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Abstract

In this article, we study parametric robust estimation in nonlinear regression models with
regressors generated by a class of non-stationary and null recurrent Markov process. The nonlinear
regression functions can be either integrable or asymptotically homogeneous, covering many
commonly-used functional forms in parametric nonlinear regression. Under regularity conditions,
we derive both the consistency and limit distribution results for the developed general robust esti-
mators (including the nonlinear least squares, least absolute deviation and Huber’s M-estimators).
The convergence rates of the estimation depend on not only the functional form of nonlinear
regression, but also on the recurrence rate of the Markov process. Some Monte-Carlo simulation
studies are conducted to examine the numerical performance of the proposed estimators and
verify the established asymptotic properties in finite samples. Finally two empirical applications
illustrate the usefulness of the proposed robust estimation method.
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1 Introduction

Suppose that {Yt} and {Xt} are two sequences of time series processes which are either stationary
or non-stationary. A flexible framework to study the relationship between Yt and Xt is via the
following nonlinear regression model:

Yt = m(Xt,γ0) +Wt, t = 1, · · · ,n, (1.1)

where γ0 = (γ01, · · · ,γ0d)
ᵀ is a column vector of unknown parameters, m(·, ·) is a pre-specified

nonlinear regression function, {Wt} is a sequence of model errors, and n is the sample size. Without
loss of generality, we assume that γ0 lies in the interior of Υ, a convex and compact parameter set.
Such a parametric nonlinear regression model has been extensively studied in the statistical and
econometric literature when the observations are either stationary (c.f., Jennrich, 1969; Malinvaud,
1970; Wu, 1981; Severini and Wong, 1992; Lai, 1994; Skouras, 2000) or non-stationary (c.f., Park
and Phillips, 2001; Chan and Wang, 2015; Li, Tjøstheim and Gao, 2016; Tjøstheim, 2018). The
main interest of this paper lies on estimation of the unknown parameter vector γ0. Most of the
aforementioned literature constructs consistent parameter estimation via the so-called nonlinear
least squares approach, which has some nice asymptotic properties and performs well in practice
when the model errorsWt follow (or approximate) the centred normal distribution. However, it is
well-known that the least squares based estimation is not robust and performs poorly when the
observations contain outliers or the model error distribution is heavy-tailed. The latter features
are particularly common for the data collected from economics and finance. Hence, it becomes
imperative to develop a robust methodology to estimate model (1.1).

When the observations are stationary, there has been extensive literature on studying various
parametric robust estimation approaches and developing their asymptotic properties (c.f., Huber,
1964, 1981; Bai, Rao and Wu, 1992; He and Shao, 1996; Knight, 1998; Sinha, Field and Smith, 2003;
Koenker, 2005; Zou and Yuan, 2008). Extension of robust estimation to parametric non-stationary
linear regression can be found in Knight (1991), Phillips (1995) and Maddala and Kim (1998). In
this paper, we consider a general setting where the observations are collected from a null recurrent
Markov process which includes the classic random walk process. In recent years, there have
been increasing interests on parametric and nonparametric estimation of null recurrent Markov
chains (c.f., Karlsen and Tjøstheim, 2001; Karlsen, Myklebust and Tjøstheim, 2007, 2010; Schienle,
2011; Chen, Gao and Li, 2012; Chan and Wang, 2015; Gao et al, 2015; Li, Tjøstheim and Gao, 2016;
Tjøstheim, 2018). Meanwhile, nonparametric extensions of the classic M-type estimation and
composite quantile estimation for recurrent time series have been studied in Lin, Li and Chen
(2009) and Li and Li (2016), respectively. However, as we are aware of, there is virtually no work
on robust estimation for parametric nonlinear models like (1.1) with Xt being nonstationary. This
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paper aims to fill this gap.

In the robust nonparametric estimation, both Lin, Li and Chen (2009) and Li and Li (2016)
use the kernel-based approach and assume the kernel function is bounded, making it feasible
to use some existing limit theory developed for bounded functions of Harris recurrent Markov
processes. However, it is often the case that nonlinear function m(·, ·) or its derivatives may be
unbounded, leading to difficulties in developing the relevant asymptotic properties when we use
classic parametric robust estimation methods such as the least absolute deviation and Huber’s M-
estimation. To address this issue, in this paper we introduce a trimmed version of robust estimation,
disregarding the observations when |Xt| exceeds ζn which is a tuning parameter diverging to
infinity at certain rate of n. Through an appropriate choice of ζn, we remove some aberrant
observations in the robust estimation procedure and keep sample information loss controlled.

The seminal paper by Park and Phillips (2001) shows that, when the regressor Xt follows a
non-stationary unit root process, the asymptotic behavior for the nonlinear least squares estimator
of γ0 relies on the property of the nonlinear regression function m(·, ·) and its derivatives, i.e., the
convergence rate is slower than the well-known root-n rate in stationary parametric regression
estimation when the regression function is integrable, whereas a super-fast convergence rate can
be achieved when the regression function is asymptotically homogeneous. Such a dichotomy in
the asymptotic theory is also studied in Chan and Wang (2015) and Li, Tjøstheim and Gao (2016).
In this paper, we make a further extension of the theory and develop both the consistency and limit
distribution results for the general robust estimation when Xt is β-null recurrent. The restriction on
the convex loss function in the developed estimation procedure is mild, covering a few commonly-
used parametric estimation methods. As an application of our main theoretical results, we derive
the weak consistency and limit distribution results for the so-called modified nonlinear least
squares estimation similar to those in Li, Tjøstheim and Gao (2016), but the conditions imposed
in the present paper are much weaker. In addition, we also obtain the asymptotic results for
the modified least absolute deviation and Huber’s M-estimators. As in Li, Tjøstheim and Gao
(2016), the convergence rates of the proposed estimators in this paper depend on not only the
functional form of nonlinear regression, but also the recurrence rate of the Markov process. Some
Monte-Carlo simulation studies are given to examine the numerical performance of the proposed
parametric estimators in finite samples, and two real data examples illustrate their applicability.

The rest of the paper is organised as follows. Section 2 introduces the robust estimation
methodology and some basic definitions and results for null recurrent Markov processes. Section
3 gives the main asymptotic theory and discusses some possible extensions. Section 4 provides
the simulation studies and Section 5 contains the empirical applications. Section 6 concludes the
paper. Proofs of the main theoretical results are given in Appendix A. Appendices B and C, which
contain, respectively, proofs of some relevant technical lemmas and some additional simulation
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studies, are available in a supplemental document.

2 Estimation methodology and recurrent Markov processes

In this section we first introduce the robust method to estimate the parameter vector γ0 in model
(1.1) and then review some basic results for the recurrent Markov processes which will be used in
the following sections.

2.1 Robust estimation methodology

Suppose that model (1.1) holds and we have the observations (Yt,Xt), t = 1, · · · ,n. To estimate
the unknown parameter vector γ0, we may define the following objective function:

Ln(γ) =

n∑
t=1

ρ
(
Yt −m(Xt,γ)

)
, (2.1)

where ρ(·) is a convex loss function satisfying some conditions given in Section 3. Some commonly-
used loss functions include ρ(u) = u2 (corresponding to the nonlinear least squares), ρ(u) = |u|

(corresponding to the nonlinear least absolute deviation), and Huber (1964)’s loss function:

ρδ(u) =

{
u2/2, |u| 6 δ,
δ (|u|− δ/2) , |u| > δ,

where δ is a pre-specified number. The estimator of γ0 can be obtained by minimising the loss
function Ln(γ) with respect to γ and we denote the resulting estimate by γn.

When the observations are stationary, it can be proved that γn has some nice asymptotic
properties such as the root-n consistency and asymptotic normality under some mild conditions.
However, when Xt are non-stationary and generated from a null recurrent Markov chain, the
study of limit theory for the parametric estimation of γ0 becomes much more involved. For the
nonlinear least squares estimator with ρ(u) = u2, as shown by Li, Tjøstheim and Gao (2016), the
asymptotic behavior of γn relies on the functional properties of the regression function m(·, ·)
and its derivatives, which may be not bounded and integrable. In the latter case, we cannot
directly make use of some classic limit results for the recurrent Markov process (such as the ergodic
theorem for bounded functions of the recurrent Markov processes), making it very challenging to
develop sensible asymptotic theory for the parametric estimation.

In order to address the above concern, we need to modify the objective function Ln(γ) using
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the truncation technique as in Ling (2007) and Li, Tjøstheim and Gao (2016). Let ζn be a positive
tuning parameter satisfying ζn →∞ as n→∞. Some conditions on ζn will be given in Section 3
below. Consider a new objective function:

Ln,ζn(γ) =

n∑
t=1

ρ
(
Yt −m(Xt,γ)

)
I (|Xt| 6 ζn) , (2.2)

where I(·) is an indicator function. With such a truncation technique, we can remove the influence
of some aberrant observations of Xt, some of which may not be automatically deleted through
the use of the outlier-resistant loss function ρ(·), and could therefore affect the estimation of γ0

(see Section 4 for some Monte-Carlo evidence). A similar truncation idea can also be found in the
recent papers by Chen and Christensen (2015) and Hansen (2015), which consider series estimation
in general nonparametric regression setting. The modified robust estimator of γ0 is defined as

γ̃n = arg min
γ∈Υ

Ln,ζn(γ). (2.3)

If ρ(u) = u2, γ̃n becomes the modified nonlinear least squares estimator (Li, Tjøstheim and Gao,
2016) denoted by γ̃LS. If ρ(u) is chosen as |u| or Huber’s loss function ρδ(u), γ̃n would be the
nonlinear least absolute deviation estimator denoted by γ̃LAD or Huber’s M-estimator denoted by
γ̃M, both of which have been studied by Phillips (1995) for the parametric linear regression setting
with Xt generated by a unit root I(1) process. Section 3 below will give the asymptotic properties
for γ̃n, γ̃LS, γ̃LAD and γ̃M.

2.2 Basic Markov theory

To make our paper self-contained, we next review some basic definitions and results for a recurrent
Markov process. The notation we will use is similar to that in some existing papers (c.f. Karlsen
and Tjøstheim, 2001; Karlsen, Myklebust and Tjøstheim, 2007; Li, Tjøstheim and Gao, 2016), and
further details are available in the two books: Nummelin (1984) and Meyn and Tweedie (2009).

Throughout the paper, we let {Xt, t > 0} be a φ-irreducible Markov chain on the state space
(E,E) with transition probability P, meaning that for any set A ∈ E+, we have

∑∞
t=1 Pt(x,A) > 0

for x ∈ E, where E+ denotes the class of nonnegative measurable functions with φ-positive support
and a set A ∈ E+ if the indicator function I(A) ∈ E+. The transition probability P is assumed to
satisfy the following minorization inequality:

P > s⊗ ν, (2.4)
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where s(·) ∈ E+ is a small function, ν(·) is a small measure satisfying ν(E) = 1 and s⊗ ν(x,A) =
s(x)ν(A) for any (x,A) ∈ (E,E). The definitions of the small function and small measure can be
found in Karlsen and Tjøstheim (2001), see also Nummelin (1984) and Meyn and Tweedie (2009).
Example 3.1 in Karlsen and Tjøstheim (2001) shows that the inequality (2.4) holds for the nonlinear
AR(1) process defined by

Xt = g(Xt−1) + xt, (2.5)

where the nonlinear autoregressive function g(·) is bounded on any compact set and {xt} is a
sequence of independent and identically distributed (i.i.d.) random variables with zero mean and
with a density function f(·) on E = R. Karlsen and Tjøstheim (2001) further assume that infx∈A f(x)
is strictly positive for any compact set A and obtain (2.4) by choosing the small function and the
small measure as

s(x) = χ(f) · I(x ∈ A) and ν(dy) = [χ(f)]
−1 · f0(y)dy,

where χ(f) =
∫
R f0(z)dz and f0(z) = infx∈A f(z − g(x)). In particular, letting g(x) = x in (2.5), we

obtain the minorisation inequality for the random walk process.

In this paper, we further assume that the φ-irreducible Markov chain is Harris recurrent, i.e.,
for any set A ∈ E+ and given X0 = x for all x ∈ E, the Markov process {Xt} returns to the set
A infinitely often with probability one. The Harris recurrence is a key assumption to make the
kernel-based local method applicable to the nonparametric estimation of recurrent time series (c.f.,
Karlsen and Tjøstheim, 2001; Karlsen, Myklebust and Tjøstheim, 2007) and it also allows one to
construct a split chain (Nummelin, 1984). The split chain technique can lead to decomposition of
the partial sum of functions of the Harris recurrent process into blocks of i.i.d. parts (which are
asymptotically dominant) and two asymptotically negligible remaining parts. As in Karlsen and
Tjøstheim (2001), we let τk be the recurrence times of the split chain, and define T(n) as

T(n) = max
k

{k : τk 6 n} ∨ 0.

For the process {G(Xt) : t > 0} with G(·) being a real function, we define

Uk(G) =


∑τ0
t=0G(Xt), k = 0,∑τk
t=τk−1+1G(Xt), k = 1, · · · T(n),∑n
t=τT(n)+1G(Xt), k = T(n) + 1,

and consequently have

Sn(G) =

n∑
t=0

G(Xt) = U0(G) +

T(n)∑
k=1

Uk(G) +UT(n)+1(G). (2.6)
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From Nummelin (1984), we know that {Uk(G),k > 1} is a sequence of i.i.d. random variables, and
the first term U0(G) and the third term UT(n)+1(G) on the right side of (2.6) can be shown to be
bounded with probability approaching one.

The Harris recurrence provides a very general framework for time series analysis and includes
both the positive recurrent (stationary) and null recurrent (non-stationary) processes. The main
interest of this paper lies on the null recurrent case as the robust estimation in the stationary and
positive recurrent time series has been systematically studied in the literature. To obtain a specific
rate of the random number T(n) for the null recurrent process, we further impose some restrictions
on the tail behavior of the distribution of the recurrence times of the Markov process. A Markov
chain {Xt} is β-null recurrent if there exist a small nonnegative function f(·), an initial measure λ, a
constant β ∈ (0, 1), and a slowly varying function Lf(·) (which may depend on the function f) such
that

Eλ

[
n∑
t=1

f(Xt)

]
∼

1
Γ(1 + β)

nβLf(n), (2.7)

where Eλ denotes the expectation with initial distribution λ and Γ(·) is the Gamma function.

Choosing f(x) = I(x ∈ C) for a small set C ∈ E+ and using (2.7), we find that assuming β-null
recurrence restricts the number of Xt returning to the set C in the time interval [0,n] to be a
regularly varying function. In practice, the set C can be chosen as a compact set with φ-positive
support, which is a small set under some mild conditions. Let πs(·) be an invariant measure of the
Markov chain {Xt} which is defined as

πs =

∞∑
l=0

ν(P − s⊗ ν)l, (2.8)

where s(·) and ν(·) are defined as in the inequality (2.4). For all small functions f, we can find
a slowly varying function Ls(·) such that (2.7) holds for the β-null recurrent Markov chain with
Lf(·) = πs(f)Ls(·), where πs(f) =

∫
f(x)πs(dx). From Lemma 3.4 in Karlsen and Tjøstheim (2001),

we have
nβ−η � T(n)� nβ+η (2.9)

for any η > 0 almost surely (a.s.). Furthermore, Theorem 3.2 in Karlsen and Tjøstheim (2001) shows
that T(n) has the following asymptotic distribution:

T(n)

nβLs(n)

d−→Mβ(1), (2.10)

where {Mβ(t), t > 0} is the Mittag-Leffler process with parameter β (c.f., Kasahara, 1984).

Examples of β-null recurrent Markov processes can be found in Schienle (2011), Myklebust,
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Karlsen and Tjøstheim (2012) and Li, Tjøstheim and Gao (2016). The classic random walk process
is β-null recurrent with β = 1/2 and with πs(·) as the Lebesgue measure. As β < 1, we have
T(n) < n a.s., leading to slower rates of convergence for the nonparametric kernel estimation in
null recurrent time series (c.f., Karlsen, Myklebust and Tjøstheim, 2007; Gao et al, 2015). However,
Li, Tjøstheim and Gao (2016) show that this is not the case for the parametric estimation. In
particular, they prove that the rate of convergence for the nonlinear least squares estimator γ̃LS in
the null recurrent case can be faster than that for the stationary time series case when the regression
functionm(·, ·) in model (1.1) is asymptotically homogeneous. In Section 3 below, we will show
that similar properties hold for the more general M-estimation defined in (2.3).

3 Large sample theory

In this section, we first give the main limit theorems for the robust estimation γ̃n when the
regression function m(·, ·) is either integrable on the set Υ (in Section 3.1) or asymptotically
homogeneous on Υ (in Section 3.2), and then derive the results for γ̃LS, γ̃LAD and γ̃M. In Section
3.3, we discuss how to relax the independence restriction between {Xt} and {Wt}, and a possible
extension of the model structure to semiparametric single-index models.

3.1 The case of integrable regression function

A real function g(x,γ) is said to be integrable on the set Υ if for each γ ∈ Υ, g(·,γ) is πs-integrable
in the sense that ∫

R
|g(x,γ)|πs(x)dx <∞,

and there exist a neighborhood Nγ and a function B : R→ R, positive, bounded and πs-integrable
such that |g(x,γ1) − g(x,γ)| 6 ‖γ1 − γ‖B(x) for any γ1 ∈ Nγ, where ‖ · ‖ denotes the Euclidean
norm. Extension of the above definition to the case of a vector (or matrix) of integrable functions
on Υ is straightforward. Such a definition is similar to the definition of I-regular functions in Park
and Phillips (2001). Examples of integrable function include g(x,γ) = γg(x) with g(x) being a
bounded and πs-integrable function, and g(x,γ) = exp{−γx2} with γ ∈ R+ (the set of positive real
numbers). Throughout this subsection, we assume that the nonlinear regression functionm(x,γ)
and its first and second partial derivatives with respect to γ:

ṁ(x,γ) =
(
∂m(x,γ)
∂γj

)
d×1

, m̈(x,γ) =
(
∂2m(x,γ)
∂γi∂γj

)
d×d

,
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are integrable on Υ. The following regularity conditions are used to derive the limit theorems for
the robust estimation γ̃n.

Assumption 1. Let {Wt} be a sequence of i.i.d. random variables and {Xt} be a β-null recurrent
Markov process. In addition,Wt is independent of {Xs, s 6 t}.

Assumption 2. (i) Let ψ(·) be any choice of the sub-gradient of the convex loss function ρ(·). The
function ψ(·) is either Lipschitz continuous or bounded, satisfying

E [ψ(Wt + ε)] = φ1ε+ o(|ε|), ε→ 0, (3.1)

where φ1 > 0 is a constant.

(ii) There exists a positive constant φ2 such that φ2 = E
[
ψ2(Wt)

]
. For any positive constant

M, there exists a function Q(·) such that for |w| < M

E
{
[ψ(Wt +w) −ψ(Wt)]

2
}
6 Q(w), (3.2)

where Q(w) is bounded over |w| < M and continuous at w = 0, and Q(0) = 0.

(iii) The function ψ(·) satisfies that

E [|ψ(Wt +w1) −ψ(Wt +w2)|] = O(|w1 −w2|), (3.3)

uniformly over w1 and w2 in a small neighborhood of 0.

Assumption 3. (i) The regression functionm(x,γ) and its partial derivatives ṁ(x,γ) and m̈(x,γ)
are integrable on the set Υ.

(ii) For any γ ∈ Υ and γ 6= γ0,
∫
R [m(x,γ) −m(x,γ0)]

2
πs(dx) > 0. Furthermore, the d × d

matrix ∆m(γ0) :=
∫
R ṁ(x,γ0)ṁ

ᵀ
(x,γ0)πs(dx) is positive definite.

Remark 3.1. As in Karlsen, Myklebust and Tjøstheim (2007), we may replace the i.i.d. condition
onWt by some stationary and mixing dependence condition at the cost of more lengthy arguments
in mathematical proofs. The independence assumption betweenWt and {Xs, s 6 t} facilitates the
construction of martingale differences in the proofs of some key technical lemmas (say, Lemma A.1
in Appendix A) for the estimation consistency. However, to derive the limit distribution theory, we
need to strengthen the condition to mutual independence between {Wt} and {Xt} (e.g., Karlsen,
Myklebust and Tjøstheim, 2007; Gao et al, 2015; Li, Tjøstheim and Gao, 2016), which ensures that
the β-null recurrence can be retained for the compound Markov process {(Xt,Wt)}. Section 3.3
below will discuss how to relax such an independence restriction. Assumption 2 imposes some
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mild conditions on the loss function and its derivative, some of which are similar to those in Bai,
Rao and Wu (1992). Assumption 3(i) restricts the nonlinear regression function and its derivatives
to be integrable and Assumption 3(ii) guarantees that the parameters are identifiable (e.g., Park
and Phillips, 2001; Chan and Wang, 2015; Li, Tjøstheim and Gao, 2016).

We next state the asymptotic theorem for the robust estimation γ̃n when the nonlinear regres-
sion function and its derivatives are integrable.

Theorem 3.1. Suppose that Assumptions 1–3 are satisfied and that ζn →∞ as n→∞.

(i) The robust estimation γ̃n defined in (2.3) is weakly consistent.

(ii) If, in addition, {Wt} is independent of {Xt}, the following limit distribution theory holds:

T
1/2
C (n) (γ̃n − γ0)

d−→ N
(
0,πs(C)(φ2/φ

2
1)∆

−1
m (γ0)

)
, (3.4)

where TC(n) =
∑n
t=1 I(Xt ∈ C) and C ∈ E+ is a small set.

Remark 3.2. (i) Following the proof of Theorem 3.1 in Appendix A, we may show that γn which
minimises the untruncated loss function Ln(·) in (2.1), is also weakly consistent and has the same
limit distribution as that in (3.4). In fact, for an integrable function g(·,γ), by the ergodic theorem
for the Harris recurrent Markov process, we may show that

1
T(n)

n∑
t=1

g(Xt,γ)I(|Xt| 6 ζn)
P−→
∫
|x|6ζn

g(x,γ)πs(dx), (3.5)

and
1

T(n)

n∑
t=1

g(Xt,γ)
P−→
∫
R
g(x,γ)πs(dx). (3.6)

As g(·,γ) is πs-integrable, letting ζn →∞, we have
∫
|x|>ζn

g(x,γ)πs(dx)→ 0, which indicates that
the limits in (3.5) and (3.6) would be the same. Furthermore, we may prove that

1

T
1/2
C (n)

n∑
t=1

g(Xt,γ)ψ(Wt) and
1

T
1/2
C (n)

n∑
t=1

g(Xt,γ)ψ(Wt)I(|Xt| 6 ζn)

have the same limit distribution when ζn → ∞. Applying the above arguments, we may show
that T 1/2

C (n) (γ̃n − γn) = oP(1).

(ii) By Lemma 3.2 in Karlsen and Tjøstheim (2001), we have TC(n)
T(n)

→ πs(C) a.s. Hence, an
alternative limit distribution result can be written as

T 1/2(n) (γ̃n − γ0)
d−→ N

(
0, (φ2/φ

2
1)∆

−1
m (γ0)

)
. (3.7)

10



In practice, it is often preferred to use TC(n) as the random normalisation in the asymptotic normal
distribution as it is observable, facilitating statistical inference of the unknown parameter γ0.

Using Theorem 3.1 and verifying Assumption 2, we can derive the asymptotic results for γ̃LS,
γ̃LAD and γ̃M. When ρ(u) = u2, assuming that E[Wt] = 0, it is easy to show that Assumption
2 is satisfied with φ1 = 2 and φ2 = 4 · E[W2

t] =: 4σ2
W . When ρ(u) = |u|, assuming that Wt has a

symmetric density function fW(·) continuous at point 0, we may show that ψ(u) = sign(u) and
Assumption 2 is satisfied with φ1 = 2fW(0) and φ2 ≡ 1. When ρ(u) is chosen as Huber’s loss
function ρδ(u), we have

ψδ(u) =

{
u, |u| 6 δ,
δ · sign(u), |u| > δ,

and Assumption 2 is satisfied with φ1 = P(|Wt| 6 δ) and φ2 = E
[
ψ2
δ(Wt)

]
if E[ψδ(Wt)] = 0.

Combining the above arguments and Theorem 3.1, we readily have the following corollary.

Corollary 3.1. Suppose that Assumptions 1 and 3 are satisfied and that ζn →∞ as n→∞.

(i) If ρ(u) = u2, assuming that E[Wt] = 0, the modified nonlinear least squares estimator γ̃LS is
weakly consistent. Furthermore, assuming that {Wt} is independent of {Xt}, we have the following
limit distribution:

T
1/2
C (n) (γ̃LS − γ0)

d−→ N
(
0,πs(C)σ2

W∆−1
m (γ0)

)
. (3.8)

(ii) Suppose thatWt has a symmetric density function fW(·) continuous at point 0 and fW(0) > 0.
If ρ(u) = |u|, the modified nonlinear least absolute deviation estimator γ̃LAD is weakly consistent.
Furthermore, assuming that {Wt} is independent of {Xt}, we have the following limit distribution:

T
1/2
C (n) (γ̃LAD − γ0)

d−→ N
(
0,πs(C)[2fW(0)]−2∆−1

m (γ0)
)

. (3.9)

(iii) If ρ(u) is the Huber’s loss function ρδ(u), assuming that E[ψδ(Wt)] = 0, the modified
Huber’s M-estimator γ̃M is weakly consistent. Furthermore, assuming that {Wt} is independent of
{Xt}, we have the following limit distribution:

T
1/2
C (n) (γ̃M − γ0)

d−→ N
(
0,πs(C)φ(δ)∆−1

m (γ0)
)

, (3.10)

where
φ(δ) = E

[
ψ2
δ(Wt)

]
/P2(|Wt| 6 δ).

Remark 3.3. (i) Corollary 3.1 above covers and extends some existing results developed in the
literature. For example, Corollary 3.1(i) is the same as Theorem 3.1 and Corollary 3.1 in Li,

11



Tjøstheim and Gao (2016); Corollary 3.1(ii) and (iii) complements the limiting results in Bai, Rao
and Wu (1992) and Phillips (1995) which study the robust estimation in linear regression for
stationary and non-stationary time series, respectively. The main difference among the limit
distribution results in (3.8)–(3.10) is the asymptotic variance. Treating γ̃LS as the benchmark, we
may calculate the following two ratios:

R(γ̃LAD, γ̃LS) = σ
−2
W [2fW(0)]−2 and R(γ̃M, γ̃LS) = φ(δ)σ

−2
W ,

which can be used to examine the estimation efficiency. For the special case of standard normally
distributedWt, we readily have that σ2

W = 1, fW(0) = 1/
√

2π and φ(δ)→ 1 when δ is sufficiently
large. Consequently, we can show that R(γ̃LAD, γ̃LS) = 2π/4 > 1 (indicating that γ̃LS is asymptoti-
cally more efficient than γ̃LAD) and R(γ̃M, γ̃LS) → 1 as δ → ∞ (indicating that γ̃M would be as
efficient as γ̃LS if δ is chosen to be large enough).

(ii) By (2.10) and TC(n)
T(n)

→ πs(C) > 0 a.s., the random number TC(n) has the asymptotic
divergence rate of nβLs(n). Then, from Theorem 3.1 and Corollary 3.1 above, the convergence rate
for the developed robust estimators (including γ̃LS, γ̃LAD and γ̃M) becomes

√
nβLs(n), slower

than the
√
n-rate in stationary parametric regression estimation as β < 1 and Ls(·) is a slowly

varying function. In particular, if Xt follows the random walk process, we have β = 1/2 and
Ls(n) ≡ 1. The convergence rate in the above limit theory becomes OP(n−1/4).

3.2 The case of asymptotically homogeneous function

A real function G(x,γ) is said to be asymptotically homogeneous on the set Υ if

G(wx,γ) = v(w)H(x,γ) + R(x,w,γ), (3.11)

where v(·) is a positive real function, H(x,γ) and R(x,w,γ) satisfy the following two conditions: (i)
H(x,γ) is locally bounded uniformly over γ ∈ Υ and continuous with respect to γ; (ii) R(x,w,γ)
is of order smaller than v(w) as w→∞ on Υ. Throughout the paper, we call v(·) the asymptotic
order and H(·, ·) the limit homogeneous function of G(·, ·), and assume that v(·) does not depend
on γ. A vector (or matrix) of asymptotically homogeneous functions on Υ is defined similarly by
assuming each component function has the decomposition as in (3.11). Examples of asymptotically
homogeneous functions include G(x,γ) = γG(x) with G(x) being an asymptotically homogeneous
function independent of γ, i.e., (3.11) is simplified to G(wx) = v(w)H(x) + R(x,w), where the
conditions imposed on H(·) and R(·, ·) are similar to those on H(·, ·) and R(·, ·, ·) in (3.11). A special
case is to take G(x) = x and thus G(x,γ) = γx. Throughout this subsection, we assume that the
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nonlinear regression function m(x,γ) and its first and second partial derivatives with respect to γ:

ṁ(x,γ) =
(
∂m(x,γ)
∂γj

)
d×1

=: [ṁ1(x,γ), · · · , ṁd(x,γ)]
ᵀ

m̈(x,γ) =
(
∂2m(x,γ)
∂γi∂γj

)
d×d

=: [m̈ij(x,γ)]d×d ,

are asymptotically homogeneous on Υ. The asymptotic orders ofm(x,γ), ṁi(x,γ) and m̈ij(x,γ)
are denoted by κ(·), κ̇i(·) and κ̈ij(·), respectively; and their limit homogeneous functions are
denoted by h(·, ·), ḣi(·, ·) and ḧij(·, ·), respectively.

To derive the asymptotic properties of the robust estimator γ̃n when the nonlinear regression
function and its derivatives are asymptotically homogeneous, we use some additional assumptions.

Assumption 4. (i) There exists a positive constant ψ such that

M · E [ψ(Wt +M)) −ψ(Wt)] > ψ ·M2

for any real numberM.

(ii) Letting πs(ζn) =
∫ζn
−ζn

πs(dx), for any ζ?n = o(ζn), πs(ζ?n) = o (πs(ζn)). The invariant
density function ps(·) exists, and is bounded satisfying

inf
|x|6ζn

ps(x) > n
4ξ0−β,

where 0 < ξ0 < β/4. In addition, ζn diverges to infinity at a polynomial rate of n, and for
any x ∈ [−ζn, ζn], Nx(1), a neighborhood of xwith radius 1, is a small set.

Assumption 5. (i) The limit homogeneous functions h(x,γ), ḣi(x,γ) and ḧij(x,γ) are Lipschitz
continuous over |x| 6 1 and γ ∈ Υ. In addition, for any γ ∈ Υ and γ 6= γ0,

lim
n→∞

1
πs(ζn)

∫ζn
−ζn

[h (x/ζn,γ) − h (x/ζn,γ0)]
2
πs(dx) > 0 as n→∞. (3.12)

(ii) The asymptotic orders satisfy that κ(ζn)→∞ and sup16i,j6d
κ(ζn)κ̈ij(ζn)

κ̇i(ζn)κ̇j(ζn)
<∞.

(iii) The d× dmatrix ∆h(γ0) defined as

∆h(γ0) = lim
n→∞

1
πs(ζn)

∫ζn
−ζn

ḣ(x/ζn,γ0)ḣ
ᵀ
(x/ζn,γ0)πs(dx) (3.13)
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with ḣ(·, ·) =
[
ḣ1(·, ·), · · · , ḣd(·, ·)

]ᵀ
, is positive definite.

Remark 3.4. Assumption 4(i) implies some additional smoothness and moment conditions on
ψ(·) andWt. The convexity of ρ(·) ensures thatM · E [ψ(Wt +M)) −ψ(Wt)] is non-negative for
any real numberM. It includes the case of ρ(u) = u2 (corresponding to the nonlinear least squares
estimation) but excludes the cases of L1 and Huber (1964)’s loss functions, which will be dealt
with separately. Assumption 4(ii) is on some restrictions on the invariant measure πs(·) and its
derivative ps(·). In particular, we need to assume that there exists an order for the lower bound of
ps(x) over |x| 6 ζn, which is allowed to be divergent to zero. Such a condition is automatically
satisfied if we consider the random walk process (ps(x) ≡ 1). The conditions on the asymptotic
orders and limit homogeneous functions in Assumption 5 are comparable to those in Park and
Phillips (2001) and Chan and Wang (2015). In particular, if Xt is a random walk process, the
identification condition (3.12) becomes∫ 1

−1
[h (x,γ) − h (x,γ0)]

2
dx > 0,

and the definition of ∆h(γ0) in (3.13) can be simplified to

∆h(γ0) =
1
2

lim
n→∞

1
ζn

∫ζn
−ζn

ḣ(x/ζn,γ0)ḣ
ᵀ
(x/ζn,γ0)dx =

1
2

∫ 1

−1
ḣ(x,γ0)ḣ

ᵀ
(x,γ0)dx.

We next give the asymptotic theory of γ̃n for the case of asymptotically homogeneous nonlinear
regression function.

Theorem 3.2. Suppose that Assumptions 1, 2, 4 and 5 are satisfied.

(i) The robust estimation γ̃n defined in (2.3) is weakly consistent.

(ii) If, in addition, {Wt} is independent of {Xt}, the following limit distribution theory holds:

D(ζn, κ̇)(γ̃n − γ0)
d−→ N

(
0, (φ2/φ

2
1)∆

−1
h (γ0)

)
, (3.14)

where D(ζn, κ̇) is a d×d diagonal matrix with the i-th diagonal number being T 1/2(n)κ̇i(ζn)π
1/2
s (ζn).

Remark 3.5. Note that we allow the diagonal elements of D(ζn, κ̇) to have different orders, which
is mainly caused by the varying asymptotic orders κ̇i(·). As a result, different components of
γ̃n could have different convergence rates. Furthermore, by choosing ζn ∼ n1−βL−1

s (n) as in Li,
Tjøstheim and Gao (2016), we may find that the convergence rates also rely on the value of β.

From Theorem 3.2 above, we can easily derive the asymptotic property of the modified nonlin-
ear least squares estimator γ̃LS by choosing the convex loss function as ρ(u) = u2, which satisfies
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Assumption 4(i) by letting ψ = 2.

Corollary 3.2. Suppose that Assumptions 1, 4(ii) and 5 are satisfied and E[Wt] = 0. If ρ(u) = u2,
the modified nonlinear least squares estimator γ̃LS is weakly consistent. Furthermore, assuming
that {Wt} is independent of {Xt}, we have the following limit distribution:

D(ζn, κ̇)(γ̃LS − γ0)
d−→ N

(
0,σ2

W∆−1
h (γ0)

)
, (3.15)

where σ2
W = E

[
W2
t

]
as defined in Corollary 3.1(i).

Remark 3.6. Corollary 3.2 generalises Theorem 3.2 in Li, Tjøstheim and Gao (2016) which implicitly
assumes that the asymptotic orders κ̇i(·) remain the same over i = 1, · · · ,d. As discussed in Remark
3.5, we allow that different components of γ̃LS could have different random convergence rates
T 1/2(n)κ̇i(ζn)π

1/2
s (ζn). In addition, the technical assumptions in Assumption 5 are substantially

simpler than those in Li, Tjøstheim and Gao (2016).

As pointed out in Remark 3.4, Assumption 4(i) cannot cover the convex loss functions used in
the least absolute deviation estimator and Huber’s M-estimator. The following theorem establishes
the asymptotic theory for γ̃LAD and γ̃M.

Theorem 3.3. Suppose that Assumptions 1, 4(ii) and 5 are satisfied with (3.12) replaced by

lim
n→∞

1
πs(ζn)

∫ζn
−ζn

|h (x/ζn,γ) − h (x/ζn,γ0)|πs(dx) > 0 as n→∞. (3.16)

(i) Suppose thatWt has a symmetric density function fW(·) continuous at point 0 and fW(0) > 0.
If ρ(u) = |u|, the modified nonlinear least absolute deviation estimator γ̃LAD is weakly consistent.
Furthermore, assuming that {Wt} is independent of {Xt}, we have the following limit distribution:

D(ζn, κ̇)(γ̃LAD − γ0)
d−→ N

(
0, [2fW(0)]−2∆−1

h (γ0)
)

. (3.17)

(ii) Suppose that |m(x,γ0) −m(x,γ)| → ∞ as |x| → ∞ for γ 6= γ0. If ρ(u) is the Huber’s loss
function ρδ(u) and E[ψδ(Wt)] = 0, the modified Huber’s M-estimator γ̃M is weakly consistent.
Furthermore, assuming that {Wt} is independent of {Xt}, we have the following limit distribution:

D(ζn, κ̇)(γ̃M − γ0)
d−→ N

(
0,φ(δ)∆−1

h (γ0)
)

, (3.18)

where φ(δ) is defined as in Corollary 3.1(iii).

Remark 3.7. For the case of linear regression model with m(x,γ) = xγ, if the non-stationary
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regressor Xt is generated from a random walk process, we would find that the limit distribution
results (3.17) and (3.18) are comparable to those in Theorems 4.1 and 5.1 in Phillips (1995). In
particular, choosing ζn = cζn

1/2 with cζ being a positive constant, we obtain super-consistency for
γ̃LAD and γ̃M with n-convergence rate.

3.3 Extensions

In Sections 3.1 and 3.2 above, to derive the weak consistency for the proposed robust estimators,
we assume thatWt is independent of the β-null recurrent regressors Xs with s 6 t; and to establish
the limit distribution theory, we further assume that {Wt} and {Xt} are mutually independent.
Although the latter is commonly used in parametric and nonparametric regression models with
null recurrent regressors (c.f., Karlsen, Myklebust and Tjøstheim, 2007; Li, Tjøstheim and Gao,
2016), it can be rather restrictive as it excludes some interesting cases in practical applications, such
as, for example, a nonlinear autoregressive time series model with nonstationarity. In the context
of parametric nonlinear least squares estimation (c.f., Park and Phillips, 2001; Chan and Wang,
2015), the following assumption is often imposed on Wt: there exists a filtration Ft such that Xt is
adapted to Ft−1 and {(Wt,Ft)} is a martingale difference sequence (m.d.s.) with E(Wt|Ft−1) = 0
a.s. To further derive the limit distribution theory when Xt is null recurrent (see Theorem 3.3 in
Chan and Wang, 2015), Ft is replaced by Fnt := σ(Ft,X1,X2, · · · ,Xn), which is slightly weaker
than the mutual independence assumption between {Wt} and {Xt}. However, in the context of
general robust estimation, the above m.d.s. assumption would be insufficient as E(ψ(Wt)|Ft−1)

does not equal to zero in general unless ψ(u) = 2u, corresponding to the nonlinear least squares
estimation. A possible alternative assumption is to impose the m.d.s. condition directly on ψ(Wt).
We conjecture that the limiting properties in Sections 3.1 and 3.2 may still hold, but substantial
modifications are needed in the mathematical proofs.

As discussed in Tjøstheim (2018), it is feasible to extend the methodology and theory developed
in this paper to a parametric nonlinear autoregression setting defined by

Xt = m
?(Xt−1,γ?

0) +Wt, (3.19)

wherem?(·, ·) is a pre-specified nonlinear autoregression function, and γ?
0 is an unknown vector

of parameters. For the model (3.19), it is unreasonable to assume that {Wt} is independent of {Xt}
as Xt clearly depends on Wt. However, under some structural assumptions on m?(·, ·) and Wt

(c.f., Gao, Tjøstheim and Yin, 2013; Cai, Gao and Tjøstheim, 2017), we may prove that {Xt} is β-null
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recurrent and rewrite

n∑
t=1

ṁ(Xt,γ0)ψ(Wt)I (|Xt| 6 ζn) =

n∑
t=1

ṁ(Xt,γ0)ψ(Xt −m
?(Xt−1,γ?

0))I (|Xt| 6 ζn)

=:

n∑
t=1

M(Xt,Xt−1)

in Lemma A.4, a key result for proving the limit distribution. Then, using the technique in Section
4 of Karlsen and Tjøstheim (2001), we can prove the central limit theorem for

∑n
t=1M(Xt,Xt−1)

with appropriate random normalisation.

A second possible extension is to assume that the compound process {(Xt,Wt)} is β-null recur-
rent in the nonlinear regression model setting (1.1). As discussed in Section 4 of Karlsen, Myklebust
and Tjøstheim (2007), we may use the following assumption: {Xt} and {Wt} are asymptotically
independent in the sense that the invariant measure for the compound process can be factorised
into a product of two measures corresponding to {Xt} and {Wt}, respectively. Such an assumption
allows for dependence between Xt and Wt for fixed t (see Example 4.1 in Karlsen, Myklebust and
Tjøstheim, 2007), but the stationary process {Wt} has little influence on the nonstationary and null
recurrent process {Xt} in the asymptotic sense. However, Karlsen, Myklebust and Tjøstheim (2007)
need some additional conditions to establish the limit distribution theory. For example, they have
to assume that the errors are bounded, excluding the case of heavy-tailed model errors.

The developed methodology and theory heavily rely on the assumption that the nonlinear
regression functionm(·, ·) is pre-specified. An interesting extension is to relax this restriction and
consider a semiparametric regression model with an unknown link function. In particular, the
following single-index model structure 1 has been extensively studied in the literature:

Yt = m
(
X

ᵀ

tγ
)
+Wt, (3.20)

where the link function m(·) is unspecified and the parameter vector γ is unknown. When the
observations are stationary, various semiparametric estimation methods have been proposed to
estimate both the parametric and nonparametric components in model (3.20) (c.f., Härdle, Hall
and Ichimura, 1993; Xia et al, 2002). A recent paper by Dong, Gao and Tjøstheim (2016) considers
estimating model (3.20) when Xt satisfies a nonstationary unit root framework. We next briefly
discuss how to construct a robust version of Dong, Gao and Tjøstheim (2016)’s estimation method.
Dong, Gao and Tjøstheim (2016) suggest approximating the nonparametric function m(·) (for
given γ) via an orthogonal series, obtain its nonparametric estimation as a function of γ, and then
estimate the unknown parameter vector γ through ordinary least squares. It seems sensible to

1We thank the Associate Editor for suggesting this model specification.
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replace their loss function by a general convex loss function as described in Section 2, and obtain a
robust semiparametric estimation method for γ in model (3.20). Appendix C in the supplemental
material will report a simulation study for the robust single-index model estimation. Note that
the theory developed in Sections 3.1 and 3.2 is limited to the univariate null recurrent regressor
setting. As pointed out by Park and Phillips (2001) and Li, Tjøstheim and Gao (2016), extension
to multivariate nonstationary regressors is often challenging. For example, a three-dimensional
vector containing three independent random walks is transient (Myklebust, Karlsen and Tjøstheim,
2012), indicating that the theory developed in Sections 3.1 and 3.2 would be not applicable. The
relevant theoretical properties for the single-index model estimation will be considered in our
future studies.

4 Simulation studies

In this section we conduct Monte Carlo simulation studies to illustrate the finite-sample numerical
performance of the proposed robust estimators. The two simulated examples are similar to those
considered by Li, Tjøstheim and Gao (2016), but we allow presence of outliers in the data and heav-
ier tails in the error distribution, a typical setting for us to verify the robustness property of γ̃LAD
and γ̃M in finite samples. We start with a brief discussion on how the proposed robust estimators
γ̃LAD and γ̃M (which lack closed-form solutions) can be computed in practice. Computation of
the LAD estimator γ̃LAD can be carried out using standard derivative free minimising algorithms
such as those used by the function optimize of the statistical programming language R (used in
Example 4.1) or the function fminsearch of MATLAB. Alternatively, it can be computed using
the nlr function with τ = 0.5 available in the R package quantreg. Computation of the Huber
estimator γ̃M can be carried out using the iterated reweighted least squares algorithm which is
used in the function nlrob available in the R package Robustbase (used in Example 4.1). For
the linear regression in Example 4.2, computation of the proposed estimators can be carried out
using standard quantile and robust regression packages available in MATLAB, R and Stata.

Example 4.1. Consider the following nonlinear regression model:

Yt = exp
(
−γ0X

2
t

)
+Wt, γ0 = 1, (4.1)

where Xt is either a random walk process Xt = Xt−1 + εt or a threshold autoregressive (TAR)
process Xt = 0.5I (|Xt−1| 6 1)+Xt−1I (|Xt−1| > 1)+εt, X0 = 0, and both εt andWt are i.i.d. random
variables independent of each other. The innovations εt follow the standard normal distribution,
whereas the unobservable errors Wt are generated from either N

(
0, 0.52

)
or a mixed normal (MN)

distribution 0.95N (0, 1) + 0.05N
(
0, 102

)
. The outliers are added to Xt by randomly replacing 5%
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of their values with those randomly drawn from a uniform distribution between 20 and 25. We
consider three estimation methods for γ0: γ̃LS, γ̃LAD and γ̃M defined in Section 2. Note that Li,
Tjøstheim and Gao (2016) use γ̃LS in their simulation studies, but do not consider any robust
estimation. In the simulations, we consider sample sizes: n = 500, 1000, 5000, and 1000 replications.
The tuning parameter ζn is chosen as 2.58n1/2, the same as that in Li, Tjøstheim and Gao (2016).

Tables 1 and 2 report the finite-sample mean absolute bias (upper position) and standard
deviations (lower position) of the three estimators for γ0 with the two different generating schemes
of Xt. In addition, we also report the number of times in which the estimation procedure fails to
converge (after 500 iterations, in which case the estimate obtained in the last iteration is used). From
the tables, in the absence of outliers and with normal errors, the robust estimators, i.e., γ̃LAD and
γ̃M, have finite-sample mean absolute biases and standard deviations that are comparable to those
of the least squares based estimator γ̃LS. With mixed normal errors, the numerical performance of
γ̃LS is negatively affected by the heavy tails, resulting in larger values of the mean absolute bias and
standard deviations. In contrast, γ̃LAD and γ̃M have robust performance with mean absolute bias
and standard deviations similar to those in the light-tailed case. The finite-sample performance
of γ̃LS further deteriorates when outliers are randomly added to Xt. In addition, outliers and/or
mixed normal errors affect the numerical stability of the nonlinear least squares estimator, as the
number of convergence failures clearly indicates. Noting that the nonlinear regression function
in (4.1) is integrable, from the asymptotic theory in Section 3.1, the convergence rates of the three
estimators is rather slow. This can be seen in finite samples by comparing the results between
Tables 1–2 and Tables 3–4 (in Example 4.2 below).

Example 4.2. Consider the following linear regression model:

Yt = γ0Xt +Wt, γ0 = 0.5, (4.2)

where Xt,Wt and the outliers are defined as those in Example 4.1 above. We again compare three
estimators for γ0: γ̃LS, γ̃LAD and γ̃M, and consider sample sizes: n = 500, 1000, 5000 and 1000
replications. Note that the linear regression function in (4.2) is asymptotically homogeneous.

Tables 3 and 4 report the finite-sample mean absolute bias and standard deviations of the three
estimators for the parameter γ0 in model (4.2). As in Tables 1 and 2, the robust estimators γ̃LAD
and γ̃M have reliable numerical performance even when the outliers are present and the model
errors have heavy tails, following the mixed normal distribution. In contrast, the performance of
the least squares based estimator γ̃LS becomes significantly worse in the presence of outliers in Xt
and/or heavy tails in model errors. In addition, the values of the mean absolute bias and standard
deviations in Tables 3 and 4 are much smaller than those in Tables 1 and 2, supporting the super
fast consistency theory developed in Section 3.2.
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Table 1: Absolute estimation bias and standard deviation for model (4.1) with random walk Xt
Wt ∼ N

(
0, 0.52

)
Wt ∼MN

n NLS LAD Huber NLS LAD Huber

No outlier No outlier

500
.033
.215

(0)a
.034
.223

(0)a
.035
.220

(0)a
.143
.517

(12)a
.038
.229

(0)a
.035
.232

(0)a

1000
.021
.186

(0)a
.020
.182

(0)a
.024
.185

(0)a
.121
.449

(9)a
.030
.186

(0)a
.023
.189

(0)a

5000
.010
.126

(0)a
.012
.128

(0)a
.012
.130

(0)a
.064
.316

(5)a
.016
.134

(0)a
.015
.136

(0)a

With outliers With outliers

500
.204
.347

(130)a
.035
.230

(0)a
.039
.228

(0)a
.299
.613

(148)a
.039
.235

(0)a
.041
.239

(0)a

1000
.175
.312

(101)a
.027
.186

(0)a
.030
.189

(0)a
.224
.558

(123)a
.030
.191

(0)a
.031
.193

(0)a

5000
.110
.272

(78)a
.016
.132

(0)a
.015
.136

(0)a
.145
.483

(95)a
.020
.141

(0)a
.021
.145

(0)a

a number of convergence failures

Table 2: Absolute estimation bias and standard deviation for model (4.1) with TAR Xt
Wt ∼ N

(
0, 0.52

)
Wt ∼MN

n NLS LAD Huber NLS LAD Huber

No outlier No outlier

500
.030
.200

(0)a
.031
.205

(0)a
.034
.209

(0)a
.139
.455

(8)a
.029
.204

(0)a
.027
.207

(0)a

1000
.020
.176

(0)a
.018
.178

(0)a
.020
.179

(0)a
.102
.401

(5)a
.020
.181

(0)a
.022
.180

(0)a

5000
.009
.115

(0)a
.013
.122

(0)a
.016
.124

(0)a
.060
.312

(3)a
.013
.128

(0)a
.012
.130

(0)a

With outliers With outliers

500
.189
.321

(115)a
.030
.213

(0)a
.032
.217

(0)a
.255
.583

(125)a
.035
.215

(0)a
.038
.220

(0)a

1000
.162
.299

(93)a
.023
.179

(0)a
.023
.176

(0)a
.198
.538

(113)a
.028
.186

(0)a
.027
.184

(0)a

5000
.104
.259

(72)a
.018
.129

(0)a
.020
.132

(0)a
.136
.471

(84)a
.015
.134

(0)a
.018
.136

(0)a

a number of convergence failures
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Table 3: Mean absolute bias and standard deviation for model (4.2) with random walk Xt
Wt ∼ N

(
0, 0.52

)
Wt ∼MN

n NLS LAD Huber NLS LAD Huber

No outliers No outliers

500
.00005
.0026

.00006

.0025
.00006
.0024

.00012

.0056
.00008
.0029

.00009

.0030

1000
.00001
.0012

.00002

.0014
.00002
.0012

.00008

.0027
.00004
.0016

.00004

.0017

5000
.00000
.0002

.00000

.0003
.00001
.0002

.00006

.0007
.00002
.0003

.00001

.0003
With outliers With outliers

500
.00012
.0164

.00008

.0031
.00008
.0032

.00612

.0213
.00012
.0037

.00014

.0039

1000
.00009
.0101

.00004

.0017
.00005
.0018

.00515

.0126
.00007
.0018

.00008

.0019

5000
.00005
.0038

.00002

.0004
.00002
.0004

.00315

.0068
.00004
.0005

.00005

.0005

Table 4: Mean absolute bias and standard deviation for model (4.2) with TAR Xt
Wt ∼ N

(
0, 0.52

)
Wt ∼MN

n NLS LAD Huber NLS LAD Huber

No outliers No outliers

500
.00004
.0023

.00005

.0024
.00006
.0023

.00011

.0046
.00007
.0031

.00007

.0033

1000
.00009
.0012

.00009

.0011
.00010
.0010

.00007

.0024
.00004
.0016

.00005

.0017

5000
.00000
.0002

.00000

.0002
.00000
.0002

.0006

.0006
.00001
.0003

.00001

.0003
With outliers With outliers

500
.00341
.0154

.00008

.0029
.00008
.0030

.00586

.0192
.00019
.0034

.00020

.0034

1000
.00282
.0102

.00072

.0015
.00070
.0016

.00485

.0112
.00007
.0017

.00006

.0018

5000
.00212
.0049

.00038

.0003
.00036
.0003

.00299

.0054
.0004
.0005

.0004

.0005
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Tables 1-4 above show the usefulness of the proposed robust estimators when outliers and/or
heavy tails in model errors are present. However, they do not show the usefulness of the truncating
mechanism in the robust estimation procedure. To do so we increase the magnitude of outliers
in the sample by using random draws from a uniform distribution between 50 and 80 and the
percentage of outliers from 5 to 10. Tables 5 and 6 report the finite-sample mean absolute bias
and standard deviation of the Huber’s M and LAD estimators with and without truncation, i.e.,
comparison between the two robust estimators defined by minimising the objective functions
in (2.1) and (2.2), respectively. Tables 5 and 6 show that without involvement of truncation, the
robust estimators are influenced by the presence of very large (aberrant) outliers in the simulated
sample. On the other hand, the trimmed robust estimators have mean absolute biases and standard
deviations that are directly comparable to those of Tables 1-4.

Table 5: Comparison between trimmed and untrimmed robust estimators for model (4.1)

Random walk Xt

n

500

1000

5000

Wt ∼ N
(
0, 0.52

)
Wt ∼MN

LAD Huber LAD Huber

untrimmed estimators
.040
.241

.046

.243
.048
.246

.047

.249
.035
.198

.030

.204
.036
.205

.035

.203
.019
.138

.019

.141
.025
.151

.024

.150

Wt ∼ N
(
0, 0.52

)
Wt ∼MN

LAD Huber LAD Huber

trimmed estimators
.036
.231

.041

.235
.042
.238

.042

.242
.028
.190

.026

.199
.032
.195

.032

.195
.016
.133

.015

.136
.022
.147

.022

.146
TAR Xt

n

500

1000

5000

Wt ∼ N
(
0, 0.52

)
Wt ∼MN

LAD Huber LAD Huber

untrimmed estimators
.038
.227

.040

.232
.043
.229

.042

.233
.030
.189

.030

.190
.030
.193

.032

.195
.021
.135

.023

.137
.018
.140

.021

.143

Wt ∼ N
(
0, 0.52

)
Wt ∼MN

LAD Huber LAD Huber

trimmed estimators
.031
.214

.033

.220
.037
.217

.038

.222
.025
.181

.030

.190
.030
.187

.034

.185
.018
.128

.020

.131
.014
.134

.018

.135
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Table 6: Comparison between trimmed and untrimmed robust estimators for model (4.2)

Random walk Xt

n

500

1000

5000

Wt ∼ N
(
0, 0.52

)
Wt ∼MN

LAD Huber LAD Huber

untrimmed estimators
.00014
.0051

.00015

.0048
.00017
.0052

.00018

.0053
.00009
.0024

.00010

.0026
.00013
.0025

.00014

.0026
.00004
.0011

.00005

.0012
.00007
.0011

.00008

.0012

Wt ∼ N
(
0, 0.52

)
Wt ∼MN

LAD Huber LAD Huber

trimmed estimators
.00009
.0030

.00010

.0032
.00012
.0038

.00013

.0040
.00005
.0017

.00005

.0019
.00008
.0018

.00008

.0019
.00002
.0004

.00002

.0003
.00004
.0006

.00005

.0005
TAR Xt

n

500

1000

5000

Wt ∼ N
(
0, 0.52

)
Wt ∼MN

LAD Huber LAD Huber

untrimmed estimators
.00019
.0051

.00018

.0052
.00024
.0049

.00027

.0051
.00014
.0027

.00015

.0028
.00018
.0028

.00020

.0030
.0008
.0010

.00008

.0009
.00010
.0011

.00009

.0010

Wt ∼ N
(
0, 0.52

)
Wt ∼MN

LAD Huber LAD Huber

trimmed estimators
.0009
.0030

.00008

.0032
.00019
.0035

.00021

.0036
.00008
.0016

.00005

.0017
.00008
.0018

.00008

.0019
.0003
.0005

.0004

.0006
.00004
.0006

.00005

.0006

5 Empirical applications

In this section we provide two empirical examples to illustrate usefulness of the proposed robust
estimation methodology. The first example uses the same data set as in Li, Tjøstheim and Gao (2016)
to study the relationship between UK imports from (or exports to) USA and real exchange rates,
and the second example examines the so-called Environmental Kuznets Curve (EKC) hypothesis
by estimating the relationship between per capita CO2 emission and per capita GDP in Denmark.

Example 5.1. Consider the data used by Li, Tjøstheim and Gao (2016) to investigate the relationship
between UK imports from (or exports to) USA and the real exchange rates between the two nations.
The data set2 consists of 212 monthly observations of the nominal UK-USA exchange rate (Et), the
UK and USA consumer price indices (PUKt and PUSt ), the UK exports to the USA (EXPt) and the
UK imports from the USA (IMPt), collected from January 1996 to August 2013. Let Yt denote the
log of either EXPt or IMPt and Xt = log (Et) + log

(
PUKt

)
− log

(
PUSAt

)
denote the real UK-USA

2The data are available at https://www.uktradeinfo.com
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exchange rate. The empirical analysis in Li, Tjøstheim and Gao (2016) suggests that Xt may follow
a TAR process, a 1/2 recurrent Markov process, see also Gao, Tjøstheim and Yin (2013). To evaluate
the usefulness of the proposed robust estimators, we consider the same polynomial specification
between Yt and Xt as that considered by Li, Tjøstheim and Gao (2016),

Yt = γ1 + γ2Xt + γ3X
2
t + γ4X

3
t +Wt, (5.1)

where the unknown parameters γ1,γ2,γ3 and γ4 are estimated by one of the following three
methods: modified LS, LAD and Huber’s M estimation defined as in Section 2.

To construct the out-of-sample prediction, we split the sample into two parts: the training set
consisting of the first 169 observations (corresponding to 80% of the sample), and the validation
set consisting of the remaining 43 observations. The mean squared error (MSE) for out-of-sample
forecasting is computed as

MSE =
1

43

212∑
t=170

(
Yt − Ŷt

)2
,

where Ŷt is the fitted value of Yt using the modified LS, LAD or Huber’s M estimates of the
unknown parameters in (5.1). To evaluate the estimation robustness, we consider two scenarios:
one based on the original data, and the other one with 5 outliers (ranging from 1.5 times to twice
the original value) randomly replacing the responses Yt in the training set. To eliminate possible
location effect due to the random positioning of outliers, we generate 100 samples of responses
with randomly positioned outliers.

Table 7: MSE of out-of-sample forecasting
Exports Original data Data with outliers Imports Original data Data with outliers
LS

Huber

LAD

.1336

.1388

.1386

.1787

.1255

.1388

LS

Huber

LAD

.0434

.0423

.0412

.3162

.0403

.0396

Table 7 reports the MSE for the case of original data and the average MSE (over the 100
replications) for the case with randomly positioned outliers. For the original data, the MSE values
(based on all the three estimators) are very similar. When there are random outliers, the MSE
values based on the LAD and Huber’s M estimates are close to those obtained in the original data,
whereas the MSE values based on the LS estimates are seriously affected by the outliers present in
the training set. Figure 1 plots the MSE values over the 100 replications for the three estimators
when outliers are present. This figure clearly shows that the MSE values of the out-of-sample
forecasting based on the two robust estimators are very stable, as opposed to those based on the
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Figure 1: MSE of out-of-sample forecasting based on LS estimate (solid line), Huber-M estimate
(dashed line) and LAD estimate (short dashed line) when the training set contains outliers

modified LS estimator.

Example 5.2. The EKC hypothesis suggests the existence of an inverted-U shaped relationship
between enviromental degradation and income level of a given country, see, for example, Dinda
(2004) for a review. Following Piaggio and Padilla (2012) and Chan and Wang (2015), the EKC is
specified as

Yt = γ10 + γ20Xt + γ30X
2
t +Wt, (5.2)

where Yt and Xt denote, respectively, the log of per capita CO2 emission and the log of per capita
GDP of a given country. Both Piaggio and Padilla (2012) and Chan and Wang (2015) estimate
(5.2) for 16 countries, after testing that both Yt and Xt are nonstationary. Wang, Wu and Zhu
(2018) further test the assumption made by Chan and Wang (2015) that the regressor Xt in (5.2)
is endogenous, by examining the correct specification of (5.2), and conclude that out of the 16
countries, only three (Denmark, India and Ireland) are correctly specified - implying that the
regressor Xt in (5.2) is exogenous. In the following empirical analysis we only consider the
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Denmark case. We use the same annual data as in Piaggio and Padilla (2012) and Chan and Wang
(2015) from 1950 to 2008.3 To evaluate the usefulness of the proposed robust estimator, we replace
one original response Yt with an artificial outlier equaling to four times the original value. As
with the previous empirical example, to eliminate possibility of the location effect, we generate
50 samples of responses with randomly positioned outliers. Table 8 reports the estimates of the
unknown parameters of the original data and the average estimates (over the 50 replications) of
the data with the artificial outliers. Table 8 also reports the standard deviations of the estimators
(in parentheses) over the 50 republications when the data set contains an artificial outlier.

Table 8: Parameter estimates of the EKC with Danish data
Original data Data with outliers

γ̂1 γ̂2 γ̂3 γ̂1 γ̂2 γ̂3

LS
Huber
LAD

-109.78 22.87 -1.17
-110.22 22.98 -1.18
-109.56 22.87 -1.18

-103.76 (18.62) 21.63 (3.89) -1.11 (0.20)
-110.03 (1.58) 22.94 (0.33) -1.18 (0.02)
-109.85 (1.07) 22.93 (0.22) -1.18 (0.01)

Table 8 shows that both the LAD and Huber-M (average) estimates are virtually unaffected by
the presence of a single outlier, whereas the LS estimates are severely affected, as the standard
deviations clearly indicate. Figure 2 illustrates the regression fit of the EKC for the case with
original data and one of the cases with an artificial outlier.

6 Conclusions

In this paper we consider parametric robust estimation in nonlinear regression models with a
univariate regressor generated by a class of non-stationary and null recurrent Markov process
and the regression function being either integrable or asymptotically homogeneous. We show
that the proposed estimators are weakly consistent and asymptotically normal with convergence
rates that depend on the functional form of nonlinear regression and the recurrence rate of the
Markov process (i.e., the value of β). The developed asymptotic results substantially generalise
some classic asymptotic theory in the existing literature (e.g., Phillips, 1995; Park and Phillips, 2001;
Li, Tjøstheim and Gao, 2016). Monte-Carlo simulation studies as well as two real data applications
show that the proposed robust estimators are characterised by good finite-sample properties and
are stable for data contaminated by outliers.

3The CO2 emission data is published by the Carbon Dioxide Information Analysis Center (Boden, Marland and
Andres, 2009) at https://cdiac.ess-dive.lbl.gov/frequent data products.html, and the per capita
GDP data is available at the Maddison Project database http://www.ggdc.net/maddison.
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Figure 2: EKC for the Danish data based on LS estimate (solid line), Huber-M estimate (dashed
line) and LAD estimate (short dashed line)
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Supplement

The supplementary document contains proofs of some technical lemmas as well as additional
simulation results.

Appendix A: Proofs of the main results

In this appendix, we provide the detailed proofs of the main asymptotic results stated in Section 3 as well as
some technical lemmas. The proofs of the technical lemmas are given in Appendix B which is available in
the supplemental document. Define

V(Xt,Wt,γ) = ρ
(
Yt −m(Xt,γ)

)
It − ρ(Wt)It + [m(Xt,γ) −m(Xt,γ0)]ψ(Wt)It,

where It = I (|Xt| 6 ζn). We start with two technical lemmas which play an important role in the proof of
robust estimation consistency.

Lemma A.1. Suppose that Assumptions 1, 2(ii) and 3(i) are satisfied. For any positive constantM, we have

sup
‖γ−γ0‖6M

∣∣∣∣∣
n∑
t=1

V(Xt,Wt,γ) −
n∑
t=1

E [V(Xt,Wt,γ)|Ft−1]

∣∣∣∣∣ = OP (nβ−η) , (A.1)

where Ft is a σ-field generated by Xs with s 6 t+ 1 andWs with s 6 t, ‖ · ‖ denotes the Euclidean norm,
and 0 < η < β/(3 + 2d) with β defined in (2.7).

Remark A.1. The asymptotic order in (A.1) is not a sharp rate, but is sufficient to the proofs of our main
results. In fact, it is easy to show that the rate OP

(
nβ−η

)
can be replaced by oP

(
nβ−η

)
.

Lemma A.2. Suppose that Assumptions 1, 2(i) and 3(i) are satisfied. For any sufficiently small ι > 0, we
have

sup
‖γ−γ0‖6ι

∣∣∣∣∣ 1
TC(n)

n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] −
φ1

2πs(C)

∫
R
[m(x,γ) −m(x,γ0)]

2 πs(dx)

∣∣∣∣∣ = oP(1), (A.2)

where TC(n) is defined in Theorem 3.1, φ1 is defined in Assumption 2(i) and πs(·) is the invariant measure
for the β-null recurrent Markov process {Xt}.
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We next narrow the range of γ from those in Lemmas A.1 and A.2 to T 1/2
C (n)‖γ−γ0‖ 6M, and give the

following lemma which is crucial to the proof of Theorem 3.1(ii).

Lemma A.3. Suppose that Assumptions 1–3 are satisfied. For any positive constantM, we have

sup
T

1/2
C (n)‖γ−γ0‖6M

∣∣∣∣∣
n∑
t=1

V(Xt,Wt,γ) −
n∑
t=1

E [V(Xt,Wt,γ)|Ft−1]

∣∣∣∣∣ = oP(1), (A.3)

and

sup
T

1/2
C (n)‖γ−γ0‖6M

∣∣∣∣∣
n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] −
φ1TC(n)

2πs(C)
(γ− γ0)

ᵀ
∆m(γ0)(γ− γ0)

∣∣∣∣∣ = oP(1), (A.4)

where ∆m(γ0) is defined in Assumption 3(ii).

Lemma A.4. Suppose that Assumptions 1, 2(ii) and 3 are satisfied and that {Wt} is independent of {Xt}.
Then, we have

1

T
1/2
C (n)

n∑
t=1

ṁ(Xt,γ0)ψ(Wt)It
d→ N (0,φ2∆m(γ0)/πs(C)) , (A.5)

where φ2 is defined in Assumption 2(ii).

Proof of Theorem 3.1(i). Let Sγ0(ε) be a circle centered at γ0 with radius ε, where ε > 0 is sufficiently small.
It is sufficient to prove that

P

(
inf

γ∈Sγ0(ε)
Ln,ζn(γ) > Ln,ζn(γ0)

)
→ 1, (A.6)

where Ln,ζn(·) is defined in (2.2). In fact, due to the convexity of the loss function ρ(·), (A.6) implies that
inf‖γ−γ0‖>εLn,ζn(γ) > Ln,ζn(γ0) with probability approaching one. Therefore, Ln,ζn(γ) must have a local
minimum in the interior of Sγ0(ε), and consequently,

P (‖γ̃n − γ0‖ > ε)→ 0, (A.7)

completing the proof of Theorem 3.1(i).

By (2.9) and Lemmas A.1 and A.2 above, we have that uniformly over ‖γ− γ0‖ 6 ε,

1
TC(n)

n∑
t=1

ρ
(
Yt −m(Xt,γ)

)
It −

1
TC(n)

n∑
t=1

ρ(Wt)It

= −
1

TC(n)

n∑
t=1

[m(Xt,γ) −m(Xt,γ0)]ψ(Wt)It +

φ1

2πs(C)

∫
R
[m(x,γ) −m(x,γ0)]

2 πs(dx) + oP(1). (A.8)

Following the proof of Lemma A.1 in the supplemental document and using (2.9) and the fact of TC(n)T(n) →

29



πs(C) a.s., it is easy to show that

sup
‖γ−γ0‖6ε

∣∣∣∣∣
n∑
t=1

[m(Xt,γ) −m(Xt,γ0)]ψ(Wt)It

∣∣∣∣∣ = OP(nβ−η) = oP(TC(n)). (A.9)

By Assumption 3(ii), we have

inf
γ∈Sγ0(ε)

∫
R
[m(x,γ) −m(x,γ0)]

2 πs(dx) > 0. (A.10)

In view of (A.8)–(A.10), we can prove (A.6). �

Proof of Theorem 3.1(ii). The proof is analogous to the proof of Theorem 2.4 in Bai, Rao and Wu (1992).
Define

γ̂n = γ0 +

[
φ1

πs(C)
∆m(γ0)

]−1 1
TC(n)

n∑
t=1

ṁ(Xt,γ0)ψ(Wt)It.

By Lemma A.4, we readily have

T
1/2
C (n)(γ̂n − γ0) =

[
φ1

πs(C)
∆m(γ0)

]−1 1

T
1/2
C (n)

n∑
t=1

ṁ(Xt,γ0)ψ(Wt)It

d−→ N
(

0,πs(C)(φ2/φ
2
1)∆

−1
m (γ0)

)
. (A.11)

By (A.11), we only need to prove

P
(
T

1/2
C (n)‖γ̃n − γ̂n‖ > ε

)
→ 0 (A.12)

for any small ε > 0.

By (A.11), for any smallω > 0, there exists a positive constantM0 such that

P
(
T

1/2
C (n)‖γ̂n − γ0‖ 6M0

)
> 1 −ω. (A.13)

For notational simplicity, we let Ω1 be the event {T 1/2
C (n)‖γ̂n − γ0‖ 6M0}. Conditional on Ω1, by (A.11)

and Lemma A.3 as well as the definition of γ̂n, we have

n∑
t=1

[
ρ
(
Yt −m(Xt, γ̂n)

)
− ρ(Wt)

]
It

= −

n∑
t=1

[
m(Xt, γ̂n) −m(Xt,γ0)

]
ψ(Wt)It +

φ1TC(n)

2πs(C)
(γ̂n − γ0)

ᵀ
∆m(γ0)(γ̂n − γ0) + oP(1)

= −
φ1TC(n)

πs(C)
(γ̂n − γ0)

ᵀ
∆m(γ0)(γ̂n − γ0) +

φ1TC(n)

2πs(C)
(γ̂n − γ0)

ᵀ
∆m(γ0)(γ̂n − γ0) + oP(1)

= −
φ1TC(n)

2πs(C)
(γ̂n − γ0)

ᵀ
∆m(γ0)(γ̂n − γ0) + oP(1). (A.14)
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Furthermore, by Lemma A.3 and the definition of γ̂n again, we have

sup
T

1/2
C (n)‖γ−γ0‖6M0+ε

∣∣∣∣∣
n∑
t=1

ρ
(
Yt −m(Xt,γ)

)
It −

n∑
t=1

ρ(Wt)It +
φ1TC(n)

πs(C)
(γ− γ0)

ᵀ
∆m(γ0)(γ̂n − γ0)

−
φ1TC(n)

2πs(C)
(γ− γ0)

ᵀ
∆m(γ0)(γ− γ0)

∣∣∣∣ = oP(1). (A.15)

A combination of (A.14) and (A.15) leads to

sup
T

1/2
C (n)‖γ−γ̂n‖=ε

∣∣∣∣∣
n∑
t=1

ρ
(
Yt −m(Xt,γ)

)
It −

n∑
t=1

ρ
(
Yt −m(Xt, γ̂n)

)
It

−
φ1TC(n)

2πs(C)
(γ̂n − γ)

ᵀ
∆m(γ0)(γ̂n − γ)

∣∣∣∣ = oP(1). (A.16)

Note that when T 1/2
C (n)‖γ− γ̂n‖ = ε, by Assumption 3(ii), there exists a positive constantm?

0 such that

φ1TC(n)

2πs(C)
(γ̂n − γ)

ᵀ
∆m(γ0)(γ̂n − γ) > m?

0ε
2. (A.17)

Then, by (A.16), (A.17) and the convexity of the function ρ(·), and letting ω→ 0 in (A.13), we can argue that
the robust estimation γ̃n lies in the interior of the circle centered at γ̂n with radius ε · T−1/2

C (n) and thus
prove (A.12), completing the proof of Theorem 3.1(ii). �

We next turn to the proof of Theorem 3.2, and start with some technical lemmas which generalise
Lemmas A.1–A.3 from the integrable case to the asymptotically homogeneous case.

Lemma A.5. Suppose that Assumptions 1, 2(i), 4 and 5(i) are satisfied. For any positive constant M, we
have

sup
‖γ−γ0‖6M

∣∣∣∣∣
n∑
t=1

V(Xt,Wt,γ) −
n∑
t=1

E [V(Xt,Wt,γ)|Ft−1]

∣∣∣∣∣ = oP (T(n)κ2(ζn)πs(ζn)
)

, (A.18)

where Ft is defined as in Lemma A.1, κ(·) is the asymptotic order of the nonlinear regression functionm(·, ·),
and πs(ζn) =

∫ζn
−ζn

πs(dx).

Lemma A.6. Suppose that Assumptions 1, 4 and 5(i) are satisfied. For any sufficiently small ι > 0, we have

1
T(n)κ2(ζn)πs(ζn)

n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] >
φ

2πs(ζn)

∫ζn
−ζn

[
h

(
x

ζn
,γ
)
− h

(
x

ζn
,γ0

)]2

πs(dx) + oP(1)

(A.19)
uniformly over ‖γ− γ0‖ 6 ι, where φ is defined in Assumption 4(i) and h(·, ·) is the limit homogeneous
function of the nonlinear regression functionm(·, ·).
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Lemma A.7. Suppose that Assumptions 1, 2, 4 and 5 are satisfied. For any positive constantM, we have

sup
‖D(ζn,κ̇)(γ−γ0)‖6M

∣∣∣∣∣
n∑
t=1

V(Xt,Wt,γ) −
n∑
t=1

E [V(Xt,Wt,γ)|Ft−1]

∣∣∣∣∣ = oP(1), (A.20)

and

sup
‖D(ζn,κ̇)(γ−γ0)‖6M

∣∣∣∣∣
n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] −
φ1

2
(γ− γ0)

ᵀ
D(ζn, κ̇)∆h(γ0)D(ζn, κ̇)(γ− γ0)

∣∣∣∣∣ = oP(1),
(A.21)

where D(ζn, κ̇) is a d× d diagonal matrix with the i-th diagonal number being T 1/2(n)κ̇i(ζn)π
1/2
s (ζn), and

∆h(γ0) is defined in Assumption 5(iii).

Proof of Theorem 3.2(i). The proof is very similar to the proof of Theorem 3.1(i). It is sufficient to prove
(A.6) for any small ε > 0. By (2.9) and Lemmas A.5 and A.6 above, we have that uniformly over ‖γ−γ0‖ 6 ε,

1
T(n)κ2(ζn)πs(ζn)

n∑
t=1

ρ
(
Yt −m(Xt,γ)

)
It −

1
T(n)κ2(ζn)πs(ζn)

n∑
t=1

ρ(Wt)It

> −
1

T(n)κ2(ζn)πs(ζn)

n∑
t=1

[m(Xt,γ) −m(Xt,γ0)]ψ(Wt)It +

φ

2πs(ζn)

∫ζn
−ζn

[
h

(
x

ζn
,γ
)
− h

(
x

ζn
,γ0

)]2

πs(dx) + oP(1). (A.22)

Following the proof of (A.18) in Appendix B, it is easy to show that

sup
‖γ−γ0‖6ε

∣∣∣∣∣ 1
T(n)κ2(ζn)πs(ζn)

n∑
t=1

[m(Xt,γ) −m(Xt,γ0)]ψ(Wt)It

∣∣∣∣∣ = oP(1). (A.23)

By (A.22), (A.23) and Assumption 5(i), we can prove (A.6) and then (A.7), completing the proof of Theorem
3.2(i). �

Proof of Theorem 3.2(ii). The proof is similar to the proof of Theorem 3.1(ii). Let

γ̌n = γ0 + [φ1D(ζn, κ̇)∆h(γ0)D(ζn, κ̇)]−1
n∑
t=1

ṁ(Xt,γ0)ψ(Wt)It.

Note that

D(ζn, κ̇)(γ̌n − γ0) = [φ1∆h(γ0)]
−1 D−1(ζn, κ̇)

n∑
t=1

ṁ(Xt,γ0)ψ(Wt)It. (A.24)

Similarly to the proof of Lemma A.5 in Appendix B, we may show that

D−1(ζn, κ̇)

[
n∑
t=1

ṁ(Xt,γ0)ṁ
ᵀ
(Xt,γ0)It

]
D−1(ζn, κ̇) = ∆h(γ0) + oP(1),
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which, together with the arguments in the proof of Lemma A.4, leads to

D−1(ζn, κ̇)
n∑
t=1

ṁ(Xt,γ0)ψ(Wt)It
d−→ N (0,φ2∆h(γ0)) . (A.25)

Combining (A.24) and (A.25), we readily have that

D(ζn, κ̇)(γ̌n − γ0)
d−→ N

(
0, (φ2/φ

2
1)∆

−1
h (γ0)

)
. (A.26)

By (A.26), we only need to prove

P (‖D(ζn, κ̇) (γ̃n − γ̌n)‖ > ε)→ 0 (A.27)

for any small ε.

By (A.26), for any smallω > 0, there exists a positive constantM?
0 such that

P (‖D(ζn, κ̇) (γ̌n − γ0)‖ 6M?
0) > 1 −ω. (A.28)

For notational simplicity, we let Ω?
1 be the event {‖D(ζn, κ̇) (γ̌n − γ0)‖ 6M?

0 }. Conditional on Ω?
1 , using

(A.24) and Lemma A.7, we have

n∑
t=1

[
ρ
(
Yt −m(Xt, γ̌n)

)
− ρ(Wt)

]
It

= −

n∑
t=1

[
m(Xt, γ̌n) −m(Xt,γ0)

]
ψ(Wt)It +

φ1

2
(γ̌− γ0)

ᵀ
D(ζn, κ̇)∆h(γ0)D(ζn, κ̇)(γ̌− γ0) + oP(1)

= −
φ1

2
(γ̌− γ0)

ᵀ
D(ζn, κ̇)∆h(γ0)D(ζn, κ̇)(γ̌− γ0) + oP(1). (A.29)

Furthermore, by (A.20) and (A.21) in Lemma A.7 as well as the definition of γ̌n again, we have

sup
‖D(ζn,κ̇)(γ−γ0)‖6M?

0+ε

∣∣∣∣∣
n∑
t=1

ρ
(
Yt −m(Xt,γ)

)
It −

n∑
t=1

ρ(Wt)It

+φ1(γ− γ0)
ᵀ
D(ζn, κ̇)∆h(γ0)D(ζn, κ̇)(γ̌n − γ0)

−
φ1

2
(γ− γ0)

ᵀ
D(ζn, κ̇)∆h(γ0)D(ζn, κ̇)(γ− γ0)

∣∣∣∣ = oP(1). (A.30)

A combination of (A.29) and (A.30) leads to

sup
‖D(ζn,κ̇)(γ−γ̌n)‖=ε

∣∣∣∣∣
n∑
t=1

ρ
(
Yt −m(Xt,γ)

)
It −

n∑
t=1

ρ
(
Yt −m(Xt, γ̌n)

)
It

−
φ1

2
(γ̌− γ)

ᵀ
D(ζn, κ̇)∆h(γ0)D(ζn, κ̇)(γ̌− γ)

∣∣∣∣ = oP(1). (A.31)
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By Assumption 5(iii), there exists a positive constantm?
1 such that

φ1

2
(γ̌− γ)

ᵀ
D(ζn, κ̇)∆h(γ0)D(ζn, κ̇)(γ̌− γ) > m?

1ε
2 (A.32)

when ‖D(ζn, κ̇)(γ− γ̌n)‖ = ε. The remaining proof is the same as that in the proof of Theorem 3.1(ii). �

Proof of Theorem 3.3(i). We only prove the consistency result as the proof of the limit distribution theory is
exactly the same as the proof of Theorem 3.2(ii) above. As in the proof of Theorem 3.1(i), we let Sγ0(ε) be the
circle centered at γ0 with radius ε, and aim to prove (A.6) where ε is sufficiently small. Note that

Ln,ζn(γ) − Ln,ζn(γ0) =

n∑
t=1

ρ
(
Yt −m(Xt,γ)

)
It −

n∑
t=1

ρ(Wt)It

=

n∑
t=1

V(Xt,Wt,γ) −
n∑
t=1

[m(Xt,γ) −m(Xt,γ0)]ψ(Wt)It, (A.33)

where ψ(u) = sign(u) and V(Xt,Wt,γ) is defined at the beginning of this appendix. Following the proof of
Lemma A.5 with minor modification, we can prove that

sup
‖γ−γ0‖6ε

∣∣∣∣∣
n∑
t=1

V(Xt,Wt,γ) −
n∑
t=1

E [V(Xt,Wt,γ)|Ft−1]

∣∣∣∣∣ = oP (T(n)κ(ζn)πs(ζn)) , (A.34)

and

sup
‖γ−γ0‖6ε

∣∣∣∣∣
n∑
t=1

[m(Xt,γ) −m(Xt,γ0)]ψ(Wt)It

∣∣∣∣∣ = oP (T(n)κ(ζn)πs(ζn)) . (A.35)

As in Li, Tjøstheim and Gao (2016), we let

B+
i = [i− 1, i), 1 6 i 6 bζnc, B+

bζnc+1 = [bζnc, ζn] ,

and
B−
i = [−i,−i+ 1), 1 6 i 6 bζnc, B−

bζnc+1 = [−ζn, bζnc) ,

where b·c denotes the floor function. Note that

n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] =

bζnc+1∑
i=1

n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] I
(
Xt ∈ B+

i

)
+

bζnc+1∑
i=1

n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] I
(
Xt ∈ B−

i

)
.

As ρ(u) = |u|, by the triangle inequality, it is easy to show that

E [V(Xt,Wt,γ)|Ft−1] = E
{[
ρ
(
Wt +m(Xt,γ0) −m(Xt,γ)

)
− ρ(Wt)

]
|Xt
}
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> |m(Xt,γ0) −m(Xt,γ)|− 2E[|Wt|]. (A.36)

As in the proof of (S.29) in Appendix B, we may show that

bζnc+1∑
i=1

n∑
t=1

E[|Wt|]I
(
Xt ∈ B+

i

)
= OP (T(n)πs(ζn)) (A.37)

and

1
T(n)κ(ζn)πs(ζn)

bζnc+1∑
i=1

n∑
t=1

|m(Xt,γ0) −m(Xt,γ)| I
(
Xt ∈ B+

i

)
P→ 1

πs(ζn)

∫ζn
0

|h(x/ζn,γ) − h(x/ζn,γ0)|πs(dx) (A.38)

uniformly over ‖γ − γ0‖ 6 ε. Then, by (A.36)–(A.38) and noting that κ(ζn) → ∞, we readily have that,
uniformly over ‖γ− γ0‖ 6 ε,

1
T(n)κ(ζn)πs(ζn)

bζnc+1∑
i=1

n∑
t=1

E [V(Xt,Wt,γ)|Xt] I
(
Xt ∈ B+

i

)
>

1
πs(ζn)

∫ζn
0

|h(x/ζn,γ) − h(x/ζn,γ0)|πs(dx)

(A.39)
with probability approaching one. Similarly, we also have

1
T(n)κ(ζn)πs(ζn)

bζnc+1∑
i=1

n∑
t=1

E [V(Xt,Wt,γ)|Xt] I
(
Xt ∈ B−

i

)
>

1
πs(ζn)

∫ 0

−ζn

|h(x/ζn,γ)−h(x/ζn,γ0)|πs(dx)

(A.40)
with probability approaching one.

By (A.33)–(A.35), (A.39), (A.40) and using the identification condition (3.16), we can show that (A.6)
holds and thus the consistency result can be proved. �

Proof of Theorem 3.3(ii). The proof of the consistency result is similar to that in the proof of Theorem 3.3(i).
Hence, we next only sketch the main difference. Note that when ρ(u) is chosen as Huber’s loss function
ρδ(u), we have

ψ(u) = ψδ(u) =

{
u, |u| 6 δ,
δ · sign(u), |u| > δ,

which is continuous and bounded. It is straightforward to prove (A.33)–(A.35). By the definition of ρδ(u),
we readily have that

ρδ(Wt) 6 δ|Wt| (A.41)

and
ρδ
(
Wt +m(Xt,γ0) −m(Xt,γ)

)
> δJt|m(Xt,γ0) −m(Xt,γ)|− δ|Wt|− δ2/2, (A.42)

where Jt = I (|Wt +m(Xt,γ0) −m(Xt,γ)| > δ). Note that there must exist a positive constantM�0 such that
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P(|Wt| < M�0) > 1/2. On the other hand, for γ satisfying ‖γ − γ0‖ = ε, there exists a positive integer ζ�n
such that πs(ζ�n) = o (πs(ζn)) and

|m(x,γ0) −m(x,γ)| > δ+M�0 , |x| > ζ�n. (A.43)

Combining (A.41)–(A.43), we may show that

E [V(Xt,Wt,γ)|Ft−1] = E
{[
ρδ
(
Wt +m(Xt,γ0) −m(Xt,γ)

)
− ρδ(Wt)

]
|Ft−1

}
>

δ

2
|m(Xt,γ0) −m(Xt,γ)|− 2δE[|Wt|] − δ2 (A.44)

for Xt ∈ B+
i or B−

i with i > ζ�n + 1. By (A.37), (A.38), (A.44) and using the fact that πs(ζ�n) = o (πs(ζn)) and
h(·,γ) is locally bounded, we have that, uniformly over ‖γ− γ0‖ = ε,

1
T(n)κ(ζn)πs(ζn)

bζnc+1∑
i=1

n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] I
(
Xt ∈ B+

i

)
=

1
T(n)κ(ζn)πs(ζn)

 ζ�n∑
i=1

+

bζnc+1∑
ζ�n+1

 n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] I
(
Xt ∈ B+

i

)

=
1

T(n)κ(ζn)πs(ζn)

bζnc+1∑
ζ�n+1

n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] I
(
Xt ∈ B+

i

)
+OP(πs(ζ

�
n)/πs(ζn))

>
δ

2πs(ζn)

∫ζn
ζ�n

|h(x/ζn,γ) − h(x/ζn,γ0)|πs(dx) + oP(1)

=
δ

2πs(ζn)

∫ζn
0

|h(x/ζn,γ) − h(x/ζn,γ0)|πs(dx) + oP(1). (A.45)

Similarly, we also have

1
T(n)κ(ζn)πs(ζn)

bζnc+1∑
i=1

n∑
t=1

E [V(Xt,Wt,γ)|Ft−1] I
(
Xt ∈ B−

i

)
>

δ

2πs(ζn)

∫ 0

−ζn

|h(x/ζn,γ)−h(x/ζn,γ0)|πs(dx)

(A.46)

with probability approaching one. The remaining proof of the consistency result is the same as that in the

proof of Theorem 3.3(i). The proof of the limit distribution theory is the same as the proof of Theorem 3.2(ii),

so details are omitted here. �
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