounds:

– there are at most k2 vertices in D\S contributing to a self-loop in D[S] (Observa-
tion 2),

– |A′
0| ≤ k2(k − 1) (Observation 3),

– |A′
1| ≤ k2(k − 1) (see paragraph before Observation 5),

– |A2| ≤ 12k4 − 2k3 − 12k (Observation 11),
– |A≥3| ≤ k3 − 2 (Observation 5),

It follows that the total number of vertices in the reduced graph is at most k2 + |A′
0 ∪

A′
1∪ A2∪ A≥3∪ S|which is at most k2+2k2(k−1)+k3−2+12k4−2k3−12k+k,

thus proving Theorem 1. This completes the description of our kernel for general
instances of the problem; we now proceed to the linear kernel on graphs of bounded
genus.

4 A Linear Kernel for DFVS[FVS] on Bounded Genus Graphs

Throughout this section we will use D to denote a directed graph of genus at most
some fixed bound g. We let S be a feedback vertex set of D and let c be a constant
such that D is a K3,c-minor-free graph, where c depends only on g as per Corollary 1.
We begin with the following lemma, which follows directly from [22, Lemma 4.3].

Lemma 1 Let G = (X ,Y , E) be a bipartite graph and c a constant such that G is
K3,c-minor-free. Then,

– there are O(|X |) subsets X ′ ⊆ X such that X ′ = N (u) for some u ∈ Y and
– for any subset X ′ ⊆ X such that |X ′| ≥ 3, the set Y ′ = {y ∈ Y : N (y) ⊇ X ′} has
size at most c − 1.

Wemainly use this lemma to bound the number of connected components of D\S,
it gives directly a bound on the number of connected components with at least 3
neighbors in S, for the connected components with at most 2 neighbors in S, we
need to introduce some new reduction rules. We will need a few additional notions
to provide a concise presentation of the results in this section. A digraph H is called
a road iff H is a path; the first and last vertex on a road are called its endpoints, and
all other vertices on a road are called internal vertices. Moreover, for a directed graph
G consider a connected component of G with vertex set A such that G[A] is acyclic.
ThenG[A] (and, equivalently, the set A) is called an acyclic component ofG. Observe
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that there is a one-to-one correspondence between connected components of D\S and
acyclic components of D\S.

For each distinct x, y ∈ S, we denote by Cx,y the set of all acyclic components
C of D\S with N (C) = {x, y}. Finally, we use C→

x,y to denote the subset of Cx,y of
components C with the property that D[C ∪ {x, y}]:
– contains a directed path from x to y, but
– contains neither an x-x directed path nor a y-y directed path intersecting C .

Observe that any road within D that is disjoint from a feedback vertex set of D may
contain exactly one arc between two adjacent vertices. Furthermore, in any instance
where Reduction Rule 1 is not applicable, the input digraph D itself does not contain
an acyclic component. That is, every connected component of D contains a directed
cycle.

Observation 12 If Reduction Rule 1 is not applicable and C is an acyclic component
of D\S, then there is a directed N (C)-N (C) path in D[C ∪ N (C)] containing at least
one vertex of C.

Crucially, Observation 12 implies that for each component C in Cx,y , either D[C ∪
{x}] (or D[C ∪ {y}] by symmetry) contains a cycle, or C ∈ C→

x,y ∪ C→
y,x .

Reduction Rule 8 If C is an acyclic component of D\S where ND(C) = {x} for some
x ∈ S and C ∪ {x} contains a cycle, then we remove D[C ∪ {x}] from D and reduce
k by 1.

The soundness of the above rule follows from the fact that any DFVS which does
not contain x must necessarily intersect C , and hence there also exists a DFVS of at
most the same size which contains x but does not intersect C .

By expanding the above argument, we observe that if there exists a DFVS T con-
taining at least two vertices from Cx,y ∪ {x, y}, then the set T ′ = (T \Cx,y) ∪ {x, y}
is also clearly a solution of at most the same size as T . Hence every minimum DFVS
contains at most two vertices from Cx,y ∪{x, y}. Consequently, if we have a minimum
DFVS T and C1,C2,C3 ∈ Cx,y , then at least one of C1, C2 or C3 has an empty
intersection with T . The soundness of the following three Reduction Rules follows.

Reduction Rule 9 If Cx,y contains at least 3 acyclic components C1, C2, C3 such that
D[C1∪x], D[C2∪x] and D[C3∪x] each contains a cycle, we remove x and decrease
k by 1.

Reduction Rule 10 If C→
x,y ∩ C→

y,x contains at least 4 components, then we remove all
components of C→

x,y ∪ C→
y,x from D and add the arcs (x, y) and (y, x) to D.

Reduction Rule 11 If C→
x,y contains at least 3 components and C→

x,y\C→
y,x is not empty,

then we remove all components of C→
x,y\C→

y,x from D and add the arc (x, y) to D.

Lemma 2 After applying Reduction Rules 1 to 2 and Reduction Rules 8 to 11, the
resulting digraph is also K3,c-minor-free.
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Proof Since Reduction Rule 1, 8 and 9 only remove vertices, it clearly does not effect
the fact that D is K3,c-minor-free. Furthermore, the operations in Reduction Rule 2,
10 and 11 result in a graph D′ such that D′ is a minor of D. Hence, the graph resulting
from these reduction rules is also K3,c-minor-free. 
�

We now argue the main structural consequence of applying these reduction rules.

Lemma 3 Suppose that Reduction Rule 1 and Reduction Rules 8 to 11 do not apply.
Then D\S has O(|S|) acyclic components.
Proof Let G be the bipartite graph obtained from D by leaving only a single copy of
all multiple edges, removing all edges between vertices of S, and contracting every
connected component of D\S into a single vertex. Since G is a minor of D, it is K3,c-
minor-free aswell; moreover, there is a one-to-one correspondence between connected
components of D\S and vertices of G\S.

We nowpartition the connected components of D\S as follows. For each non-empty
X ⊆ S, let TX be the set of all connected components of D\S whose neighborhood is
precisely X . By applying Lemma 1 to G (with bipartition S and V (G)\S), it follows
that there areO(|S|) subsets X ⊆ S such that TX is non-empty. Furthermore, for every
X ⊆ S of size at least 3, the size of TX is at most c − 1.

Hence, in order to prove the lemma, it suffices to bound the number of connected
components of D\S with at most two neighbors in S. In particular, we will show that
D does not have ‘too many’ acyclic components with the same neighborhood of size
at most 2. Since there are no sinks or sources in D and no acyclic component of D\S
has a single neighbor in S (due to Reduction Rule 8), every acyclic component of D\S
has at least 2 neighbors in S.

Let us fix distinct x, y ∈ S and consider the set Cx,y . Since Reduction Rule 9
is not applicable, there are at most 2 components C in Cx,y such that D[C ∪ {x}]
contains a cycle and analogously for D[C ∪ {y}]. Since Reduction Rule 10 is not
applicable, C→

x,y ∩ C→
y,x contains at most 3 components. Furthermore, since Reduction

Rule 11 is not applicable, the sets C→
x,y\C→

y,x and C→
y,x\C→

x,y both contain at most 2
components. Finally, from Observation 12, it follows that Cx,y does not contain any
other components and hence |Cx,y | ≤ 11. 
�
Lemma 4 Let C be a connected component of D\S, and � be the number of neighbors
of C in S. If Reduction Rules 1 and 2 are not applicable, then D[C] has O(�) leaves.

Proof Recall that when the first two reduction rules do not apply, every vertex in D
is incident to at least 4 arcs and thus every leaf of C is incident to at least 3 arcs with
endpoints in S. However, since there can be bidirectional arcs between C and S, every
leaf of C has at least 2 neighbors in S. From Lemma 1 it follows that there are only
O(�) vertices in C with at least 3 neighbors in S. Hence it suffices to obtain an O(�)

bound on the leaves of C with exactly two neighbors in S.
Recalling Lemma 1, we observe that each of the leaves of C has one of O(�)

possible neighborhoods in S. Let us fix two distinct vertices x and y in N (C). We will
show that there are at most c− 1 leaves of C with both x and y as neighbors. Suppose
for a contradiction that there is a set L of at least c leaves of D[C] which are adjacent
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to x and y. Since D[C] is a tree and L is a subset of its leaves, the graph D[C\L]
is also a tree. If we contract D[C\L] into a single vertex, say z, then the subgraph
induced on the vertices in L ∪ {x, y, z} would be isomorphic to K3,c, contradicting
the fact that D is K3,c-minor-free. We conclude that C can have at most c − 1 leaves
with neighbors x and y, completing the proof. 
�
Lemma 5 If none of Reduction Rules 1, 2, 8–11 apply, then D\S has at most O(|S|)
vertices of degree at least 3.

Proof Let C be the set of all components of D\S. Since none of the aforementioned
reduction rules apply, we can invoke Lemmas 3 and 4. That is, we conclude that there
are onlyO(|S|) components in C and that the number of leaves in a component C ∈ C
is O(|N (C)|).

Since the number of leaves in a tree gives an upper bound on the number of vertices
of degree at least 3, this implies that the number of vertices of degree at least 3 in D[C]
is also bounded byO(|N (C)|). Thus it suffices to show that

∑
C∈C |N (C)| = O(|S|).

However,
∑

C∈C |N (C)| is the same as the number of edges in the graph G which we
obtain from D by contracting each component of C to a single vertex and removing all
edges between vertices in S. SinceG is clearly a minor of D, it is also K3,c-minor-free
and hence |E(G)| is at most O(|V (G)|) = O(|S| + |C|) = O(|S|), which concludes
the proof. 
�

The main consequence of the above lemma is that we can now add all the vertices
of degree at least 3 to the set S in order to get a set S′ which is also a feedback vertex
set of D of size O(|S|) = O(k). At the same time, the graph D\S′ is significantly
more structured: every connected component of this graph is in fact a path and this
will play a crucial role in the rest of this section. Since |S′| ∈ O(|S|), it suffices to
obtain a reduced instance of size linear in |S′|, and so for ease of presentation we will
hereinafter set S := S′.

Reduction Rule 12 If none of the Reduction Rules 1–2, 8– 11 apply, then we add all
vertices of total degree at least three in D\S to S.

Observe that after applying Reduction Rule 12, D\S is a set of roads. Furthermore,
once we ensure that D\S is a set of roads, none of the reduction rules in this section
will ever create a new degree 3 vertex in D\S. Hence we can exhaustively apply all the
reduction rules in this section once again to ensure that the number of roads in D\S
is O(|S|). In the rest of the section, we present reduction rules to handle the roads in
D\S.

4.1 Dealing with Roads

Our first step will be to transform our instance so that all roads in D\S are even more
structured with respect to their adjacencies with S.

Definition 6 A road P in D\S is nice if |N (P ′) ∩ S| ≤ 2, where P ′ are the internal
vertices of P .
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In other words, nice roads are roads whose internal vertices are all adjacent to at
most two specific vertices from S (other than the endpoints of the road); observe that
this is equivalent to requiring that |N (P ′)| ≤ 4, where P ′ is the set of internal vertices
of the nice road P . In order to achieve this transformation, we will iteratively construct
an auxiliary vertex set Q to store certain vertices that form separators between nice
road segments in D − S. In the course of this procedure, we will also construct an
injective mapping δ from Q to the connected components of D\(S∪Q). We initialize
by setting δ = Q = ∅.
Reduction Rule 13 Let A be a connected component which is a road in D\(S ∪ Q)

that is not nice. Moreover, let A′ be a maximal nice subroad of A which contains a
leaf in D\(S ∪ Q) and let a′ be the unique neighbor of A′ in A. Then add a′ to Q and
add a′ �→ A′ to δ.

For each vertex q ∈ Q, let Rq = {q} ∪ δ(q). Observe that Rq is a road which
contains at least 3 neighbors in S. Furthermore, for any q, q ′ ∈ Q our construction of
δ ensures that Rq and Rq ′ are vertex-disjoint since δ(q) is a nice road in D\(S ∪ Q),
for all q ∈ Q.

Lemma 6 After the exhaustive application of Reduction Rule 13, we have |Q| =
O(|S|).
Proof Let P be the set {Rq | q ∈ Q} and let G be the graph, which we obtain from
D by deleting all vertices in V (D)\(⋃R∈P V (R) ∪ S), contracting each R ∈ P to a
single vertex vR , and deleting all the edges besides the edges between S and vR for
some R ∈ P . Clearly, G is a minor of D and hence K3,c-minor-free. Moreover, G is a
bipartite graphwith partitions S and T = {vR | R ∈ P} such that NG(vR) = N (R)∩S
for each R ∈ P and hence |N (v)| ≥ 3 for all vertices v in T . Therefore, it follows
from (1) in Lemma 1 that there are O(|S|) different sets X ⊆ S such that X = N (v)

for some vertex v ∈ T . Furthermore, from (2) in Lemma 1 follows that for each set
X ⊆ S there are at most c − 1 vertices v ∈ T such that X = N (v), which concludes
the proof. 
�

The next rule is only applied once after the exhaustive application of Reduction
Rule 13. Note that it does not increase the parameter by more than a linear factor due
to Lemma 6.

Reduction Rule 14 Set S := S ∪ Q.

Observe that after the exhaustive application of Reduction Rule 13 and the appli-
cation of Reduction Rule 14, each road in D − S is nice. Furthermore, the number of
roads in D− S is still linear in S, since removing |Q| vertices from a set of roads only
increases the number of roads in the set by at most |Q|. Our next task is to deal with
nice roads, but we first state a useful observation about general roads.

Observation 13 Let P be a road in D\S and let P ′ be the internal vertices of P. For
any DFVS T of D, the set (T \P ′) ∪ N (P ′) is also a DFVS of D. In particular, every
minimum DFVS contains at most |N (P ′)| vertices of P ∪ N (P ′).
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Reduction Rule 15 Let P be a nice road in D\S, P ′ internal vertices of P, and x
a vertex in N (P ′)\V (P). If D[P ′ ∪ {x}] contains at least |N (P ′)| directed cycles
intersecting only in x, then we remove x from D and set k = k − 1.

Proof of Soundness In order to prove that this reduction rule is sound, we show that
there is always an optimal solution that contains x . Let T be an optimal solution that
does not contain the vertex x . Clearly, T contains a vertex for each of at least |N (P ′)|
cycles in D[P ′ ∪ {x}] intersecting in x . However, then T ′ = (T \P ′) ∪ N (P ′) is also
a solution. Moreover, |T ′| ≤ |T |. Hence T ′ is an optimal solution. Note that we can
apply the reduction rule in polynomial time as follows. We create auxiliary vertices
xs and xt such that the out-neighborhood of xs is precisely out-neighborhood of x and
in-neighborhood of xt is in-neighborhood of x and we compute a maximum size flow
from xs to xt in D[P ′ ∪ {xs, xt }]. 
�

For internal vertices of a road P , we define an equivalence relation∼P such as a ∼P

b if and only if N+(a)\V (P) = N+(b)\V (P) and N−(a)\V (P) = N−(b)\V (P)

(i.e., a and b have same out- and in- neighborhoods outside of P). We are now ready
to state our final reduction rule, which will later allow us to bound the length of each
nice road by a constant.

Reduction Rule 16 Let P be a nice road in D\S, and let P ′ be internal vertices of
P with � = |N (P ′)|. If P ′ contains a directed subpath Q = (q1, . . . , q�+2), such
that qi ∼P q j for all 1 ≤ i, j ≤ � + 1, then we remove q� from D and add the arc
(q�−1, q�+1).

Proof of Soundness We now prove the soundness of this reduction rule. Let D denote
the input digraph before application of Reduction Rule 16 and D′ the digraph after.
First, let T ′ be an optimal solution for D′. We will show that T ′ is a solution for D
as well. Suppose otherwise, and let C be a cycle in D\T ′. Clearly, C contains the
vertex q�, since otherwise C would lie also in D′\T ′. There are 4 possibilities for the
combination of the predecessor p and successor s of q� in this cycle.

– p = q�−1, s = q�+1
– p = q�−1, s ∈ N+(q�)\{q�+1}
– p ∈ N−(q�)\{q�−1}, s = q�+1
– p ∈ N−(q�)\{q�−1}, s ∈ N+(q�)\{q�+1}

However, from the definition of Q it follows that in the first 3 cases, there is a (p, s)
arc in D′ and hence a cycle in D\T ′ as well, a contradiction. On the other hand, it
follows from Observation 13 that T ′ contains at most � vertices of Q, and hence there
exists a vertex q ∈ Q\(T ′ ∪ {q�}). But q ∼P q�, implying that there is a (p, q) arc
and a (q, s) arc in D′, implying the presence of a directed p-s path (p, q, s) in D′\T ′.
This path can be used in place of the path (p, q�, s) to construct a cycle fromC , which
is disjoint from T ′ in D′, a contradiction. Therefore, we conclude that T ′ is a solution
for D as well.

Conversely, let T be an optimal solution for D and let T ′ = T if T does not
contain q� and T ′ = (T \{q�}) ∪ {q�+1} otherwise. Suppose for contradiction that
D′\T ′ contains a cycle C . Clearly C contains the arc (q�−1, q�+1), since otherwise
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C is contained also in D\T . As a result, it must be the case that T ′ does not contain
q�−1 and q�+1, the latter of which can happen only if T does not contain q�. But then
D\T contains a cycle, which we get from C by replacing the arc (q�−1, q�+1) with
the directed path (q�−1, q�, q�+1). This concludes the proof. 
�

We are now ready to complete the proof of our linear kernelization by bounding
the size of an instance after the exhaustive application of our reduction rules.

Lemma 7 If none of Reduction Rules 1, 2 and 8–16 apply, then |D| = O(|S|).
Proof Let P be the set of all acyclic component of D\S. Recall that we have already
established that since Reduction Rules 13 and 14 do not apply, every connected com-
ponent in P is a nice road in D and there are at most |P| = O(|S|) such nice roads.
Therefore, it suffices to show that there is a constant d such that every nice road in P
has at most d vertices.

Let us fix a nice road P ∈ P , with internal vertices P ′. Let us denote the vertices
of P as p1, . . . , pt such that either (pi , pi+1) or (pi+1, pi ) is an arc in D for every
1 ≤ i < t . Recall that a road itself is not necessarily a directed path. Note that P
is a nice road, hence we have |N (P ′)| ≤ 4 and Reduction Rule 15 is applied for a
vertex x if D[P ′ ∪ {x}] contains at least |N (P ′)| ≤ 4 directed cycles intersecting
only in x . Since Reduction Rule 15 does not apply, there are at most 3 vertices in P ′
with bidirectional arcs to the same vertex of N (P ′). In particular, that means that if
|N (P ′)\V (P)| = 1, then P ′ has at most 3 vertices. Recall that from the definition of
nice roads it follows that |N (P ′)\V (P)| ≤ 2. Therefore, in the rest of the proof we
assume that |N (P ′)\V (P)| = 2, and we refer to the vertices in this set as x and y.

Since Reduction Rules 1 and 2 do not apply, it follows that all vertices in P ′ have at
least 2 in-neighbors and 2 out-neighbors. In particular, if pi ∈ P ′ is a sink in D[V (P)],
then D contains arcs (pi , x) and (pi , y). Similarly, if pi ∈ P ′ is a source in D[V (P)],
then D contains arcs (x, pi ) and (y, pi ). Therefore, if for i < j , pi is a source (sink)
and p j a sink (source) in D[V (P)] such that for all i < k < j the vertex pk is
not source nor sink in D[V (P)], then y, pi , . . . , p j , y (x, p j , . . . , pi , x) is a directed
cycle. Since sinks and sources have to alternate on the road P , it follows from the
above argument that if there are 8 sinks and sources in total in P ′, then D[P ′ ∪ {x}]
(as well as D[P ′ ∪ {y}]) contains 4 directed cycles that intersect only in x (in y).
Because |N (P ′)| = 4 and Reduction Rule 15 does not apply, there are at most 7 sinks
and sources in total in P ′. We already showed that P ′ contains are at most 3 vertices
with bidirectional arc to x , 3 vertices with bidirectional arc to y and 7 vertices that
are either sink or source in D[V (P)]. Let T denote this set of at most 13 vertices of
P ′. Furthermore, it must be the case that for every pi ∈ P ′\T either N+(pi ) = x
and N−(pi ) = y, or otherwise N+(pi ) = y and N−(pi ) = x . We will say that pi
satisfying former condition has Type 1 and the latter condition Type 2.

Note that if for 2 ≤ i ≤ t − 2 the vertex pi has Type 1 (Type 2) and pi+1 has Type
2 (Type 1), then if D contains the arc (pi , pi+1), then pi , pi+1, y (pi , pi+1, x) is a
directed cycle. Otherwise, D contains the arc (pi+1, pi ) and pi+1, pi , x (pi+1, pi , y)
is a directed cycle. Now let 1 < i < j < t be such that pi , p j ∈ T and pk ∈ P ′\T for
all i < k < j . It follows that pk has either Type 1 or Type 2 for all k with i < k < j .
Moreover, each time pk and pk+1 have distinct types, either D[{pk, pk+1, x}] or
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D[{pk, pk+1, y}] contains a cycle. Since Reduction Rule 15 does not apply, there are
can be at most 7 alternations of the type. Finally, since Reduction Rule 16 does not
apply, there are at most 5 vertices of the same type in a row. It follows that between
every pair of consecutive vertices of T on P , there are at most 35 vertices and hence
P ′ contains at most 13 · 35 vertices. Since P was chosen arbitrarily, the argument
holds for every nice road in D\S and thus concludes the proof. 
�

5 Conclusions and FutureWork

Our results provide a stepping stone towards resolving the existence of a polynomial
kernel for DFVS, and to the best of our knowledge also represent the first explicit
kernelization results for DFVS with respect to any natural parameter. They also open
up several new directions for future research. For instance, can we find reasonable
parameters that lie “between” DFVS number and FVS number, and would it be pos-
sible to generalize our polynomial kernel to these? What about parameters which are
incomparable to the FVS number but also upper-bound the DFVS number? Can our
linear kernel be lifted to graph classes of bounded expansion or nowhere dense graphs?
Can Theorem 1 be improved to a cubic or quadratic kernel, for instance by using tech-
niques similar to the improvement obtained for the undirected setting by Thomasse
[38]? Another related problem of interest is whether DFVS can be solved in time
2O(k) · nO(1), which remains open even on planar graphs. In recent work on the line
of research initiated in this paper, Lokshtanov et al. [32] obtained a polynomial kernel
for DFVS parameterized by the DFVS number plus the size of the smallest modulator
to a graph of (any) constant treewidth. Notice that the FVS number upper bounds both
these quantities. Thus, their result generalizes our polynomial kernel parameterized
by the FVS number.
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20. Erdős, P., Pósa, L.: On independent circuits contained in a graph. Can. J. Math. 17, 347–352 (1965)
21. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in

directed graphs. Algorithmica 20(2), 151–174 (1998)
22. Gajarský, J., Hlinený, P., Obdrzálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar,

S.: Kernelization using structural parameters on sparse graph classes. J. Comput. Syst. Sci. 84, 219–242
(2017)

23. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley-Interscience, New York (1987)
24. Guruswami, V., Lee, E.: Inapproximability of h-transversal/packing. In: Approximation, Random-

ization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015,
August 24–26, 2015, Princeton, NJ, USA, volume 40 of LIPIcs, pp. 284–304. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2015)

25. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited—upper and lower bounds for
a refined parameter. Theory Comput. Syst. 53(2), 263–299 (2013)

26. Kakimura,N.,Kawarabayashi, K.,Kobayashi, Y.: Erdös-pósa property and its algorithmic applications:
parity constraints, subset feedback set, and subset packing. In: Rabani, Y. (ed.), Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17–19, 2012, pp. 1726–1736. SIAM (2012)

123



Algorithmica

27. Kakimura, N., Kawarabayashi, K., Marx, D.: Packing cycles through prescribed vertices. J. Comb.
Theory Ser. B 101(5), 378–381 (2011)

28. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a symposium on the
Complexity of Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, pp. 85–103 (1972)

29. Kawarabayashi, K., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set problem
and the s-cycle packing problem. J. Comb. Theory Ser. B 102(4), 1020–1034 (2012)

30. Kawarabayashi,K.,Král’,D.,Krcál,M.,Kreutzer, S.: Packing directed cycles through a specified vertex
set. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6–8, 2013, pp. 365–377 (2013)

31. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10),
556–560 (2014)

32. Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Sharma, R., Zehavi, M.: Wannabe bounded treewidth
graphs admit a polynomial kernel for DFVS. In: Algorithms and Data Structures—16th International
Symposium, WADS 2019, Edmonton, AB, Canada, August 5–7, 2019, Proceedings, pp. 523–537
(2019)

33. Pontecorvi, M.,Wollan, P.: Disjoint cycles intersecting a set of vertices. J. Comb. Theory Ser. B 102(5),
1134–1141 (2012)

34. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for finding
feedback vertex sets. ACM Trans. Algorithms 2(3), 403–415 (2006)

35. Reed, B.A., Robertson, N., Seymour, P.D., Thomas, R.: Packing directed circuits. Combinatorica 16(4),
535–554 (1996)

36. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)
37. Seymour, P.D.: Packing circuits in Eulerian digraphs. Combinatorica 16(2), 223–231 (1996)
38. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 32:1–32:8 (2010)
39. Wahlström, M.: Half-integrality, LP-branching and FPT algorithms. In: Chekuri, C. (ed.), Proceedings

of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5–7, 2014, pp. 1762–1781. SIAM (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Towards a Polynomial Kernel for Directed Feedback Vertex Set
	Abstract
	1 Introduction
	2 Preliminaries
	3 A Polynomial Kernel for DFVS[FVS]
	3.1 Bounding A0, A1 and A3.
	3.2 Bounding A2

	4 A Linear Kernel for DFVS[FVS] on Bounded Genus Graphs
	4.1 Dealing with Roads

	5 Conclusions and Future Work
	Acknowledgements
	References




