
An Experimental Evaluation of
Software Frameworks for

the Web-of-Things

Magnus Ødegård Bergersen

Master’s thesis in Software Engineering

Department of Computer science, Electrical
engineering and Mathematical sciences,

Western Norway University of Applied Sciences

June 2021

1

Abstract

In this thesis we evaluate the Web of Things technology. The Research-based
Innovation scheme in Norway has started a project named Smart Ocean, which
explores new technologies to develop ocean monitoring solutions. This is where
Web of Things comes into the picture. As Internet of Things tends to re-
sults in fragmentation of applications, due to of re-use code, Web of Things
has been suggested to provide more standardised solutions. We evaluate four
different frameworks developed for the Web of Things. We use case studies pro-
vided from the Smart Ocean project to replicate a real case scenario where the
frameworks are in use. As we create different prototypes for the Smart Ocean
project, an approach is required to evaluate the frameworks, and then in turn
the technology. Here we are using the ISO/IEC 25010:2011 standard, which
is the standard for software quality requirements and evaluation. We use the
software quality model to define evaluation criteria which can be used for this
thesis. We evaluate based on maturity, learnability and security, as these are
considered the most important aspects from the frameworks. We additionally
perform evaluation based on criteria identified during the development process,
including automation, documentation and amount of code. Based on the evalu-
ation criteria, we access the state which the technology currently is in. By doing
so, we find some interesting results about the frameworks, which also generalise
for the technology itself. Our evaluation shows that all frameworks evaluated in
this thesis had a few critical flaws, which would be enough to have devastating
effects on the case studies. As the frameworks are recommended by the creators
for the technology, this means there are some issues involving the matureness of
the technology. We conclude in the end that the current state of the technology
is too weak to be used for a large scale project like Smart Ocean. We conclude
that with the present state of the technology, the Smart Ocean project would
be better off using alternative Internet of Things solutions which has taken care
of the flaws which the Internet of Things provides.

2

Acknowledgements

I want to thank my supervisor, Lars Michael Kristensen for providing me with
the motivation and support needed to finish this thesis during the Covid-19
pandemic. Without his comments and feedback, this thesis would have been a
mess since day one.

3

Contents

1 Introduction 6
1.1 Motivation . 7
1.2 Research Question and Expected Result 8

1.2.1 Research Question . 8
1.2.2 Expected Result . 8

1.3 Research Method . 9
1.4 Outline . 11

2 Background 12
2.1 The World Wide Web . 12

2.1.1 OSI Model - Application Layer 12
2.1.2 Hypertext Transfer Protocol – HTTP 13
2.1.3 Internet of Things . 15
2.1.4 HyperText Markup Language - HTML 15
2.1.5 JavaScript Object Notation - JSON 15
2.1.6 Representational state transfer - REST 15
2.1.7 Multicast DNS - mDNS 16

2.2 Web of Things . 16
2.2.1 Thing Description . 17
2.2.2 Binding Templates . 18
2.2.3 Scripting APIs . 19
2.2.4 Security and Privacy Guidelines 20

3 Web of Things Frameworks 21
3.1 The Node-RED Project . 21
3.2 WebThings from Mozilla . 25
3.3 Siemens Desigo CC . 29
3.4 Eclipse ThingWeb . 29
3.5 W3C’s Web of Things framework 30

4 Smart Ocean Evaluation Case Studies 32
4.1 Pilot Demonstrator 1 - Local scale environmental monitoring . . 32
4.2 Pilot Demonstrator 2 - Mesoscale environmental monitoring . . . 34
4.3 Pilot Demonstrator 3 - Integrity measurements offshore wind . . 35
4.4 Pilot Demonstrator 4 - Integrity measurements oil and gas 35

5 Prototype Design 37

4

5.1 Prototype 1 - Node-RED and Eclipse Thingweb 38
5.1.1 Architecture . 38

5.2 Prototype 2 - Mozilla Webthings and Mozilla’s Gateway 44
5.2.1 Architecture . 44

6 Implementation and Deployment 50
6.1 Implementation . 50

6.1.1 Prototype 1 - Node-RED and Eclipse Thingweb 50
6.1.2 Prototype 2 - Mozilla WebThings and Gateway 56

6.2 Deployment . 61
6.2.1 Prototype 1 - Node-RED and Eclipse Thingweb 61
6.2.2 Prototype 2 - Mozilla WebThings and Gateway 62

7 Evaluation 63
7.1 Evaluation Criteria . 63

7.1.1 Maturity . 63
7.1.2 Documentation . 64
7.1.3 Amount of code . 64
7.1.4 Learnability . 64
7.1.5 Automation . 64
7.1.6 Security . 64

7.2 Evaluation of frameworks . 65
7.2.1 Eclipse ThingWeb . 65
7.2.2 Node-RED . 69
7.2.3 Mozilla WebThings . 72
7.2.4 Mozilla Gateway . 74

8 Conclusion and Future Work 79
8.1 Summary . 79
8.2 Research Questions . 80
8.3 Conclusion . 80
8.4 Related Works . 81
8.5 Future Work . 82

A Thing Descriptors 86

B Source Code 103

5

Chapter 1

Introduction

In the last decade, more and more devices have been connected to the Internet.
Phones, sensors and even fridges are becoming what we call “smart” by being
connected to Internet and have become a part of our daily lives. This means that
almost every component we use in our daily lives has reached the world-wide-
web. This collection of devices which has been named the Internet-of-things
(IoT) and comes with a lot of possibilities when combined with cloud comput-
ing and machine learning. But “with great power comes great responsibilities”
as famous book-writer Stan Lee wrote. The Internet of Things has its flaws
with its commercial potential being held back by fragmentation. This is where
the concept Web of Things (WoT) [33] comes in order to address this shortcom-
ing by minimizing the needs of understanding multiple IoT technologies and
communication protocols.

Having many domains using IoT daily, combined with the fact that IoT is evolv-
ing every day, it is prone to have multiple flaws. Investigating a better solution
like WoT would be profitable for everyone within this field. Not only will it
strengthen the systems developed today, but also support easier development of
these systems.

While IoT focuses heavily on the network aspect of getting devices to communi-
cate, WoT assumes that the devices are already connected and focuses on how
to build applications. As network connectivity is a field of study itself which is
normally separated from software development, creating a framework for soft-
ware developers help the field of study by decreasing the need of knowledge in
the field communication technology.

This thesis investigates the capabilities of the WoT concept, while providing a
framework solution for Smart Ocean data services based on IoT and the emerg-
ing WoT paradigm.

6

1.1 Motivation

The motivation underlying this master thesis comes from the Smart Ocean re-
search centre that HVL is partner in. As Smart Ccean deployment demands
large amount of resources while at the same time being under resource con-
straints, creating a framework to simplify the development and deployment
process will ease the software technology aspect of the Smart Ocean platform.

The Smart Ocean platform is being developed by the Smart Ocean centre for
Research-based Innovation scheme (SFI) in Norway [32] with the goal of keeping
Norway as one of the leading countries within technology and operations in
the ocean. Not only will it increase Norways position, but also help the world
with climate regulation, transportation, food supply, energy production, and life
quality. To achieve this goal, the SFI Smart Ocean have planned to enabling
autonomy by real-time high quality data, increase oceanic management models
and system, creating more profitable ocean industry operations and fact-based
ocean resource management alongside their research partners and user partners.

To understand how to create or even use such a framework, one first has to
understand the concept of WoT [46]. Guinard defines web-of-things as follows:

“The Web of Things is a refinement of the Internet of Things by integrating
smart things not only into the Internet (network), but into the Web Architec-
ture (application)” [11].

This means decreasing the focus on how devices communicate with each other
through low level protocols, which by itself would require a lot of maintenance.
Using web protocols on the application layer in the OSI model (such as HTTP),
as the primary communication protocol simplifies the integration for connecting
devices to an application. The OSI model is the open system interconnection
model which standardizes the communication protocols. This opens up the
possibility for each device to indirectly communicate with each other over the
web, either it being the World Wide Web or a local network. This process
is done by using so-called ”thing descriptors”, which we will introduce further
in this thesis, thing descriptions simplify the way a device is connected to the
World Wide Web, making it easier to integrate new devices on the fly.

There already exist several frameworks supporting the WoT approach like the
open-source Node-RED project which is a flow-based development tool for visual
programming developed by IBM [24]; WebThings from Mozilla which provides
an implementation of WoT with a working gateway and a framework for de-
velopment [21]; Siemens Desigo CC which is a WoT platform from Siemens [7];
and Eclipse Thingweb node-wot which provides a WoT thing description, run-
time system, and a scripting API from the Eclipse Foundation [8]. All these
software technology solutions aim to provide a flow-based development tool for
visual programming of IoT applications. But each framework comes with its
pros and cons and must be custom-made for a solution best suited for Smart
Ocean technology. For example, Node-RED has issues with tracking states of
multiple devices, which would be critical to track sensors on the bottom of the
ocean as its not the easiest place to reach and perform maintenance.

Smart Ocean technology is a hot topic as we are slowly moving more and more

7

devices into our oceans. As 71 percent of the earth is covered by ocean and the
National Ocean Service estimates that 80 percent is yet unexplored in 2019, this
shows that there are plenty of possibilities for technology to reach our waters.
[12]

1.2 Research Question and Expected Result

To determine how the WoT frameworks may have impact on the Smart Ocean
project, having clear goals on what to achieve is important. In this section we
discuss some of the questions related to evolving the web of things technology
and how we will be able to achieve these goals.

1.2.1 Research Question

When one creates an application with “things”, the terminology IoT applica-
tion and not a WoT application is normally used. A ”thing” is defined as follows:

“Devices which have unique identities and can perform remote sensing, actuat-
ing and monitoring capabilities” [5].

Even big cloud providers have started showing IoT applications attention in
terms of giving the technology a significant amount of services to support such
an application. But why has not WoT achieved the same amount of attention?
Is it because of its maturity? Because of its complexity? Or is it just a tech-
nology too specific for most applications that will have too many flaws for the
development? In this thesis, we aim to find the reasons and how useful a WoT
framework potentially would be in the context of the Smart Ocean initiative.

This brings forth the research questions of this master thesis:

R1 - What frameworks and platforms currently exists for developing applica-
tions based on the Web of Things concept?

R2 - To what extend does the current frameworks and platforms conform to
the W3C Web of Things standard [39] and how mature are they?

R3 - How can the sensors envisioned in the Smart Ocean case studies be rep-
resented using Web of Things concepts?

R4 - To what extent can current Web of Things frameworks be used to imple-
ment SmartOcean case studies?

1.2.2 Expected Result

To address the research questions stated above, this thesis will investigate deeply
into the WoT frameworks. By using existing frameworks, showcasing possible
flaws early on in the development and implementing different pilot demonstra-
tors for the Smart Ocean initiative.

This brings forth the expected results for this master thesis:

• Create prototypes based on Web of Things frameworks.

8

• Investigating the Web of Things technology for potential flaws.

• Showcase where the Web of Things technology can save time and resources
and reflecting on when one should be using such a framework.

1.3 Research Method

In this thesis, we will create two prototypes with different frameworks for the
technology, as mentioned in the expected results. This will test the limits of
the technology, and thereby see if any flaws are identified. We will also get
the experience needed during the development process to see where the tech-
nology could save time, or would lead to an increase in development time. As
the prototypes created during this thesis involves multiple frameworks which
supports the technology, this means we will get a wide coverage on the technol-
ogy itself. This will be crucial for investigating if Smart Ocean should spend
time on technology or not during their development. And if they decide to go
for the technology, then it showcases how the technology can be used for their
development. We will be able to determine what Smart Ocean has to do to get
the frameworks to be used and if any additional development will be required.

To find the answers to our research question, we first have to figure out a way to
evaluate the technology. As we will establish proof of concepts for the technology
where few have done something similar leads to lack of any benchmarks to
compare with. This means we have to find other ways of undertaking the
evaluation. To help us get results in this process, we will be using Browns
[6] technology delta evaluation framework as a basis for the evaluation.

In figure 1.1 we can see the framework. It consists of three phases, the descriptive
modeling phase, experiment design phase and experimental evaluation phase.

9

Figure 1.1: Technology Delta Evaluation Framework [6]

The descriptive modeling phase is about discovering the impact of new tech-
nologies, and how they improve from their technological ancestor. In this case,
the ancestor is the IoT technology. This will be the frameworks for the WoT
technology, which we will look at in this thesis.

The second phase is the experiment design phase. This phase is essentially the
planning phase of the experimental evaluation. Here we create hypotheses on
how to determine the answers to the questions from the descriptive phase. In
this thesis, this means how we will be creating prototypes to answer our research
questions presented in section 1.2.1.

The last phase is the experimental evaluation phase. This phase is about con-
ducting evaluation on the hypotheses made in the experiment phase to confirm
or refute the hypotheses. In our case, this means evaluating the prototypes im-
plemented using the WoT frameworks. We decide to evaluate the WoT frame-
works with a software quality analysis. This means we will be analysing the
prototypes against criteria for software quality analysis. As the prototypes in-
volve multiple frameworks, we will be evaluating each separately.

The criteria we will use to get our answers are as follows:

• Maturity - Evaluating how mature the frameworks are.

• Documentation - Here we will be evaluating how well defined the docu-
mentation for the frameworks are.

• Amount of code - Evaluating how much code is needed to get the frame-
works to implement the case studies.

10

• Learnability - Here we will determine how much effort is required to develop
with the different frameworks.

• Automatising - How much automatisation the frameworks provides for the
developer.

• Security - How secure the frameworks are, and what vulnerabilities they
may have.

1.4 Outline

The rest of this thesis is organised as follows:

Chapter 2: Background covers the technology used in this thesis. We provide
details on the technologies and explain how they work.

Chapter 3: Web of Things Frameworks covers the frameworks used to
implement the WoT technology.

Chapter 4: Smart Ocean Evaluation Case Studies covers the case studies
provided from the Smart Ocean. Here we evaluate how we shall be implementing
these, and how it will look like using the Web of Things standard.

Chapter 5: Prototype Design covers the design of the prototypes created
for the Smart Ocean Case Studies. This chapter goes through the design of the
prototypes created and how they work.

Chapter 6: Implementation and Deployment goes through the implemen-
tation of the prototypes created in this thesis, as well as how to deploy them.
Here we provide details on how the prototypes were made, and how one could
implement and deploy the prototypes themselves.

Chapter 7: Evaluation is where we evaluate the frameworks considered in
this thesis. We will be using the ISO standard for evaluating software quality
to evaluate the frameworks. By doing so, we can access what state the WoT
technology is.

Chapter 8: Conclusion and Future Work is where we conclude based on
the information gathered from the evaluation chapter. We will also be covering
what one could do in the future with the WoT technology and related work.

11

Chapter 2

Background

WoT comes with several associated technologies which needs to be clarified
before presenting the technology as a whole. This chapter covers the most
common and important background technologies for WoT to work.

2.1 The World Wide Web

To understand how most of the technology used in this thesis works, one first
has to understand how devices on the World Wide Web works. In this section,
we cover the basics of the communication protocols used on the world wide web
and what request/response methods are used. This section also covers some of
the benefits which comes with developing software in the context of the World
Wide Web. This will be essential for the technologies considered in this thesis.

2.1.1 OSI Model - Application Layer

The Open System Interconnection (OSI) model consists of seven different con-
ceptual layers for interconnection [3]. The very top layer is the application layer
which is the one in focus in this master thesis. This layer consists of protocols
used for communication between applications running on devices. This layer
supports a device being identified, authenticated, its state, the integrity, pri-
vacy, syntax rules and data presented for the users in a readable manner. This
constitute an important aspect for the communication between devices without
focusing on other aspects, such as, IP addresses, direct communication methods
or how the device will be connected to the World Wide Web/Internet.

As mentioned, the application layer has different protocols to ensure the policies.
The most common one are:

• Hypertext Transfer Protocol (HTTP) – For accessing data on the
world wide web

• Domain Name System (DNS) – For IP identification

• File Transfer Protocol (FTP) – For transferring files

12

• Simple Mail Transfer Protocol (SMTP) – For mails

The most important protocol for this thesis will be HTTP, as it is the most
widely used communication protocol in the frameworks considered.

2.1.2 Hypertext Transfer Protocol – HTTP

The Hypertext Transfer Protocol, also known as HTTP, is one of the most used
communication protocols located at the application layer. It is also the protocol
which defines the communication over the World Wide Web. HTTP is a state-
less protocol, which means that no session data/information is stored between
each interaction. As the WoT technology moves communication towards the
application layer of the OSI model, this means that it will be the most essential
protocol to understand. The protocol involves two devices, one client and one
server.

The client is responsible for initiating the communication. It can either be a
web browser requesting a web page or a software component which wants to
access information from a web Application Programming Interface (API). An
API is an interface which defines how the interaction between components is to
be handled.

The server on the other hand is responsible for handling the requests from the
clients. As the HTTP protocol is stateless this means that the server handles
the requests based on the information received. This means authentication,
information or data needs to be included in the requests for the server to give
the appropriate response.

For the server to understand the request from the user, there are a few things
one has to address first. One has to follow the syntax of the protocol and the
servers API. This is needed for the server to return understandable information
to the client. The typical HTTP request message involves a request method,
request URI or host along with a path, the HTTP version, request headers and
an optional message body.

The request method defines the action one desires to do on a resource at the
server. There exist eight different methods:

• GET – Retrieve data from a server

• HEAD – Asks for the response headers without the body

• POST – Create resource on a server

• PUT – Update an existing resource on the server

• DELETE – Delete a specified resource

• CONNECT – Establish a tunnel with the server

• OPTIONS (HTTP Version 1.1) – Retrieve the communication options from
the server

• TRACE – Message loop-back testing

13

The request header is additional information one can send to the server, along-
side the request method and the message body. This can be additional infor-
mation like tokens for authorization, user agent of the browser and an upgrade
request which upgrades the protocol over the initial HTTP protocol.

Uniform Resource Identifier - URI

A Uniform Resource Identifier (URI) is a sequence of characters which identifies
a resource. This is the barebone of the identification of the resources located on
the World Wide Wb. Commonly, an URI is composed of a Uniform Resource
Locator (URL) and a Uniform Resource Name (URN).

Figure 2.1: Explaination of the URI [37]

The URL is an identifier together with a desired protocol to access resources
over a network, which can be seen in figure 2.1. The URN is used together with
the URL to locate where on the server the specific resource resides.

WebSockets

WebSocket [35] is a protocol used for creating a persistent bi-directional com-
munication channel between a server and a client. This can be used instead of
HTTP communication to decrease the amount of request/response messages.
To create a WebSocket between a client and server, one first has to request such
a communication. By using the Upgrade header in the request as mentioned
in the HTTP section, one can asks the server if it supports WebSocket com-
munication. Once the connection is established, one can stream messages in a

14

bi-directional manner. The connection can either be secure or non-secure by
specifying this in the request header.

2.1.3 Internet of Things

Bahga and Midsetti [5] defines Internet of Things as follows;

“A dynamic global network infrastructure with self-configuring capabilities
based on standard and interoperable communication protocols where phys-
ical and virtual ”things” have identities, physical attributes, and virtual
personalities and use intelligent interfaces, and are seamlessly integrated
into the information network, often communicate data associated with users
and their environments.”

In other words, creating systems on the World Wide Web, that are normally not
connected to the Internet. By using multiple devices to provide data in large
numbers helps us create advanced applications with more functionalities. With
the support of devices, we can more efficiently automatise applications, as they
can be set up to do functionality based on conditions.

IoT is also commonly used alongside cloud services. As sensors will eventually
provide too much data to be stored. Saving it on the cloud where the stor-
age is unlimited would be the most optimal way to create way to create IoT
applications.

2.1.4 HyperText Markup Language - HTML

The HyperText Markup Language (HTML) is the markup language for showcas-
ing information in a web browser. It is defined by Mozilla as the most common
building block for the World Wide Web [14]. In this way one can easily showcase
documents and information as a server for any client which requires this infor-
mation. It provides a user readable way to understand information sent over
the web without having a huge understanding of code. It is most commonly
sent over the HTTP protocol, or its secure version HTTPS but can also be sent
over other sources if needed.

2.1.5 JavaScript Object Notation - JSON

JavaScript Object Notation (JSON) is defined by Mozilla as a standard text-
based format for representing structured data based on JavaScript objects [47].
Instead of providing a readable markup language like HTML, one can use JSON
to provide information in a format more suitable for an application to use. This
decreases the time one has to use on retrieving information from a server and
provides fully functional objects in an instant to be used in programming.

2.1.6 Representational state transfer - REST

Representational state transfer (REST) is an architectural style for creating
web services over the Internet. Alongside this architectural style comes six
constraints defined by Roy Feilding which needs to be followed for an interface
to be called RESTful [30]. The constraints are as follows:

15

Client-Server

Separating the client from the server. This means moving the business logic
away from the client to the server and forcing the client to work with the server
to retrieve data.

Statelessness

Each request from the client is a new request. This means that the server never
keeps track of the state from the last session and needs information alongside
the request. This in turn means that the state is tracked by the client.

Cacheability

The possibility for the user to cache data from an earlier session makes the
service a lot more robust and scalable. But not all data can be cached, and one
has to specify which data can be cached or not on the server side.

Layered System

As the client has no knowledge of what is going on internally on the server,
this means that one can hide different business logics like databases, external
services or internal services behind the server as layers without the client needing
to know.

Uniform interface

Uniform interface means defining a uniform interface between the client and
server which both can use. This means that the server can easily read the data
from the client and the other way around.

Code on demand

This one is optional, but REST services offer the possibility to download code
and execute them on the client as applets or JavaScript.

2.1.7 Multicast DNS - mDNS

Multicast DNS is a technology created to locate devices on the local network.
The technology was created by Apple [17] in 2013, and is normally used alongside
IoT applications on a local network. The way the protocol works, is that it sends
an IP multicast query message to the local network, asking for the devices on
the network to identify themselves. After a device has retrieved the query
message, it then sends back its IP address along a message. This way we can
automatically find devices on the local network.

2.2 Web of Things

Guinard and Trifa [11] defines the Web of Things as a specialization of the Inter-
net of Things which focuses on moving the communication between the things
towards the application layer of the OSI model. This means that the framework

16

will reduce the work required for a developer to integrate multiple devices into
the same application, by moving the communication directly into the applica-
tion. Providing an URI for describing each device and its functionality makes
applications a lot easier to implement, as one no longer has to spend time getting
each device with its unique communication protocol to integrate into a system.
Each device may have its own reasons to choose a specific protocols, such as
signal range, network connection, and data usage.

The World Wide Web Consortium (W3C) has defined the architecture for the
Web of Things technology [39]. It is based around four fundamental building
blocks which will be introduced in the following subsections. W3C is an in-
ternational community where people work together to develop web standards
[2].

2.2.1 Thing Description

For an application to retrieve and communicate with new unknown devices, it
makes use of a things descriptor. This is done by retrieving the thing descriptor
from a unique URI which defines a thing. The W3C defines a things description
as having four main components; textual metadata, interaction affordances,
schemas, and web links [43].

Within the WoT technology stack there exists a predefined vocabulary for the
metadata. This covers everything from the data schema the thing uses, to secu-
rity measurements the thing uses, and the external links exposed by a ”thing”.
Using a Thing Descriptor Processor to process the metadata retrieved and dese-
rialize the thing description, opens up for the application to directly interoperate
with a thing. The metadata deserialized from the thing descriptor can be used
as objects which can be manipulated and read at any time in an application.
We call this process to consume a thing description.

1 {
2 ”@context” : ” https : //www. w3 . org /2019/wot/ td/v1” ,
3 ” id ” : ”urn : dev : ops :32473−WoTLamp−1234” ,
4 ” t i t l e ” : ”MyLampThing” ,
5 ” s e c u r i t y D e f i n i t i o n s ” : {
6 ” b a s i c s c ” : {”scheme” : ” ba s i c ” , ” in ” : ” header ”}
7 } ,
8 ” s e c u r i t y ” : [” b a s i c s c ”] ,
9 ” p r o p e r t i e s ” : {

10 ” s t a t u s ” : {
11 ” type ” : ” s t r i n g ” ,
12 ” forms ” : [{ ” h r e f ” : ” https : // mylamp . example . com/ s t a t u s ”

}]
13 }
14 } ,
15 ” a c t i o n s ” : {
16 ” t o g g l e ” : {
17 ” forms ” : [{ ” h r e f ” : ” https : // mylamp . example . com/ t o g g l e ”

}]
18 }
19 } ,
20 ” events ” :{
21 ” overheat ing ” :{
22 ” data ” : {” type ” : ” s t r i n g ” } ,
23 ” forms ” : [{
24 ” h r e f ” : ” https : // mylamp . example . com/oh” ,

17

25 ” subprotoco l ” : ” l o n g p o l l ”
26 }]
27 }
28 }
29 }

Listing 2.1: Thing Description Example from W3C [43]

In listing 2.1, we can see an example of a thing description. It has an ID to
define the thing, a title for the thing and a scheme identifying which version
of the W3C it uses. It also has the interaction affordances listed as properties,
actions and events. The interaction affordances has types to explain which type
of data it works with, and a link to its endpoint to where we can access the
data. It also provides the security on how to access the thing descriptor, which
we will be covering in section 2.2.4.

The interaction affordances work the same way as metadata by using a Thing
Descriptor Processor, but focuses on providing functionality for the user to
interact with the thing. This can be everything from properties which gives the
user the option to manipulate the data, actions to provide remote execution of
functions, and events which triggers different actions when received.

The data schemas of the thing description are there to provide the user an af-
fordance for the development. It provides different metadata which we can add
to our affordance. It also conforms to the standard for the thing descriptions
and defines the syntax which the thing description has to follow. The affor-
dance provided can then be deserialized into data objects to provide the user a
guideline on what actions can be performed on the thing.

The web links of the thing is at it sounds; links exposed by the thing which is
used to define its relation between other associated things. This can be anything
from a lamp which has a defined link to its switch.

2.2.2 Binding Templates

The second building block which W3C defines in the architecture of WoT is
the binding template [40]. This is essential to have in order to get the thing
descriptor to deserialize data in a way that the frameworks will understand. As
mentioned earlier, each thing tends to have its own protocol for communica-
tion. WoT focuses on simplifying this by using binding template as an adapter
between each thing.

Figure 2.2 illustrates how the binding template works. The example is of a
read property with a simple HTTP binding. The WoT consumer sends a read-
property operation from the consumed thing, which then gets translated into a
HTTP request. The exposed thing has HTTP template configured to retrieve
HTTP requests, then translates the data retrieved from the sensor and sends it
back with the same binding as received. Its important to mention that we can
have multiple binding templates to the same property, which translates into the
necessary protocol on demand.

18

Figure 2.2: Binding Template Example from W3C [40]

A binding template is closely related to the binding instances from the thing
descriptions and the binding implementation from the protocol bindings. The
binding implementation for the protocol binding is the way the runtime im-
plements the binding protocols like HTTP, Websockets, MQTT or CoAP. By
using a binding template, the thing descriptor can understand the data being
retrieved and sent. One can say it act as a translator for the different devices.

2.2.3 Scripting APIs

The third building block which W3C defines is the scripting API [41]. This part
is not crucial for the WoT frameworks but is highly recommended to imple-
ment. Standardizing the API for the things to use decreases the effort needed
to integrate them into an application.

There exist three use cases for the functionality provided by scripting API’s.
The first case is how to consume a thing. This functionality provides an easy
way to create classes which defines the physical things. From setters/getters for
the properties, to actions and events as defined in section 2.2.1.

The second case is about exposing the thing to the World Wide Web. This
include functionality like removing or adding different definitions of the thing
to the API, and adding a new property for a specific device. For example,
adding a new property like serial number to a product with QR code sold from
a supermarket. The third and last use case is discovery. This case resolves
around locating other things from the thing being used. This can either be
through Bluetooth, local LAN or semantic queries. The process of discovering
devices can either be executed with a specified timed interval or started and
stopped manually. By doing this, one can for example add a new thing to a
local network which an existing thing can look for.

19

2.2.4 Security and Privacy Guidelines

The fourth and last building block which W3C defines is the security and pri-
vacy guidelines [42]. This building block, as the name implies, evolves around
providing the security information for the thing descriptor to work and describes
what specific security measures the thing has. This can be anything from au-
thentication mechanisms to security measurements done through the protocol
used. For the thing descriptor to be available to work, the thing needs this
information to communicate with the descriptor. As each thing on the Internet
provides a new surface point for attackers to reach, this means that the use of
advanced mechanisms to secure the endpoints of each thing is essential. This
does not mean that WoT introduces any new security mechanisms, but instead
provides support for the most common security mechanisms. This can range
from simple secure shell mechanisms to end-to-end encryption like HTTPS.

20

Chapter 3

Web of Things Frameworks

In this thesis, we investigate the usage of existing frameworks, in order to assess
their applicability for Smart Ocean applications. Thoroughly going into them,
finding their pros and cons, gives the possibility to investigate how they would
work as part of Smart Ocean applications. Some of the frameworks will already
at this stage be excluded for further investigation, if they either are not usable,
outdated, or lack what is needed to be usable in a wide scale application based
on sensors deployed in the ocean. All the frameworks have been selected based
on the recommendations from W3C [33], as they are the main contributors of
the development of WoT.

3.1 The Node-RED Project

Node-RED created by IBM is a flow-based development tool which is currently
part of the JavaScript Foundation [1]. Node-RED being based on flow-based
programming means that it focuses on creating blackboxes around the devices
constituting the system. This means that one only has to focus on what is
input to the thing and what data it then provides. Node-RED also simplifies
the dataflow between each thing by creating a visual representation for a user
for an easier understanding of the system.

Node-RED being a flow-based development tool does not make it directly con-
forming to the definition of a WoT framework. The primary reason for this
is that it lacks a thing description which translates the data from the things.
However, the Node-RED project has done measures to provide this functional-
ity. The Node-RED-Nodegen tool can mimic this by creating the things in the
Node-RED system based on data provided from an OpenAPI (swagger) docu-
ment. This helps the developer with the implementation of new nodes and can
act as the thing descriptor adapter needed for a fully functional web of things
framework [25].

One limitation with the Node-RED-Nodegen framework is that the functionality
of connecting devices to the framework is currently under development. The
development of this has been going on since December 2019. This makes the

21

extension unusable for the current project for adding the thing descriptors and
devices to the Node-RED framework.

Node-RED makes it easy to use customized add-ons created by external devel-
opers. This means that if the framework lacks any functionality which would be
needed for a solution, one can simply go to the add-on library of the Node-RED
framework and download the extension [18].

Four external developers have created an extension to provide reading function-
ality of exposed thing descriptors. The extension is called node-red-contrib-wot
[10], and provides the core consuming functionalities to use the Node-RED
framework as a way to connect devices to the framework. It provides four
Node-RED nodes to read properties from a thing descriptor, write properties to
a thing descriptor, invoke actions and subscribe to a things events. To use the
framework, one must use an existing exposed thing descriptor of a device and
then the framework can be used by reading thing descriptor provided. By doing
this, we can use the framework for consuming thing descriptors which we are to
create in this thesis and use the flow-based development tools that Node-RED
provides.

Figure 3.1 shows the different nodes that Node-RED by itself provides. A Node-
RED project is comprised of multiple nodes which provides their own function-
ality. This can be anything from customized functions to a simple switch case.
By doing this, one can make advanced flow based applications customized to
ones needs. In this thesis, we mainly focus on the usage of the extension node-
red-contrib-wot, with the addition of the debug node and the WebSocket node.
The debug node is a simple way to get console information from a node.

Figure 3.1: Example nodes for Node-RED

In figure 3.2 we can see a technical example on how to use Node-RED-Nodegen.
By using an example thing description obtained via Eclipse ThingWeb; http://
plugfest.thingweb.io:8083/testthing, we can showcase how this will work
in the solution to come for Smart Ocean applications.

22

http://plugfest.thingweb.io:8083/testthing
http://plugfest.thingweb.io:8083/testthing

Figure 3.2: Technical example of Node-RED with Node-RED-Nodegen

On the right side of the figure 3.2, we see the debug monitor gathering informa-
tion from the nodes connected to the test thing, which is scaled up in figure 3.3.
As we can see in the debug log, the nodes from node-red-contrib-wot fetches the
sensor data from the things descriptor every third second. We can see node-
red easily keeps track of the data provided from the test thing and works as
intended. This means that one can use the nodes to fetch the data and ma-
nipulate it to ones needs. This can either be saving it in a database or doing
processing functions on the data provided.

23

Figure 3.3: Debug log from Node-RED

In the middle of figure 3.2, we can see the interaction affordance on the test
thing. This is how we manipulate and fetch data from the thing. It can be
anything from properties to actions and events. The affordances in this example
is all nodes connected to the debug screen. To understand how everything works,
we first has to take a deeper look at the affordances in this example.

In the figure 3.4, we see the interaction affordance property. Here we can see how
the write properties function, by using injection nodes to inject messages to the
test things thing descriptor. It then uses the desired protocol to communicate
with the device, which can be anything from HTTP to WebSockets. Once
the URL of the produced thing descriptor is added to the properties, it then
automatically fetches the thing descriptor and provides the functionality that
the thing provides. Reading from the properties is done in a similar fashion.
Instead of injecting the nodes with data, we just connect a read property node
to the desired thing descriptor and then do the desired action with the data
retrieved.

24

Figure 3.4: Properties in Node-RED

In figure 3.5 we can see how events are used for Node-RED. The way it works is
by looking for any events in the consumed thing descriptor provided to Node-
RED. Afterwards, the framework will by itself figure out which protocols are
used to provide the information from the sensors and ask the user which protocol
should be used in your application. The events then subscribes to the sensor
and awaits a response. The framework takes care of checking if the connection
is up, and warns the user if the framework would loose connection to the thing.

Figure 3.5: Events in Node-RED

Both the events and properties are instances of the node-red-contrib-wot which
showcases how we can make Node-RED compatible with WoT technology. Every
node created from this extension is an individual endpoint on the provided thing
descriptor. The extension also provides the functionality of doing actions with
the things provided. This is the same as writing to the property of a thing, but
instead focuses on interacting with specific functions provided from the device.

3.2 WebThings from Mozilla

WebThings is an open source software distribution made by Mozilla which pro-
vides a gateway implementation and framework for implementing the WoT tech-
nology. The framework is a collection of reusable software components which is
there to provide a thing API. The thing API provided is supposed to be a rep-
resentation of the first and second building block within WoT, i.e, the scripting
API and thing descriptors. The gateway provided by WebThings is software for
gateways on a network which allows any user to monitor and control the things
over the Internet [22].

25

The primary issue with this framework is that Mozilla has decided to implement
their own thing descriptor schema to be used for the application. This implies
that the solutions created from this framework is not compatible with any of
the solutions which follows the schema from W3C. It follows the same rules set
as W3C with properties, events and actions, but is created in a simpler way to
make it easier for a new developer to pick up. This means that creating solu-
tions within this framework requires the gateway to be used for consuming the
things exposed by the framework they provide. Mozilla has given the develop-
ers open source access to the framework with support for multiple programming
languages such as; JavaScript, Python, Java, Rust, C/C++ and MicroPython.

The second issue with this framework is the fact that it is targeting the domain
of smart houses and not Smart Ocean. While the gateway provides a fair sense
of customization, it may still not be enough for adapting it to wide scale smart
ocean application. One would need to rewrite the gateway for custom solutions.
This would be possible as the gateway is open-source. But it would also mean
one would need to do this on an individual basis, as Mozilla does not provide
any support or documentation on how to make changes and manipulate the
gateway.

In figure 3.6 we can see the gateway in use, where we can observe the infor-
mation gathered from sensors. This gateway can both be accessed from a local
network and the World Wide Web, as Mozilla provides an internal Amazon Web
Service (AWS) server for hosting the gateway service. The gateway can be used
alongside a map of the house, to create a virtual map on where the sensors may
be located. Alongside this, one can implement custom ruleset for the sensors to
do different actions when needed.

Figure 3.6: Mozilla WebThings Gateway [44]

Once the sensor is on the same local network as the gateway, then the gateway
will start using mDNS to locate the sensor automatically. This is done by
the gateway sending out query messages on the network, asking the sensors to
identify themselves. Then it will give the user the option to add the device to
the gateway, or exclude it. If the device is added, then the user will get the
options provided in figure 3.7. The sensor in this figure is a test device, with

26

the options to edit its properties. This showcases how one can use the gateway
to both read data and write data to a sensor.

Figure 3.7: Mozilla WebThings Gateway TestThing

Once the sensors are up and running, then it will provide a built-in logging
system to monitor the data over time. This means we can use the gateway
logging system as a database to both monitor and validate the data provided
from the sensors over time. Figure 3.8 shows how the information is provided
and how we are able to pick which data we need to monitor.

27

Figure 3.8: Mozilla WebThings Logging [15]

The gateway also provides the functionality to map where the different sensors
are located which is shown in figure 3.9. This map can be anything from a
house to an ocean as long as its a scalable vector graphics (svg) file. This will
be handy for a project like Smart Ocean, to understand where each sensor is
located in the ocean. Once the map is uploaded, one can click and drag the
sensors in the system to the desired location.

Figure 3.9: Mozilla WebThings Mapping [44]

28

Last but not least, the gateway also provides the functionality to set custom
ruleset for each device as we can see in figure 3.10. This can be anything from
setting a custom event to trigger once a threshold has been met, to automatically
update any data on the sensors. As this project does not have any sensors which
needs to be interacted with, we will not go into further details on this. But if
the sensors need to be interacted with automatically, then this functionality is
built in and ready to be used.

Figure 3.10: Mozilla WebThings Ruleset [44]

3.3 Siemens Desigo CC

Desigo CC is a platform made by Siemens. Its core functionality is to simplify
the process of integrating things into their platform. It is also available for
integrating different datapoints and functions along the things and thereby to
create a manageable system for a developer [7].

Desigo CC is a standalone platform which makes it harder to integrate into an
existing application. It is also not an open source project, making custom made
solutions harder to be used for Smart Ocean in the future. Not only that, but
it is also behind a paywall, which makes it less suitable for research purposes.

3.4 Eclipse ThingWeb

ThingWeb is Eclipse’s implementation of the WoT technology. As Eclipse is a
part of the W3C workgroup which means ThingWeb follows W3C’s definition
of WoT. The framework has a component called note-wot to replicate the thing
descriptor of the W3C’s WoT architecture. This involves different protocol
bindings to create an adapter used to implement new things. ThingWeb also
implements a runtime which is equivalent to the scripting-API needed for the
WoT technology to work as intended [8].

In addition, ThingWeb includes a directory which provides an interface to regis-
ter thing descriptors and a WebUI for controlling the system of provided things.
Both the directory and the runtime for exposing things are open source projects,

29

making them ideal to be used for research. The primary limitation of this
framework occurs at the chosen language for development, as it is only using
JavaScript. This makes it difficult to be picked up for developers unfamiliar
with the language. Especially since the framework lacks proper documentation
for developing thing descriptors from scratch, and further more exposing these
things.

But the fact that Eclipse decided to use the schema made from W3C, means
that it can be used alongside other frameworks such as Node-RED for consum-
ing the exposed thing descriptors. This opens up the flexibility of customising
the application for ones needs, and combine the frameworks when developing
applications. This means using the WoT framework makes the technology com-
patible with each other without any extra effort.

In figure 3.11, we can see the web consumer example from Eclipse with a pro-
duced example thing descriptor that Eclipse provides for testing out frameworks.
This shows how the thing descriptor from Eclipse can easily be used in any solu-
tion supporting the W3C’s definition of WoT. The thing descriptor is produced
by Eclipse, and consumed by the web client. The ThingWeb framework also
supports the possibility to expose multiple thing descriptors at the same time,
which means we do not have to create individual applications for each device.

Figure 3.11: ThingWeb Web Example

Eclipse also provides a CLI to check whether a thing description is valid. This
is done by posting a thing description produced by an application, or self made
into the playground which Eclipse provides at http://plugfest.thingweb.io/
playground/.

Usually when creating a WoT application, we will have multiple sensors. The
framework provides support for the functionality to expose multiple thing de-
scriptors from the same instance. This means we do not need to create individual
instances for each sensors, and can keep all the thing descriptors at one place.

3.5 W3C’s Web of Things framework

W3C has also made some efforts to implement a framework, but it is currently
in the experimental implementation phase and has not been updated since 2016
[38]. It is supposed to follow its definition of the framework, but it seems like the

30

http://plugfest.thingweb.io/playground/
http://plugfest.thingweb.io/playground/

project was handed over to the other contributors in the web of things interest
group.

The framework is based around the JavaScript framework NodeJS. The frame-
work covers the thing descriptor, implementation of the framework and regis-
tering new devices to the system. When a thing has its properties updated, the
system then sends a message to every associated thing about its new informa-
tion.

31

Chapter 4

Smart Ocean Evaluation
Case Studies

The Smart Ocean project has defined four representative case studies to demon-
strate how the components communicate within the integrated system. By vir-
tualising these case studies through the use of some of the frameworks studied
in this thesis, gives the Smart Ocean project a guideline on how WoT may be
put into practical use. We currently do not have access to physical sensors,
which makes virtualizing the devices the most feasible approach. For future
implementation of the frameworks on the devices, a few adjustments has to be
made, but the general thing descriptors will stay the same. As all of the things
used in this project are sensors, this means that we can ignore the use of actions
in the thing descriptors. Below we provide further details on each of the case
studies as well as how the thing descriptors will look like for each case.

The thing descriptors are shortened to make them more readable, but can be
accessed fully in appendix A.

4.1 Pilot Demonstrator 1 - Local scale environ-
mental monitoring

The description of the case study is as follows [26]:

A multipurpose local-scale wireless network of autonomous sensors for mon-
itoring of oceanographic and seabed environmental parameters will be es-
tablished around an aquaculture plant. Candidate measurement parameters
include current profiling, O2 and CO2 concentrations, gravity, gas leakage,
pH, pressure, temperature, salinity and turbidity[...] PD1 will contain and
demonstrate all major Smart Ocean monitoring system components and
functionalities.

What we can interpret in this description is that it is a simple multi-sensor
device with the properties O2, CO2 concentrations, gravity, pH, pressure, tem-

32

perature, salinity and turbidity. It is also able to detect gas leakage, which will
be implemented as an event in the thing description seen in listing 4.1.

8 ” id ” : ”PD1: th ing ” ,
9 ” t i t l e ” : ”PD1” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 1” ,
11 ” p r o p e r t i e s ” :{
12 ”CO2” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” d e s c r i p t i o n ” : ” cur rent CO2 value ” ,
15 ” obse rvab l e ” : false ,
16 ” readOnly” : true ,
17 ” writeOnly ” : fa l se
18 } ,
19 ”Temperature” :{
20 ” type ” : ” i n t e g e r ” ,
21 ” d e s c r i p t i o n ” : ” cur rent Temperature va lue in Ce l c iu s ” ,
22 ” obse rvab l e ” : false ,
23 ” readOnly” : true ,
24 ” writeOnly ” : fa l se
25 } ,
26 ”pH” :{
27 ” type ” : ” i n t e g e r ” ,
28 ” d e s c r i p t i o n ” : ” cur rent pH value ” ,
29 ” obse rvab l e ” : false ,
30 ” readOnly” : true ,
31 ” writeOnly ” : fa l se
32 } ,
33 ” Gravity ” :{
34 ” type ” : ” i n t e g e r ” ,
35 ” d e s c r i p t i o n ” : ” cur rent G f o r c e va lue in m/ s ˆ2” ,
36 ” obse rvab l e ” : false ,
37 ” readOnly” : true ,
38 ” writeOnly ” : fa l se
39 } ,
40 ” S a l i n i t y ” :{
41 ” type ” : ” i n t e g e r ” ,
42 ” d e s c r i p t i o n ” : ” cur rent S a l i n i t y value in par t s per

thousand” ,
43 ” obse rvab l e ” : false ,
44 ” readOnly” : true ,
45 ” writeOnly ” : fa l se
46 }
47 } ,
48 ” events ” :{
49 ”GasLeakage” :{
50 ” type ” : ” boolean ” ,
51 ” d e s c r i p t i o n ” : ”Warning from gas l eakage ”
52 }
53 } ,

Listing 4.1: Thing descriptor of Pilot Demonstrator 1

33

4.2 Pilot Demonstrator 2 - Mesoscale environ-
mental monitoring

The description of the second case study is as follows [26]:

A real time, integrated and scalable ocean multipurpose observing sys-
tem will be developed and demonstrated using acoustic technologies, for
acoustic tomography to observe mean ocean temperature and water cir-
culation; geo-positioning observations from underwater autonomous sen-
sors; and monitoring the underwater acoustic environment. Time series of
three-dimensional ocean parameters will be provided and combined with
oceanographic point or profiling measurements and high-resolution dynam-
ical ocean models through assimilation[...] Test site will be covering ap-
proximately 5 km x 5 km.

This sensor is more advanced than the one in pilot demonstrator 1 as we will
handle three-dimensional data. But in the end, it is just data which has to be
provided from a thing descriptor as seen in listing 4.2. As this sensor do not
have any critical messages to provide, implementation of events is not required.
The properties which has to be implemented in the thing descriptor is as follows;
acoustic environment, acoustic tomography, geo-positioning, oceanograpic point
or profiling measurements.

8 ” id ” : ”PD2: th ing ” ,
9 ” t i t l e ” : ”PD2” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 2” ,
11 ” p r o p e r t i e s ” :{
12 ”AcousticTomopraphy” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” un i t ” : ” he r t z ” ,
15 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Tomography in Hertz ” ,
16 ” obse rvab l e ” : false ,
17 ” readOnly” : true ,
18 ” writeOnly ” : fa l se
19 } ,
20 ” AcousticEnvironment ” :{
21 ” type ” : ” i n t e g e r ” ,
22 ” un i t ” : ” he r t z ” ,
23 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Environment in Hertz ” ,
24 ” obse rvab l e ” : false ,
25 ” readOnly” : true ,
26 ” writeOnly ” : fa l se
27 } ,
28 ” GeoPos i t ion ing ” :{
29 ” type ” : ” i n t e g e r ” ,
30 ” un i t ” : ” coo rd ina t e s ” ,
31 ” d e s c r i p t i o n ” : ” cur rent Geo−P o s i t i o n i n g in coo rd ina t e s ” ,
32 ” obse rvab l e ” : false ,
33 ” readOnly” : true ,
34 ” writeOnly ” : fa l se
35 } ,
36 ”OceanGraphicPoint” :{
37 ” type ” : ” i n t e g e r ” ,
38 ” un i t ” : ” coo rd ina t e s ” ,
39 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Environment in Hertz ” ,
40 ” obse rvab l e ” : false ,

34

41 ” readOnly” : true ,
42 ” writeOnly ” : fa l se
43 }
44 } ,

Listing 4.2: Thing descriptor of Pilot Demonstrator 2

4.3 Pilot Demonstrator 3 - Integrity measure-
ments offshore wind

The description of the third sensor is as follows:

PD3 will be established and used for research, development, testing, and
demonstration of sensors for integrity monitoring of (bottom-mounted) and
floating wind turbine structures[...] Sensors for inspection and evaluation
of cement grouting integrity will involve local acoustic resonance (”point”)
methods (ART), and development of distributed GUW measurement meth-
ods for wide spatial coverage.

This sensor does not have any events that needs to be tracked as seen in listing
4.3. It is not as advanced as the previous sensor to virtualize, which means
we only have to provide the following properties: local acoustic resonance and
GUW measurements.

8 ” id ” : ”PD3: th ing ” ,
9 ” t i t l e ” : ”PD3” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 3” ,
11 ” p r o p e r t i e s ” :{
12 ” AcousticResonance ” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” un i t ” : ” he r t z ” ,
15 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Resonance in Hertz ” ,
16 ” obse rvab l e ” : false ,
17 ” readOnly” : true ,
18 ” writeOnly ” : fa l se
19 } ,
20 ”GUW” :{
21 ” type ” : ” i n t e g e r ” ,
22 ” d e s c r i p t i o n ” : ” cur rent GUW measurements” ,
23 ” obse rvab l e ” : false ,
24 ” readOnly” : true ,
25 ” writeOnly ” : fa l se
26 }
27 } ,

Listing 4.3: Thing descriptor of Pilot Demonstrator 3

4.4 Pilot Demonstrator 4 - Integrity measure-
ments oil and gas

The description of the fourth sensor is as follows, where DAS means distributed
acoustic sensing and GUW means guided wave measurements:

35

PD4 will be established and used for research, development, testing, and
demonstration of sensors for integrity monitoring of oil and gas installations.
Flow induced pipeline vibrations may be monitored using DAS. Pipeline
fatigue will be investigated using GUW. Autonomous gas leakage detection
systems will involve acoustic methods.

This sensor is similar to the one in pilot demonstrator 1, as now we have to
consider implementing events seen in 4.4. The event that need to be imple-
mented is gas leakage. The properties which needs to be implemented in the
thing descriptor is as follows; Pipeline vibrations (DAS), GUW measurements
and gas leakage monitoring.

8 ” id ” : ”PD4: th ing ” ,
9 ” t i t l e ” : ”PD4” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 4” ,
11 ” p r o p e r t i e s ” :{
12 ” P ip e l i n eV i b ra t i on ” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” un i t ” : ” he r t z ” ,
15 ” d e s c r i p t i o n ” : ” cur rent P i p e l i n e Vibrat ions in Hertz ” ,
16 ” obse rvab l e ” : false ,
17 ” readOnly” : true ,
18 ” writeOnly ” : fa l se
19 } ,
20 ”GUW” :{
21 ” type ” : ” i n t e g e r ” ,
22 ” d e s c r i p t i o n ” : ” cur rent GUW measurements” ,
23 ” obse rvab l e ” : false ,
24 ” readOnly” : true ,
25 ” writeOnly ” : fa l se
26 }
27 } ,
28 ” events ” :{
29 ”GasLeakage” :{
30 ” type ” : ” boolean ” ,
31 ” d e s c r i p t i o n ” : ”Warning from gas l eakage ”
32 }
33 } ,

Listing 4.4: Thing descriptor of Pilot Demonstrator 4

36

Chapter 5

Prototype Design

By investigating the frameworks mentioned earlier, we have identified four
frameworks/platforms for the four pilot demonstrators. The selected frame-
works are the closest one can get for implementing the WoT technology without
doing significant modification to the existing frameworks. Both prototypes will
have their things exposed and a framework for consuming this information. Each
prototype will handle each pilot demonstrator as they were individual sensors.
This mean the prototypes will have four sensors connected to them.

As we can see in table 5.1, it is clear why the following frameworks have been
chosen. Both Siemens Desigo CC and W3C’s framework have significant cons
to not being considered in this thesis. As for the rest, we have decided to mix
some of the frameworks as both have some cons as seen in table 5.1 that makes
it hard for them to be independent applications. The only framework that is
standalone is Mozilla WebThings.

All the sensors in the prototypes are virtual sensors which only provides dummy
data, as we do not have access to the sensors which Smart Ocean is going to
use. This means all the data provided is just random numbers provided from
the frameworks exposing the sensors.

Frameworks Pros Cons

Node-RED
Easy implementation of exposed thing descriptors made
Tons of useful tools to ease development and data flow

Lacks the possibility to expose API’s in an easy way

Mozilla WebThings
Easy to use and set up

A lot of built in functionality from the start
Supports multiple programming languages for exposing a thing

Does not follow W3C’s standards
Is meant for smart houses

Difficult implement new functionalities in the gateway
Siemens Desigo Unknown Hidden behind a paywall

Eclipse Thingweb
Easy to expose a thing

Has multiple binding templates ready to use
Has good tutorials for development

Lacks documentation for different things within the framework
Only supports Javascript and Typescript
Has some issues with Events in HTML

W3C’s framework Unknown
Outdated

Does not work properly

Table 5.1: Pros and Cons table for the frameworks

37

5.1 Prototype 1 - Node-RED and Eclipse Thing-
web

The first prototype uses Node-RED for consuming thing descriptors created by
Eclipse Thingweb. The reason for this, is as mentioned earlier in this thesis,
that Node-RED does still not easily provide the functionality of producing thing
descriptors. But it is not totally useless, as we will use it for consuming thing
descriptors produced by Eclipse Thingweb. Because of this, combining both
the frameworks together into a single prototype creates a prototype with many
possibilities for adaptation.

5.1.1 Architecture

The prototype is as mentioned a combination of two frameworks. The Thing-
Web framework is solely for exposing the thing descriptors of the pilot demon-
strators. The reason for this is because ThingWeb does not provide an easy
way to consume thing descriptors. This is where the Node-RED framework
comes in, which helps us make sense of the information gathered from the pi-
lot demonstrators. The reason behind the usage of the Node-RED framework
is that making ThingWeb’s prototype consume a thing was not intuitive for
development, as it lacked proper documentation. The current prototype does
not involve any databases or monitoring frameworks for the data. This means
that the prototype solely evolves around the communication between the two
frameworks, and how they work together.

If we take a closer look at figure 5.1, we can see how the data flow of the pro-
totype works. The sensors are as mentioned, virtual sensors on the ThingWeb
application. ThingWeb then makes sure to expose the data the sensors provide
to four different thing descriptors. Node-RED then has a scheduled interval on
when to retrieve the data from the thing descriptors and sends HTTP requests
to the exposed thing descriptors for the data. The data is then sent back, either
as plain HTTP messages, or in a WebSocket which binding template we decided
to use. Once the data has reached the consumed thing descriptor on the Node-
RED framework, it then translates the data into the value which Node-RED
needs. In this case, just the payload of the HTTP or WebSocket message.

Figure 5.1: Data flow diagram for prototype 1

ThingWeb framework

The first part of the prototype evolves around the use of the ThingWeb frame-
work. It is a standalone framework which produces exposed thing descriptors

38

from the thing descriptor provided for the sensors. It gathers the informa-
tion from the sensors and sends it out to the exposed thing descriptor. This
framework takes care of both the properties and events which the sensors pro-
duce. ThingWeb also takes care of the binding templates for the prototype. It
produces a thing descriptor with endpoints supporting both HTTP and Web-
sockets. We decided to go for two protocols instead of one since the ThingWeb
framework creates errors when trying to emit multiple events from the same
endpoint with the HTTP protocol, which the developers did not intend people
to do. Luckily if any other web protocols are needed, it is as easy as making
the thing descriptor create a new server that emits data with the protocol de-
sired. The only thing we would need is an open port which the desired protocol
commonly uses. ThingWeb supports the following protocols to be added as
binding template; CoAP, HTTP, Modbus, MQTT, NETCONF, OPC UA and
WebSockets. It also allows the user to expose content of a text file. Nothing
in the initial code structure or thing descriptor has to be changed to support
more protocol usage. The framework is executed using Node, as the framework
is built in JavaScript, and can be set up on any computer which supports this.
This makes it well-suited for a gateway device, as this does not demand a lot of
computer resources.

In appendix listing A.5 we can see the thing descriptor which the framework
produces for the first pilot demonstrator. We will be taking a closer look at this
one, as this is the most advanced device of the four. The other thing descriptions
can also be found in appendix A.

Lets start with going more detailed into the first thing description. In listing
5.1 , we can see the beginning of the thing descriptor. Here we define which
version of the W3C scheme we will be using for syntax. Afterwards we make
sure to give the thing an unique identifier to separate it from the three other
pilot demonstrators. Then we provide a simple title and description of which
pilot demonstrator it is. This is the only metadata which is mandatory to get
the thing description produced and working.

1 {
2 ”@context” : [
3 ” https : //www. w3 . org /2019/wot/ td/v1” ,
4 {
5 ”@language” : ”en”
6 }
7] ,
8 ” id ” : ”PD1: th ing ” ,
9 ” t i t l e ” : ”PD1” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 1” ,

Listing 5.1: Interaction Affordance in the thing description of the first pilot demonstrator

As we can see in listing 5.2, the framework links every interaction affordances
with an endpoint on the server which the framework produces. This is done
by linking each affordance to an URL which can be used while consuming the
thing, as we can see in the thing descriptor, where each property and event is
linked towards an specific URL. As mentioned earlier in this thesis, we currently
have no use for actions or manipulating data directly on the sensors. This
means we can set all the properties to read only and make sure they cannot
be manipulated. We also ensure that the properties cannot be written directly

39

towards on the sensors in the thing description, which makes the framework
reject any post request towards the thing.

12 ”CO2” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” d e s c r i p t i o n ” : ” cur rent CO2 value ” ,
15 ” obse rvab l e ” : false ,
16 ” readOnly” : true ,
17 ” writeOnly ” : false ,
18 ” forms ” : [
19 {
20 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ p r o p e r t i e s /CO2”

,
21 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
22 ”op” : [
23 ” readproperty ”
24] ,
25 ”htv : methodName” : ”GET”
26 }
27]
28 } ,

Listing 5.2: Interaction Affordance in the thing description of the first pilot demonstrator

We can see in listing 5.3 how the framework creates links to all the properties
and events which the things provides, which can be accessed. This will come
in handy for consuming the thing descriptors in the future, to ensure we have
all the information which the sensors provide, even when the sensor is being
updated.

123 ” forms ” : [
124 {
125 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ a l l / p r o p e r t i e s ” ,
126 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
127 ”op” : [
128 ” r e a d a l l p r o p e r t i e s ” ,
129 ” r e a d m u l t i p l e p r o p e r t i e s ” ,
130 ” w r i t e a l l p r o p e r t i e s ” ,
131 ” w r i t e m u l t i p l e p r o p e r t i e s ”
132]
133 }
134] ,

Listing 5.3: Properties endpoint in the thing description of the first pilot demonstrator

When we take a look at the events of the thing, we can see the WebSocket server
has correctly been set up by the binding template provided by the framework,
as shown in listing 5.4. This is because the framework would not set up any
endpoints with the protocol if it did not work. As mentioned earlier, we can still
access the event through HTTP, but that will eventually crash the ThingWeb
framework. This is not possible to remove, as setting up a new binding protocol
ensures all the data on the sensor will be exposed through that protocol. As for
now, we will ignore this endpoint, and keep it out of our prototype.

98 ” events ” :{
99 ”GasLeakage” :{

100 ” type ” : ” boolean ” ,
101 ” d e s c r i p t i o n ” : ”Warning from gas l eakage ” ,
102 ” forms ” : [

40

103 {
104 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ events /

GasLeakage” ,
105 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
106 ” subprotoco l ” : ” l o n g p o l l ” ,
107 ”op” : [
108 ” subsc r ib e event ”
109]
110 } ,
111 {
112 ” h r e f ” : ”ws : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 1 /PD1/ events /GasLeakage

” ,
113 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
114 ”op” : ” subsc r ib e even t ”
115 }
116]
117 }
118 } ,

Listing 5.4: Event in the thing description of the first pilot demonstrator

In the end of the thing description seen in listing 5.5, we can see the secu-
rity aspect of the thing descriptor and how this works. As the extension from
Node-RED does not easily support security manipulation, we skip this for the
prototype. But if we were to add any security between the sensors and the
application consuming the thing, then this would be the place to start.

135 ” s e c u r i t y D e f i n i t i o n s ” :{
136 ” n o s e c s c ” :{
137 ”scheme” : ” nosec ”
138 }
139 }
140 }

Listing 5.5: Security in the thing description of the first pilot demonstrator

Node-RED

The second part of the prototype is the Node-RED framework. This is used as
a replacement for the ThingWeb’s method to consume a thing. Its sole purpose
is only to gather the data from the thing descriptor and handle it (in our case,
only showcases it in a debug log). As mentioned earlier, the thing descriptor sets
up endpoints to access the data from the sensors. The framework primarily uses
the node-red-contrib-wot to be useful with handling things, as the framework
itself does not yet easily support the technology. Node-RED has mentioned
they will support the framework in the future, but has yet to develop this
functionality. Meanwhile, the extension node-red-contrib-wot will be a useful
replacement to show what can be done with Node-RED. To add the things, we
have to manually enter the address provided from the ThingWeb framework,
which is not as simple as mDNS. Once this has been done, the extension takes
care of the rest, and provides the user with all the functionalities which the
thing has.

In figure 5.2 we can see how the first pilot demonstrator can be used with
Node-RED. The figure shows all the properties being read automatically by the
Node-RED framework, and that the gas leakage events are being emited once the

41

CO2 level becomes to high. The event is being transmitted by the WebSocket
protocol as mentioned earlier, to prevent the framework from suddenly crashing
during runtime. This means that the connection between the frameworks are
continuously talking to each other to ensure the event safely reaches the Node-
RED framework. The data on the right side of the figure is just dummy data
between 0 and 1 to showcase how the frameworks works together.

Figure 5.2: Node-RED Pilot Demonstrator 1

For the second pilot demonstrator seen in figure 5.3, we can see it looks similar
to the first pilot demonstrator. Only this time we have four properties with
readonly functionality.

Figure 5.3: Node-RED Pilot Demonstrator 2

42

The third pilot demonstrator seen in figure 5.4, we can see its as simple as only
two properties assigned the read property nodes. This showcases that even the
smallest sensors have an easy way into the Node-RED framework, and can be
easily manipulated by the same framework.

Figure 5.4: Node-RED Pilot Demonstrator 3

The fourth and last pilot demonstrator seen in figure 5.5 looks similar to the
first pilot demonstrator. The only difference is the amount of properties. It
as well has a connection with the ThingWeb API through WebSocket for the
event.

Figure 5.5: Node-RED Pilot Demonstrator 4

43

All the thing descriptors are executed on the same server, and trying to reach
the framework will give the user the option to pick which sensor to use. This
showcases that even with new sensors being added, it will not impact the other
sensors currently in use. This also means that the gateway which the framework
is put up on can support multiple sensors in an easy way.

Its important to address that the thing descriptors produced by eclipse Thing-
Web are not solely locked to Node-RED. As a matter of fact, any new framework
that is produced by the standards of W3C will be compatible with the prototype
created in the ThingWeb framework. This makes the prototype quite robust, in
the case where its easy to update and customize to changes in the future. This
also opens up the possibility to move to a better framework if someone would
create one.

5.2 Prototype 2 - Mozilla Webthings and Mozilla’s
Gateway

The second prototype uses both frameworks provided by Mozilla. The WebThings
framework is used to produce a thing descriptor which the gateway can pick up
and use in the gateway prototype. The prototype uses dummy data as men-
tioned earlier to simulate the pilot demonstrators and how a real world applica-
tion would be implemented and used in a real scenario. The framework is used
to create an endpoint for the gateway to communicate with the sensors from
the deep sea.

5.2.1 Architecture

For the prototype to work, we first had to use the framework to develop thing
descriptors which followed the schema provided by Mozilla. All the thing de-
scriptors created by the Mozilla WebThings framework can be found in appendix
A. Once the thing descriptors were made, the framework took care of expos-
ing them. By doing this, the framework produces a JSON object which looks
similar to a classic REST API, which can be seen in listing A.9. The exposed
JSON file provides different endpoints for collecting data from the properties
and events exposed by the framework. Trying to use this exposed API created
by the framework alone would demand a lot of work for the developer to use,
and would not necessary be robust. This is where the gateway comes in. The
gateway can be set up on any Linux device with ease, which provides both a
local and a URL which can be accessed over the World Wide Web. The gateway
provides a user interface for handling the pilot demonstrators, and supports the
use of custom rules and add-ons either provided by Mozilla or self developed.

The data flow of this prototype looks the same as the data flow in prototype
one. This means we can revisit figure 5.1, and change Node-RED for the Mozilla
Gateway, and the Eclipse ThingWeb with the Mozilla WebThings framework.

The gateway provides the discovery functionality for adding self-made thing
descriptors, alongside the sensors which the framework supports. As long as
the produced thing descriptor follows Mozilla’s scheme, it will use mDNS to
automatically find the things exposed on the local network. This is not com-

44

pletely necessary for this project. The reason is that the sensors will most likely
be added through IP addresses as the sensors will be located on a different
network than the gateway.

To get the prototype to work, we first have to produce a thing descriptor for the
sensors with Mozillas scheme. This means finding the corresponding properties
compared to what data the sensor provides. As the schema is made for smart
homes, this means we have to adapt it to work with the data provided from
the Smart Ocean sensors, as some properties are not completely supported by
the gateway. We can reuse the property LevelProperty to provide information
which can be interpreted by the gateway, as this is a standard way to provide
information in form of a number. The sensors also lacks the functionality to do
actions, as they are only measurement sensors. This means we can make sure
all the properties are set to readonly, and ignore the usage of Mozillas action
statements.

Logging

The gateway gives a visual representation of the properties, which can be seen
in figure 5.6. This can be manipulated to show the data that the user needs,
anything from CO2 levels to GUW. The user then gets the choice of tracking
the properties by minutes, hours, days and weeks. This log can also be accessed
in the files of the gateway framework to be stored for later usage, as the gateway
tends to delete the logs to prevent small gateways to overextend their capacity.
There is currently no other way to visualise the data, which the framework
supports.

Figure 5.6: ThingWeb Logging

45

Mapping

In figure 5.7 we can see how the mapping functionality can be used in a real
case scenario. By uploading a map of where the sensors will be placed, one can
then drag the sensors to the desired location for a better understanding of the
infrastructure. Unfortunately the sensors can not be scaled down in size, which
means including more sensors will make the map hard to read in the future as
the map will be overfilled. For this thesis, this functionality wont be as useful,
as the sensor will only be available to show one property on the map. And as
seen earlier, there is not a good way to specify which property this will be.

Figure 5.7: ThingWeb Mapping

Pilot Demonstrators

The listing A.9 is the thing descriptor for the first pilot demonstrator created
for this prototype. As we can see, this thing descriptor is a little different from
the standard WoT thing descriptor. It looks similar and works the same way
as the thing descriptors created by W3C, but only uses the necessary fields
which the gateway needs. This is because Mozilla has stated that the W3C’s
scheme is too generic, which is not optimal for their platform. This means their
framework only supports WebSockets and HTTP, which can not be changed.
It also does not use forms to provide the URL of the endpoint of the property,
which tends to be dynamic if suddenly the IP addresses change. Because of this,
Mozilla is using a dynamic approach of linking all the endpoints with URN’s,
as seen in listing 5.6. But it is also composed of five properties and one event to
provide the functionality which the sensor provides, just like in the ThingWeb
and Node-RED prototype.

32 ” l i n k s ” : [
33 {
34 ” r e l ” : ” property ” ,

46

35 ” h r e f ” : ”/ p r o p e r t i e s /Temperature”
36 }
37] ,

Listing 5.6: Linking in the thing description for WebThings of the first pilot demonstrator

As we can see in listing 5.7, every property and event gets their own referential
link to access the data provided from the sensor. The JSON-LD annotation
@type is used for the gateway to get information from Mozillas scheme to ensure
the thing descriptor is created in the correct way. The JSON-LD @type is
essential for the framework to work with the gateway, as it ensures the thing
descriptor provided will follow the syntax which the gateway uses.

26 ” p r o p e r t i e s ” :{
27 ”Temperature” :{
28 ” un i t ” : ” degree c e l s i u s ” ,
29 ”@type” : ” TemperatureProperty ” ,
30 ” d e s c r i p t i o n ” : ”The cur rent temperature in c e l s i u s ” ,
31 ” readOnly” : true ,
32 ” l i n k s ” : [
33 {
34 ” r e l ” : ” property ” ,
35 ” h r e f ” : ”/ p r o p e r t i e s /Temperature”
36 }
37] ,
38 ” t i t l e ” : ”Temperature” ,
39 ” type ” : ”number”
40 } ,

Listing 5.7: Properties in the thing description for WebThings of the first pilot demonstrator

All the sensors have their own dashboard showcasing the sensor data from the
things, which also can be used along logging, rule-set and mapping. All the
examples look quite similar to each other, with the difference being the different
properties and events. What is special about each case is that in this prototype,
each property has to be assigned a type for the gateway to understand what
type of data to showcase.

Figure 5.8 shows a clearer picture how the first pilot demonstrator is used in
the gateway. The number in the center is a random property picked by the
framework from the properties provided for the gateway. For the time being
it seems like this cannot be changed to something specific. As we can see in
the figure, temperature, CO2 level has been assigned visual boxes alongside the
value from the sensor. The other properties did not have any specific type which
the Mozilla scheme supported. This meant we had to use LevelProperty to show
the data, without any visuals.

47

Figure 5.8: Pilot Demonstrator 1 in the WebThings Gateway

In the second pilot demonstrator seen in figure 5.9, we can see the LevelProp-
erties in action, as well as the FrequencyProperty datatype as the framework
supports.

Figure 5.9: Pilot Demonstrator 2 in the WebThings Gateway

The third pilot demonstrator is the smallest one out the four, as we can see in
figure 5.10. It uses both the FrequencyLevel and LevelProperty as datatypes
for the properties.

48

Figure 5.10: Pilot Demonstrator 3 in the WebThings Gateway

Last but not least, we have the fourth pilot demonstrator as seen in figure 5.11.
This one also only has two properties as the last one, with the event of gas
leakage as well.

Figure 5.11: Pilot Demonstrator 4 in the WebThings Gateway

We can also see in the figures 5.8 and 5.11 that the gas leakage event works as
intended. The gas leakage will update itself by sending updates to the gateway
when the condition is met. The gateway then sends a pop-up to the gateway
with the condition and a timestamp for the event. This event can also be set
to a custom ruleset, to do actions as desired when the condition is met.

49

Chapter 6

Implementation and
Deployment

In this chapter we go through the prototypes introduced in chapter 5 and explain
how they are implemented and how they can be deployed. As both of the
prototypes has frameworks not requiring code, this means that this chapter is
important to execute and replicate the prototypes.

6.1 Implementation

In this section, we cover what the code in the prototypes does, and what one
can do to manipulate them to ones needs. We will also showcase how to set up
the different frameworks.

6.1.1 Prototype 1 - Node-RED and Eclipse Thingweb

The first prototype is based on the ThingWeb framework and the Node-RED
framework. We start by addressing the ThingWeb framework as it is important
to expose a thing before consuming them.

Implementation of the ThingWeb

The ThingWeb framework gives a simple tutorial on how to expose a thing [36],
but this is the only documentation they provide. This means we have to start
looking through the examples they provide to figure out how the framework
actually works. The framework is quite simple once we see how the different
components works. It is put together by a servient which handles the different
binding servers provided by the framework.

Listing 6.1 shows the code needed to get the framework to create a servient with
a HTTP and WebSocket server. In lines 1-5 of the code we can see our four pilot
demonstrators being implemented. We will be going into further details on those
below. The most important part is line 7, where we integrate the framework into
our prototype. With this comes the tools we need like binding protocols, server

50

objects and our way to expose the pilot demonstrators. This implementation
grabs the framework as a library, downloaded by the npm package manager. We
do not need to have the entire framework in our project, which makes the project
a lot easier to read. In lines 10-21, we can see how we use the framework to set
up a HTTP server and WebSocket server as explained in chapter 5. This is how
we use the binding protocols provided by the framework. We can easily change
this based on which protocols we need to consume. In lines 24-29, we initiate
the thing descriptors for the pilot demonstrators, and passes the ThingWeb
framework along to further use its functions in the thing descriptors. This is
how we make the framework instantiate several thing descriptors at the same
time.

1 // Implementation o f the Thing
2 TD1 = r e q u i r e (” . / d i s t /TD1. j s ”) . WotDevice
3 TD2 = r e q u i r e (” . / d i s t /TD2. j s ”) . WotDevice
4 TD3 = r e q u i r e (” . / d i s t /TD3. j s ”) . WotDevice
5 TD4 = r e q u i r e (” . / d i s t /TD4. j s ”) . WotDevice
6

7 Se rv i en t = r e q u i r e (”@node−wot/ core ”) . S e rv i en t
8

9 // Importing o f the b ind ings
10 HttpServer = r e q u i r e (”@node−wot/ binding−http ”) . HttpServer
11 WebsocketServer = r e q u i r e (”@node−wot/ binding−websockets ”) .

WebSocketServer
12

13 // Creat ing the i n s t a n c e s o f the binding s e r v e r s
14 var httpServer = new HttpServer ({ port : 8080}) ;
15 var websocketServer = new WebsocketServer ({ port : 8081}) ;
16

17 // Bui ld ing the s e r v i e n t ob j e c t
18 var s e r v i e n t = new Se rv i en t () ;
19 //Adding the d i f f e r e n t b ind ings to the s e r v e r
20 s e r v i e n t . addServer (httpServer) ;
21 s e r v i e n t . addServer (websocketServer) ;
22

23 // S ta r t i ng the s e r v i e n t s
24 s e r v i e n t . s t a r t () . then ((WoT) => {
25 td1 = new TD1(WoT, TD DIRECTORY) ;
26 td2 = new TD2(WoT, TD DIRECTORY) ;
27 td3 = new TD3(WoT, TD DIRECTORY) ;
28 td4 = new TD4(WoT, TD DIRECTORY) ;
29 }) ;

Listing 6.1: The servient server in the ThingWeb framework

The code for the thing descriptors made for the pilot demonstrators has been
shortened for presentation purposes, but can be found complete in appendix
B. We will only cover the code for the first pilot demonstrator, as all the pilot
demonstrators are quite similar.

The things created through the framework is implemented in TypeScript, with
Node compiling it to JavaScript at run time. This can be changed based on
what JavaScript version one desires in the tsconfig file of the prototype. This
makes the development process a little easier, as TypeScript tends to be more
understandable for a developer to use. We could also directly use the framework
in a JavaScript prototype.

The package.json file takes care of specifying the required packages like the

51

framework and the desired binding templates to be used during development.
We also have to make sure to implement the right binding template framework
in this file, if one desired another protocol for the exposed thing descriptor.

In listing 6.2, we can see how the thing descriptor is implemented into the
framework. It looks the same as the thing descriptor presented in chapter 4
on the case studies. This thing descriptor is made by following WC3’s scheme
and has to be created and put into the framework for it to work. This means
adding any new properties, also requires manipulation of the thing descriptor.
The thing descriptor is the metadata of the sensor, which is not automatically
created. There also exists possibilities to add different parameters to the prop-
erties and events like required, format and const variable. This is where we have
to add the security description before implementing it through the framework.
Its important to note that if the W3C’s scheme gets updated, this means we
have to change the versioning in the @context parameter, and update the thing
descriptor accordingly. Creating the thing descriptor is what will take the most
amount of effort to do, as one has to analyse what is needed for the prototype
beforehand, and create the thing descriptor accordingly.

15 this .WoT. produce (
16 {
17 ”@context” : [
18 ” https : //www. w3 . org /2019/wot/ td/v1” ,
19 { ”@language” : ”en” }
20] ,
21 id : ”PD1: th ing ” ,
22 t i t l e : ”PD1” ,
23 d e s c r i p t i o n : ” P i l o t Demonstrator 1” ,
24 p r o p e r t i e s : {
25 CO2: {
26 type : ” i n t e g e r ” ,
27 d e s c r i p t i o n : ” cur rent CO2 value ” ,
28 obse rvab l e : false ,
29 readOnly : true
30 } ,
31 Temperature : {
32 type : ” i n t e g e r ” ,
33 d e s c r i p t i o n : ” cur rent Temperature va lue in Ce l c iu s ” ,
34 obse rvab l e : false ,
35 readOnly : true
36 } ,
37 pH: {
38 type : ” i n t e g e r ” ,
39 d e s c r i p t i o n : ” cur rent pH value ” ,
40 obse rvab l e : false ,
41 readOnly : true
42 } ,
43 Gravity : {
44 type : ” i n t e g e r ” ,
45 d e s c r i p t i o n : ” cur rent G f o r c e va lue in m/ s ˆ2” ,
46 obse rvab l e : false ,
47 readOnly : true
48 } ,
49 S a l i n i t y : {
50 type : ” i n t e g e r ” ,
51 d e s c r i p t i o n : ” cur rent S a l i n i t y value in par t s per

thousand” ,
52 obse rvab l e : false ,
53 readOnly : true

52

54 }
55 } ,
56 events : {
57 GasLeakage : {
58 type : ” boolean ” ,
59 d e s c r i p t i o n : ”Warning from gas l eakage ”
60 }
61 }
62 }

Listing 6.2: Thing Descriptor for the first pilot demonstrator in the ThingWeb framwork

After the framework has been instantiated, we can expose the different prop-
erties and events with desired values, as seen in listing 6.3. This is where we
take care of adding the right properties and events to the different placeholders
in the thing descriptor. This means that once the framework exposes the thing
descriptor, each interaction affordance gets linked to a function in the prototype
which emits a value.

63) . then ((exposedThing)=>{
64 this . th ing = exposedThing ;
65 this . td = exposedThing . getThingDescr ipt ion () ;
66 this . a d d p r o p e r t i e s () ;
67 this . add events () ;
68 this . th ing . expose () ;
69 i f (tdDi rec to ry) { this . r e g i s t e r (tdDi rec to ry) ; }
70 }) ;
71 }

Listing 6.3: Exposing the thing descriptor in ThingWeb

Once the framework has been instantiated and exposed, we also have to make
sure it gets registered to the framework as seen in listing 6.4. This is done by
using the ThingWeb framework to register the WoT thing to the HTTP and
WebSocket servers created. If this fails, it will post the error to the console and
try again within 10 seconds. This is useful if the prototype would require some
time to set up its functions to retrieve the data from the sensors on the bottom
of the ocean.

74 public r e g i s t e r (d i r e c t o r y : s t r i n g) {
75 conso l e . l og (” R e g i s t e r i n g TD in d i r e c t o r y : ” + d i r e c t o r y)
76 r eque s t . post (d i r e c to ry , { j s on : this . th ing .

getThingDescr ipt ion () } , (e r ro r , response , body) => {
77 i f (! e r r o r && response . statusCode < 300) {
78 conso l e . l og (”TD r e g i s t e r e d ! ”) ;
79 } else {
80 conso l e . debug (e r r o r) ;
81 conso l e . debug (re sponse) ;
82 conso l e . warn (” Fa i l ed to r e g i s t e r TD. Wil l t ry again

in 10 Seconds . . . ”) ;
83 setTimeout (() => { this . r e g i s t e r (d i r e c t o r y) } ,

10000) ;
84 return ;
85 }
86 }) ;
87 }

Listing 6.4: Registering the thing descriptor to the ThingWeb framework

53

Adding data to the interaction affordances, is done by the code shown in listing
6.5 and listing 6.6. Currently they are only random sensor data values and
random intervals, but once the sensors on the ocean floor has been set up, one
just have to link these towards the data. As seen in listing 6.5, we set an interval
for each second to change the value CO2 in the thing descriptor. Listing 6.6 is
similar, where we can see an event being emitted once a random number above
50 is given. This is only to showcase how the constant update of values will
impact the prototype, as we currently do not have access to the smart ocean
sensor data.

88 private a d d p r o p e r t i e s () {
89 //Random va lue s generated to the p r o p e r t i e s to emit
90 s e t I n t e r v a l (() => {
91 this . th ing . wr i teProperty (”CO2” , Math . random () . t oS t r i ng ()) ;
92 } , 1000) ;

Listing 6.5: Adding properties to the thing descriptor

106 private add events () {
107 // I n t e r v a l s e t f o r when the event w i l l emit
108 s e t I n t e r v a l (() => {
109 i f (Math . f l o o r (Math . random () ∗ 101) > 50) {
110 this . th ing . emitEvent (”GasLeakage” , true) ;
111 }
112 } , 3000) ;
113 }
114 }

Listing 6.6: Adding event to the thing descriptor

Configuration of the Node-RED

The configuration of the Node-RED framework is a bit different from the Thing-
Web implementation. The reason is that Node-RED does not require any code
to run, because its a visual dataflow tool. This means we only have to get
the framework to run, install the required extensions, and then use the nodes
provided. Explanation on how to do this will be given further into this thesis.

Once this is done, we can start using the Node-RED framework along with the
thing description from the ThingWeb. The first thing we have to do is to figure
out the IP address which the ThingWeb framework is hosted at. Once this is
done, we can drag out the write property node and a WebSocket in node from
the node selection menu.

We then doubleclick the readproperty node to open the edit window for the
node. Here we continue clicking on the pencil beside thing. Once we are here,
we get the screen seen in figure 6.1. Now we can add the IP address of the first
pilot demonstrator for the node to consume it. It will then automatically fetch
the thing descriptor from the ThingWeb framework and the node will act as the
sensor itself.

54

Figure 6.1: Node-RED readProperty config screen

From here we can head back to the property edit window. If done correctly,
the properties and settings will automatically be added. Then we can pick
which property we want to showcase in the property dropdown box, as seen in
figure 6.2. After this is done, we can select the interval in which the Node-RED
framework fetches the data.

Figure 6.2: Node-RED readProperty edit screen

For the WebSocket node, we doubleclick it to open up the edit window as shown

55

in figure 6.3. We then have to go into the thing descriptor and find the specific
endpoint for the WebSocket and add this to its path. Once this is done, click
done and the node should be fully functional.

Figure 6.3: Node-RED WebSocket edit screen

In the end, we grab the desired nodes to manipulate the data provided from the
ThingWeb framework. In our case, we just use a simple debug node to make
sure the connection is set up properly and that the ThingWeb framework sends
out the data we desire.

6.1.2 Prototype 2 - Mozilla WebThings and Gateway

The second prototype is based entirely on the frameworks provided by Mozilla.
This means that the frameworks work quite well with each other in terms of
interoperability. As the gateway is a standalone framework for creating smart
houses, this means it can also run stand-alone without the use of the WebThings
framework. The gateway was originally not built with WoT in mind, but has
given the developers the tools needed to use it.

The prototype is split into two parts as mentioned earlier. One application
for exposing things as thing descriptors, and one standalone application for the
gateway itself. The gateway is already a stand-alone application, which means
we only have to configure it to allow WoT devices to connect to it.

Mozilla WebThings

We will start by going through the implementation of the WebThings applica-
tion. As Mozilla WebThings supports multiple programming languages, we have
decided to go with Java, as its the programming language most developers are
familiar with. We will start going through the code, explaining what each sec-
tion does, and how one can reuse it. The four pilot demonstrators looks similar
in implementation, which is why we will only cover the first pilot demonstrator.

56

As Java does not support the use of frameworks like JavaScript packages seen in
our last prototype, this means we have to import the entire framework into our
application to get it to work. The implementation looks similar to the ThingWeb
implementation, in the way where we have to manually create a thing descriptor
for each sensor before we can start exposing them.

We now go through the code and explain how we use the framework to expose
things through WoT. We use the framework to create a thing object as seen in
listing 6.7. This object is going to take care of keeping track of all the interaction
affordance for the sensor. It allows us to save all the properties and events in a
mapping list in the object. This object is also going to handle the exposure of
the thing descriptor made.

39 Thing th ing = new Thing (”PD1” ,
40 ”PD1” ,
41 new JSONArray(Arrays . a s L i s t (” Mult iLeve lSensor ”)) ,
42 ” Sensor f o r underwater techno logy ”) ;

Listing 6.7: Defining the WoT thing in WebThings

Then we have to add the properties to the thing object. The properties do have
to follow the schema from Mozilla, the same way as ThingWeb framework had
to follow WC3’s schema. An example on how this can be done can be seen in
listing 6.8, where we add the name of the property and its parameters. We also
link the property to the object, alongside the public value data from the sensor.
As we can see in the code, we also make sure to instantiate the value to 0 as
seen in line 95 to prevent errors.

88 JSONObject temperatureProperty = new JSONObject () ;
89 temperatureProperty . put (”@type” , ” TemperatureProperty ”) ;
90 temperatureProperty . put (” t i t l e ” , ”Temperature”) ;
91 temperatureProperty . put (” type ” , ”number”) ;
92 temperatureProperty . put (” d e s c r i p t i o n ” , ”The cur rent

temperature in c e l s i u s ”) ;
93 temperatureProperty . put (” un i t ” , ” degree c e l s i u s ”) ;
94 temperatureProperty . put (” readOnly” , true) ;
95 temperatureLeve l = new Value <>(0.0) ;
96 th ing . addProperty (new Property (thing , ”Temperature” ,

temperatureLevel , temperatureProperty)) ;

Listing 6.8: Adding properties to the thing descriptor in WebThings

In this prototype, we add random numbers to simulate how its possible to pro-
vide the data, as seen in listing 6.9. This function is currently just a placeholder,
but if the prototype should be used, then this is where one adds the function to
retrieve the data from the actual sensor.

166 private stat ic double readTemperature () {
167 return Math . abs (7 0 . 0 d ∗ Math . random () ∗ (−0.5 + Math . random

())) ;
168 }

Listing 6.9: Updating properties for the thing descriptor in WebThings

The implementation of adding events to the thing object works the same way
as the adding properties as seen in listing 6.10. The only difference being that

57

we do not assign any value to the event, as it will be emitted once a condition is
satisfied. This means we can add the condition in any other function, and emit
it alongside updating the property value.

44 //Event
45 JSONObject gasLeakageProperty = new JSONObject () ;
46 gasLeakageProperty . put (” d e s c r i p t i o n ” ,
47 ”Event f o r GasLeakage”) ;
48 gasLeakageProperty . put (” type ” , ” boolean ”) ;
49 th ing . addAvai lableEvent (”GasLeakage” , gasLeakageProperty) ;

Listing 6.10: Adding events to the thing descriptor in WebThings

Once we have added all the necessary properties and events to our things, we
can start the things functions as seen in listing 6.11. This is done by starting
a thread in the object, which fetches the new data every 3 seconds. Once the
data has been fetched, we also have to make sure to notify the thing to emit an
update by calling the notifyOfExternalUpdate function, to change the value in
the exposed thing. We can also see how the process emitting events work, as
we add a condition and update the event with a value.

116 // Star t a thread that p o l l s the s enso r read ing every 3
seconds

117 new Thread (() −> {
118 while (true) {
119 try {
120 Thread . s l e e p (3000) ;
121 // Update the under ly ing value , which in turn

n o t i f i e s
122 // a l l l i s t e n e r s
123 double newLevel = readCO2 () ;
124 double newGravity = readGravity () ;
125 double newpH = readpH () ;
126 double newTemperature = readTemperature () ;
127 double newSa l in i ty = r e a d S a l i n i t y () ;
128 double newTurbit ity = readTurbid i ty () ;
129

130 //Event handler
131 i f (CO2level . get () < 20) {
132 th ing . addEvent (new GasLeakageEvent (thing ,

true)) ;
133 }
134

135 //Update Value
136 CO2level . not i fyOfExternalUpdate (newLevel) ;
137 g rav i tyLeve l . not i fyOfExternalUpdate (newGravity)

;
138 pHLevel . not i fyOfExternalUpdate (newpH) ;
139 temperatureLeve l . not i fyOfExternalUpdate (

newTemperature) ;
140 s a l i n i t y L e v e l . not i fyOfExternalUpdate (

newSa l in i ty) ;
141 t u r b i d i t y L e v e l . not i fyOfExternalUpdate (

newTurbit ity) ;
142

143 } catch (Inter ruptedExcept ion e) {
144 throw new I l l e g a l S t a t e E x c e p t i o n (e) ;
145 }
146 }
147 }) . s t a r t () ;

58

148

149 return th ing ;
150 }

Listing 6.11: Starting the thing in WebThings

Mozilla Gateway

We now consider the gateway application of the prototype. As mentioned ear-
lier, this step only requires configuration of the gateway for the WebThings
framework to work with it. We will explain in chapter 6.2 how to set up the
gateway.

First step is to make sure we have the WebThings add-on installed on the
gateway. To do this, we have to go to the add-on section of the gateway, and
search for the add-on. By adding it, it will configure the gateway automatically
to fetch WebThings devices and use them. If done correctly, the add-on menu
should look like figure 6.4. We can also add other add-ons to support our
devices in this menu, as Mozilla provides many add-ons both for developers and
non-developers.

Figure 6.4: Mozilla Gateway Addon screen

After this process has been completed, we can go back to the sensors menu of
the gateway and start adding the sensors. By clicking the ”add new device”
button, the gateway will automatically start using mDNS to locate any things
on the network, as seen in figure 6.5. But if the sensors are not located on the
network, then we have to add them manually by clicking ”Add by URL...” and
get the IP address from the device running the ThingWeb framework.

59

Figure 6.5: Mozilla Gateway using mDNS

If the sensors are located on the same network, it will show the four things we
created from the ThingWeb framework as seen in figure 6.6. From here we can
rename the things and change the property to Multi Level Sensor or Custom
Thing. By clicking the save button, we will have access to use the devices in
our prototype.

Figure 6.6: Mozilla Gateway found the things by mDNS

From here, we can start using the gateway to add rules to the sensors properties,
adding them to a custom map and start logging specific properties. The final
touch to make the prototype accessible from the World Wide Web is to set a

60

specific domain. We head over to the domain menu in the gateway, and get a
menu like the one in figure 6.7. Here we can set a local URL to be accessed on
the same network, and a remote access URL to accessed from anywhere in the
world.

Figure 6.7: Mozilla Gateway domain menu

6.2 Deployment

We have now covered how the prototypes are implemented based on the frame-
works. In this section we explain how to deploy the prototypes. The tutorial for
deployment is written for Linux and macOS, as Windows has a different way
of deployment. The optimal prototype would be to run a virtual machine or
docker on Windows to get the prototypes working.

6.2.1 Prototype 1 - Node-RED and Eclipse Thingweb

We start by explaining how to deploy the first prototype. Follow the following
steps to set up the prototype on your own device;

1. Start by going to the appendix B and download the ThingWeb code and
Node-RED json export file.

2. Install the latest version of Node.js by typing the following commands in
a terminal;

1 $ c u r l −sL https : // deb . nodesource . com/ setup 10 . x | sudo −E
bash −

2 $ sudo apt−get i n s t a l l −y node j s

61

3. Locate the ThingWeb project on your machine and type the following to
install the dependencies, build the project and run the code;

1 $ npm i n s t a l l
2 $ npm run bu i ld
3 $ npm run s t a r t

4. Install the Node-RED framework on your device by typing the following
into a terminal;

1 $ sudo npm i n s t a l l −g −−unsafe−perm node−red

5. Install the node-red-contrib-web-of-things extension for the Node-RED
framework by typing the following into a terminal;

1 $ npm i n s t a l l node−red−contr ib −web−of−th ing s

6. Start the Node-RED framework by typing the following into a terminal

1 $ node−red

7. Open up a browser and head to the IP address http://localhost:1880.

8. Go to the dropdown menu in the Node-RED framework and click on im-
port flows. From here, import the JSON export file downloaded earlier.

6.2.2 Prototype 2 - Mozilla WebThings and Gateway

For the second prototype, we have to set up a Java environment to get the
WebThings framework to run. If we follow these steps, one will get the same
prototype as seen in this thesis;

1. Start by going to the appendix B and download the WebThings code.

2. Install a JDK from a official site [13].

3. Head into the project and locate the Pilot Demonstrators.java in a termi-
nal and run the following code;

1 $ javac Pi lotDemonstrators . java

4. Run the project by running the following code in terminal;

1 $ java Pi lotDemonstrators . java

5. Download the Gateway application WebThings github [45] and follow the
instructions on the GitHub to get it running.

6. Open up a browser and head to https://localhost:4443, and follow the
instructions for creating your Gateway

7. Head to the Gateway menu and head to the add-ons section. Download
the WebThings addon.

8. Head back to the main page at the Gateway, and it should locate the
devices.

62

http://localhost:1880
https://localhost:4443

Chapter 7

Evaluation

In this chapter, we cover the different evaluation criteria needed to answer the
research questions introduced in chapter 1.2.1. As we have created two proof
of concept prototypes without the possibility of comparing to existing solutions
with benchmarks, this means that we have to find qualitative criteria to evaluate
the technology.

7.1 Evaluation Criteria

Before we can evaluate the technology, we have to define the criteria to be
used for evaluation of the prototypes. In this section, we explain which criteria
we decided to use, and how we will use them to undertake the evaluation.
The process will involve a scoring system between one to five, where five is
the best score while one is the lowest, to get a final evaluation of both the
prototypes. The summary score in this chapter is a score based on our experience
during development with the frameworks. Our evaluation criteria is based on the
evaluation from the ISO/IEC 25010 standard which is the system and software
quality requirements and evaluation standard [16]. It provides a quality active
model with different categories for analysing software quality. We have selected
three categories which will become useful for analysing the frameworks in this
thesis.

7.1.1 Maturity

This criteria evolves around the maturity of the frameworks. This is one of the
three categories provided by the ISO 25010 standard and considers to which
degree the component meets the needs for reliability under normal operation.
DZone gives a good tutorial on which factors to look at to measure the maturity
of software [28], which will be used for the evaluation. We will be using its
software maturity model to analyze the frameworks used for the prototypes.
This means giving a subjective judgement on the frameworks, based on the
information they provide. We will also be going trough the World Wide Web
to figure out how many people are actually talking about the frameworks, and
estimate how many people that actually use the frameworks. Another important

63

aspect of analysing the frameworks will be to check how often they update the
frameworks, and how long time different features take to be implemented. We
will also be doing an estimation on how many people work on the frameworks,
to assess how popular the frameworks are relative to each other.

7.1.2 Documentation

The documentation criteria evolves around the information the framework pro-
vides for the developer. Here, we will analyze what kind of documentation each
framework provides, how difficult it is to follow and what the developer has to
do to use the framework. We will also be covering how much the developer has
to do outside the documentation to get the different frameworks to work, as
well as comments in the framework code.

7.1.3 Amount of code

In this criteria, we consider the amount code that needs to be written by the
developer. Here we will analyze the different frameworks helping functions, and
how much code the frameworks saves the developer from writing compared to if
the developer had to code the solution from scratch. This criteria also evolves
around how much code is needed to get the different frameworks to work. As
two of the frameworks; Node-RED and Mozilla Gateway requires, no code for
their usage, this step will not be considered for these frameworks as they wont
be useful evaluating them for this criteria.

7.1.4 Learnability

Here we will be evaluating the learning curve of the frameworks, and what one
needs to learn to eventually use the frameworks. This is also one of the categories
provided by the ISO 25010 standard and assess to which degree a system can
be developed by the developer to achieve its goal of learning to be used. We
will be discussing this criteria alongside the documentation criteria and how the
frameworks works to evaluate how difficult it would be for a new developer to
start using the framework. We also need to involve the WoT technology here,
as we will be using it alongside the frameworks.

7.1.5 Automation

In this criteria we will evaluate how much automation the framework is able to
provide. This can be anything from functions to automatically taking care of
some action, to how easy the build process for the framework is. We will also go
into details on the level of automation which the different frameworks provides.

7.1.6 Security

Here, we will be evaluating the security of the different frameworks. This is one
of the categories provided from the ISO 25010 standard and consider to which
degree the system protects the information and data. Here, we will analyze
which known security holes each framework has based on the top ten OWASP

64

security vulnerabilities [27]. This means using third party software like Sonar-
Qube and OWASP ZAP to analyse the frameworks in the prototype and get
into details on where different security holes could be located, as finding the vul-
nerabilities ourselves would take too long time. SonarQube analyses the code
for vulnerabilities and known bugs which could be exploited. While OWASP
ZAP takes care of analysing the browser applications for known security issues.
We will also be covering security issues found during development and usage of
the frameworks. The size of the smart ocean project is large, which makes this
criteria quite important for evaluating if the frameworks should be used or not.

7.2 Evaluation of frameworks

In this section we only cover the frameworks used for our prototypes, as the
rest has not been touched in this thesis. This will involve the four frameworks
Mozilla WebThings, Mozilla Gateway, Eclipse ThingWeb and Node-RED.

7.2.1 Eclipse ThingWeb

First out is the Eclipse ThingWeb framework. As this framework demanded
code, this means we will be analysing the amount of code needed to get the
framework to work.

Maturity

We start by evaluating the Eclipse Thingweb by going through the criteria
explained in the section 7.1. The first criteria to be evaluated is the maturity
of the framework. We can easily see by going through the GitHub repository of
the framework that it is not as big as we would expect for being the framework
that closest follows W3C’s definition of WoT. The framework has gone through
16 releases, with the first release in 2018. It is still being updated regularly, with
the latest update released in March 2021. It does not have the biggest numbers
of contributors for being an open-source framework, with only 21 contributors.
For being one of the leading frameworks within WoT, having such small numbers
seems to indicate a low maturity for the framework. We can further see this
by looking at the amount of people talking about the framework on one of the
most popular site for developers, Stack Overflow [34]. With a google search we
only get about eight pages, which means that there is close to none forum posts
about people discussing bugs with the framework, or how to use it.

Given the information gathered and how much popularity the framework has
gotten over the years, means its maturity is still on the weak side. It neither
looks like the frameworks maturity and popularity will increase a lot in the
coming years. For this reason, we give the framework a two out of five in
maturity rating.

Maturity Score

65

Documentation

The next criteria we will be looking at is the documentation of the framework.
The framework has little to none documentation by itself, and references itself to
the W3Cs definition of WoT. This means that the framework uses the definition
from W3C as documentation for the development of the framework. This creates
some issues as W3C does not cover everything the ThingWeb framework does
or how to use the framework itself. For example, how to implement different
binding-templates. W3C does not cover this in technical details, which means
we have to go through the examples from the ThingWeb framework in order
to understand how the framework is technically used. The idea of using the
W3C as documentation is not a bad idea as it gets quite technical defining the
different building blocks for the WoT technology. But problems occur once we
get a little bit more technical than what W3C intended their documentation to
cover. Based on the information out there, we give the framework a two out of
five.

Documentation Score

Amount of code

For the third criteria, we will be looking at the amount of code needed to get the
framework to work. From the implementation of the framework in subsection
6.1.1, we get the general idea on how much code is needed to get a basic solution
working. The framework takes care of most of the functionalities needed to get
a WoT produced thing descriptor working, with just few new code lines. Most
of the code comes from the implementation of a thing descriptor, where we
have to go through the definition created by W3C, and create one according
to its scheme. The framework then takes care of the rest. It also converts
TypeScript to JavaScript, which decreases the amount of code which is needed,
as the compiler makes sure the code is converted correctly. If we look at the
framework used in the prototype, we can see that pilot demonstrator one only
required 129 lines of code. Based on this, we conclude that the amount of code
to create an application with the framework gets the score four out of five.

Amount of code Score

66

Learnability

The learnability of the framework works alongside the second criteria of documenta-
tion. As the documentation is not properly made, this means that the learning curve is
a little more steep than what is necessary for the framework. The framework is almost
straight forward from the examples the framework provide. But it also means that the
developer needs to have some background knowledge on TypeScript to understand the
core functionalities of the framework, and how the different functions work alongside
each other. The learning curve also increases based on how mature the framework is,
as there is few people out there who can help new developers. For this reason, we
give the learnability criteria an two out of five, as its not very friendly towards new
developers.

Learnability Score

Automation

There is little automation provided by the framework except from the servient au-
tomatically exposing a thing descriptor once its made. We can in a way say the
framework converts TypeScript to JavaScript also is an automation process. Because
of this, we will give the framework only three out of five on this criteria.

Automation Score

Security

This framework provides no user interface through a browser which means we can omit
the usage of browser when analyzing the security on the framework. We therefore shift
our focus to bugs in the code and bad code created by the developers. If we scan the
latest version of the framework with a third party software like SonarQube, we can
see how much work the framework needs to be perfected. Along this, the framework
supports the possibility for adding security to the thing descriptor. This means that
if the thing needs to be accessed publically, we can add authentication directly to the
thing descriptor, making security through data flow safer and customisable.

As we can see in figure 7.1, the framework is close to perfection with no critical
vulnerabilities detected in the code. It has a few common bugs and some code smells
which could easily be fixed and which does not cause any critical vulnerabilities. The
fact that the code has no vulnerabilities found by SonarQube means it is quite stable
compared to a lot of frameworks made. The security hotspot is just code which the
developer needs to make sure does not leak any sensitive information to the public.
By going through the code ourselves, we can see there is nothing critical to comment
on. As for this, we give the framework a four out of five on the security aspect of the
evaluation.

Security Score

67

Figure 7.1: SonarQube scan of the ThingWeb framework

Summary

Based on the earlier criteria, we can conclude the framework is not the most useful one
out there. In particular, it does not have a lot of popularity for development. But the
positive thing is that the developers who are updating the framework manage to keep
the framework quite stable. Based on this information, we conclude the framework
gets an overall score of three out of five.

Summary Score

68

7.2.2 Node-RED

The second framework to be analysed is the Node-RED framework. As this framework
provides a browser dashboard for the user means, we will be using OWASP ZAP to
scan for vulnerabilities.

Maturity

Node-RED is a more mature framework than Eclipse ThingWeb. The framework got
119 different released versions on GitHub, with the latest being from May 2021. The
project is being worked on by over 100 people at its open source GitHub repository.
The framework also got over 1900 tags on Stack Overflow for different problems devel-
opers have encountered. But if we were to see how the framework handled WoT, then
the process would be a little different. In order to get the framework to support the
technology, we have to use external extensions alongside the framework. The external
framework only has four contributors, with no official versions released for the public.
As this extension is needed to get the technology to work with the framework, we also
have to consider it as a part of the evaluation. Because of this, we decided to give the
framework and extension a maturity level of three out of five.

Maturity Score

Documentation

Just like the last evaluation criteria, we have to evaluate both the extension and the
framework as they are both needed to make the WoT technology work. First we
start by looking at the documentation for the Node-RED framework. The Node-RED
framework has plenty of tutorials, YouTube guides, example project and installation
tutorials for multiple platforms. Every single node has a detailed explanation to them
and how to use them, and they even have frequently asked questions on how one can
use the different nodes. The documentation is written in a way which is easy to go
through. Compared to the rest of the frameworks looked at in this thesis, this may be
the best written documentation.

The extension is quite minimalistic in its documentation. It only provides some simple
images on how to use the external nodes, and some tips on how to use the extension.
It only covers the bare minimum to get the extension to work, which is sufficient for its
purpose. All in all, if we look at the documentation of the framework and the extension
combined, its safe to say it at least deserve a four out of five on documentation level.

Documentation Score

69

Learnability

As the documentation is fearly well written, this means the only thing one has to
figure out is how one wants to use the framework. The framework demands no code,
only the knowledge on how to get the application started, on which there is plenty
of documentation. This is positive, as it means the developer can focus on learning
ThingWeb and not spending a lot of time trying to get a second framework to work.
One still has to understand how to code on a minimum level to use Node-RED, which
means basic understanding of if-cases, rules and variables. Beyond this, the framework
has one of the simplest learning curves. And because of this, we give the framework a
five out five in learnability.

Learnability Score

Automation

The framework itself takes care of automating most of the things with its nodes. The
only thing we have to configure to get it to work is the configuration of the nodes.
The extension also adds a new level of automatisation of the framework, where it
automatically fetches the exposed thing descriptor and consumes it for the developer.
It then automatically shows all the functionalities the thing has, and gives the user the
option to choose which one to use. The framework itself is made for data flow, which
means its core purpose is to simplify a lot of actions by automatisation. Because of
this, we give the framework five out of five for automation.

Automation Score

Security

The framework itself can be deployed locally on a computer or to the cloud. This means
that security in the browser is not too important if ran locally on a private network
and being unavailable for the public. But once we decide to open this service to access
it from outside the local network, we need to start thinking about the security of the
software. This means we have to analyse the framework to check for any critical bugs
or errors which could lead to data leakage or remote access. There is no authentication
to access the dashboard, which means that once one has access to the dashboard, one
has access to all the data it provides. This could lead to some serious data leakage.

If we take a closer look at the framework with SonarQube as seen in figure 7.2, we
can see that the framework itself is pretty stable with few bugs. The bugs given
are just simple developer bugs which would not cause any critical security errors. The
framework itself is getting a D from the SonarQube framework, but by looking through
these, it would not cause any huge issues based on what the Node-RED framework will
be used for. The reason why the score is so low, is based on how critical the framework
evaluates the bugs found. The software should never have any bugs to begin with,
but none of the bugs found would make a huge impact on the overall security of the
framework.

70

Figure 7.2: SonarQube scan of the Node-RED framework

As mentioned earlier, we also have to do a OWASP ZAP scan on the framework as
seen in figure 7.3, to investigate if the web solution itself could cause any critical
security errors if retrieved. It gives out some errors where the framework itself is not
securely made to prevent cross site scripting attacks. But if the attacker has retrieved
the dashboard, a cross site scripting attack would not be too critical, as the attacker
would already have access to all its data.

Figure 7.3: OWASP ZAP scan of the Node-RED dashboard

71

Because of these findings from OWASP ZAP and SonarQube, we give the framework
a three out of five while evaluating the security aspect of the framework. The main
reason is that there has been no countermeasures to prevent any attackers from doing
malicious things once they reach the dashboard. This could be fixed by making the
user authenticate themselves before entering the dashboard.

Security Score

Summary

The framework itself is pretty well made for its intention, and the support of the WoT
extension makes it even more suitable for the technology. The framework does its job
quite well, and is the most popular framework we have been looking into in this thesis.
When it comes to the security aspect of the framework, it need some additional work,
especially if it is going to be used for the smart ocean framework. Because of this, the
framework gets a score of four out of five.

Summary Score

7.2.3 Mozilla WebThings

The third on the list is the Mozilla WebThings framework. This framework is the
extension provided by Mozilla to get the WoT technology to work with a Mozilla
Gateway.

Maturity

The maturity of Mozilla WebThings is a little weak compared to the other frameworks
we have discussed. The framework is split into multiple programming languages where
each has their own level of maturity. Because of this, we will only be looking at the
framework used in this thesis, which is the Java framework implementation. The
framework itself got 20 official releases on their GitHub page with 7 different contrib-
utors. The framework got no tags on Stack Overflow, which means finding people who
has the same issue as we, was not the simplest process. The framework also has some
bugs which takes a while for the developers to fix. This means we have to customize
the framework ourselves for different purposes. The framework is made for smart
houses, and are not robust for creating custom solutions like the one in this thesis.
Because of this, we give the framework a one out of five in maturity evaluation.

Maturity Score

Documentation

The documentation for this framework it is almost non-existent. The only documenta-
tion we were able to find, is the information from the GitHub repository. The problem
here is that it only gives small examples on how the framework is used, which leads
to the developer needing to do a lot of research of the code to make it work. This
becomes a problem when trying to create custom solutions, as they only provide the
core information to get it to work for smart houses. Only two examples on how to
use the framework is provided, which makes it hard to create applications that devi-
ates significantly from the examples. The code also has little to none documentation

72

for its functions. This means its a simple step to evaluate the documentation of the
framework, which only gets one out of five in the documentation criteria.

Documentation Score

Amount of code

The framework provides all the classes and objects needed, which means we only have
to implement a limited amount of code to get an application working. We needed
exactly 114 lines of code to get the first pilot demonstrator to work with the framework,
and this includes some boilerplate code. The classes works as intended, and are easy
to use alongside a developer tool. Beyond this, we only have to create functions to
retrieve the data from the sensors. As Java does not have the same functionalities
with external packages like TypeScript, means that this process will demand a little
more code than what the ThingWeb framework would need. Because of this, we give
the framework a three out of five for the amount of code needed to get it to work.

Amount of code Score

Learnability

As mentioned in the documentation criteria, the framework itself does not have any
proper documentation. This means we have to learn everything from scratch to create
custom things for the Mozilla Gateway to use. There are two examples to learn from,
which makes the process at least a little easier. But the fact that the framework has
so few comments for their functions as well, makes it hard to learn. The only reason
one would decide to use this framework would be because it is written in Java, which
a lot of developers tends to have some knowledge about. Because of this, we give the
framework one out of five for the learnability criteria.

Learnability Score

Automation

The sole purpose of this framework is to automatically create a produced thing de-
scriptor which can be consumed by the gateway. For this reason, the framework takes
care of exposing the thing once the thing descriptor has been obtained and connected
to properties to provide information. The framework then takes care of automati-
cally updating the endpoints on the exposed thing descriptor with the necessary data.
Because of this, we give the framework a three out of five for automatising.

Automation Score

Security

As the framework only exposes the thing descriptors made, which means we do not have
to consider browser exploitation with OWASP ZAP. The primary problem with the
framework is the fact that we cannot give the things any security as ThingWeb. This
means that the thing will be public accessible if we do not add any external security to
the framework, except the HTTPS protocol. This can be a security problem, if being

73

overlooked in the final solution, as HTTPS alone is not sufficient to ensure that data
is confidential.

From the SonarQube scan of the framework seen in figure 7.4, shows that the frame-
work only has three small bugs, which does not provide any major security alerts. For
being the framework with the least maturity, it still provides a solution without any
critical vulnerabilities.

Figure 7.4: SonarQube scan of the WebThings framework

Based on what we obtained, we provide the framework with a score of two out of five
at security criteria.

Security Score

Summary

All in all, the framework itself is the only way to get the WoT technology to work with
the Mozillas Gateway. Even though it is not the most mature, easy to learn or best
documentation, it still does its job with providing the technology to Mozillas Gateway.
But there is also a few issues that comes along with the usage of this framework as
discussed in the design of the prototype. As long as the framework continues to be
developed, it may one day reach a stage where it can be used without all the issues.
We give the framework an overall score of two out of five.

Summary Score

7.2.4 Mozilla Gateway

The last framework considered is the Mozilla Gateway. Just as the Node-RED frame-
work, Mozilla gateway provides a dashboard which has to be analysed with OWASP
ZAP. But as its a standalone application it does not need any code to function. This
means that we will exclude the amount of code criteria.

74

Maturity

The Mozilla gateway has been in the development since 2017 and has over 26 official
releases. It has been contributed to by 123 people. The framework itself has gotten
a lot of popularity from different blogs and is one of the more known frameworks out
there for smart house development. There also exists plenty of tutorials on how to
use the frameworks by both Mozilla themselves and from external people on YouTube.
The gateway has gotten significant support from external developers who has created
custom add-ons for the framework. In 2019, there was around 97 add-ons created by
external developers and Mozilla. As Mozilla is quite well known, this also helps with
the popularity of the framework itself. Because of this, we give the framework five out
of five in maturity.

Maturity Score

Documentation

For the documentation of the Mozilla Gateway, Mozilla has added detailed documen-
tation with pictures for everything from user guides to developer guides. They even
provide detailed documentation for creating custom add-ons. It also gives detailed ex-
planation on how to deploy the gateway on the cloud. For this thesis, we only looked
through the guide for setting up a device with Mozilla Gateway, as we only needed
it to be available to use it with Mozilla WebThings. It lacks some documentation
for developers on how to customise the functionalities that the gateway provides, like
where the data logs are saved. Beyond this, it provides all the information needed
both for developers and a common user with sensors. For this, we give the framework
a four out of five in documentation.

Documentation Score

Learnability

As the framework provides detailed documentation on how to set up the framework,
even for a standard developer, it is the framework looked at in this thesis having the
best learnability. One just need to follow Mozillas picture guides for setting up the
gateway, and it provides a wizard for setting it up for the users needs. As it is the
simplest framework to get going, we give it five out of five in learnability.

Learnability Score

Automation

First thing we can address is the fact the framework automatically finds the sensors
created from WebThings on the network. It also automatically provides a database
with visual representation for the user on the dashboard. In addition to this, it auto-
matically sets up an AWS server to provide a log in for the user, once the gateway has
been created. The framework basically sets up everything one would need for creating
a smart home, with simple installations. Because of this, we give the framework five
out of five in automation.

Automation Score

75

Security

The framework is automatically set up on the public network for the user on instal-
lation. But instead of being available to be accessed by everyone like the Node-RED
framework, it sets up an authentication for the user to log in. This authentication
is just a single factor authentication, which means there is no external confirmation
to log in like a phone code. Hence technically attackers could brute force their way
into the framework if they really wanted to access it. Another problem comes along-
side their choice of moving the security to the HTTPS protocol. Currently, there are
no measurements in the solution to prevent attacks like man-in-the-middle attacks,
where an attacker can act as the gateway and get all the confidential information from
the sensors. The solution to this would be to add a tunneling for remote access to
the gateway which would require a lot of maintenance and work, which Mozilla lacks
support for.

If we take a closer look at the SonarQube scan for the framework as seen in figure
7.5, we can see that this may be the most insecure framework we looked at. It got
four vulnerabilities in the code, which leads to cross site request forgery attacks. It
also encrypts the session token with a very weak encryption, making it easier for an
attacker to steal the session and log in as the user. In addition, the framework has
a few of bugs, even bugs that SonarQube consider critical bugs which has not been
seen from the other frameworks. The SonarQube scan identifies some functions in
the framework that does not work with the code provided, as well as return functions
which returns nothing. Furthermore, there is a significant amount of small and major
bugs which SonarQube picked up, which could easily break the framework. For a
framework with this maturity, having all these bugs should not even be possible. This
means all the people who uses the framework are prone to attack, which in this case
is a lot of users.

Figure 7.5: SonarQube scan of the Gateway

As this is a browser framework, we also have to do some security checks for the browser.
If we look at figure 7.6, which is the OWASP ZAP scan for the gateway, we can see all
the bugs from the SonarQube in action. It provide tons of dead links in both its code
and scripts. It also complains about the cross site configuration not being properly

76

set, meaning an attacker could use third party APIs to read the information from
the gateway as an authenticated user. It also shows that the private IP address has
been leaked through the gateway, which means that once the attacker know the public
address for the user, they can start abusing the gateway, or the computer hosting the
site. Also, it identifies that cross site request forgery attacks could be done towards
the site, as it has not properly set its configuration against it.

Figure 7.6: OWASP ZAP scan of the Mozilla Gateway

The fact that this framework tries to make some security effort against attackers, at
the same time as having these bugs means that the developers who contributed to
this framework lacked the proper knowledge to create a safe software. If we could find
all these vulnerabilities by only using two third party security scans, this means that
the framework is very prone to attacks. This could lead to some serious data leakage,
which could be critical for the Smart Ocean project. For a common user with a few
hobby sensors, this would not be to critical. For this, we give the framework a one out
of five for the security, being the worst out of the four we looked into.

Security Score

Summary

For the summary of the Mozilla Gateway, we can see that the framework has some
serious pros and cons. It does its work fairly well for being made for smart houses,
but could lead to some serious problems while being used for a Smart Ocean project.
For being a framework created by Mozilla itself, this means that this gateway was
probably made for experimental purposes, and not for business solutions. We can

77

conclude in the end that the framework gets a three out five in summary score. And
we can clearly conclude that the framework itself should not be used for a project like
Smart Ocean. As for the usage of WoT, we also need to consider that Mozilla has
created their own version of the technology, which does not follow the W3C standard.
They have also stated that they will not be following W3C in the future, meaning if
one would use this framework because of the technology, there exists better solutions.

Summary Score

78

Chapter 8

Conclusion and Future
Work

Throughout this thesis, we have experimentally evaluated four WoT frameworks rec-
ommended by W3C. W3C is the leading contributor to the WoT technology, and is
responsible for updating the standard and schema. As we have concluded in the eval-
uation chapter, there is a lot to be done on the frameworks considered for WoT before
it should be used for a large scale project like Smart Ocean. In this chapter we sum-
marize what the current state of the technology is, and present directions for future
work.

8.1 Summary

In this thesis, we have created two prototypes and evaluated them based on the experi-
ences from the development. The prototypes show how WoT can be implemented and
deployed into the Smart Ocean project. There has been some interesting discoveries
during development that we summarise in this section. From the evaluation of the
frameworks, we can clearly see which frameworks should be used to implement the
WoT technology and which should not be used based on the summary score seen in
figure 8.1. This is important to address as the creators of the technology itself, W3C,
has recommended these frameworks themselves.

As mentioned earlier, the score is based on the experience gathered during devel-
opment. We can also see the median score from the evaluation in figure 8.2. The
only difference being the Mozilla Gateway, which had such big security issues that it
brought the summary score down.

Framework Maturity Documentation Amount of code Learnability Automation Security Summary
Eclipse ThingWeb 2 2 4 2 3 4 3

Node-RED 3 4 N/A 5 5 3 4
Mozilla WebThings 1 1 3 1 3 2 2

Mozilla Gateway 5 4 N/A 5 5 1 3

Table 8.1: Table of the score from the evaluation chapter.

79

Framework Score

Eclipse ThingWeb 2.83
Node-RED 4

Mozilla WebThings 1.83
Mozilla Gateway 4

Table 8.2: Average score of the frameworks

We can conclude that the framework which is the best to be used for the technology
is the Eclipse ThingWeb framework, as both Node-RED and Mozilla Gateway uses
extensions only to be available to consume the thing descriptors. Even though Eclipse
ThingWeb has some flaws as we have seen in the evaluation, it is still the leading
framework while looking at the web of things technology and considering frameworks
investigated in this thesis. The fact that it is the leading framework with the score
evaluated means the WoT technology itself may need some work before it should be
used for large scale projects like Smart Ocean.

8.2 Research Questions

By going back to the research questions mentioned in chapter 1.2.1, we now have
enough research and experience to answer them. Our first research question, R1, is
about which frameworks and platforms that exist. While investigating the technology
we identified several frameworks. This is then explained in chapter 3, where we discuss
which framework that implements the WoT technology. There exist many more, but
these were the ones recommended by W3C, and is the reason why they were picked.
Our second research question, R2, is about how mature the frameworks are based on
the W3C standard. First we had to figure out the standard. W3C emphasizes their
four building blocks for defining the WoT standard, which can be found in chapter
2.2. We then evaluated the frameworks as seen in chapter 7 based on this information.
Here we assessed the matureness of each framework, and gave an overall score on
where the framework stands. Based on the research completed, we can conclude with
the frameworks lacking matureness based on the information collected. Our third
research question, R3, address how the sensors from Smart Ocean can be represented
with the technology. As we have been provided with four pilot demonstrators from
Smart Ocean, we replicate them by using the frameworks. In chapter 4, we showcased
how the pilot demonstrators will look based on the W3C standard. We also showcased
what to do to get the pilot demonstrators to work with the frameworks in chapter 6.1.
In our last research question, R4, we ask to what extend the frameworks can be used
to implement the case studies. This is also covered in 6.1, where we showcased how the
frameworks work, and to what extent they can be used. Here we identified important
information on what we can do with the frameworks.

8.3 Conclusion

As mentioned earlier, the technology itself got plenty of work by W3C. W3C defines
all the building blocks and provides good documentation on how the technology works.
The technology itself and the idea around the technology is well-defined, which means
it should, in theory, easily be used for any device driven application without the flaws
for the IoT technology. But the current state of the frameworks which is meant to
implement the technology implies that the technology needs some work before it should
be used. There is currently too many flaws with the frameworks, which is made for

80

the technology. We would have to work around these flaws to get the technology to
work. This means using IoT would be easier with the tools out on the internet. As
seen in this thesis, WoT tries to prevent re-usage of code which comes along while
creating an application with IoT. But there exists solutions to prevent this problem
for the IoT technology. The WoT technology tries to create edge gateways to simplify
the process of getting sensors connected to the World Wide Web, which IoT has a
hard time doing.

But if we take a look at for instance Amazon Web Services solution to the IoT tech-
nology, it already has a fix to several of the problems identified in this thesis for the
WoT frameworks. Their solution is called AWS Greengrass [4], and gives the user the
possibility to create edge gateways connected to the internet where sensors can connect
to and provide its data. This sounds a lot similar to what WoT tries to achieve. The
difference is that AWS have spent many years developing and perfecting this technol-
ogy, providing the user with a framework with few flaws. AWS Greengrass also makes
all communication encrypted with advanced algorithms, which the WoT framework
tries to do with their security building block. Because of this, one would be better of
using the IoT technology, and if encountering the problems which the WoT technology
tries to prevent, then look towards the usage of solutions like AWS Greengrass instead.
For a project like Smart Ocean, which probably will be dealing with confidential data,
they should be using more secure and well-built frameworks, instead of trying out new
technologies. The current state of the technology means a developer have to spend
a lot of time fixing the bugs and vulnerabilities which the current WoT frameworks
provides. Here one could use less time by considering solutions like AWS Greengrass.
And it is not only AWS which has tried to prevent these common problems with the
IoT technology, as both Google Cloud and Microsoft Azure have their own ways to fix
them.

The fact that WoT has been in development since 2009, and has only reached this stage
with its development is not a good sign. In a press release in 2020 [33], W3C mentions
a few frameworks which was meant to be the leading frameworks for this technology.
The fact that we have evaluated three out of the six they provide and found as many
flaws as we have, either means W3C does not do continuously checkups on their W3C
members, or that this is where WoT currently stands with its development.

8.4 Related Works

The technology has not received a lot of attention from the web community. This
means few people has evaluated the quality of the technology beforehand. Daves [29]
investigated the current state of the technology in 2015. Davis explains what the
priorities of W3Cs development were at the beginning of the technology, and states
that W3C tries to expand the usage of more protocols and increase the security of the
technology. We can see today that they have reached a long way with this. Daves
also recommends using Node-RED as a way to get the WoT application to the cloud,
which may be a better way of using the framework than running it locally as we did.
Mathews book [20], released in 2013, discuss how the development of the technology
will be. The main claim here is that the the technology has been in a constant
dynamic development and the technology lacked matureness since day one. Mathew
also states the importance of the security aspect of the technology, since once a thing
has reached the web, it needs to be trusted to keep its privacy. As we see security
is an important topic when it comes to the technology, we can also look into Sardars
[31] article. Sardar concludes in 2021 that the technologies security measurements
are to immature to tackle the security challenges that exists today, and is prone to
multiple attacks. Something we have not discussed in this thesis is the latency of a

81

WoT solution. The article from Naik [23] discusses the challenges of using the HTTP/1
for a WoT application. The HTTP/1 is the standard protocol most web solutions use
today, which we also use in this thesis. The article concludes with the protocol being
too slow for a wide scale WoT application, and proposes to use low latency protocols
like CoAP instead. Naik also states that HTTP/2 could significantly increase the
latency for a WoT application, but then W3C needs to do some work to get the
protocol implemented. But there is a problem with this, which Mashal [19] expresses
in his article. Mashal explains that the protocol is not suitable for WoT, as it currently
has to many security flaws to be used, which would be critical for a WoT application.
Garćıas [9] article explains how to implement the WoT technology. Garćıas clearly
states that the technology will decrease the development cost as the the amount of
code needed to get the applications to work will decrease.

8.5 Future Work

If we decided to use the WoT technology, even with all the flaws found in this thesis,
then there is some steps we can do to get the technology to work. First step would be to
investigate the other frameworks which W3C recommends and see if these frameworks
has reached a further stage than the frameworks evaluated in this thesis. There is
a possibility that the choice of frameworks used in this thesis did not showcase the
full potential of the technology. But the fact that we picked the frameworks from the
biggest developers make this highly unlikely. Second thing we could do to get the
technology to work, is try to fix the flaws by the frameworks before using them in
an application. This step would demand some work, alongside cooperation with the
developers who created the frameworks, as the documentation is not provided for this.
Third thing one could do is wait and see if the technology gets more development over
time before being used. As the frameworks explored in this thesis has continuously
been updated during the making of this thesis means there is still hope that one day
the frameworks could be more useful than what we have experienced today.

Based on the information collected, considering solutions created from the IoT tech-
nology would be more time efficient. This would create more stable solutions for the
Smart Ocean project. The reason for this is that this technology has reached a better
stage of matureness than what the WoT technology has. It provides better support
and frameworks, and is highly sought after by big companies. There is also more
developers which has experience with development with the IoT technology, making
it easier to find consultants to help the development process.

82

List of Figures

1.1 Technology Delta Evaluation Framework [6] 10

2.1 Explaination of the URI [37] . 14
2.2 Binding Template Example from W3C [40] 19

3.1 Example nodes for Node-RED . 22
3.2 Technical example of Node-RED with Node-RED-Nodegen 23
3.3 Debug log from Node-RED . 24
3.4 Properties in Node-RED . 25
3.5 Events in Node-RED . 25
3.6 Mozilla WebThings Gateway [44] . 26
3.7 Mozilla WebThings Gateway TestThing 27
3.8 Mozilla WebThings Logging [15] . 28
3.9 Mozilla WebThings Mapping [44] . 28
3.10 Mozilla WebThings Ruleset [44] . 29
3.11 ThingWeb Web Example . 30

5.1 Data flow diagram for prototype 1 . 38
5.2 Node-RED Pilot Demonstrator 1 . 42
5.3 Node-RED Pilot Demonstrator 2 . 42
5.4 Node-RED Pilot Demonstrator 3 . 43
5.5 Node-RED Pilot Demonstrator 4 . 43
5.6 ThingWeb Logging . 45
5.7 ThingWeb Mapping . 46
5.8 Pilot Demonstrator 1 in the WebThings Gateway 48
5.9 Pilot Demonstrator 2 in the WebThings Gateway 48
5.10 Pilot Demonstrator 3 in the WebThings Gateway 49
5.11 Pilot Demonstrator 4 in the WebThings Gateway 49

6.1 Node-RED readProperty config screen 55
6.2 Node-RED readProperty edit screen 55
6.3 Node-RED WebSocket edit screen . 56
6.4 Mozilla Gateway Addon screen . 59
6.5 Mozilla Gateway using mDNS . 60
6.6 Mozilla Gateway found the things by mDNS 60
6.7 Mozilla Gateway domain menu . 61

7.1 SonarQube scan of the ThingWeb framework 68
7.2 SonarQube scan of the Node-RED framework 71
7.3 OWASP ZAP scan of the Node-RED dashboard 71
7.4 SonarQube scan of the WebThings framework 74

83

7.5 SonarQube scan of the Gateway . 76
7.6 OWASP ZAP scan of the Mozilla Gateway 77

84

List of Tables

5.1 Pros and Cons table for the frameworks 37

8.1 Table of the score from the evaluation chapter. 79
8.2 Average score of the frameworks . 80

85

Appendix A

Thing Descriptors

In the following chapter will we list some of the important thing descriptors from the
different frameworks.

The next following thing descriptors are hand-made to work along the different frame-
works:

1 {
2 ”@context” : [
3 ” https : //www. w3 . org /2019/wot/ td/v1” ,
4 {
5 ”@language” : ”en”
6 }
7] ,
8 ” id ” : ”PD1: th ing ” ,
9 ” t i t l e ” : ”PD1” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 1” ,
11 ” p r o p e r t i e s ” :{
12 ”CO2” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” d e s c r i p t i o n ” : ” cur rent CO2 value ” ,
15 ” obse rvab l e ” : false ,
16 ” readOnly” : true ,
17 ” writeOnly ” : fa l se
18 } ,
19 ”Temperature” :{
20 ” type ” : ” i n t e g e r ” ,
21 ” d e s c r i p t i o n ” : ” cur rent Temperature va lue in Ce l c iu s ” ,
22 ” obse rvab l e ” : false ,
23 ” readOnly” : true ,
24 ” writeOnly ” : fa l se
25 } ,
26 ”pH” :{
27 ” type ” : ” i n t e g e r ” ,
28 ” d e s c r i p t i o n ” : ” cur rent pH value ” ,
29 ” obse rvab l e ” : false ,
30 ” readOnly” : true ,
31 ” writeOnly ” : fa l se
32 } ,
33 ” Gravity ” :{
34 ” type ” : ” i n t e g e r ” ,
35 ” d e s c r i p t i o n ” : ” cur rent G f o r c e va lue in m/ s ˆ2” ,
36 ” obse rvab l e ” : false ,

86

37 ” readOnly” : true ,
38 ” writeOnly ” : fa l se
39 } ,
40 ” S a l i n i t y ” :{
41 ” type ” : ” i n t e g e r ” ,
42 ” d e s c r i p t i o n ” : ” cur rent S a l i n i t y value in par t s per

thousand” ,
43 ” obse rvab l e ” : false ,
44 ” readOnly” : true ,
45 ” writeOnly ” : fa l se
46 }
47 } ,
48 ” events ” :{
49 ”GasLeakage” :{
50 ” type ” : ” boolean ” ,
51 ” d e s c r i p t i o n ” : ”Warning from gas l eakage ”
52 }
53 } ,
54 ”@type” : ”Thing” ,
55 ” s e c u r i t y ” : [
56 ” n o s e c s c ”
57] ,
58 ” s e c u r i t y D e f i n i t i o n s ” :{
59 ” n o s e c s c ” :{
60 ”scheme” : ” nosec ”
61 }
62 }
63 }

Listing A.1: Thing Descriptor for Pilot Demonstrator 1

1 {
2 ”@context” : [
3 ” https : //www. w3 . org /2019/wot/ td/v1” ,
4 {
5 ”@language” : ”en”
6 }
7] ,
8 ” id ” : ”PD2: th ing ” ,
9 ” t i t l e ” : ”PD2” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 2” ,
11 ” p r o p e r t i e s ” :{
12 ”AcousticTomopraphy” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” un i t ” : ” he r t z ” ,
15 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Tomography in Hertz ” ,
16 ” obse rvab l e ” : false ,
17 ” readOnly” : true ,
18 ” writeOnly ” : fa l se
19 } ,
20 ” AcousticEnvironment ” :{
21 ” type ” : ” i n t e g e r ” ,
22 ” un i t ” : ” he r t z ” ,
23 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Environment in Hertz ” ,
24 ” obse rvab l e ” : false ,
25 ” readOnly” : true ,
26 ” writeOnly ” : fa l se
27 } ,
28 ” GeoPos i t ion ing ” :{
29 ” type ” : ” i n t e g e r ” ,
30 ” un i t ” : ” coo rd ina t e s ” ,
31 ” d e s c r i p t i o n ” : ” cur rent Geo−P o s i t i o n i n g in coo rd ina t e s ” ,

87

32 ” obse rvab l e ” : false ,
33 ” readOnly” : true ,
34 ” writeOnly ” : fa l se
35 } ,
36 ”OceanGraphicPoint” :{
37 ” type ” : ” i n t e g e r ” ,
38 ” un i t ” : ” coo rd ina t e s ” ,
39 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Environment in Hertz ” ,
40 ” obse rvab l e ” : false ,
41 ” readOnly” : true ,
42 ” writeOnly ” : fa l se
43 }
44 } ,
45 ”@type” : ”Thing” ,
46 ” s e c u r i t y ” : [
47 ” n o s e c s c ”
48] ,
49 ” s e c u r i t y D e f i n i t i o n s ” :{
50 ” n o s e c s c ” :{
51 ”scheme” : ” nosec ”
52 }
53 }
54 }

Listing A.2: Thing Descriptor for Pilot Demonstrator 2

1 {
2 ”@context” : [
3 ” https : //www. w3 . org /2019/wot/ td/v1” ,
4 {
5 ”@language” : ”en”
6 }
7] ,
8 ” id ” : ”PD3: th ing ” ,
9 ” t i t l e ” : ”PD3” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 3” ,
11 ” p r o p e r t i e s ” :{
12 ” AcousticResonance ” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” un i t ” : ” he r t z ” ,
15 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Resonance in Hertz ” ,
16 ” obse rvab l e ” : false ,
17 ” readOnly” : true ,
18 ” writeOnly ” : fa l se
19 } ,
20 ”GUW” :{
21 ” type ” : ” i n t e g e r ” ,
22 ” d e s c r i p t i o n ” : ” cur rent GUW measurements” ,
23 ” obse rvab l e ” : false ,
24 ” readOnly” : true ,
25 ” writeOnly ” : fa l se
26 }
27 } ,
28 ”@type” : ”Thing” ,
29 ” s e c u r i t y ” : [
30 ” n o s e c s c ”
31] ,
32 ” s e c u r i t y D e f i n i t i o n s ” :{
33 ” n o s e c s c ” :{
34 ”scheme” : ” nosec ”
35 }
36 }

88

37 }

Listing A.3: Thing Descriptor for Pilot Demonstrator 3

1 {
2 ”@context” : [
3 ” https : //www. w3 . org /2019/wot/ td/v1” ,
4 {
5 ”@language” : ”en”
6 }
7] ,
8 ” id ” : ”PD4: th ing ” ,
9 ” t i t l e ” : ”PD4” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 4” ,
11 ” p r o p e r t i e s ” :{
12 ” P ip e l i n eV i b ra t i on ” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” un i t ” : ” he r t z ” ,
15 ” d e s c r i p t i o n ” : ” cur rent P i p e l i n e Vibrat ions in Hertz ” ,
16 ” obse rvab l e ” : false ,
17 ” readOnly” : true ,
18 ” writeOnly ” : fa l se
19 } ,
20 ”GUW” :{
21 ” type ” : ” i n t e g e r ” ,
22 ” d e s c r i p t i o n ” : ” cur rent GUW measurements” ,
23 ” obse rvab l e ” : false ,
24 ” readOnly” : true ,
25 ” writeOnly ” : fa l se
26 }
27 } ,
28 ” events ” :{
29 ”GasLeakage” :{
30 ” type ” : ” boolean ” ,
31 ” d e s c r i p t i o n ” : ”Warning from gas l eakage ”
32 }
33 } ,
34 ”@type” : ”Thing” ,
35 ” s e c u r i t y ” : [
36 ” n o s e c s c ”
37] ,
38 ” s e c u r i t y D e f i n i t i o n s ” :{
39 ” n o s e c s c ” :{
40 ”scheme” : ” nosec ”
41 }
42 }
43 }

Listing A.4: Thing Descriptor for Pilot Demonstrator 4

The next following thing descriptors are made from the ThingWeb framework:

1 {
2 ”@context” : [
3 ” https : //www. w3 . org /2019/wot/ td/v1” ,
4 {
5 ”@language” : ”en”
6 }
7] ,
8 ” id ” : ”PD1: th ing ” ,
9 ” t i t l e ” : ”PD1” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 1” ,

89

11 ” p r o p e r t i e s ” :{
12 ”CO2” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” d e s c r i p t i o n ” : ” cur rent CO2 value ” ,
15 ” obse rvab l e ” : false ,
16 ” readOnly” : true ,
17 ” writeOnly ” : false ,
18 ” forms ” : [
19 {
20 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ p r o p e r t i e s /CO2”

,
21 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
22 ”op” : [
23 ” readproperty ”
24] ,
25 ”htv : methodName” : ”GET”
26 }
27]
28 } ,
29 ”Temperature” :{
30 ” type ” : ” i n t e g e r ” ,
31 ” d e s c r i p t i o n ” : ” cur rent Temperature va lue in Ce l c iu s ” ,
32 ” obse rvab l e ” : false ,
33 ” readOnly” : true ,
34 ” writeOnly ” : false ,
35 ” forms ” : [
36 {
37 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ p r o p e r t i e s /

Temperature” ,
38 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
39 ”op” : [
40 ” readproperty ”
41] ,
42 ”htv : methodName” : ”GET”
43 }
44]
45 } ,
46 ”pH” :{
47 ” type ” : ” i n t e g e r ” ,
48 ” d e s c r i p t i o n ” : ” cur rent pH value ” ,
49 ” obse rvab l e ” : false ,
50 ” readOnly” : true ,
51 ” writeOnly ” : false ,
52 ” forms ” : [
53 {
54 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ p r o p e r t i e s /pH” ,
55 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
56 ”op” : [
57 ” readproperty ”
58] ,
59 ”htv : methodName” : ”GET”
60 }
61]
62 } ,
63 ” Gravity ” :{
64 ” type ” : ” i n t e g e r ” ,
65 ” d e s c r i p t i o n ” : ” cur rent G f o r c e va lue in m/ s ˆ2” ,
66 ” obse rvab l e ” : false ,
67 ” readOnly” : true ,
68 ” writeOnly ” : false ,
69 ” forms ” : [
70 {

90

71 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ p r o p e r t i e s /
Gravity ” ,

72 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
73 ”op” : [
74 ” readproperty ”
75] ,
76 ”htv : methodName” : ”GET”
77 }
78]
79 } ,
80 ” S a l i n i t y ” :{
81 ” type ” : ” i n t e g e r ” ,
82 ” d e s c r i p t i o n ” : ” cur rent S a l i n i t y value in par t s per

thousand” ,
83 ” obse rvab l e ” : false ,
84 ” readOnly” : true ,
85 ” writeOnly ” : false ,
86 ” forms ” : [
87 {
88 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ p r o p e r t i e s /

S a l i n i t y ” ,
89 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
90 ”op” : [
91 ” readproperty ”
92] ,
93 ”htv : methodName” : ”GET”
94 }
95]
96 }
97 } ,
98 ” events ” :{
99 ”GasLeakage” :{

100 ” type ” : ” boolean ” ,
101 ” d e s c r i p t i o n ” : ”Warning from gas l eakage ” ,
102 ” forms ” : [
103 {
104 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ events /

GasLeakage” ,
105 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
106 ” subprotoco l ” : ” l o n g p o l l ” ,
107 ”op” : [
108 ” subsc r ib e event ”
109]
110 } ,
111 {
112 ” h r e f ” : ”ws : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 1 /PD1/ events /GasLeakage

” ,
113 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
114 ”op” : ” subsc r ib e even t ”
115 }
116]
117 }
118 } ,
119 ”@type” : ”Thing” ,
120 ” s e c u r i t y ” : [
121 ” n o s e c s c ”
122] ,
123 ” forms ” : [
124 {
125 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD1/ a l l / p r o p e r t i e s ” ,
126 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
127 ”op” : [

91

128 ” r e a d a l l p r o p e r t i e s ” ,
129 ” r e a d m u l t i p l e p r o p e r t i e s ” ,
130 ” w r i t e a l l p r o p e r t i e s ” ,
131 ” w r i t e m u l t i p l e p r o p e r t i e s ”
132]
133 }
134] ,
135 ” s e c u r i t y D e f i n i t i o n s ” :{
136 ” n o s e c s c ” :{
137 ”scheme” : ” nosec ”
138 }
139 }
140 }

Listing A.5: ThingWeb Thing Descriptor for Pilot Demonstrator 1

1 {
2 ”@context” : [
3 ” https : //www. w3 . org /2019/wot/ td/v1” ,
4 {
5 ”@language” : ”en”
6 }
7] ,
8 ” id ” : ”PD2: th ing ” ,
9 ” t i t l e ” : ”PD2” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 2” ,
11 ” p r o p e r t i e s ” :{
12 ”AcousticTomopraphy” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” un i t ” : ” he r t z ” ,
15 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Tomography in Hertz ” ,
16 ” obse rvab l e ” : false ,
17 ” readOnly” : true ,
18 ” writeOnly ” : false ,
19 ” forms ” : [
20 {
21 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD2/ p r o p e r t i e s /

AcousticTomopraphy” ,
22 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
23 ”op” : [
24 ” readproperty ”
25] ,
26 ”htv : methodName” : ”GET”
27 }
28]
29 } ,
30 ” AcousticEnvironment ” :{
31 ” type ” : ” i n t e g e r ” ,
32 ” un i t ” : ” he r t z ” ,
33 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Environment in Hertz ” ,
34 ” obse rvab l e ” : false ,
35 ” readOnly” : true ,
36 ” writeOnly ” : false ,
37 ” forms ” : [
38 {
39 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD2/ p r o p e r t i e s /

AcousticEnvironment ” ,
40 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
41 ”op” : [
42 ” readproperty ”
43] ,
44 ”htv : methodName” : ”GET”

92

45 }
46]
47 } ,
48 ” GeoPos i t ion ing ” :{
49 ” type ” : ” i n t e g e r ” ,
50 ” un i t ” : ” coo rd ina t e s ” ,
51 ” d e s c r i p t i o n ” : ” cur rent Geo−P o s i t i o n i n g in coo rd ina t e s ” ,
52 ” obse rvab l e ” : false ,
53 ” readOnly” : true ,
54 ” writeOnly ” : false ,
55 ” forms ” : [
56 {
57 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD2/ p r o p e r t i e s /

GeoPos i t ion ing ” ,
58 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
59 ”op” : [
60 ” readproperty ”
61] ,
62 ”htv : methodName” : ”GET”
63 }
64]
65 } ,
66 ”OceanGraphicPoint” :{
67 ” type ” : ” i n t e g e r ” ,
68 ” un i t ” : ” coo rd ina t e s ” ,
69 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Environment in Hertz ” ,
70 ” obse rvab l e ” : false ,
71 ” readOnly” : true ,
72 ” writeOnly ” : false ,
73 ” forms ” : [
74 {
75 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD2/ p r o p e r t i e s /

OceanGraphicPoint” ,
76 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
77 ”op” : [
78 ” readproperty ”
79] ,
80 ”htv : methodName” : ”GET”
81 }
82]
83 }
84 } ,
85 ”@type” : ”Thing” ,
86 ” s e c u r i t y ” : [
87 ” n o s e c s c ”
88] ,
89 ” forms ” : [
90 {
91 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD2/ a l l / p r o p e r t i e s ” ,
92 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
93 ”op” : [
94 ” r e a d a l l p r o p e r t i e s ” ,
95 ” r e a d m u l t i p l e p r o p e r t i e s ” ,
96 ” w r i t e a l l p r o p e r t i e s ” ,
97 ” w r i t e m u l t i p l e p r o p e r t i e s ”
98]
99 }

100] ,
101 ” s e c u r i t y D e f i n i t i o n s ” :{
102 ” n o s e c s c ” :{
103 ”scheme” : ” nosec ”
104 }

93

105 }
106 }

Listing A.6: ThingWeb Thing Descriptor for Pilot Demonstrator 2

1 {
2 ”@context” : [
3 ” https : //www. w3 . org /2019/wot/ td/v1” ,
4 {
5 ”@language” : ”en”
6 }
7] ,
8 ” id ” : ”PD3: th ing ” ,
9 ” t i t l e ” : ”PD3” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 3” ,
11 ” p r o p e r t i e s ” :{
12 ” AcousticResonance ” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” un i t ” : ” he r t z ” ,
15 ” d e s c r i p t i o n ” : ” cur rent Acoust ic Resonance in Hertz ” ,
16 ” obse rvab l e ” : false ,
17 ” readOnly” : true ,
18 ” writeOnly ” : false ,
19 ” forms ” : [
20 {
21 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD3/ p r o p e r t i e s /

AcousticResonance ” ,
22 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
23 ”op” : [
24 ” readproperty ”
25] ,
26 ”htv : methodName” : ”GET”
27 }
28]
29 } ,
30 ”GUW” :{
31 ” type ” : ” i n t e g e r ” ,
32 ” d e s c r i p t i o n ” : ” cur rent GUW measurements” ,
33 ” obse rvab l e ” : false ,
34 ” readOnly” : true ,
35 ” writeOnly ” : false ,
36 ” forms ” : [
37 {
38 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD3/ p r o p e r t i e s /GUW”

,
39 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
40 ”op” : [
41 ” readproperty ”
42] ,
43 ”htv : methodName” : ”GET”
44 }
45]
46 }
47 } ,
48 ”@type” : ”Thing” ,
49 ” s e c u r i t y ” : [
50 ” n o s e c s c ”
51] ,
52 ” forms ” : [
53 {
54 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD3/ a l l / p r o p e r t i e s ” ,
55 ” contentType ” : ” a p p l i c a t i o n / j son ” ,

94

56 ”op” : [
57 ” r e a d a l l p r o p e r t i e s ” ,
58 ” r e a d m u l t i p l e p r o p e r t i e s ” ,
59 ” w r i t e a l l p r o p e r t i e s ” ,
60 ” w r i t e m u l t i p l e p r o p e r t i e s ”
61]
62 }
63] ,
64 ” s e c u r i t y D e f i n i t i o n s ” :{
65 ” n o s e c s c ” :{
66 ”scheme” : ” nosec ”
67 }
68 }
69 }

Listing A.7: ThingWeb Thing Descriptor for Pilot Demonstrator 3

1 {
2 ”@context” : [
3 ” https : //www. w3 . org /2019/wot/ td/v1” ,
4 {
5 ”@language” : ”en”
6 }
7] ,
8 ” id ” : ”PD4: th ing ” ,
9 ” t i t l e ” : ”PD4” ,

10 ” d e s c r i p t i o n ” : ” P i l o t Demonstrator 4” ,
11 ” p r o p e r t i e s ” :{
12 ” P ip e l i n eV i b ra t i on ” :{
13 ” type ” : ” i n t e g e r ” ,
14 ” un i t ” : ” he r t z ” ,
15 ” d e s c r i p t i o n ” : ” cur rent P i p e l i n e Vibrat ions in Hertz ” ,
16 ” obse rvab l e ” : false ,
17 ” readOnly” : true ,
18 ” writeOnly ” : false ,
19 ” forms ” : [
20 {
21 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD4/ p r o p e r t i e s /

P ipe l i n eV ib ra t i on ” ,
22 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
23 ”op” : [
24 ” readproperty ”
25] ,
26 ”htv : methodName” : ”GET”
27 }
28]
29 } ,
30 ”GUW” :{
31 ” type ” : ” i n t e g e r ” ,
32 ” d e s c r i p t i o n ” : ” cur rent GUW measurements” ,
33 ” obse rvab l e ” : false ,
34 ” readOnly” : true ,
35 ” writeOnly ” : false ,
36 ” forms ” : [
37 {
38 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD4/ p r o p e r t i e s /GUW”

,
39 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
40 ”op” : [
41 ” readproperty ”
42] ,
43 ”htv : methodName” : ”GET”

95

44 }
45]
46 }
47 } ,
48 ” events ” :{
49 ”GasLeakage” :{
50 ” type ” : ” boolean ” ,
51 ” d e s c r i p t i o n ” : ”Warning from gas l eakage ” ,
52 ” forms ” : [
53 {
54 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD4/ events /

GasLeakage” ,
55 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
56 ” subprotoco l ” : ” l o n g p o l l ” ,
57 ”op” : [
58 ” subsc r ib e event ”
59]
60 } ,
61 {
62 ” h r e f ” : ”ws : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 1 /PD4/ events /GasLeakage

” ,
63 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
64 ”op” : ” subsc r ib e even t ”
65 }
66]
67 }
68 } ,
69 ”@type” : ”Thing” ,
70 ” s e c u r i t y ” : [
71 ” n o s e c s c ”
72] ,
73 ” forms ” : [
74 {
75 ” h r e f ” : ” http : / / 1 9 2 . 1 6 8 . 1 . 3 6 : 8 0 8 0 /PD4/ a l l / p r o p e r t i e s ” ,
76 ” contentType ” : ” a p p l i c a t i o n / j son ” ,
77 ”op” : [
78 ” r e a d a l l p r o p e r t i e s ” ,
79 ” r e a d m u l t i p l e p r o p e r t i e s ” ,
80 ” w r i t e a l l p r o p e r t i e s ” ,
81 ” w r i t e m u l t i p l e p r o p e r t i e s ”
82]
83 }
84] ,
85 ” s e c u r i t y D e f i n i t i o n s ” :{
86 ” n o s e c s c ” :{
87 ”scheme” : ” nosec ”
88 }
89 }
90 }

Listing A.8: ThingWeb Thing Descriptor for Pilot Demonstrator 4

The next following thing descriptors are made from the WebThings framework:

1 {
2 ”@type” : [
3 ” Mult iLeve lSensor ”
4] ,
5 ” d e s c r i p t i o n ” : ” Sensor f o r underwater techno logy ” ,
6 ” l i n k s ” : [
7 {
8 ” r e l ” : ” p r o p e r t i e s ” ,

96

9 ” h r e f ” : ”/ p r o p e r t i e s ”
10 } ,
11 {
12 ” r e l ” : ” a c t i o n s ” ,
13 ” h r e f ” : ”/ a c t i o n s ”
14 } ,
15 {
16 ” r e l ” : ” events ” ,
17 ” h r e f ” : ”/ events ”
18 }
19] ,
20 ” id ” : ”PD1” ,
21 ” t i t l e ” : ”PD1” ,
22 ”@context” : ” https : // i o t . moz i l l a . org /schemas” ,
23 ” a c t i o n s ” :{
24

25 } ,
26 ” p r o p e r t i e s ” :{
27 ”Temperature” :{
28 ” un i t ” : ” degree c e l s i u s ” ,
29 ”@type” : ” TemperatureProperty ” ,
30 ” d e s c r i p t i o n ” : ”The cur rent temperature in c e l s i u s ” ,
31 ” readOnly” : true ,
32 ” l i n k s ” : [
33 {
34 ” r e l ” : ” property ” ,
35 ” h r e f ” : ”/ p r o p e r t i e s /Temperature”
36 }
37] ,
38 ” t i t l e ” : ”Temperature” ,
39 ” type ” : ”number”
40 } ,
41 ”CO2” :{
42 ” un i t ” : ” percent ” ,
43 ”@type” : ” Leve lProperty ” ,
44 ” d e s c r i p t i o n ” : ”The cur rent CO2 in %” ,
45 ”maximum” :100 ,
46 ” readOnly” : true ,
47 ” l i n k s ” : [
48 {
49 ” r e l ” : ” property ” ,
50 ” h r e f ” : ”/ p r o p e r t i e s /CO2”
51 }
52] ,
53 ” t i t l e ” : ”CO2” ,
54 ” type ” : ”number” ,
55 ”minimum” : 0
56 } ,
57 ”pH” :{
58 ”@type” : ” Leve lProperty ” ,
59 ” d e s c r i p t i o n ” : ”The cur rent pH l e v e l ” ,
60 ” readOnly” : true ,
61 ” l i n k s ” : [
62 {
63 ” r e l ” : ” property ” ,
64 ” h r e f ” : ”/ p r o p e r t i e s /pH”
65 }
66] ,
67 ” t i t l e ” : ”pH” ,
68 ” type ” : ”number”
69 } ,
70 ” Gravity ” :{

97

71 ”@type” : ” Leve lProperty ” ,
72 ” d e s c r i p t i o n ” : ”The cur rent Gravity in m/ s ˆ2” ,
73 ” readOnly” : true ,
74 ” l i n k s ” : [
75 {
76 ” r e l ” : ” property ” ,
77 ” h r e f ” : ”/ p r o p e r t i e s / Gravity ”
78 }
79] ,
80 ” t i t l e ” : ” Gravity ” ,
81 ” type ” : ”number”
82 } ,
83 ” S a l i n i t y ” :{
84 ”@type” : ” Leve lProperty ” ,
85 ” d e s c r i p t i o n ” : ”The cur rent S a l i n i t y in par t s per thousand”

,
86 ” readOnly” : true ,
87 ” l i n k s ” : [
88 {
89 ” r e l ” : ” property ” ,
90 ” h r e f ” : ”/ p r o p e r t i e s / S a l i n i t y ”
91 }
92] ,
93 ” t i t l e ” : ” S a l i n i t y ” ,
94 ” type ” : ”number”
95 }
96 } ,
97 ” events ” :{
98 ”GasLeakage” :{
99 ” d e s c r i p t i o n ” : ”Event f o r GasLeakage” ,

100 ” l i n k s ” : [
101 {
102 ” r e l ” : ” event ” ,
103 ” h r e f ” : ”/ events /GasLeakage”
104 }
105] ,
106 ” type ” : ” boolean ”
107 }
108 }
109 }

Listing A.9: WebThing Thing Descriptor for Pilot Demonstrator 1

1 {
2 ”@type” : [
3 ” Mult iLeve lSensor ”
4] ,
5 ” d e s c r i p t i o n ” : ” Sensor f o r underwater techno logy ” ,
6 ” l i n k s ” : [
7 {
8 ” r e l ” : ” p r o p e r t i e s ” ,
9 ” h r e f ” : ”/ p r o p e r t i e s ”

10 } ,
11 {
12 ” r e l ” : ” a c t i o n s ” ,
13 ” h r e f ” : ”/ a c t i o n s ”
14 } ,
15 {
16 ” r e l ” : ” events ” ,
17 ” h r e f ” : ”/ events ”
18 }
19] ,

98

20 ” id ” : ”PD2” ,
21 ” t i t l e ” : ”PD2” ,
22 ”@context” : ” https : // i o t . moz i l l a . org /schemas” ,
23 ” a c t i o n s ” :{
24

25 } ,
26 ” p r o p e r t i e s ” :{
27 ”Geo−P o s i t i o n i n g ” :{
28 ”@type” : ” Leve lProperty ” ,
29 ” d e s c r i p t i o n ” : ”The Geo−P o s i t i o n i n g in coo rd ina t e s ” ,
30 ” readOnly” : true ,
31 ” l i n k s ” : [
32 {
33 ” r e l ” : ” property ” ,
34 ” h r e f ” : ”/ p r o p e r t i e s /Geo−P o s i t i o n i n g ”
35 }
36] ,
37 ” t i t l e ” : ”Geo−P o s i t i o n i n g ” ,
38 ” type ” : ”number”
39 } ,
40 ” Acoust ic Environment” :{
41 ” un i t ” : ” he r t z ” ,
42 ”@type” : ” FrequencyProperty ” ,
43 ” d e s c r i p t i o n ” : ”The Acoust ic Environment in Hertz ” ,
44 ” readOnly” : true ,
45 ” l i n k s ” : [
46 {
47 ” r e l ” : ” property ” ,
48 ” h r e f ” : ”/ p r o p e r t i e s / Acoust ic Environment”
49 }
50] ,
51 ” t i t l e ” : ” Acoust ic Environment” ,
52 ” type ” : ”number”
53 } ,
54 ” Acoust ic Tomography” :{
55 ” un i t ” : ” he r t z ” ,
56 ”@type” : ” FrequencyProperty ” ,
57 ” d e s c r i p t i o n ” : ”The cur rent Acoust ic Tomography in Hertz ” ,
58 ” readOnly” : true ,
59 ” l i n k s ” : [
60 {
61 ” r e l ” : ” property ” ,
62 ” h r e f ” : ”/ p r o p e r t i e s / Acoust ic Tomography”
63 }
64] ,
65 ” t i t l e ” : ” Acoust ic Tomography” ,
66 ” type ” : ”number”
67 } ,
68 ” Oceanographic Point ” :{
69 ”@type” : ” Leve lProperty ” ,
70 ” d e s c r i p t i o n ” : ”The Oceanographic Point in coo rd ina t e s ” ,
71 ” readOnly” : true ,
72 ” l i n k s ” : [
73 {
74 ” r e l ” : ” property ” ,
75 ” h r e f ” : ”/ p r o p e r t i e s / Oceanographic Point ”
76 }
77] ,
78 ” t i t l e ” : ” Oceanographic Point ” ,
79 ” type ” : ”number”
80 }
81 } ,

99

82 ” events ” :{
83

84 }
85 }

Listing A.10: WebThing Thing Descriptor for Pilot Demonstrator 2

1 {
2 ”@type” : [
3 ” Mult iLeve lSensor ”
4] ,
5 ” d e s c r i p t i o n ” : ” Sensor f o r underwater techno logy ” ,
6 ” l i n k s ” : [
7 {
8 ” r e l ” : ” p r o p e r t i e s ” ,
9 ” h r e f ” : ”/ p r o p e r t i e s ”

10 } ,
11 {
12 ” r e l ” : ” a c t i o n s ” ,
13 ” h r e f ” : ”/ a c t i o n s ”
14 } ,
15 {
16 ” r e l ” : ” events ” ,
17 ” h r e f ” : ”/ events ”
18 }
19] ,
20 ” id ” : ”PD3” ,
21 ” t i t l e ” : ”PD3” ,
22 ”@context” : ” https : // i o t . moz i l l a . org /schemas” ,
23 ” a c t i o n s ” :{
24

25 } ,
26 ” p r o p e r t i e s ” :{
27 ” Acoust ic Resonance” :{
28 ” un i t ” : ” he r t z ” ,
29 ”@type” : ” FrequencyProperty ” ,
30 ” d e s c r i p t i o n ” : ”The cur rent Acoust ic Resonance in Hertz ” ,
31 ” readOnly” : true ,
32 ” l i n k s ” : [
33 {
34 ” r e l ” : ” property ” ,
35 ” h r e f ” : ”/ p r o p e r t i e s / Acoust ic Resonance”
36 }
37] ,
38 ” t i t l e ” : ” Acoust ic Resonance” ,
39 ” type ” : ”number”
40 } ,
41 ”GUW Measurements” :{
42 ”@type” : ” Leve lProperty ” ,
43 ” d e s c r i p t i o n ” : ”The cur rent GUW Measurements” ,
44 ” readOnly” : true ,
45 ” l i n k s ” : [
46 {
47 ” r e l ” : ” property ” ,
48 ” h r e f ” : ”/ p r o p e r t i e s /GUW Measurements”
49 }
50] ,
51 ” t i t l e ” : ”GUW Measurements” ,
52 ” type ” : ”number”
53 }
54 } ,
55 ” events ” :{

100

56

57 }
58 }

Listing A.11: WebThing Thing Descriptor for Pilot Demonstrator 3

1 {
2 ”@type” : [
3 ” Mult iLeve lSensor ”
4] ,
5 ” d e s c r i p t i o n ” : ”PD4 Sensor f o r underwater techno logy ” ,
6 ” l i n k s ” : [
7 {
8 ” r e l ” : ” p r o p e r t i e s ” ,
9 ” h r e f ” : ”/ p r o p e r t i e s ”

10 } ,
11 {
12 ” r e l ” : ” a c t i o n s ” ,
13 ” h r e f ” : ”/ a c t i o n s ”
14 } ,
15 {
16 ” r e l ” : ” events ” ,
17 ” h r e f ” : ”/ events ”
18 }
19] ,
20 ” id ” : ”PD4” ,
21 ” t i t l e ” : ”PD4” ,
22 ”@context” : ” https : // i o t . moz i l l a . org /schemas” ,
23 ” a c t i o n s ” :{
24

25 } ,
26 ” p r o p e r t i e s ” :{
27 ” P i p e l i n e Vibrat ions (DAS) ” :{
28 ” un i t ” : ” he r t z ” ,
29 ”@type” : ” FrequencyProperty ” ,
30 ” d e s c r i p t i o n ” : ”The cur rent P i p e l i n e Vibrat i ons in Hertz ” ,
31 ” readOnly” : true ,
32 ” l i n k s ” : [
33 {
34 ” r e l ” : ” property ” ,
35 ” h r e f ” : ”/ p r o p e r t i e s / P i p e l i n e Vibrat i ons (DAS) ”
36 }
37] ,
38 ” t i t l e ” : ” P i p e l i n e Vibrat ions (DAS) ” ,
39 ” type ” : ”number”
40 } ,
41 ”GUW Measurements” :{
42 ”@type” : ” Leve lProperty ” ,
43 ” d e s c r i p t i o n ” : ”The cur rent GUW Measurements” ,
44 ” readOnly” : true ,
45 ” l i n k s ” : [
46 {
47 ” r e l ” : ” property ” ,
48 ” h r e f ” : ”/ p r o p e r t i e s /GUW Measurements”
49 }
50] ,
51 ” t i t l e ” : ”GUW Measurements” ,
52 ” type ” : ”number”
53 }
54 } ,
55 ” events ” :{
56 ”GasLeakage” :{

101

57 ” d e s c r i p t i o n ” : ”Event f o r GasLeakage” ,
58 ” l i n k s ” : [
59 {
60 ” r e l ” : ” event ” ,
61 ” h r e f ” : ”/ events /GasLeakage”
62 }
63] ,
64 ” type ” : ” boolean ”
65 }
66 }
67 }

Listing A.12: WebThing Thing Descriptor for Pilot Demonstrator 4

102

Appendix B

Source Code

The source code for the project is located in two different GitHub repositories.

The source code for the ThingWeb prototype is located on https://github.com/

181182/Master_ThingWeb.

The source code for WebThing prototype is located on https://github.com/181182/

Master_WebThing.

The json export for Node-RED prototype is located on https://github.com/181182/

Master_Node-RED

103

https://github.com/181182/Master_ThingWeb
https://github.com/181182/Master_ThingWeb
https://github.com/181182/Master_WebThing
https://github.com/181182/Master_WebThing
https://github.com/181182/Master_Node-RED
https://github.com/181182/Master_Node-RED

Bibliography

[1] About : Node-RED. [Online; accessed 26. Nov. 2020]. Nov. 2020. url:
https://nodered.org/about.

[2] About W3C. [Online; accessed 9. Jun. 2021]. Jan. 2021. url: https://
www.w3.org/Consortium.

[3] aviviano. Windows Network Architecture and the OSI Model - Windows
drivers. [Online; accessed 26. Nov. 2020]. Nov. 2020. url: https : / /

docs.microsoft.com/en-us/windows-hardware/drivers/network/

windows-network-architecture-and-the-osi-model.
[4] AWS IoT Greengrass - Amazon Web Services. [Online; accessed 31. May

2021]. May 2021. url: https://aws.amazon.com/greengrass.
[5] Arshdeep Bahga and Vijay Madisetti. Internet of Things (A Hands-on-

Approach) 1st Edition. VPT; 1st edition (August 9, 2014), 2014.
[6] A.W. Brown and K.C. Wallnau. “A framework for evaluating software

technology.” In: IEEE Software 13.5 (1996), pp. 39–49. doi: 10.1109/
52.536457.

[7] Desigo CC — Building management systems — Siemens Global. https:
//new.siemens.com/global/en/products/buildings/automation/

desigo/building-management/desigo-cc.html. (Accessed on 01/23/2021).
[8] Eclipse Thingweb. [Online; accessed 26. Nov. 2020]. Mar. 2018. url: https:

//projects.eclipse.org/proposals/eclipse-thingweb.
[9] Andrés Garćıa Mangas and Francisco José Suárez Alonso. “WOTPY: A

framework for web of things applications.” In: Computer Communications
147 (2019), pp. 235–251. issn: 0140-3664. doi: https://doi.org/10.
1016/j.comcom.2019.09.004. url: https://www.sciencedirect.com/
science/article/pii/S0140366419304633.

[10] GitHub - thingweb/node-red-contrib-web-of-things: A node-red node for the
Web of Things. https://github.com/thingweb/node-red-contrib-
web-of-things. (Accessed on 01/22/2021).

[11] Dominique Guinard and Vlad Trifa. Building the Web of Things: With
examples in Node.js and Raspberry Pi. Manning Publications; 1st edition
(June 18, 2016), 2016.

[12] How much of the ocean have we explored? https://oceanservice.noaa.

gov/facts/exploration.html. (Accessed on 01/23/2021).
[13] How to Install JDK 8 (on Windows, Mac OS, Ubuntu) and Get Started

with Java Programming. [Online; accessed 3. May 2021]. Feb. 2021. url:
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_

Howto.html.

104

https://nodered.org/about
https://www.w3.org/Consortium
https://www.w3.org/Consortium
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://aws.amazon.com/greengrass
https://doi.org/10.1109/52.536457
https://doi.org/10.1109/52.536457
https://new.siemens.com/global/en/products/buildings/automation/desigo/building-management/desigo-cc.html
https://new.siemens.com/global/en/products/buildings/automation/desigo/building-management/desigo-cc.html
https://new.siemens.com/global/en/products/buildings/automation/desigo/building-management/desigo-cc.html
https://projects.eclipse.org/proposals/eclipse-thingweb
https://projects.eclipse.org/proposals/eclipse-thingweb
https://doi.org/https://doi.org/10.1016/j.comcom.2019.09.004
https://doi.org/https://doi.org/10.1016/j.comcom.2019.09.004
https://www.sciencedirect.com/science/article/pii/S0140366419304633
https://www.sciencedirect.com/science/article/pii/S0140366419304633
https://github.com/thingweb/node-red-contrib-web-of-things
https://github.com/thingweb/node-red-contrib-web-of-things
https://oceanservice.noaa.gov/facts/exploration.html
https://oceanservice.noaa.gov/facts/exploration.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_Howto.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_Howto.html

[14] HTML: HyperText Markup Language. [Online; accessed 26. Nov. 2020].
Nov. 2020. url: https://developer.mozilla.org/en-US/docs/Web/
HTML.

[15] Introducing Mozilla WebThings – Mozilla Hacks - the Web developer blog.
[Online; accessed 27. Apr. 2021]. Apr. 2021. url: https://hacks.mozilla.
org/2019/04/introducing-mozilla-webthings.

[16] ISO/IEC 25010:2011. [Online; accessed 27. May 2021]. May 2021. url:
https://www.iso.org/standard/35733.html.

[17] M. Krochmal and S. Cheshire. Multicast DNS. [Online; accessed 15. Mar.
2021]. Feb. 2013. url: https://tools.ietf.org/html/rfc6762.

[18] Library - Node-RED. [Online; accessed 10. Jun. 2021]. June 2021. url:
https://flows.nodered.org.

[19] Ibrahim Mashal et al. “Choices for interaction with things on Internet
and underlying issues.” In: Ad Hoc Networks 28 (2015), pp. 68–90. issn:
1570-8705. doi: https://doi.org/10.1016/j.adhoc.2014.12.006.
url: https : / / www . sciencedirect . com / science / article / pii /

S1570870514003138.
[20] Sujith Samuel Mathew et al. “The Web of Things - Challenges and En-

abling Technologies.” In: Internet of Things and Inter-cooperative Com-
putational Technologies for Collective Intelligence. Ed. by Nik Bessis et
al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–23. isbn:
978-3-642-34952-2. doi: 10.1007/978-3-642-34952-2_1. url: https:
//doi.org/10.1007/978-3-642-34952-2_1.

[21] Mozilla IoT. https://iot.mozilla.org/. (Accessed on 01/23/2021).
[22] Mozilla IoT about. [Online; accessed 26. Nov. 2020]. Nov. 2020. url:

https://iot.mozilla.org/about.
[23] Nitin Naik and Paul Jenkins. “Web protocols and challenges of Web la-

tency in the Web of Things.” In: 2016 Eighth International Conference
on Ubiquitous and Future Networks (ICUFN). 2016, pp. 845–850. doi:
10.1109/ICUFN.2016.7537156.

[24] Node-RED. https://nodered.org/. (Accessed on 01/23/2021).
[25] node-red. node-red-nodegen. [Online; accessed 26. Nov. 2020]. Nov. 2020.

url: https://github.com/node-red/node-red-nodegen.
[26] SFI Smart Ocean. SFI Smart Ocean - Flexible and cost-effective monitor-

ing for management of productive and healthy ocean. Tech. rep. SFI Smart
Ocean, 2021.

[27] OWASP Top Ten Web Application Security Risks | OWASP. [Online;
accessed 10. May 2021]. Apr. 2021. url: https://owasp.org/www-

project-top-ten.
[28] Mitch Pronschinske. “A General Software Maturity Model.” In: Dzone

(Jan. 2016). url: https://dzone.com/articles/a-general-software-
maturity-model.

[29] Dave Raggett. “The Web of Things: Challenges and Opportunities.” In:
Computer 48.5 (2015), pp. 26–32. doi: 10.1109/MC.2015.149.

[30] rest-discuss : Message: Re: [rest-discuss] RFC for REST? [Online; ac-
cessed 26. Nov. 2020]. Nov. 2020. url: https://web.archive.org/

web/20091111012314/http://tech.groups.yahoo.com/group/rest-

discuss/message/6757.

105

https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://hacks.mozilla.org/2019/04/introducing-mozilla-webthings
https://hacks.mozilla.org/2019/04/introducing-mozilla-webthings
https://www.iso.org/standard/35733.html
https://tools.ietf.org/html/rfc6762
https://flows.nodered.org
https://doi.org/https://doi.org/10.1016/j.adhoc.2014.12.006
https://www.sciencedirect.com/science/article/pii/S1570870514003138
https://www.sciencedirect.com/science/article/pii/S1570870514003138
https://doi.org/10.1007/978-3-642-34952-2_1
https://doi.org/10.1007/978-3-642-34952-2_1
https://doi.org/10.1007/978-3-642-34952-2_1
https://iot.mozilla.org/
https://iot.mozilla.org/about
https://doi.org/10.1109/ICUFN.2016.7537156
https://nodered.org/
https://github.com/node-red/node-red-nodegen
https://owasp.org/www-project-top-ten
https://owasp.org/www-project-top-ten
https://dzone.com/articles/a-general-software-maturity-model
https://dzone.com/articles/a-general-software-maturity-model
https://doi.org/10.1109/MC.2015.149
https://web.archive.org/web/20091111012314/http://tech.groups.yahoo.com/group/rest-discuss/message/6757
https://web.archive.org/web/20091111012314/http://tech.groups.yahoo.com/group/rest-discuss/message/6757
https://web.archive.org/web/20091111012314/http://tech.groups.yahoo.com/group/rest-discuss/message/6757

[31] Ruhma Sardar and Tayyaba Anees. “Web of Things: Security Challenges
and Mechanisms.” In: IEEE Access 9 (2021), pp. 31695–31711. doi: 10.
1109/ACCESS.2021.3057655.

[32] SFI Smart Ocean. [Online; accessed 9. Jun. 2021]. June 2021. url: https:
//sfismartocean.no.

[33] Solution for IoT Interoperability - W3C Web of Things (WoT). [Online;
accessed 26. Apr. 2021]. Aug. 2020. url: https://www.w3.org/2020/
04/pressrelease-wot-rec.html.en.

[34] Stack Overflow - Where Developers Learn, Share, & Build Careers. [On-
line; accessed 7. Jun. 2021]. June 2021. url: https://stackoverflow.
com.

[35] The WebSocket API (WebSockets) - Web APIs — MDN. https : / /

developer.mozilla.org/en- US/docs/Web/API/WebSockets_API.
(Accessed on 01/22/2021).

[36] thingweb - Exposed Thing with node-wot as Dependency. [Online; accessed
28. Apr. 2021]. Mar. 2021. url: https://www.thingweb.io/hands-on-
exposed-thing-guide.html.

[37] URI differences: URN, URL... – Dimitri’s Wanderings. [Online; accessed
4. May 2021]. Jan. 2016. url: https://dimitri.janczak.net/2015/
08/04/uri-differences-urn-url.

[38] w3c. web-of-things-framework. [Online; accessed 26. Nov. 2020]. Nov. 2020.
url: https://github.com/w3c/web-of-things-framework.

[39] Web of Things (WoT) Architecture. [Online; accessed 26. Nov. 2020]. Apr.
2020. url: https://www.w3.org/TR/wot-architecture.

[40] Web of Things (WoT) Binding Templates. [Online; accessed 26. Nov.
2020]. Jan. 2020. url: https : / / www . w3 . org / TR / wot - binding -

templates.
[41] Web of Things (WoT) Scripting API. [Online; accessed 26. Nov. 2020].

Nov. 2020. url: https://www.w3.org/TR/wot-scripting-api.
[42] Web of Things (WoT) Security and Privacy Guidelines. [Online; accessed

26. Nov. 2020]. Nov. 2019. url: https://www.w3.org/TR/wot-security.
[43] Web of Things (WoT) Thing Description. [Online; accessed 26. Nov. 2020].

July 2020. url: https://www.w3.org/TR/wot-thing-description/
#introduction.

[44] WebThings Gateway by Mozilla. [Online; accessed 27. Apr. 2021]. Apr.
2021. url: https://iot.mozilla.org/gateway.

[45] WebThingsIO. gateway. [Online; accessed 3. May 2021]. May 2021. url:
https://github.com/WebThingsIO/gateway/releases/tag/1.0.0.

[46] What is the Web of Things? – Web of Things. https://webofthings.
org / 2017 / 04 / 08 / what - is - the - web - of - things/. (Accessed on
01/23/2021).

[47] Working with JSON. [Online; accessed 26. Nov. 2020]. Nov. 2020. url:
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/

Objects/JSON.

106

https://doi.org/10.1109/ACCESS.2021.3057655
https://doi.org/10.1109/ACCESS.2021.3057655
https://sfismartocean.no
https://sfismartocean.no
https://www.w3.org/2020/04/pressrelease-wot-rec.html.en
https://www.w3.org/2020/04/pressrelease-wot-rec.html.en
https://stackoverflow.com
https://stackoverflow.com
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.thingweb.io/hands-on-exposed-thing-guide.html
https://www.thingweb.io/hands-on-exposed-thing-guide.html
https://dimitri.janczak.net/2015/08/04/uri-differences-urn-url
https://dimitri.janczak.net/2015/08/04/uri-differences-urn-url
https://github.com/w3c/web-of-things-framework
https://www.w3.org/TR/wot-architecture
https://www.w3.org/TR/wot-binding-templates
https://www.w3.org/TR/wot-binding-templates
https://www.w3.org/TR/wot-scripting-api
https://www.w3.org/TR/wot-security
https://www.w3.org/TR/wot-thing-description/#introduction
https://www.w3.org/TR/wot-thing-description/#introduction
https://iot.mozilla.org/gateway
https://github.com/WebThingsIO/gateway/releases/tag/1.0.0
https://webofthings.org/2017/04/08/what-is-the-web-of-things/
https://webofthings.org/2017/04/08/what-is-the-web-of-things/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON

	Introduction
	Motivation
	Research Question and Expected Result
	Research Question
	Expected Result

	Research Method
	Outline

	Background
	The World Wide Web
	OSI Model - Application Layer
	Hypertext Transfer Protocol – HTTP
	Internet of Things
	HyperText Markup Language - HTML
	JavaScript Object Notation - JSON
	Representational state transfer - REST
	Multicast DNS - mDNS

	Web of Things
	Thing Description
	Binding Templates
	Scripting APIs
	Security and Privacy Guidelines

	Web of Things Frameworks
	The Node-RED Project
	WebThings from Mozilla
	Siemens Desigo CC
	Eclipse ThingWeb
	W3C's Web of Things framework

	Smart Ocean Evaluation Case Studies
	Pilot Demonstrator 1 - Local scale environmental monitoring
	Pilot Demonstrator 2 - Mesoscale environmental monitoring
	Pilot Demonstrator 3 - Integrity measurements offshore wind
	Pilot Demonstrator 4 - Integrity measurements oil and gas

	Prototype Design
	Prototype 1 - Node-RED and Eclipse Thingweb
	Architecture

	Prototype 2 - Mozilla Webthings and Mozilla's Gateway
	Architecture

	Implementation and Deployment
	Implementation
	Prototype 1 - Node-RED and Eclipse Thingweb
	Prototype 2 - Mozilla WebThings and Gateway

	Deployment
	Prototype 1 - Node-RED and Eclipse Thingweb
	Prototype 2 - Mozilla WebThings and Gateway

	Evaluation
	Evaluation Criteria
	Maturity
	Documentation
	Amount of code
	Learnability
	Automation
	Security

	Evaluation of frameworks
	Eclipse ThingWeb
	Node-RED
	Mozilla WebThings
	Mozilla Gateway

	Conclusion and Future Work
	Summary
	Research Questions
	Conclusion
	Related Works
	Future Work

	Thing Descriptors
	Source Code

