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Abstract

Aim: The aim of this thesis is to examine the decay of the Higgs boson to

an electron-positron pair, H → e+e− using the invariant mass of the leading

and sub-leading electrons.

Method: An invariant mass reconstruction model, with two different types

of cuts, was developed by looking at a Z → e+e− Monte Carlo sample and

then real data. The model was then been run on real data from the LHC.

Findings: By running the model against real data, it is found that the model

correctly identifies the presence of Z bosons and also confirms that Higgs

bosons are not present in the samples that the model is investigating. This

model got limits for the effective cross sections of the H → e+e− decay. For

the 2018 sample with a pT > 20 GeV cut the effective cross section limit was

found to be σeff < 99.04 fb and for the 2016 sample with Loose electrons the

effective cross section limit was found to be σeff < 24.23 fb.
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Chapter 1

Introdution

1.1 Background

The Standard Model (SM) is a very successful model of particle physics. It

explains elementary particles and their interactions. One of the bases of this

theory is the electroweak force, a way of explaining the electromagnetic and

weak force with the same theory. However, this theory implies that the force

carriers for the weak force, known as the W and Z bosons, have zero mass,

but these particles have nearly 100 times the mass of a proton. Robert Brout,

François Englert and Peter Higgs made a proposal om how to solve this

problem, what is now known as the Higgs mechanism. The W and Z bosons

get masses from interacting with the Higgs field. This field is responsible of

giving mass to all the elementary particles. Like with all quantum fields, the

Higgs field has an associated particle, the Higgs boson [35].

The Large Hadron Collider (LHC) is the worlds most powerful particle

accelerator and is one of the colliders at CERN. It consists of a 27 kilometer

long ring with a number of accelerating structures that boost the energy of

the particles going through it [4]. Some of the main goals of the LHC are to

look for more fundamental interactions not found in less powerful colliders,

study the properties of anti-matter and to search for the Higgs boson. On 4.

July 2012, CERN announced that the ALTAS and CMS experiments at the

LHC had identified a particle consistent with the Higgs boson in the mass

region around 125 GeV.

It is important to map all properties of the particle that was found in
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1.2. Problem statement

2012 to confirm that they are consistent with the expected properties of

the Standard Model’s Higgs boson. Even if the branching ratio to e+e− is

expected to be very small, it should be sought, so that good boundaries of

the decay can be set. Most of the data we have so far are in decay channels of

heavy bosons (ZZ or W+W−) or quarks and leptons in the third generation

(ttbar, bbbar and τ+τ−). It is important to search for Higgs in the decay of

1st and 2nd generation particles as well.

1.2 Problem statement

The aim of this thesis is to examine the e+e− decay mode of the Higgs boson.

A model to determine the invariant mass was developed by taking the leading

and sub-leading electrons and adapting cuts to them using a Monte Carlo

Z → e+e−. This model will then be tested using a single real data file from

2018 and then used on all the data from 2018 and 2016 for two different types

of cuts to find the Higgs boson in the 125 GeV region.

1.3 Limitations

In this thesis Higgs → e+e− is examined using an invariant mass model.

The model is developed using a Monte Carlo Z → e+e− sample, as there

was no Monte Carlo H → e+e− sample available. The invariant mass model

created works very well for Z → e+e−, but without a Monte Carlo H → e+e−

sample one can not verify how well the model identifies the Higgs boson. This

limitation is probably not a large issue, but it gives some uncertainty of the

efficiency, ε, of the model.

When looking at real data, a 2018 DAOD was used for most of the analysis.

However, when implementing a working point cut on the whole sample, using

the Grid, these cuts did not go through. This did not work on a 2017 DAOD

of the same type either. Therefore a 2016 DAOD sample was used instead.

This sample have lower integrated luminosity than the 2018 sample used in

the rest of the thesis.

Working points were a problem in general. On the original real data

sample that was looked at, none of the working point types worked. Because

of this, another real data sample was analysed, the 2018 DAOD used in

2



Chapter 1. Introdution

most of the real data chapters. There are several types of working points,

VeryLoose, Loose, Medium, Tight and more, but in this thesis only the Loose

working point was used. This is because Loose was the only of the working

point that worked for us. The stronger working point cuts could have given

stronger result, but this did not work.

When running on the Grid, some of the grid jobs returned 0 files and for

the 2018 data sample only 440 out of the 540 files that was created could be

read by ROOT. This gives some uncertainty to the luminosity that was run

over. Another problem with the Grid is the number of times it took before

it worked and every time it ran it could take up to 2 days. This limited the

number of runs that was carried out.

3



Chapter 2

The experimental equipment

The experimental results that will be analysed in this work are produced at

the Large Hadron Collider (LHC) at CERN.

2.1 CERN

CERN, the European Organization for Nuclear Research, in Geneva Switzer-

land, operates the largest particle physics laboratory in the world. It was

established in 1954 and has 23 member states from Europe and scientist from

around the world are performing research at CERN [2]. From the work done

at CERN many important findings and innovations have been introduced.

Examples are the neutral currents in 1973 and the discovery of W and Z

bosons in 1983 [25]. These were predicted by the electroweak theory, a part

of the Standard Model, but without experimental results this could not be

confirmed. Studies of antimatter and their properties are also being performed

to get a better understanding of why there is so much ordinary matter in the

universe, but so little antimatter. One of the biggest technological advances

developed CERN is the World Wide Web (WWW). Tim Berners-Lee invented

the World Wide Web in 1989 and made the first web browser in 1990 while

working for CERN. WWW was released outside of CERN in 1991 [3].

4



Chapter 2. The experimental equipment

2.2 LHC

The Large Hadron Collider (LHC) is the world’s most powerful particle

accelerator and is a part of CERN [4]. It consists of a 27 kilometer long ring

with superconducting magnets and structures to accelerate protons and heavy

ions. Inside the accelerator there are two particle beams that travel close

to the speed of light, in opposite directions, in two tubes kept at a vacuum.

These beams are made to collide at four different detectors: ATLAS, CMS,

ALICE and LHCb [4].

LHC is a synchrotron, a circular accelerator. The first circular accelerator,

the cyclotron, was proposed by Lawrence in 1930 and the more powerful

synchrotron was proposed in 1945 by McMillan and Veksler [28]. An injector

sends particles into the ring with an initial energy Ei. The particles get

guided around the ring by dipole magnets, and accelerated by radiofrequency

(RF) cavities [28]. The time a particle uses around the ring is:

T =
2πR

v
=

2πRE

pc2
(2.1)

where R is the radius of the ring, c is the speed of light and v, E and p is the

speed, energy and momentum of the particle.

The LHC uses 1232 dipole magnets to keep the particles on its path and

392 quadrapole magnets to focus the particle beam to increase the luminosity

[4]. The dipoles produce a 7.7 T magnetic field to slightly turn the particles,

but since they are charged they also repel each other, so they must be focused

using quadmagnets. Classical electrodynamics tells that accelerating charges

lets out radiation and in synchrotrons this radiation is called synchrotron

radiation [28]. The power P generated form synchrotron radiation is:

P =
2e2c

3R2

β4

(1− β2)2
≈ 2e2c

3R2
γ4 (2.2)

Where e is the elementary charge, R is the radius of the collider and γ =
1√

1− v2
c2

= E
mc2

. If the velocity is close to c then β = v
c
≈ 1 the power becomes:

P ≈ 2e2c

3R2
γ4 =

2e2c

3R2

(
E

mc2

)4

(2.3)

5



2.2. LHC

The particle energy loss during one rotation in the ring is

−∆E = PT ≈ 4πe2

3R

(
E

mc2

)4

(2.4)

Difference in energy loss between electrons and protons in a synchrotron can

be found using eq. 2.4. For equal radius (R) and energy (E), electrons let out

approximately 1013 times more synchrotron radiation than protons [28].

∆Ee
∆Ep

≈
(
mp

me

)4

≈ 1013 (2.5)

The large energy loss due to synchrotron radiation limits the energies elec-

trons can achieve in the LHC and is why LHC uses protons when running

experiments [5].

Two important quantities used in particle physics experiments are luminos-

ity (L) and cross section (σ). Cross section is an area, but also a probability.

The cross section is the area active in the scattering. The unit for cross section

is barn (b), where 1 b = 10−24 cm2 = 100 fm2. Luminosity L is defined as

the number of collisions per area per time, or as the number of events per

unit cross section that take place in a single beam encounter region per unit

time. The units are cm−2s−1, as can be seen in eq. 2.6 that shows how the

number of events per time Ṅ relates to the luminosity.

Ṅ = Lσ (2.6)

In a collider where two bunches of particles collide head on and with N1 and

N2 particles respectively, luminosity can be determined using eq. 2.7. If the

bunches collide with a frequency f and have area A, then the luminosity is

given by [28]:

L =
N1N2f

A
(2.7)

In the LHC there are a several bunches in each beam and they collide at

an angle, not head on. The distributions of particles are Gaussian in each

direction which must be taken into account. When calculating L eq. 2.7 must

then be expanded to:

L =
NbN1N2f

4πσxσy
S (2.8)

6



Chapter 2. The experimental equipment

Where Nb is the number of bunches, σx and σy are the width of the beam

in the directions and S describe the angle at which the beams cross. The

luminosity of the LHC has been calculated to be 1034 cm−2 s−1 according to

[8].

The reason for colliding two beams, instead of one beam and a stationary

target, is the center of mass (c.o.m.) energy. The stationary target collision

would have a higher number of collision but the c.o.m. energy is smaller. For

collisions with two beams of energy E, the c.o.m. energy becomes 2E, but

for the stationary target with mass m the c.o.m. energy becomes
√

2Em.

Therefore a doubling of beam energy will multiply the energy by two in

the beam collision, but only multiply by
√

2 in stationary target collisions.

Higher energies make more massive particles as shown by Einstein’s equation:

E2 = m2c4 + p2c2.

The cross section can be found with eq. 2.6. By integrating Ṅ and L over

time one gets the number of events, N , and the integrated luminosity,L, and

eq. 2.6 becomes:

σ =
N

L
(2.9)

Where N =
∫
Ṅdt and L =

∫
Ldt. When finding the cross section for an

experiment where a particle decays, like H → e+e−, one needs the efficiency

of finding the decay, ε, and the number of particles that the experiment is

looking at, N = Ndata −Nbackground. This cross section will be the effective

cross section σeff .

σeff =
Ndata −Nbackground

εL
(2.10)

2.3 The ATLAS Detector

The ATLAS detector is the largest detector at LHC [7]. It consists of an

inner tracking detector, a thin superconducting solenoid, electromagnetic and

hadronic calorimeters, and a muon spectrometer. These layers of detectors

have specific tasks, such as momentum and energy measurements, and are

ordered to maximize the number of particles that are measured before they

are absorbed by the detector [9].
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The Inner Tracking Detector (ID) finds the point of the proton collision

and any secondary vertices where short-lived particles decay, f. ex the Higgs

boson. The magnetic field bend the path of charged particles. The bending

radius is proportional to the momentum of the charged particles. After the

Inner Detector (ID) comes the calorimeters that measures the energy of

different particles. These calorimeters absorb most of the particles coming

from a collision, making them deposit all their energy within the detector.

Outside of the calorimeters are the muon detectors. Muons don’t lose much

energy to bremsstrahlung because of their higher mass and that they don’t

interact with the hadronic calorimeter. Since muons have higher penetrating

power than other particles, it is assumed that most of the particles that

interact with the muon detector must be muons. The detectors are explained

in more detail in the next sections.

2.3.1 The Inner Detector

The Inner Tracking Detector consists of three different sub-detectors, the pixel

detector, Semiconductor Tracker (SCT) and Transition Radiation Tracker

(TRT) [13]. Outside of the Inner Detector there is a 2 T solenoidal magnetic

field parallel to the beam axis [15]. The Inner Detector set up can be seen in

figure 2.1.

Figure 2.1: Inner Detector of ATLAS [13].
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The pixel detector is the innermost part of the detector and is designed to

give a high-granularity, high-precision measurements as close to the interaction

point as possible. It consists of three barrels located 4 cm, 11 cm and 14

cm from the interaction point and four endcaps on each side [13]. These

barrels give three very precise position measurements. This gives the Inner

Detector the ability to find short-lived particles such as the τ -lepton. The

pixel detector has 92 million pixels, each 50 µm in the Rφ direction and 400

µm in the z direction [15]. Because the proximity to the collisions, the pixels

must be very radiation hardened to withstand 300 kGy of ionising radiation

in ten years of operation. An inner pixel layer was added in 2015, the IBL

(Insertable Pixel Layer) [15].

The SCT is placed outside the pixel detector and consists of four barrels of

silicon microstrip detectors and two endcaps with nine disks each [13]. Each

of the modules is made of single-sided strip sensors glued back-to-back. The

strips has 40 mrad between them. This gives two-dimensional information

about the hits and the small angle minimise the fake hits in the detector [16].

The SCT has an area of 60 m2, compared to the pixel detectors 1.9 m2, and

has 6 million channels, compared to the pixel detectors 92 million [13]. The

pixel detector and the SCT work in a similar way, the absorbed energy makes

free electrons, which are collected by electrodes.

The last part of the Inner Detector is the TRT. It consists of gas filled

drift tubes, called straws, in a Barrel and endcaps. They are parallel to the

beam pipe in the Barrel and radially in the endcaps [15]. The straws have

a diameter of 4 mm with a 0.03 mm diameter gold-plated tungsten wire.

In the Barrel there are 50 000 straws that are 144 cm long and in the end

caps there are 250 000 straws, each 39 cm long. Each of these straws are

read out separately [13]. The direction of the straws means that η can’t

be measured, but the transverse position of a charged particle. This means

that the transverse momentum, pT , can be measured. The TRT works in a

different way to the pixel detector and the SCT. When a charged particle

goes through a straw it ionizes the gas. The free electrons drift towards the

wire and create an electric signal which is read out at the end of the straw

[13].
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2.3. The ATLAS Detector

2.3.2 Calorimeters

Calorimeters measure the energy of particles. The energy measurement is done

by absorbing the particles, forcing them to deposit their energy and starting

a particle shower. Calorimeters usually consist of passive and active layers.

The passive layers absorb particles and create showers and the active layers

read out the energy loss [17]. The active layer are scintillators that produce

photons that are sent to photomultipliers. If the passive and active layer are

distinct layers, this is called a sampling calorimeter. If the calorimeter is one

material with both properties, then it is called a homogeneous calorimeter

[18].

There are two main types of calorimeters, electromagnetic (EM) calorime-

ters that measure electrons and photons, and hadron calorimeters that measure

hadrons [18]. Since hadrons pass through the EM calorimeter without being

absorbed, the hadron calorimeter is placed after the EM calorimeter. In

the EM calorimeter the shower starts when an electron or photon enters a

material. At energies above 1 MeV, photons interact primarily through pair

production and high-energy electrons emitting photons via bremsstrahlung

[21]. In the hadron calorimeter the shower is made by a succession of inelastic

hadronic interactions, mainly pion and nucleon production [20]. In ATLAS

the calorimeter system consists of two parts, a liquid Argon (LAr) calorimeter

and a tile calorimeter (TileCal) [17]. These calorimeter systems together

absorb every particle except for muons and neutrinos.

The Liquid Argon (LAr) calorimeter is an EM calorimeter and consists

of a barrel and two end caps. It is a sampling calorimeter, where lead is the

passive layer and liquid Argon is the active layer. The liquid argon has to

have a temperature of -183◦C [17]. The LAr calorimeter uses an accordion

geometry to give a full φ coverage without cracks.

The hadron calorimeter consists of a TileCal barrel and two LAr end caps.

The TileCal is a sampling calorimeter that uses steel as the passive layer and

scintillator tiles as the active layer. The photons produced by the scintillators

are transported and read out by photomultipliers [17]. The hadronic LAr end

caps and EM LAr end caps are similar but use copper instead of lead.

10
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Figure 2.2: Calorimeter at ATLAS [20].

2.3.3 Muon spectrometer

Muons pass through the Inner Detector and calorimeters without interacting

with the detector. Muons are much heavier than electrons and lose less energy

through bremsstrahlung in the EM calorimeter and don’t interact with the

hadron calorimeter. Therefore, the muon spectrometer is placed outside of the

calorimeters, where only the muons are measured. The muon spectrometer

is the largest component of ATLAS and measures the momentum of muons

similar to the Inner Detector, by bending their path in a magnetic field [22].

The muon spectrometer is made up of 4 000 muon chambers with four

different methods of measuring the momentum, Monitored Drift Tubes (MDT),

Cathode Strip Chambers (CSC), Thin Gap Chambers (TGC) and Resistive

Plate Chambers (RPC). They are arranged as shown in 2.3 [22].

11



2.3. The ATLAS Detector

Figure 2.3: Muon spectrometer at ATLAS [23].

2.3.4 Coordinates

ATLAS uses a right-handed coordinate system with its origin at the point of

collision in the centre of the detector and the z-axis along the beam pipe. The

x-axis points from the collision point to the centre of the LHC ring, and the

y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse

plane, the x-y plane, where φ is the azimuthal angle around the beam pipe.

Pseudorapidity, η is a spatial coordinate describing the angle of a particle

relative to the beam axis, rather than using θ, and is defined by [12]:

η = −ln

[
tan

(
θ

2

)]
(2.11)

In the transverse plane, η is zero and along the beam, η goes to infinity, as

seen in 2.4. Since high |η| means shallow scattering angles, detectors must

have a high η coverage, typical coverage extends to |η| ≈ 3. In chapter 5.2

we will see that ATLAS has a |η| < 2.7 coverage for electrons, see fig. 5.1a.

Pseudorapidity can also be written in terms of the momentum:

η =
1

2
ln

(
|p|+ pz
|p| − pz

)
(2.12)
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Figure 2.4: Pseudorapidity and theta [11]

Where |p| is the absolute value of the momentum and pz is the momentum

in the z-direction. For high energy particles where the masses is negligible,

the substitution E ≈ p holds and this leads to the pseudorapidity converging

to rapidity:

y =
1

2
ln

(
E + pz
E− pz

)
(2.13)

For the high energies at the LHC this substitution holds [11]. The distance,

∆R between particles is measured in the (η, φ) plan and is defined as [12]:

∆R =
√

(∆η)2 + (∆φ)2 (2.14)

Since both η and φ is Lorentz invariant if the particle is massless, ∆R is also

Lorentz invariant.

2.4 Electron reconstruction and identification

There are many different types of particles that are created at the ATLAS

detector and some of these decay into electrons. These final state electrons

are important to identify in order to examine the Standard Model. To do

this a likelihood-based (LH) identification electron selector is used. This LH

selector combine a lot of variables and calculate a probability if the particle is

an electron. Some working point cuts, that will be done in chapter 5, 6 and

7, use this LH selector to cut electron candidates [24].

The energy in the EM calorimeter, seen in fig. 2.2, is very important to

identify electrons at high energies, E> 20 GeV . If there is high energy in the

EM and energy in the hadron calorimeter, then it might be a charged pion
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instead.

All of the working points, including the Loose working points that will

be used in chapter 5, 6 and 7, require hits in the inner detector, seen in fig.

2.1. There must be at least 2 hits in the pixel detector and at least seven

hits in the pixel and silicon-strip detector combined. For Medium and Tight

working points there are more requirements that must be fulfilled [24].
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Chapter 3

The Standard Model

The standard model is currently the model which best describe subatomic

particles and their interactions. The basic constituents of matter are three

families of point quarks and three of point leptons. There are also three basic

non-gravitational gauge-type forces. The quarks interact through all three

forces while the (charged) leptons interact only though the electromagnetic

force and weak force. All three forces are carried by gauge bosons.

3.1 Notation

In SI units mass, length and time are natural dimensions. An alternative set

of units commonly used in high energy physics, is natural units. In this unit

system mass, action and velocity are fundamental dimensions. The reduced

Planck constant, ~ = h/2π, is used as an unit of action and the speed of

light, c, is a unit of velocity. c = ~ = 1 in natural units. In natural units the

momentum-energy relations are:

E2 = p2 +m2 (3.1)

The introduction of the electron volt (eV) as a unit for energy requires

some justification. One eV is the energy gained by an electron after being
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accelerated by an electric potential difference of one volt.

1eV = 1.6 ∗ 10−19C · 1V

= 1.6 ∗ 10−19J

The electron volt is a convenient energy unit since particles are often acceler-

ated with electromagnetic fields. To explain why electron volts are used for

mass and energy one uses eq. 3.1. This equation states that the total energy

of a particle is dependent on the mass and momentum of the particle. For a

massless particle eq. 3.1 reads:

E = p (3.2)

and for a particle at rest we get the relation:

E = m (3.3)

Since the unit of energy is eV, the unit for mass is also eV. 1 eV is a very

small amount, so for the high energies made at the LHC, MeV and GeV are

commonly used.

In relativistic quantum mechanics four-vectors are necessary to describe

the different transformations. A general four-vector A will be written in terms

of its contravariant index.

A = (Aµ) = (A0,A) = (A0, A1, A2, A3) (3.4)

Where A0 is the time component and A is the spatial components such that

A = (Ai) = (A1, A2, A3). The contravariant components A1, A2 and A3 are

physical components like Ax, Ay and Az and the covariant components A1, A2

and A3 will be related to the contravariant components. The four-position

vector x is given by:

x = (xµ) = (x0,x) = (x0, x1, x2, x3) = (t, x, y, z) (3.5)

xµ =
3∑

n=0

gµνx
µ ≡ gµνx

ν (3.6)
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Chapter 3. The Standard Model

Where gµν = diag(1,-1,-1,-1). This gives:

x2 = gµνx
νxµ = xµ · xµ = (x0)2 − x2 = t2 − x2 − y2 − z2 (3.7)

Some other 4-vectors are the 4-momentum (pµ) = (E,p) and the space-time

analogue to the ∇ operator, (∂µ) = (∂/∂t,∇). All the different units can be

seen in table 3.1. For example, the invariant mass of an unstable particles

can be described by taking the square root of s, where s is:

s = (pµ1 + pµ2)2

= (E1 + E2)
2 − (p1 + p2)

2

≈ 2p1p2(1− cosθ)
(3.8)

Table 3.1: Comparing SI and natural units

Quantity Natural Units SI
Velocity c m/s
Energy eV eV
Momuentum eV eV/c
Mass eV kg or eV/c2

Time 1/eV s
Length 1/eV m

3.2 Elementary particles

In the Standard Model there are 17 elementary particles, divided into two

categories: fermions and bosons. Fermions are spin 1/2 particles and make up

the visible matter in the universe. There are 12 flavours of fermions divided

into 2 groups, quarks and leptons, and these groups are again divided into 3

sub-groups called generations. Each generation has one up-type quark, one

down-type quark, one negative charged lepton and one neutral lepton.
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3.2. Elementary particles

Table 3.2: Fermions

Type Name Symbol Name Symbol Name Symbol

Quark
Up u Charm c Top t
Down d Strange s Bottom b

Lepton
Electron e Muon µ Tau τ
e-neutrino νe µ-neutrino νµ τ -neutrino ντ

Bosons are spin 1 particles, except for the Higgs boson which has zero

spin, and mediate the fundamental interactions of the weak interaction, the

strong interaction and the electromagnetic interaction. Only particles with

charge can feel the electromagnetic force. This happens through exchange of

a massless boson called photon. Up-type quarks have an electrical charge of

+2
3
e, while the down-type quarks have a charge of −1

3
e. The charged leptons,

e, µ and τ have charge +1e. The neutrinos don’t have a charge.

The quarks also have colour charge. The colour charges are red, green and

blue. The strong force only works on coloured particles and is mediated by

gluons. Unlike chargeless photons, gluons are coloured and they can therefore

self-interact. Because of confinement only colour neutral particles can exist.

This means that quarks and gluons can never be observed individually. A red,

a green and a blue quark make a baryon and a quark and an anti-quark make

a meson. Baryons and mesons are hadrons. The weak interaction is mediated

by the neutral Z0 boson and the two charged W+ and W− bosons. The high

mass of Z0, W+ and W− means that the range of the weak interaction is

small. The high mass of the weak bosons also made it difficult to observe

them, they were not discovered until 1983, several years after they were

postulated. The last boson is the Higgs boson. Unlike the other bosons, it

has zero spin and does not mediate a force. The Higgs gives fermions and

weak interaction bosons mass.

Table 3.3: Bosons and the forces

Force Boson Mass[Gev] Charge [e]
Electromagnetism γ 0 0
Weak Z0,W± 91.19, 80.38 0, ±1
Strong g 0 0
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3.3 Quantum Field Theory

In the 1920s, Dirac attempted to quantize the electromagnetic field. This was

the beginning of quantum field theory. Then, in 1926, Born, Heisenberg and

Jordan invented canonical quantization. Next, in 1927, Dirac created and

presented the first reasonably complete theory of quantum electrodynamics

(QED) and the following year he presented the Dirac equation. In addition,

the same year Wigner found that the quantum field descripting electrons or

other fermions had to be expanded using anti-commutating creation and an-

nihilation operators due to Pauli exclusion principle. Bethe, Dyson, Feynman,

Schwinger and Tomonaga solved the so called ’divergence problem’ through

renormalization. This was the start of modern QED. In the 1950s Yang and

Mills generalised QED to gauge theories - known as Yang-Mills theories. [25]

The Lagrangian density L and the action S are important quantities in

Quantum Field Theory (QFT). Usually, the Lagrangian density is called the

Lagrangian. L is define by:

L = L(φ, ∂µφ)

L =

∫
Ld3x

S =

∫
Ldx0 =

∫
Ld4x

Note that if L is invariant under Lorentz transformations, then S is also

invariant. The principle of least action δS = 0 gives:

0 = δS = δ

∫
L(φ, ∂µφ)d4x

=

∫ [
∂L
∂φ

δφ− ∂µ
(

∂L
∂µ(∂φ)

)
δφ+ ∂µ

(
∂L

∂µ(∂φ)
δφ

)]
d4x (3.9)

The last term in the integrand gives no contribution. Since δφ is an arbitrary

variation on the field φ, eq. 3.9 leads to the equations of motion, i.e. the

Euler-Lagrange field equations:

∂L
∂φ
− ∂µ

(
∂L

∂µ(∂φ)

)
= 0 (3.10)
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Solving this equation gives the equations of motion for the field φ. Example

of Lagrangians are:

L = ψ(x)(iγµ∂µ −m)ψ(x) for free electrons (3.11)

L = −1

4
F µνFµν for free photons (3.12)

Noether’s theorem states that for every continuous symmetry of a local

Lagrangian, there exist a conservation law, and hence, a conserved quantity

[25]. A symmetry is a transformation in the following form:

x→ x′ = x+ δx (3.13)

where δx is an arbitrary infinitesimal translation, like:

δφ(x) = φ′(x′)− φ(x) = δxµ∂µφ(x) (3.14)

The change induced on L by such transformations is:

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δφ =

∂

∂xµ

(
∂L

∂(∂µφ)
δφ

)
(3.15)

If the lagragian L is invariant under the transformation in eq. 3.14, then

δL = 0 and therefore the last equation becomes:

jµ =
∂L

∂(∂µφ)
δφ (3.16)

The Lagrangians must be invariant under such symmetries. This gives

additional fields which couple to the original field, which are interpreted as

the force carrying bosons. The symmetries come in groups described by group

theory. These groups are local gauge transformation groups.

3.3.1 Group theory

A group is a set G of elements together with a binary operator * that combines

any two elements a and b to form a third element denoted a*b. In order to

qualify as a group, the set and operator (G,*), must fulfill four requirements,

which are called the group axioms [25]:

20



Chapter 3. The Standard Model

1. Closure: For all a, b ∈ G, the result a*b is also in G.

2. Associativity: For all a, b, c ∈ G, the condition (a*b)*c=a*(b*c) holds.

3. Identity (or unit) element: There exists an element e ∈ G such that for

every element a ∈ G, the condition e*a=a*e=a holds.

4. Inverse element: For each a ∈ G, there exist an element b ∈ G, usually

denoted a−1, such that a*b=b*a=e, where e is the identity element.

In physics Lie groups (or continuous groups) are an important class of groups.

Lie groups are characterized by: (i) they can be parametrized by a finite

number of parameters n and (ii) the quantity a ∗ b−1 is a continuous mapping

with respect to these parameters [25]. The elements, g, of a Lie group

parametrized by t = (t1, t2, ..., tn) and has the identity e = (0, 0, ..., 0) can be

written as:

g = exp(iA·t), where A·t =
∑
i=1

nAiti (3.17)

The Ais are the infinitesimal generators of the group.

The unitary group, denoted U(n), is the group of n*n unitary matrcies.

An n*n matrix U is said to be unitary if:

U †U = In (3.18)

In the case of n=1, the group U(1) corresponds to the circle group, consisting

of all complex numbers with absolute value equal to one. This is the group of

the electromagnetic interactions in the Standard Model. The special unitary

group, denoted SU(n), is the group of n*n unitary matrices that also satisfies:

detU = 1 (3.19)

The dimension of a SU(n) groups is n2 − 1. The special unitary group have

applications in the Standard Model. In particular, SU(2) is the gauge group

of weak interactions and SU(3) is the gauge group of strong interactions.

The group SU(3)⊕ SU(2)⊕ U(1) is the gauge group of the Standard model

and is a Lie group with dimension 12 (8+3+1=12). The dimensions of the
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subgroups correspond to the eight gluons, the three vector bosons and the

photon.

3.3.2 Quantum Electrodynamics

Quantum Electrodynamics (QED) explains electrodynamics on a quantum

level, using quantum field theory. Classical electrodynamics tells that the

electric and magnetic fields, E and B, can be explained by the vector field A

and the scalar field φ through:

E = −∂A

∂t
−∇φ, B = ∇×A (3.20)

Through some transformations of A and φ, see eq. 3.21, E and B remain

unchanged.

φ→ φ′ = φ+
∂f

∂t
, A→ A′ = A +∇f (3.21)

This is a U(1) gauge symmetry. This can be rewritten as a four-potential

Aµ → A′µ = Aµ + ∂µf (3.22)

Where the four-potential Aµ = (φ,A). For non-relativistic quantum mechan-

ics, the substitution eq. 3.23 for the free-particle Schrödinger equation leads

to the correct wave equation for a particle with charge q in an electromagnetic

field. This is known as the minimal substitution. A four-vector version of the

minimal substitution takes the covariant form:

i
∂

∂t
→ i

∂

∂t
− qφ, −i∇ → −i∂ − pA (3.23)

∂µ =
∂

∂xµ
→ Dµ = [∂µ + iqAµ] (3.24)

To introduce the electromagnetic interaction into the free-fermion Lagrangian

L0 = ψ(x)(iγµ∂µ −m)ψ(x) = ψ(x)(i/∂ −m)ψ(x) (3.25)
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through the minimal substitution eq. 3.24. We required invariance of the

resulting Lagrangian:

L = ψ(x)(iγµDµ −m)ψ(x) = L0 − qψ(x)γµψ(x)Aµ(x) = L0 + LI (3.26)

under the gauge transformations of the electromagnetic field:

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µf(x) (3.27)

This invariance is ensured if, together with eq. 3.27, the fields ψ(x) and ψ(x)

undergo the transformations:

ψ(x)→ ψ(x)′ = ψ(x)e−iqf(x)

ψ(x)→ ψ(x)′ = ψ(x)eiqf(x)
(3.28)

Under these transformations the Lagrangian transforms according to:

L0 → L0 = L0 − qψ(x)γµψ(x)∂µf(x)

L1 → L1 = L1 + qψ(x)γµψ(x)∂µf(x)
(3.29)

The resulting Lagrangian is thus invariant under U(1) gauge transformations,

giving the Lagrangian for electrodynamics:

L = ψ(x)(i /D −m)ψ(x)− 1

4
F µνFµν (3.30)

The free Lagrangian for a photon field Aµ has been included. Where the

electromagnetic tensor is given by:

F µν = ∂µAν − ∂νAµ (3.31)

3.3.3 Quantum Chromodynamics

For QED the gauge theory was a new way to look at already known inter-

actions. The gauge theory for the strong interaction explained previously

unknown interactions. This gauge theory is called quantum chromodynamics

(QCD) because of the so-called colour charges. Hadrons are bound states of

fundamental spin-1
2

quarks. In a simple quark model, baryon are made of

three quarks and mesons are made of one quark and one anti-quark. This
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is a good model to describe hadrons, but it has two inconsistent features.

Firstly, free quark or 2 quark systems are never observed and secondly, the

spin wavefunction of the baryons are symmetric under exchange of quarks of

the same flavour, in apparent contradiction of the Pauli exclusion principle.

Both phenomena are explained by the theory of colour, developed by Han,

Nambu and Greenberg [25]. The assumption is that quarks, but not leptons,

have one of three colour charges, red, green or blue. This gives the quark

wavefunction:

Ψ = ψχc (3.32)

Where ψ is the space/spin part and a colour wavefunction χc. For a single

quark the colour wavefunction is denoted by the colour spinors χc = r,g,b,

where:

r =

1

0

0

 g =

0

1

0

 b =

0

0

1

 (3.33)

similar to the spin wavefunction χ = α, β is represented by Pauli spinors

α =

(
1

0

)
β =

(
0

1

)
(3.34)

To explain why the free quark and two quark systems aren’t observed the

concept of colour confinement was introduced. Colour confinement says that

only ”colourless” hadrons can exist. A free quark must have a colour and two

quarks can’t neutralize each other. For a baryon there are three quarks so

they can all have different colours and for a meson there are a quark and an

anti-quark so these types of baryons can be colourless.

The free quark Lagrangian becomes:

L = ψ
f

r (x)(i/∂ −m)ψfr (x)

+ ψ
f

g (x)(i/∂ −m)ψfg (x) + ψ
f

b (x)(i/∂ −m)ψfb (x) (3.35)

where a sum over the flavour index f = u,d,s,c,b,t is understood. The dirac

field ψfr,g,b corresponds to a quark of flavour f and colour r,g,b respectively
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and can be combined into:

Ψf (x) =

ψfr (x)

ψfg (x)

ψfb (x)

 Ψ
f
(x) =

(
ψ
f

r (x), ψ
f

g (x), ψ
f

b (x)
)

(3.36)

The Lagrangian becomes:

L = Ψ
f
(x)(i/∂ −m)Ψf (x) (3.37)

To introduce the strong interactions to the free quark Lagrangian use a very

similar method as the one for QED. The first step is to introduce the local

SU(3) transformation:

Ψf (x)→ Ψf (x)′ = exp[igsλjωj(x)/2]Ψf (x)

Ψ
f
(x)→ Ψ

f
(x)′ = Ψ

f
(x)exp[igsλjωj(x)/2]

(3.38)

where ωj(x) (j=0,1,2,...,8) are arbitrary real differentiable functions, λj are

three-dimensional analogues of the Pauli matrices and gs is the coupling con-

stant. The free quark Lagrangian is not invariant under these transformations

and transforms as:

L0 → L′0 = L0 −
1

2
gsΨ

f
(x)λj /∂ωj(x)Ψf (x) (3.39)

for an infitesimal ωj(x). If as in QED, ∂µΨf (x) was replaced by the covariant

derivative:

DµΨf (x) = [∂µ + igsλjA
µ
j (x)/2]Ψf (x) (3.40)

so that L0 transforms to:

L = Ψ
f
(x)(i /D −m)Ψf (x) = L0 + LI (3.41a)

where:

LI = −1

2
gsΨ

f
(x)γµλjΨ

f (x)Aµj (x) (3.41b)

Here 8 real gauge fields Aµj (x) are introduced, gluon fields, since there are
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3.3. Quantum Field Theory

8 conserved charges and ωj(x). For eq. 3.41a to be invariant under the

transformations in eq. 3.38 the transformations of the gluon fields Aµj (x) must

be chosen so that the covariant derivatives DµΨf (x) transform the same way

as Ψf (x) i.e.:

DµΨf (x)→ exp[igsλjωj(x)/2]DµΨf (x) (3.42)

For infinitesimal functions ωj(x) the transformations of the gluon fields are

given by:

Aµi (x)→ Aµi (x)′ = Aµi (x)− ∂µωi(x)− gsfijkωjAµk(x) (3.43)

where fijk are the structure constants. 3.41a and 3.43 are SU(3) gauge

transformations and any theory which is invariant under them is SU(3) gauge

invariant. For QED the term −1
4
FµνF

µν describe a free photon. This term is

gauge invariant. An analogous expression:

−1

4
Fiµν(x)F µν

i (x) (3.44)

where:

F µν
i (x) = ∂µAνi (x)− ∂νAµi (x) (3.45)

would describe free massless gluons, but it is not invariant under gauge

transformations because of the transformations in eq. 3.43. Eq. 3.44 will be

gauge invariance by replacing F µν
i (x) by:

Gµν
i (x) = F µν

i (x) + gsfijkA
µ
j (x)Aνk(x) (3.46)

This gives the free gluon Lagrangian:

LG = −1

4
Giµν(x)Gµν

i (x) (3.47)

which is gauge invariant. This gives the QCD Lagrangian

L = Ψ
f
(x)(i /D −m)Ψf (x)− 1

4
Giµν(x)Gµν

i (x) (3.48)

There are some important differences between QED and QCD. The gluons

themself carry colour charge. This can be seen in eq. 3.46 where the second

term indicate that the gluons interact with each other. Another difference is
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that QCD describes the strong interaction, which is too strong for lowest order

perturbation theory. The strong interaction is only strong at small distances

and disappear for distances bigger than 1 fm. When one tries to separate a

quark from a nucleus the potential energy builds uptill it is enough to create

often several quark-antiquark pairs, leading to a spray of new particles, known

as a jet. Colour confinement makes it impossible for colourless particles to

exist.

3.3.4 Electroweak

The weak interaction is the force responsible for flavour change in elementary

particles and radioactive decay of atoms, often through beta-decay. The

electromagnetic and strong interactions is carried through massless, spin-1,

gauge bosons. But the weak interaction is carried through three massive

vector bosons, W+, W− and Z0, the masses of these particles are:

MW = 80.40GeV MZ = 91.19GeV (3.49)

The high masses of these bosons have several consequences. The range of the

weak interactions is of order 10−3 fm. The large energy needed to produce

the W± and Z0 bosons in a laboratory meant that they were not discovered

until 1983, long after they were theoretically predicted by Glashow, Salam

and Weinberg’s electroweak theory [25]. The weak interaction only works on

left-handed particles. The left- and right-handed parts of a field is defined by:

ψL = PLψ(x)

ψR = PRψ(x)

}
=

1

2
(1∓ γ5)ψ(x) (3.50)

Furthermore, leptons are assumed to be massless. This gives the free lepton

Lagrangian:

L0 = i[ψ
L

l (x)/∂ψLl (x)+ψ
L

νl
(x)/∂ψLνl(x)+ψ

R

l (x)/∂ψRl (x)+ψ
R

νl
(x)/∂ψRνl(x)] (3.51)

Where a sum over the flavour index l = e,µ,τ is understood. Since only left-

handed particles interact with the weak force, one can combine the left-handed
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3.3. Quantum Field Theory

fields into the two-component fields:

ΨL
l (x) =

(
ψLνl(x)

ψLl (x)

)
Ψ
L

l (x) =
(
ψ
L

νl
(x), ψ

L

l (x)
)

(3.52)

With these fields, 3.51 becomes:

L0 = i[Ψ
L

l (x) /DΨL
l (x)+) + ψ

R

l (x)/∂ψRl (x) + ψ
R

νl
(x)/∂ψRνl(x)]. (3.53)

To make electroweak gauge theory one introduce SU(2) and U(1) gauge

transformations. Like in QED, the introduction of gauge fields generates the

interaction. First the SU(2) transformations:

ΨL
l (x)→ ΨL

l (x)′ = exp[igτjωj(x)/2]ΨL
l (x)

ΨiLl (x)→ ΨiLl (x)′ = ΨiLl (x)exp[−igτjωj(2)/2]

ψRl (x)→ ψRl (x)′ = ψRl (x), ψRνl(x)→ ψRνl(x)′ = ψRνl(x)

ψ
R

l (x)→ ψ
R

l (x)′ = ψ
R

l (x), ψ
R

νl
(x)→ ψ

R

νl
(x)′ = ψ

R

νl
(x)

(3.54)

where ωj(x), j=1, 2, 3, are arbitrary real differentiable functions and g is a

coupling constant. By applying the transformations in eq. 3.54 to the free

lepton Lagrangian in eq. 3.53 for a infinitesimal ωj(x) transforms like:

L0 → L′0 = L0 −
1

2
gΨ

L

l (x)τj /∂ωj(x)ΨL
l (x) (3.55)

If, like in QED, ∂µΨL
l (x) was replaced by the covariant derivative:

DµΨL
l (x) = [∂µ + igτjW

µ
j (x)/2]ΨL

l (x) (3.56)

so that L0 transforms to

L0 = i[Ψ
L

l (x)/∂ΨL
l (x)+) + ψ

R

l (x)/∂ψRl (x) + ψ
R

νl
(x)/∂ψRνl(x)] (3.57)

For this modified Lagrangian to be invariant under the transformations in

eq. 3.54 then the covariant derivative DµΨL
l (x) must transform like the fields

ΨL
l (x):

DµΨL
l (x)→ exp[igτjωj(x)/2]DµΨL

l (x) (3.58)
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for an infinitesimal ωj(x) the gauge fields W µ
j (x) must transform like:

W µ
i (x)→ W µ

i (x)′ = W µ
i (x)− ∂µωi(x)− gεijkωj(x)W µ

k (x). (3.59)

eq. 3.54 and eq. 3.59 are the SU(2) gauge transformations of electroweak

interaction. The U(1) transformations for electroweak are almost identical to

the U(1) of QED. Instead of the charge q and field Aµ(x) in QED, electroweak

uses the weak hyper charge Y and the field Bµ(x) and a coupling constant g′.

ψ(x)→ ψ(x)′ = exp[ig′Y f(x)]ψ(x)

ψ(x)→ ψ(x)′ = ψ(x)exp[−ig′Y f(x)]

∂µψ(x)→ Dµψ(x) = [∂µ + ig′Y Bµ(x)]ψ(x)

Bµ(x)→ Bµ(x)′ = Bµ(x)− ∂µf(x)

(3.60)

By the SU(2) transformations in eq. 3.54 and eq. 3.59 and the U(1) transfor-

mation in eq. 3.60 on the free lepton Lagrangian in eq. 3.53, one gets:

LL = i[Ψ
L

l (x) /DΨL
l (x)+) + ψ

R

l (x) /DψRl (x) + ψ
R

νl
(x) /DψRνl(x)] (3.61)

where:
DµΨL

l (x) = [∂µ + igτjWj(x)/2− ig′Bµ(x)/2]ΨL
l (x)

DµψRl (x) = [∂µ − ig′Bµ(x)/2]ψRl (x)

DµψRνl = ∂µψRνl

(3.62)

To ensure invariance under these transformations four gauge fields are intro-

duced, B(x) form the U(1) transformation and three Wi(x) form the SU(2)

transformations. These bosons give rise to a free boson Lagrangians:

LB = −1

4
Bµν(x)Bµν(x)− 1

4
Giµν(x)Gµν

i (x) (3.63)

where:

Bµν(x) = ∂νBµ(x)− ∂µBν(x) (3.64)

F µν
i (x) = ∂νW µ

i (x)− ∂µW ν
i (x) (3.65)

Gµν
i = F µν

i (x) + gεijkW
µ
j (x)W ν

k (x) (3.66)

29



3.4. The Higgs Boson

These four fields combine, through spontaneous symmetry breaking, into W±,

Z0 and γ.

W±
µ =

1√
2

(W1µ∓ iW2µ)

W3µ(x) = cosθWZµ(x) + sinθWAµ(x)

Bµ(x) = −sinθWZµ(x) + cosθWAµ(x)

(3.67)

where θW is the weak mixing angle or Weinberg angle. Quarks are also affected

by the weak interaction. Like the two-component spinors with leptons and

neutrinos, each of the three quark generations has an up- and down-type

which make up two-component spinors. To get these fields we had to assume

that all leptons and quarks are massless. To reintroduce these masses, the

Higgs mechanism must be introduced.

3.4 The Higgs Boson

In the last section a gauge theory for the electromagnetic and weak interaction

was introduced. To make these interactions, all leptons, quarks and gauge

bosons must have zero mass, but only photons and gluons are massless.

To add the masses back to the Lagrangian, the mechanism of spontaneous

symmetry breaking is introduced. Spontaneous symmetry breaking is when

at low energy a system has a preferred direction, while at higher energy

all directions are symmetric. Like a pencil standing on its end, the state

of the system will eventually fall into another state for which the potential

energy of the system has a local minimum [27]. Ferromagnetism is a famous

example of spontaneous symmetry breaking. At higher temperatures there

is no magnetism in the system because the forces that couple the spins of

the system are rotationally invariant. However, the spins are aligned at low

temperatures which makes the ferromagnet magnetic.

In field theory spontaneous symmetry breaking is only relevant if the

vacuumstate is non-unique. This was first suggested by Nambu and his

co-workers. If the vacuum states are required to be invariant under Lorentz

transformations, then the field must be a scalar field, φ(x), and the vacuum

expectation value must be:

< 0|φ(x)|0 >= c 6= 0 (3.68)
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unlike the vacuum expectation values for a spinor field ψ(x) and vector field

V µ(x), where:

< 0|ψ(x)|0 >= 0, < 0|V µ(x)|0 >= 0 (3.69)

The Goldstone model is the simples field theory exhibiting spontaneous

symmetry breaking. Its Lagrangian is:

L(x) = [∂µφ ∗ (x)][∂µφ(x)]− µ2|φ(x)|2 − λ|φ(x)|4 (3.70)

where φ(x) is a complex scalar field:

φ(x) =
1√
2

[φ1(x) + iφ2(x)] (3.71)

The potential energy density of the field is given by:

V(φ) = µ2|φ(x)|2 + λ|φ(x)|4 (3.72)

and µ2 and λ are real parameters. For the energy of the field to be bounded

from bellow, then λ > 0. Two situations arise depending on the sign of µ2. For

a positive µ2, V(φ) has an unique value for φ(x) = 0, therefore spontaneous

symmetry breaking cannot occur. Negative µ2 V(φ) has a local positive for

φ(x) = 0 and a circle of minima at:

φ(x) = φ0 =

(
−µ2

2λ

)1/2

eiθ, 0 ≤ θπ (3.73)

where θ is the direction in the complex φ(x). Since there is not a unique

vacuum state, spontaneous symmetry breaking will occur for a unsignificant

direction θ. Picking θ = 0 gives a purely real solution:

φ0 =

(
−µ2

2λ

)1/2

=
1√
2
v (3.74)

By introducing two real fields σ(x) and η(x), φ(x) can be written as:

φ(x) =
1√
2

[v + σ(x) + iη(x)] (3.75)
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and the Lagrangian becomes:

L(x) =
1

2
[∂µσ(x)][∂µσ(x)]− 1

2
(2λv2)σ2(x) +

1

2
[∂µη(x)][∂µη(x)]

− λvσ(x)[σ2(x) + η2(x)]− 1

4
λ[σ2(x) + η2(x)]2

(3.76)

The first three terms in this Lagrangian have quadratic σ(x) and η(x) terms

and can be treated as the free Lagrangian and the remaining cubic and

quadratic terms as interactions. The free Lagrangian shows that the σ(x)

and η(x) fields are Klein Gordon fields of spin-0 particles. The σ(x) boson

has a mass of
√

2λv2, but since there are no η2(x) terms the η boson must

have zero mass. These massless bosons are called Goldstone bosons, but no

Goldstone bosons have been observed. The Higgs mechanism was introduced

to solve this problem. By using the same fields and Lagrangian as in the

Goldstone model and using a U(1) gauge symmetry, a gauge boson field Aµ

is introduced with the covariant derivative:

Dµφ(x) = [∂µ + iqAµ(x)]φ(x) (3.77)

and the free Lagrangian for the free boson field:

−1

4
FµνF

µν (3.78)

where:

Fµν = ∂νAµ − ∂µAν (3.79)

The Lagrangian for the Higgs model then becomes:

L(x) = [Dµφ(x)][Dµφ(x)]− µ2|φ(x)|2 − λ|φ(x)|4 − 1

4
FµνF

µν (3.80)

and is invariant for the U(1) gauge transformations:

φ(x)→ φ(x)′ = φ(x)e−iqf(x)

φ ∗ (x)→ φ ∗ (x)′ = eiqf(x)φ ∗ (x)

Aµ(x)→ Aµ(x)′ = Aµ(x) + ∂µf(x)

(3.81)

Like in the Goldstone model to keep the energy bounded from bellow, λ
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must be positive. There are now two situations that can arise. For µ2 > 0

spontaneous symmetry breaking cannot occur. For µ2 < 0 the vacuum states

are not unique, leading to spontaneous symmetry breaking. And like in the

Goldstone model the real value for φ0 is chosen and two real fields σ(x) and

η(x) are chosen. In these fields the Lagrangian becomes:

L(x) =
1

2
[∂µσ(x)][∂µσ(x)]− 1

2
(2λv2)σ2(x)

− 1

4
Fµν(x)F µν(x) +

1

2
(qv)2Aµ(x)Aµ(x)

+
1

2
[∂µη(x)][∂µη(x)]

+ qvAµ(x)∂µη(x) + ’interaction terms’

(3.82)

where the interactions terms are cubic and quadratic of σ(x) and η(x).

The first line in eq. 3.82 describes a real Klein-Gordon field which gives an

uncharged spin-0 boson with mass
√

2λv2. However the term qvAµ(x)∂µη(x)

on the fourth line in eq. 3.82 shows that Aµ and η can’t be separate fields.

This can be solved by expressing φ(x) as:

φ(x)→ φ(x)′ = φ(x)e−iθ(x)/v =
1√
2

(v +H(x)) (3.83)

and the gauge field Aµ as:

Aµ(x)→ A′µ(x) = Aµ(x) +
∂µθ(x)

v
(3.84)

The gauge in which φ → φ′ and Aµ → A′µ is called the unitary gauge.

By choosing θ = 0 the η field is eliminated from 3.82 and transforms φ(x)

becomes:

φ(x) =
1√
2

(v +H(x)) (3.85)
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In this gauge the Lagrangian becomes:

L =
1

2
[∂µH(x)][∂µH(x)]− 1

2
(2λv2)H2(x)

− 1

4
FµνF

µν +
1

2
(qv)2Aµ(x)Aµ(x)

− λvH3(x)− 1

4
λH4(x)

− 1

2
Aµ(x)Aµ(x)[2vH(x) +H2(x)]

(3.86)

The first two lines are the free particle Lagrangian for a real Klein-Gordon

field H(x) and a real vector field Aµ(x). The scalar boson H(x) has a mass

of
√

2λv2 and is called the Higgs Boson. The third and fourth line show that

the Higgs field H(x) interacts with itself and the gauge field Aµ(x). The

Higgs mechanism also has no Goldstone boson as the degree of freedom η(x)

is ”eaten” by the field Aµ(x).

In section 3.3 a Lagrangian model for electroweak interactions with mass-

less leptons and gauge bosons was introduced, shown in eq. 3.87.

L = LL + LB (3.87)

where LL and LB are described in eq. 3.61 and eq. 3.63, respectively. To

give masses to the bosons, the Higgs mechanism is used. To break the SU(2)

symmetry a weak isospin doublet Φ(x) is introduced:

Φ(x) =

(
φa(x)

φb(x)

)
(3.88)

where φa(x) and φb(x) are scalar fields. Φ transforms under SU(2) × U(1)

gauge transformations. Φ transforms as shown in eq. 3.54, resulting in eq.

3.89:
Φ(x)→ Φ′(x) = exp[igτjωj(x)/2]Φ(x)

Φ†(x)→ Φ†(x)′ = Φ†(x)exp[−igτjωj(x)/2]
(3.89)

and as shown in eq. 3.60:

Φ(x)→ Φ′(x) = exp[ig′Y f(x)]Φ(x)

Φ†(x)→ Φ†(x)′ = Φ†(x)exp[−ig′Y f(x)]
(3.90)
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This gives the Lagrangian:

LH(x) = [DµΦ(x)]†[DµΦ(x]− µ2Φ†(x)Φ(x)− λ[Φ†(x)Φ(x)]2 (3.91)

where the covariant derivative DµΦ(x) is defined by:

DµΦ(x) = [∂µ + igτjW
µ
J (x)/2 + ig′Y Bµ(x)]Φ(x) (3.92)

By choosing the isospinor to be:

Φ(x) =
1√
2

(
0

v +H(x)

)
(3.93)

the terms LB + LH becomes:

LB + LH =− 1

4
FµνF

µν

− 1

2
F †WµνF

†µν
W +m2

WW
†
µW

µ

− 1

4
ZWµνF †µν +m2

ZZµZ
µ

+
1

2
(∂µH)(∂µH)−m2

HH
2

+ LBBI + LHHI + LHBI

(3.94)

where LBBI + LHHI + LHBI are interaction terms. The masses mW ,mZ and

mH are defined as:

mW =
1

2
vg, mZ =

mW

cosθW
, mH =

√
−2µ2. (3.95)

By using eq. 3.94 and eq. 3.95 the Higgs boson, Z0 and W± have gotten

masses. To give masses to the leptons, the lepton and Higgs fields are coupled

through Yukawa interactions. This gives the Lagrangian:

LLH(x) = − gl[Ψ
L

l (x)Φ(x)ψRl + ψ
R

l (x)Φ†(x)ΨL
l ]

− gνl [Ψ
L

l (x)Φ̃(x)ψRνl + ψ
R

νl
(x)Φ̃

†
(x)ΨL

l ]
(3.96)
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where Φ̃(x) is defined by:

Φ̃(x) = −i[Φ†(x)τ2]
T =

(
φ∗b(x)

−φ∗a(x)

)
(3.97)

The terms LL + LLH give the free lepton Lagrangian and some additional

interaction terms:

LL + LLH = ψl(i/∂ −ml)ψl + ψνl(i/∂ −ml)ψνl + LLBI + LHLI (3.98)

The masses ml and mνl are defined by:

ml =
vgl√

2
, mνl =

vgνl√
2
. (3.99)

Eq. 3.94 and eq. 3.98 combine to give the complete Lagrangian of the

standard electroweak theory:

L = L0 + LI (3.100)

where:
L0 =ψl(i/∂ −ml)ψl + ψνl(i/∂ −ml)ψνl

− 1

4
FµνF

µν

− 1

2
F †WµνF

†µν
W +m2

WW
†
µW

µ

− 1

4
ZWµνF †µν +m2

ZZµZ
µ

+
1

2
(∂µH)(∂µH)−m2

HH
2

(3.101)

and

LI = LLBI + LBBI + LHHI + LHBI + LHLI (3.102)

3.5 Higgs production at ATLAS

In July 2012, a particle consistent with the Standard Model (SM) Higgs boson

was discovered. For energy over 100 GeV the most important mechanism for

production of massive particles, like the Higgs boson, is by gluon-gluon fusion
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[31]. To produce a Higgs boson two gluons interact, forming a top quark loop

which again produce a Higgs boson. All fermions could make the loop, but

since the top quarks are so heavy they interact more with the Higgs boson

than any other fermion. Some other processes are boson fusions where top

quark produce W± or Z0 which then produce the Higgs boson. This is called

vector boson fusion (VBF) [31].

(a) Higgs Gluon fusion (b) Higgsstrahlung (c) Higgs WZ fusion

Figure 3.1: Ways that the Higgs boson is produced at the ATLAS detector
[29]

The cross sections for Higgs production at a c.o.m energy of
√

(s) = 13

TeV is shown in table. 3.4. The combined cross section for Higgs production

is 55.1 pb. When using eq. 2.9, with σ = 55.1 pb and L = 139 fb−1 [34], one

gets that the number of Higgs bosons produced at the ATLAS detector is

N = 7.66 · 106.

Table 3.4: The cross sections for Higgs production at a c.o.m energy of√
(s) = 13 TeV, in pb. [33].

ggF VBF WH ZH ttH Combined
Predicted

cross section 48.6+5%
−5% 3.7+2%

−2% 1.37+2%
−2% 0.88+5%

−5% 0.5+9%
−13% 55.1

The Higgs bosons decay vertices are proportional to the mass of the

produced particles. For higher the mass of the particles, the higher cross

section, so a bottom quark/antiquark pair are therefore the dominating decay

mode, as seen in fig. 3.3. This decay mode is difficult to observe at the LHC

because of the large background due to jets. The most important processes

for identification of the Higgs are decay to two photons and to a ZZ* pair,

where both decay to a pair of electrons or muons.
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(a) Higgs boson decay to two photons (b) Higgs boson decay to four lepton

Figure 3.2: Ways that the Higgs boson decay that is detected at the ATLAS
detector [30]

60% of Higgs bosons decay into bottom quark/antiquark pairs, because

bottom quarks are the heaviest particles that the Higgs boson can decay into.

5% of Higgs bosons decay into tau-antitau pairs [32]. To find the amount of

Higgs that decay into e+e− one can use the ratio of the branching factors.

Γ(H → e+e−)

Γ(H → τ+τ−
=

BR(H → e+e−)

BR(H → τ+τ−
=
m2
e

m2
τ

=
0.511 MeV2

1776.86 MeV2 = 8.27 ∗ 10−8
(3.103)

The decay probability for H → e+e− becomes 5% ∗ m2
e

m2
τ

= 4.14 ∗ 10−7 %.

Using this with the number of Higgs produced at the ALTAS detector,

N = 7.66 ∗ 106, one gets that the number of times Higgs have decayed into

e+e− is NH→e+e− = N ∗ 5% ∗ m2
e

m2
τ

= 0.003 ≈ 0. This tell us that that one

does not expect to find any H → e+e− events in chapter 7 where real data is

analysed.
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Figure 3.3: Decays of the Standard Model Higgs [32]
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Chapter 4

Simulation

This chapter will give an introduction to the software used when analysing

collision data from the ATLAS detector. Monte Carlo, simulated events, the

ATHENA framework and different programming language will be described.

4.1 Monte Carlo

Before looking at real data from the ATLAS detector we will look at a

simulated dataset, so we have something to compare the results with. These

simulations can be used to determine background, efficiency and signal to

background ratio. These simulated datasets are Monte Carlo simulations of

proton-proton collisions at the ATLAS detector. Monte Carlo simulations

generate random objects with the help of a computer, using the Law of Large

Numbers as an advantage. This means that the error in the simulations goes

as one over the square root of the number of events [38].

An example of what a Monte Carlo simulation can do is to find an

approximation of π with generating random points inside a square. The

Monte Carlo simulation generate points in a 1 · 1 square. Some of these points

will be inside a quadrant with a radius of 1. The number of points inside the

quadrant divided by the number of points inside the square will be
1
4
·π·1·1
1·1 = π

4
.

Then multiply the ratio by four to get an approximation of π. With more

and more points the approximation becomes better and better.
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4.1.1 Simulated events

The programs that create the MC simulations are called event generators.

They calculate the collisions and the decay of different processes. Because of

the many different processes, there are many different types of event generators.

At first we will be looking at proton-proton collisions that make a Z boson

which then decay into e+e−. A simulation of proton-proton collisions starts

with a hard scattering of two partons, two gluons or a quark-antiquark pair. A

Parton Distribution Function (PDF) determine the probability of the different

partons to take part of the process. PDFs can be found experimentally. The

particles from the initial scattering then make a Z boson which decay into

e+e−. Min-bias is also added. Min-bias comes from the fact that in real

collisions there are multiple collisions at once, the collisions that are not

being studied are called minimum bias. The Z boson processes are generated

with the Powheg-Box v2 Monte Carlo program interfaced to the Pythia 8.186

parton shower model [10].

Figure 4.1: An example of how an event generator can simulate a proton
proton collision [36]

An example of how the simulation works is shown in fig. 4.1. In this figure

the process starts with a PDF and then a hard scattering of the particles.

The outgoing particles create a parton shower where the different partons

collide, interact and decay into other partons that then hadronize into different

hadrons. The unstable hadrons then decay again into the final structure of

the simulation.
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4.1.2 Event Reconstruction

The event generators produce many particles with energy and momentum

that move in different directions. These simulated particles then pass through

a simulated detector. This means that the response of the ATLAS detector,

when the simulated particles go through it, must be simulated. The simulated

ATLAS detector response is done with Geant4 [10]. The simulated energy

measured by the calorimeters and the hits measured in the inner detectors

are stored like real detectors and can be reconstructed in the same way.

A schematic representation of the Full Chain Monte Carlo production can

be seen in fig. 4.2. Here every step from the event generation to the Analysis

Object Data (AOD) is shown. The square boxes are the different production

processes and the circular boxes are the different types of outcomes. There

are two ways from the event generation to an AOD. The first way is via the

simulated detector and the second way is using the software Atlfast. Atlfast

provides a simulation that ”smear” the generated events to directly into an

AOD [37].

Figure 4.2: A schematic representation of the Full Chain Monte Carlo pro-
duction [37]
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4.2 The Grid

The Worldwide LHC Computing Grid, often called the Grid, was launched in

2002 to be a resource to store and analyse the large amounts of data generated

at the LHC. The Grid is a global network of computers and storage systems

in 42 countries and is based on the European Grid Infrastructure and the

Open Science Grid in the USA. This makes it the largest computing network

of its kind. The Grid has many advantages over a centralized system; there

are multiple copies stored at different sites, no single point of failure can stop

everything, the centers are spread over several time zones and the resources

can be distributed across the world.

The Grid gives access to computing resources like storage and processing

power. A user send a grid job request, for example to perfrom some analysis,

then the Grid established the identity of the user, checks their credentials,

and searches for available sites that can provide the resources requested. The

user does not have to worry about where the computing resources are coming

from, they can tap into the Grid’s computing power and access storage on

demand [39].

4.3 Athena and samples

The Athena Framework is a control framework. A framework is a skeleton

application that developers can plug their code into that provides common

functions and communication between different components. Athena is a

implementation of the Gaudi framework. Gaudi was developed by LHCb, but

now it is used at ATLAS, with ATLAS specific enhancements [42].

The processing of ATLAS data, like high-level trigger, reconstruction

and analysis takes place in the Athena framework. This makes it easier for

developers and users to test and run code because the geometry is the same

and the data is read the same way for all types of applications [43].

4.3.1 ROOT

Root was developed at CERN by Rene Brun and Fons Rademakers in 1995.

It is a framework that uses C++ to for mathematical and statistical analysis.

ROOT has a C++ interpreter and libraries. The C++ interpreter makes
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it possible to run scripts without compiling them. The libraries provide

mathematical and statistical functions and tools that make it possible to do

many complicated operations with simple commands.

ROOT is written in C++, but other languages like Python is integrated.

PyROOT is a Python extension module that enables Python to interact with

the ROOT libraries.

4.3.2 C++ and Python

C++ and Python are very important in particle physics. C++ is a object-

oriented programming language created by Bjarne Stroustrup and is an

extension of C. It is a low-level programming language, giving memory

manipulation, and makes C++ flexible and robust, but makes it more difficult

to learn. A C++ script also has to be compiled before running the code, but

it is very fast when compiled. This is very useful when dealing with scripts

with many calculations.

Python was designed by Guido van Rossum as a successor to ABC.

Python is a high level programming language and it’s design philosophy is

code readability. This makes Python very used friendly. Unlike C++, Python

is a interpreted language, so a Python script does not have to be compiled

before running. This makes C++ faster than Python when working with

complex scripts.
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Monte Carlo Z → e+e−

In order to investigate H → e+e− decay, a mass reconstruction model must

be developed using a known decay process. The Z → e+e− process is well

understood, so large changes to decrease the background and increase the Z

peak at 90 GeV can be done without forcing a Higgs peak at 125 GeV. In this

chapter a mass reconstruction model using leading and sub-leading electrons

will be developed using a simulated Monte Carlo Z → e+e− sample.

5.1 Sample

The samples used to develop the mass reconstruction model are Monte Carlo

simulations of pp collisions producing Z bosons, which decayed into e+e−.

The sample is made with Monte Carlo simulations of proton-proton collisions

at
√

(s) = 13 TeV at the ATLAS detector. The proton-proton collision

produces Z bosons, which decay into an electron-positron pair. The sample

has 2000 events.

To get the information out of this sample a n-tuple was made. Each

of the branches of this n-tuple has a different kind of kinematic stored in

them. To fill in these branches one took all the electron candidates from the

electron container and, one at a time, found their kinematics and placed them

i the correct branch. When more than one electron candidates per event was

needed, like when finding the invariant mass of two electrons, the electrons

was stored untill needed. Then at the end of the event, the invariant mass is

found using the two stored electrons, the kinematic branch will be filled and
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then a new event started, so the stored electrons are forgotten.

In this electron container are all the electron candidates, without any qual-

ity test. Many of these electron candidates are electromagnetic background,

like photons, from bremsstrahlung or other processes. In the first few plots

all of the electron candidates are represtented, before the developed model

will reduce the number of electron candidates using cuts.

5.2 Kinematics

When looking at the different angles in the ATLAS detector, the distribution

of electron φ is spread uniformly over the entire 2π range, while the electron

η has a distribution spread with a peak at η = 0. This is because of the way

η is defined, as seen in eq. 2.11. The ATLAS detector measures the electron

η differently on the |η| < 2.7 range. The ATLAS detector does not measures

electrons well for η ≈ 1.5, so there are two minimums in fig. 5.1a. This can

be seen in fig. 5.2 where the reconstructed η, in black, is plotted together

with truth η, in blue. Here the electrons pass between the barrel and endcap

EM calorimeters, 1.37 < |η| < 1.52, [10]. The electrons between these angles

will not be considered in the reconstruction. The reconstructed electrons and

the truth electrons are very similar when close to 0, but when |η| > 1 the

reconstructed electrons are fewer than the truth electrons and for |η| > 2.7

there are no reconstructed electrons, but still many truth electrons.

(a) Electron η. (b) Electron φ.

Figure 5.1: The angles η and φ of the electrons in the sample.

The truth electrons are made by the Monte Carlo simulation, but not
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measured by the simulated ATLAS detector and then reconstructed. The

reconstructed electrons are made by the Monte Carlo simulation and then

measured by the simulated ATLAS detector and then reconstructed. This

means that the truth electrons do not have background and min-bias in them,

and the electrons can cover the full |η| range. The reconstructed electrons will

have background, min-bias and the electrons only cover the range of |η| < 2.7.

Figure 5.2: Electron Truth (Blue) and reconstructed (Truth) η (black).

In the reconstructed energy and transverse momentum pT (see fig. 5.3a

and fig. 5.3b) there are a lot of unexpected low energy electrons, less than 20

GeV. These low electrons will occur in other plots later. The energy plot is

spread out, but there is a peak at 45 GeV in the pT plot 5.3b. This peak is

expected since this is half the known Z mass of 91.19 GeV.

(a) Electron energy. (b) Electron pT .

Figure 5.3: The pT and energy of the electron candidates in the sample.
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To reconstruct the mass of the Z boson, one must calculate the invariant

mass of the electrons, see eq. 3.8, but this equation require two electrons.

Most events have more than two electron as seen in fig. 5.4. To use eq. 3.8

one uses the two electrons with the highest pT , these two electrons are called

leading and sub-leading electrons. The pT of these electrons can be seen in

fig. 5.5a and fig. 5.5b. There are clear peaks at around 45 GeV in both plots.

To see which leading pT and sub-leading pT that are matched up one can

use a scatterplot as seen in fig. 5.6. There is a bright spot at very small pT
values, but like expected there is a brighter area where the peaks of 5.5a and

5.5b are. These electrons will give a peak around double 45 GeV.

Figure 5.4: Number of electrons per event.

(a) pT of leading electron. (b) pT of subleading electron.

Figure 5.5: The leading and subleading pT of the electrons in the sample.
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Figure 5.6: Scatter plot of leading vs subleading pT . There are bright spots
at coordinates (5,5) and (45,45)

The invariant mass of the Z boson can then be found with the leading and

sub-leading electrons, by using eq. 3.8, the results are shown in fig 5.7. There

is a clear peak at 90 GeV, which is where the peak is expected to be found,

since it is two times the peaks in the 5.5a and 5.5b plots and the Z mass is

known to be 91.19 GeV. The plot is fitted with a Crystal Ball distribution and

a Breit-Wigner + Gauss distribution. Crystal Ball distribution is a Gaussian

with a power-law tail. Breit-Wigner distribution is used to describe unstable

particles with a decay width Γ. This Γ is the full width at half maximum

(FWHM) of a Breit-Wigner distribution. The decay width, Γ, and lifetime, τ ,

are related via:

τ =
1

Γ
(5.1)

Therefore, a particle with higher lifetime has a smaller decay width and a

stable particle would not have a decay width. The invariant mass in fig. 5.7

is fitted well by a Breit-Wigner + exponential distribution so only this fit is

shown. The Crystal Ball fit did not work for multiple plots in later chapters

and will therefore not be used. As in the energy and pT plots (fig. 5.3a and

fig. 5.3b) there are low energy electrons in the Z mass, with a wide peak at

15 GeV.

To explain the low energy electrons, the truth electrons will be compared
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Figure 5.7: The reconstructed invariant mass.

with the matched electrons and reconstructed electrons. As seen in fig. 5.8a

there are a peak at 40 GeV like in the reconstructed pT plot (fig. 5.3b).

However there is not a peak of low pT electrons in fig. 5.8a. By looking at

the matched electrons it can be determined if it is background or if it is the

way electrons are measured.

As seen in fig. 5.8b there is less small pT electrons in the matched electrons

than in the truth electrons. This is because of the limit in η measurements

as seen in fig. 5.2. The definition |p| = pT · coshη shows that high η gives

smaller pT and the η measurements are limited to |η| < 2.7, therefore small

pT disappear. If the reconstruction changes the η and pT , this could introduce

the low energy electrons. By looking at the difference between truth and

matched electrons, as seen in fig. 5.9a and fig. 5.9b, the η or pT resolutions

can be found. Since the truth - matched plots are approximately gaussian,

the resolution is defined as the full width at half maximum (FWHM). The

FWHM for pT is around 1.5 GeV and the FWHM for η is about 0.001. The

reconstruction does not change the values of η or pT by very much. This

means that the low energy electrons comes from the background.

In fig. 5.10 the pT resolution is plotted against the truth pT . The resolution

goes from around 0.8 GeV to around 2.4 GeV. The resolution is smallest for

small and large pT and is highest around 40 GeV. The peak at 40 GeV is
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(a) pT of truth electrons.
(b) pT of truth (blue) and matched elec-
trons (black).

Figure 5.8: The pT of truth electrons and matched electrons.

(a) truth η - matched η. (b) truth pT - matched pT .

Figure 5.9: Truth - matched electron η and pT for finding the η and pT
resolutions.

there because most truth and matched electrons have a pT of around 40 GeV,

this can be seen in fig. 5.8b. This distribution gives large uncertainty for the

resolutions. Fig. 5.11a have 147 entries and fig. 5.11a have 450 entries.

Another way to check if the electrons are changed by reconstruction, is to

look at the mached Z mass and the truth Z mass in plots 5.12a and 5.12b.

There is some very small peaks at 20 GeV in 5.12a that are not in 5.12b, but

it is so much smaller than the peak in the Z mass plot 5.7. Again, one can

see that the electrons are not changed enough for the low energy electrons to

matter. This means that the low energy electrons come from the background.
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Figure 5.10: pT resolution vs truth pT .

(a) truth pT - matched pT for
0 GeV < truth pT < 10 GeV

(b) truth pT - matched pT for
30 GeV < truth pT < 40 GeV.

Figure 5.11: Truth - matched electron pT for different truth pT ranges to see
how the distribution changes.

(a) Matched invariant mass. (b) Truth invariant mass.

Figure 5.12: The invariant mass for matched and truth electrons.
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5.3 Background

Different decays such as Z → τ+τ−, diboson, top quarks and Drell-Yan

processes send out electrons that form a background for the Z → e+e− and

H → e+e− decays [10].

The Z → τ+τ− produces two electrons through leptonic decay of the τ . In

the diboson processes there are multiple ways to produce two electrons, like

in ZZ → eeee, eeµµ, WZ → eeeν, eeµν and WW→ eeνν. For the top quark

processes the electrons are produced in semileptonic decays and electrons from

jets. The Drell-Yan process is when a quark from a hadron and a antiquark

from another hadron annihilate, creating a photon or Z boson which can decay

to e+e−. B and D jets were also considered. The electrons produced by these

jets should have low pT , but due to the number of electrons, some of them

could have high enough pT to show up in the background. The high amount

of electrons also made it difficult to add to the background and therefore it

was ignored.

The different background processes were plotted one at a time, normalized,

scaled by luminosity and cross section and then added to the same histogram.

This is different for the Drell-Yan process, where different mass ranges have

different cross sections. Here the different ranges were plotted in the same way

as the other processes, plotted one at a time, normalized, scaled by luminosity

and cross section and then added to the same Drell-Yan histogram, which

then was added to the main background plot.

Table 5.1: Cross section for the different backgrounds

Process Cross section
Z → ττ 1900 pb
ttbar 696 pb
Single top 43.7 pb
Drell-Yan in mass range 120-180 GeV 17.5 pb,
Drell-Yan in mass range 180-250 GeV 2.92 pb,
Drell-Yan in mass range 250-400 GeV 1.08 pb,
Drell-Yan in mass range 400-600 GeV 0.196 pb,
Drell-Yan in mass range 600-800 GeV 37.4 fb,
Drell-Yan in mass range 800-1000 GeV 10.6 fb,
Drell-Yan in mass range 1000-1250 GeV 4.26 fb
Diboson 1.27 pb
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(a) Background plot. (b) Cumulative background plot.

Figure 5.13: Background plots with Z → ττ , ttbar, single top, Drell-Yan and
diboson.

Because of the big difference in cross sections the Z → ττ and ttbar

dominates the background, this can be seen in fig. 5.13a and fig. 5.13b. This

is very clear at low energy, but at higher energies the dominance of Z → ττ

and ttbar is difficult to see. The importance of the different backgrounds is

easier to see using a log scale, such as seen in fig. 5.14. At around 90 GeV one

can see that ttbar is the dominating contribution with some ttbar and single

top. The diboson also have a peak at 90 GeV, which is expected since a Z

boson from the diboson can decay to 2 electrons like in the main sample. The

Drell-Yan and diboson processes both have small cross sections and therefore

do not contribute much to the background.

By normalizing the matched Z mass (see fig. 5.12a), scaling it by the

cross section, 1900 pb, like the background and adding it to the background

plot one gets fig. 5.15. This plot is very similar to the Z mass plot in fig. 5.7.

This means that these backgrounds can be used to find the significance of

different cuts on the electrons. A cut is a criterion, for example having a pT
over 20 GeV, that the electrons must have to be considered.

Another background to consider is the min-bias added to the given sample.

This sample has a high cross section, like the B and D jets, but will be

more important for the significance. Most of the electrons are still low

energy electrons, so if one scale it the same way as the other backgrounds, this

background would dominate even the Z peak. Because of this, the background

was scaled to the cross section of the main Z → e+e− sample.

The full background found in this section is Z → τ+τ−, diboson, top
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Figure 5.14: Background plots with Z → ττ , ttbar, single top, Drell-Yan and
diboson on a log scale.

Figure 5.15: Invariant mass for background processes, Z → ττ , ttbar, single
top, Drell-Yan and diboson, and a truth-matched Z→ e+e− signal sample.

quarks, Drell-Yan and the min-bias processes. This background is dominated

by Z → τ+τ−, ttbar and min-bias for small invariant mass and ttbar Z →
τ+τ− and single top for high invariant mass.

55



5.4. Selection optimisation

Figure 5.16: Background plots with Z → ττ , ttbar, single top, Drell-Yan and
diboson and min bias.

5.4 Selection optimisation

To remove unwanted background, some cuts on the electrons can be introduced.

A cut is a filter that reject unwanted electrons. By doing cuts on the

backgrounds there will also be cuts on the signal events, in this case the

events from the Z → e+e− process. To find the cuts that keep as much of the

signal events as possible, while cutting as much background as possible, one

must have a function that finds the best cuts. This function is the significance:

significance =
S√

S+B
(5.2)

where S is the signal and B is the background. The signal and background

are both defined to be the number of events in a 4 sigma distance, about 15

GeV, from the 90 GeV peak. The cuts will be pT cuts on the sub-leading

electron, as this will also cut the leading electrons. When doing a sub-leading

pT > 20 GeV cut on the background plot in fig 5.16 it is changed into the plot

in fig. 5.17. This cut changes the significance as shown in table 5.2. In this

case the significance goes up because of the cuts, but not much. This makes

sense since the matched Z mass did not change and the background is very

small in comparison. Table 5.2 shows the signal, background and significance

of no cut, pT > 20 GeV, pT > 30 GeV and pT > 40 GeV. The signal of no

cut, pT > 20 GeV and pT > 30 GeV did not change, but it decreased for
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pT > 40 GeV. This means that the significance is highest at pT > 20 GeV

and pT > 30 GeV where they have the same signal and background. The

significance is slightly higher for pT > 30 GeV.

Table 5.2: The significance of the pT cuts

Without cuts With pT > 20GeV pT > 30GeV pT > 40GeV
signal 1597.07 1597.07 1597.07 1512.58
background 0.0077 0.0055 0.0055 0.0055
significance 39.9332 39.9633 39.9634 38.8919

Figure 5.17: Background plots with pT > 20 cuts.

The cuts removed a lot of the background. Another way to cut is to change

what the analysis sees as an electron. There are three different operating

points, Loose, Medium and Tight. All of these have requirements on tracking

criteria. They require at least two hits in the pixel detector and in total seven

hits in the pixel and silicon strip detector. Medium and Tight also require

that one of the pixel hits must be the inner most pixel layer. The Tight

selection have two other criteria, E/p and ωstot, where ωstot, the shower width,

depends on the electron candidate η and the E/p < 10 [51]. These higher

requirements mean that Medium and Thight working points reject more of

the background than Loose working points, this can be seen in fig. 5.18.
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Figure 5.18: Efficency plotted against transverse energy ET [24].

As an example here are the Z → e+e− sample leading and sub-leading

pT in fig. 5.19a and in fig. 5.19b and invariant mass 5.20. For the fit on the

invariant mass plot the Crystal Ball fit did not work, so it was replaced by a

Gauss instead.

(a) Loose leading pT . (b) Loose sub-leading pT .

Figure 5.19: The leading and subleading pT of the electrons.

When one looks at the invariant mass plots in fig. 5.7 and 5.20 one can

see that most of the background has been rejected, some by the pT cuts

and some by the Loose working points. To see if these cuts improve the

significance we will look at the background plots again. Fig. 5.21 shows

the background cuts with Loose working points and shows that this takes
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Figure 5.20: Loose invariant mass.

out most of the background. In table 5.3 the different significance is shown.

The Loose working points makes a big difference for the significance because

it cuts almost all of the background. Because it removes so much of the

background any more pT cuts will only lower the significance.

Figure 5.21: Loose background with pt cuts.

The pT cuts that increase the significance the most is pT > 20 GeV and

pT > 30 GeV. A different type of cut, Loose electron, increased the significance.

The increase in significance is higher than for the pT cuts. The efficiency, ε,

59



5.4. Selection optimisation

Table 5.3: The significance of the pT cuts and Loose working points

Without cuts With pT > 20GeV Loose with pT > 20GeV
signal 1597.07 1597.07 1745.38
background 0.0077 0.0055 0.0001
significance 39.9332 39.9633 41.7777

the number of events after cuts divided by the number of generated events

inside the same η range, −2.7 < η < 2.7, can be found using eq. 5.3

Figure 5.22: Truth invariant mass for |η| < 2.7.

ε =
Nreco

Ngen

(5.3)

Here Nreco is the number of events in fig. 5.20, 622, and Ngen is the number

of events in fig. 5.22, 1104. The efficiency ε is 0.56. This efficency will

be used in eq. 2.10 to calculate the cross section of Z → e+e−. Here

Ndata − Nbackground = Nreco = 622 and ε = 0.56. To find the integrated

luminosity, L, one can use eq. 2.9, with N = 2000 and σ = 1.90 nb, where N

is the number of entries in the sample and σ is the total cross section of the

sample. This gives L = 1052.63 nb−1. When calculating the effective cross

section one gets:

σeff =
Nreco

εL
= 1.06 nb (5.4)
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When looking at the pT > 20 GeV cut one gets an efficency, ε = 739
1104

= 0.67

and then a cross section of:

σeff =
Nreco

εL
= 1.05 nb (5.5)

Both off these effective cross sections are about half of the real cross section

of σ = 1.90 nb. It is expected that they should be lower, as they are effective

cross sections that only measure electrons with |η| < 2.7.

Figure 5.23: Invariant mass plot with a pT > 20 GeV cut. The FWHM of
this fit is 5.06 GeV.

5.5 Concluding comment

In this chapter a model for finding the invariant mass was developed. In each

event, one finds the leading and sub-leading electrons and these electrons are

then used to calculate the invariant mass using eq. 3.8. To remove some of

the background, cuts on the electrons are preformed. The cuts that gave the

highest significance were pT > 20 GeV and Loose working points.

This invariant mass model works very well at finding the Z → e+e− decay.

It works well for both pT > 20 GeV cuts and for Loose electron cuts. The

different cuts have different efficiencies but give very similar effective cross

sections. Because of this, both cuts will be included in the model and used to
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analyse the real data in the next chapters. This could be interesting as they

could give very different result, even when they have so similar result when

looking at Monte Carlo.
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Real data: Z → e+e−

In this chapter the reconstruction model from chapter 5 will be evaluated

using real data sample and compared with the MC sample from the previous

chapter. A single file from the sample will be used in this chapter.

This real data sample has a
√
s = 13 TeV and there are 7402 events. This

sample is a DAOD, a smaller subset of the full AOD, of all the events from

2018. This DAOD has a invariant mass cut, the invariant mass of at least one

pair of electron candidates must be greater than 50 GeV. This pair of electron

candidates does not have to be leading and sub-leading electron candidates

since the pT is just a projection. This DAOD cut will show up in many of

the plots in this chapter and the next chapter.

6.1 Kinematics

In this section we will look at the same kinematics as in the chapter 5, the

φ, η, energy and pT of all electron candinates, the pT of the leading and sub-

leading electron candidates and the invariant mass of the events. These will

be compared to the MC kinematics. Here we expect a higher background to

signal ratio because the cross sections for Z → e+e−, and later H → e+e−, is

small.

The electron φ in fig. 6.1b is spread over the whole 2π range, similar to

fig. 5.1b from the MC Z → e+e− sample. The electron η in fig. 6.1a have a

similar shape to fig. 5.1a with a top around η = 0. Fig. 6.1a shows that the

ATLAS detector does not detect electrons well for |η| ≈ 1.5. This is also the
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case for the MC Z → e+e− in fig 5.1a. The angle plots are very similar to

the MC Z → e+e− angle plots.

(a) Electron η. (b) Electron φ.

Figure 6.1: The angles η and φ of the electrons in the real data.

(a) Electron energy. (b) Electron pT .

Figure 6.2: The energy and pT of the electrons in the real data.

Like the angles, the energy of the real electron candidates shown in fig

6.2a is very similar to the energy of the electrons in the MC Z → e+e− in fig.

5.3a. The electron candidate pT in fig. 6.2b looks similar to the electron pT
in fig. 5.3b, with few electrons around 20 GeV and a peak around 40 GeV.

The difference between the two electrons pT plots is the width of peak in the

real data that is spread from 25 GeV to 45 GeV, but not as high like the one

in the MC sample. The valley, due to the few electron candidates around 20

GeV, in the real data is not as wide as in the MC sample and ends at 25 GeV,
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Chapter 6. Real data: Z → e+e−

not at the 45 GeV peak. The difference comes from the larger background in

the real data and from cuts for the DAOD.

To find the invariant mass using eq. 3.8 one needs two electron candidates.

However this sample has a distribution of electron candidates per event, where

most of the events have 3 or more electrons, seen in fig. 6.3. Once again the

two electron candidates with the highest pT : the leading and the sub-leading

electron candidates, will be used.

Figure 6.3: Number of electron candidates in per event.

The pT of the leading and sub-leading electron candidates are shown in

fig. 6.4a and fig. 6.4b. Again the cuts from the DAOD are very clear. There

is no leading electron candidates, fig. 6.4a, with a pT under 20 GeV and only

after 25 GeV, half of the DAOD invariant mass, are there more than a few

leading electron candidates. The pT of sub-leading electron candidates, fig.

6.4b, looks very similar to the MC sub-leading pT , fig. 5.5b.

There is a clear 40 GeV peak in the leading pT plot, fig. 6.4a, and a clear

40 GeV cut off in sub-leading pT in the sub-leading plot, fig. 6.4b. This is

very similar to the MC Z → e+e− leading and sub-leading pT plots, fig. 5.5a

and fig. 5.5b, where there is a clear peak at 45 GeV in the leading pT plot,

fig. 5.5a, and a clear cut off at 45 GeV in the sub-leading pT plot, fig. 5.5a.

The pT peaks around 40 GeV in the leading and sub-leading plots, fig. 6.4a

and fig. 6.4b, means that there is probably a 90 GeV peak in the invariant

mass plot, similar to MC Z → e+e−.
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(a) pT of leading electron. (b) pT of sub-leading electron.

Figure 6.4: The leading and subleading pT of the electrons in the real data.

To see which leading electron candidates and sub-leading electron can-

didates line up one uses a scatterplot. The real data scatterplot, fig. 6.5,

and the MC Z → e+e− scatterplot, fig. 5.6 are very different. The real data

scatterplot again shows the cuts from the DAOD in it, where the leading pT
have no electron candidates under 20 GeV and very few under 25 GeV.

Fig. 6.5 have a clear bright spot at coordinates around (35,5). This bright

spot means that there will be a peak in the invariant mass that is not a Z

peak at 91.19 GeV. Like in the MC Z → e+e− scatterplot there is a slight

bright area around coordinates (45,40) in the real data scatterplot, fig. 6.5.

This means that there will be a Z peak at 90 GeV in the invariant mass plot.

The clear bright spot around coordinates (35,5) probably comes from the

cutting done on the DAOD. The MC Z → e+e− scatterplot, fig. 5.6, has a

bright spot near (0,0) and a bright line where the sub-leading pT is 5 GeV.

This is because of all the low energy electrons. In a real data sample there

were probably more low energy electrons, but these were cut by the invariant

mass cuts of the DOAD, therefore this bright spot got moved to make a

bright spot close to half the value of the cut, as there are a lot more electrons

there. If this is the case, one expects to see a sharp cut off in the invariant

mass plot of this sample and in fig. 6.6 there is such a clear cut off. Another

explanation for this bright spot could be the electrons from W→ eνe as these

would have a pT ≈ 40 GeV.
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Figure 6.5: Scatter plot of leading vs sub-leading pT . There are brightspots
at coordinates (3,35) and (45,45).

In fig. 6.6 the invariant mass of the real data is plotted. This plot is very

different from the MC Z → e+e− invariant mass plot, seen in fig. 5.7. There

is a large Z peak at 90 GeV in fig. 6.6, similar to in fig. 5.7. However, there

is also a peak at 50 GeV with a sharp cut off under 50 GeV. This is expected

from the 50 GeV invariant mass cuts from the DAOD and from the (35,5)

bright spot in the scatterplot, fig. 6.6. The 50 GeV invariant mass DOAD cut

does not have to come from the leading and sub-leading electron candidates,

so there is some low invariant mass in the plot. The invariant mass is well

fitted with a Breit-Wigner distribution with an exponential background.

Here the invariant mass plot includes the Higgs region from 115 GeV and

upwards, but this will not be the case for the rest of the invariant mass plots

in this chapter. This is to make sure that the cuts that will be done in the

next section will not force a Higgs peak where there potentionaly isn’t one.

The significance of the Z peak in fig. 6.6 can be seen in table 6.1. This

singificance will be increased in the next section with different cuts on the pT
of the sub-leading, and therefore the leading electrons, and by cutting on the

Loose, Medium and Tight workpoints.
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Figure 6.6: Invariant mass plot of the data.

Table 6.1: The significance of the real data before any cuts

Without cuts
Signal 2634.58
Background + signal 5166.96
Significance 36.6518

6.2 Cuts

In this section the real data plots will be cut with sub-leading pT and working

points. This is done to cut the large background and make larger peaks. To

make sure that we do not ”force” a Higgs peak, the Higgs region of 115 GeV

and upwards will not be shown in the invariant mass plots. We will also focus

on the Z mass peak and make cuts that increase the significance of the Z

peak, like in the MC chapter. Table. 6.2 shows that the significance of the

pT > 20 GeV cut is the highest for the pT cuts.

6.2.1 pT cuts

Since the significance of the pT > 20 GeV cut is the highest for the pT cuts,

see tab. 6.2, this subsection will look at how some of the kinematics changes

that occur due to this pT > 20 GeV cut. When looking at the leading and
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sub-leading pT plots in fig. 6.7a and fig. 6.7b we see a peak at 45 GeV in fig.

6.7a and a spread from 20 GeV to 40 GeV in the sub-leading pT plot in fig.

6.7b. Here it is clear that a 90 GeV invariant mass peak will be there and

by looking at a scatter plot it is possible to see if the 50 GeV peak is still

there. In the leading pT there is a slope of higher pT electrons, while on the

sub-leading there is a clear cut off.

(a) pT of leading electron
with pT > 20 GeV.

(b) pT of sub-leading electron
with pT > 20 GeV.

Figure 6.7: The leading and subleading pT of the electrons in the real data
with pT > 20GeV.

The scatterplot fig. 6.8 shows how the pT > 20 GeV cut effects the

different electron candidates pairs. Here the (45,45) bright spot from fig. 6.5

is much clearer with this cut. This means that the 90 GeV invariant mass

will still be there. The (35,5) bright spot from fig. 6.5 has dissapeared, since

the sub-leading pT must be over 20 GeV. A new bright spot has appeared in

fig. 6.8 at (35,30). This new bright spot shows up as some background in the

new invariant mass plot.

The invariant mass of the real data with a pT > 20 GeV cut is shown

in fig. 6.9. The cut removes most of the low invariant mass events and the

exponential background is lowered. This makes the invariant mass under the

50 GeV peak, in fig. 6.6 disappear. The 50 GeV peak also disappear after

the pT > 20 GeV cut is implemented on the data. In fig. 6.9 the Higgs region

of 115 GeV and upwards was removed to not force in a Higgs peak.

Table 6.2 shows the significance of different pT cuts. For the real data

the pT > 20 GeV has the highest significance. This is different from the MC
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Figure 6.8: Scatter plot of leading vs sub-leading pT with pT > 20 GeV. There
are brightspots at coordinates (35,30) and (45,45)

Z → e+e− where the significance was highest for pT > 30 GeV, the pT > 20

GeV has almost the same significance, seen in table. 5.2. In table 6.2 the

significance of a pT > 10 GeV is also included to make sure that the pT > 20

GeV cut gives the highest significance. The pT > 20 GeV cut will be used in

the rest of the chapter. In all of these cuts the Higgs region was removed. This

makes sure that significance only looks at the Z peak and not any potential

Higgs peak.

Table 6.2: The significance of the pT cuts.

pT > 10 GeV pT > 20 GeV pT > 30 GeV pT > 40 GeV
signal 2949.02 2963.67 2335.8 756.51
background + signal 4154.47 3394.06 2335.01 751.468
significance 45.7531 50.871 48.3382 27.597
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Figure 6.9: Invariant mass plot of the data with pT > 20 GeV, but without
the Higgs region.
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6.2.2 Working point cut

In this subsection we will see how the Loose working point electrons change

some of the different kinematics and the invariant mass.

The angles of the Loose electrons are shown in fig. 6.10a and fig. 6.10b.

The electron φ is spread across the whole 2π range, like we saw in fig. 6.1b.

The electron η in fig. 6.10a looks a lot like the truth η in fig 5.2, but not

similar to the real data η in fig. 6.1a. It looks like the ATLAS detector don’t

have a η preference for Loose working points.

(a) The η of Loose electrons
in the real data.

(b) The φ of Loose electrons
in the real data.

Figure 6.10: The angles η and φ of the Loose electrons in the real data.

The energy and pT of the Loose electrons are shown in fig. 6.11a and fig.

6.11b. They have a very different shape from the real data electrons in fig.

6.2a and fig. 6.2b and the MC Z → e+e− in fig. 5.3a and fig. 5.3b. This is

because the Loose electrons do not have the small energy electrons that one

can see in the real data sample. There are clear peaks at 45 GeV in both fig.

6.11a and fig. 6.11b. These peak were also present in energy and pT of the

real data and the MC Z → e+e−.

In fig. 6.12 the number of electron per event is ploted. For Loose electrons

most of the events have two electrons per event, which is the number of

electrons one needs to find the invariant mass. We will still use the leading

and sub-leading electrons to find the invariant mass.

The leading and sub-leading in fig. 6.13a and fig. 6.13b both have clear

pT peaks, the leading have a peak at 45 GeV and the sub-leading have a peak

at 40 GeV. These peaks are more focused than the peak that comes from the
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(a) The energy of Loose electrons
in the real data.

(b) The pT of Loose electrons
in the real data.

Figure 6.11: The energy and pT of the Loose electrons in the real data.

Figure 6.12: The number of electrons per event when looking at the Loose
electrons.

pT > 20 GeV cut. The leading pT plot, fig. 6.13a, does not have a pT > 20

GeV cut. The cut comes from the invariant mass cut from the DOAD. These

peak means that there will be a 90 GeV peak. Like in the pT > 20 GeV cut

plots, fig. 6.7a and fig. 6.7b, there is a slope for the high pT leading electrons

and a clear cut of for the sub-leading electrons.

To see how the Loose electrons pair together, leading and sub-leading

electrons a scatterplot is used, fig. 6.14. Like with the pT > 20 GeV cut

scatter plot in fig. 6.8, the (45,45) bright spot from fig. 6.5 is much clearer
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(a) pT of leading electron. (b) pT of sub-leading electron.

Figure 6.13: The leading and subleading pT of the Loose electrons in the real
data.

with Loose electrons and the (35,5) bright spot has disappeared. This means

that there will be a 90 GeV Z peak in the invariant mass plot. The Loose

electrons do not have the bright spot at (35,30), seen in fig. 6.8. This means

that background in fig. 6.9 will not be there in the Loose electron invariant

mass plot.

Figure 6.14: Scatterplot of the pT of the leading electrons and sub-leading
electron. There is a brightspot at coordinate (45,45)

The invariant mass of the real data with Loose electrons is shown in fig.

6.15. There is a clear 90 GeV Z peak and the 50 GeV peak in fig. 6.6 is cut.
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Like with the pT > 20 GeV cut, in fig. 6.9, the Loose electron removes most

of the low invariant mass events. Unlike the pT > 20 GeV cut there is almost

no background in the Loose electron invariant mass.

Figure 6.15: Invariant mass plot of the data with Loose working points
without the Higgs region. The FWHM of this fit is 5.15 GeV

Like in the MC Z→ e+e− and real data without working point cuts the

significance with sub-leading and therefore leading electron pT cuts have

been found. Unlike the MC Z→ e+e− and real data the pT cuts does not

increase the significance. This is because the Loose electrons do not have

much background so the pT cuts mostly cut into the signal and not the

background. The equation for significance, eq. 5.2, then becomes:

significance =
S√
S +B

≈ S√
S

=
√
S (6.1)

The background for Loose electrons without cuts is already less than

1. So all the pT cuts does not have much background to cut into, but the

different cuts cut into the signal. Eq. 6.1 shows that lower signal, S, give

lower significance.
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Table 6.3: The significance of the pT cuts on Loose electrons.

without cuts pT > 10 GeV pT > 20 GeV
signal 2038.33 2023.20 1948.66
background + signal 2039.24 2024.31 1937.49
significance 45.1378 44.696 44.2707

6.3 Concluding comment

In this chapter the invariant mass model was tested on real data. Here without

the Higgs region so this does not interfere with the model. The model works

well on the real data when looking at the Z → e+e− decay.

For the pT > 20 GeV cut there is more background in the invariant mass

plot, than in the MC chapter. This is expected as there are a lot more

background in the real data sample than in the MC sample and the pT > 20

GeV cut works best at smaller masses. The pT > 20 GeV cut still gives the

highest significance of all the pT cuts. The Loose invariant mass plot does

not have much background even with the real data. For Loose electrons the

highest significance was without any cuts. In the next chapter we will look at

even more data and in those events both of these cuts will be used.
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H → e+e−

In this chapter the Higgs region of the real data will be examined, first for

the single file, used in chapter 6, and then for the whole sample. This sample

is a DOAD from the whole year 2018. For Loose electrons a 2016 DAOD

sample was used instead of the 2018 sample, as the Loose working points did

not work for the whole 2018 sample.

In this chapter a MC H → e+e− sample could have been used to examine

how this decay would look like, but there was no Monte Carlo H → e+e−

sample available at the time of this thesis.

7.1 Higgs region from a single file

In chapter 6, the Higgs region was not included in order to develop the

reconstruction model. This model can now be used to investigate the Higgs

decay. First the Higgs region of the invariant mass with sub-leading pT > 20

GeV cuts, seen in fig. 6.9, and the Loose invariant mass, seen in fig. 6.15,

will be examined with the Higgs region included. Looking at fig. 7.1a and fig.

7.1b, it is clear that the number of events in the Higgs region is fewer than

in the Z region. The few events will stand out more clearly in some zoomed

in plots that will be shown later in this chapter. Both of the invariant mass

plots, fig. 7.1a and fig. 7.1b are well fitted by a Breit-Wigner and exponential

background.

A closer look at the Higgs region of the invariant mass with sub-leading

pT > 20 GeV cuts, seen in fig. 7.1b, and the Loose invariant mass, seen in fig.
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(a) The Loose invariant mass with
Higgs region.

(b) The invariant mass with pT > 20 GeV
cut with Higgs region.

Figure 7.1: The invariant mass with Higgs region from a single file from the
2018 sample.

7.1a, will be examined more closely, seen in fig. 7.2 and fig. 7.3. They are

both fitted with exponential backgrounds with Breit-Wigner distributions

where the masses are manually set to the Higgs mass, 125 GeV. This is to

look if there is a Higgs peak in the Higgs region.

Figure 7.2: The Higgs region of the invariant mass from a single file from
the 2018 sample with sub-leading pT > 20 GeV cut seen in fig. 6.9 fitted
with a Breit-Wigner with an exponential background. Here the mass of the
Breit-Wigner is set to be the Higgs mass, 125 GeV.

For the Higgs region for the sub-leading pT > 20 GeV, fig. 7.2, the

exponential background fits well with the data, but there are very few events
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with this high invariant mass. This means that the little peak at 125 GeV,

with an amplitude of less than 1 probably does not mean a presence of Higgs

particles. A larger sample is needed to get more result from this.

For the Higgs region for Loose electrons, fig. 7.3, there are almost no

events with this high of invariant mass. Similar to the pT > 20 GeV cut, little

can be determined from this plot and a larger sample is needed.

Figure 7.3: The Higgs region of the Loose invariant mass from a single file
from the 2018 sample seen in fig. 6.15 fitted with a Breit-Wigner with an
exponential background. Here the mass of the Breit-Wigner is set to be the
Higgs mass, 125 GeV.

7.2 Higgs region from a whole sample

As shown in sec. 7.1. a single file contains to few events for the Higgs Boson

decay to be investigated. To have more events to investigate, the whole 2018

sample from the ATLAS detector will be used.

This sample is very big, to big to be analysed locally, so it was done on the

Grid. To investigate the sample a grid job was sent to the Grid with the model

made in chapter 5 and a message of which sample that should be analysed.

It took a few tries before it worked. Each grid-job took approximately two

days, limiting the number of grid-jobs that could be performed for the model

and sample.

The Loose electron working point cut did not work on the 2018 data
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sample when working on the Grid. The grid job was returned without any

cuts on the electron candidates. Therefore another sample had to be used

instead. First a 2017 data sample was tried. This sample was the same

type of DAOD as the 2018 data sample, so it could have been a good choice,

but this sample did not work either as the Grid could not find this sample,

therefore no analysis could be done. Lastly, a 2016 data sample was tried

and the Loose electrons worked on this sample. This 2016 data sample is the

same type of DAOD, a pair of electrons must have an invariant mass of over

50 GeV.

When looking at the DOAD from the whole year 2018, ROOT could

only read 440 out of the 540 files that was made. This means that not all

of the integrated luminosity L = 58.5 fb−1 was available for analysis. A

guess for the integrated luminosity will be made by adjusting L as following:

L ≈ 440
540
· 58.5 fb−1 = 47.7 fb−1. This adjusted integrated luminosity will be

used to calculate cross sections later in the chapter.

Figure 7.4: Invariant mass of the whole 2018 sample.

The invariant mass for the whole sample, in fig. 7.4, looks similar to the

invariant mass from the one file, showed in fig. 6.6. The difference is the

number of events in the plots, 6512 events in fig. 6.6 and 6.56 · 107 in fig. 7.4.

This is around 10 000 times more events. The DAOD invariant mass cut of

50 GeV for a pair of electron candidates is very clear and there is a large Z

peak at 90 GeV. The invariant mass of the whole sample is well fitted by a
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Breit-Wigner distribution with an exponential background, just like for one

file, seen in fig. 6.6.

7.2.1 2018 data with a pT > 20 GeV cut

The invariant mass of the 2018 real data sample with a pT > 20 GeV cut is

shown in fig. 7.5. The cut removes most of the low invariant mass events and

the exponential background is lowered. This makes the invariant mass under

the 50 GeV peak, in fig. 7.4 disappear. The 50 GeV peak also disappears

after the pT > 20 GeV. This is very similar to how the pT > 20 GeV cut

worked on one file, seen in fig. 6.9. The number of events in the whole sample,

2.48 · 107, is also around 10 000 times more than the number of events in fig.

6.9, 2079.

The invariant mass with a pT > 20 GeV cut is well fitted by a Breit-Wigner

with an exponential background, just as in fig. 6.9. This fit will be used to

calculate the cross section of Z → e+e− and H → e+e−.

Figure 7.5: The invariant mass of the whole 2018 sample with a pT > 20 GeV
cut.

One can use this real data to calculate the cross section for Z → e+e−

using eq. 2.10. To find Ndata and Nbackground the data is integrated over

the Z peak region in fig. 7.5 and over the exponential background. Giving

Ndata = 8.06055 · 106 and Nbackground = 1.61736 · 106 and Ndata−Nbackground =
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6.44319 · 106. Fig. 7.5 has more bins to give a clearer plot. This has to be

taken into consideration when calculating the number of events. Here a bin

has a width of 0.5 GeV, so the number of events must be multiplied by 2 to

get the real number of events. The integrated luminosity is L = 47.7 fm−1

and the efficiency ε = 0.67, as found in chapter 5, eq. 5.3. This gives an

effective cross section of:

σeff =
Ndata −Nbackground

εL
=

2 · 6.44319 · 106

0.67 · 47.7 fm−1
= 0.40 nb (7.1)

Which is around a fifth of the actual cross section for Z → e+e− which is

1.9 nb and two fifths of the effective cross section from chapter 5, 1.05 nb.

7.2.2 2016 data with Loose working points

As explained in sec. 7.2.1, the Loose electrons did not give proper results in

the Higgs region, because of the low number of events in one file. Therefore

the whole 2018 real data sample was going to be examined, however this did

not work for Loose working points. Neither the 2018 real data sample, that

was used in the rest of the real data analysis, nor a 2017 real data sample

worked with Loose working points. Loose working points did work on a 2016

real data sample. This data sample was also a DAOD, with the same invariant

mass cut; an electron candidate pair having an invariant mass of over 50 GeV.

This 2016 real data sample had an integrated luminosity of 35.6 fb−1 [34]

and ROOT managed to run on all of the files that was created. So, unlike

the 2018 sample, there will not be a need for an adjusted luminosity and

L = 35.6 fb−1 will be used when calculating the cross sections.

The invariant mass of the real data with a Loose electron cut is shown in

fig. 7.6. The cut removes both the low invariant mass events and also the

exponential background. This cut also makes the invariant mass under the

50 GeV peak, as shown in fig. 7.4, disappear. This is very similar to how the

Loose electron cut worked on one file from the 2018 data sample, seen in fig.

6.15. The number of events in the whole sample, 2.55 · 107, is also around 20

000 times more than the events in fig. 6.15, 1174.

Real data can be used to calculate the cross section for Z → e+e− by

using eq. 2.10. To find Ndata and Nbackground one integrates over the data in

the Z peak region and integrates over the exponential background just like
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for the pT > 20 GeV cut. Then Ndata = 1.02549 · 107 and Nbackground = 24919

and Ndata−Nbackground = 1.02299 · 107. Again must the binning be taken into

consideration and this number is multiplied by 2. The integrated luminosity

is L = 35.6 fb−1 and the efficency ε = 0.56, as found in chapter 5. This gives

an effective cross section of:

σeff =
Ndata −Nbackground

εL
=

2 · 1.02299 · 107

0.56 · 35.6 fb−1
= 1.02 nb (7.2)

Which is around a half of the actual cross section for Z → e+e− which is

1.9 nb and very close to the effective cross section found in chapter 5, 1.06 nb.

Figure 7.6: The Loose invariant mass of the whole 2016 sample.

The effective cross section for the real data are lower than the effective

cross sections from the MC chapter. A reason for this difference could be

that the analysed MC sample did not have a trigger calculation in it. The

trigger would remove some of the electrons, thereby lowering the efficiency.

The efficiency might also have gone down in the real data due to the pile up

that can happen at high collision-rates. The Loose electrons had a pile up

filter, so this might explain why the Loose cross section is so close to the MC

cross section, while the cross section for the pT > 20 GeV cut, where there

was no pile up filter, was lower than the MC cross section.

To take this into consideration the effective cross section for the Higgs

decay will be multiplied with a constant C, where C = σMC

σData
. For the pT > 20

83



7.2. Higgs region from a whole sample

GeV cut the constant will be CpT cut = 1.05 nb
0.40 nb

= 2.63 and for Loose electrons

the constant will be CLoose = 1.06 nb
1.02 nb

= 1.04.

7.2.3 Υ and J/Ψ found in the Loose invariant mass plot

There were some small peaks in fig. 7.6 under 10 GeV. To see these peaks

more clearly a new invariant mass plot from 0 GeV to 15 GeV was made,

seen fig. 7.7. Here there are clear peaks at 3 GeV and 9.5 GeV with some

secondary peaks at around 3.75 GeV and 10 GeV. These peaks could be J/Ψ

for the 3 GeV peak and Υ for the 9.5 GeV peak. These peaks are low because

the DAOD invariant mass cut will remove most of these decays. Some are let

through because the leading and sub-leading electrons was chosen to make

the invariant mass, and not the two electrons that have the highest invarant

mass, like the DAOD uses. So the invariant mass of a pair of electrons have

an invariant mass over 50 GeV, but one or more of these electrons could be

switched out by electrons with higher pT , so the invariant mass goes down.

When both electrons are switched out, some of the time they are switched to

electrons from Υ→ e+e− or J/Ψ→ e+e−

Figure 7.7: The Loose invariant mass of the whole 2018 sample in the 0 GeV
to 15 GeV region.
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7.3 Analysing H → e+e− using pT > 20 GeV

cut

To investigate the Higgs → e+e− decay one can look at the Higgs region and

determine the number of events that occur here using a Gauss distibution

with the exponential background. A Gaussian will be used because of the

high background compaired to signal in the Higgs region.

The Gaussian will have a forced mean, the Higgs mass 125 GeV. This is

to make sure that the fit focuses on the Higgs boson. To find the σ of this

Gaussian we will use the same σ as the truth invariant mass from the MC

Z → e+e− chapter, as seen in fig. 7.8 fitted with a Breit-Wigner. Here the

FWHM is 2.81± 0.08 GeV and the σ of this plot is σ = FWHM
2.355

= 1.19± 0.034

GeV.

To find a sigma for the Higgs peaks one can use the fact that the mass

resolution, σM , is dominated by the energy measurement in the EM calorimeter

and use the σ that arrives from energy measurements.

σE = k ·
√
E (7.3)

To find a formula for the sigma of the mass:

σM = k ·
√
M (7.4)

This can be used with the σ found from the truth electrons, σZ = 1.19±0.034

GeV, to find a σ for the Higgs mass σH :

σH =

√
MH

MZ

∗σZ =

√
125 GeV

91.2 GeV
∗1.19±0.034 GeV = 1.39±0.04 GeV (7.5)

This mean, 125 GeV and σH = 1.39± 0.04 GeV will be used for both the

pT > 20 GeV cut and the Loose electrons.

When looking at the Higgs region of the invariant mass of the 2018 real

data sample with a pT > 20 GeV cut, seen in fig. 7.9, there is no clear Higgs

peak. This is expected because of the low amounts of Higgs → e+e− decays

found when doing a quick calculation in chapter 3, 0.003 times over the entire

time period the ATLAS detector has been running.
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7.3. Analysing H → e+e− using pT > 20 GeV cut

Figure 7.8: The truth invariant mass of the MC Z → e+e−, here fitted with a
Breit-Wigner.

To see what a Higgs peak could have looked like, a simulated Higgs peak

is plotted, in fig. 7.10. This Higgs peak is a gaussian distribution with a

mean of 125 GeV and a σ = 1.39 GeV and a height of 1200.

Figure 7.9: The Higgs region of the invariant mass of the whole 2018 sample
with a pT > 20 GeV cut fitted with a background in green. The Chi2 of this
fit is 88.08.
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Figure 7.10: The Higgs region of the invariant mass of the whole 2018 sample
with a pT > 20 GeV cut. Here a simulated Higgs peak is plotted with a
Gaussian in red.

When trying to fit the Higgs region with a pT > 20 GeV cut with

a Gaussian, as seen in fig. 7.11, a Higgs peak is found with a negative

amplitude, which still can be used. Here the height of the Higgs peak is

−84.49± 122.81. This means that the number of signal events is less than

−84.49 + 1.96 · 122.81 = 156.21 to a confidence level (C.L.) of 95%. This

means that there is only a 5% chance that pure background could give a

positive fluctuation. However, we are not sure that this background-function

is correct. So a more conservative number of signal events is less than

0 + 1.96 · 122.81 = 240.71. Here the binwidth is 0.2 GeV, so to get the real

cross section one must multiply these numbers by 5.

By using this signal one gets a cross section of less than:

σeff < CpT−cut ·
S

εL
= 2.63 · 5 · 240.71

0.67 · 47.7 fb−1
= 99.04 fb (7.6)
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7.3. Analysing H → e+e− using pT > 20 GeV cut

Figure 7.11: The Higgs region of the invariant mass of the whole 2018 sample
with a pT > 20 GeV cut. Here a Higgs peak is fitted with a Gaussian in red
and background in green.

Figure 7.12: The Higgs region of the invariant mass of the whole 2018 sample
with a pT > 20 GeV cut with a Gaussian in red and background in green.
This plot is zoomed in.
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7.4 Analysing H → e+e− using Loose working

points

When determining H → e+e− decay using Loose invariant mass, the Higgs

region is plotted in fig. 7.13. In this plot one can still not see a clear Higgs

peak. This is again expected because of the low amounts of Higgs → e+e−

decays found in chapter 4.

To see how a Higgs peak may have looked like, the same simulated Higgs

peak as used in sec. 7.3 is plotted , in fig. 7.14. This Higgs peak is a gaussian

distribution with a mean of 125 GeV and a σ = 1.39 GeV and a height of

1200. Here the simulated peak is much clearer as the background is much

smaller.

Figure 7.13: The Higgs region of the Loose invariant mass of the whole 2016
sample fitted with a background in green. The Chi2 of this fit is 164.96

When trying to fit the Higgs region of the invariant mass of Loose electrons

with a Gaussian, as seen in fig. 7.15, a Higgs peak was found with a negative

amplitude. Here the height of the Higgs peak is −208.60± 47.39 GeV. Which

is a smaller error than for the 2018 data with a pT > 20 GeV cut. Again using

a more conservative number of signal events is less than 1.96 · 47.39 = 92.88.

To take the binning into account this must be multiplied by 5.
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7.4. Analysing H → e+e− using Loose working points

Figure 7.14: The Higgs region of the Loose invariant mass of the whole 2016
sample. Here with a simulated Higgs peak in red.

By using this signal one gets a cross section of less than:

σeff < CLoose ∗
S

εL
= 1.04 · 5 · 92.88

0.56 · 35.6 fm−1
= 24.23 fb (7.7)

Figure 7.15: The Higgs region of the Loose invariant mass of the whole 2016
sample. Here a Higgs peak is fitted with a Gaussian in red and background
in green.
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Chapter 7. H → e+e−

Figure 7.16: The Higgs region of the Loose invariant mass of the whole 2016
sample with a Gaussian in red and background in green. This plot is zoomed
in.

7.5 Concluding comment

In this chapter the model for finding the Higgs using invariant mass of leading

and sub-leading electrons was used on two real data samples, a DAOD of the

whole year of 2018 and a DAOD of the whole year of 2016. For the 2018 data

sample a pT > 20 GeV cut was used, and for the 2016 data sample a Loose

working point cut was done.

The invariant mass model worked very well on the Z → e+e− decay. The

pT > 20 GeV cut on the 2018 data sample gave an effective cross section

of σeff = 0.40 nb, see eq. 7.1. This is just under half of the effective cross

section found in chapter 5. This was because there was no triggers in the

MC sample used in chapter 5 and no pile up filter was used on the 2018

sample. The 2016 data, with Loose electrons, gave an effective cross section

of σeff = 1.02 nb, see eq. 7.2. This is very close to the effective cross section

found in chapter 5, which means that most of the Z→ e+e− decays was found

using this method. This tells us that the model works very well for the Z

→ e+e− decay.

When looking at the H → e+e− decay there was not a clear peak in either

of the real data invariant mass plots. This was expected as the branching
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ratio for H→ e+e− is so small. When fitting the Higgs region of the real data

invariant mass plots, see fig. 7.12 and fig. 7.16 there was small Gaussians

with negative amplitudes. These could still be used to find a limit for the

cross section for the H → e+e− decay.

The 2018 data with a pT > 20 GeV cut had a lot more background and

a lot of uncertainty for the amplitude of the Gaussian. For the 2018 data

sample a cross section of σeff < 99.04 fb was found, as seen in eq. 7.6. The

2016 data with Loose electrons had a lot less background and the uncertainty

of the amplitude were also smaller. For the 2016 data sample a cross section

of σeff < 24.23 fb was found, as seen in eq. 7.7.
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Chapter 8

Results and Discussion

8.1 Finding Z and H using model

In this thesis a mass reconstruction model using the invariant mass of two

electrons was developed. The model was developed and improved using the

well understood Z → e+e− decay. The model was then used to investigate

two different real data samples from the LHC of 2018 and 2016 using two

different types of cuts. When analysing the data for Z bosons using the 2018

real data sample, with a pT > 20 GeV cut, the effective cross section was

found to be:

σeff = 0.40 nb (8.1)

While for the 2016 real data sample, with Loose electrons, the effective cross

section was found to be:

σeff = 1.02 nb (8.2)

These effective cross sections were close to the effective cross sections

found for the Monte Carlo sample in chapter 5, σeff,MC = 1.05 nb and 1.06

nb for the 2018 and 2016 sample respectively. For the 2018 real data sample,

with a pT > 20 GeV cut, the effective cross section was about half of the MC.

The difference between 2018 real data and the Monte Carlo is most likely

because of the issues with the Grid and the fact that there was no pile up

filter done on the 2018 sample. The first attemtps running the 2018 sample
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8.1. Finding Z and H using model

on the Grid returned just empty directories with no ROOT files. When the

Grid job returned files, ROOT could only read 440 out of the 540 files. This

gives a lot of uncertainty of the integrated luminosity L.

For the 2016 real data sample, with Loose electrons, the effective cross

section was similar to the effective cross section from the MC. This is because

this sample did not have the same issues as the 2018 sample, there was a pile

up filter and ROOT could read out all the files created. The results from the

model, both cuts, indicates that the model works very well at finding the Z

→ e+e− decay. The mass reconstruction model using invariant mass should

therefore also be able to find the H → e+e− decay.

When analysing the samples for Higgs bosons it is clear that the samples

have little or no H → e+e− decays. For the H → e+e− decay there was no

clear peak in the Higgs region, as seen in fig. 7.9 and in fig. 7.13. The lack

of H → e+e− decay is expected as the calculation in chapter 4 showed that

there is 0 expected decays of this sort at the ATLAS detector. The effective

cross section calculation can, however, still be done. When doing this, upper

limits for the effective cross sections of the H → e+e− decay was found. For

the 2018 real data sample, with a pT > 20 GeV cut, the cross section limit

was found to be:

σeff < 99.04 fb (8.3)

For the 2016 real data sample, with Loose electrons, the effective cross section

limit was found to be:

σeff < 24.23 fb (8.4)

These effective cross sections are very low, as expected. Both of the invariant

masses were fitted with Gaussian distributions with negative amplitudes, seen

in fig. 7.11 and in fig. 7.15, so the limit to the cross section was therefore

dependant on the uncertainty. The 2018 sample with a pT > 20 GeV cut has

a higher limit as there was high uncertainty in the amplitude of the Gaussian

fit done, ±122.81, seen in fig. 7.11. The 2016 sample with Loose electrons had

smaller uncertainty, ±47.39, and therefore has a smaller limit. By identifying

these low limits, the model confirms that there little to no H → e+e− decay

in these samples.
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8.2 Uncertainty

The cross sections for H → e+e−, from 2018 data with a pT > 20 GeV cut

and from 2016 data with Loose electrons, were analysed in chapter 7 showing

no decays in the Higgs region as expected from the calculations in chapter

3 and chapter 4. However, the results in chapter 7 should be understood as

limits of the cross sections as there was not performed a proper uncertainty

analysis due to the challenges running the grid jobs, especially the files that

did not return data that could be analysed.

Even though the uncertainty cannot be quantified correctly, the most

important contributions to the uncertainty will be addressed. For this model,

the largest errors come from the integrated luminosity and from the efficiency.

It is also important to point out that the background functions used in chapter

7 are not properly verified and could contain undocumented variations. A

first approach uncertainty of the cross section is shown in eq. 8.5.(σσ
σ

)2
=
(σε
ε

)2
+
(σL
L

)2
+ (

σbackground
background

)2 (8.5)

The uncertainty from the integrated luminosity, σL, is spilt into two parts.

The uncertainty of the integrated luminosity that was ran over in this thesis

and the uncertainty of the integrated luminosity measured at the ATLAS

detector. The uncertainty from this thesis comes from the problems with

running on the Grid. For the 2018 sample, ROOT could only read 440 out

of the 540 files that was created. ROOT could read out all the files created

from the 2016 sample, but this does not mean that every event from this

sample was correctly read out. It is difficult to determine the uncertainty due

to these problems, and in order to quantify the uncertainty a number of trials

must be run on the Grid. The uncertainty in measured integrated luminosity

was not available at the source for the luminosity, [34], but this uncertainty

is probably not as large as the uncertainty from the Grid job.

In this thesis, the efficiency for the invariant mass model, with the two

different cuts, was found using a Monte Carlo Z → e+e− sample, as there

was no H → e+e− Monte Carlo sample available at the time of this thesis.

The difference between these processes could give some uncertainty. The

uncertainty of the efficiency was not calculated for the different cuts either.

For the 2018 data sample there was also no pile-up filter which there where
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8.3. Improving cuts

for the MC sample and the 2016 data sample. This would also give a lot of

uncertainty to the efficiency.

In chapter 7 the background was used as if it was known, but this is not

true. The Chi2 of the 2018 data sample with the pT > 20 GeV cut was 88.08,

as seen in fig. 7.9, and for the 2016 data sample with Loose electrons the

Chi2 was 164.96, as seen in fig. 7.13. This is not a high Chi2 compared to

the Chi2 from the Z peak fits, Chi2 = 96022 as seen in fig. 7.5 and Chi2 =

355153 as seen in fig. 7.6.

To quantify the uncertainty of the model, more jobs must be run on the

Grid and ROOT, and will be an important point in the further development

of the model.

8.3 Improving cuts

In this thesis only the Loose working points worked. This working point is

one of the weaker working points and will let through more electrons than the

stronger working points, like Medium and Tight, as seen in fig. 5.18. These

stronger cuts would most likely remove more of the background, leading to

clearer peaks. However, they would cut more into the signal as well, this

could make them a worse choice. This could be an interesting thing to look

at in further research.

To improve the current model, different cuts should be invistigated. Most

likely would Tight electrons be the best choice, as there are so many electron

candidates that are actually photons created by bremsstrahlung, and this

create a lot of background for electrons. Tight electrons have the strongest

requirements and would therefore cut away much more of the background.

Another way to do the cuts would be to look at one electron at a time. For

example, cutting the leading electrons with a higher pT than the sub-leading

electrons.

And a last suggestion of improving the cuts, would be to do the different

cuts on the same sample. All of these improvements would require sigificant

Grid time.

96



Chapter 8. Results and Discussion

8.4 Concluding remark

A model using invariant mass has been developed and verified towards real Z

and Higgs boson data from the ATLAS detector. The results clearly show

that the model is capable of finding the Z bosons decaying into e+e− in the

real data. It can be concluded that the invariant mass model works for the

current samples, and it does not find Higgs bosons decaying into e+e− in the

real data. This means that the cross section for the H → e+e− decay must

be small, which is confirmed by the model.
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Chapter 9

Conclusion

In this thesis an invariant mass model, with two different types of cuts, was

developed by looking at a Monte Carlo Z → e+e− sample. This model used

the leading and sub-leading electrons to find the invariant mass.

When testing this model on real data, two different data samples were

used. A 2018 real data sample with a pT > 20 GeV cut and a 2016 real data

sample with Loose electrons. When testing the model on real data, it worked

more than satisfactory on the Z→ e+e− decay, getting approximately the

same cross section as for the MC sample. It was much closer for the 2016

sample with Loose electrons than for the 2018 sample with a pT > 20 GeV

cut. This is because of there was no pile up filter and ROOT was not able to

read all of the files the Grid made when running on the 2018 sample.

The model worked satisfactory on the Z→ e+e− decay, but did not find

any H → e+e− decay. This is expected as the branching ratio for H→ e+e−,

as calculated in chapter 3, is quite small. For the 2018 real data sample, with

a pT > 20 GeV cut, the cross section limit was found to be σeff < 99.04 fb.

For the 2016 real data sample, with Loose electrons, the effective cross section

limit was found to be σeff < 24.23 fb.

Over all the model worked very well finding a limit for the effective cross

section of the H → e+e− decay.
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