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Abstract

Over the last few years, advances in natural language processing (NLP) have enabled us

to learn more from textual data. To this end, word embedding models learn vectorized

representations of words by training on big sets of texts (e.g. the entire Wikipedia corpus).

Word2vec is a word embedding model which learns single vector representations of words.

However, by creating such single vector representations of words, it becomes hard to separate

between word meanings, as the single vector representations have to cover all the word

meanings. Words with multiple meanings are called polysemous, and determining the word

meanings is a challenging problem in NLP. Traditionally, word embeddings from word2vec

are analyzed using analogy and cluster analysis. In analogy analysis of word embeddings,

it is common to show relationships between words, e.g. that the relationship between king

and man is the same as that between queen and woman, whereas, in cluster analysis of word

embeddings, it is common to show how similar words cluster together, e.g. the clustering

of country-related words. Moreover, due to recent developments in the field of topological

data analysis, a topological measure of polysemy was introduced, which attempts to identify

polysemous words from their word embeddings. The goal of this thesis is to show how

word embeddings traditionally are analyzed using analogies and clustering algorithms and

to use methods such as topological polysemy for identifying polysemous words of various

word embeddings. Our results show that we are effectively able to cluster word embeddings

into groups of varying sizes. Results also revealed that the measure of topological polysemy

was inconsistent across word embeddings, and our proposed supervised models attempt to

overcome and improve on this work.
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Chapter 1

Introduction

Natural language processing (NLP) is a field of study which focuses on the interactions

between computers and the natural human language [Allen, 2003]. In modern NLP applica-

tions, it is common to see the usage of vector embedding algorithms, such as the word2vec

techniques introduced in [Mikolov et al., 2013a]. Word2vec learns vectorized representations

of words (called word embeddings) by training on big text sets (e.g. whole Wikipedia). Word

embeddings are created such that the semantics of a word is reflected by its word embedding.

For example, the word solution is similar to the word chemistry, but is also related to words

such as answer or equation. By inspecting the word embeddings of such words, we find that

they are highly similar. Furthermore, we also see that the word solution can have multiple

meanings, depending on the context it is used in. We call such words polysemous, and the

task of determining polysemous words in NLP is a difficult problem. To measure and de-

termine polysemous words from word embeddings, the measure of topological polysemy was

introduced in [Jakubowski et al., 2020]. The topological polysemy method seeks to identify

singular word embeddings, which the authors claim reflect polysemy.

Classically, word embeddings are analyzed using analogy and cluster analysis [Mikolov et al.,

2013a,Mikolov et al., 2013b,Walkowiak and Gniewkowski, 2019]. In this thesis, we will first

perform a similar analogy and cluster analysis, by using general methods from machine learn-

ing, and among these, clustering algorithms and dimensionality reduction methods. The goal

is to find a richer description of word embeddings. In particular, we will first explain how

we trained and evaluated our word2vec model, before proceeding onto clustering of word
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embeddings using clustering algorithms. We will validate the results from the cluster anal-

ysis using internal cluster validation methods and visualize our results using dimensionality

reduction methods. After performing the cluster analysis on word embeddings, we will in

this thesis investigate the method of topological polysemy by applying it to various word

embedding models. Our goal is to recreate the results shown in [Jakubowski et al., 2020]

for a general word embedding model, which further strengthens their proposed method and

results. We will also look at another algorithm called Geometric Anomaly detection (GAD).

GAD seeks to identify singular points in the data, similar to what the topological polysemy

method does. Following, we will compare the results using topological polysemy and GAD

to show their relation. Next, we will look at the application of intrinsic dimension estimation

(ID) methods on word embeddings and show the relationship between the estimated local

ID of a word to the number of word meanings. We would like to, in particular, see if the

estimated local ID of word embeddings can help us to predict the number of word meanings.

Finally, we propose two supervised methods for predicting polysemous words, using results

from topological polysemy, GAD and ID estimation methods.

This thesis is structured as follows. In Chapter 2 we give the technical and theoretical

background required for this thesis. Following, in Chapter 3 we perform our analysis of

word embeddings, explaining training and evaluation steps for our word2vec model, perform

clustering of word embeddings, and at last, analyze methods for polysemous words prediction.

In Chapter 4, we summarize and conclude the thesis. Finally, in Chapter 5 we look at ideas

for future work related to the thesis.
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Chapter 2

Background

In this chapter, we will introduce and explain the technical and theoretical background of this

thesis. In particular, we will introduce general methods from machine learning, the notion

of word embeddings, and topological data analysis (TDA) and methods from its field. We

will describe concepts to the point where they are understandable for the sake of the thesis,

but leave out technical details of concepts that are not in focus (e.g. intrinsic dimension

estimation in Section 2.1.6). On the other hand, we have some particular concepts which we

have worked with more extensively throughout the thesis, such as clustering (Sections 2.1.2

and 2.1.3), word embeddings (Section 2.2), and TDA (Section 2.3). Thus, we will give a

thorough explanation of these concepts. Finally, we assume that the reader is familiar with

general concepts from calculus, linear algebra, and statistics. In the following sections, we

will introduce and explain the technical and theoretical background of this thesis.

2.1 General machine learning methods

In this section, we will introduce and explain general machine learning methods. In par-

ticular, we will first define machine learning in Section 2.1.1, then move onto clustering

algorithms and validation of clusters in Sections 2.1.2 and 2.1.3. Following, we will de-

scribe two methods for performing dimensionality reduction in Section 2.1.4, explain the

concept of artificial neural networks in Section 2.1.5 and intrinsic dimension estimation in
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Section 2.1.6. Finally, we round the section by explaining methods from regression analysis

in Section 2.1.7, how to perform model selection in Section 2.1.8 and introduce performance

metrics in Section 2.1.9.

2.1.1 What is machine learning?

In traditional computer programs, we typically create the rules and instructions of the pro-

gram to get the output we desire. In machine learning (ML), however, we turn the problem

on its head, and the goal is to learn the rules of the program using its input data [Mitchell,

1997]. More formally, we quote the famous definition from [Mitchell, 1997, p. 2] to define

ML: “A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P if its performance at tasks in T , as measured by P ,

improves with experience E”. To give an example, let E be data of whether or not it has

rained the last seven days in Bergen, and let T be the task of determining if it rains the next

day. To measure the performance P , we use the percentage of correct guesses for whether

or not it rains the next day. The ML program can then use the data from experience E

to improve on the task T by maximizing the performance P . Furthermore, we motivate

the use of machine learning by illustrating with an example in Figure 2.1, where we see the

differences between traditional programming and machine learning programs.

Traditional 
programming

Machine 
learning

Input data

Output data

Rules

Rules

Input data

Output data

Figure 2.1: Traditional programming compared to machine learning.

In this thesis, we will in particular look at two approaches for ML, namely supervised and

unsupervised learning. In a supervised learning setting, we give the ML program its input
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and output data. The goal is to learn the parameters of the ML program to map the input

data to the output data. In an unsupervised learning setting, however, we do not give the

ML program any output data, leaving the ML program to find structure in its input data.

The goal of unsupervised ML programs is to discover and learn hidden patterns from the

input data, by applying (possibly) several methods. In this thesis, we will learn from data by

mainly using unsupervised ML methods (e.g. cluster analysis and dimensionality reduction

in Section 3.2), but also some supervised ML methods (e.g. supervised polysemy prediction

in Section 3.3.4) as well. In the following subsections, we will introduce and explain general

methods and concepts from machine learning.

2.1.2 Clustering algorithms

In a supervised machine learning setting, we typically use data X and its associated labels

y. The supervised task is to train a model to predict the labels y using the data X. A

classical example of a supervised machine learning task is to distinguish between dogs and

cats, where X is an image of a dog or a cat and the labels y indicate whether or not the

data X represents a dog (y = 0) or a cat (y = 1). In an unsupervised setting, however, the

labels y are less likely to be present. To predict the labels y, we apply clustering algorithms.

Clustering is one of the most important methods in unsupervised machine learning. Cluster-

ing algorithms divide some data X into clusters (groups) such that the data in each cluster

are similar in some sense. An example of this is clustering by using Euclidean distance,

which measures the distance of a line segment between two points u and v. More formally,

we define the Euclidean distance between two points u and v as

d(u, v) = ||u− v||2 =

√
(u1 − v1)2 + (u2 − v2)2 + . . .+ (un − vn)2, (2.1)

where u and v are two n-dimensional vectors. If we cluster by Euclidean distance, we want

the distance between any two data points belonging to the same cluster to be small. We refer

to this distance as the intracluster distance or compactness. Unfortunately, it is usually not

enough to only minimize the intracluster distance; we also have to ensure that the distance

between the clusters is as large as possible. To measure the distance between two clusters

we measure the distance between two data points belonging to different clusters. We refer

to this distance as the intercluster distance or separation. If a clustering algorithm can

5



create clusters such that we have small intracluster distance and large intercluster distance,

it indicates that the clustering algorithm is good for the data at hand. We note, however,

that data can be complex and it can be hard to find good clusters. In the following sub-

subsections, we look at some common clustering algorithms, explain how they work, and

discuss their strengths/weaknesses. In each of the clustering algorithms, we assume that

we have some data X = {x1, x2, . . . , xn} ∈ Rn×d. Furthermore, we will use the clustering

algorithms below in the analysis of word embeddings (Section 2.2) in Chapter 3.

2.1.2.1 k-means clustering

The k-means clustering method is an unsupervised machine learning algorithm for identifying

clusters in data [Bishop, 2006, Section 9.1]. The algorithm uses an iterative approach to

search for k clusters, where k is a hyperparameter (i.e. in control by user). There exist

several variants of this algorithm and we discuss two of them in later sub-subsections (see

Section 2.1.2.2 and Section 2.1.2.3). Following, we explain the standard (and näıve) variant

of the algorithm (i.e. Lloyd’s algorithm), and we base this sub-subsection on [Bishop, 2006,

Section 9.1].

The standard k-means clustering algorithm works as follows. The first step is to determine

the initial cluster means, or centroids. Since we want the algorithm to output k clusters, we

have to decide k initial centroids. The simplest way to do this is to select k random data

points to be the initial k centroids. The next step is to calculate the Euclidean distance

between each data point to the cluster centroids. We do so because we want to determine

which cluster each data point belongs to. Furthermore, we assign each data point to its

closest cluster centroid and compute the mean of each cluster. The third and final step is to

move the cluster centroid to the new mean of each cluster. We repeat the second and third

steps until convergence is met (e.g. change of loss is less than a set threshold). Finally, we

illustrate the use of k-means clustering in Figure 2.2, where we see its cluster boundaries,

representing the clusters. The white crosses represent the cluster centroids.
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(b) Data clustered using k-means
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Figure 2.2: Example of clustering using k-means clustering on a 2-dimensional data set with
3 clusters. We show the cluster boundaries in (b), emphasized by the colours. The white
crosses represent the cluster centroids.

Mathematically, the goal of k-means clustering is to minimize the squared distance between

the points in each cluster to its respective centroid, which we refer to as the within-cluster

sum of squares (WCSS). The objective is to find

arg min
C

k∑
i=1

∑
x∈Ci

‖x− µi‖2, (2.2)

where C = {C1, C2, . . . , Ck} are the clusters of the data X, k is a hyperparameter for the

number of clusters and µi is the cluster centroid of cluster Ci.

The main advantage of k-means clustering is its simplicity, both in implementation and when

interpreting the results. The algorithm also scales well to larger data sets, and there is only

one hyperparameter to tune (number of clusters k). As for the disadvantages, the algorithm

is rather sensitive to the initialization of centroids in the first step. If we were to select bad

initial centroids, the convergence time of the algorithm increases greatly, and we might end

up with bad clusters. We also have to choose the number of clusters manually, which is a

downside if we have no additional knowledge of the data beforehand. In addition to this, the

algorithm suffers from the curse of dimensionality, which is a set of problems that can occur

when analyzing high-dimensional data (i.e. greater than two to three dimensions). In the
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context of k-means clustering, as the dimensionality increases, it becomes more and more

difficult to distinguish between data points (all points converge to the same distance). We

illustrate an effect of the curse of dimensionality in Figure 2.3.
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Figure 2.3: Four illustration plots showing an effect of the curse of dimensionality. The
distance between points in higher dimensional spaces becomes the same as the dimensionality
increases, and thus, it is harder to differentiate between points using distance metrics. The
blue line represents the density of the pairwise Euclidean distances (we divide by the max
distance to normalize the x-axis). The red line is the mean distance.
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2.1.2.2 Mini-batch k-means clustering

Mini-batch k-means clustering is a variant of k-means clustering, where we use mini-batches

of data points to find a suitable clustering [Sculley, 2010]. To create the mini-batches, we

randomly sample subsets of the training data for each training iteration (similar to the mini-

batches in gradient descent from Section 2.1.5.6). We refer to [Sculley, 2010] when explaining

mini-batch k-means clustering.

The algorithm is similar to the standard k-means clustering algorithm and comprises two ma-

jor steps. In the first step, we initialize k cluster centroids and sample B = {b1, b2, . . . , bm} ⊂
X points at random from the data set X, where m is the mini-batch size. In the second

step, we update the cluster centroids by gradually moving the centroids. For each sample

b in the mini-batch, we update the centroids by taking the average of b and the previous

points assigned to the centroid. By doing so, we move the centroid with a decreasing rate

over time. We repeat the first and second steps until convergence is met (e.g. change of loss

is less than a set threshold).

The main advantage of mini-batch k-means clustering over standard k-means is that the

convergence time is lower. By using mini-batches, we drastically reduce the computational

requirement for converging to a local solution and, the results of mini-batch k-means clus-

tering tend to only be slightly worse than the standard algorithm.

2.1.2.3 k-medoids clustering

K-medoids clustering is an alternative to the standard k-means clustering algorithm [Kauf-

man and Rousseeuw, 1990; Bishop, 2006, p. 427 - 428]. K-medoids clustering uses data

points for its cluster centroids and works with any dissimilarity measure. A medoid of a

cluster is a data point where the average dissimilarity between the medoid and all other data

points in the same cluster is minimal. We refer to [Kaufman and Rousseeuw, 1990; Bishop,

2006, p. 427 - 428] when explaining k-medoids clustering.

To solve the k-medoids problem efficiently, we use the Partitioning Around Medoids (PAM)

algorithm. Similar to the standard k-means clustering algorithm, PAM consists of two main

stages, namely the build- and swap stages. In the build stage, we greedily select k of the n
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data points to be the initial cluster medoids, which we denote M = {m1,m2, . . . ,mk} ⊂ X.

To select M initially, we want to minimize the dissimilarity between the cluster medoids

and points in the same cluster. In other words, initially, we set the first medoid m1 to be

the data point such that the dissimilarity between then medoid and all other data points

is minimal. Then, for all proceeding medoids (m2, . . . ,mk), we look for medoids such that

the dissimilarity between the additional medoid, the data points in the same cluster as the

new medoid, and all other medoids (and its cluster data points) is minimal. We repeat this

process until we have k medoids. Following, the swap stage consists of iteratively swapping

out the k medoids with other data points from the data set, if it minimizes the overall

dissimilarity. The algorithm terminates if by swapping the medoids with other data points

we do not get lower dissimilarity. Finally, we illustrate the use of k-medoids clustering in

Figure 2.4, where we see that each point is connected to its cluster by a line, signalizing

the dissimilarity between the points and the cluster medoids. The black dots represent the

cluster medoids.
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(b) Data clustered using k-medoids
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Figure 2.4: Example of clustering using k-medoids clustering on a 2-dimensional data set
with 3 clusters. The lines signalize dissimilarity between points and the cluster medoids.

The main advantage of k-medoids is that it is more interpretable and robust to outliers

than the standard k-means clustering algorithm since it uses actual data points as centroids.

In addition to this, we may use any dissimilarity measure, whereas, in the standard k-

means clustering, Euclidean distance is the only option. Even though k-medoids clustering

10



seems to be the superior choice over k-means clustering, it suffers from the fact it is more

computationally heavy to compute and thus is not always feasible to run for large data sets.

2.1.2.4 Gaussian mixture models

Gaussian mixture models (GMMs) are probability distributions which consists of a mixture

of multiple Gaussians [Bishop, 2006, Section 9.2]. A Gaussian (i.e. normal) is a probability

distribution which was several nice properties, such as mean as its mode and symmetry. In

the context of cluster algorithms, we use GMMs to cluster data points by using multivariate

(i.e. of higher dimension) Gaussian distributions as cluster centroids. In particular, for each

cluster centroid ci, 1 ≤ i ≤ k, we define µi to be the cluster mean, Σi to be the cluster

covariances and πi to be the mixing coefficients. The cluster means µi and covariances Σi

determines the localization and spread for each cluster, while the mixing coefficients πi de-

termine how much we emphasize each cluster. To estimate the parameters θ = {µ,Σ, π} of

GMMs, we use the Expectation-Maximization (EM) algorithm, which is an iterative algo-

rithm. When explaining GMMs and the EM algorithm, we refer to [Bishop, 2006, Section

9.2].

The EM algorithm starts by initializing its parameters µ, Σ, and π. There exist several

methods for initializing the parameters and it is common to first run k-means clustering

on the data to obtain a suitable starting point. By running k-means clustering first, we

compute the initial parameters by using statistics from the result of k-means. Furthermore,

the EM algorithm consists of two main stages, namely expectation and maximization. In

the expectation stage, we compute the responsibilities for each data point in X using the

current set of parameters. With responsibilities, we mean how much each Gaussian is re-

sponsible for explaining a single data point in X. Next, in the maximization step, we use the

responsibilities from the expectation step to update the parameters such that the likelihood

P(X|θ) is maximal. The likelihood P(X|θ) tells us how good the set of parameters θ fits our

data X. The exact derivation and update rules for each parameter are left out and we refer

the reader to [Bishop, 2006, Section 9.4] for more details. Once a suitable threshold is met

with respect to P(X|θ), the algorithm terminates and we converge to a set of parameters θ̂.

Using the final parameters, θ̂, we predict which Gaussian (i.e. cluster) to associate for every

data point x ∈ X, by selecting the Gaussian with the highest density. Finally, we illustrate
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the effect of GMM clustering in Figure 2.5, where we see that the different clusters have

different shapes (i.e. means and covariances).
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(b) Data clustered using GMMs
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Figure 2.5: Example of clustering using GMMs on a 2-dimensional data set with 3 clusters.
The different clusters have different shapes, as shown by the ellipsoids.

The main advantage of using GMMs is that clusters can be of different shapes and we get

a probabilistic measure of which cluster each data point belongs to (i.e. fuzzy clustering).

The convergence time of GMMs depends on the initialization of the parameters θ. If we

use k-means clustering to initialize the parameters θ̂, then the overall convergence time is

greater than simply running k-means alone. On the other hand, if we use a completely

random initialization of the parameters θ, then the GMMs converges a lot faster at the risk

of converging in a bad local maximum, leading to worse results.

2.1.2.5 Hierarchical clustering

Hierarchical clustering is a group of clustering algorithms that constructs clusters by re-

cursively partitioning the data points of X in top-down or bottom-up fashion [Rokach and

Maimon, 2005]. We divide the two methods of hierarchical clustering into what we call

agglomerative and divisive hierarchical clustering. Furthermore, we base this sub-subsection

on [Rokach and Maimon, 2005].

Using the agglomerative hierarchical clustering, each data point in X starts in its own cluster

and we successively merge them until all points are in their own respective clusters. In
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contrast to the agglomerative method, divisive hierarchical clustering starts with all data

points in X in a single cluster. Then, we divide the single cluster into smaller clusters, until

each point is in its own cluster. Following, we call the output of a hierarchical clustering

algorithm a dendrogram. We use dendrograms to represent the clustering tree structure. We

illustrate an example of a dendrogram in Figure 2.6.
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Figure 2.6: Complete-linkage clustering on a subset of the Iris data set [Anderson, 1936,
Fisher, 1936], showing its dendrogram.

To merge or divide clusters, we use some similarity measure to either merge similar data

points (agglomerative) or divide dissimilar data points (divisive). Exactly which data points

we choose to merge or divide depends on which criterion we want to optimize. There exist

several different criteria we may choose to perform hierarchical clustering. Below we list

some of the most common ones and mention some pros/cons for each criterion.

• Single-linkage clustering — combines two clusters that contain the closest pair (i.e.

largest similarity) of elements that do not yet belong to the same cluster as each other.
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– Single-linkage clustering tends to produce clusters of long chains, which can lead

to the clustering of data points which in reality are far apart from each other.

– Single-linkage clustering is fast to use for big data sets and can create clusters of

different shapes and sizes.

– Single-linkage clustering is sensitive to noise.

• Complete-linkage clustering — combines two clusters that contain the furthest

pair (i.e. smallest similarity) of elements that do not yet belong to the same cluster as

each other.

– Complete-linkage clustering has bias towards spherical clusters.

– Complete-linkage clustering works well on data with noise.

– Complete-linkage clustering tends to split large clusters.

• Average-linkage clustering — combines two clusters such that the average pairwise

distance of the new cluster is minimum.

– Average-linkage clustering has bias towards spherical clusters.

– Average-linkage clustering works well on data with noise.

• Ward-linkage clustering — combines two clusters such that the variance of the new

cluster is minimum [Joe H. Ward, 1963].

– Ward-linkage clustering has bias towards spherical clusters.

– Ward-linkage clustering works well on data with noise.

Overall, hierarchical clustering is a great clustering algorithm for partitioning the data in

a tree fashion. By performing hierarchical clustering, we use the resulting dendrogram to

determine the number of clusters by cutting it at a certain distance threshold. In the

example from Figure 2.6, a suitable cut could be at distance equal to 3, leading to 3 clusters.

In addition to this, different choices of linkages can lead to different clusterings. For this

reason, we should test multiple linkages to figure out what fits the data the most.

2.1.2.6 Spectral clustering

Spectral clustering is a clustering algorithm that first reduces the dimensionality of the data

set and then applies a clustering algorithm [Andrew Ng and Weiss, 2002]. In particular,
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spectral clustering uses the eigenvalues of the affinity matrix (e.g. a similarity matrix using

pairwise Euclidean distances) of the data X to reduce its dimensionality before applying

some common clustering algorithm, such as k-means clustering (see Section 2.1.2.1). We

base this sub-subsection on [Andrew Ng and Weiss, 2002].

Imagine that we want to cluster the data into k clusters. Spectral clustering starts with the

construction of the affinity matrix A. We typically use some similarity measure to create

pairwise distances between data points to create such an affinity matrix. Then, we compute

the graph Laplacian L = D − A, where D is a diagonal matrix with Dii =
∑
j

Aij and A is

the affinity matrix. The graph Laplacian L is simply a matrix representation of a graph, and

in our case, the similarities between data points in X. Next, we compute the eigenvectors

of L, and using these eigenvectors we get a lower-dimensional space of the original data X

(from d dimensions to k). Finally, we use a clustering algorithm, such as k-means clustering,

on the eigenvectors of L to get the final clustering.

The main advantage of spectral clustering is that it performs a dimensionality reduction on

the data before applying a clustering algorithm. The dimensionality reduction can make

the clustering algorithm less prone to noise and yield better results. Unfortunately, the

computational requirement of spectral clustering is rather high, and for big data sets, it is

simply infeasible.

2.1.2.7 HDBSCAN

Clusters come in different shapes and sizes, and real-life data is rather noisy. DBSCAN is

a density-based algorithm that handles clusters of different shapes and sizes and is robust

to noise [Ester et al., 1996]. It, however, is only able to produce a ”flat” clustering using

some global threshold parameter. HDBSCAN is a generalization of DBSCAN and improves

on it by creating a complete density-based clustering hierarchy [Campello et al., 2013],

automatically extracting flat clusters. HDBSCAN is different from the other clustering

algorithms we have seen so far, as it can perform clustering without predetermining the

number of clusters beforehand and can mark data points a noise. To fully understand the

HDBSCAN algorithm, we introduce its key concepts and then explain how the algorithm

works in practice. We base this sub-subsection on the ”How HDBSCAN Works” article

from [McInnes, 2016].
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HDBSCAN is a density-based clustering algorithm and, for this reason, requires an inexpen-

sive density estimation method to be efficient. Using k-nearest neighbours, the authors of

HDBSCAN estimate the density efficiently. In particular, we first define the core distance of

a data point x ∈ X to be the distance to the minPts-nearest neighbour (including x), which

we denote dcore(x). minPts is a hyperparameter and controls how conservative we want the

clustering to be; the larger minPts, the more ”noisy” data points. To further spread apart

data points that have low density, we define the mutual reachability distance metric (MRD)

as

dmreach(x, y) = max {dcore(x), dcore(y), d(x, y)} , (2.3)

where d(x, y) is the distance between data point x and data point y using the original distance

metric. Under the MRD metric, data points in dense regions do not change their distances,

but for sparse data points, the distances change such that they are at least their core distance

to other points.

Next, using the MRD metric, we find dense areas in the data. To find such areas, we create

a minimal spanning tree (MST) where each node represents a data point x ∈ X and edges

connecting pairs of nodes has a weight equal to the MRD between the two nodes. By using

an MST, we get a graph with the minimal set of edges between nodes such that the weight

between the nodes is minimal. Additionally, if we drop exactly one edge of the graph, we

disconnect it; for each pair of nodes, we connect them by exactly one edge. Using these two

facts, we create a clustering hierarchy in a single-linkage clustering manner. First, we sort

the weights of the edges of the MST in increasing order. Following, we iterate over the edges

of the MST and merge data points into clusters (note that each data point is its own cluster

initially). Now, from the hierarchical clustering, we are left with a dendrogram, which we

illustrate in Figure 2.7. We are now are left with a critical question: How should we define

the cut to get a flat clustering?
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Figure 2.7: Single-linkage dendrogram plot from HDBSCAN on the Iris data set [Anderson,
1936,Fisher, 1936].

Dendrograms can be difficult to interpret, especially once we reach a certain number of data

points. For this reason, the authors of HDBSCAN condense (or compact) the dendrogram

from the hierarchical clustering such that they obtain a flat clustering. First, we define the

notion of minClusterSize, which is a hyperparameter controlling the minimal cluster size at

any time. Following, we walk down the dendrogram, starting from the root cluster, and at

each split, we check whether or not the new cluster has at least minClusterSize data points

in it. If the new cluster has at least minClusterSize data points in it, we let that cluster

be in the tree. If the new cluster has less than the minClusterSize in it, then we let the

parent cluster identify the new cluster and we remove the node from the tree. As we walk

through the dendrogram to condense it, we also include at what distance clusters merge into

the parent cluster, i.e. ”fall out of clusters”. We illustrate with an example of a condensed

dendrogram in Figure 2.8.
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Figure 2.8: Condensed dendrogram plot from HDBSCAN on the Iris data set [Anderson,
1936,Fisher, 1936].

Now, to define the flat cut in a condensed diagram, we select the clusters such that the

largest total area of ”ink” is maximal, under an additional constraint that we do not select

clusters that are descendants of an already selected cluster. Furthermore, we mark any

clusters which we do not select in the previous step as noise, as they are merely artefacts of

the initial hierarchical clustering. We then decide the final clustering, which we illustrate in

Figure 2.9.
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Figure 2.9: Condensed dendrogram plot from HDBSCAN on the Iris data set [Anderson,
1936, Fisher, 1936]. We show the ”final cut” in the red circles and consider all data points
below the clusters with the red circles as noise.

The main advantage of HDBSCAN is that it is able to find the number of clusters automati-

cally, that we can have different shapes of clusters and are able to mark data points as noise.

Dealing with noisy data points can be a challenge, and depending on how we treat them

(exclusion, each noisy data point in its own cluster, etc.), it may lead to different results.

2.1.2.8 ToMATo

Topological Mode Analysis Tool (ToMATo) is a clustering algorithm that uses concepts from

topological data analysis (TDA) [Oudot, 2015, p. 118-131]. In particular, ToMATo uses the

concepts of persistence diagrams (see Section 2.3.2) and prominence to perform clustering.

We divide the ToMATo clustering algorithm into three parts: density estimation and neigh-

bour graph creation (1), mode-seeking (2) and merging (3). Furthermore, we refer to [Oudot,

2015, p. 118-131] when explaining the algorithm.

First (1), we use any density estimation scheme to estimate the density of our data. A

common choice is to use kernel density estimation with some kernel (e.g. Gaussian). We
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denote the density of a data point xi ∈ X, i = 1, 2, . . . , n as f̃(xi). In addition to density

estimation, we compute a neighbourhood graphG to determine the neighbours of data points.

In the graph G, each vertex is a data point and edges represent neighbours. To compute G, it

is common to use a k-nearest neighbour graph, where k represents the number of neighbours.

Using the density estimator f̃ and neighbourhood graph G, we compute the initial clusters

of ToMATo by performing mode-seeking (2). First, we sort the vertices of G by decreasing

f̃ -values and iterate over them. At each vertex i, compare the f̃ values of vertex i and its

neighbours. If f̃(xi) is greater than f̃ of its neighbours, we then denote vertex i as a peak

of f̃ . Otherwise, we connect vertex i to the neighbour with the greatest f̃ -value. By doing

so, we create a spanning forest, where each spanning tree represents peaks of the underlying

true density function. In the next step, we use this spanning forest and merge the trees to

obtain a clustering.

The last step is the merging (3) of the spanning forest from (2). To do this, ToMATo

iterates over the vertices of G again (in the same order as in (2)) and we use a union-find

data structure to keep track of the spanning trees we merge. We denote the union-find data

structure as U . The entries e ∈ U correspond to the union of spanning trees. The root of an

entry r(e), is the vertex in e whose f̃ -value is the highest, i.e. a local peak of f̃ in G. Now,

iterating over the vertices of G, we check whether or not vertex i is a peak of f̃ . If vertex

i is a peak of f̃ , i.e. root of some spanning tree S, we create a new entry e in U , in which

we store S. The root of entry e is set to the vertex itself, i.e. r(e) = i. If vertex i is not a

peak of f̃ , it means that it belongs to some existing entry ei ∈ U and we look for potential

merges of ei with other entries in U . In particular, we iterate over neighbours e ∈ E , e 6= ei,

of i in G and check whether min
{
f̃(xr(e)), f̃(xr(ei))

}
< f̃(xi) + τ , where τ is the prominence

threshold parameter. In other words, we check whether or not two entries have different

f̃ -value and at least one of them has root with less than τ prominence. If this is true, we

merge e and ei into a single entry in U , i.e. e ∪ ei, and we merge the entry with the lower

root into the one with the higher root.

Once the merging step is complete, we are left with a union-find structure U . For every entry

e of U , we connect them to its parent entry p(e) such that f̃(xp(e)) > f̃(xe). In other words,

by iteratively searching for the topmost parent, we determine which cluster we connect each

entry (i.e. data point) to. We see the ToMATo clustering algorithm as a combination of

mode-seeking (from step (2)) and hierarchical clustering (from step (3)). As a result of the
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hierarchical structure, we can visualize when entries in U merge into other entries, and thus,

explain the lifespans of entries. More precisely, an entry in U is ”born” when we create it

in U and ”dies” when we merge it into another entry with a higher root. Using persistence

diagrams (see Section 2.3.2) we can explain the lifespans of entries and determine which

entries live the longest (i.e. entries that never dies). We use the persistence diagram to

determine which value for τ we should use. Different values of τ results in different numbers

of clusters. In practice, let τ = + inf and use the persistence diagram of U to find a suitable

threshold τ̂ such that we get the number of clusters we want. Then, we run ToMATo again

using τ̂ as the threshold parameter to get the final clustering. Finally, we motivate the use

of ToMATo in Figure 2.10, where we see from the persistence diagram in (b) that ToMATo

found 5 clusters, but 3 of them are significantly far from the diagonal (i.e. high prominence).

This indicates that the data set should consist of 3 clusters, and thus, we run ToMATo again

setting the prominence threshold such that we get 3 clusters.
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(b) Persistence diagram from ToMATo trained on data from (a)

Figure 2.10: Example of clustering using ToMATo on a 2-dimensional data set with 3 clusters.
The persistence diagram in (b) shows the three prominent clusters (green dots).

What is great about ToMATo is that it gives us a way to determine the numbers of clusters

automatically (e.g. using some heuristic on the first persistence diagram to determine τ̂). In

addition to this, ToMATo works with any metric, as long as we can create a neighbourhood

graph (e.g. using Euclidean distance or similar metrics).
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2.1.2.9 Comparison of clustering algorithms

In Section 2.1.2, we describe several algorithms for clustering data. We tabularize the

strengths and weaknesses for each algorithm in Table 2.1. Even though some algorithms

might tick off more properties than others, it does not mean that it is a perfect algorithm

for all types of data sets. In particular, we have to perform cluster validation to evaluate

the results from various cluster algorithms to figure out what algorithm works the best. We

explain how to validate results from cluster algorithms in Section 2.1.3.

Algorithm
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Practical for large data sets 7 7 7 7 7 7

Determining the number of clusters automatically 7 7 7

Cluster centroids as data points 7

Different clusters shapes 7 7 7 7

Hierarchical clustering 7 7

Robust against nosy data sets 7 7 7 7

Can identify noisy/anomalous data points 7 7

User-defined distance metric 7 7 7 7 7

Table 2.1: Comparison of various properties for each clustering algorithm we describe in
Section 2.1.2.

2.1.3 Cluster validation

After we use clustering algorithms to perform clustering, we evaluate the result to find the

best set of hyperparameters and/or clustering algorithm. This raises the question: Which

clustering algorithm performs the best on our data? Thankfully, there exist a handful of

various methods to tackle this task. In particular, we differentiate between internal and

external cluster validation algorithms. Internal cluster validation algorithms assess the per-

formance of the clustering using statistics of the data, without knowing the true labels at

hand. External cluster validation algorithms, on the other hand, use the knowledge of the
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true labels. In this thesis, we only use internal cluster validation algorithms, as we are mostly

working with data where we do not know the labels beforehand. Recall that, in most clus-

tering algorithms, we want the average distance between any two data points in the same

cluster to be as small as possible (compactness); and the average distance between any two

data points from different clusters to be as large as possible (separation). Internal cluster

validation algorithms usually reflect compactness or separation of clusterings. In the next

sub-subsections, we explain some common choices of internal cluster validation algorithms

and discuss their strengths and weaknesses. Furthermore, we will use the cluster validation

methods we explain below when we analyze word embeddings (Section 2.2) in Chapter 3.

2.1.3.1 Silhouette Coefficient

The Silhouette Coefficient is an internal cluster validation method that measures the good-

ness of clusterings [Kaufman and Rousseeuw, 1990, p. 87]. In particular, the Silhouette

Coefficient measures how similar data points are to their own cluster (compactness) when

we compare to data points from other clusters (separation). The Silhouette Coefficient ranges

from -1 to 1, where the best value is 1 and the worst value is -1. Values near 0 indicate that

we have overlapping clusters (i.e. low separation). We base this sub-subsection on [Kaufman

and Rousseeuw, 1990, p. 87].

For any data point xi in the cluster Ci, we compute the mean compactness a(i) as the average

distance d(i, j) between data point i and all other data points in Ci, i.e. j ∈ Ci, i 6= j. More

formally, we define the mean compactness a(i) as

a(i) =
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j), (2.4)

where |Ci| is the number of data points in cluster Ci. Smaller values of a(i) indicate better

compactness of clusters, and thus, better cluster assignments. Following, for any data point

xi in the cluster Ci, we compute the mean separation b(i) as the smallest distance from i to

any other cluster in which i does not belong. The mean separation b(i) is defined as

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j). (2.5)
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Large values of b(i) indicate that the clusters have good separation and that data points in

Ci are a good fit. Now, using the definitions of compactness and separation, we define the

silhouette of data point i as

s(i) =


b(i)−a(i)

max(a(i),b(i))
if |Ci| > 1

0 if |Ci| = 1
. (2.6)

Taking the average of all silhouettes s(i), we define the mean Silhouette Coefficient as

SC =
1

n

n∑
i=1

s(i), (2.7)

where n is the number of data points in our data (e.g. n-dimensional data X).

The main advantages of the mean Silhouette Coefficient are that it is simple, fast to com-

pute and has a defined range from -1 to 1. The mean Silhouette Coefficient struggles with

overlapping clusters (where SC ≈ 0).

2.1.3.2 Davies-Bouldin Index

The Davies-Bouldin Index (DBI) is an internal cluster validation method for evaluating

results of clustering algorithms [Davies and Bouldin, 1979]. Similar to the Silhouette Coeffi-

cient, DBI measures the compactness and separation of clusters to measure the goodness of

fit. We base this sub-subsection on [Davies and Bouldin, 1979].

To measure the compactness of clusters, DBI introduces the notion of scatter within a cluster,

which we denote Si. We compute Si by taking the mean of the sum of the distances to the

cluster centroid of a particular data point i. More formally, we define Si as

Si =

 1

|Ci|
∑
xj∈Ci

|xj − C̃i|p
1/p

, (2.8)

where Ci is the cluster we associate to data point i, |Ci| is the number of data points in cluster

Ci, C̃i is the centroid of cluster Ci and p denotes the power of the Lp distance. A common

choice is to set p = 2, leading to Euclidean distances. A low value of Si indicates that the
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compactness of cluster Ci is good. To compute the separation of clusters, DBI computes

separation between clusters Ci and Cj by taking the distance between cluster centroids C̃i

and C̃j. We define the cluster separation Mi,j as

Mi,j = ||C̃i − C̃j||p, (2.9)

where p denotes the power of the Lp distance. High values of Mi,j indicate that we separate

the clusters well. Combining the notion of cluster compactness Si and separation Mi,j, we

define the measure of cluster goodness Ri,j as

Ri,j =
Si + Sj
Mi,j

. (2.10)

To create a clustering measure that is symmetric and non-negative, we define Ri,j as such.

Low values of Ri,j indicate that we have compact clusters with high separation. For a

particular cluster Ci, DBI measures Ri,j for all other clusters Cj, j 6= i, and uses the largest

value of Ri,j, i.e. the worst-case scenario, to compute the index. More formally, we define

DBI as

DBI =
1

n

n∑
i=1

max
j 6=i

Ri,j, (2.11)

where n is the number of data points in our data (e.g. n-dimensional data X). The main

advantage of DBI is the fact that is fast to compute and has non-negative values. Since

DBI does not have any upper bound, it is more difficult to interpret the values, when we for

instance compare it to Silhouette Coefficient.

2.1.3.3 Caliński-Harabasz Index

The Caliński-Harabasz Index (CHI) is an internal cluster validation method for evaluating

clustering algorithms [Caliński and JA, 1974]. CHI measures compactness and separation of

clusters to measure the goodness of fit of a particular clustering. We base this sub-subsection

on [Caliński and JA, 1974].

To measure the compactness of a clustering, CHI computes the sum-of-squares within cluster
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(SSW) as

SSW =
n∑
i=1

||xi − C̃i||2, (2.12)

where n is the number of data points in our data, xi is the ith data point and C̃i is the

centroid of the cluster we associate to xi. Small values of SSW indicate that we have

compactly clustered data points. To measure the separation of clusters, CHI computes the

sum-of-squares between clusters (SSB) as

SSB =
k∑
j=1

|Cj| · ||C̃i − X̄||2, (2.13)

where k is the number of clusters, |Cj| is the number of data points in cluster Cj and X is

the centre of all data points (i.e. mean). Large values of SSB indicate that we have a good

separation of the clusters. Finally, we compute the CHI by multiplying the ratio of SSB to

SSW with a weight depending on n and k. More formally, the CHI is defined as

CHI =
SSB

SSW
× n− k
k − 1

. (2.14)

Since we define CHI as the ratio between SSB and SSW, large values indicate better clus-

tering. The main advantage of CHI is that it is fast to compute. Similar to Davies-Boundin

Index, CHI is harder to interpret than Silhouette Coefficient for example, since the values

do not have any upper limit.

2.1.4 Dimensionality reduction methods

Working with data in high dimensions can be a difficult task. Imagine that we have gathered

some data, containing several features, and we would like to deepen our understanding of it.

One approach we could do would be to visualize each feature by plotting them against each

other, looking for bivariate relationships. Unfortunately, this is a rather cumbersome task

and is hard to employ once a certain number of features is met (e.g. 10 features). Thankfully,

dimensionality reduction methods can help us to reduce the dimensionality of data into some

lower dimension, preserving relevant properties of the original data in the process. A typical

application of dimensionality reduction methods is to lower the dimensionality to 2 or 3
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such that we can visualize the data at ease. We introduce two dimensionality reduction

methods and explain how they work. In both sub-subsections below, we assume that we

have some data X ∈ Rn×d and that we want to reduce the dimensionality to some chosen

hyperparameter k. Furthermore, we will use the dimensionality reduction methods which

we explain below when we analyse clustering of word embeddings (Section 2.2) in Chapter 3

and prediction of polysemous words in Section 3.3.4.

2.1.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most common dimensionality reduction

methods [Jolliffe, 2002]. PCA performs a linear mapping of the original data X ∈ Rn×d to

a (possibly) lower-dimensional space Y ∈ Rn×k (k ≤ d) such that the variance is maximal

in Y . We typically select k to be a relatively low value, e.g. 2 or 3, if we would like to

visualize it using plots. Another common value for k is to set it such that a specific variance

threshold is met, e.g. explaining 90% of the variance of the data. We refer to [Jolliffe, 2002]

when explaining PCA.

The PCA algorithm consists of several steps, and following, we explain each step. First,

compute the mean of X, which we denote X = 1
n

n∑
i=1

xi, and subtract it from X, i.e. X ′ =

X −X = {x′1, x′2, . . . , x′n}. Next, we compute the covariance matrix of X ′, which we denote

C ∈ Rd×d, and we compute the corresponding eigenvectors and eigenvalues of C, which we

denote Ceig = {c1, c2, . . . , cd}. Furthermore, we sort the eigenvectors Ceig by its corresponding

eigenvalues in a descending manner. By doing so, we get a set of eigenvectors such that

the first eigenvector corresponds with the largest value, the second eigenvector corresponds

with the second largest value and so forth. We denote this set of eigenvectors as C ′eig =

{c′1, c′2, . . . , c′d}. We then pick the k first eigenvectors of C ′eig and project the data onto them,

essentially performing a change of basis. In addition to this, we add the mean of X to

complete the reconstruction. We define the reconstruction of PCA as

Y = X ′
(
c′1 c′2 . . . c′k

)>
+X, (2.15)

where Y = {y1, y2, . . . , yn} represents the original data X in (a possibly) lower dimension k,

such that we maximize the variance of the vectors of X. We refer the vectors {y1, y2, . . . , yn}
as the principal components (PC) of X, where PC1 is y1, PC2 is y2 and so forth. Finally,
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we show an example where we apply PCA to some 2-dimensional data in Figure 2.11, where

we see that PCA essentially rotates the data, maximizing the variance in the PC axes.
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(a) 2-dimensional data, with arrows showing principal axes
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(b) 2-dimensional data in PCA coordinates

Figure 2.11: PCA applied to 2-dimensional data, showing the principal axes by the arrows.

2.1.4.2 Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) is a dimensionality reduction

algorithm that, among other things, uses ideas from topological data analysis [McInnes et al.,

2018]. In particular, UMAP uses a fuzzy version of simplicial complexes (see Section 2.3.1

for the definition of a simplicial complex) to create a graph representing the topological

structure of the data in its original (high) dimension. To explain how UMAP works, we use

the example from the ”How UMAP Works” documentation page [McInnes, 2018].

Imagine that we have some data from a noisy sine, X = {x1, x2, . . . , xn} ∈ Rn×d, as we see

in Figure 2.12.
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Figure 2.12: A noisy sine wave. The figure is from [McInnes, 2018].

We would like to capture the topological structure of X, and we do so by creating a simplicial

complex built on X, as we see in Figure 2.13.

Figure 2.13: A simplicial complex built on a noisy sine wave. The figure is from [McInnes,
2018].

We would like to capture the topological structure of all data points in X and want a graph

connecting all points. By using simplicial complexes, however, we see in Figure 2.13 that

29



problems can occur, namely that not all data points have edges between them, which again

disconnects the simplicial complex. This particular problem can occur when we have a too-

small ε radius around each data point. In real-world data, the data points are typically

not laying on a uniform distribution. Moreover, selecting a perfect ε to create a suitable

simplicial complex is hard. The authors of UMAP overcome these problems by creating

fuzzy open sets around each data point to create local connectivity in the graph, as we see

in Figure 2.14.

Figure 2.14: Fuzzy open sets around each data point of a noisy sine wave to create local
connectivity. The figure is from [McInnes, 2018].

To create the fuzzy open sets, we compute the distance to the nearest neighbour of each

data point and the level of fuzziness decreases in terms of the distance beyond it, starting

from 1 decreasing to 0. If a data point has a fuzziness level greater than zero, then we create

an edge between the two data points, with weight equal to the fuzziness level. Furthermore,

we interpret the fuzziness level as the probability of the edge existing. We illustrate the

connected graph in Figure 2.15.
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Figure 2.15: A connected graph where nodes are data points and the edges between them
have the fuzziness levels as weights. The figure is from [McInnes, 2018].

To finalize the connected graph from Figure 2.15, we convert the edges between any two

data points into a single edge. We do this because we want the distance between two data

points a and b to be the same; currently, it depends locally on the distance to the nearest

neighbour, as the fuzziness level decreases beyond it. To merge the edges between any two

data points a and b, we compute the combined weight by taking the union between them

w(a) +w(b)−w(a)w(b). We use the newly combined weight as the weight of the single edge

between a and b. If we apply this process, unioning edges together, we end up with a fuzzy

simplicial complex. We show an example of a fuzzy simplicial complex in Figure 2.16.
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Figure 2.16: A fuzzy simplicial complex of some sine wave data. The figure is from [McInnes,
2018].

Now, using the fuzzy simplicial complex of Figure 2.16, we have a topological representation

of X, capturing the topology of the manifold. We denote the set of all possible 1-simplices

(i.e. edges) as E. To compute the weight of a 1-simplex (i.e. edge) e, we use wh(e) in the

high dimensional case. To get a good low dimensional representation of the high dimensional

fuzzy simplicial complex, we initialize a low dimensional fuzzy simplicial complex. We denote

the weights of the low dimensional fuzzy simplicial complex as wl(e) for edge e. To determine

the weights wl(e), we employ an iterative process where we optimize a loss function L in

a gradient descent fashion (see Sections 2.1.5.5 and 2.1.5.6 for more information regarding

loss functions and the gradient descent optimizer). Since we interpret the weights of the

1-simplices of E as probabilities of the edge existing (i.e. Bernoulli variables), the authors

of UMAP uses cross-entropy (see Equation (2.30)) as the loss function. More formally, we

define the loss function L as

L =
∑
e∈E

wh(e) log

(
wh(e)

wl(e)

)
︸ ︷︷ ︸

Attractive force

+ (1− wh(e)) log

(
1− wh(e)
1− wl(e)

)
︸ ︷︷ ︸

Repulsive force

. (2.16)

In the first term of Equation (2.16), we have an attractive force between the data points

which e spans, pulling them together; when wl(e) is large, the distance (i.e. weight) between
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any two data points becomes small. In the second term of Equation (2.16), there is an

opposite, repulsive force between the data points which e spans, repelling them apart; when

wh(e) is small (i.e. distance in high dimensional space), wl(e) becomes small since we want

to minimize the term. The process of pulling and repelling the weights makes the low

dimensional representation of the data settle into a balanced state, such that it represents

the high dimensional topological structure of the original data in a fairly accurate way. In

practice, the UMAP algorithm uses several different tricks to optimize it, but we leave out

the technical details here. We kindly refer the reader to [McInnes et al., 2018] for more

details. Finally, we show an example where we compute a 2-dimensional UMAP embedding

of the Iris data set [Anderson, 1936,Fisher, 1936] in Figure 2.17, where we see that UMAP

can separate the classes in the Iris data set quite nicely, particularly for the setosa class.
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Figure 2.17: 2-dimensional UMAP embedding of the Iris data set [Anderson, 1936, Fisher,
1936].
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2.1.5 Artificial neural networks

In this subsection we explain artificial neural networks (ANN). In particular, we focus on

multilayered neural networks (MLNN). We base this subsection on [Aggarwal, 2018, Chapter

1] and [Rong, 2016]. Furthermore, we will use the notion of artificial neural networks when

we explain the word2vec model in Section 2.2.2.5.

An artificial neuron (or unit) is a function which receives one or more inputs and a bias,

and then sums them to produce an output. We illustrate an example of an artificial neuron

in Figure 2.18, where {x1, . . . , xK} are the input values, b is the bias, {w1, . . . , wK} are the

weights and y is a scalar output. We denote f as the activation function.

 

  

Figure 2.18: An artificial neuron that takes in a K-dimensional input x and bias b to produce
some output y.

We produce the output of a single unit by applying an activation function f to the input u.

More formally, we define the output of a single unit as

y = f(u), (2.17)

where u is the input of the neuron. We define u as

u = b+
K∑
i=1

wixi, (2.18)

which is the weighted sum of the input values {x1, . . . , xK} plus the bias term, with

{w1, . . . , wK} as weights.

34



The bias term acts as an intercept value to make the model more general and is usually set

to +1. For some models (e.g. word2vec, which we introduce as an ANN in Section 2.2.2.5),

we exclude the bias term for the units in the neural network, i.e. we leave b to be zero.

The choice of activation function f is typically a non-linear function. Artificial neural net-

works use different activation functions such as ReLU, sigmoid or tanh to learn non-linear

relationships in the data. We come back to the concept of activation functions in Sec-

tion 2.1.5.4.

A layer {zj} = {z1, z2, . . . , zK} of an artificial neural network is a collection of artificial

neurons (unit). We define the layer {zj} using an N ×K-dimensional weight matrix W , a

N -dimensional bias vector b and an activation function f . More formally, we define a layer

{zj} as

{zj} = f (W · x+ b) , (2.19)

where x is a K-dimensional input vector. In the following sub-subsections, we explain the

different types of layers in the ANN, namely the input, hidden and output layers.

2.1.5.1 Input layer

The first layer in the ANN is the input layer {xk} = {x1, x2, . . . , xK}. It is responsible for

taking in input and passing it to the proceeding layer in the network. We illustrate the input

layer in Figure 2.19, where we see that each input value xi gets its own node.

Input layer

Figure 2.19: Input layer in the ANN for a K-dimensional vector x.
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Following, we define the input layer more formally using Equation (2.19) in Equation (2.20).

We see that the input layer does not perform any changes to the incoming data and acts

as a way for feeding data into the neural network. More formally, we define the input layer

{xk} as

{xk} = f{xk}(W{xk} · x) (2.20)

= id(IK · x)

= IK · x
= x,

where the weight matrix W{xk} is the identity matrix IK , we have no bias (i.e. bias equal

to zero vector) and the activation function f{xk} is the identity function id(x) = x. In the

following sub-subsection, we look at the next layer in the neural network, namely the hidden

layer.

2.1.5.2 Hidden layer

The hidden layer is the second layer in the ANN {hi} = {h1, h2, . . . , hN}, and we most

commonly connect it to the input layer. We note that we can, however, have multiple

hidden layers in the ANN by connecting them to each other (making the neural network

deeper). For illustration purposes, we assume that we only have one hidden layer in our

neural network. We illustrate an example of a hidden layer in Figure 2.20, where we observe

that we connect every unit in the input layer to the units in the hidden layer. We illustrate

the connections by the lines. This is what we call fully connected layers, meaning that we

connect every unit to each other.
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Input layer Hidden layer

 

Figure 2.20: Input to hidden layer in the ANN for a K-dimensional vector x, N ×K dimen-
sional weight matrix {Whi} and a N -dimensional hidden layer h.

We formalize the description of the hidden layer by defining it as

{hi} = f{hi}(W{hi} · {xk}+ bh), (2.21)

where f{hi} is a user-specified activation function, W{hi} is an N × K-dimensional weight

matrix and bh is an N -dimensional bias vector. The hidden layer tries to learn a latent (i.e

hidden) representation of the input data x. We explain how the neural network learns the

latent representation when introducing optimizers in Section 2.1.5.6. Assuming that we have

some N -dimensional latent representation of the data, we would like to connect it to the final

layer in the neural network, the output layer, which we explain next.

2.1.5.3 Output layer

The last layer in the ANN is the output layer {yj} = {y1, y2, . . . , yM}, which we connect to

the last hidden layer of the network. Similar to the hidden layer, we connect each unit in

the last hidden layer to each unit in the output layer. We illustrate an example of this in

Figure 2.21, where we see a complete, multilayered neural network (MLNN).
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Input layer Hidden layer

 

Output layer

Figure 2.21: Multilayered neural network with one input, hidden and output layer.

Following, we define the output layer {yj} using a M × N weight matrix W{yj}, an M -

dimensional bias vector by and an activation function f{yj}. More formally, we define the

output layer {yj} as

{yj} = f{yj}(W{yj} · {hi}+ by). (2.22)

We have now covered the different layers in an MLNN, but have yet to cover the different

choices of activation function f in the neural network and how the MLNN learns. In the

following sub-subsections, we look at choices of activation and loss functions, as well as

optimizers for learning in the network.

2.1.5.4 Activation functions

The input data we use to feed into an ANN can contain complex patterns and have non-linear

relationships. To learn such patterns and relationships, we apply an activation function to

each layer before the result is sent to the proceeding layer. There are several choices of

activation functions and following, we explain some of the most common ones.

The simplest type of activation is the identity function, which we define as

f(x) = x. (2.23)
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We commonly use the identity function when we want to pass on the values from one layer to

another without modifying the value itself, as we use in the input layer from Section 2.1.5.1.

Other choices of activation functions include sigmoid, tanh, Rectified Linear Unit (ReLU)

and softmax. We visualize activation functions in Figure 2.22 and define them formally below

as

f(x) =
1

1 + exp (−x)
(sigmoid function), (2.24)

f(x) =
exp (2x)− 1

exp (2x) + 1
(tanh function), (2.25)

f(x) = max {x, 0} (ReLU function), (2.26)

and

f(xi) =
exp (xi)
K∑
j=1

exp (xj)

, i ∈ {1, . . . , K} (softmax function), (2.27)

where K is the number of output values for the softmax layer.
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Figure 2.22: Four plots of various activation functions showing how they respond to different
values of x.

The sigmoid and tanh activation functions were typically used in the early development of

neural networks. The sigmoid activation function maps a value to a value in (0, 1) and is

particularly useful since it creates a probabilistic output. The tanh activation function has

a similar shape to the sigmoid activation function and maps values to values in [−1, 1]. We

show the relationship between the tanh and sigmoid activation functions as

tanh(x) = 2 · sigmoid(2x)− 1, (2.28)

where we see that the tanh activation function is a rescaled version of the sigmoid activation

function.
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In more recent years, the ReLU activation function has become more popular, partly due

to its computational simplicity. Both the sigmoid and tanh activation function suffers from

vanishing gradients (i.e. gradients become zero, leading to practically no learning) and we

typically use ReLU as a substitute to overcome this problem. This does not mean, however,

that we can use the ReLU activation function without problems, as it can ”die out” since it

is non-differentiable at 0.

Up until now, we have only explained activation functions in the context of a single output

value. To perform classification with K outputs, we typically use the softmax activation

function, which we define in Equation (2.27). We interpret the output of the softmax ac-

tivation function as the probabilities of the K outputs. Next, we look at loss functions in

neural networks.

2.1.5.5 Loss functions

By connecting the different layers in an ANN, we have seen how we use some input data,

send it through some hidden layer, and finally, get the predicted output values from the

output layer. We denote the predicted output values as ŷ and assume that we have the

true output values as well, which we denote y. The loss function measures how much the

predicted values ŷ deviate from the true values y, and as such, the goal is to minimize this

value. The output layer can have one or many outputs, and depending on the configuration

of the network, the loss function changes as well. We separate the output types of an ANN

into two categories, namely the regression and classification outputs.

In a regression type output, we usually predict some real-value quantity, such as height,

weight or distance. For such problems, it is common to use the mean squared error (MSE)

as the loss function. We calculate the MSE as the mean of the squared differences between

the predicted and true values. More formally, we define MSE as

MSE(ŷ, y) =
1

N

N∑
i=1

(yi − ŷi)2, (2.29)

where N is the length of y and ŷ.

For classification type outputs, we want to classify whether or not some input data belongs

to two (binary, e.g. on or off, blue or red) or more classes (categorical, e.g. different types

41



of animals). In a binary classification type output, we use the sigmoid activation function

in conjunction with the binary cross-entropy (BCE) loss function. We define the binary

cross-entropy loss function as

BCE(ŷ, y) = − (y · log (ŷ) + (1− y) · log (1− ŷ)) . (2.30)

As opposed to the binary cross-entropy function, we use the categorical cross-entropy (CCE)

function to compute the loss for multi-class classification output. We commonly use the soft-

max activation function in the output layer to create a multi-class probability distribution.

Furthermore, we define the CCE loss function as

CCE(ŷ, y) = −
C∑
c=1

yc · log (ŷc), (2.31)

where C is the number of classes in the multi-class classification output. In Equation (2.31),

we observe that CCE is simply a generalization of the BCE loss function for multiple classes.

2.1.5.6 Optimizers

In this sub-subsection, we explain how an ANN can effectively make predictions from input

data by learning its internal weights. In particular, we explain the gradient descent algorithm

and how ANNs exploit it to perform efficient training of its internal parameters.

So far, we have discussed what we call the forward pass (or phase). A forward pass is simply

the journey of the input data to the output layers where we in each step compute the output

values at each layer and local derivatives using the current set of weights. Once we are at the

output layer, the forward pass is complete and the backward pass commences. Recall that

the objective of the neural network is to minimize the loss function. To do so, we compute

the derivative of the loss function with respect to the weights in the input layer, using the

chain rule from calculus. The derivative of the loss function tells the neural network which

direction it should move each weight in to minimize the loss (i.e. in the negative direction

of the derivative). To give an example of forward and backward passes in an ANN, consider

the example in Figure 2.23.
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Output 

Figure 2.23: A neural network with one input node, one hidden layer with two nodes and
one output layer.

In Figure 2.23, we have a network with one input node (neuron), a hidden layer with two

nodes and a single output layer with one node. We denote the input to the network as u,

which is the product of the input data and the weights in the input layer. For the activation

functions of the network, we denote them as f , g and h. Moreover, we denote the results

of the activation functions as y, z, p, q, and the function K combines the result of p and q

resulting in the output value O. We assume that we apply the weights of the hidden layer

to the previous layer’s output values during g and h and that we apply the weights of the

output layer at K. The forward pass in this network is straightforward: We start the input

node, pass the data on to g and h and combine the results in the output layer. Now, for

the backwards pass, we first compute the loss at the output node using a loss function L.

Furthermore, we compute the derivative of L with respect to the input u. More formally, we

compute

∂L

∂u
=
∂L

∂O
· ∂O
∂u

(2.32)

=
∂L

∂O
·
[
∂O

∂p
· ∂p
∂u

+
∂O

∂q
· ∂q
∂u

]
(chain rule)

=
∂L

∂O
·
[
∂O

∂p
· ∂p
∂y
· ∂y
∂u

+
∂O

∂q
· ∂q
∂z
· ∂z
∂u

]
(chain rule)

=
∂L

∂O
·

∂K(p, q)

∂p
· g′(y) · f ′(u)︸ ︷︷ ︸

Path on top

+
∂K(p, q)

∂q
· h′(z) · f ′(u)︸ ︷︷ ︸

Path on bottom

 .
In Equation (2.32), we see how to calculate the derivatives for a relatively small neural
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network. There exists, effective and more general frameworks to derive the derivative of the

loss with respect to the input values, but we leave those details out and kindly refer the

reader to [Aggarwal, 2018, Chapter 1.3] for more details.

We have now gone over the forward and backward passes, which are the first two steps of

the so-called backpropagation algorithm. The remaining step of the algorithm is to use the

computed derivatives to update the weights of the ANN. To do this, we use the gradient

descent (GD) algorithm. The main idea of gradient descent is to update the weights itera-

tively by moving them in the opposite direction of the gradient (i.e. the steepest descent)

of the loss with respect to the weights. By doing so, it leads to better-fitting weights for the

input-output data. In standard gradient descent, we perform its steps by

W ⇐ W − α · ∂L
∂W

, (2.33)

where W = (w1, w2, . . . , wd) is the matrix consisting of the d weights of an ANN. The learning

rate α is a hyperparameter and determines how much learning we want to do in each step.

The learning rate is usually set to a relatively low value, in the order of 10−2 to 10−5. We

illustrate the effect of the gradient descent algorithm with a small example in Figure 2.24,

where we compute gradient descent for the paraboloid f(x, y) = (x − 2)2 + (y − 4)2. We

set the starting point to be (-5, -10), the learning rate α to 0.05 and use 100 iterations.

In Figure 2.24, we see that the gradient descent algorithms finds the minimum of f(x, y)

relatively fast.
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(a) Gradient descent of f(x, y), shown in 3D
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Figure 2.24: Gradient descent of the function f(x, y) = (x−2)2 +(y−4)2. We start at point
(-5, -10), use a learning rate α of 0.05 and compute for 100 iterations.

Even though gradient descent works great for small applications, once we scale the number

of parameters (weights) in the ANN to the more extremes (e.g. in the order of millions),

it becomes impractical to compute for the entire training data at once. Furthermore, we

observe that a loss function L usually can be written as a sum of the loss of the individual

training data points, where Li is the loss for training data point i. Thus, we define the

individual loss Li as

L =
n∑
i=1

Li. (2.34)

Using the observation that we are able to write the loss function as the sum in Equa-

tion (2.34), we introduce the stochastic gradient descent (SGD) method. Instead of perform-

ing gradient descent on the whole input data, SGD performs gradient descent for each input

data separately. More formally, SGD performs its steps by

W ⇐ W − α · ∂Li
∂W

, (2.35)

where n is the number of input data points and Li represents the loss of the ith input.

We call SGD stochastic because a random sample of the training data is chosen for each

iteration. An advantage that SGD has over GD, is that it runs a lot faster, at the expense of
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greater loss. Thankfully, there exists a variant of SGD which seeks to find a balance between

speed and loss, namely the mini-batch stochastic gradient descent (mini-batch SGD) method.

In mini-batch SGD, we use a batch B = {j1, . . . , jm} of input training data indices when

computing the weight updating. In other words, mini-batch SGD performs its steps by

W ⇐ W − α ·
∑
j∈B

∂Lj
∂W

. (2.36)

Mini-batch SGD often finds the best trade-off between stability, speed and memory require-

ments. However, we note that the memory requirement increases with the use of mini-

batches. This is because we have to store bigger matrices in memory during training. We

typically choose batch sizes that are a power of 2 (e.g. 32, 64, 128 or 256), as most modern

hardware architectures optimize for such values.

In addition to the different variants of gradient descent, there exist a bunch of other variants

which can solve issues such as getting stuck in local minima or speeding up the training

process. We leave out the technical details of all these strategies here, but kindly refer the

reader to [Aggarwal, 2018, Chapter 3.5] for more details.

2.1.6 Intrinsic dimension estimation

In machine learning, the manifold hypothesis states that, in general, real-life high-dimensional

data tends to live on a low-dimensional submanifold embedded within the high-dimensional

space [Bengio et al., 2014, p. 16]. To understand more about the underlying structure of the

data we are working with, we can estimate the dimension of the low-dimensional submanifold.

We call the process of estimating the dimension of the low-dimensional submanifold intrinsic

dimension (ID) estimation. More generally, a D-dimensional data set X ∈ RD is said to have

an ID equal to d if X lies entirely within a d-dimensional subspace of RD [Lee et al., 2015]. We

separate between global and local ID estimation methods, where global methods estimate the

ID for the entire data set, and local methods estimate ID for each data point in the data set.

We note, however, that it is fully possible and common in the literature to approximate local

ID estimates by computing global ID estimates of a k-nearest neighbourhood around each

data point x ∈ X. In the following sub-subsections, we introduce five methods for estimating

the ID. We leave out the technical details of the ID estimation methods, as they are not

the focus of this thesis. Instead, we give an overall explanation for each of the methods,
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and kindly refer the reader to the source of each method for more details. For each of the

methods we describe below, we assume that we have some data set X ∈ RN×D consisting of

N samples, where each sample is a D-dimensional vector. We base this subsection on [Lee

et al., 2015] if we do not state otherwise. Following, our interest is mainly in local ID

estimation methods for this thesis, as we will use them for the analysis of word embeddings

(Section 2.2) in Section 3.3.3 and for polysemous word prediction in Section 3.3.4.

2.1.6.1 LPCA

One of the first and most simple kinds of ID estimation algorithm bases itself on the PCA

algorithm (see Section 2.1.4.1). In particular, the ID estimation algorithm uses information

from the eigenvalue decomposition of PCA to estimate the intrinsic dimension. We refer to

this ID estimation algorithm as the local PCA (LPCA) method, which was first introduced

in [Fukunaga and Olsen, 1971]. We refer to [Fukunaga and Olsen, 1971] when explaining the

LPCA method. The LPCA method works as follows. First, we reduce the dimensionality of

the original data set X from D dimensions to d̂ dimensions, by applying PCA and making

sure that most of the variance in the d̂ dimensions are kept. To select d̂, LPCA counts the

number of eigenvalues that are greater than a portion α of the largest eigenvalue, from PCAs

eigenvalue decomposition. A typical value for α is 0.1, meaning that d̂ is set to the number

of eigenvalues that are greater than 90% of the largest eigenvalue. The value d̂ is then the

estimated ID. The LPCA algorithm for estimating ID is a local estimator, meaning that

estimates the ID for every data point x ∈ X. We typically implement LPCA using k-nearest

neighbour, meaning that for every data point x ∈ X, we compute PCA of the k-nearest

neighbourhood around x to estimate its ID.

2.1.6.2 KNN

A popular approach to estimate the ID is to use k-nearest neighbour (k-NN) graphs. In this

sub-subsection, we explain the k-NN algorithm for ID estimation, as explained by [Carter

et al., 2010, p. 651]. The k-NN algorithm uses the notion of the total edge length of the

k-NN graph built on the data X, to estimate the ID d̂. Let D(xi, xj) denote the distance
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between two data points xi, xj ∈ X, and let Nk,i denote the set of the k-nearest neighbours

of data point xi. Then, we define the total edge length of the k-NN graph as

Lγ,k(X) =
n∑
i=1

∑
y∈Nk,i

D(xi, xj)
γ, (2.37)

where γ > 0 is a constant, weighting the distances between the data points in the k-NN

graph. If we let γ > 1, then we emphasize big distances between data points. The authors

of [Carter et al., 2010, p. 651] then argue that, assuming the manifold hypothesis holds for

the data X (i.e. that the data X can be fully described using a submanifold X ′ ∈ RN×d),

it is possible to estimate d̂ by applying non-linear least squares to an approximation of the

total edge length. The k-NN algorithm for estimating ID is a global estimator, meaning

that estimates the ID of the whole data X. It is possible to make it local by applying the

procedure we explained in the introduction to ID estimation in Section 2.1.6.

2.1.6.3 TWO-NN

Estimating the ID can be a hard task, especially if the underlying manifold of the data is

twisted and curved. It is for this reason, the authors of [Facco et al., 2017] propose a two

nearest neighbours estimator for ID estimation, which we refer to as the TWO-NN method.

TWO-NN uses the first and the second nearest neighbour of each data point in X to estimate

the ID. The authors of [Facco et al., 2017] show that by using the ratio of the distance to the

second nearest neighbour to the first one to create a linear regression model which estimates

the ID d̂. Following, the authors claim that this minimality reduces the effect of complex

manifolds, varying density and reduces the computational cost. The TWO-NN algorithm

for estimating ID is a global estimator, meaning that estimates the ID of the whole data X.

It is possible to make it local by applying the procedure we explained in the introduction to

ID estimation in Section 2.1.6.

2.1.6.4 MLE

Maximum likelihood estimation (MLE) is a method for estimating the parameters of a prob-

ability distribution, by either maximizing a likelihood function. [Levina and Bickel, 2004]
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propose a method that uses MLE to estimate the ID of data points x ∈ X. The idea is to

estimate the ID locally, by assuming that the density f(x) is constant for a small sphere

Sx(R) of radius R around x. Then, they use a Poisson process to measure the rate of the

counting process N(t, x) which measures the number of points falling onto the sphere Sx(R)

at time t. Furthermore, they use MLE on the Poisson process to estimate the local ID d̂ for

point x. Note that in practice, it is common to use k-nearest neighbours instead of radius

R to find neighbours of x. An extension of the MLE method for estimating local ID was

proposed by [Haro et al., 2008], which makes the ID estimator more robust to noise.

2.1.6.5 TLE

Tight Local Intrinsic Dimensionality Estimator (TLE) [Amsaleg et al., 2019] is a method for

estimating the local ID of data points x ∈ X. The authors of TLE claim that the method

works well in tight localities, i.e. within neighbourhoods of small size (e.g. using k-nearest

neighbour). By using distances from x to its k-nearest neighbours, TLE estimates the local

ID d̂. The authors of [Amsaleg et al., 2019] claim that TLE can achieve more accurate ID

estimates within small neighbourhoods around x (i.e. for small values of k), which again can

improve the quality of algorithms that depend on local ID estimates.

2.1.7 Regression analysis

Regression analysis is a set of methods from statistics that estimate relationships between a

dependent variable and one or more independent variables. To give an example, a dependent

variable could be ”income” and independent variables could be ”education” and ”experi-

ence”. Regression analysis could help us to understand how income is affected by education,

for instance. In this subsection, we look at three regression methods in particular: linear

regression, lasso regression and logistic regression. We refer to [James et al., 2013,Fox, 2015]

when describing concepts from regression analysis. Furthermore, we will use the lasso and

logistic regression methods for the prediction of polysemous words in Section 3.3.4.
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2.1.7.1 Linear regression

Linear regression, as the name suggests, attempts to find linear relationships between vari-

ables. The simplest form of linear regression is between a dependent variable X and a single

independent variable Y . First, we assume that there is an approximately linear relationship

between X and Y . Then, we model the linear relationship as

Y ≈ β0 + β1X, (2.38)

where the approximate equals sign ”≈” means that we are regressing Y onto X. The two

constants β0 and β1 are unknown and represents the intercept and slope in terms of the

linear model. We refer these two constants as the model parameters. Following, we use some

training to compute estimates of the models parameters, β̂0 and β̂1. We use the hat symbol,

ˆ , to denote some estimated or predicted value. To predict future values for Y , we use the

estimated parameters β̂0 and β̂1 by computing

Ŷ = β̂0 + β̂1X, (2.39)

where Ŷ is the predicted value of Y . To estimate the model parameters β̂0 and β̂1, we must

use some training data. Now, we let X = (x1, x2, . . . , xn) ∈ Rn and Y = (y1, y2, . . . , yn) ∈ Rn

represent our data as two n-dimensional vectors. In machine learning terms, we are in a

supervised setting, since we know the true labels y before trying to predict them. After

applying some linear algebra, we rewrite Equation (2.39) for a single data point i as

ŷi =
[
1 xi

] [β̂0
β̂1

]
, (2.40)

where ŷi is the predicted value for xi. Since we have n values for X and Y , we need n

equations similar to Equation (2.40), which we combine into a single matrix equation as

Ŷ =


1 x1

1 x2
...

...

1 xn


︸ ︷︷ ︸

X′

[
β̂0

β̂1

]
︸ ︷︷ ︸
β̂

, (2.41)
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where X ′ is the model matrix, consisting of ones in the first column and X in the second

column, and β̂ =
(
β̂0, β̂1

)
is a vector consisting of the models parameters. Using the

ordinary least squares (OLS) method [Fox, 2015, p. 208], we get a closed-form expression

for estimating the parameters β̂, by computing

β̂ =
(
X ′
>
X ′
)−1

X ′
>
Y. (2.42)

The OLS method minimizes the residual sum of squares (RSS), i.e. the sum of the squared

differences between the true value y and predicted value ŷ. More formally, we define the

objective of OLS as

RSS =
n∑
i=1

(
yi − (β̂0 + β̂1xi)

)2
. (2.43)

We illustrate the use of OLS in Figure 2.25, where see a clear relationship between the

variables X and Y .
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Figure 2.25: A linear regression model using OLS, with one dependent variable Y and one
independent variable X. The red line shows the OLS model.

So far, we have only looked at the simplest form of linear regression, namely only using a

single independent variable X to predict a value for Y . To generalize the linear regression
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to k independent variables, we now assume that our training data has k variables (which we

also refer to as features or columns), i.e. X ∈ Rn×d. Finally, we add the new columns from

X to the model matrix X ′, by extending Equation (2.41) as

Ŷ =


1 x11 . . . x1k

1 x21 . . . x2k
...

...
...

1 xn1 . . . xnk


︸ ︷︷ ︸

X′


β̂0

β̂1
...

β̂k


︸ ︷︷ ︸

β̂

. (2.44)

To estimate the model parameters β̂, we compute them using Equation (2.42). Furthermore,

we generalize the minimization objective of OLS in Equation (2.43) to use k independent

variables as well, by computing

RSS =
n∑
i=1

[
yi −

(
β̂0 +

k∑
j=1

β̂jxij

)]2
. (2.45)

2.1.7.2 Lasso regression

Linear regression suffers from the fact that it has to use all independent variables to predict

a value for the dependent variable. Imagine that we gather some 5-dimensional data X, and

want to predict some quantity y using X. We perform some analysis on the data and notice

that two of the features of the data are plain noise and most likely does not help to predict y.

Lasso regression is a slight modification of linear regression that helps us with this problem.

By adding a penalty term on the model parameters in the objective of the linear regression,

lasso regression can push certain features to 0, essentially ”removing” them from the model.

If we have two similar features, the lasso is also able to ”nullify” one of them, since the

first one ”explains” the second one. As a result, the models we get from lasso regression are

generally much easier to interpret. What we have described here is also referred to as feature

selection, where the model automatically selects which variables are useful for prediction.

Lasso regression minimizes the residual sum of squares (RSS) plus some constant λ times
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the `1-norm of the model parameters β. We define the minimization objective as

n∑
i=1

[
yi −

(
β̂0 +

k∑
j=1

β̂jxij

)]2
+ λ||β||1 = RSS + λ||β̂||1, (2.46)

where λ ≥ 0 is a regularization parameter. We denote the second term of Equation (2.46),

λ||β̂||1, as the `1-penalty, which is small when β̂0, β̂1, . . . , β̂k are small. When λ = 0, the

penalty term has no effect and lasso regression produces the same result as standard linear

regression. As λ → ∞, the effect of the `1-penalty grows and the model parameters β̂

approaches zero, and in some cases, some of the model parameters are be exactly zero. We

define the `1-norm as ||β̂||1 =
∑ |β̂j|, where | · | is the absolute value.

2.1.7.3 Logistic regression

When describing linear regression models in Section 2.1.7.1, we assume that the response

variable Y is quantitative. When working with qualitative data, on the other hand, linear

regression fails to work. For example, colours are qualitative, taking on values such as blue,

red, green or brown; we can not claim that red is greater than blue or brown is less than

green (discarding RGB colour information). When we predict a qualitative response variable

Y using some data X, we perform what we call a classification task. Logistic regression is a

method that can predict the response variable Y when it falls into one of two categories (i.e.

binary response). Examples of a binary response variable are ”Yes”/”No”, ”Is a dog”/”Is not

a dog” and the typical 0/1, which we commonly use in machine learning. Logistic regression

creates a model that models the probability that Y falls belong to a particular category. In

Figure 2.26, we further motivate the use of logistic regression for binary-response tasks and

we see that linear regression is not well-suited for predicting values between 0 and 1.
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Figure 2.26: Illustration of linear and logistic regression models predicting some binary
response variable Y on data X. We see that logistic regression is particularly well-suited for
predicting values for Y between 0 and 1. Linear regression fails to model this relationship
and even goes out of bounds for X > 70.

Let p(X) = Pr(Y = 1|X) denote the probability of Y being 1 when we have the data X. If

we want to model this relationship, we could use linear regression by

p(X) = β0 + β1X. (2.47)

Unfortunately, as mentioned earlier, linear regression is not a good fit for such problems and

we would have the situation on the left of Figure 2.26. In logistic regression, the logistic

function is used to ensure that the output value falls between 0 and 1, and we define it as

p(X) =
exp (β0 + β1X)

1 + exp (β0 + β1X)
. (2.48)

The plot to the right of Figure 2.26 shows the effect of the logistic function, creating an

S-shaped like curve that, for high values of X, creates values close to, but never greater than

1. On the other hand, the logistic function creates values close to, but lever less than 0 for

low values of X. Manipulating Equation (2.48) a bit, we get that

p(X)

1− p(X)
= exp (β0 + β1X), (2.49)

where we refer the left-hand-side of Equation (2.49), i.e. p(X)/ [1− p(X)], as the odds. As

p(X) increases, the odds increases exponentially towards ∞. Taking the logarithm of both
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sides of Equation (2.49), we finally arrive at

log

(
p(X)

1− p(X)

)
= β0 + β1X, (2.50)

where we refer the left-hand-side of Equation (2.50) as the logit. Thus, we see that the

logistic regression model has a logit that is linear in X. If we increase X by one unit, then

the log odds increase by β1. However, note that the relationship between p(X) and X in

Equation (2.48) is not a straight line. For this reason, the amount of p(X) changes due to a

single unit change in X depends on the current value of X. In Figure 2.26, we see that once

X reaches a certain threshold (e.g. X = 30), the rate at which Y changes decreases towards

zero.

If we would like to model logistic regression using multiple predictors, we only have to perform

a simple extension from simple to multiple linear regression. We generalize Equation (2.50)

as

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + β2X2 + . . .+ βkXk (2.51)

= β0 +
k∑
i=1

βiXi,

where X = (X1, X2, . . . , Xk) are k predictors.

To estimate the parameters β0, β1, . . . , βk for k predictors, it is common to use the maximum

likelihood method. We do not go into detail about the maximum likelihood method here,

but kindly refer the reader to [Fox, 2015, p. 214] for more details.

2.1.8 Model selection

Model selection is an important aspect of modern machine learning. When working with

machine learning, we would like to understand which model solves the problem the best,

and model selection helps us with this. Model selection is the task of selecting a model for a

particular problem using the data at hand. We look at a couple of methods for performing

model selection, namely using train/validation/test splits and K-fold cross-validation. We

refer to [James et al., 2013] when describing model selection methods. Furthermore, we will
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use model selection when training lasso and logistic regression model for supervised word

polysemy prediction in Section 3.3.4.

2.1.8.1 Train, validation and test splits

When training a supervised machine learning model, we typically have some data X and

corresponding labels y. The task is to predict the labels y using the data X. Since we do

not know apriori which model or model parameters to use, the most common way to figure

this out is by performing model selection. The simplest kind of model selection for machine

learning models is to split the data X and labels y into three data sets, namely the train-,

validation-, and test data sets. The new data sets are chosen at random and do not overlap.

An example of a train/validation/test split ratio could be 80/10/10, where we use 80% of the

data in the training data set, 10% of the data in the validation data set and 10% of the data

in the test data set. Exactly how we split the data sets into the smaller train/validation/test

data sets depends on the application and how much data we are working with. In more

modern machine learning models, e.g. using artificial neural networks, it is common to use

up to 99% of the data for training, as long as we have a big enough data set (e.g. > 1 million

data points).

We use the train data set to learn the models’ parameters from the data, e.g. a linear

regression models β parameter. The train data set is usually much larger than the validation

or test data sets. To evaluate the parameters of the model, we use the validation data set.

When we evaluate a trained model using a validation data set, we perform what we call the

validation set approach. The validation data set provides an unbiased estimate of a models’ fit

on the training data set while tuning some hyperparameter. A hyperparameter is a parameter

that we choose for the model beforehand, in contrast to a model parameter, which the model

learns internally. Tuning hyperparameters can be a difficult task, especially if we have a

lot of hyperparameters with various values. A typical way of performing hyperparameter

optimization is by using grid search, which tries out all combinations of all hyperparameter

values. Grid search can be computationally expensive, especially if we would like to try out

many choices of hyperparameters. For this reason, we typically use grid searches to find

potential ranges where the optimal hyperparameters live and then narrow down the search

for smaller ranges of hyperparameters to find more optimal ones.
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After selecting a model or a set of model parameters using the validation data set, we use

the test data set to give an unbiased estimate of how the model performs on unseen data.

Additionally, we refer to the test data set as the hold-out data set, because its only use is at

the end of model selection. Note that we do not necessarily require to have a test data set

available to perform model selection, as it only evaluates the performance of the final model.

A common approach is also to exclude the test data set and instead split the original data

X into training and validation only. By doing so, we are unable to get an unbiased estimate

of the models’ performance on unseen data. We illustrate the process of splitting data into

train/validation/test splits in Figure 2.27.

(a)

Validation 

Available data

Training(b)

Test

Available data

Validation Training

Figure 2.27: Example of ways to partition a data set for model selection. The partition
on the top (a) splits the data into training, validation and test, while the partition on the
bottom (b) splits the data into training and validation only.

The validation set approach is simple and works fine in practice. There are, however, a

couple of drawbacks when using this method. Depending on which observations we include

in the training and validation data sets, the validation estimate of the error can vary a lot.

In addition to this, since the validation set approach only uses a subset of the observations to

train the model, and the fact that statistical models perform worse when we train them on

less data, the validation error rate tends to overestimate the test error rate of a model trained

on the entire data set. In the next sub-subsection, we introduce k-fold cross-validation, an

improvement over the validation set approach that addresses these two drawbacks.
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2.1.8.2 k-fold cross-validation

An alternative to the validation set approach is the k-fold cross validation (CV) method.

The k-fold CV method randomly divides the training data X into k groups, or folds, of

approximately equal size. We treat the first fold as the validation data set and train the

model on the remaining (k − 1) folds. We compute the validation error Err1 on the first

validation data set. Following, this procedure is repeated k times, and for each time, we use

a different group of data points from the original training data X as the validation data.

This results in k estimates of the test error, i.e. Err1, Err2, . . . , Errk. We compute the total

k-fold CV error estimate by taking the mean of these values, as

CVk =
1

k

k∑
i=1

Erri. (2.52)

Choosing a value for k is a hard problem. The most common choice is to set k = 5 or k = 10,

depending on the problem. We kindly refer the reader to [James et al., 2013, Section 5.1.4]

for more details on choosing a value for k.

We show an illustrative example of k-fold CV in Figure 2.28, where we see a typical set-

up when using a k-fold CV, namely to split all available data into training and test data

sets. During the training process, the training data set is furthermore split into training and

validation data sets for that particular k.
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Figure 2.28: Data split into training and test data sets. To perform model selection, we use
k-fold cross-validation. In this example, we have a 4-fold cross-validation setting. As the k
increases, we have different data sets for both training and validation.

The benefit of using k-fold CV is that, by both training on different subsets of the training

data and evaluating the model on different validation data sets, the estimated test error

becomes more accurate and we get less varying results, as long as we select a good value for

k.

2.1.9 Performance metrics

In this subsection, we introduce some common choices of performance metrics for regres-

sion and classification problems. We use performance metrics to evaluate machine learning

models on data sets. In the following sub-subsections, we look at classification accuracy, the
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confusion matrix and sensitivity. Furthermore, we will use the performance metrics below

to evaluate the word2vec model in Section 3.1.4 and for evaluating results from prediction

of polysemous words in Section 3.3.4.

2.1.9.1 Classification accuracy

Classification accuracy (which we also refer to as accuracy) is the ratio between correct

predictions to the total number of samples. We typically use classification accuracy in

classification problems, as it is a simple and interpretable metric. Let Cp be the number of

correct predictions and let N be the total number of samples. We compute classification

accuracy as

ACC(Cp, N) =
Cp
N
. (2.53)

One pitfall of using classification accuracy is when we are dealing with classification prob-

lems with unbalanced data sets. Imagine that we want to compute the performance of a

classification model for classifying whether or not a patient has a rare but fatal disease. If

we use classification accuracy, it is not uncommon to see high accuracies (e.g. 99.9%), when

in reality, the number of correct classifications for whether or not a patient has the disease is

significantly lower. In other words, we get a false sense of the models’ performance. To deal

with such cases, it is more common to use metrics such as sensitivity (see Section 2.1.9.3),

which deals with class imbalance much better and is well-suited for specific tasks.

2.1.9.2 Confusion matrix

Confusion matrices explains the performance of classification models by creating a matrix

of predicted values to true labels. We see such a confusion matrix in Figure 2.29, where we

have a binary classification problem (two classes; 0 and 1). As we see in Figure 2.29, we have

four terms which describe the performance of the model, namely the True Negative (TN),

False Negative (FN), False Positive (FP ) and True Positive (TP ) terms. TN is the number

of predicted negative classes when the true classes were negative, while on the other hand,

TP is the number of predicted positive classes when the true classes were positive. Off the

diagonals of Figure 2.29, we see FP, which is the number of predicted positive classes when
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Figure 2.29: A typical example of a confusion matrix of a binary classification problem, with
classes 0 and 1.

the true classes were negative, and FN, which is the number of predicted negative classes

when the true classes were positive. When computing accuracy we would like, ideally, the

number of TN and TP samples to be as high as possible and the number of FN and FP

samples to be as low as possible. In cases where we have a high class imbalance (e.g. from

example in Section 2.1.9.1), it is more common to optimize either TN or TP to be as high

as possible, effectively minimizing either FN or FP . We look at one such metric, namely

sensitivity in Section 2.1.9.3.

2.1.9.3 Sensitivity

Sensitivity is a performance metric which measures the ability of a classification model to

correctly classify a positive class (e.g Class 1 in Figure 2.29). The sensitivity only focuses

on the values where the true class is positive, i.e FN and TP for a binary classification

problem. More formally, we define sensitivity as the portion of correctly predicted positive

classes to the number of samples with a positive class. We compute the sensitivity as

SEN =
TP

TP + FN
. (2.54)
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If we, on the other hand, would like to look at the ability of a classification model to correctly

classify a negative class (e.g. Class 0 in Figure 2.29), we can, with minor modification of

Equation (2.54), change to focus on the prediction of negative classes. This modification

creates a measure commonly referred to as specificity.

2.2 Word embeddings

In this section, we will formulate the problem of creating efficient vectorized representations

of text and explain methods for doing so. In particular, we will discuss ways of representing

text numerically in Section 2.2.1, describe how we can create word embeddings and de-

tails around the word2vec method in Section 2.2.2, from architectural choices to presenting

word2vec as an artificial neural network. Finally, we will introduce a couple of alternative

models for learning word embeddings in Section 2.2.3 and explain how to evaluate word

embedding models in Section 2.2.4.

2.2.1 Numerical representation of text

Machine learning methods take in vectors (arrays of numbers) as input. When we want to

work with text, we have to come up with some procedure for converting text into a vector, i.e.

vectorizing the text. In this subsection, we create unique representations for words in a text,

discuss one-hot encoding of words and the motivation behind creating word embeddings.

2.2.1.1 Unique representation for each word

A first strategy for vectorizing text could be to assign a unique number for each word in the

text. We use the same order as the words that appear in the text to assign a unique number.

We call the set of unique words that appear in the text the vocabulary and denote it as V .

Furthermore, we define the number of unique words in the text to be the vocabulary size and

denote it as |V |. Finally, we replace each word in the text with its respective number. Let

us consider an example of a (lower-cased) sentence, which we define as

S = the cat sat on the mat. (2.55)
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Following, we convert the words into numbers using the numerical order they appear in the

text, e.g. the 7→ 0, cat 7→ 1, sat 7→ 2, etc. We convert the sentence in Equation (2.55) to

numbers as

S = 0 1 2 3 0 4. (2.56)

In Equation (2.56), we see a numerical representation of the original sentence in Equa-

tion (2.55) and may use it for machine learning modeling. However, there are some problems

with this method:

• The encoding of words into number is arbitrary (does not capture any relationship

between words)

• Machine learning models might learn some natural ordering of the encodings, which

can lead to bad results during inference. This is because the encoding of the words

does not capture the relationship between the words.

In the next sub-subsection, we look at another method for encoding words, using one-hot

encodings. Furthermore, we apply it to the example sentence in Equation (2.55).

2.2.1.2 One-hot encoded words

One-hot encoding is a method for converting categorical data into numeric data. Essentially,

we create a unique, sparse vector consisting of all zeros, except for the value at the index

of the element of interest, which we set to one. For instance, if we have the words ”north”,

”east”, ”south”, ”west”, then their one-hot encodings could be

north 7→


1

0

0

0

 , east 7→


0

1

0

0

 , south 7→


0

0

1

0

 ,west 7→


0

0

0

1

 .

Let the vocabulary V =
{
w1, w2, ..., w|V |

}
to be the set of unique words in a text. Then,

we define the one-hot encoding of a word, ewi
, to be the |V |-dimensional vector of all zeros,

except for the value at index i which is one. Using the definition of one-hot encoding, we
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convert the words from the sentence in Equation (2.55). Precisely, we convert the sentence

as

S =


1

0

0

0

0




0

1

0

0

0




0

0

1

0

0




0

0

0

1

0




1

0

0

0

0




0

0

0

0

1

 , (2.57)

where we see that we discard the the ordinal relationship of the numerical representation in

Equation (2.56). However, there are some downsides with this approach, as well:

• As with the numerical representation in Section 2.2.1.1, one-hot encoded vectors does

not capture the relationship between words.

• One-hot encoded vectors are sparse (meaning, most values are zero). Imagine if we had

1000 words in the vocabulary, then one would create a vector consisting of 99.9% zeros.

In practice, the vocabulary size is in the terms of 105 to 107 [Mikolov et al., 2013b], i.e.

by using one-hot encoded vector representations we are extremely inefficient in terms

of space. We note, however, that there exist efficient methods for dealing with sparse

vectors.

• One-hot encoded vectors are high-dimensional (same as the number of words in the

vocabulary, |V |).

In the next sub-subsection, we look at word embeddings, which solves many of the problems

of the numerical representations presented so far.

2.2.1.3 Word embeddings

In comparison to the high-dimensional one-hot encoded vectors of words, word embeddings

are low-dimensional dense vector representations. Word embedding models learn their word

embeddings from the data (e.g. texts) directly, whereas, for one-hot encoded vectors, we can

arbitrarily define them (i.e. its ordering may change). Also, due to the lower dimensionality

of word embeddings, it has to pack more information about words into less space. Moreover,

word embeddings use all their dimensions to learn hidden relations and concepts of words,
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in contrast to one-hot encodings, which effectively only uses a single dimension (e.g. the

position of the word in the vocabulary). Common choices for the dimensionality of word

embeddings range from 50 to 600 [Mikolov et al., 2013a], depending on the amount of training

data. In the next subsection, we look at a classic family of methods for creating such word

embeddings, namely word2vec.

2.2.2 Learning word embeddings

Word2vec was first introduced by Mikolov et al. in 2013 [Mikolov et al., 2013a]. It is a family

of methods for learning dense and efficient vector representations of words. In the same year,

Mikolov et al. published a follow-up paper, [Mikolov et al., 2013b], which includes several

extensions that improve both the quality of the word embeddings and the training speed.

In this subsection, we explain the details of the original word2vec paper, [Mikolov et al.,

2013a], and the introduced extensions in the follow-up paper, [Mikolov et al., 2013b]. We

base this subsection on [Mikolov et al., 2013a, Mikolov et al., 2013b]. Furthermore, we will

use the word2vec method to create word embeddings for the analysis in Section 3.1.

2.2.2.1 Architectures

The authors of the word2vec paper introduced two models for learning distributed repre-

sentations of words that try to minimize computational complexity, namely the continuous

bag-of-words model (CBOW) and the continuous Skip-gram model. Both models achieve

high quality (see Section 2.2.4 for evaluation of word2vec models) word embeddings and

share some core idea as to how we can create good vector representations of words. In this

sub-subsection, we go through both models and explain the similarities and differences.

Continuous bag-of-words model

The continuous bag-of-words model (CBOW) tries to predict a target word given some

context words around it. Essentially, we select a target word wt, where t is the index of the

current target word in our training data, and a number C denoting the number of words to

the left and the right of wt. We also refer to C as the window size. Let S = 2C denote the
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total number of words to the left and right. By combining the context word embeddings, we

predict the target word wt. We illustrate the CBOW model in Figure 2.30.

Input layer Hidden layer Output layer

-dim -dim

-dim

Figure 2.30: An illustration of the CBOW architecture. The input value xt+k is the one-hot
encoded vector of word wt+k, where k ∈ {−C, . . . ,−1, 1, . . . , C}, t ∈ {1, . . . , T} is training
word position and C is the window size. The output of CBOW is a |V |-dimensional vector
yt of probabilities for sampling the target word wt.

More formally, we are considering a sequence of T training words w1, w2, . . . , wT . The words

wt belong to some vocabulary V consisting of |V | unique words, 1 ≤ t ≤ T . The models

task is to maximize the average log probability of sampling the word wt, given the context

words wt−C , . . . , wt−1, wt+1, . . . , wt+C . The objective of the CBOW model then becomes

1

T

T∑
t=1

log p(wt|wt−C , . . . , wt−1, wt+1, . . . , wt+C). (2.58)

Through it is not clear from the original authors of word2vec [Mikolov et al., 2013a,Mikolov

et al., 2013b], we typically use two weight matrices, W and W ′, when setting up the word2vec

model [Rong, 2016]. The first weight matrix, W , is a |V |×D matrix, mapping the input words

(we typically represent them using one-hot encodings) to their internal word embeddings,

where |V | is the vocabulary size, and D is the number of dimensions in the embedding layer.

The second weight matrix, W ′, is a D × |V | matrix mapping from the embedding layer to

the output prediction. In practice, we use the first weight matrix W as word embeddings,

but we note that some models utilize both weight matrices (e.g. GloVe in Section 2.2.3.1).
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Continuous Skip-gram model

The continuous Skip-gram model is similar to CBOW, and in fact, the Skip-gram model tries

to do the opposite; instead of predicting a target word given some context words, it tries to

predict context words given some target word. We note that the ordering of the predicted

context words does not matter. We illustrate the Skip-gram model in Figure 2.31.

Input layer Hidden layer Output layer

-dim -dim

-dim

Figure 2.31: An illustration of the Skip-gram architecture. The input value xt is the one-
hot encoded vector of word wt, where t ∈ {1, . . . , T} is training word position and C is the
window size. The output values are |V |-dimensional vectors yt+k of probabilities for sampling
the word wt+k, where k ∈ {−C, . . . ,−2,−1, 1, 2, . . . , C}. We note that the ordering of the
vectors from the output layers does not matter, as we only want to predict that a particular
word belongs to its contextual words.

With the Skip-gram model, we also have some target word wt and context words around it.

Let C be the maximal distance from a target word to its contextual words. For each input

to the model, we randomly sample a number R in the range [1, C] and denote this as the

context size. In other words, for each target word wt we have R context words around it,

wt−R, . . . , wt−1, wt+1, . . . , wt+R. The objective of the Skip-gram model then becomes

1

T

T∑
t=1

∑
−R≤j≤R,j 6=0

log p(wt+j|wt). (2.59)
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More generally, we define the objective of the Skip-gram model as such

1

T

T∑
t=1

∑
wO∈cw(wI)

log p(wO|wI), (2.60)

where wI is the input word (e.g. target word), wO is the output word (e.g. context word)

and cw(wI) is a function which returns the context words around input word wI .

Similar to CBOW, the Skip-gram model uses the two matrices W and W ′ for mapping from

input to embedding layer and embedding layer to output respectively. Mikolov et al. report

that the Skip-gram model performs better than the CBOW model overall, shown by their

experiments in [Mikolov et al., 2013a]. For this reason, and due to the scope of the thesis, we

will focus on the Skip-gram model. For the rest of the thesis, we refer to the weight matrix

W when talking about word embeddings of a word2vec model.

2.2.2.2 Negative Sampling

In the Skip-gram model, we typically compute p(wO|wI) using the softmax function (see

Equation (2.27)). More formally, we define it as

p(wO|wI) =
exp

(
v′wO

>vwI

)
exp

|V |∑
k=1

(
v′wk

>vwI

) , (2.61)

where vw and v′w are the ”input” and ”output” vector representations of the word w, and |V |
is the number of words in the vocabulary. There are some downsides with this formulation,

however. In practice, it becomes hard to compute since the summation in the denominator

of Equation (2.61) depends on the number of words in the vocabulary, which is often large

(105 − 107 terms).

To deal with the computational requirements of the original Skip-gram model, [Mikolov

et al., 2013b] first show that using hierarchical softmax, we end up with a viable strategy.

Hierarchical softmax is an efficient way of computing the softmax function; instead of eval-

uating |V | words to compute the probability in Equation (2.61), we only have to evaluate

log (|V |) words.
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As an alternative to hierarchical softmax, Mikolov et al. introduced negative sampling in

[Mikolov et al., 2013b]. Negative sampling builds on the concept of distinguishing target

words wt from words randomly sampled from the vocabulary. In particular, we randomly

sample words from the vocabulary using the unigram distribution raised to the power of α.

The unigram distribution is a distribution used to sample random words from the vocabulary

using the word occurrence counts. [Mikolov et al., 2013b] claim that by raising the unigram

distribution to the power of α = 3/4, we get the best result. Furthermore, we refer to

this unigram distribution as the noise distribution Pn(w). Note that we can also apply the

negative sampling method to CBOW, but we leave these details out.

Before we can explain negative sampling, we define the positive and negative target-context

pairs. Given a vocabulary V , a target word wt and the target words contextual words

wt−R, . . . , wt−1, wt+1, . . . , wt+R for some window size R, we define a positive target-context

pair to be the pair of the target word wt and a contextual word wt+j, −R ≤ j ≤ R, j 6= 0,

i.e. the pair (wt, wt+j). Furthermore, we define a negative target-context pair as the pair of

the target word wt and a word wr, i.e. the pair (wt, wr). We randomly sample the word wr

from the noise distribution Pn(w).

To explain the idea of negative sampling, we look at how we compute the softmax loss, and

in particular, how we only use a subset of all the words in the vocabulary. In particular, for

each word in the text we are training on, we create a positive target-context pair (wt, wt+j),

−R ≤ j ≤ R, j 6= 0. Furthermore, we generate k negative target-context pairs for each word,

where k is in the range of 5−20 for small training sets and 2−5 for big training sets. We let

Wnp = {wi|i ∈ 1, . . . , k} be the set of k negatively sampled words from the noise distribution

Pn(w). With these details in mind, the objective of negative sampling becomes [Mikolov

et al., 2013b,Rong, 2016]

log σ
(
v′wO

>
vwI

)
+

∑
wi∈Wnp

log σ
(
−v′wi

>
vwI

)
, (2.62)

where σ is the sigmoid function (see Equation (2.24)), and vt and v′t are the ”input” and

”output” vector representations of the word w. Note that the objective in Equation (2.62)

can be seen as a special case of the negative cross-entropy loss function. Furthermore, we

replace every log p(wO|wI) in the original Skip-gram objective function of Equation (2.60)

by the objective in Equation (2.62). As such, we define the objective of the Skip-gram model
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with negative sampling as

1

T

T∑
t=1

∑
wO∈cw(wI)

log σ
(
v′wO

>
vwI

)
+

∑
wi∈Wnp

log σ
(
−v′wi

>
vwI

)
. (2.63)

In Equation (2.62), we see that we only have to compute for (1 + k) words, which is a

big improvement over computing for |V | words (assuming that |V | is much larger than

k). [Mikolov et al., 2013b] also report that by using negative sampling, we increase the

quality of the word embeddings.

2.2.2.3 Subsampling of words

When training a word2vec model, we typically have to train on big text corpora to achieve

high-quality word embeddings. However, as the number of training words increases, the

discrepancy between rare and frequent words increase as well. When using negative sampling,

we are sampling negative target-context pairs from the vocabulary, which depends on the

unigram distribution. In English text corpora, words such as ”the”, ”of”, ”is” can easily

occur hundreds of millions of times and usually provide less information than more rare

words. For this reason, we apply a simple, yet efficient subsampling scheme to counter the

imbalance between rare and frequent words; before we process the text corpora into target-

context pairs, we discard each word wt with a discard probability [Mikolov et al., 2013b,Levy

et al., 2015]. We define the discard probability as

Pd(wt) = 1−
√

t

f(wt)
, (2.64)

where f(wt) is the (relative) frequency of word wt and t is a chosen threshold, usually around

10−5.

We note, however, that in the original source code of word2vec [Mikolov, 2013c, line 407],

they use a slightly modified formula. We define the modified formula as

Pd(wt) =
f(wt)− t
f(wt)

−
√

t

f(wt)
. (2.65)

Furthermore, we will use subsampling of words when implementing word2vec in Section 3.1,

and in particular, we will use Equation (2.65) for computing the discard probability.
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2.2.2.4 Learning word embeddings for phrases

Phrases are groups of words that occur frequently together, such as ”New York” or ”pro-

gramming languages”. Naturally, we would like to combine such words into a single to-

ken, such that word embedding models can learn them. To learn word embeddings for

phrases, [Mikolov et al., 2013b, p. 5-6] propose a simple, yet efficient data-driven approach,

where they combine phrases using their word counts. In particular, we define the phrase

score for two words wi and wj as

score(wi, wj) =
freq(wi, wj)− δ

freq(wi) · freq(wj)
, (2.66)

where wi and wj are bigrams, or two neighbouring words, from the vocabulary, freq() returns

the how many times the word (or bigram) occurs in the vocabulary and δ is a hyperparameter

for preventing long phrases consisting of infrequent words from appearing. We refer to this

phrase-learning procedure as word2phrase, as specified by the original source code [Mikolov,

2013b]. If the score in Equation (2.66) is above the δ threshold hyperparameter, we accept

the bigram into the vocabulary and we replace all occurrences of the two words wi and wj

where they are next to each other. We use word2phrase to convert phrases into single words

when preprocessing data for training our word2vec model in Section 3.1.1.

2.2.2.5 Word2vec as an artificial neural network

Typically in the literature, word2vec is presented using the Equations (2.58), (2.61)

and (2.62). However, we explain how to set word2vec up as an artificial neural network

(ANN, Section 2.1.5), in the sense that we implement it later in the thesis (see Section 3.1).

In particular, we explain how to set up the Skip-gram model with negative sampling as an

ANN. This ANN consists of three fully-connected layers of artificial neurons [Rong, 2016],

and we illustrate it in Figure 2.32. The ANN we explain below acts as a baseline when

implementing word2vec in Section 3.1.2.

Input layers

We have two input layers in our ANN; one for the target word wt and one for the context

word wt+j, −R ≤ j ≤ R, j 6= 0. The values to the input layers are typically one-hot encoded
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-dim -dim

Repeated  times, for each word . 
Then, we sum the results from  together.

Loss 

Dot product Sigmoid 
activation

Binary-cross 
entropy

Figure 2.32: The artificial neural network architecture of word2vec Skip-gram model with
negative sampling. The inputs to the network are t and c, i.e, index of target word wt
and context word wc in the vocabulary. For each forward pass in the network we sample k
word indices from Pn(w). Furthermore, we use the k sampled word indices to compute the
negative sampling loss L.

or represented using an integer corresponding to the index of the word in the vocabulary.

For explanation purposes, we use the one-hot encoded representation here, but in our code

implementation, we will use the latter one. We denote the input layers to be {ewt} for the

target word wt and
{
ewt+j

}
for the context word wt+j. Each of the input layers has |V |

values, where |V | is the size of the word vocabulary.

Hidden layer

We have one hidden layer for each input layer in our ANN. To calculate the result from the

input layers to its hidden layer, we introduce two D×|V | weight matrices W and W ′, where D

is the hidden embedding dimension and |V | is the vocabulary size. The W matrix consists

of weights related to the target word wt and can be thought of as the ”input to hidden”

matrix. The W ′ matrix consists of weights related to the context word, and unlike the W

matrix, it can be thought of as the ”hidden to output” matrix from the original introduction

to negative sampling. Note that we initialize both W and W ′ at random. Furthermore, we

refer to W and W ′ as the target and context embedding matrix, respectively.

To map from the input to the hidden layer, we use a linear activation function (i.e. id(x) = x)

with no bias, leading to more efficient training of bigger datasets. In other words, we simply
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multiply the embedding matrix (either W or W ′) with its respective one-hot encoded input

vector, resulting in a ”look-up” of the embedding vector. To illustrate with an example,

imagine if we had the one-hot encoded vector ewt = ( 1
0 ) and the embedding matrix W =

( 1 2 3
4 5 6 )>. If the multiply the embedding matrix with the one-hot encoded vector, i.e. W ·ewt ,

we would get ( 1 2 3 )>, essentially performing a ”copy” operation. We let {vwt} = W · {ewt}
be the hidden layer for word wt and

{
v′wt+j

}
= W ′ ·

{
ewt+j

}
be the hidden layer for word

wt+j.

Output layer

Recall that when we are using negative sampling, we would like to ensure that words in the

same context yield similar word embeddings, and that words that are not in the same context

(i.e. a target word versus a word sampled from the noise distribution Pn(w)) to be dissimilar.

From the objective of negative sampling in Equation (2.62), we see that we use the sigmoid

function on the dot product between the ”input” and the ”output” vectors v and v′ (in our

setting: {vwt} and
{
v′wt+j

}
). When we take the dot product, we are essentially computing

an unnormalized cosine similarity measure between the vectors (we come back to the use

of cosine similarity in Section 2.2.4). The core idea is to use this dot product similarity

measure and convert it into the range of [0, 1] by using the sigmoid function. Particularly,

we want similar vectors to have 1 as output from the sigmoid function and dissimilar vectors

to have 0 as the output from the sigmoid function. When we compute the loss of the ANN,

we generate k samples from the noise distribution Pn(w) such that we can use them for

computing the loss of the network.

For each positive target-context pair we have in our data, we create a single sigmoid output

plus k sigmoid outputs for each negative word we sample from the noise distribution Pn(w).

Thus, we could argue that we have (k + 1) outputs in our network. We note that, however,

our main interest is to learn the internal embedding matrix W ; we do not use the ANN

for predicting whether a certain word is more or less likely to be within its contextual

neighbourhood, thus, discarding the output of the network.

Similar to [Mikolov et al., 2013a], we update the embedding weights W and W ′ using the

stochastic gradient descent optimizer (see Section 2.1.5.6), adjusting all the weights of the

embedding matrices during the training of the ANN to minimize the loss in Equation (2.63).

Furthermore, we use a linearly decreasing learning rate, meaning that we start with some
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initial learning rate lr and decrease linearly to lrmin until we reach the end of training. The

linearly decreasing learning rate is also used by [Mikolov et al., 2013a].

2.2.2.6 Hyperparameters in word2vec

When training a word2vec model, we have to choose several hyperparameters. In this sub-

subsection, we go over all choices of hyperparameters and explain them. We will explain the

specific choices of hyperparameters that we use to train a word2vec model in Section 3.1.3.

• min-word-count

The minimum word count denotes a threshold of how many times a word at least has to

occur in a text for it to be in the vocabulary. In the empirical experiments of Mikolov

et al, they used 5 as the threshold.

• max-vocab-size

The maximum vocabulary size denotes the maximal number of words to have in our

vocabulary; we use the top max-vocab-size most frequent (i.e common) words. We

may set the maximum vocabulary size to reduce the computational complexity and to

remove some less occurring words.

• batch-size

Batch size is the number of positive target-context pairs (wt, wt+j) we train on in each

training step, i.e. the number of forward passes we perform in our ANN before we do

a backwards pass.

• num-epochs

The number of epochs denotes the number of times we train on the training data. With

word2vec, we typically set this number rather low (e.g. 1−5), as [Mikolov et al., 2013a]

reports that by training on more data, we require fewer epochs to get comparable or

better quality word embeddings.

• learning-rate

The learning rate denotes how fast we want our weights to change in our ANN. The

original authors of word2vec used 0.025 (i.e. 2.5%) as the initial learning rate for their

experiments.

• min-learning-rate

The minimal learning rate denotes how small the learning rate should be when ap-

proaching the end of the training. Mikolov et al. stated that they decreased it linearly,
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such that it approaches zero at the end of the last training epoch. We note, how-

ever, that in the original code of word2vec, they linearly decrease the learning rate to

the initial learning rate lr times 0.0001 (i.e. 0.025 × 0.0001 = 0.0000025) [Mikolov,

2013c, line 398].

• embedding-dim

The embedding dimension denotes the dimension we want to use for the internal ma-

trices W and W ′ in our ANN, i.e. the dimensionality of the word embeddings.

• max-window-size

Maximum window size denotes the maximal number of words to look for to the left

and the right of a target word wt. Mikolov et al. reported that they used 5 as the

window size.

• num-negative-samples

The number of negative samples denotes how many negative samples we generate for

each positive target-context pair we train on.

• sampling-factor

We use the sampling factor as a threshold to randomly discard frequently occurring

words in the text corpora. A common value for this is 10−5.

• unigram-exponent

The unigram exponent is which power we raise the noise distribution Pn(w) to (where

the noise distribution equals the unigram distribution, in our case). Although there

was no theoretical justification for this, Mikolov et al. reported that the value 3/4

worked the best.

2.2.3 Other models for learning word embeddings

Creating word embeddings is a task that can be achieved in various ways. In this subsec-

tion, we briefly introduce two different models for computing word embeddings. The first

model is the Global Vectors (GloVe) [Pennington et al., 2014] model. GloVe learns vector

representations for words in a more ”explicit” fashion than word2vec for example; we come

back to this in Section 2.2.3.1. The second model is the fastText [Bojanowski et al., 2017]

model, which is an extension of the original word2vec Skip-gram model to include sub-word

information. Note that we primarily focus on word2vec using Skip-gram with negative sam-

pling in this thesis, and for this reason, we will not go into equal depth when explaining
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GloVe and fastText. We will use pre-trained GloVe and fastText models when comparing

evaluation results of word embedding models in Section 3.1.4 and when we analyze word

embeddings in Section 3.3.1.

2.2.3.1 GloVe

Global Vectors (GloVe) [Pennington et al., 2014] is a model for learning vector representations

for words. In contrast to word2vec, GloVe trains on the word to word co-occurrence counts,

and thus, makes efficient use of statistics. In addition to this, the objective of GloVe is

more explicit, as opposed to the vector representations word2vec learns, which are merely a

by-product of the training. We base this sub-subsection on [Pennington et al., 2014].

To understand how GloVe works, we first introduce the notion of the word to word co-

occurrence matrix, which we denote X. X is a square matrix where each element Xij

represent the number of times word j occurs in the context of word i. Following, let |V |

denote the number of unique words in the vocabulary and let Xi =
|V |∑
k=1

Xik be the number

of times any word appears in the context of word i. Using Xij and Xi, we can establish a

probabilistic model Pij of how often a given word j falls in the context of word i. Finally, we

let Pij = P (j|i) = Xij/Xi. To motivate the use of Pij, imagine that we want to investigate

the concept of temperatures, which we extract directly from the co-occurrence probabilities.

Consider the words i = sunny and j = cloudy. We can explore relationships of the words

i and j by studying the ratios of the co-occurrence probabilities with various other words,

k. If we set the word k = hot, we expect the ratio Pik/Pjk to be large, since intuitively, the

word ”heat” is more related to the word ”sunny” than the word ”cloudy”. If the word k is

set to an unrelated word of both sunny and cloudy, the ratio should be around 1, as both

probabilities become rather low. The authors of [Pennington et al., 2014] give an example

of studying the ratios of co-occurrence probabilities and is the foundation of how GloVe

incorporates word count statistics to learn vector representations.

To learn vector representations of words, Glove uses two weight matrices, which we denote

W =
{
w1, w2, . . . , w|V |

}
∈ R|V |×d and W̃ =

{
w̃1, w̃2, . . . , w̃|V |

}
∈ R|V |×d, similar to word2vec.

That is, the weight matrix W represents the target word embeddings, while W̃ represent
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the context word embeddings. Furthermore, the objective function of GloVe consists of a

weighted squared loss J and we define it as

J =

|V |∑
i,j=1

f (Xij)
(
wi
>w̃j + bi + b̃j − logXij

)2
, (2.67)

where f is a weighting function, bi is bias for wi and b̃j is bias for w̃j. The authors of GloVe

found a particular class of functions for f that was suitable, and we define it as

f(x) =

(x/xmax)
α if x < xmax

1 otherwise
, (2.68)

where α and xmax are hyperparameters. In the experiments performed in [Pennington et al.,

2014], the authors let xmax = 100 and α = 3/4. Furthermore, to train the GloVe model, they

iteratively learn the weights over time in a gradient descent fashion, using AdaGrad [Duchi

et al., 2011] in particular, with an initial learning rate of 0.05. Finally, GloVe uses the sum

of its weight matrices, i.e. W +W̃ , as the word embeddings, which the authors claim to lead

to a minor increase in performance.

2.2.3.2 fastText

fastText is an extension the word2vec Skip-gram model with negative sampling [Bojanowski

et al., 2017]. In particular, fastText represent each word using character n-grams, i.e. sub-

words of length n (e.g. que is a 3-gram of the word quest). We associate vector represen-

tations to each character n-gram, and following, we vectorize words using the sum of such

representations. By creating vector representations of character n-grams, fastText can create

representations for words that are not in the training vocabulary. We base this sub-subsection

on [Bojanowski et al., 2017].

Recall the objective function of the Skip-gram model with negative sampling, which we

show in Equation (2.63). The authors of fastText generalize it by replacing the dot product

between word embeddings with a scoring function s(wI , wO) 7→ R. We generalize Equa-
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tion (2.63) using scoring function s and define it as

1

T

T∑
t=1

∑
wO∈cw(wI)

log σ (s(wI , wO)) +
∑

wi∈Wnp

log σ (−s(wI , wi)) , (2.69)

where s(wI , wO) = v′wO

>vwI
for the Skip-gram model with negative sampling.

As we mention in the introduction of this sub-subsection (see Section 2.2.3.2), fastText

vectorizes each word w using the vector representation of its character n-grams. To indicate

the start and end of a word, we use the characters < and >, respectively. We do this such

that that the model can distinguish between prefixes and suffixes of words. Now, to give an

example, let w = carbon and n = 3. We represent the word w by character n-grams:

<ca, car, arb, rbo, bon, on>,

in addition to the word itself <carbon>. Note that the n-gram <car>, from the word car,

is different from the n-gram car of the word w, due to the prefix and suffix characters.

Furthermore, let Gw ⊂ {g1, g2, . . . , gG} be the set of n-grams appearing in word w, where G

is the total number of n-grams of all words in the vocabulary. We associate a vector zg to

each entry g in Gw. The goal of fastText is to represent each word embedding as a sum of its

n-grams, and consequently, we obtain the scoring function s. We define the scoring function

s as

s(wI , wO) =
∑

zg∈GwI

zg
>vwO

. (2.70)

This minor change to the scoring function allows the fastText model to share vector repre-

sentations of n-grams between words, and thus, allow to learn more accurate representations

for rare words (i.e. words that occur rarely in the training vocabulary).

Similar to the training of word2vec, the authors of fastText use stochastic gradient descent

on the objective function in Equation (2.69) with Equation (2.70) as scoring function. For

more details of the training process, we kindly refer the reader to [Bojanowski et al., 2017, p.

3-4].
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2.2.4 Evaluating word embedding models

In typical machine learning projects, we commonly set aside some portion of the data, e.g.

the test data set, and then use this data to evaluate the unbiased performance of models. In

word embedding models, however, we do not follow this kind of practice. Instead, we evaluate

the quality of the word embeddings on test data sets that measure word relatedness, as our

interest lies in how well the word embeddings relate to each other. An example of a word

relatedness test could be to check whether or not the word Oslo is related to Norway as the

word Rome is related to Italy. In practice, however, for such word relatedness tests, we do

not know the word Italy (i.e. we hide it), and we must guess it from the entire vocabulary.

By accumulating several word relatedness tests, we can create test sets, which we refer to as

analogy data sets. More generally, analogy data sets consists of questions to check whether

or not a word A is related to B as C is related to D. By vectorizing the words, we want

the differences between each pair of vectorized words to be roughly equal, and we show this

relation as

vB − vA ≈ vD − vC. (2.71)

Solving Equation (2.71) for vD, we get that

vD ≈ vB − vA + vC. (2.72)

Now, since vD is ”hidden” from the model, we have to find a way of searching for the closest

word matching the right-hand-side of Equation (2.72). To do so, we often use cosine similar-

ity, both for analogy tasks and measuring the distance between any two word embeddings.

Let u and v be two vectors of the same size. We define the dot product between the vectors

u and v as

u · v = ||u|| ||v|| cos (θ) , (2.73)

where || · || is the magnitude (length) of the vector and cos (θ) is the cosine of the angle

θ between u and v, which we refer to as the cosine similarity. By solving for cos (θ) in

Equation (2.73), we get

cos (θ) =
u · v
||u|| ||v|| . (2.74)
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Thus, we see that by computing the cosine similarity of two vectors u and v, we discard

their magnitude, and thus, both vectors both have unit length. The removal of the vector

magnitude is important, as we would like to compare vectors using vector addition and

subtraction, as motivated by Equation (2.71). Using cosine similarity, we can find the closest

matching word embedding vD (and associated word D) by computing

vD = arg max
vD̃∈W ∗

(cos (vD̃, vB − vA + vC)) , (2.75)

where W ∗ are the word embeddings W in which we exclude the word embeddings vA, vB and

vC. It is common to exclude the vectors vA, vB and vC from the search, as [Mikolov et al.,

2013a] did in their experiments.

Many machine learning algorithms require us to use Euclidean distance for comparing dis-

tances between vectors. To convert from cosine similarity to Euclidean distance, we observe

that there is a relationship between the two vectors u and v. We show this relationship as

||u− v||22 = (u− v)>(u− v) = ||u||2 + ||v||2 + 2u>v, (2.76)

where || · ||22 is the squared Euclidean distance. Let ||u|| = ||v|| = 1, i.e the vectors u and v

are of unit length, then Equation (2.76) becomes

||u− v||22 = (u− v)>(u− v) (2.77)

= 2 + 2u>v

= 2(1 + u>v)

= 2(1 + cos (u, v)).

In other words, we see a clear relationship between the squared Euclidean distance and

cosine similarity. Some machine learning algorithms are applicable using dot-product as the

distance metric, and by an expansion of Equation (2.74), we see a particular relationship for

unit-length vectors u and v, namely that

cos (θ) = u · v. (2.78)

Furthermore, by using normalized word embeddings, we may use (squared) Euclidean dis-

tance or dot-product to emulate cosine similarity, as we get the same distance ranking by

using cosine similarity. Finally, we define the cosine distance to be (1 − cos (θ)). We use
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the cosine distance in algorithms for measuring the distances between word embeddings.

Furthermore, we will use cosine similarity when evaluating word embeddings models in Sec-

tion 3.1.4.

2.3 Topological data analysis

Topological data analysis (TDA) is a fast-growing field of mathematics, providing a set of

tools from topology to infer underlying features from data [Chazal and Michel, 2021]. In this

section, we will introduce relevant concepts from TDA. In particular, we will introduce the

simplicial complex in Section 2.3.1 and persistence diagrams in Section 2.3.2. Furthermore,

we will introduce a method for vectorizing persistence diagrams, namely the persistence

image in Section 2.3.3, and a commonly used distance metric for persistence diagrams,

namely the p-Wasserstein distance in Section 2.3.4. Finally, we will introduce two algorithms

that uses concepts from TDA to identify singular words (or data points), namely topological

polysemy in Section 2.3.5 and Geometric Anomaly Detection in Section 2.3.6. This section

is based on [Edelsbrunner and Harer, 2010,Chazal and Michel, 2021], if not stated otherwise.

2.3.1 Simplicial complex

In computer science, a graph is a datatype for describing possibly non-linear and complex

relationships between data points. In particular, graphs consist of vertices and edges, where

the edges connect the vertices. Edges can also have metadata such as weight and direction. A

common graph to use (in the context of computer science) is the k-nearest neighbour graph,

where vertices are data points and edges represent neighbouring relationships, with distance

as weight. A simplicial complex is a generalization of graphs and we see its particular usage

in TDA, due to its topological properties. Simplicial complexes consist of n-simplices, where

0-simplices are similar to vertices, 1-simplices are similar to edges. The difference between

graphs and simplicial complexes occur when we look at n-simplices for n ≥ 2. For example,

2-simplices form triangles and 3-simplices form tetrahedrons (i.e. triangular pyramids). We

show examples of n-simplices in Figure 2.33.
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0-simplex 1-simplex 2-simplex 3-simplex

Figure 2.33: Building blocks of simplicial complexes, consisting of n-simplices.

By combining one or more n-simplices, we form simplicial complexes. We illustrate an

example of a simplicial complex in Figure 2.34.

Figure 2.34: Simplicial complex consisting of 0-, 1-, 2- and 3-simplices.

There exist several methods for creating simplicial complexes from data. In particular, we

look at one such simplicial complex in the next sub-subsection, namely the Vietoris–Rips

complex.

2.3.1.1 Vietoris–Rips complex

The Vietoris–Rips complex is a simplicial complex that we create from data points using

any distance metric. Let α be a proximity diameter. We build the Vietoris–Rips complex by

forming a simplex for every set of k data points with distance less than or equal to α. That

is, if k data points satisfy d(xi, xj) ≤ α (where d(xi, xj) computes the distance between two
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data points i and j), we create a (k − 1) simplex for that particular data point (1-simplex

for two data points, 2-simplex for three data points, etc.). We illustrate with an example of

a Vietoris–Rips complex in Figure 2.35.

Figure 2.35: A Vietoris–Rips complex on 2-dimensional data with proximity diameter α.

By carefully studying the n-simplices of a Vietoris–Rips complex, we can observe topological

structures such as loops (i.e. 2-simplices) or holes (i.e. 3-simplices). We show an example of

a loop in Figure 2.35, where the rightmost data points at the bottom form a 2-simplex. To

study the topological properties of data, it is common to look at varying values of α, starting

at zero and increasing to infinity. In particular, we use what we call persistent homology,

which is the study of observing how the topology changes once a threshold (e.g. α) increases.

To easily present and visualize persistent homology, we use persistence diagrams. We look

at persistence diagrams in the next subsection.

2.3.2 Persistence diagram

To present persistent homology of a simplicial complex, we use persistence diagrams. In

persistence diagrams, we look at a range of proximity diameters over multiple persistent

homology dimensions (or homology degrees), where the dimension refer to which n-simplices

we want to look at (0-dimensional persistent homology observe changes of 0-simplices, 1-

dimensional observe changes of 1-simplices, etc.). A persistence diagram is 2-dimensional,
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where the x-axis denotes the birth time and the y-axis the death time. Assuming that we

want to create a persistence diagram of data points, we let the proximity diameter α start

at zero. By gradually increasing α, new topological properties appear and old topological

properties merge into other properties. In particular, once a topological property is ”birthed”

(e.g. 1-simplex between two data points), the birth time is noted for the particular data point.

A point in the persistence diagram appears once n-simplices merge into new m-simplices (e.g.

three 1-simplex becoming a 2-simplex).

To motivate the use of persistence diagrams, we illustrate with a simple example in Fig-

ure 2.36, where we study the change of 0-dimensional persistent homology. In Figure 2.36,

we see how the persistence diagram changes once we increase the proximity diameter α, on

a data set consisting of two blobs. In Figure 2.36 (a), we let α = 0.2 and we observe that

there are only two data points intersecting, thus leading to a single point in the persistence

diagram. In Figure 2.36 (b), we let α = 1.5 and we observe how the data points in each blob

connect, thus leading to several entries in the persistence diagram. In Figure 2.36 (c), we let

α = 4.5, and we observe that there is a single point and several points on the bottom in the

persistence diagram. By looking at the plot on the left, we see how the two blobs intersect

and all data points have connections to other data points with distance less or equal to α.

In addition to this, Figure 2.36 (c) indicates that we have two clusters in our data, although

our data is rather noisy and could be more compact.
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Figure 2.36: Persistence diagrams computed of a data set of two blobs. We vary the levels
of α, showing how the topological properties form in the persistence diagrams.

An important aspect of machine learning is to predict some quantity given some features.

If we want to use the persistence diagrams as features in a model, for instance, a typical

approach would be to perform some feature extraction or vectorization first. An example of
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vectorization of persistence diagrams is persistence images, which we introduce in the next

subsection.

2.3.3 Persistence image

Many machine learning tasks require valuable features to yield good results. Persistence

images [Adams et al., 2016] are vector representations of persistence diagrams. When ex-

plaining persistence images, we refer to [Adams et al., 2016]. Furthermore, we explain the

use of persistence images for the analysis of word embeddings in Section 3.3.2 and when

discussing future work in Chapter 5.

Let B = {(b1, d1) , (b2, d2) , . . . , (bm, dm)} ∈ Rm×2 be a persistence diagram in birth-death co-

ordinates. First, we transform B into birth-persistence coordinates, where persistence is the

difference between death and birth. That is, let T (B) = {(b1, p1) , (b2, p2) , . . . , (bm, pm)} ∈
Rm×2, where pi = bi − di for 1 ≤ i ≤ m. Following, for each of the point in the the T (B)

persistence diagram, we place a probability distribution. A common choice is to use the

Gaussian distribution, which we center at each data point respectively. By placing probabil-

ity distributions on each point, we are able to differentiate between dense and sparse areas.

In addition to placing probability distributions on each point, we weight the distributions by

the persistence of the point, making more persistent areas more prominent than others. Us-

ing the weighted probability distributions, for a particular persistence diagram B we define

the persistence surface of ρB as

ρB(z) =
∑

u∈T (B)

f(u)φu(z), (2.79)

where f(u) is the persistence weighing function and φu(z) is the probability distribution

which we evaluate at point z (e.g. if Gaussian, then we centre it at point u). Finally, we

reduce the persistence surface ρB(z) to a discretized representation. In particular, we form

an N ×M grid, and for each cell in the grid, we compute the integral of ρB(z) over that

region and use the result from the integral as value. In other words, this discretization allows

us to summarize the persistence surface using less information and we are left with an N×M
matrix which we can for machine learning tasks more easily. Following, we illustrate the use

of persistence images in Figure 2.37, where we apply it to a 2-dimensional data set consisting

86



of two circles. In Figure 2.37, we see how the data is transformed into a persistence diagram

B, following by the transformed persistence diagram T (B) and finally the persistence image

of B. In Figure 2.37 (d), we see a 66 by 35 pixels image, representing the vectorization of

persistence diagram B.
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Figure 2.37: Persistence image pipeline when applied to a 2-dimensional circles data set.

2.3.4 Wasserstein distance

When we compare distances between data points, we commonly use distance metrics (e.g.

Euclidean distance). To compare differences between any two persistence diagrams A and

B, however, we use the p-Wasserstein distance, which we define as

Wp(A,B) = inf
γ:A→B

(∑
u∈A

||u− γ(u)||p∞

)1/p

, (2.80)

87



where 1 ≤ p < ∞ and γ ranges over bijections between A and B, and inf is the infimum

(i.e. greatest lower bound; similar to ”minimum”). We further visualize the idea behind

the p-Wasserstein distance in Figure 2.38, where we see how the points in each persistence

diagram A and B get paired up. We match points to the diagonal if we find no matches for

the particular point.

     
    

Birth

Death

Figure 2.38: p-Wasserstein distance between two persistence diagrams A and B.

Finally, if we let p =∞, i.e W∞(A,B), we get what we call the bottleneck distance. We use

the bottleneck distance to compare persistence diagrams as well. However, we note that the

bottleneck distance has the disadvantage of only using the maximum distance between any

two points over the bijections between A and B.

2.3.5 Topological polysemy

Recall the manifold hypothesis, which states that, in general, real-life high-dimensional data

tends to live on a low-dimensional submanifold embedded within the high-dimensional space
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[Bengio et al., 2014, p. 16]. To give an example, imagine that we some data about weight and

height of humans. Naturally, we see that as the height increases, the weight increases as well.

That is, we have a strong linear relationship (or correlation) between height and weight. We

can therefore argue that the manifold dimension of the data is 1, even though the original

data has dimension 2. The hypothesis should, in theory, also apply to word embeddings, but

the authors of [Jakubowski et al., 2020] argue that word embeddings, should instead, live on

a punched manifold. By a pinched manifold, we mean a manifold where we ”glue” together

particular points that are equal in some sense, creating singular areas in the manifold.

We show an example in Figure 2.39, where we see an ideal pinched manifold for the word

”solution” and four of its meanings as submanifolds. For word embeddings, [Jakubowski

et al., 2020] claim that these singular areas in the manifold represent polysemous words and

that the neighbours of polysemous words share some relation to the polysemous word. To

identify such polysemous words from word embeddings, [Jakubowski et al., 2020] introduce

a topological measure of polysemy (using concepts from persistent homology) that correlates

well with the true number of meanings of a word. To explain the topological measure of

polysemy, we refer to [Jakubowski et al., 2020].
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Figure 2.39: A pinched manifold of the word ”solution”, showing four of its meanings as
submanifolds. This figure is inspired by [Jakubowski et al., 2020, Figure 5].
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Determining the number of word meanings is a non-trivial task. Consider the word so-

lution, which has multiple meanings. In some contexts, the word solution can relate to

problem-solving (e.g. solving a problem in a handbook), while in other contexts, it can re-

late to chemistry (e.g. a mixture of two or more substances). We call such words polysemous,

meaning that the word has multiple meanings which can relate to one another. The opposite

of a polysemous word is a monosemous word, meaning that the word only has one meaning.

The motivation behind the topological measure of polysemy, as introduced by [Jakubowski

et al., 2020], stamps from the fact that the number of components of a punctured neigh-

bourhood around a word w should reflect the number of word meanings of the word w. A

punctured neighbourhood of w is the neighbouring words of w excluding the word w itself.

Let W ∈ R|V |×d be word embeddings, where |V | is the number of words in the vocabulary

and d is the word embedding dimension. We compute the topological polysemy TPSn(w)

by fixing a target word w and a neighbourhood size n. We denote the word embedding

of w as vw ∈ Rd. To compute TPSn(w), we first normalize the word embeddings W such

that they are of unit length. We denote the normalized word embeddings as Wnorm and

the normalized word embedding of the target word w as vwnorm . Following, we compute the

punctured neighbourhood Nn(w), that is, the neighbouring n normalized word embeddings

around vwnorm , excluding w itself. Furthermore, we project the word embeddings of Nn(w)

to lie at the unit sphere, with vwnorm as the center. We denote this normalized punctured

neighbourhood as N ′n(w). In other words, we make the word embedding of w to be the

origin of a d-dimensional sphere and project the neighbouring words of w to lie around it.

Finally, we compute the 0-degree persistence diagram of N ′n(w) and denote it as PDn(w).

TPSn(w) is then the 1-Wasserstein distance (see Section 2.3.4) between PDn(w) and the

empty persistence diagram, also known as the Wasserstein norm. Furthermore, we will

use topological polysemy later when analysing word embeddings in Section 3.3.1 and for

prediction of polysemous words in Section 3.3.4.

2.3.6 Geometric Anomaly Detection

The manifold hypothesis forms a foundation of modern data science. Many manifold learning

and dimensionality reduction algorithms rely on this assumption to find meaningful low-

dimensional representations of high-dimensional data. Examples of such algorithms include

PCA and UMAP (see Section 2.1.4.1 and Section 2.1.4.2). Geometric Anomaly Detection
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(GAD) [Stolz et al., 2020] is an algorithm for identifying possible points in data that fail

to satisfy the manifold hypothesis. Following, we describe the motivation behind the GAD

algorithm and describe how it works. We refer to [Stolz et al., 2020] when explaining the

GAD algorithm.

We first introduce the motivation behind the GAD algorithm to deepen our understanding

of how it works. Imagine that we have some data that lies on two submanifolds P and Q.

We illustrate such a situation in Figure 2.40. Here we assume that the two submanifolds P

and Q are planes that intersect, which we mark by the dotted red line. We place an annulus

around each data point and infer its topological structure. An annulus is a region between

two circles, where the first circle is contained in the other, and both circles share a centre

point. Annuli can also remind us of rings. Formally, each annulus around its respective data

point has an inner radius r and outer radius s. Depending on where points are on either of

the submanifolds, we observe that they can have one of three states as seen in Figure 2.40

(a), (b) and (c). If a point is at the boundary of either submanifold, i.e. in Figure 2.40 (a),

we observe that the points falling into the annulus around the data point forms a half-circle,

as half of the circle does not have any data points in them. If we count the number of

topological loops we get zero. If the data point falls nicely into either submanifold, i.e. in

Figure 2.40 (b), we observe that we get a nice annulus where neighbouring points falling

into the annulus around the data point forms a circle. In other words, if a point is on

the submanifold, we expect to get exactly one topological loop. In the last situation, i.e.

Figure 2.40 (c), we have a data point that falls between P and Q, creating a singularity

(or anomaly) in the data. This stamps from the fact that it is harder to distinguish which

submanifold the particular data point should belong to. If we look at the data points in

the annulus around the data point in Figure 2.40 (c), we observe that we get two or more

topological loops.
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(b) Manifold point(a) Boundary point (c) Singular point

Figure 2.40: The motivation behind the GAD algorithm, illustrated. Data points belonging
to two submanifolds P and Q, and depending on where the data points are on the subman-
ifolds, it can have three different states: (a), (b) or (c). The GAD algorithm is particularly
interested in finding singular (c) data points between k submanifolds (here: k = 2). This
figure is inspired by [Stolz et al., 2020, Figure 1].

Let X ∈ Rn×d be data points. The GAD algorithm works as follows: fix two parameters

0 < r < s, and for each data point xi ∈ X place an annulus around it, with inner radius r

and outer radius s. We determine the data points that fall into the annular neighbourhood

of xi and denote this set as Ay = {a1, a2, . . . , am} ⊂ X. That is, the set Ay consists of

those points aj that satisfies r ≤ d(xi, gj) ≤ s, where d(·, ·) measures the distance between

two points (e.g. using Euclidean distance). Then, select a manifold dimension k we would

like to investigate, as the GAD algorithm discovers intersections of (k − 1) submanifolds.

To find intersections of (k − 1) submanifolds of the annular neighbourhood Ay of xi, we

compute the (k− 1)-dimensional Vietoris–Rips complex of Ay, which we denote V Rk−1(Ay).

92



Then, for each birth-death coordinate (bk−1, dk−1) ∈ V Rk−1(Ay), we count the number of

points that persist longer than the annulus width. We denote this count as Ny. Recall

that the persistence of points in persistence diagrams can be computed by transforming the

persistence diagram into birth-persistence coordinates, where persistence pk−1 = dk−1−bk−1.
We define the annulus width to be the difference between the outer and inner radius, i.e.

wAy = s− r. To count Ny, we iterate over the points in the persistence diagram and count

the number of points that satisfies

pk−1 > wAy . (2.81)

The countNy is analogous to the number of topological loops that occur inAy, for a particular

homology dimension (k−1). If no points satisfy Equation (2.81), i.e. Ny = 0, then we classify

xi as a boundary point, similar to the situation in Figure 2.40 (a). If we have exactly one point

that satisfies Equation (2.81), i.e Ny = 1, then we classify the point as a boundary point,

similar to the situation in Figure 2.40 (b). If two or more points satisfy Equation (2.81), i.e.

Ny > 1, then we classify the point as a singular point, similar to the situation in Figure 2.40

(c). Furthermore, we will use GAD for later analysis of word embeddings in Section 3.3.2

and for prediction of polysemous words in Section 3.3.4.
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Chapter 3

Analysis of Word Embeddings

In this chapter, we will use methods from machine learning to analyze word embeddings.

Due to the scope of the thesis, we will mainly analyze word embeddings from the word2vec

model (Section 2.2.2) using Skip-gram and negative sampling. We will also run some of

the analysis methods on published word embeddings from external papers, in particular in

Section 3.3.

Firstly, we will describe how we trained and evaluated our word2vec implementation. In

particular, we will explain the data preprocessing steps, the implementation specifics and

hyperparameter choices. We will also show how we evaluated our trained word2vec model.

Secondly, we will perform cluster analysis on word embeddings to look for deeper structure.

In particular, we will compare clustering algorithms trained on word embeddings, using

internal cluster validation methods, and investigate the clustering of distinct groups of words.

Thirdly, we will look at the application of two methods from topological data analysis (TDA)

on word embeddings. Lastly, we end the chapter by creating two supervised models for

estimating the number of word meanings, using the results from TDA and intrinsic dimension

estimation. We train the supervised models and visualize their evaluation results.

To perform the analyses in this chapter, we utilized the Python programming language

with some key Python packages: numpy [Harris et al., 2020] (efficient vector and matrix

manipulation), scikit-learn [Pedregosa et al., 2011] and scipy [Virtanen et al., 2020]

(general methods from machine learning), matplotlib [Hunter, 2007] and seaborn [Waskom,

2021] (tools for data visualization), joblib [Joblib Development Team, 2021] (data dumping
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to file), sharedmem [Feng et al., 2020] (parallelization of trivial jobs) and fastdist [Boger,

2021] (fast distance calculations in Python). We ran the analysis code on a machine with

two GPUs (GeForce RTX 2080 Ti ×2), one CPU (Intel i9-7900X @ 3.30GHz) and 64 GB of

RAM. The computer was running an Ubuntu 18.04.5 operating system. In practice, we were

only allotted to use a subset of the resources, as it was a shared computer by the research

group in machine learning at the University of Bergen. Finally, the code used to perform

the analyses is publicly available via GitHub in [Triki, 2021].

3.1 Training and evaluation of word2vec

In this section, we will describe how we trained and evaluated our word2vec model. In

particular, we will explain the data preprocessing choices we made before training word2vec

in Section 3.1.1 and details of our implementation of word2vec using the Skip-gram model

and negative sampling in Section 3.1.2. Finally, we will cover the hyperparameter choices

used to train the word2vec model in Section 3.1.3 and evaluate the performance of the

word2vec model using analogy test data sets in Section 3.1.4.

3.1.1 Data preprocessing

To train a word2vec model, we require a sufficiently large data set and embedding dimen-

sionality to yield good quality word embeddings [Mikolov et al., 2013b]. In the empirical

experiments of [Mikolov et al., 2013b], they used an internal data set based on data from

Google News. Since this data set was not publicly available, we instead used a Wikipedia

dump from [Wikimedia, 2021] (i.e. a periodic snapshot of the Wikipedia database), and

we performed several preprocessing steps before training on it. In particular, we used the

enwiki (short for English Wikipedia) dump from the 1st of January 2021 (20210101 on the

Wikimedia pages). The dump from Wikipedia was first downloaded and parsed using the

WikiExtractor tool [Attardi, 2015]. Furthermore, we created a script using Python to merge

and process output files from the WikiExtractor tool into a certain number of text files, such

that we could train word2vec at ease. To benefit from parallel reading, we let the number

of text files equal the number of CPU cores on our machine.

We then proceeded by processing each Wikipedia article. In particular, we performed the

following steps:
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1. We split each article into a list of sentences using the tokenize.sent tokenize function

from the nltk Python package [Bird et al., 2009].

2. Then, we preprocessed each sentence individually.

2.1. We first replaced contractions in each sentence (e.g. I’ll 7→ I will, you’d 7→ you

would, etc.) by using the contractions Python package [van Kooten, 2016].

2.2. Then we split the sentence into a list of words using the word tokenize function

from nltk.

i. We replaced capital letters in words by the corresponding small letters (i.e.

lower-case representation).

ii. We removed punctuation from words and created new sub-words for each

word delimited by punctuation (e.g. out-of-the-box 7→ out, of, the, box).

iii. At last, we replaced all numbers (including ordinal numbers) with their tex-

tual representation, using the num2words Python package [Dupras, 2014].

For example, the number 10 was replaced by ”ten”, and the word ”21st” was

replaced by ”twenty-first”.

3. With the new processed sentences, we filtered out sentences that had less than

min word count words in them.

4. Finally, we appended each sentence to an output text file, separated using the newline

character (i.e. \n).

After processing the Wikipedia articles into files, we combined common phrases into single

tokens. In particular, we followed the word2phrase procedure explained in Section 2.2.2.4,

resulting in tokens consisting of words separated by an underscore, e.g. the phrase ”New

York” becomes ”new york”. We denoted the threshold hyperparameter from word2phrase

as threshold-word2phrase. To create longer phrases of words, e.g. trigrams, four-grams

or even five-grams, we repeated the word2phrase multiple times. In particular, we denote

the number of repetitions as num-epochs-word2phrase, which we chose as a hyperparam-

eter. Furthermore, for each repetition of word2phrase, the threshold hyperparameter δ is

decreased. [Mikolov et al., 2013b] did not state how they decreased this threshold, however,

but by inspection of the source code of word2vec [Mikolov, 2013a], we observed that they

started with a threshold of 200, then decreased it to 100 for the second and final repetition.
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With this in mind, we introduce a threshold decay hyperparameter, denoted threshold-

decay-word2phrase, which tells how much the threshold decreases for each repetition of

word2phrase.

3.1.2 Implementation specifics

To implement the word2vec model, we used Python and TensorFlow [Abadi et al., 2015]. In

addition to this, we used the numpy [Harris et al., 2020] package to work with vectors and

matrices more easily. In particular, we implemented the Skip-gram model using negative

sampling. To do so, we split our implementation into three main Python classes. The first

class is the Tokenizer class, which is responsible for converting text into word indices in

vocabulary (e.g. the word ”hello” 7→ 42). The second class is the Word2vecSGNSModel,

which inherits the tf.keras.Model class from TensorFlow; we created the model via sub-

classing, as specified in [TensorFlow team, 2020]. Word2vecSGNSModel is the model we used

to train our ANN. The third and final main class is Word2vec. It performs training using

the Word2vecSGNSModel and uses Tokenizer to convert words into integers.

To load the data into the model, we used the tf.data API, as introduced in TensorFlow 2.

The tf.data API allows us to create flexible and scalable data generators. As mentioned in

Section 3.1.1, we want to train our model on dumps from Wikipedia, i.e. several gigabytes of

raw text data, and the tf.data API allows us to do this quickly and efficiently. In particular,

we used the tf.data.TextLineDataset class to load multiple text files in parallel and set

num parallel calls to tf.data.experimental.AUTOTUNE wherever we could, such that we

parallelize the data generation process as much as possible. We also used prefetch to

prepare the data in parallel while training.

We implemented word2phrase using Python. First, we counted the uni- and bigram word oc-

currences, and using them, we ran the word2phrase procedure as explained in Section 2.2.2.4

by accepting bigrams into the vocabulary if the phrase score (see Equation (2.66)) was greater

than the set threshold parameter.

By implementing word2vec ourselves, we learned a few things we did not realize after reading

the two papers from Mikolov et al. [Mikolov et al., 2013a,Mikolov et al., 2013b]:
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• Training on big data sets (e.g. dumps from Wikipedia) requires an efficient implemen-

tation of the data generator. We first attempted to create a data generator that loaded

everything into memory, but it became clear to us that this did not scale well when we

later wanted to train on bigger data sets.

• The quality of the word embeddings depend on the preprocessing of the training data.

• That we have two embedding matrices W and W ′ corresponding to the input and

output of the network. At first, we only had a single embedding matrix, for both the

input and the output of the network, which led to worse results.

3.1.3 Hyperparameter choices

To train the word2vec model, we based our choices of hyperparameters on the different

choices used in models from [Mikolov et al., 2013a, Mikolov et al., 2013b]. These hyperpa-

rameters can be found in Table 3.1.

Hyperparameter Value

min-word-count 5
max-vocab-size ∞
batch-size 256
num-epochs 5
num-epochs-word2phrase 2
threshold-word2phrase 200
threshold-decay-word2phrase 0.5
learning-rate 0.025
min-learning-rate 0.0000025
embedding-dim 300
max-window-size 5
num-negative-samples 5
sampling-factor 0.00001
unigram-exponent 0.75

Table 3.1: Hyperparameters used to train the word2vec model.

Similar to [Mikolov et al., 2013b], we set the minimum word count to 5 and did not restrict

the maximum vocabulary size. In other words, we let the vocabulary include words that

occur at least 5 times in the training data.
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We set the number of repetitions for word2phrase to 2 and the initial threshold to 200,

as [Mikolov et al., 2013b] did in their experiments. Furthermore, we set the threshold decay

to 0.5 (i.e. the threshold is halved for each repetition) to use a similar setup.

Neither [Mikolov et al., 2013a] nor [Mikolov et al., 2013b] stated which batch-size they used,

but by inspecting the source code of word2vec [Mikolov, 2013c, line 542], we observed that

they used 1 as their batch size, i.e. performing a backward pass for every forward pass in

the model. We found, however, that setting the batch size to 256 to be a nice fit for our

data, leading to good quality vectors and faster training.

Mikolov et al. used 1 to 4 epochs in their experiments [Mikolov et al., 2013a,Mikolov et al.,

2013b], and in the source code of word2vec [Mikolov, 2013c, line 43], they default to 5 epochs.

For this reason, we set the number of epochs to 5.

We set the initial and minimum learning rate to 0.025 and 0.000025, respectively, as noted

in [Mikolov et al., 2013a] and the source code of word2vec [Mikolov, 2013c, lines 44 and 398].

Furthermore, we set the embedding dimension to 300, the maximal window size to 5, the

number of negative samples to 5, the sampling factor to 0.00001 and the unigram exponent

to 0.75, similar to experiments from [Mikolov et al., 2013b].

Using the preprocessing steps from Section 3.1.1 on our data and the hyperparameters from

Table 3.1, we get a vocabulary size of ∼4.4 million words and corpus size (i.e number of

words used from the enwiki data set) of ∼2.3 billion words.

3.1.4 Model evaluation

We trained the word2vec model using data preprocessing steps from Section 3.1.1 and hyper-

parameters from Section 3.1.3. Following, we will refer to our trained word2vec model as the

SGNS-enwiki (short for Skip-Gram Negative Sampling-enwiki) model. To show that the

trained word embeddings from the SGNS-enwiki model can be used for word analogy tasks,

we evaluated the SGNS-enwiki model using analogy test data sets. The goal of performing

these tests is to show that the word embeddings of the SGNS-enwiki model are comparable

to word embeddings from other published (pre-trained) models in terms of quality.
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In particular, we used three analogy test data sets, namely the Semantic-Syntactic Word

Relationship test set (SSWR), the Microsoft Research Syntactic Analogies Dataset (MSR)

and the Phrase Analogy Dataset (PAD). The SSWR test data set was first introduced in

[Mikolov et al., 2013a], consists of 8869 semantic and 10675 syntactic questions and is widely

used as a test data set. The MSR data set was first introduced in [Mikolov et al., 2013c] and

consists of 8000 analogy questions. To evaluate word embedding models trained on phrases

(e.g. ”New York Times”), [Mikolov et al., 2013b] introduced the PAD. PAD consists of 3218

analogy questions. It should be noted, however, that there are other common test data sets

as well, such as the Bigger analogy test set (BATS) from [Gladkova et al., 2016].

We compared the results from the evaluation of the SGNS-enwiki model to models from

[Mikolov et al., 2013a, Mikolov et al., 2013b, Mikolov et al., 2013c, Bojanowski et al., 2017]

in Tables 3.2 to 3.4. In particular, we compared to the Skip-gram models from [Mikolov

et al., 2013a, Table 3] and [Mikolov et al., 2013a, Table 6] (denoted SG 300 and SG 1000

respectively), the NEG-15 model from [Mikolov et al., 2013b, Table 1 and 3], the RNN-1600

model from [Mikolov et al., 2013c, Table 2], the GloVe 300 42B model from [Pennington

et al., 2014, Table 2], and the fastText model from [Bojanowski et al., 2017, Table 2]. In

Tables 3.2 to 3.4, a dash (–) denotes that the model has not been evaluated on the particular

subset/data set, and bold values indicate the best value. Values represent accuracies and

are in percentages.

SSWR
Model

Semantic Syntactic Average

SG 300 55 59 57
SG 1000 66.1 65.1 65.6
NEG-15 61 61 61

RNN-1600 – – –
GloVe 300 42B 81.9 69.3 75.0

fastText 77.8 74.9 76
SGNS-enwiki 65.8 67.3 66.6

Table 3.2: Comparison of empirical results of word embedding models evaluated using the
SSWR word analogy test data set.
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MSR
Model

Adjectives Nouns Verbs Average

SG 300 – – – 56
SG 1000 – – – –
NEG-15 – – – –

RNN-1600 23.9 29.2 62.2 39.6
GloVe 300 42B – – – –

fastText – – – –
SGNS-enwiki 43.1 62.5 59.1 54.9

Table 3.3: Comparison of empirical results of word embedding models evaluated using the
MSR word analogy test data set.

PAD
Model

Average

SG 300 –
SG 1000 –
NEG-15 42

RNN-1600 –
GloVe 300 42B –

fastText –
SGNS-enwiki 53.7

Table 3.4: Comparison of empirical results of word embedding models evaluated using the
PAD word analogy test data set.

In Table 3.2, we see that the SGNS-enwiki model is fairly competitive in terms of accuracy

on the SSWR analogy test data set. The fastText model, however, is the most accurate

model on this test data set. In particular, the fastText model is approximately 10% more

accurate on average than the SGNS-enwiki model. The same story goes for the results from

the MSR test data set, we see in Table 3.3, where the SGNS-enwiki model performs pretty

well, falling short for the SG 300 on average. Finally, in Table 3.4 we see that the SGNS-

enwiki model outperforms the NEG-15 model. We note that we had a lot of missing data

for this evaluation, as all models had not been evaluated for every (subset of the) test data

set. This evaluation, however, indicates that the SGNS-enwiki model understands syntactic

and semantic relationships between words.
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To gain further insight into how the vector representations learned by the SGNS-enwiki

model are, we inspected the nearest neighbours of words. In Table 3.5 we show a sample

of such comparison, using the 5 nearest neighbouring words (also some phrases) for each

query word. We used cosine similarity to find the neighbouring words, excluding the query

word from the search. In Table 3.5, we see the ability of the SGNS-enwiki model to identify

related words to the query word.

Query word Neighbouring words

Apple Apple Inc., Blackberry, Apple computer, OneScanner, released Xsan
Phone Phones, mobile phone, cell phone, cellphone, phone calls
Water Fresh water, drinking water, water pumped, salinated, untreated water
Sunny Windy, dry sunny, warm sunny, cool, Lee Hany Lee
Book Books, book entitled, Tarcher Penguin, author, foreword

Table 3.5: The five nearest neighbouring words of some query words. We use cosine similarity
and word embeddings of the SGNS-enwiki model.

We visualize the ability of the SGNS-enwiki model to identify underlying concepts of the

language and relationships between them in Figure 3.1, using a 2-dimensional PCA (Sec-

tion 2.1.6.1) embedding of words representing countries/capitals and comparative adjectives

(e.g. good → better → best). We used PCA instead of UMAP here as there were few

points, and PCA typically works better than UMAP in such cases. In Figure 3.1, we see

that the SGNS-enwiki models understand what capital means and how comparative adjec-

tives behave. In addition to this, we also observe some clustering occurring in both plots.

In particular, we observe that Scandinavian countries and capitals are more clustered to the

top of Figure 3.1 (a), and words related to temperatures are more clustered to the right of

Figure 3.1 (b).
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Figure 3.1: 2-dimensional PCA embeddings of the word embeddings of the SGNS-enwiki
model. The plots show how the SGNS-enwiki model understands concepts such as countries
and their capital cities (a), as well as and comparative adjectives (b). This figure is inspired
by [Mikolov et al., 2013b, Figure 2].

Next, we will further investigate the notion of clustering, partially motivated by the results

we see in Figure 3.1. In particular, to deepen our understanding of the underlying structure of

the SGNS-model, we will in the next section perform cluster analysis of its word embeddings.

We will use multiple clustering algorithms and internal cluster validation methods to find

the most suitable clustering algorithm and hyperparameters.

3.2 Word clustering

In this section, we will apply cluster analysis on the word embeddings of the SGNS-enwiki,

to search for deeper structures within the data. In particular, we will compare clustering

algorithms on the word embeddings of the SGNS-enwiki in Section 3.2.1, and following, we

will look at clustering of distinct groups of words in Section 3.2.2.
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3.2.1 Comparing clustering algorithms

In this subsection, we compare clustering algorithms on the word embeddings of the SGNS-

enwiki. Due to a large number of words in the vocabulary of the SGNS-enwiki (roughly 4.4

million, see Section 3.1.3 for more details), we restrict the analysis to the 10000 most common

(i.e most frequently occurring) words. This way, we speed up the computation by reducing

the computational requirement. Also, we note that we should still get reliable results, as

the most common words yield good quality vector representations due to the nature of their

word frequencies.

To perform the cluster analysis, we used all clustering algorithm from Section 2.1.2, ex-

cept for Spectral clustering (Section 2.1.2.6), as it was too computationally expensive to

run. In particular, we used the following algorithms: k-means clustering (Section 2.1.2.1),

mini-batch (MB) k-means clustering (Section 2.1.2.2), k-medoids clustering (Section 2.1.2.3),

GMMs (Section 2.1.2.4), hierarchical clustering (agglomerative) (Section 2.1.2.5), HDB-

SCAN (Section 2.1.2.7) and ToMATo (Section 2.1.2.8). We used the scikit-learn [Pe-

dregosa et al., 2011], scikit-learn-extra [Scikit-learn contrib, 2021], gudhi [Rouvreau,

2021] and hdbscan [McInnes et al., 2017] Python packages to perform clustering. Further-

more, we trained the clustering algorithms using a grid-search manner, i.e. by trying all

combinations of hyperparameters. Table 3.6 shows the hyperparameters used to train each

clustering algorithm. By forming a grid of hyperparameters for each clustering algorithm,

we get a rough sense of the best set of hyperparameters. For the initial grid-search, we let

n clusters range=2, 3, 4, 5, 10, 50, 100, 150, 200, 300, 400, 500, 750, 1000, 1500, 2000,

3000, 4000, 5000, 6000, 7000, 8000 be the cluster numbers used in algorithms where appli-

cable. We let n clusters range range from 2 to 8000 clusters, using varying step sizes,

to investigate the effect of the number of clusters for each algorithm, where it was appli-

cable. To train the clustering algorithms, we used the standard word embeddings if the

algorithm supported cosine similarity (or distance) and normalized word embeddings if the

algorithm required Euclidean distances. After training the clustering algorithms, we vali-

dated them using the internal cluster validation methods from Section 2.1.3. In particular,

we used the mean Silhouette Coefficient (SC) (Section 2.1.3.1), the Davies-Bouldin Index

(DBI) (Section 2.1.3.2) and the Caliński-Harabasz Index (CHI) (Section 2.1.3.3). We used

the scikit-learn Python package to perform internal clustering validation.
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Clustering algorithm Hyperparameters Values

K-means clustering n clusters n clusters range

Mini-batch k-means clustering
n clusters n clusters range

batch size 100
K-medoids clustering n clusters n clusters range

GMM clustering n components n clusters range

n clusters n clusters range
Agglomerative clustering

linkage single, average, complete, ward

HDBSCAN
min cluster size 2, 4, 8, 16, 32, 64
min samples 1, 2, 4, 8, 16, 32, 64
density type DTM, logDTM, KDE, logKDE

ToMATo
k 2, 3, . . . , 10, 20, . . . , 50, 100, . . . , 250

Table 3.6: Hyperparameters used to train each clustering algorithm for the cluster analysis.

We visualize the result from the initial grid-search in Figure 3.2, where we see that the

agglomerative clustering algorithm performs the best (close to k-means clustering) and k-

medoids clustering performs the worst. For this reason, we will now focus on the agglomer-

ative clustering algorithm and search for the best set of hyperparameters. Particularly, we

will search for the best linkage criterion and number of clusters.
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Figure 3.2: Comparison of internal cluster validation results from clustering algorithms
trained on word embeddings of the SGNS-enwiki model. The red dot in each plot denotes
the most optimal value.

We will now look at the initial grid search result using the agglomerative clustering algorithm
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to deepen our understanding of the results. We visualize the results in Figure 3.3, and we

notice that by using the single linkage criterion, we get relatively poor results. For the

remaining criteria, we observe that we get more or less the same results, with the ward

criterion being slightly ahead of the rest. By inspecting the best value for the number of

clusters for each internal cluster validation method in Figure 3.3, we observe that the DBI

and the CHI gives misleading results, while the SC is more meaningful. In particular, the

DBI prefers to have the largest number of clusters, i.e. 8000. We inspected the words falling

into the clusters, and from these, we observed that 6350 of the words were in clusters of

size 1. This result indicates that the DBI is not particularly well suited for choosing the

number of clusters, as it prefers to have clusters consisting of exactly one word. Using the

CHI, we observe that it prefers to have the least number of clusters, i.e. 2. We inspected

this result and noticed that in the first cluster, there was only a single word, while the

second cluster had the remaining 9999 words. In other words, this indicates that the CHI is

also not particularly well suited for choosing the number of clusters. Finally, using the SC,

which we show in Figure 3.3 (a), we observe that the preferred number of clusters lie around

3000 to 6000. We inspected the number of clusters as preferred by average, complete and

ward linkage clustering and observed that they made sense, as there was more variety in the

cluster sizes and the number of clusters having the specific cluster sizes. This indicates that

the most preferable number of clusters (using SC) should lie in this range (3000 to 6000),

and following, we will narrow down the search for the best number of clusters. For the next

experiment, we will not include the single linkage clustering criterion, as it performed poorly.
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Figure 3.3: Internal cluster validation results using agglomerative clustering on word em-
beddings of the SGNS-enwiki model.
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By narrowing the search to the range of 3000 to 6000 clusters, we find the best number of

clusters for each criterion of agglomerative clustering. The narrowed search for the number

of clusters is visualized in Figure 3.4, and we observe that ward linkage clustering with 4104

clusters results in the best clustering. In other words, these results indicate that, by using

the ward clustering criterion, we obtain the best clustering of the 10000 most common words

from the SGNS-enwiki model.
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Figure 3.4: The number of clusters plotted against the SC scores. The number of clusters is
in the range of 3000 to 6000 clusters, and we use the average-, complete- and ward-linkage
criteria. Here we see that the ward linkage criterion results in the highest SC score.

To deepen our understanding of the clustering result using agglomerative clustering and

ward criterion on the word embeddings from SGNS-enwiki, we investigated the words falling

into the 4104 clusters. In particular, we looked at the 10 largest and smallest clusters. We

restricted the smallest clusters to contain at least 2 words, ensuring that we do not get

clusters consisting of single words. In the top 10 largest clusters, we mostly saw names

such as ”Smith”, ”Wilson”, or ”Taylor” clustered together. We also saw the clustering of

words representing numbers, e.g. ”forty-five”, ”thirty-two” or ”fifty-one”, and the clustering

of family-related words, e.g. ”father”, ”son” and ”brother”. The top 10 smallest clusters

mostly consisted of words that were strongly related to one another, such as ”Adam” and

”Noah”, ”card” and ”cards”, or ”interior” and ”exterior”. We visualize some of the largest

and smallest clusters in Figure 3.5, using a 2-dimensional UMAP (Section 2.1.4.2) embedding.

To create the UMAP embedding, we used the umap-learn Python package [McInnes et al.,

2018] and the default hyperparameterization. In Figure 3.5, we see that the clusters are
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Figure 3.5: 2-dimensional UMAP embedding of the 10000 most common words from the
SGNS-enwiki model, with some of the largest and smallest clusters outlined.

widely spread all over the UMAP embedding. In addition to this, the UMAP embedding

suggests that there are more clusters throughout the word embeddings, which the clustering

algorithms were unable to pick up when evaluated using internal cluster validation methods.

We will investigate this further, and in the next subsection, we will look at the clustering of

distinct word groups. In particular, we will see if bigger sets of words cluster together in the

UMAP embedding, suggesting that the word embeddings contains a deeper structure.

3.2.2 Clustering word groups

In this subsection, we will investigate the effect of clustering in the 2-dimensional UMAP

embedding of the 10000 most common words of the SGNS-enwiki model, using distinct

groups of words. In particular, we will cluster words related to countries/capitals, numbers,

names (forenames and surnames) and food. Before performing the clustering, we first prepare

the data used for the analysis. The countries/capitals data was retrieved from [GeoNames,

2005], where we used their API to fetch countries and their capital, resulting in 217 pairs of
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countries and capitals. The number data was generated by converting numbers to their string

representation. We converted the numbers from zero to one trillion, resulting in 105 number-

related words. The forenames data was retrieved from [Social Security Administration,

2019], where we used the top 1000 baby names from 2019. The surnames data was retrieved

from [U.S. Census Bureau, 2010], and we used the top 1000 surnames from 2010. Finally,

the food data was retrieved from [Datafiniti, 2017], where we used the 250 most common

ingredient words. We visualize the largest word group clusters falling into the 10000 most

common words of the word embeddings from the SGNS-enwiki in Figure 3.6, where we use a

2-dimensional UMAP embedding. In Figure 3.6, we observe that two well-separated clusters

are forming in the UMAP embedding, being the names and numbers word groups. We also

see that the countries and food groups are more spread out in the embedding.
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Figure 3.6: 2-dimensional UMAP embedding of the 10000 most common words from the
SGNS-enwiki model, with word groups outlined.

In Figure 3.6, we outline the largest clusters of the word groups and discard words falling

out of the largest clusters. By including words that are outside the largest clusters, we

saw that, in particular, the names word group is spread throughout the word embedding,

as the data we used contained forenames and surnames of common words, such as ”joy”,
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”page” or ”good”. We illustrate this behaviour in Figure 3.7, where we outline the four

different word groups. In Figure 3.7 (a), we see that the country and capital words are

mostly clustered to the middle left, with some capitals falling out of the bigger cluster. The

”Stanley” and ”Hamilton” capital cities are also used as names, as indicated in Figure 3.7

(c). For the numbers, we observe that most number-related words are clustered to the right,

clearly separated from the rest of the words. However, we also observe that words such as

”million”, ”billion” and ”trillion” are clustered together outside the numbers cluster to the

right. By inspection, we observed that the ”million”, ”billion” and ”trillion” words were, in

fact, close to other financial words, such as ”banks”, ”wealth” or ”economics”. In Figure 3.7

(c), we see that the forenames and surnames are clustered to the top left, in addition to being

spread throughout the UMAP embedding. We also observe a small cluster of women names

forming, containing the names ”Diana” and ”Isabella”. Finally, we see that food-related

words in Figure 3.7 (d) are slightly clustered around the words ”egg” and ”cheese”, but also

spread around the UMAP embedding. An interesting observation is the word ”apple”, which

is both a fruit and a technology company. In this case, the word apple refers to the company

Apple Inc., as we also saw earlier in Table 3.5.
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Figure 3.7: 2-dimensional UMAP embeddings of the 10000 most common words of the SGNS-
enwiki model. Here we see four plots, and for each of them, we outline the four different
word groups.

To further develop our understanding of the SGNS-enwiki word embeddings, we will analyze

two of the previous word groups. In particular, we will perform cluster analysis of the word

embeddings of countries/capitals and numbers, where we will use clustering algorithms to

cluster the words. We will use the same clustering algorithms specified in Section 3.2.1, in
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addition to Spectral clustering. To visualize the results, we will use dimensionality reduc-

tion algorithms to create 2-dimensional embeddings. We will also use latitude/longitude

coordinates of countries to visualize the clustering results using countries/capitals word em-

beddings.

We analyzed the countries and capital word groups separately, as we choose to either identify

a country by its name or its capital. Starting with the country word group, we performed

cluster analysis. The result of the cluster analysis is summarized in Figure 3.8, where we

see a similar result to the result in Figure 3.2, i.e. agglomerative clustering is the preferred

clustering algorithm.
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(c) Comparison using CHI

Figure 3.8: Comparison of internal cluster validation results from clustering algorithms
trained on country word embeddings from the SGNS-enwiki model. The red dot in each
plot denotes the most optimal value.

Following, we inspected the scores from the DBI and CHI methods. We observed a similar

pattern to the analysis from Section 3.2.1, namely that DBI prefers every word to be in its

cluster and CHI prefers to have the smallest number of clusters (i.e. 2). For this reason, we

will mainly focus on the results using SC. Using agglomerative clustering, we visualize its

result in Figure 3.9. In Figure 3.9, we see similar results to Figure 3.3, namely that ward

criterion gives the best clustering when using agglomerative clustering.
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Figure 3.9: Internal cluster validation results using agglomerative clustering on country word
embeddings of the SGNS-enwiki model.

The best clustering using SC with agglomerative clustering and ward criterion resulted in

47 clusters. We visualize this result using latitude/longitude coordinates of each country in

Figure 3.10, where we see that the five largest clusters correspond well with the continent of

the countries.
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Figure 3.10: A comparison of countries divided into six continents (a) and the top 5 largest
clusters from clustering of country word embeddings of the SGNS-enwiki model, using ag-
glomerative clustering and ward criterion. Here we can see that the top 5 largest clusters in
(b) correlate well with the continent of the respective countries.

Furthermore, we repeat the cluster analysis using capital to identify each country, i.e. we

use the word embeddings of the capital words instead of the previously used country word

embeddings. We show the result of the cluster analysis in Figure 3.11, where we see a

similar result to the results in Figures 3.2 and 3.8, namely that agglomerative clustering is

the preferred choice of clustering algorithm.
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(c) Comparison using CHI

Figure 3.11: Comparison of internal cluster validation results from clustering algorithms
trained on capital word embeddings from the SGNS-enwiki model. The red dot in each plot
denotes the most optimal value.

We inspected the scores from the DBI and CHI methods, and similar to the results from

Section 3.2.1 and the cluster analysis using country word embeddings, we saw that DBI

prefers every word to be in its own cluster and CHI prefers to have the smallest number of

clusters (i.e. 2). This further strengthens the motivation to use SC over the other methods,

and we mainly focus on the results using SC. Using agglomerative clustering, we visual-

ize the results using capital word embeddings in Figure 3.12, where we see similar results

to Figures 3.3 and 3.9, namely that ward criterion gives the best clustering when using

agglomerative clustering.
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Figure 3.12: Internal cluster validation results using agglomerative clustering on capital word
embeddings of the SGNS-enwiki model.
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The best clustering using SC with agglomerative clustering and ward criterion resulted in

21 clusters. We visualize this result using latitude/longitude coordinates of each country in

Figure 3.13, where we see that we get larger clusters than by using country word embeddings

in Figure 3.10. Furthermore, we observe that in Figure 3.13 (b), the first cluster (green)

consists of capitals where the countries are Spanish talking, as outlined by the ”Madrid”

(Spain), ”Mexico City” (Mexico) and ”Santiago” (Chile) boxes. The second cluster (blue) in

Figure 3.13 (b) also correlates well with the Oceanic continent in Figure 3.13 (a), while the

third (red) and forth (purple) clusters in Figure 3.13 (b) seem to capture the African continent

adequately. Finally, we see that the (yellow) cluster consists of capitals from Eastern Europe

and some capitals from Asia. For the record, Dakar is the capital of Senegal, Pretoria is one

of the capitals of South Africa, and Suva is the capital of Fiji.

−150 −100 −50 0 50 100 150
Longitude

−40

−20

0

20

40

60

La
tit
ud

e

(a) Countries divided into six continents

Africa
Asia
Europe
North America
Oceania
South America

−150 −100 −50 0 50 100 150
Longitude

−40

−20

0

20

40

60
La
tit
ud

e

madrid

mexico_city

santiago

moscow

dakar

pretoria

suva

(b) Top 5 clusters using capitals word group

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

Figure 3.13: A comparison of countries divided into six continents (a) and the top 5 largest
clusters from clustering of capital word embeddings of the SGNS-enwiki model, using ag-
glomerative clustering and ward criterion. In (b) we can see that Spanish speaking countries
are clustered together in the first cluster (green), while the other clusters are well clustered
with respect to their continents.

Next, we will perform cluster analysis of number word embeddings in a similar manner to

how we performed the cluster analysis of country/capital word embeddings. First, we show a
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comparison of clustering algorithms using internal cluster validation methods in Figure 3.14,

where we see that, overall, the agglomerative clustering algorithm performs the best, when

evaluated using internal validation methods.
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(c) Comparison using CHI

Figure 3.14: Comparison of internal cluster validation results from clustering algorithms
trained on number word embeddings from the SGNS-enwiki model. The red dot in each plot
denotes the most optimal value.

Furthermore, we will use the agglomerative clustering algorithm to cluster number word

embeddings. To find its best criterion and number of clusters, we first visualize its results in

Figure 3.15. In Figure 3.15, we see the internal validation methods prefer different amount

of clusters and linkage criteria. In particular, SC prefers complete linkage criterion with 2

clusters, DBI prefers single linkage criterion with 6 clusters, and CHI prefers ward linkage

criterion with 3 clusters. In other words, we observe a different behaviour than in the results

from the internal cluster validation methods in Section 3.2.1 and the country/capital cluster

analysis, namely that SC prefers the least amount of clusters, DBI does not prefer the most

amount of clusters and CHI does not prefer the least amount of clusters.
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Figure 3.15: Internal cluster validation results using agglomerative clustering on number
word embeddings of the SGNS-enwiki model.

Next, we visualize the best agglomerative clustering result of the number word embeddings

as ranked by the internal clustering validation methods in Figure 3.16, where we use a 2-

dimensional PCA embedding. We used PCA instead of UMAP here as there were few points

to embed in 2 dimensions. In Figure 3.16, we see that it is not entirely clear how to cluster

the number word embeddings.
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Figure 3.16: Comparison of the best clustering results using agglomerative clustering on the
number word embeddings of the SGNS-enwiki model. Here we see that it is not clear which
clustering is the best.

We further investigated the structure of the 2-dimensional PCA embedding of the number

words and noticed an interesting relationship. We illustrate this relationship in Figure 3.17,
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which shows that by assigning an increasing label from the smallest and to the largest

number, we get that the colour of the label gradually increases from the smallest to the

largest. In other words, there seems to be an underlying sequential relationship in the number

word embeddings. Furthermore, this suggests that the underlying structure of number word

embeddings may contain information that we have not been able to find yet.
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Figure 3.17: 2-dimensional PCA embedding of the 105 number word embeddings, where
each word embedding has an increasing label assigned to it. Here we see that as we increase
the number, we see a possible underlying sequential relationship.

3.3 Polysemous words prediction

In this section, we look at various methods for estimating the number of word meanings

and predicting whether or not a word is polysemous. In particular, we will investigate the

notion of topological polysemy in Section 3.3.1 and Geometric Anomaly Detection (GAD)

in Section 3.3.2. We will use topological polysemy to estimate the number of word meanings

of word embeddings. Particularly, we would like to see if the TPSn(w) score measures
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polysemy. Following this, we would like to see if singular word embeddings identified by

GAD are polysemous. Next, we will compute the estimated intrinsic dimension of word

embeddings and compare the results with the number of word meanings in Section 3.3.3.

Finally, we end the section by proposing supervised models for predicting the number of

word meanings and whether or not a word is polysemous in Section 3.3.4.

3.3.1 Topological polysemy

In this subsection, we will apply topological polysemy (Section 2.3.5) to the word embeddings

of the SGNS-enwiki model. Additionally, we will also train a word2vec model using the same

training data as in [Jakubowski et al., 2020], which we refer to as the SGNS-semeval model.

We will apply topological polysemy to its word embeddings. Furthermore, we will compare

the results to topological polysemy applied to word embeddings from pre-trained models,

namely the fastText model (fastText.TPS.300d) used in experiments of [Jakubowski et al.,

2020], the GoogleNews-vectors-negative300 (shortened to GoogleNews300 ) word embeddings

from [Google Code Archive, 2013], the glove.840B.300d word embeddings from [Pennington,

2014] and the English (fastText.en.300d) word embeddings from [Grave et al., 2018]. The

fastText.TPS.300d model was kindly given in private communication with one of the authors

of topological polysemy [Zibrowius, 2021].

The authors of topological polysemy, [Jakubowski et al., 2020], trained a fastText model on

training data from the SemEval-2010 Task 14: Evaluation Setting for Word Sense Induction

& Disambiguation Systems [Manandhar and Klapaftis, 2009]. The training data from the

SemEval task consists of several sentences related to 100 polysemous words (50 nouns and

50 verbs). The SemEval data set also includes the number of true meanings (also called

gold standard or GS ) for each of the 100 polysemous words, as perceived by humans. In

private communication with one of the authors of the topological polysemy measure [Zi-

browius, 2021], we received some additional information regarding their training and data

preprocessing choices. In particular, they stated that they used a fastText model with vector

dimensionality of 300, that they removed all punctuation from words and replaced capital

letters with the corresponding small letters. To compare with the TPSn(w), the authors use

the 100 polysemous words, words from the SemEval training data that has a WordNet [Fell-

baum, 1998] entry and all words in SemEval training data. WordNet is a lexical database
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of the English language. In particular, it allows for querying nearly any word from the En-

glish language and returns the synsets of the word. The synset of a word w is a word that

shares a similar meaning to the word w. In other words, by querying a word in WordNet,

we can get the number of meanings of a word, as perceived by WordNet. Furthermore, the

Pearson correlation coefficient [James et al., 2013] is computed between TPSn(w) and GS,

the number of synsets for WordNet words and the word frequency as they appear in the Se-

mEval training data, respectively. [Jakubowski et al., 2020] shows that there is a moderate

(positive) correlation between TPSn(w) and GS at n ∈ {40, 50, 60}, a decreasing correlation

between TPSn(w) and the number of synsets for WordNet words and no correlation between

TPSn(w) and word frequencies.

Furthermore, we will describe how we applied topological polysemy to our word embed-

dings. We first implemented topological polysemy using the steps we described in Sec-

tion 2.3.5, utilizing multiprocessing and the ScaNN [Guo et al., 2020] approximate nearest

neighbour algorithm to speed up the computation. We chose ScaNN because it performs

well when applied to word embeddings, as shown in [Aumueller et al., 2021]. We used the

ripser [Tralie et al., 2018] Python package to compute Vietoris–Rips complexes. Next, we

trained the SGNS-semeval model using the training data from the SemEval task and the hy-

perparameters used to train the SGNS-enwiki model from Section 3.1.3. From the training

of SGNS-semeval, we got a vocabulary of size ∼122K words and a corpus of size ∼67 million.

Following, we will compare the results from the experiments of [Jakubowski et al., 2020] by

computing topological polysemy at varying levels of n using the word embeddings of SGNS-

enwiki and SGNS-semeval. Finally, we will compare the results using the SGNS-enwiki and

SGNS-semeval word embeddings to the word embeddings of the fastText.TPS.300d, Google-

News300, glove.840B.300d and fastText.en.300d models.

We computed topological polysemy at varying levels of n using the word embeddings of the

SGNS-enwiki and SGNS-semeval models, and show the results in Tables 3.7 and 3.8. In

Table 3.7, we see that the correlation between TPSn and GS is rather stable with respect to

n. In particular, we notice that the correlation between TPSn and GS is negative, suggesting

a relationship in the opposite direction of the results from [Jakubowski et al., 2020, Table

1]. Nonetheless, we see a decreasing correlation when comparing TPSn versus the number

of WordNet synsets for each word, and a negligible correlation between TPSn and word

frequencies of the top 10000 most common words. Furthermore, in Table 3.8, we observe

a decreasing negative correlation going towards zero between TPSn and GS, meaning that
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the SGNS-semeval model performs worse than the SGNS-enwiki model on this particular

task. This result indicates that by training SGNS-semeval on a smaller vocabulary than

the vocabulary of SGNS-enwiki, we get worse results. Furthermore, we see a decreasing

correlation between TPSn and the number of WordNet synsets and a negligible correlation

between TPSn and word frequencies of the top 10000 most common words. Although the

negative correlation between TPSn and the number of WordNet synsets is larger for the

SGNS-semeval model than the SGNS-enwiki model, it is still not particularly large. In

addition to this, we are considering a lot fewer words when computing the correlation in the

SGNS-semeval model than the SGNS-enwiki model (see sample size).

n TPSn vs. GS TPSn vs. synsets TPSn vs. frequency

10 -0.353 -0.077 -0.043
40 -0.383 -0.181 -0.041
50 -0.380 -0.190 -0.041
60 -0.381 -0.196 -0.040

100 -0.380 -0.205 -0.033

sample size 98 144412 10000

Table 3.7: Correlations between TPSn and the number of word meanings as perceived by
the SemEval gold standard (GS), the number of WordNet synsets and the word frequencies
of the top 10000 most common words from the SGNS-enwiki model. Bold values indicate
the largest (absolute) correlation.

n TPSn vs. GS TPSn vs. synsets TPSn vs. frequency

10 -0.300 -0.248 0.102
40 -0.201 -0.300 0.120
50 -0.194 -0.304 0.116
60 -0.169 -0.306 0.110

100 -0.130 -0.310 0.098

sample size 100 62111 10000

Table 3.8: Correlations between TPSn and the number of word meanings as perceived by
the SemEval gold standard (GS), the number of WordNet synsets and the word frequencies
of the top 10000 most common words from the SGNS-semeval model. Bold values indicate
the largest (absolute) correlation.

To further broaden our understanding of the results we got from computing topological

polysemy of the word embeddings of the SGNS-enwiki and the SGNS-semeval models, we
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plot TPSn(w) against the SemEval gold standard (GS), the number of WordNet synsets

and word frequencies. We visualize the results in Figures 3.18 and 3.19, and for each plot,

we let n be equal to the most optimal value for each column in Tables 3.7 and 3.8. In

Figure 3.18, we see a similar situation to the results from [Jakubowski et al., 2020, Figures

8 and 9], namely that we see an indication of a linear relationship between TPSn(w) and

the SemEval gold standard and that we see a clear trend between TPSn(w) and the number

of synsets in WordNet. In Figure 3.18 (c) it is clear that there is no apparent relationship

between TPSn(w) and the word frequencies. Following, we see a similar situation appearing

in Figure 3.19. These results suggest that, by computing TPSn(w) of the SGNS-enwiki word

embeddings, which has a vocabulary much larger than in the experiments of [Jakubowski

et al., 2020], we are unable to use TPSn(w) alone for predicting the number of word meanings,

as given by the number of WordNet synsets.
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Figure 3.18: TPSn(w) of the word embeddings of the SGNS-enwiki model plotted against the
SemEval gold standard (GS) (a), the number of WordNet synsets (b) and word frequencies
(c). The plots are inspired by [Jakubowski et al., 2020, Figures 8 and 9].
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Figure 3.19: TPSn(w) of the word embeddings of the SGNS-semeval model plotted against
the SemEval gold standard (GS) (a), the number of WordNet synsets (b) and word frequen-
cies (c). The plots are inspired by [Jakubowski et al., 2020, Figures 8 and 9].

Following, we compared the results of computing TPSn(w) of the word embeddings of the

SGNS-enwiki and SGNS-semeval models to the word embeddings of the fastText.TPS.300d,

GoogleNews300, glove.840B.300d and fastText.en.300d models. We show the TPSn(w) re-

sults of using the fastText.TPS.300d model in Table 3.9, and using the GoogleNews300,

glove.840B.300d and fastText.en.300d in Table 3.10. We did not compute the correlation

between TPSn(w) and word frequencies in Tables 3.9 and 3.10, since we did not have the

data available. In addition to this, it is unlikely that TPSn(w) and word frequencies have

anything in common, as shown in the previous results using the SGNS-enwiki and SGNS-

semeval models, as well as by the experiments of [Jakubowski et al., 2020].

n TPSn vs. GS TPSn vs. synsets

10 0.131 0.135
40 0.395 0.066
50 0.416 0.053
60 0.363 0.043

100 0.301 0.020

sample size 100 62049

Table 3.9: Correlations between TPSn and the number of word meanings as perceived by the
SemEval gold standard (GS) and the number of WordNet synsets from the fastText.TPS.300d
model. Bold values indicate the largest (absolute) correlation.
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In Table 3.9, we see similar results to the experiments of [Jakubowski et al., 2020], namely

that we get a modest, positive correlation when comparing TPSn(w) to the SemEval gold

standard, and that we get a decreasing correlation when comparing TPSn(w) to the number

of WordNet synsets. We note, however, that we did not get exactly the same correlation

results as [Jakubowski et al., 2020], which could be affected by the use of ScaNN, which

approximates the nearest neighbours of words.

n
GoogleNews300 glove.840B.300d fastText.en.300d

TPSn vs.
GS

TPSn vs.
synsets

TPSn vs.
GS

TPSn vs.
synsets

TPSn vs.
GS

TPSn vs.
synsets

10 -0.446 -0.095 -0.103 0.008 -0.240 0.114
40 -0.446 -0.166 -0.125 -0.039 -0.289 0.110
50 -0.436 -0.174 -0.053 -0.044 -0.199 0.108
60 -0.428 -0.180 -0.023 -0.048 -0.150 0.105
100 -0.417 -0.193 -0.053 -0.058 -0.105 0.099

sample
size

100 207119 100 249352 100 230175

Table 3.10: Correlations between TPSn and the number of word meanings as perceived by the
SemEval gold standard (GS), and the number of WordNet synsets from the GoogleNews300,
glove.840B.300d and fastText.en.300d models. Bold values indicate the largest (absolute)
correlation.

Furthermore, in Table 3.10 we see that the GoogleNews300 model yield particularly high

values when comparing TPSn(w) to the SemEval gold standard, while the remaining models

are modest at best. We also observe that when comparing TPSn(w) to the number of

WordNet synsets, we do not get high correlation scores. These results further suggest that

by only increasing the vocabulary of the word embedding model, we are not able to model

the number of WordNet synsets efficiently, only using the TPSn(w) scores. Additionally,

the correlation results in Table 3.10 indicate that the TPSn(w) scores are behaving rather

inconsistent across the data sets, and it is not clear if TPSn(w) measures polysemy of words.

To compare how well the various word embedding models agree on the TPSn(w), we created

a correlation matrix comparing the TPSn(w) scores and the SemEval gold standard. Using

a correlation matrix, we summarize the results nicely and further deepen our understanding

of the results. By majority vote, we let n = 40 when we compared the TPSn(w) scores to
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the SemEval gold standard. We show the correlation matrix in Figure 3.20, where we see

that the SGNS-enwiki, SGNS-semeval and GoogleNews300 models yield similar TPS40(w)

scores. We also note that the fastText.TPS.300d model either yield no correlation or negative

correlations when compared to the other models.
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Figure 3.20: Correlation matrix comparing word embedding models on correlations between
the TPS40(w) scores and the SemEval gold standard. High (absolute) values indicate that
the two models are similar in terms of scoring using TPS40(w).

To deepen the understanding, we visualize the similarity of the SGNS-enwiki, SGNS-semeval

and GoogleNews300 models in Figure 3.21, where we can see linear relationships appearing.

These results suggest that the SGNS-enwiki, SGNS-semeval and GoogleNews300 models

agree on how to score using TPS40(w).
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Figure 3.21: TPS40(w) scores plotted against each other using the SGNS-enwiki, SGNS-
semeval and GoogleNews300 models.

Following, we looked at the three negative correlations which we show in Figure 3.20 and

visualize the negative relationships in Figure 3.22, where we see negative relationships ap-

pearing, although it is less significant than the positive relationships seen in Figure 3.21.
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Figure 3.22: TPS40(w) scores plotted against each other using the fastText.TPS.300d,
GoogleNews300, fastText.en.300d and SGNS-enwiki models.

We have now looked at the effect of computing TPSn(w) at varying levels of n using various

word embeddings. We saw that, even by decreasing/increasing the vocabulary size of the
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word embedding models, the TPSn(w) score did not improve significantly. In all our experi-

ments, except using the fastText.TPS.300d model, the correlation between TPSn(w) and the

SemEval gold standard were always negative, while in the experiments of [Jakubowski et al.,

2020], they got a moderate, positive correlation. These results suggest that the topological

polysemy scoring could be affected by the choice of word embedding model, i.e. choosing

fastText over word2vec, and the fact that the model used in [Jakubowski et al., 2020] was

trained on a data set that is strongly related to the 100 polysemous words from the SemEval

task. In other words, it could seem that the measure of topological polysemy does not work

well for a general word embedding model.

To deepen our understanding of how the TPSn(w) score is computed, we will perform an

experiment by computing TPSn(w) of a custom data set. The custom data set consists of

sampled data points of two spheres that share one intersection point. We denote this data

set as 2Spheres-d, where d represents the dimensionality of the spheres. In particular, we let

d ∈ {2, 3, 4, 5, 10, 20, 50, 300}. To ensure that the dimensionality of the 2Spheres-d data set

was similar to the dimensionality of word embeddings, we let the dimensionality of the space

be equal to 300, i.e. 2Spheres-d ∈ R300. In other words, if d was less than 300, we add zeros

to the remaining dimensions to fill up to 300. For each sphere in 2Spheres-d, we generate

1000000 points on the sphere in Rd. We sort the points by distance to the intersection point

and split the points into 20 intervals, i.e. chunks of 100000 data points for each sphere.

Next, we sample 1000 points from each interval, leading to 20000 points for each sphere.

The motivation for sampling from intervals sorted by distance was to reduce the effect of

the curse of dimensionality, namely that it becomes harder to measure the distance between

points in high (e.g. 300) dimension. For the sake of simplicity, we let n = 50 when computing

the topological polysemy. We illustrate the result of computing TPS50 of 2Spheres-2 and

2Spheres-3 in Figure 3.23, where we see that, for both 2Spheres-2 and 2Spheres-3, the TPS50

is at its highest (yellow color) around the intersection point between the two spheres (see

Figure 3.23 (b) and (d)). In addition to this, at the intersection point between the two

spheres, the TPS50 score is low. These two observations suggest that for low values of d,

the TPS50 score fails to identify the singular point and instead manages to identify the area

around it. We will now look at how the TPS50 score behaves for d ∈ {4, 5, 10, 20, 50, 300}.
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Figure 3.23: Plots of the 2Spheres-2 and 2Spheres-3 data sets, with TPS50 as labels. The
intersection point between the spheres is at (2, 2) in 2 dimensions and at (2, 2, 2) in 3 dimen-
sions.

We visualize the result of computing TPS50 of 2Spheres-d for d ∈ {4, 5, 10, 20, 50, 300} in

Figure 3.24, by plotting the distance to the intersection point between the spheres against

the TPS50 scores. In Figure 3.24, we see that as the dimension of the spheres increases, the

”peak” of TPS50 scores close to the intersection point diminishes. The diminishing effect

comes due to the curse of dimensionality, namely that in high dimensional space, all distances

become similar, as seen in Figure 3.24 (f). In other words, for high dimensional spheres, it

becomes difficult to identify the intersection point between the spheres, using the TPS50

scores, as the distances become similar, and TPS50 is unable to identify areas around the

intersection point, which we saw happening in lower dimensions in Figure 3.23. We note,

however, however, that for high values of d, the intersection point has a TPS50 score which

generally is higher than all other values of TPS50. Finally, we argue that the results in

Figure 3.24 indicate that the topological measure of polysemy may suffer when applied to
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high-dimensional (e.g. 300) data.
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Figure 3.24: Distance to the intersection point between spheres plotted against TPS50 scores
for 2Spheres-d, d ∈ {4, 5, 10, 20, 50, 300}.

Following, we repeated the experiment where we computed the topological polysemy of two

spheres. In particular, we used a noisy version of the 2Spheres-d data set, which we denoted

as the 2SpheresNoisy-d data set. The motivation for adding some noise to the spheres data set

was to emulate some real-world effect since real-world data sets are usually not uniformly

distributed. In particular, the 2SpheresNoisy-d data set was created by perturbing the

2Spheres-d data set by adding Gaussian noise at every data point. In particular, we used

Gaussians with zero mean and a variance of 0.1. We first computed the TPS50 score of the

2SpheresNoisy-2 and 2SpheresNoisy-3 data sets. We show the results in Figure 3.25, where

we see that in the 2-dimensional case, the TPS50 scores are high (i.e. yellow colour) and we
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are unable to identify the intersection point between the spheres. Moreover, in Figure 3.25

(c) and (d) we see that the TPS50 scores are mediocre at best, and we are unable to identify

the intersection point between the spheres. The results in Figure 3.25 tells us that if we

perturb the data set by adding noise, it becomes harder to identify singular points in lower

dimensions (d ∈ {2, 3}), when compared to the TPS50 results using 2Spheres-d, which we

show in Figure 3.23.
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Figure 3.25: Plots of the 2SpheresNoisy-2 and 2SpheresNoisy-3 data sets, with TPS50 as
labels. The intersection point between the spheres is at (2, 2) in 2 dimensions and at (2, 2, 2)
in 3 dimensions.

Finally, we visualize the result of computing TPS50 for 2SpheresNoisy-d for d ∈ {4, 5, 10,

20, 50, 300} in Figure 3.26, by plotting the distance to the intersection point between the

spheres against the TPS50 scores. In Figure 3.26, we see a similar situation appearing to the

results using 2Spheres-d in Figure 3.24. In particular, we observe that as we increase the

dimensionality of the spheres towards 300, the distances to the intersection point becomes

more or less the same, and it is difficult to differentiate between the intersection point and
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regular points on the two spheres. We note, however, that in Figure 3.26 (f) we see that the

TPS50 score is significantly larger than the rest of the TPS50 scores and it could be possible

to identify the intersection point using its TPS50 score. Although this result might seem

significant in Figure 3.26 (f), the 2SpheresNoisy-d is still rather simple when compared to

real-world word embeddings, even when we added the noise. Additionally, the significance

we show in Figure 3.26 (f) can be due to a random effect of the 2SpheresNoisy-300 data set.
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Figure 3.26: Distance to the intersection point between spheres plotted against TPS50 scores
for 2SpheresNoisy-d, d ∈ {4, 5, 10, 20, 50, 300}.

Furthermore, we will use the measure of topological polysemy when we create supervised

models for polysemy prediction in Section 3.3.4. Next, we will look at Geometric Anomaly

Detection, and in particular, how it performs when applied to word embeddings.
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3.3.2 Geometric Anomaly Detection

In this subsection, we will apply the Geometric Anomaly Detection (GAD) algorithm (see

Section 2.3.6) to the word embeddings from the SGNS-enwiki model. In particular, we

will show the relationship between how GAD categorizes word embeddings into groups and

whether words are polysemous. We implemented GAD as explained in Section 2.3.6, using

similar packages to the ones we used to implement topological polysemy in Section 3.3.1.

In particular, we used the ScaNN [Guo et al., 2020] approximate nearest neighbour algo-

rithm, to speed up the nearest-neighbour computation, and ripser [Tralie et al., 2018]

Python package, to compute Vietoris–Rips complexes. We also included an option to use

the Ripser++ [Simon Zhang and Wang, 2020] Python package instead of ripser, which is

a GPU accelerated version. However, we quickly found that the GPU overhead was too big

and it was faster just to use the regular ripser Python package.

Before applying GAD to word embeddings, we will motivate the use of GAD by visualizing

GAD applied to the 3-dimensional Henneberg surface data set, as used in the experiments

of [Stolz et al., 2020]. To compute the GAD of the Henneberg surface data set, we used the

same hyperparameters as in [Stolz et al., 2020], i.e. we let the inner annulus radius equal

1.5, outer annulus radius equal 2 and the manifold dimension k equal 2. We visualize the

result in Figure 3.27, where we see how GAD groups data points to the manifold, boundary

and singular groups. In the 3-dimensional Henneberg surface data set, four 2-dimensional

surfaces intersect, and as we see in Figure 3.27 (b), where the GAD algorithm managed to

identify the intersecting points as singular points. In addition to the singular points, we see

the boundary points quite clearly in Figure 3.27 (a) and (b).
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Figure 3.27: 2D and 3D projections of the Henneberg surface data set. The data points are
labelled using their groups from the GAD algorithm. This figure is inspired by [Stolz et al.,
2020, Figure 3].

Following, we visualize the Henneberg surface data set with the TPS50 score computed for

each point. In Figure 3.28, we see that the TPS50 scores fails to identify the singular data

points if the Henneberg surface data set,which we expected to have relatively high TPS50

scores. In particular, the TPS50 scores are relatively high for points on the manifold, and

lower for the boundary and singular points.
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Figure 3.28: 2D and 3D projections of the Henneberg surface data set. The data points are
labelled using their TPS50 scores. This figure is inspired by [Stolz et al., 2020, Figure 3].

We will now apply GAD to the word embeddings from the SGNS-enwiki model. In par-

ticular, we will apply GAD to the words that have a WordNet entry, similar to how we

performed the topological polysemy experiments on SGNS-enwiki word embeddings in Sec-

tion 3.3.1. Furthermore, the standard GAD algorithm uses annulus radii parameters to do

its computation, and because it is unknown which radii parameters to use for a general data

set, we will instead default to a k-nearest neighbour approach when computing GAD of the

WordNet SGNS-enwiki word embeddings. Using the k-nearest neighbour approach, we let

the inner annulus radius equal the distance to the s nearest neighbour of each word, and

similarly for the outer annulus radius, which we set equal to the distance to the t nearest

neighbour of each word. To apply GAD to the WordNet SGNS-enwiki word embeddings,

we used the parameters s = 25 and t = 500. We show the number of words in each GAD

group in Table 3.11, where we see that the number of polysemous WordNet words that fall

into the singular group is particularly low, i.e. only 344 of 48880. In addition to this, we see

that the number of words falling into the boundary group words is high. These two obser-

vations suggest that our inner and outer annulus radius, as well as the manifold dimension

k, were not set correctly for the data set we are applying GAD to. Keep in mind that the

intrinsic dimensionalities of word embeddings are most likely higher than k = 2, but due to
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the computational cost of setting k > 2 (creation of the Vietoris–Rips complex), we will not

set k greater than 2 in this thesis.

GAD group

Manifold Boundary Singular Sum

Number of monosemous words 4640 86731 4161 95532
Number of polysemous words 634 47902 344 48880

Sum 5274 134633 4505 144412

Table 3.11: Comparison of the number of monosemous and polysemous words that belong
to the various GAD groups, when we compute GAD of the WordNet SGNS-enwiki word
embeddings.

Finally, we visualize the result using a 2-dimensional UMAP embedding of the 10000 most

common words of the WordNet SGNS-enwiki word embeddings in Figure 3.29, which we

labelled using the GAD groups. We created the UMAP embedding using the default hy-

perparameterization of the umap-learn Python package. In Figure 3.29, we see that only a

single word is categorized to be singular (the word ”branch”), some words are categorized to

be on the manifold, and the rest are categorized to be on the boundary. These results indicate

that the hyperparameters we used to compute GAD are not suitable for the data set at hand.

We also observe that Figure 3.29 differs a whole lot from GAD applied to the Henneberg

surface data set (see Figure 3.27), which could indicate bad hyperparameterization.
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Figure 3.29: 2-dimensional UMAP embedding of the 10000 most common words of the
WordNet SGNS-enwiki word embeddings. The points are labelled using their respective
GAD groups.

Furthermore, we will investigate the effect of using different sets of hyperparameters when

applying GAD to word embeddings in Section 3.3.4, where we create supervised models

for polysemy prediction. Next, we will investigate algorithms for estimating the intrinsic

dimensionality of word embeddings, and show how it correlates with the actual number of

word meanings.

3.3.3 Intrinsic dimension estimation

In this subsection, we will look at intrinsic dimension (ID) estimation algorithms (see Sec-

tion 2.1.6) and apply them to word embeddings. In particular, we will apply ID estimation

algorithms to the WordNet SGNS-enwiki word embeddings, used in experiments in Sec-

tion 3.3.1 and Section 3.3.2. We will show the relationship between the estimated ID and

the number of WordNet word meanings. To demonstrate the relationship between estimated

ID and number of WordNet word meanings, we will use the LPCA (Section 2.1.6.1), TWO-

NN (Section 2.1.6.3) and TLE (Section 2.1.6.5) algorithms. For each of the ID estimation

algorithms, we used the 200 nearest neighbours of each word to estimate their local IDs,
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using the scikit-dimension Python package [Bac, 2020]. Following, we plot the estimated

IDs versus the number of WordNet word meanings in Figure 3.30, where we observe a similar

situation appearing to the ones we see in Figure 3.18 and Figure 3.19. Particularly, we see a

clear trend when plotting the estimated IDs to the number of WordNet word meanings. We

also see that the different ID estimation algorithms yield different results: LPCA estimates

ID up to 120, while TWO-NN and TLE estimate ID up to 50 and 60. These results suggest

that we can not simply rely on a single estimate of the ID, and it could be useful to use

multiple ID estimates since they are measured differently (see Section 2.1.6 for more details).
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Figure 3.30: Estimated IDs plotted against the number of word meanings, using LPCA,
TWO-NN and TLE ID estimation algorithms.

We have now shown the relationship between estimated IDs and the number of word mean-

ings. In the next section, we will create supervised models for estimating the number of

word meanings and predicting whether or not a word is polysemous. We will use multiple

sets of hyperparameters and all ID estimation algorithms specified in Section 2.1.6, as well

the topological polysemy (Section 3.3.1) and Geometric Anomaly Detection (Section 3.3.2)

algorithms.

3.3.4 Supervised polysemy prediction

In this subsection, we will propose two supervised models to predict the number of word

meanings. As we have seen in the previous subsections (Section 3.3.1, Section 3.3.2 and Sec-

tion 3.3.3), the number of word meanings seem to be more or less correlated with topological
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polysemy, Geometric Anomaly Detection (GAD) and intrinsic dimension (ID) estimation.

For this reason, we will propose two supervised model using lasso regression (Section 2.1.7.2)

and logistic regression (Section 2.1.7.3), incorporating the results from topological polysemy,

GAD and ID estimation. The goal of these models is to use the results from the topological

polysemy, GAD and ID estimation methods to improve on the prediction of the number of

word meanings. We chose to use lasso regression because it has feature importance packed

in the model. The feature importance part is important for us because we would like to try

multiple configurations of hyperparameters for each algorithm used to create the training

data. The logistic regression model is trained using `1-penalty, allowing the model to per-

form feature importance. The lasso regression model tries to predict the number of word

meanings, while the logistic regression model performs binary prediction of whether or not

a word is polysemous. We also attempted to create a multi-class (e.g. one meaning, two

meanings, etc.) model using multinomial logistic regression, but it became apparent that

the problem was too hard and we decided not to follow up with those experiments. Fur-

thermore, we denote the lasso regression model as WME-enwiki (short for Word Meaning

Estimation-enwiki) and the logistic regression model as BWME-enwiki (short for Binary

Word Meaning Estimation-enwiki). Next, we will describe the creation of training data

used for both supervised models, before going into detail about the training and evaluation

process.

To create the training data used in the WME- and BWME-enwiki models, we used the word

embeddings from the SGNS-enwiki model. In particular, we used the word embeddings that

have a WordNet entry, resulting in 144412 words. We denote these word embeddings as the

WordNet SGNS-enwiki word embeddings. The number of word meanings (i.e. the number

of WordNet synsets) is used as labels y for the WME-enwiki model. For the BWME-enwiki

model, we used binary labels, i.e. y = 0 if the word had exactly one word meaning, and

y = 1 if the word had two or more meanings.

To create the features of the training data, we first computed topological polysemy TPSn(w)

of the WordNet SGNS-enwiki word embeddings. We computed TPSn(w) at for varying

n = 10, 20, 30, . . . , 250 (step size of 10, leading to 25 values of n) and used them as features

in the data. In addition to this, we computed the maximum, average and standard deviation

of the birth values of the zero-degree persistence diagram computed by TPSn(w), leading to

3 additional features for each TPSn(w). In total, this resulted in 25 (values of n) × 4 = 100

features from topological polysemy.
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Following, we applied GAD to the WordNet SGNS-enwiki word embeddings. To compute

GAD, we used the k-nearest neighbour version, similar to the experiments of Section 3.3.2;

we let the inner annulus radius equal the distance to the s-nearest neighbour and the outer

annulus radius equal the distance to the t-nearest neighbour. Since we used the k-nearest

neighbour version of GAD we were more in control of the computation time, because set-

ting the radius manually can lead to large and difficult computations of the Vietoris–Rips

complex, as some areas are denser than others. We show the different choices of s and

t in Table 3.12, which leads to 23 different configurations of the inner and outer annulus

k-nearest neighbours. We let the manifold dimension k equal 2 for all words, even though

the local intrinsic dimension for each word is likely higher than 2. This was done to make

the GAD computation feasible within the computational resources at hand; we will revisit

the manifold dimension choice when discussing future work in Chapter 5. For each of the

(s, t) configurations used to parameterize GAD, we created one feature for each GAD group

(i.e. manifold, boundary and singular) as 3-dimensional one-hot encodings. For example,

if a word is categorized as being on the manifold, then its value is equal to 1 and the rest

are set to zero. In other words, we are left with 23 (configurations) × 3 (GAD groups) =

69 features from GAD. We also attempted to vectorize the persistence diagrams created by

GAD using persistence images (Section 2.3.3), but it quickly led to far too many features

as we used each pixel in the images as a separate feature, and we were unable to train the

WME- and BWME-enwiki models efficiently. We will revisit the use of persistence images

when discussing future work in Chapter 5.
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Inner annulus, s-nearest neighbour Outer annulus, t-nearest neighbour

25 250
25 500
25 750
25 1000

50 250
50 500
50 750
50 1000

100 1000
100 1250
100 1500
100 1750
100 2000

150 1000
150 1250
150 1500
150 1750
150 2000

200 1000
200 1250
200 1500
200 1750
200 2000

Table 3.12: Our configurations of s, i.e. inner annulus nearest neighbour, and t, i.e. outer
annulus nearest neighbour, for computing GAD of the WordNet SGNS-enwiki word embed-
dings.

Furthermore, we estimated the local ID of the WordNet SGNS-enwiki word embeddings

using the ID estimation algorithms from Section 2.1.6. More precisely, we used the LPCA

(Section 2.1.6.1), KNN (Section 2.1.6.2), TWO-NN (Section 2.1.6.3), MLE (Section 2.1.6.4)

and TLE (Section 2.1.6.5) algorithms. For each of the ID estimation algorithms, we used

the k-nearest neighbours of each word to estimate their local IDs. We used the following

values for k: 25, 50, 100, 150 and 200. The estimated local ID of each word is used as a

feature in the training data, leading to 5 (algorithms) × 5 (values for k) = 25 features from

ID estimation. We used the scikit-dimension Python package [Bac, 2020] to estimate the

local IDs.
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In total, the training data had 100 (from topological polysemy) + 69 (from GAD) + 25

(from ID estimation) = 194 features. Following, we split the training data into three new

distinct data sets (as motivated by Section 2.1.8.1): training, test and SemEval test data

sets. The new training data set consisted of 95% random words of the original training

data set, excluding the 100 SemEval-2010 Task 14 target words (as used in Section 3.3.1).

The test data set consisted of 5% random words of the original training data set, excluding

the 100 SemEval-2010 Task 14 target words. We will use the test data to evaluate the

performance of the trained WME- and BWME-enwiki models. Furthermore, the SemEval

test data set consisted of the 100 SemEval-2010 Task 14 target words and will be used to

evaluate the performance using the WME-enwiki model. We emphasize that the training,

test and SemEval test data sets do not have overlapping words, as we do not want to be

training on words from the test data sets. The training data set consisted of 137098 words,

the test data set consisted of 7216 words, and the SemEval test data set consisted of 98

words (as 2 of the words were out of the SGNS-enwiki vocabulary). For each data set, we

transformed the features by removing the mean and scaling to unit variance, as we did not

want the WME- and BWME-enwiki models to be affected by different means and variances

across the features. For the SemEval test data set, we used the SemEval gold standard as

the number of word meanings, while for the training and test data set we used the number

of WordNet synsets as the number of word meanings.

Following, we trained the WME- and BWME-enwiki models using k-fold cross-validation

(Section 2.1.8.2). We found k = 20 to work well with our data, meaning that we used 6855

random words for each fold in the cross-validation. For the WME-enwiki model, we cross-

validated over 10000 values of λ, starting from λ = 0.0000001 to λ = 0.01. We found the

most optimal value of λ for the WME-enwiki model to be 0.0000291. For the BWME-enwiki

model, we cross-validated over 10000 values of λ, starting from λ = 0.00001 to λ = 0.01.

We found the most optimal value of λ for the BWME-enwiki model to be 0.000692. To

perform the cross-validation we used the LassoCV and LogisticRegressionCV classes from

scikit-learn for the WME- and BWME-enwiki models, respectively. For the WME-enwiki

model, we used the default scoring of the LassoCV class. On the other hand, for the BWME-

enwiki model, our goal was to maximize the ability of the model to predict polysemous words

accurately. As such, we used the sensitivity metric (Section 2.1.9.3) to score the folds from

the BWME-enwiki cross-validation. Furthermore, we show the results from training the

WME-enwiki model in Figure 3.31, where we see a weak correlation between the predicted

number of word meanings and the number of WordNet synsets for both the training and
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test data sets. In Figure 3.31 (c), we see that the model is unable to predict the number of

word meanings for the SemEval data set, which is not surprising, as we have trained using

the number of WordNet synsets. We note, however, that we see clear trends in all plots of

Figure 3.31.
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Figure 3.31: The predicted number of word meanings plotted against the number of WordNet
synsets and SemEval gold standard, using the WME-enwiki model.

By looking at the values of the feature coefficients of the WME-enwiki model, we saw how the

model prioritized certain features over others. We show the top 10 most important features

in Figure 3.32, where we observe that the features from topological polysemy, for large values

of n, are the most relevant for the model. The MLE and TLE intrinsic dimension estimators

are also relatively relevant for high values of the k-nearest neighbour. The features from

GAD are not in the top 10 most important features.
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Figure 3.32: Feature importances (i.e. coefficients) for the top 10 most important features
of the WME-enwiki model. We sort the feature importances by their absolute values in
descending order.

To investigate the feature importances for the TPS, GAD and ID estimator features, we

visualize the top 10 most important features in Figure 3.33, where we see that the TPS250

features are especially relevant. From the GAD features in Figure 3.33 (b), we see that

whether or not a word is classified as boundary or singular is important, while being classified

as a manifold is not as relevant. Finally, we see that the MLE and TLE ID estimator

methods yield important features for various values of n. We note, however, that the features

importances in Figure 3.33 (a) and (c) are more important than the feature importances in

Figure 3.33 (b), as noted by the x-axis scales.
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Figure 3.33: Feature importances (i.e. coefficients) of the top 10 TPS, GAD and ID estimator
features, using the WME-enwiki model. We sort the feature importances by their absolute
values in descending order.

From the training of the WME-enwiki model, the lasso set some of the features to zero,

essentially removing them from the model. In particular, 48 of 194 features were set to zero,

and most of them were various configurations of GAD which did not yield any interesting

result (e.g. all words classified as boundary words). We have now looked at the results from

training the WME-enwiki model, and in particular, looked at its performance for predicting

the number of word meanings and which features were important to the model.

Next, we will look at the results from the training of the BWME-enwiki model. We show the

results from the training of the BWME-enwiki model in Figure 3.34, where we see the result

of predicting the number of word meanings on the training and test data sets using confusion

matrices (Section 2.1.9.2). As we show in Figure 3.34, we get a sensitivity of 0.393 on the

train data sets, meaning that the model identifies 39.3% of the polysemous words. The

test sensitivity shows that the model identifies 39.4% of all the unseen polysemous words.

These results indicate that the model can not efficiently predict whether or not a word is

polysemous, as we ideally would like the sensitivity on both the training and test sets to be

at least 0.5 (or 50%).
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Figure 3.34: Confusion matrices for predicting the number of word meanings, using the
BWME-enwiki model. The first confusion matrix (a) shows the result on the training data
set, while the second confusion matrix (b) shows the result on the test data set.

To deepen our understanding of which words the BWME-enwiki model had a harder time

with, we looked at the misclassified monosemous and polysemous test words. Of the 1484

words the BWME-enwiki model incorrectly predicted to be monosemous, we report the

top 10 most common misclassified test words, namely the following words: ”time”, ”age”,

”returned”, ”Italian”, ”Chicago”, ”gold”, ”tower”, ”jones”, ”unable” and ”opposition”. Fur-

thermore, of the 553 words the BWME-enwiki model incorrectly predicted to be polysemous,

we report the top 10 most common misclassified test words, namely the following words: ”jan-

uary”, ”ninety-six”, ”ninety-one”, ”seventy-one”, ”sixty-three”, ”fifty-four”, ”fifty-eight”,

”non”, ”citizens” and ”additionally”. From these sets of words, we do not see any particular

pattern. Furthermore, we visualize the correctly and incorrectly classified words from the

test data set in Figure 3.35, using a 2-dimensional UMAP embedding. In Figure 3.35 (b)

and (c), we emphasize the misclassified words, and we do not see any particular pattern here

either, as the words are spread throughout the UMAP embedding.
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Figure 3.35: 2-dimensional UMAP embedding of the test data set evaluated on the BWME-
enwiki model. We emphasize the correctly and incorrectly classified words in a ”correlation
matrix” fashion.

Next, we will investigate the feature importance in the BWME-enwiki model by looking at

the coefficient values of the features. We show the top 10 most important features of the

BWME-enwiki model in Figure 3.36, where we see a similar pattern to the top 10 feature
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importances of the WME-enwiki model, i.e. that the TPS features (for varying n) are most

important, followed by the features from the ID estimator models.
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Figure 3.36: Feature importances (i.e. coefficients) for the top 10 most important features
of the BWME-enwiki model. We sort the feature importances by their absolute values in
descending order.

Furthermore, we show the top 10 feature importances for the TPS, GAD and ID estimator

features separately in Figure 3.37, where we see that the TPS features with high values of n

are generally more important than the ones with low values of n. From the GAD features in

Figure 3.37 (b), we see a different situation to the top 10 features importances for GAD using

the WME-enwiki model. In particular, we see that whether or not a point is categorized as

singular is important for predicting whether or not a word is polysemous, and the rest of the

GAD categories are less relevant. One interesting finding is that the GAD singular features

importances were negative; we expected them to be positive, as it would make sense for them

to be a positive contribution to whether or not a word is polysemous. Finally, we see that

the TLE and TLE ID estimator models yield important features for high neighbourhood

values. Similar to the feature importances in Figure 3.33, we note the fact that the feature

importances in Figure 3.37 (a) and (c) are more important than the feature importances in

Figure 3.37 (b), as noted by the x-axis scales.
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Figure 3.37: Feature importances (i.e. coefficients) of the top 10 TPS, GAD and ID estimator
features, using the BWME-enwiki model. We sort the feature importances by their absolute
values in descending order.

We have now explained how we trained and evaluated two supervised models for predicting

the number of word meanings and whether or not a word is polysemous. Next, we will

summarize and conclude the thesis and discuss ideas for future work.
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Chapter 4

Summary and Conclusion

In this chapter, we will summarize how we performed the analysis of word embeddings

and our findings from Chapter 3 in Section 4.1. Following, we will conclude the thesis in

Section 4.2.

4.1 Summary

To summarize the thesis, we first explained how we trained and evaluated our word2vec

model in Section 3.1. We showed that our data preprocessing steps and hyperparameter

choices led to the training of a relatively high-quality word embedding model that, among

other things, understood syntactic and semantic relationships. We also showed the ability

of the model to identify underlying concepts of the English language.

Following, we performed a cluster analysis of word embeddings in Section 3.2. We showed

that by performing clustering of cluster word embeddings and evaluating the results using

internal validation methods, we end up with clusters that intuitively make sense. Addi-

tionally, we showed that by clustering word embeddings of distinct word groups, we deepen

our understanding of the word embedding manifold. We also used dimensionality reduction

methods to visualize results of clustering and showed that the clustering results from the

clustering algorithms matched the clusters appearing in the plots.
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Next, we investigated the idea of topological polysemy in Section 3.3.1, where we computed

the topological polysemy of our word2vec models as well some pre-trained word embedding

models. We saw that we were unable to reproduce the results presented in the original paper

of topological polysemy, [Jakubowski et al., 2020]. In particular, between the topological

polysemy of word embeddings and the true number of word meanings, we got lower correla-

tions and relationships in the opposite direction of the results from [Jakubowski et al., 2020].

Due to the inconsistency in these results, we created a correlation matrix for comparing

topological polysemy between our word embedding models and the pre-trained word embed-

dings. From this, we saw that the fastText model used in the experiments of [Jakubowski

et al., 2020] did not correlate well with the rest of the models, signalizing that the word

embeddings used in [Jakubowski et al., 2020] can not be compared to other word embed-

dings. In other words, by applying topological polysemy to other word embeddings than

the ones used in [Jakubowski et al., 2020], we can get unexpected and incorrect results. To

deepen our understanding of how the topological polysemy was computed, we conducted two

experiments by computing topological polysemy of two custom data sets. The two custom

data sets consisted of two spheres intersecting in a single data point, in which topological

polysemy should, in theory, be able to identify. The first data set was generated without

noise, while the second data set had some noise added to it. The two data sets were created

using varying dimensions of the spheres, ranging from 2 to 300. We used the sphere data

set with no noise in the first experiment and the sphere data set with noise in the second

experiment. From the first experiment, we showed that the measure of topological polysemy

was unable to identify the intersection point, but rather a spherical area around the intersec-

tion point, for all dimensions of the spheres. In the second experiment, we showed that the

measure of topological polysemy was unable to identify both the intersection point and the

area around it for small sphere dimensions, d ∈ {2, 3}, but setting the sphere dimension to

300, we showed that it was possible to identify the intersection point, as it was a significant

outlier.

Next, we showed the results of applying the Geometric Anomaly Detection (GAD) algorithm

to our word embeddings in Section 3.3.2, where we compared the results to the number of

word meanings, as perceived by topological polysemy and WordNet. Using the results from

GAD, we were unable to effectively identify polysemous words. We note, however, that this

might be due to a misconfiguration of the hyperparameters.

Following, we used ID estimation methods to compute the estimated local ID of word em-

beddings in Section 3.3.3, where we showed its relation to the number of word meanings
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perceived by WordNet, which indicated low correlations.

Finally, we created two supervised models estimating the number of word meanings and

predicting whether or not a word is polysemous in Section 3.3.4. We used the results from

applying topological polysemy, GAD and ID estimation methods to word embeddings to

create data used in the supervised models. Furthermore, we used this data to train and

evaluate two supervised models for predicting the number of word meanings. We showed a

weak correlation between the results from the first supervised model and the number of word

meanings and visualized the feature importances in the model. For the second supervised

model, we showed the results using confusion matrices, displaying the performance of the

model when evaluated to words it has not seen yet, and we showed the feature importances

in the model as well. Following, in the next section, we will conclude the thesis.

4.2 Conclusion

To conclude the thesis, we obtain meaningful clusters of word embeddings when we apply

them to clustering algorithms and validate the result using internal cluster validation meth-

ods. Additionally, topological polysemy does not seem to measure the polysemy of words

efficiently and consistently. We note that the topological polysemy method is a relatively

new idea, and it requires more work to find out more about the algorithm and its results.

In the next chapter, we will discuss our ideas for future work related to this thesis.
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Chapter 5

Future Work

In this chapter, we explain our ideas for future work related to this thesis. In particular, we

will look at ideas for further developing the analysis of word embeddings, which we employed

in Chapter 3.

When analysing word embedding models, we have in this thesis mainly focused on the English

language. An interesting approach would be to perform an analysis of word embeddings

of various languages, such as the Scandinavian languages, and compare the results to the

analysis results using English word embeddings. Additionally, it would be interesting to

expand the analysis by focusing on other models than word2vec, such as ELMo [Peters

et al., 2018] or BERT [Devlin et al., 2019], particularly for the cluster analysis we performed

in Section 3.2.

Furthermore, we attempted to use persistence images (see Section 2.3.3) when creating fea-

tures using Geometric Anomaly Detection (GAD) in Section 3.3.4, but quickly noticed that

we got far too many features and our model had too little capacity to efficiently predict the

number of word meanings. To create additional features using GAD, we thought it would be

interesting to use a convolutional neural network to learn features from persistence images

of persistence diagrams from GAD. Convolutional neural networks are a special type of ar-

tificial neural networks and are commonly used to extract features from images [Aggarwal,

2018, Chapter 8].

Next, we thought it would be interesting to use the estimation of local intrinsic dimension

(ID) when specifying the manifold dimension k hyperparameter of GAD. By doing so, we
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could get more realistic results when applying GAD to word embeddings. We note, however,

that by setting the manifold dimensionality too high, we get numerical instabilities and

overflows when computing the Vietoris–Rips simplicial complexes.

Finally, using the two models for supervised estimation of word meanings, we could improve

the training of word embedding models by assigning a unique word embedding for each

meaning a word has. Using separate word embeddings for the meanings of a word, we

could help to solve the word sense disambiguation (WSD) problem. WSD is the problem

of determining which meaning a word has in a particular context (e.g. where the word is

in the sentence) [Agirre and Edmonds, 2006, p. 1-2]. We believe that this can be solved if

the performance of the supervised models gets to a point where they can effectively separate

between monosemous and polysemous words.
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