
University of Bergen
Department of informatics

Multithreaded Multiway Constraint
Systems with Rust and WebAssembly

Author: Rudi Blaha Svartveit
Supervisor: Jaakko Järvi

August, 2021

Abstract

User interfaces are di�cult to get right, and implementing and maintaining them takes up a signi�cant
portion of development time. Ensuring that all dependencies between Graphical User Interface (GUI)
widgets are maintained, such as the value of one being computed from another, can be challenging and
prone to bugs with a standard callback-based approach. The dependency graph formed from relations and
constraints between variables quickly becomes unwieldy for humans, especially with multi-directional
data�ow and transitive dependencies.

HotDrink is a library for declaratively modeling constraints between widgets as a constraint system.
This model includes information about how to enforce the constraints, which the library can use to
automatically enforce them when values are changed, a process called solving. The programmer can thus
focus on individual constraints without being distracted by their e�ect on the rest of the system. Previous
implementations of HotDrink have been written in TypeScript and Flow, but they sometimes su�er from
poor performance in larger constraint systems.

In this project, we have explored the design space of constraint-based GUI programming for web
applications, with a focus on static typing and multithreading. We have developed the library hotdrink-rs,
a version of HotDrink implemented in Rust. To improve the performance of the planning step of solving,
we have used an optimization technique called pruning that can speed up planning by several orders of
magnitude. This enables use of the library for modeling larger systems, and for more performance-sensitive
tasks. Our implementation falls short in systems where this optimization is not e�ective, which suggests
that experiments with further optimizations, e.g., incremental planning algorithms, should be done. The
library also supports multithreaded execution of plans, which both speeds up solving and guarantees GUI
responsiveness in the face of long-running computations. The GUI is thus also more resilient to programmer
mistakes that cause long-running or non-terminating computations.

We have also developed hotdrink-wasm, a library that wraps data structures from hotdrink-rs to
allow the library to be compiled to WebAssembly. hotdrink-wasm supports the use of Web Worker-based
threads for multithreaded constraint system solving with cancelable computations in web applications.

Finally, we present more memory-e�cient data structures for constraint systems by representing
variable indices with individual bits. In addition to saving memory, it may also provide performance
bene�ts by being more cache-friendly.

Acknowledgments

First and foremost, I would like to thank my supervisor, Jaakko Järvi, for his exceptional guidance. The
knowledge and feedback he has provided me with in our discussions has been invaluable for my work. I
am very glad to have been introduced to the topic of this thesis, and to have had a chance to work more
with Rust and WebAssembly.

I would also like to thank Magne Haveraaen and Knut Anders Stokke for the discussions we have had
about examples of constraint systems, and about features such as automatic testing of constraint system
de�nitions. Finally, I would like to thank my partner, Marianne Luengo Fuglestad, as well as my family,
who have been incredibly supportive throughout my entire degree.

Rudi Blaha Svartveit
August, 2021

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions and Expected Results . 3
1.3 Areas of Improvement . 3

1.3.1 Planner Improvements . 4
1.3.2 Multithreaded Solving . 4
1.3.3 Minimizing the Memory Footprint . 4
1.3.4 Component DSL . 4
1.3.5 Generalizing the Core Library . 5

1.4 Terminology . 5
1.5 Thesis Outline . 6

2 Background 7
2.1 Multiway Data�ow Constraint Systems . 7
2.2 Planning Algorithms . 8
2.3 Related Work . 12

3 Implementation of hotdrink-rs 15
3.1 Overview . 15

3.1.1 Creating Components . 16
3.1.2 Editing Variables . 18
3.1.3 Solving . 18
3.1.4 Subscribing . 19
3.1.5 Creating Constraint Systems . 20

3.2 Model Module . 20
3.2.1 Constraint System . 20
3.2.2 Component . 22
3.2.3 Constraint . 28
3.2.4 Method . 29

i

3.2.5 Error Propagation . 29
3.3 Planner Module . 31

3.3.1 Simple Planner . 31
3.3.2 Hierarchical Planner . 32

3.4 Method Executor Module . 33
3.5 Solver Module . 34

3.5.1 Activation . 35
3.6 Macros Module . 39

3.6.1 component! . 39
3.6.2 component_type! . 40
3.6.3 ret! . 42
3.6.4 fail! . 42

4 Implementation of hotdrink-wasm 44
4.1 Overview . 44
4.2 Heterogeneous Constraint Systems . 46

4.2.1 The JsValue Type . 46
4.2.2 The Any Trait . 47
4.2.3 Rust Enums . 48

4.3 Generating a WebAssembly-Compatible Constraint System 50
4.4 Image Scaling Example . 51

4.4.1 De�ning the Constraint System . 52
4.4.2 Wrapping the Constraint System . 53
4.4.3 Compilation to WebAssembly . 54
4.4.4 Importing WebAssembly from JavaScript . 54
4.4.5 Usage from JavaScript . 55

4.5 Bene�ts of Multithreading . 57
4.5.1 Parallel Execution . 59
4.5.2 Guaranteed Responsiveness . 59

4.6 Multithreading with Rust and WebAssembly . 60
4.6.1 Limitations . 60
4.6.2 Web Worker-Based Threads . 60
4.6.3 Web Worker-Based Thread Pools . 64
4.6.4 Termination Strategies . 65

4.7 Data Flow in a Multithreaded Constraint System . 66
4.8 Generating a Multithreaded Constraint System . 67
4.9 Pitfalls . 69

4.9.1 Use after Move . 69

ii

4.9.2 Breaking the Borrowing Rules . 69

5 C/C++ Bindings 71
5.1 Creating a Dynamic Library . 71
5.2 Creating a C-Compatible Constraint System . 71

5.2.1 Construction and Destruction . 72
5.2.2 Subscribing . 72
5.2.3 Editing . 73
5.2.4 Solving . 73

5.3 Using the API . 74

6 Performance Analysis 75
6.1 Constraint Systems Used in Benchmarks . 75

6.1.1 Linear-oneway . 75
6.1.2 Linear-twoway . 75
6.1.3 Ladder . 76
6.1.4 Unprunable . 77
6.1.5 Random . 77

6.2 Optimization Methodology . 79
6.3 Simple Planner Benchmarks . 79
6.4 Hierarchical Planner Benchmarks . 81
6.5 Solver Benchmarks . 82
6.6 Comparison to Other Implementations . 84

7 Memory-E�cient Data Structures 88
7.1 Naive Implementation . 89
7.2 Representing Method Inputs and Outputs with Individual Bits 90
7.3 Representing Constraint Variables with Individual Bits . 91
7.4 Comparison . 92
7.5 Drawbacks . 94

8 Discussion 98
8.1 Rust . 98

8.1.1 Strict Type System . 98
8.1.2 Methods With an Arbitrary Number of Arguments 99
8.1.3 Methods With Arbitrary Return Types . 99
8.1.4 Variable Access . 100
8.1.5 Multithreading in Rust . 100

8.2 WebAssembly . 100

iii

8.2.1 Multithreading with Web Workers . 100
8.2.2 Cancellation . 101

8.3 Implementation and Results . 102
8.3.1 Features and API . 102
8.3.2 Performance . 102
8.3.3 Responsiveness . 102
8.3.4 Memory-E�cient Data Structures . 103

9 Future Work 104
9.1 Planner Optimization . 104

9.1.1 Making the Planner Fully Incremental . 104
9.1.2 Minimizing Allocation . 104
9.1.3 Reusing Variable Reference Counts . 105

9.2 Improved Scheduling . 105
9.2.1 Breadth-First Scheduling . 106
9.2.2 Multi-Method Tasks . 107
9.2.3 Deferred Scheduling . 108

9.3 Using Procedural Macros for the Component DSL . 109
9.4 Undo and Redo in Mutable Constraint Systems . 111
9.5 Dynamic Constraint System Construction . 111
9.6 Pre- and Postconditions . 111
9.7 Enabling and Disabling Components . 112
9.8 Improvements to Subscribing from JavaScript . 113

10 Conclusion 115

Bibliography 117

iv

List of Figures

1.1 A simple constraint system . 2
1.2 A simple constraint system with explicit methods . 2
1.3 Image scaling example . 3

2.1 Simple planner example. 10
2.2 The constraint graph after adding a stay constraint to 0. 11
2.3 The solution graph after adding a stay constraint to 0 and solving the system. 11

3.1 The hotdrink-rs module hierarchy. 21
3.2 Variable generations . 26
3.3 Full propagation versus reusing old values . 30
3.4 Eager cancellation . 38
3.5 Missing Default implementation. 40

4.1 Type conversion in the constraint system wrapper . 47
4.2 A simple image scaling example made with hotdrink-wasm and JavaScript. 52
4.3 Scaling an image while preserving its aspect ratio. 57
4.4 Scaling an image without preserving its aspect ratio. 58
4.5 Web Worker message passing. 67
4.6 Data �ow . 67
4.7 Use after move in Rust. 69

6.1 Linear-oneway. 75
6.2 Linear-twoway. 76
6.3 Ladder. 76
6.4 Unprunable. 77
6.5 A randomly generated constraint system. 78
6.6 Flamegraph of a call to the solve method. 80
6.7 Simple planner performance on di�erent constraint systems. 81
6.8 Hierarchical planner performance on di�erent constraint systems. 82

v

6.9 Solver comparison. 83
6.10 Time to solve unprunable systems. 87

7.1 Variable lookup . 91
7.2 Memory usage per technique. 95
7.3 Comparison of naive strategy and using BitVec in methods. 96

9.1 Flamegraph of the simple planner on the unprunable system. 105
9.2 Chain scheduling . 106
9.3 Parallel Directed Acyclic Graph (DAG) . 106

vi

List of Tables

3.1 Values per step . 35

6.1 Simple planner benchmarks . 79
6.2 Hierarchical planner benchmarks . 81
6.3 Solver benchmarks . 83
6.4 Planner feature comparison between HotDrink-implementations. 85
6.5 Constraint system solve benchmark comparison . 86

7.1 Symbols and their meanings. 88
7.2 Sizes of types on a 64-bit architecture. 89
7.3 Relative bits per component . 94
7.4 Relative bits per component . 95

vii

List of Listings

1 De�ning a constraint system wrapper with hotdrink-wasm. 45
2 Wrapping a constraint system made with hotdrink-rs. 46
3 Using the constraint system from JavaScript. 46
4 Use-after-move error in JavaScript. 69

viii

Chapter 1

Introduction

1.1 Motivation

User interfaces often have a multitude of constraints that must be enforced while the user interacts with
them. Buttons may, for instance, be disabled until all text �elds have been �lled with appropriate values, and
some values may be computed from other ones, forming a kind of dependency graph. Once a value changes,
other values that depend on it must also be recomputed to re-enforce the constraint. As the number of
related elements in the GUI increases, it can become di�cult for the programmer to ensure that all the
constraints are enforced at all times, especially in the following cases:

1. There are transitive constraints: 0 is needed to compute 1, 1 is needed to compute 2 .

2. Changes may propagate in multiple directions: changing 0 changes 1, while changing 1 changes 0.

3. There are potential cycles: enforcing a new constraint invalidates one that was already enforced.

The related di�culties lead to a signi�cant number of code defects [24], and the choice of values to modify
upon handling a change may be disruptive to the user if implemented poorly [16, p. 177].

This thesis builds on HotDrink, a library that uses multiway data�ow constraint systems to model GUIs.
A constraint system is a set of variables and constraints between them; data�ow refers to the changes that
propagate through the system when values are edited, and multiway means that constraint may be enforced
in multiple ways, giving multiple possible data�ows. Constraints have a set of associated methods, each
of which represents one way to enforce the constraint. A more detailed description of multiway data�ow
constraint systems can be found in Chapter 2.

Given two direct constraints, e.g., 0 = 21 and 1 = 32 , there is also an indirect constraint 0 = 62 . The
number of indirect constraints can grow exponentially with respect to the variables in the system, and
can become di�cult to handle explicitly. HotDrink instead lets programmers describe how to satisfy each
constraint individually and declaratively. An edit to a single variable will re-enforce the constraints it is
bound by, which may trigger other constraints to be re-enforced, until all indirect constraints are satis�ed.

1

Figure 1.1: A simple constraint system. 0, 1, 2 , and 3 are variables, while 0 = 1 and 1 = 2 + 3 are constraints
between them. Modifying 0 would require changing 1 to maintain 0 = 1, and this change to 1 requires
changing 2 or 3 to maintain 1 = 2 + 3 .

Figure 1.2: A simple constraint system with explicit methods. Dotted lines are reads and leave variables
unchanged, while solid lines are writes and modify variables. There may be multiple possible data �ows: A
change to 0 will update 1 with 0 ← 1, followed by a update of 2 with 2 ← 1 − 3 , or an update of 3 with
3 ← 1 − 2 . A change to 3 would propagate towards 0 through 1 ← 2 + 3 and 0 ← 1. Using HotDrink
lets the programmer focus on the explicit constraints, instead of having to think about how the implicit
constraint between 0 and 3 should be enforced.

The library also aims to update values in the least surprising way by preferring to change variables that the
user has not interacted with in a while.

A small constraint system can be seen in Figure 1.1, where we represent one constraint between 0 and
1, and another between 1, 2 , and 3 . For this system to be satis�ed, we must enforce both 0 = 1 and 1 = 2 +3
at the same time. Since all variables are connected, a manual implementation would have to be careful to
update variables in the right order. A graph with the di�erent ways of enforcing the constraints is seen in
Figure 1.2. If we �rst assign a new value to 0 with 0 ← 1, and then assign a new value to 1 with 1 ← 2 + 3 ,
then there is no guarantee that the �rst constraint is still enforced.

The simple GUI in Figure 1.3 provides a more practical example of what constraint systems can be used
to model. Constraints can be found between the various input �elds and sliders; the relative height should,
for instance, be equal to 01B>;DC4_ℎ486ℎC

8=8C80;_ℎ486ℎC at all times, and an additional constraint between the height and
width is activated when the “Preserve ratio” checkbox is selected.

As the number of constraints in the system increases, the performance of the planner (described further
in Section 1.3.1) can become a problem. For instance, 50 constraints can lead to a planning time of 30
milliseconds, and 100 constraints can lead to a planning time of over 100 milliseconds [13]. This can lead to
the GUI being unresponsive for a substantial amount of time [40, p. 135]. Taking custom code written by a
library user into account, solving a constraint system may become arbitrarily slow, and even cause the GUI
to become unresponsive inde�nitely.

There are two earlier implementations of HotDrink, written in TypeScript [13, 14, 12] and Flow [22,
12] respectively, both of which compile to JavaScript. While JavaScript is a de facto standard for GUI

2

https://www.typescriptlang.org/
https://flow.org/

Figure 1.3: An image scaling example.

programming in browsers, it is not the most performant language [19] and is inherently single-threaded [28].
Potential improvements to the library’s performance and responsiveness may be achieved by (1) using a
di�erent implementation language, (2) adding new optimizations to the planning algorithm, and (3) by
employing multithreading. By running method computations on di�erent threads, we can ensure that the
main thread is always available to keep the GUI responsive to user input.

1.2 Research Questions and Expected Results

This paper describes the work on a new implementation of HotDrink written in Rust and WebAssembly,
and how rewriting the library has a�ected its speed, memory e�ciency, and responsiveness.

Rust [50] is a relatively young systems programming language with a focus on both performance and
safety. It can also be compiled to WebAssembly [81], which is a binary instruction format that can be
executed in browsers for near-native performance [81, 82]. The combination of these two traits gives us
the opportunity to rewrite libraries in Rust and compile them to WebAssembly for improved performance
in web applications. Even compiling existing JavaScript code to WebAssembly can already result in code
that is many times faster [49]: we thus hope for similar (or even better) performance improvements for
HotDrink. From this, the following research questions arise:

1. How much can Rust and WebAssembly improve HotDrink’s performance and memory e�ciency?

2. Can we guarantee GUI responsiveness during solving by employing multithreading?

1.3 Areas of Improvement

The following sections describe the concrete parts of HotDrink that we improved, and how this was done.
Additionally, we present an overview of a more memory-e�cient representation of constraint systems that
can be used to minimize the library’s memory footprint. This representation is not implemented in the
current version of the library, but is speci�ed and analyzed in Chapter 7.

3

1.3.1 Planner Improvements

When values in the constraint system are updated, it is the task of the planner to �nd out how to solve the
constraint system. The planner computes a plan, which determines the �ow of data when the constraint
system is solved. In non-trivial constraint systems, planning can take a long time, and may bene�t a great
deal from being rewritten in Rust to be compiled to WebAssembly. For this, we implemented a variation of
the planning algorithm QuickPlan [73].

The planner implementation also involved the creation of the appropriate data structures in the strongly,
statically typed language Rust, while keeping as much of the �exibility as possible that writing it in
JavaScript gave (such as allowing variables of di�erent types).

1.3.2 Multithreaded Solving

After the planner has found a valid plan, the plan must be executed. Since this involves executing user
code, it may take an arbitrarily long time — there could even be defects that cause, say, an in�nite loop. By
o�oading these computations to other threads, we improve the general performance, and also guarantee
responsiveness since the main thread is free to handle new user input and update the GUI.

1.3.3 Minimizing the Memory Footprint

Constraints are special instances of graphs; instead of using a general graph data structure to represent
them, we can use specialized, more e�cient data structures to improve not only memory consumption, but
also performance by increasing cache-friendliness. For instance, if we use �ve of a total of eight variables,
we can either have a list of �ve indices (e.g., 0, 2, 3, 5, 6) which would take up 40 bytes of memory1, or
we can use a single byte and set the corresponding bits (to get 10110110). While not implemented, this
optimization could be done for multiple data structures used in HotDrink, such as for method inputs and
outputs, and variables involved in constraints. The change would also enable us to use bitwise operations
on method inputs and outputs, which could allow further performance optimizations.

1.3.4 Component DSL

The Flow version of HotDrink implements a Domain-Speci�c Language (DSL) using template literals that
enables programmers to de�ne constraint systems more succinctly. An example of a constraint system
with a constraint representing 0 + 1 = 2 can be seen below.

component C {

var a, b, c;

constraint Sum {

m1(a, b -> c) => ${(a, b) => a + b};

1Assuming we use 64-bit integers.

4

m2(b, c -> a) => ${(b, c) => b - a};

m3(a, c -> b) => ${(a, c) => c - a};

}

}

This feature has been replicated using Rust macros2, which can be used to de�ne DSLs3 embedded in Rust.

1.3.5 Generalizing the Core Library

In order to make the library useful in other contexts than just web programming, we kept the core of the
implementation-independent from WebAssembly. This makes it possible to use the library as a normal
dependency from Rust, and allows for further extensions to be developed. Supporting more languages and
frameworks may help increase adaptation of the library, and streamlining this process for potential users is
a major goal.

1.4 Terminology

Throughout this thesis, the programmer refers to a user of HotDrink, or to a developer of user interfaces in
general. In addition, the user will refer to the end-user of software written by the programmer, whether
they used HotDrink or not.

Multiway data�ow constraint systems will often be shortened to just constraint systems. An edit is a
change done to the values of a constraint system by the user, while updates, modi�cations and changes

are done by the constraint system itself. For more terminology surrounding constraint systems, refer to
Chapter 2.

Some words such as constraint can have multiple meanings even in the same context. It can be used
like in everyday language, in the mathematical sense like in Chapter 2, or like the name of a data structure
in Chapter 3. The two �rst must be deduced from context, but the latter is written with a di�erent font, like
Constraint, and is often clari�ed with words such as “struct” or “type”. This applies to all data structures
used in hotdrink-rs.

In the sections discussing Rust and WebAssembly, all the Rust code is generally compiled to WebAssem-
bly before being executed in a browser. We still write about Rust code snippets as if they were executed
normally since they have the same semantics either way. This simpli�es the writing and lets us write about
what happens when the code at hand is executed, and not the compiled WebAssembly output. The main
distinction is then between JavaScript and Rust, with WebAssembly simply being a translation layer.

2https://doc.rust-lang.org/book/ch19-06-macros.html
3https://doc.rust-lang.org/rust-by-example/macros/dsl.html

5

https://doc.rust-lang.org/book/ch19-06-macros.html

1.5 Thesis Outline

An overview of the di�erent chapters may help readers orient themselves while reading through the thesis.
The following gives a short description of the content in each chapter.

Chapter 1 An overview of the problem, existing work, and how our implementation improves upon it.

Chapter 2 The mathematical background for constraint systems and property models, an overview of
relevant literature and past work, and some useful algorithms. This chapter should give the user a
better idea of what a constraint system is, and how it can be (and is) used.

Chapter 3 The implementation and rationale behind hotdrink-rs, the core of the Rust implementation
of HotDrink. This should give the reader an idea of how the library is used, and the implemented
features.

Chapter 4 The implementation and rationale behind hotdrink-wasm, a library for generating WebAssem-
bly bindings for constraint systems made with hotdrink-rs.

Chapter 5 The implementation and rationale behind hotdrink-c, an example of how to generate C
bindings for constraint systems made with hotdrink-rs.

Chapter 6 Benchmarks for planning and solving in hotdrink-rs, and a comparison with the performance
of previous implementations of HotDrink.

Chapter 7 A speci�cation of specialized, more memory-e�cient data structures for representing constraint
systems, and an analysis of their memory consumption compared to naive implementations.

Chapter 8 A discussion about our experiences with using Rust and WebAssembly for implementing
HotDrink, as well the features, API, and performance of our implementations.

Chapter 9 Features that were not implemented, either due to time constraints or due to requiring more
research.

Chapter 10 A summary of our work.

6

Chapter 2

Background

This chapter provides a technical description of multiway data�ow constraint systems and some useful
algorithms that operate on them. It also reviews relevant literature.

2.1 Multiway Data�ow Constraint Systems

A constraint system can be modeled as a tuple 〈+ ,�〉 with variables + and constraints � [24], where each
constraint � is a tuple 〈', A, "〉. ' ⊆ + is the set of variables involved in the constraint, A is some =-ary
relation between variables in ' where = = |' |, and " is a set of constraint satisfaction methods. If the
variables in ' satisfy A , then the constraint is satis�ed. Constraint satisfaction methods describe how to
satisfy the constraint.

In HotDrink, a component is just a self-contained collection of variables and constraints that forms
an independent constraint system. Small, reusable components can be de�ned separately to model GUI
elements, and then added to (or removed from) a constraint system that models the entire GUI.

A constraint represents a relation that must be maintained among a subset of the component’s variables.
It can, for instance, represent an equation such as �: = 1

2<E
2. Each variable in the equation corresponds to

a variable in the constraint system, and the constraint must be re-enforced when a value is changed.
Constraints have an associated set of constraint satisfaction methods — or just methods — that describe

the ways that the constraint can be enforced. Each method has a set of input variables that it reads from
and a set of output variables that it writes to. Invoking any of the methods of a constraint will satisfy it.
In the example below, methods are generated by solving the equation for di�erent variables. We could,
for instance, have one method that changes the value of �: to match the right-hand side of the equation,
written as �: ← 1

2<E
2. Alternatively, we can solve for< in order to get a second method< ← 2�:

E2
, or

solve for E to get a third method E ←
√

2�:
<

. This gives us three di�erent ways to re-enforce the constraint
once a variable has been modi�ed.

Instead of a tuple 〈+ ,�〉, a constraint system can be viewed as an undirected bipartite graph with
vertices for each constraint and variable, where the edges are between variables and the constraints they

7

are involved in. A more detailed directed variant, called a constraint graph, replaces the constraints by their
associated constraint satisfaction methods. In this graph, the edges are directed edges from method inputs
to methods, or from methods to their outputs. The constraint graph view is commonly used by algorithms
that operate on constraint systems.

The constraint graph can be analyzed to solve the constraint system, that is, to �nd a valuation for the
variables of the constraint system such that all the constraints are satis�ed. The �rst task in solving the
system is to identify a solution graph, a subgraph of the constraint graph that

1. contains one method from each constraint,

2. is acyclic, and

3. has at most one incoming edge to each variable.

Once we have a solution graph, we can �nd an order to execute its methods in to create a plan. A
plan must order the methods such that once a variable has been read from, no other method writes to it.
Otherwise, we would risk breaking constraints that were already enforced by an earlier method. This can
be summarized as valid plans being topological orderings of the method vertices of the solution graph.

There may be no valid solution graphs, in which case the system is overconstrained. This can happen if
there are two con�icting constraints such as 0 = 1 and 0 ≠ 1.1 Conversely, there may be multiple valid
solution graphs, in which case the system is underconstrained.

Having an underconstrained system is not an issue if we just want any solution, but this is often not
the case in GUIs. We want to �nd the solution that is the least surprising to the user. To rank di�erent
solutions, we use hierarchical multiway data�ow constraint systems that include a priority for each variable.
This priority gives us an indication of how important it is to leave the variable unchanged. With these
priorities, we select the lexicographically greatest solution graph. That is, we select the graph and a plan
that avoids writing to the highest priority variables, and use the plan to compute a new valuation.

2.2 Planning Algorithms

To �nd a valid plan for a constraint system, we require a planning algorithm. There are many to choose
from, such as DeltaBlue [17], SkyBlue [54], and QuickPlan [73]. SkyBlue improves upon the work done on
DeltaBlue, and QuickPlan improves upon SkyBlue by guaranteeing a solution in more cases, as well as
�nding them more quickly. All three solvers are incremental; they reuse previous solutions to �nd new
ones faster when the constraint system changes.

Brad Vander Zanden’s paper “An Incremental Algorithm for Satisfying Hierarchies of Multiway Data�ow
Constraints” cites concerns about predictability and e�ciency as two of the reasons for why one-way

1The method bodies are not analyzed, so even two compatible constraints such as 3 < G and G < 5 will make the constraint
system overconstrained if they use the same set of variables. In this case, the two constraints should be merged into one.

8

data�ow constraints often are preferred to multiway data�ow constraints [73, p. 30]. The paper argues that
while constraint hierarchies can be used to solve the predictability problem, and incremental algorithms can
help with the e�ciency issue, there were still problems with existing solutions. The �rst issue was that the
existing algorithms could not guarantee an acyclic solution if there are any potential cyclic solutions, and
the second was that they require worst-case exponential time in systems with multioutput constraints. The
paper describes the implementation of QuickPlan, an algorithm that is developed to address these problems.

In a multiway, multioutput constraint system with # constraints and at least one acyclic solution,
QuickPlan has a worst-case complexity of $ (# 2) for satisfying the system, while often �nding a solution
in $ (#) time or less [73, p. 70]. This performance guarantee makes QuickPlan a good candidate for
HotDrink, as the guarantees apply to the constraint systems used in HotDrink (hierarchical, multiway, and
multioutput). Variations of QuickPlan has been used in the TypeScript version of HotDrink [14], the Flow
version [22], and now also our library, hotdrink-rs. This gives us the opportunity to compare both the
implementation language di�erences and various augmentations done to the algorithm.

The three algorithms that we will be using are the multi_output_planner, constraint_hierarchy_planner,
and constraint_hierarchy_solver. Throughout this thesis, the �rst will be referred to as the simple planner,
while the second and third are combined and referred to as the hierarchical planner. Zanden also presents
modi�ed versions of these algorithms to support incremental solving, which speeds them up by exploiting
information from the previous solutions. A summary of the algorithms can be found below, while the full
de�nitions and associated proofs can be found in the original paper [73, p. 36].

Simple planner The simple planner is described as a propagate-degrees-of-freedom algorithm, meaning
it uses the number of constraints a variable is involved in to select methods. It begins by �nding a
free variable, a variable that is attached to only one constraint and is an output of one of its methods.
We can then select this method for enforcing the constraint, and then remove the constraint from
the graph. Since the variable is not involved in any other constraints, writing to it will not a�ect
the solutions for the remainder of the graph. The algorithm then repeats the process until (1) all
constraints are removed from the graph, or (2) there are no more free variables. In the �rst case, we
have found an acyclic solution and can return it, and in the second there are no acyclic solutions and
we can abort [73, p. 40].

Note that in order to support multioutput methods, we must look for a constraint with a method that
writes to a set of free variables, and if multiple ones exist we select the one that writes to the fewest
number of variables to not limit our choices later.

An illustration of the steps of the algorithm can be seen in Figure 2.1. We see that 0 is free since it is
only involved in the constraint between 0 and 1, and is written to by 0 ← 1. The variables 2 and 3
are also free since they are only involved in the constraint with 1, and are written to by 2 ← 1 − 3
and 3 ← 1 − 2 respectively. Which of the free variables (and subsequently, which constraint) is
chosen does not a�ect whether or not a solution is found, but does a�ect which solution is found.
For this example, we choose to enforce the constraint between 0 and 1 with the method 0 ← 1. The

9

(a) The initial constraint graph before selecting any methods.

(b) The solution graph (left) and the remaining constraint graph (right) after selecting 0 ← 1 to enforce
the constraint between 0 and 1. The gray part of the constraint graph is the newly enforced constraint
and its corresponding methods.

(c) The �nal solution graph (left) after selecting 1 ← 2 + 3 to enforce the constraint between 1, 2 and 3 ,
and the remaining empty constraint graph (right).

Figure 2.1: Simple planner example.

constraint between 0 and 1 and its methods are removed from the constraint graph, and the selected
method is added to the solution graph.

Repeating the process for the remaining subgraph, we �nd that all remaining variables are free: only
one constraint remains, and each variable is written to by one of its methods. Selecting any method is
thus valid, and we choose 1 ← 2 + 3 . This removes the last constraint from the constraint graph and
gives us the �nal solution graph with the two methods 0 ← 1 and 1 ← 2 + 3 . Sorting the methods
of the solution graph topologically gives us the plan [1 ← 2 + 3, 0 ← 1], which we can execute to
enforce all constraints.

Hierarchical planner The hierarchical planner essentially re-runs the simple planner with di�erent
additional constraints called stay constraints. Each variable can be given a stay constraint, which
has just one method. This method’s sole output is the variable, and it keeps the value unchanged. If
a variable has a stay constraint, the simple planner cannot select other methods that write to the
variable.

If the user edits some variable, then the simple planner is free to �nd a plan that overwrites the
change the user just did, which is something we would like to avoid. We therefore try to add di�erent
combinations of stay constraints to the constraint graph, and run the simple planner to �gure out
which combinations work. In particular, adding stay constraints to variables that the user recently
modi�ed ensures that they are not overridden.

10

The variant of QuickPlan that hotdrink-rs uses starts o� by adding a stay constraint for the highest
priority variable before attempting to solve the system. If the initial solve succeeds, it keeps the
constraint in the constraint graph and continues with the second-highest priority variable. If it fails,
however, it removes the newly added stay constraint before continuing with the second-highest
priority variable. This process is repeated until the algorithm has tried to add a stay constraint
for each of the variables in descending priority order. If it has not found a solution by this point,
it attempts to solve the system without any stay constraints. Note that the implementation also
performs a few additional optimizations that are described in Chapter 3.

For the following example, assume the latest value the user edited was 0. The algorithm adds a
constraint with a single method 0 ← 0 to the graph, as seen in Figure 2.2.

Figure 2.2: The constraint graph after adding a stay constraint to 0.

This means that 0 is not a free variable like it was in Figure 2.1, forcing the algorithm to start with
2 or 3 instead. One choice is to write to 2 by selecting 2 ← 1 − 3 , which makes 1 a free variable.
Following that, the only choice is to write to 1 by selecting 1 ← 0, after which only the stay constraint
remains, where we have to select 0 ← 0 since there are not alternative methods. This gives us the
plan [0 ← 0, 1 ← 0, 2 ← 1 − 3], or alternatively [0 ← 0, 1 ← 0, 3 ← 1 − 2] if we had chosen to write
to 3 instead. One of the possible solutions is shown in Figure 2.3.

Figure 2.3: The solution graph after adding a stay constraint to 0 and solving the system.

Note that the method of a stay constraint both reads from and writes to the same variable (and is an
identity function). This is not, however, considered a cycle. For planning purposes, we only consider
stay constraint methods to write to their associated variable.

Multiway data�ow constraint systems are often underconstrained, giving us many possible solutions.
Adding stay constraints guides the algorithm towards our preferred solution, possibly leading to
some overconstrained systems along the way, which are dealt with by ignoring some of the stay
constraints. At the cost of re-running the simple planner multiple times, we can thus direct the data

11

�ow away from the variables that the user recently modi�ed.

Incremental hierarchical planner The main idea of incremental solving is that adding and removing
constraints often only a�ects a small part of the graph, which means that re-examining all of it is not
necessary. One of the incremental techniques [73, p. 45] called The Upstream Constraint Technique

changes what happens upon adding new constraints. Adding new constraints causes the non-
incremental version to pass the entire graph to the simple planner again, which takes a signi�cant
amount of time when done for each variable that gets a stay constraint. The incremental version
instead only has to re-enforce the upstream constraints, constraints from which there exists a path to
the newly added constraint in the existing solution graph.

Zanden justi�es this by looking at the reversed solution graph, which represents what he calls “elimi-
nation” dependencies [73, p. 46]: an edge from constraint 21 to 22 shows that 21 was eliminated before
22 during solving, and that 22’s elimination depended on 21’s elimination. All these dependencies will
�ow towards the upstream subgraph, meaning that the downstream constraints do not depend on
upstream constraints, and are thus not a�ected by the change.

2.3 Related Work

The research on how to design user interfaces, and how to ensure that they are correct and responsive,
stretches back decades [37]. For instance, Garnet and the Gilt Interface Builder aims to reduce the “spaghetti”
caused by relying on too many callbacks in user interfaces [39, 38]. Constraint systems and property
models [26] have also been proposed as remedies for these problems of GUI programming. There are many
GUI features that constraint systems essentially “give us for free” after a declarative description has been
created, such as automatically maintaining relations between variables, disabling of components that are
not in use, and pinning of variables that a user does not want to change [24, 16, 15].

One major source of complexity in GUI programming is dealing with asynchronous events and or-
chestrating responses to them in a consistent manner. Several works that fall under the general paradigm
of reactive programming target this source of complexity. “Tackling the Awkward Squad for Reactive
Programming: the actor-reactor model” [72] speci�es a number of issues to look out for in reactive systems

such as GUIs, such as long-lasting computations, and why they can be a problem. The paper also proposes
a new programming model that is used to handle these issues.

“Guaranteeing Responsiveness and Consistency in Dynamic, Asynchronous Graphical User Inter-
faces” [13] proposes another programming model, and explains the rationale behind the TypeScript im-
plementation of HotDrink. It describes how one can solve a constraint system asynchronously, and what
e�ects this has on the usual operations in a constraint system. For instance, the usual values are replaced
by promises to allow interacting with them before method computations have �nished, and methods do not
perform work directly but have the computations scheduled to run at a later point.

The Gilt Interface Builder is a part of the research project Garnet [39], which provides many tools to

12

simplify GUI development. The Amulet Environment [36] extends this work even further. Amulet allows
for values of any type to be computed by arbitrary code, and even supports multiple constraint solvers.
It also enables the GUI to automatically refresh upon changes to the constraint system, supports ways to
undo operations, and includes built-in editing commands such as cut, copy and paste.

There also exists newer work, such as the Adobe Software Libraries [2], that aims to develop the
technology to create commercial applications with declarative descriptions. Two such technologies are
Adam, which is a property model library, and Eve, a layout library. Adam consists of a solver and a
declarative language for describing constraints between variables. Upon making a change to the system,
the dependent values will be recalculated, much like in HotDrink, at least on a high level. Eve also has
a solver and its own language for describing the layout of user interfaces. With Adam and Eve, both the
visual aspects of a GUI and constraints between variables in the underlying property model can be speci�ed
declaratively.

HotDrink is not the only JavaScript-compatible library that provides a way to describe constraints
declaratively. For instance, ConstraintJS [41] has a pitch similar to HotDrink: “ConstraintJS enables
constraints — relationships that are declared once & automatically maintained” [7]. It does, however, not
provide multiway constraints, as the authors of ConstraintJS appear to see their inclusion as an unnecessary
complication [41, p. 237].

In addition to the various libraries and frameworks that use constraint systems, there is also more
theoretical research on the properties of the constraint systems themselves. For instance, by modeling
data�ow constraint systems as a monoid clari�es their properties, such as how constraint strength assign-
ment a�ects the solution [25, p. 30], and that “sets of constraints can be composed to new constraints in
any combinations and composed in any order with no impact on the �nal result” [25, p. 31]. Modeling them
as a monoid also allows for reuse of all monoid operations, and allows for more concise algorithms, e.g.,
solving by folding the monoid’s binary operation over the system’s constraints [25, p. 25].

While planning speed can be improved by using a di�erent planning algorithm, it is also possible to
create specialized planners when the constraints are known in advance [23, 13]. These specialized planners
are Deterministic Finite Automaton (DFA)s, and can be more than an order of magnitude faster than the
general-purpose planners described in Section 2.2, such as QuickPlan [23, p. 9]. This can be very useful
for performance-sensitive applications that have static constraint systems, i.e., constraint systems with
non-changing constraints.

There are also theoretical frameworks for working with constraint systems and analyzing their prop-
erties. “Semantics of multiway data�ow constraint systems” includes, among other things, a description
of how speci�cations can be added to constraint systems to allow for veri�cation and testing [20]. In the
implementations of HotDrink, the relation that a constraint represents is never explicitly shown in code;
it is only implicitly shown via the computations performed in methods. Adding the relation explicitly to
constraints would allow for automatic testing of the constraint system speci�cation upon solving to ensure
that the methods always enforce the constraint. For instance, for a constraint that represents the equality

13

0 = 1 + 2 , we could have this property explicitly tested after a method is executed. The paper also aims
to improve the reusability of components by introducing a module system, one that allows renaming of
variables [20, p. 3]. Each component then becomes a building block that can be extended further with
additional combinators, such as the logical connectives &, |, and⇒.

Separate but relevant issues, such as how to handle bidirectional control �ow, can provide useful results
and insights that shape the development of newer libraries such as HotDrink. For instance, one way is to
use algebraic e�ects to guarantee that all e�ects are handled and that none are handled accidentally [89].

In much of the research, two things appear to be constant: GUIs are di�cult to get right and they take a
signi�cant portion of development time to complete.

14

Chapter 3

Implementation of hotdrink-rs

While the target of HotDrink has been previously web programming, implementing the core library in
Rust makes HotDrink available in other contexts too. For instance, the library could be used as a normal
dependency from Rust, compiled to WebAssembly, or even compiled to a library to be used from C. The
current chapter will provide examples of how to use the library from Rust, while usage for web programming
with JavaScript can be found in Chapter 4. Lastly, an example of how to use the library from C can be found
in Chapter 5.

The core library is open-source and available on GitHub [65]. It is also published under the name
hotdrink-rs at crates.io [63], and its documentation can be found on docs.rs [64]. Since it is published
as a Rust crate, using it in a Rust project is as simple as adding it as a dependency.

This chapter discusses some data structures in hotdrink-rs that are not exposed in the public Applica-
tion Programming Interface (API). Documentation for everything, including private items, can be generated
by running cargo doc --document-private-items from the root directory of the project repository.

3.1 Overview

In order to get an idea of how hotdrink-rs can be used, we start with an example concept we want to
model as a constraint system. Given a rectangle with a height ℎ, width F , area 0, and perimeter ? , the
equations for its area (Eq. 3.1) and perimeter (Eq. 3.2) must hold at all times. If any of the values are changed,
then the others must change accordingly.

0 = ℎ ·F (3.1)

? = 2ℎ + 2F (3.2)

In the following sections, we explain how to model a rectangle with these constraints using hotdrink-rs.
This includes creating a constraint system, modifying variables, and re-enforcing the constraints, as well as
observing variables to be noti�ed of changes to them.

15

3.1.1 Creating Components

A component is a constraint system fragment; an independent set of variables and constraints. Components
can be used to modularize the constraint system; they can be created, added, and removed separately.
Each component contains a set of variables along with their values, as well as constraints with methods
to enforce them. This means that a component can be used as an independent constraint system if only
one component is needed. One could for instance create one component that represents a rectangle by
including the variables and constraints discussed in Section 3.1, and another that represents a separate
concept.

Multiple Components can later be combined into a single ConstraintSystem, which exposes an API
for interacting with all components at once instead of handling them one by one, but for this example, a
single component has all the required functionality.

The easiest way to declaratively construct a Component is with the component! macro, which imple-
ments an Embedded Domain-Speci�c Language (eDSL) for specifying constraint system fragments.

let mut rectangle: Component<i32> = component! {

component Rectangle {

// Define four variables of type i32 with initial value 0.

let height: i32 = 0, width: i32 = 0,

area: i32 = 0, peri: i32 = 0;

// Define a constraint representing `height * width = area`.

constraint HeightTimesWidthEqualsArea {

// Define three ways to enforce it.

hwa(height: &i32, width: &i32) -> [area] = ret![*height * *width];

haw(height: &i32, area: &i32) -> [width] = ret![*area / *height];

wah(width: &i32, area: &i32) -> [height] = ret![*area / *width];

}

// Define a constraint representing `2 * height + 2 * width = peri`.

constraint TwoHeightPlusTwoWidthEqualsPerimeter {

// Define three ways to enforce it.

hwp(height: &i32, width: &i32) -> [peri] = ret![2 * *height + 2 * *width];

hpw(height: &i32, peri: &i32) -> [width] = ret![*peri - 2 * *height];

wph(width: &i32, peri: &i32) -> [height] = ret![*peri - 2 * *width];

}

}

};

16

In the example above, we construct a Component<i32>, a component with variables of type i32. In this
case, all variables must have the same type; how to have constraint systems with variables of di�erent
types is described later. The example also shows how to de�ne the variables used by the component, their
types, and their initial values. The initial values may be elided, in which case the Default trait will be used
to generate a value instead.

We then de�ne two constraints, each with three methods made from rearranging their respective
equations. For the �rst constraint, we update the area with 0 ← ℎ ·F , the width withF ← 0

ℎ
, or the height

with ℎ ← 0
F

.1 For the second constraint we can rearrange Eq. 3.2 to get the three di�erent methods: we
can update the perimeter with ? ← 2ℎ + 2F , the width byF ← ? − 2ℎ, or the height by ℎ ← ? − 2F .

Typing in components and methods

Components can contain values of di�erent types by using sum types, created with the enum keyword in
Rust. We could for instance create a type that allows values to be integers or strings as follows:

// A type with values that can be either `i32` or `String`.

enum IntOrString {

Int(i32),

String(String)

}

The inputs of a method are typed references, declared in the method’s parameter list. Specifying the
type in the parameter list makes it possible to convert the values of the constraint system to what the
programmer wants automatically, e.g., from IntOrString to i32 or String by writing a method m(a:

&i32, b: &String). Note that this will give an error if the value does not have the speci�ed type. A
limitation of the current implementation is that the outputs are not typed, which means that any value
that can be converted to the Component<T>’s value type T can be returned. The programmers must thus be
careful not to change the type of a variable accidentally.

The ret! macro is used in method bodies to return a successful result with the outputs stored in a
Vec, but it will also wrap each value back into the appropriate enum variant (if an enum is used as the
component’s value type). For instance the two expressions below are equivalent:

1. ret![5, String::from("hello")]

2. Ok(vec![IntOrString::Int(5), IntOrString::String(String::from("hello"))])

The latter is a lot more cumbersome to type manually. Note that each of the variants (i32, String)
must implement TryFrom<Component<IntOrString>> to be converted to the type speci�ed in the method
parameter list, and Into<Component<IntOrString>> to be converted back to IntOrString with the ret!
macro.

1If we want to be pedantic, the methods using integer division would not always enforce the constraints since the result is
truncated. This, however, is beyond the point of the example.

17

https://doc.rust-lang.org/std/default/trait.Default.html
https://doc.rust-lang.org/std/convert/trait.TryFrom.html
https://doc.rust-lang.org/std/convert/trait.Into.html

3.1.2 Editing Variables

We need an API for notifying a component that a variable has a new value, e.g., if a user has modi�ed an
input �eld. This can be done with edit, which takes the name of a variable and its new value as arguments.
Continuing with the rectangle component de�ned in Section 3.1.1, the edit method can be used as follows:

rectangle.edit("height", 3);

rectangle.edit("width", 5);

3.1.3 Solving

Simply editing variables in the component will not trigger the enforcement of the constraints. Instead, this
can be requested with either the sequential solve method, or the parallel variant par_solve. This is most
commonly done immediately after updating values with edit to make the system consistent again. Both
variants attempt to �nd a plan to satisfy the active constraints and then begin its execution.

Finding the plan always happens sequentially, but executing the methods can happen in parallel, as
long as the data dependencies are respected. We use parallel execution for two main reasons, both of which
help counteract that the user code in method bodies can be arbitrarily slow.

1. Method execution can be sped up with a thread pool.

2. Running methods outside of the main thread guarantees that the GUI remains responsive while
methods are being computed (unless planning is the bottleneck).

When these reasons are not a concern, the solve method is there to provide a simple way of just solving
the system sequentially. The solve method can be used as follows:

rectangle.solve();

If planning is successful, each method is executed on the main thread, and the function call will not be
done until all methods have �nished.

In order to call the parallel solver function par_solve, we must provide a MethodExecutor for the
methods to be executed by. This trait is explained further in Section 3.4, but for now, it can be viewed as
something that can run computations (speci�cally, functions or closures). hotdrink-rs comes with three
prede�ned implementations: DummyExecutor, as well as two based on rayon, a data parallelism library
for Rust [45]. The former simply runs the computation on the main thread, while the two latter let us
seamlessly use rayon’s thread pools.

To use the DummyExecutor, simply create an instance of it and pass it in to par_solve. This is equivalent
to calling solve.

use hotdrink_rs::executor::DummyExecutor;

let de = DummyExecutor::new();

rectangle.par_solve(&de);

18

https://crates.io/crates/rayon

Using rayon requires some more setup. Begin by adding the rayon feature �ag to hotdrink-rs, and add
rayon as a dependency. The dependencies in Cargo.toml should then look something like the following:

[dependencies]

hotdrink = { version = "0.1.3", features = ["rayon"] }

rayon = "1.5.1"

Then all that remains is to create a rayon thread pool, and then call par_solve with it as an argument. See
rayon’s documentation for more information on how to customize the thread pool.

let pool = rayon::ThreadPoolBuilder::new().build().unwrap();

rectangle.par_solve(&pool);

If the planning step succeeds, the method computations will be scheduled to execute in parallel on the
thread pool. This allows par_solve to return almost immediately after planning, which returns control
�ow to the caller. See Section 3.5 for more information about how methods are scheduled to run on the
executor, and Section 9.2 for potential future improvements to scheduling.

3.1.4 Subscribing

Since par_solve may be used with an executor that executes methods on a separate thread, the values
may not be ready in time for the function to return. In hotdrink-rs, we instead register callbacks in order
to observe the changes once they are ready.

use hotdrink_rs::event::Event;

rectangle.subscribe("area", |event| match event {

Event::Pending => println!("area is being computed"),

Event::Ready(v) => println!("area's new value is {:?}", v),

Event::Error(e) => println!("area's computation failed: {:?}", e),

});

The closure above will be called whenever a new Event is sent from the component. There are three
possible events:

Pending when the current variable value becomes old, and will later be overwritten by a new value.

Ready when a computation succeeds, and a new value is available.

Error when a computation fails, and an error is available.

The Ready event does not necessarily contain a new value (it contains an Option<T>), as it can also be used
to notify the GUI that the current value of a variable is no longer considered erroneous.

19

https://docs.rs/rayon/1.5.1/rayon/struct.ThreadPool.html

3.1.5 Creating Constraint Systems

Even though each Component is technically a constraint system on its own, hotdrink-rs provides an
abstraction called ConstraintSystem. This lets the programmer store multiple components in one
place, and perform actions (like solving) on all of them at once. With only one component, creating
a ConstraintSystem is not strictly necessary. We therefore introduce another component called circle

for this example, created in the same way as rectangle.

use hotdrink::model::ConstraintSystem;

let mut cs: ConstraintSystem<i32> = ConstraintSystem::new();

cs.add_component(rectangle);

cs.add_component(circle);

cs.edit("Rectangle", "height", 3);

cs.edit("Circle", "radius", 5);

cs.solve(); // Solve all modified components

3.2 Model Module

Rust crates are organized into modules, similar to packages in Java. To understand how the library is
connected, we will go through the most important ones from the top down. Not every implementation
detail is included, as that is what the library documentation is for. The following sections will serve as an
overview of the implementation and the rationale behind some of the design choices that were made. A
graph of the most important modules can be seen in Figure 3.1.

The model module contains the core data structures and types for representing constraint systems.
We start at the top with ConstraintSystem in order to preserve the context as we delve deeper into the
implementation.

3.2.1 Constraint System

A ConstraintSystem<T> is a container for Component<T>s where the variable values of the system are of
type T. Each component is technically an independent constraint system on its own, but having these two
layers provides a number of advantages.

1. ConstraintSystem provides an API for interacting with all Components at once.

2. It stops a single Component from becoming too large and unwieldy.

3. It improves modularity, as Components can be added and removed to modify the constraint system.

In hotdrink-rs, variables in di�erent components are entirely independent, unless they are manually
connected by observing changes in one component then editing another. This is not implemented in quite

20

https://docs.rs/hotdrink-rs/0.1.1/hotdrink_rs/model/index.html

Figure 3.1: The hotdrink-rs module hierarchy.

21

the same way as in the Flow implementation of the library, where variables can be bound together across
component boundaries.

The constraint system provides access to the di�erent components stored within it, the API is very
similar to the one found for Component in Section 3.2.2. The biggest di�erence is that in order to interact
with variables, the component must also be speci�ed. For instance, for editing operations, this can either be
done by calling edit directly on the ConstraintSystem, or by getting a mutable reference to a speci�c
Component and calling edit on that.

component.edit("a", 3);

constraint_system.edit("Component", "a", 3);

// Or alternatively

constraint_system.component_mut("Component").edit("a", 3)

The solve method behaves slightly di�erently for ConstraintSystems than it does for Component.
Instead of always re-enforcing all constraints for all components, the former will only update ones that
have actually been modi�ed since the last time the constraint system was solved. This lets us avoid running
expensive computations again when they would not produce any new results.

Undo and redo

To implement undo and redo for constraint systems, we maintain two separate stacks for operations done to
the components (edit, undo and redo), one for “forward changes” and one for “backward changes”. An edit
will place the edited component’s id on the “forward change” stack, while undo will place the component id
on the “backward change” stack. The redo operation will pop from the “backward change” stack, and push
it to the “forward change” stack to make it possible to undo the redo itself. For instance, with a component
edit order of �, �,� , the �rst call to undo will undo the latest change to � , and another call will undo the
latest change to �. Calling redo at this point would redo the latest change to �, and another call would
redo the change to � .

3.2.2 Component

A Component<T> exposes much of the same API as ConstraintSystem<T>, but acts as an independent set
of variables with constraints between them. The following sections will not cover the entire API, but should
give an overview of the most important parts.

The edit method

The API allows giving new values to variables with edit. This will cause all constraints related to the
variable, both directly and indirectly, to be re-enforced upon the next call to solve. Upon editing, the
callbacks for that variable are also noti�ed of the new value to synchronize multiple views of the same
variable, such as an input �eld and a slider.

22

pub fn edit<'s>(

&mut self,

variable: &'s str,

value: impl Into<T>

) -> Result<(), NoSuchVariable<'s>>

The value does not necessarily have to have type T: it can have any type that implements Into<T>. That is,
any value that can be converted into a value of type T will do. This can be useful when using an enum as
the value type of the component to avoid having to wrap values manually:

let c: Component<IntOrString> = component! { ... };

c.edit("a", 3); // edit a as i32

c.edit("b", "foo".to_string()); // edit b as String

The solve and par_solve methods

As seen in the overview in Section 3.1, either solve or par_solve must be called to enforce the constraints
of the system. For the Component type, their signatures look like the following:

pub fn solve(&mut self) -> Result<(), PlanError>

where

T: Send + Sync + 'static + Debug

pub fn par_solve(&mut self, pool: &impl MethodExecutor) -> Result<(), PlanError>

where

T: Send + Sync + 'static + Debug

The �rst, solve, is rather simple, and only requires a component to call the method on. It is implemented
by calling par_solve and passing in a DummyExecutor as the MethodExecutor to solve the system on the
main thread. For both of them, some additional constraints have been added to the type T: the Send, Sync,
and 'static constraints are there to ensure that the values can safely be sent to another thread during
the execution of the plan. The constraints being on solve as well is a consequence of it calling par_solve

internally.
The system is not solved until one of the solve variants is called; splitting editing and solving provides

two bene�ts:

1. Unnecessary work is avoided if the programmer wants to perform multiple edits before solving.

2. It allows for a custom MethodExecutor to be used if par_solve is chosen.

On the other hand, it also has at least one drawback: after performing an edit, the system is not necessarily
consistent until the system is solved again. An alternative to this is to have edit call it automatically,

23

which would ensure that the system’s constraints always are satis�ed (if possible). We could also provide
an alternative that does not, i.e., set_variable. Then the more “dangerous” option (the one that does
not automatically make the system consistent) has to be explicitly selected, rather than being the default.
However, this would either require an additional MethodExecutor parameter for edit, or that one is stored
within the component itself. Since the MethodExecutor is unlikely to change for a given constraint system
or component, it may be bene�cial to set it once, and then have a single solve method that uses the internal
MethodExecutor.

The subscribe method

The type signature for subscribe implemented for the Component type looks like the following:

pub fn subscribe<'s>(

&mut self,

variable: &'s str,

callback: impl Fn(Event<'_, T, SolveError>) + Send + Sync + 'static

) -> Result<(), NoSuchVariable<'s>>

where

T: 'static,

The most interesting part here is the callback itself. The programmer must provide a function that receives
an event with a value type T and error type SolveError. This function will then be called each time a
variable becomes pending, ready, or fails to be computed.

component.subscribe("a", |event| match event {

Event::Pending => ...,

Event::Ready(v) => ...,

Event::Error(e) => ...,

});

As seen with the solve-methods, this callback also has a few additional constraints that are needed
to ensure that it can be called from the threads executing the plan. Speci�cally, the Send trait ensures
that all values stored in the closure can be sent to other threads, Sync ensures that they can be shared
between threads without race conditions, and 'static ensures that the values are not, and do not contain,
references that may become invalid before the thread exits.

The exact events to include is not very clear cut: For instance, after a new edit has been made previous
errors may no longer apply. We thus need some way of telling the GUI that the last value that was sent is
not erroneous anymore (unless new errors appear after the new edit). Some alternatives are:

1. Create a new event type, ClearError.

2. Send a new Ready event with the old value.

24

3. Make Ready contain an Option<T> instead of T, and let a None value mean that the value currently
in the GUI is not erroneous.

hotdrink-rs uses the third solution. This makes it di�cult for the programmer to forget to handle the
clearing of errors, like having the ClearError event type could do. The second alternative may seem good
at �rst, until we start to consider which value to send. The previous value may still be in the process of
being computed, have been canceled, or failed in another way. We could add a callback to the latest value
that is being computed, but this value may not be computed successfully. Selecting the latest successfully
computed value could be a viable alternative, but at this point, it is a lot more complex than just sending
the GUI an event that tells it to keep the current value and clear the errors.

The variable and value methods

Each Variable in the component contains information about its di�erent Activations: a Future of its
value in a generation (See Figure 3.2). Activations are produced from method activations (the scheduling
of a method), and work as slots to place values in once they have been computed. This lets the rest of the
code interact with them (e.g., store the newest generation of variables in a component) without having
to wait for their computation to �nish. The values that are produced for one generation are then used to
produce the next generation, and will be waited for once they are required as an input to another method.

The Component API has a method variable that returns a speci�c Variable, and value that returns
the current Activation of a variable. The latter allows programs to get a Future of the most recent value
of the variable instead of exclusively having to rely on callbacks. This is, for instance, useful in the iced (a
GUI library inspired by Elm) example found in the repository under examples/hotdrink-rs-iced.

pub fn variable<'a>(

&self,

variable: &'a str

) -> Result<&Variable<Activation<T>>, NoSuchVariable<'a>>

pub fn value<'a>(

&self,

variable: &'a str

) -> Result<Activation<T>, NoSuchVariable<'a>>

The pin and unpin methods

One of the more minor (but useful) features is pinning of variables. This adds a stay constraint for the
speci�c variable, which means that any successful plan does not involve modifying that variable’s value.
This lets the user ensure that some certain values do not change, though overuse can easily overconstrain
the system.

25

https://doc.rust-lang.org/std/future/trait.Future.html
https://github.com/hecrj/iced
https://elm-lang.org/

�4=4A0C8>= 1 0 1 2

<1

�4=4A0C8>= 2 0 1 2

<2

�4=4A0C8>= 3 0 1 2

Figure 3.2: Variable generations. Dotted lines are reads, solid lines are writes. Gray values don’t have to
exist in the new generation, since we can reuse the earlier ones. This means that in this example we start
with the 3 initial values, and then only add 3 new values instead of 3 per generation.

pub fn pin<'s>(&mut self, variable: &'s str) -> Result<(), NoSuchVariable<'s>>

pub fn unpin<'s>(&mut self, variable: &'s str) -> Result<(), NoSuchVariable<'s>>

The undo and redo methods

Lastly, Component’s API also provides a way to undo and redo changes in the component. This works by
maintaining a list of the variables that were changed between each generation: undo will switch to the
previous variable activation for each variable modi�ed between the previous and current generation, and
redo will switch to the next variable activation for each variable modi�ed between the current and next
generation. If a previous or next value does not exist, then an error will be returned instead, indicating that
there is nothing more to undo (or redo).

pub fn undo(&mut self) -> Result<(), NoMoreUndo>

pub fn redo(&mut self) -> Result<(), NoMoreRedo>

The values of all variables in the component can be visualized as a list of stacks, where each starts o�
having one element: the initial value for that variable. The asterisk indicates the current value, and is where
the generation index of the variable points.

0* 0* 0* 0*

a b c d

If we then perform an update that gives new values to 0 and 2 , it will look like this:

3* 5*

0 0* 0 0*

a b c d

26

The di�erence between these two generations (0 and 1) can then be recorded as a list [0, 2], and we can
easily undo the change by decrementing the index of the current value for the two variables (visualized as
moving the asterisks down one level). Redoing the change is just as simple, and requires us to increment
the index of the two variables (visualized as moving the asterisks up one level).

We can continue doing new changes in the same way. If we now make a change to 0 and 1, our di�erence
list between generation 1 and 2 becomes [0, 1], and we end up in the following state:

7*

3 9* 5*

0 0 0 0*

a b c d

Now, what if we would like to limit the number of generations that are kept? We can easily delete the �rst
generation (given that there are at least 2) by deleting the �rst value of each variable modi�ed between
generations 0 and 1. They are guaranteed to have an additional value, otherwise, they would not be in the
di�erence list. We do this for 0 and 2 since they were modi�ed �rst.

7* 9*

3 0 5* 0*

a b c d

We can repeat it for 0 and 1 to only maintain a single generation, and no undo- or redo-history.

7* 9* 5* 0*

a b c d

There is currently no way to specify the number of generations to keep via the API of Component

or ConstraintSystem, but, the internal data structure Variables supports it through its constructor
new_with_limit and a method set_limit. Adding a limit to ConstraintSystem’s undo history does not
have very clear semantics when each Component has its own limit. Here are two candidates for how to
handle this:

1. A ConstraintSystem with limit ; simply sets the limit of all its = Components to ; .

2. Editing a Component such that we go past the ConstraintSystem’s undo limit will delete the earliest
generation in the earliest modi�ed component.

The �rst alternative may lead to up to ; · = stored generations, and will increase further as new components
are added. The second alternative would limit the number of stored generations to ; , but also make
the implementation more complex. The latter, however, may at least provide a starting point for future
improvements.

For another potential issue, let us consider the following scenario: The user starts some expensive
computation, but provides a new input before the computation is complete. What should then happen to
the �rst computation? There are two main choices:

27

1. If we allow it to complete, then it may keep multiple threads busy when they are needed to perform
the new computation. For the user, this would manifest as values not being updated without any
indication of why.

2. If we cancel the computation, then the threads will be available for the new computation, but a new
potential issue arises. If the user now undoes their latest action, they will be in a generation that was
never fully computed. Unless this is handled in some special way, the user will just see the value
being pending forever.

hotdrink-rs uses the second approach and gives the activation a special “canceled” error state. Undoing an
operation to move back to a partially computed generation will send an event this error state to subscribers.
This allows the programmer to annotate the a�ected �elds in some way to notify the user that the value is
currently wrong, and will not be updated until a new edit and solve is done. The main reason for choosing
this solution is to guarantee that newer computations are run instead of continuing with old ones that are
unlikely to be used; cancellation as a feature is prioritized over undo and redo.

3.2.3 Constraint

Constraint stores the name of the constraint, the indices of variables that it uses, and methods that are
used to enforce it. Information about the relation that the methods enforce is not stored explicitly unless
something like post-conditions in Section 9.6 is implemented. This means that the constraint is only
guaranteed to become enforced if all methods are correctly implemented, and that the relation it enforces is
decided by its methods, not the intended meaning of the constraint. To enable future implementations of
post-conditions, the assert �eld with an optional assert statement for verifying that the Constraint is
satis�ed is included, but this feature is still experimental.

struct Constraint<T> {

name: String,

variables: Vec<usize>,

methods: Vec<Method<T>>,

assert: Option<Assert<T>>,

active: bool,

}

A constraint can also be deactivated, which will just cause it to be �ltered out upon reaching the
planner. This allows the programmer to change the constraint system dynamically without having to add
and remove the constraint, and can, for instance, enable an additional constraint when some checkbox is
selected. Activation and deactivation can be done by using the set_active method.

28

3.2.4 Method

The Method implementation is split into two parts: an enum for representing stay-methods and normal
methods, as well as a struct wrapper to make it easier to change the inner representation later.

enum MethodInner<T> {

/// A stay method.

Stay(usize),

/// A normal method.

Normal {

name: String,

inputs: Vec<usize>,

outputs: Vec<usize>,

apply: MethodFunction<T>,

},

}

struct Method<T> {

inner: MethodInner<T>,

}

An enum is used for MethodInner to make the representation of stay constraints more e�cient. Instead of
storing a name, two vectors that contain the same variable, and an identity function for the variable, we
only store the variable index. This is useful during planning since we can potentially add as many stay
constraints as there are variables.

3.2.5 Error Propagation

This section describes alternatives for how to handle propagation of errors through the constraint system
upon solving, and answers two important questions: What should happen when a computation fails, and
how should this a�ect other variables? For hotdrink-rs, we considered three main alternatives for the
propagation of errors.

Full propagation Once a method fails and its outputs are considered erroneous, all outputs of any other
method that uses these inputs also become erroneous. So if there are three variables 0, 1 and 2 , as
well as two methods<1 : 0 → 1,<2 : 1 → 2 , then the failure of<1 causes 1 to be erroneous, which
then propagates to 2 through<2. This is the simplest solution, but can put the constraint system in a
state with erroneous variables that is di�cult to get out of. Consider having a constraint � between
0, 1 and 2 with methods<1 : 0 → (1, 2),<2 : (1, 2) → 0. If<1 fails after 0 was modi�ed, then both
1 and 2 are marked as erroneous. If either 1 is modi�ed to attempt to �x the values, then 2 being

29

erroneous will make<2 fail and set 0 to erroneous. The same would happen if 2 was modi�ed, and it
is clear that we are stuck. This is visualized (though a little simpli�ed) in Figure 3.3a.

(a) A visualization of how full propagation can get
the user stuck in a bad state. Even if 11 receives a
new value from an edit, 21 is in an erroneous state,
and does not have a value. This makes<2 fail and
propagate the error to 02.

(b) A visualization of how reusing old values of vari-
ables when newer ones failed to be computed can
bring the system back to a good state. As opposed
to full propagation like in Figure 3.3a, both 11 and
21 now get good values; 11 from an edit and 21 from
the reusing its old value, which means that<2 can
successfully compute a new value for 02.

Figure 3.3: A comparison between full propagation and reusing old values.

Reusing old values Instead of having variables that either have a value or an error, we may keep the old
value in addition to the error. When a variable failed to get a new value, we can keep computing
using its previous one (which matches the one currently in the GUI, since no new value has been
sent from the constraint system). In the previous example, let<1(0) = (02 ,

0
2), and<2(1, 2) = 1 + 2 ,

with initial values 0 = 4, 1 = 2, and 2 = 2. If we then do a modi�cation to 0 which makes<1 fail, then
1 and 2 are still marked as erroneous, but their values remain as 2 both in the constraint system and
GUI. Setting 1 to 3 clears its erroneous state, and<2 adds that to the old value of 2 , namely 2, to form
5 as the new value for 0. The constraint system is always consistent with the published values, and
�xing the broken state is trivial.

How this approach �xes the issues of full propagation can be seen in Figure 3.3b.

Split solve This is another solution that involves maintaining the old values of variables even if they are
erroneous. Unlike the two previous solutions, methods with failed inputs will not automatically fail
their outputs, but use the old values of the inputs instead. This would let some parts of the system
update with new values, even when some method inputs failed. Only variables that are outputs of

30

the original method that failed will be marked as erroneous, while the rest do not have any errors
since the constraints are still enforced. However, this could be very confusing for the user, as it is
not clear which variables are actually a�ected by the error, as they do not know which variables are
connected by the underlying constraint system.

For hotdrink-rs, the second option was chosen. This makes it easier for users to get out of bad states
by supplying new values to variables involved in the relevant constraint, instead of having the constraint
system “forget” the values currently displayed in the GUI. This should also be much less surprising to the
user, as they will likely base their expected behavior on the state that they can see.

3.3 Planner Module

The planners in this section are based on Brad Vander Zanden’s QuickPlan [73], as described in Chapter 2.
The following subsections describe some details of how each planner variant is implemented, and how they
deviate from Zanden’s algorithm.

3.3.1 Simple Planner

The simple planner implementation is based on Zanden’s multi-output-planner [73, p. 39]. Implementing the
pseudocode description from the paper in Rust involved many design choices such as selecting appropriate
data structures.

The implementation in hotdrink-rs starts by constructing a map from variables to constraints they
are referenced by. A Vec<Vec<usize>> is used to store this information,2 and accessing it with a variable
index provides the indices of the constraints that reference that variable. Constructing this map involves
iterating through every constraint 2 , and for each variable E that 2 refers to, adding an entry E → 2 . Once
the map is constructed, we can obtain the indices of constraints that reference the variable with refs[v],
and the number of references to the variable with refs[v].len().

One iteration over the newly constructed map is then done to �nd all free variables (variables with one
reference). Each one is added to a queue of “potentially free variables” (“potential” since later variables may
have zero references left by the time we inspect them).

Variables are then popped from the queue until all constraints have been enforced, or no more free
variables are found. Any variables with zero references left are simply ignored, as all of their constraints are
already enforced. For variables with one reference left, we inspect the methods of the referencing constraint.
Methods that (1) write to the variable and (2) to only other free variables are valid candidates, and the one
that has the fewest outputs is selected. The constraint’s references to variables are then removed, and the
method becomes part of the solution graph. Any variables of the removed constraint that now become
free are added to the potentially free variables vector for processing in the next iteration, always giving us
constant-time access to new candidates.

2Technically Vec<VariableRefCounter>, each of which contains a Vec<usize>.

31

When there are no more constraints to enforce, we have a set of methods that form the solution graph.
The method vertices can then be topologically sorted to form a completed plan.

3.3.2 Hierarchical Planner

The hierarchical planner is based on the constraint hierarchy planner and solver in Zanden’s paper [73,
p. 44]. It attempts to solve the system with di�erent combinations of stay constraints to guide the solution
towards the one that is the least surprising to user. Solutions are compared by which variables they modify,
and we prefer ones that avoid changing values that the user recently modi�ed.

The order of attempting to add stay constraints is di�erent from QuickPlan, where all stay constraints
are added in the beginning. If planning fails, the weakest constraint is retracted before attempting to solve
again [73, p. 41].

We start by attempting to solve the system with a stay constraint for the highest ranked variable. If it
succeeds, we keep the stay constraint, and continue with the second-highest ranked variable. If it fails, we
discard the constraint, then continue as we did in the �rst case. In the case that we never manage to add
any stay constraints, we try solving without any of them: if this fails, then the system is overconstrained,
and no solution exists.

Attempting to solve without any stay constraints �rst would let us detect overconstrained systems
early, at the cost of having to call the simple planner an extra time for systems that can be solved with a
stay constraint added. This may not sound like much, but when combined with pruning, an optimization
explained later, this may actually double the number of simple planner calls in some cases. We would rather
accept a performance penalty on overconstrained systems than in ones that can be satis�ed. There are
multiple optimizations that we can do to avoid so many calls to the simple planner.

Adding stay constraints directly

The �rst optimization is relatively simple. If the variable we are trying to add a stay constraint for is a
source in the current solution graph, then adding it would still form a valid solution. We can see this by
looking at the two criteria for solution graphs:

1. We must not introduce any cycles. If the variable is a source then it is only read from, so adding a
stay constraint to it cannot introduce a cycle.

2. No variable must be written to twice. If the variable is a source then no other method writes to it, so
the only write is the one we add.

This optimization allows us to skip calling the simple planner in some cases.

Pruning

Upon successfully solving with a new stay constraint added for a variable, we can remove all other methods
that write to it. This is justi�ed by the fact that this variable has a higher priority than any other ones we

32

would write to later. This will simplify the constraint system for subsequent calls to the simple planner,
making it faster for each iteration.

We can also do some pruning when a stay constraint cannot be added, because this means that some
other method must have been forced to write to the stay constraint’s variable instead. If this method is
unique, it can be selected to enforce its constraint, and we can remove that constraint from the system.

Cascading pruning

Pruning once can in some cases allow us to prune further, possibly propagating through the entire constraint
system. In a chain of variables with two-way constraints between them like 0

21↔ 1
22↔ 2 , successfully

adding a stay constraint to 0 means that 21 cannot be enforced by a method that writes to 0. We can thus
remove one of 21’s methods to get 0

21→ 1
22↔ 2 . This may then propagate through the system as follows:

→ 0
21↔ 1

22↔ 2 (a stay constraint is added to 0)

→ 0
21→ 1

22↔ 2 (a is written to by stay, 21 cannot write to it)

→ 0
21→ 1

22↔ 2 (only one method left to enforce 21, must be selected)

→ 0
21→ 1

22→ 2 (b is written to by 21, 22 cannot write to it)

→ 0
21→ 1

22→ 2 (only one method left to enforce 22, must be selected)

→ 0
21→ 1

22→ 2 (c is written to by 22)

After just adding a stay constraint to 0, we have determined that 21 must be enforced by writing to 1,
and that 22 must be enforced by writing to 2 . In fully “prunable” systems with = variables, this can let us go
from = calls to the simple planner to only a single one.

Unfortunately, this strategy does not work for all con�gurations, e.g., a constraint with the two methods
<1 : (0, 1) → 2 and<2 : (0, 2) → 1. If 0 gets a stay constraint we are unable to choose between<1 and
<2, since either may be selected later. See Section 6.1.4 for a more detailed description of an “unprunable”
system.

3.4 Method Executor Module

To make the library as general as possible, the programmer may use any method executor implementation
they wish when solving the system. For instance, Component::par_solve’s type signature looks like this:

pub fn par_solve(&mut self, me: &mut impl MethodExecutor) -> Result<(), PlanError>

where

T: Send + Sync + 'static + Debug,

33

The most important part now is me: &mut impl MethodExecutor, which just means that the function
accepts any type that implements the MethodExecutor trait:

pub trait MethodExecutor {

type ExecError: Debug;

fn schedule(

&mut self,

f: impl FnOnce() + Send + 'static

) -> Result<TerminationHandle, Self::ExecError>;

}

The trait essentially just requires that closures can be scheduled to be run on the implementor, which can
then decide how and when this happens. This could for instance be a thread pool, which would then result
in parallel execution of methods.

The simplest implementation is the DummyExecutor. This does not actually use any additional threads
at all, and simply executes the closures on the main thread as they are scheduled. If compiled with the rayon
feature �ag, hotdrink-rs also provides MethodExecutor implementations for rayon thread pool types,
making parallel execution very simple; simply construct your thread pool and pass it in as an argument to
par_solve.

let pool = rayon::ThreadPoolBuilder::new().build().unwrap();

component.par_solve(&pool);

The TerminationHandle allows the method executor to know when results are no longer required.
When all TerminationHandles have gone out of scope, a �ag for its associated result will be set. This is
for instance used to decide when to cancel threads in hotdrink-wasm.

3.5 Solver Module

After creating a valid plan, we must schedule each method to be executed. The state starts o� with the
initial values of each variable in an array, which will then be modi�ed as we execute new methods. For a
variable E , we will call its initial value E0, followed by E1 for its next value, and so on.

If we start by executing the method<1 : (0, 1) → 2 , its input values will be 00 and 10, and this will
produce a new value for 2 , which we will call 21. We can then run another method<2 : (2, 3) → 4 , which
will use 21 and 30 as inputs, and produce 41 as its output. The values after each step can be seen in Table 3.1.

While the above gives a decent idea of how this works during single-threaded execution, the picture is
more complicated when methods are executed in separate threads. This module does not actually execute

34

Table 3.1: Values per step

Step 0 1 2 3 4

Initial values 00 10 20 30 40
Values after<1 00 10 21 30 40
Values after<2 00 10 21 30 41

the methods, but simply sends the computations to a supplied MethodExecutor. Instead of having simple
values of type T, each variable’s current value is actually an Activation<T>, which works similarly to a
Future or Promise that will eventually resolve to a T. This means that it works as a placeholder that can be
passed around regardless of whether the value has been computed or not. Scheduling the methods can be
done by sending closures that do the following to the MethodExecutor: (1) wait for the appropriate input
activations to complete, (2) execute the method with the resolved inputs, and (3) place the computed values
in appropriate output-activations.

While executing a method has a type similar to Vec<T> -> Result<Vec<T>, MethodFailure>,
activating a method cannot return a result immediately. It will instead return a Vec<Activation<T>>,
which will contain the �nal values when the method has been executed, something which could happen on
a separate thread.

3.5.1 Activation

This section takes closer look at Activation and ActivationInner. First of all, we need some shared
state that both the computing thread and the main thread can access. In hotdrink-rs, this data is called
ActivationInner.

pub struct ActivationInner<T> {

state: State<T>,

waker: Option<Waker>,

}

It contains a Waker [74] to call when its state changes, which will make asynchronous code check the
value again. In addition, it has a State that can either be Pending, Ready or Error. Changing its state from
Pending will (1) call the waker to notify anyone awaiting it, and (2) clear the dependency list to decrease
the number of interested parties.

enum State<T> {

Pending(PendingData<T>),

Ready(Arc<T>),

Error(ErrorData<T>)

}

35

https://doc.rust-lang.org/rust-by-example/fn/closures.html
https://doc.rust-lang.org/std/task/struct.Waker.html

The Pending state is the state an activation is in until the method that produces its result has �nished or
failed. It also has the previous activation of the current variable, as well as a list of the current activation’s
dependencies.

struct PendingData<T> {

previous: Activation<T>,

dependencies: Vec<Activation<T>>,

}

The previous �eld is the previous value of the variable this activation is for. If the current activation
fails, then the old value will be used to solve the system instead. This will appear consistent to the user
since the previous value either (1) was sent to the constraint system by the user, (2) was produced by the
constraint system and sent to the GUI, or (3) is still pending. In any case, the value will be consistent with
the one that the user currently sees. The dependencies �eld maintains references to the input activations
to keep them alive until their values have been computed.

The Ready state simply contains the resulting value from a successful computation. It is behind a
reference counted pointer to allow sharing the value between all methods that require it; more speci�cally,
an atomically reference counted pointer to allow sharing the value between threads. An alternative to this
would be to clone the value each time, but this places a Clone bound on the value type, which may be
undesired. When a value is in this state, the previous activation and the dependencies have been dropped.

struct ErrorData<T> {

previous: Activation<T>,

errors: Vec<SolveError>,

}

The �nal state, Error, keeps the previous activation in order to produce a result. It also maintains a
set of errors that happened during its computation. This can be any of the following:

1. The computation was canceled.

2. A method used a non-existent variable.

3. A method received the wrong number of inputs.

4. A method produced the wrong number of outputs.

5. There was an attempt to downcast a value to the wrong type.

6. A custom error message from the programmer, for instance with the fail! macro.

36

https://doc.rust-lang.org/std/clone/trait.Clone.html

All the errors will be propagated from method inputs to outputs, which makes it possible to mark all
erroneous values in the GUI, and even provide a reason for the failure.

An Activation contains a shared ActivationInner (Arc to let us share across threads, Mutex to
synchronize access), as well as a TerminationHandle. The former allows us to pass references to the future
value of a variable to other threads, while the latter ensures that the computation is kept alive until there
are no clones left.

struct Activation<T> {

inner: Arc<Mutex<ActivationInner<T>>>,

producer: Option<TerminationHandle>,

}

Before scheduling a new method, we drop the TerminationHandles of its outputs. This is to ensure
that the number of references goes down before a MethodExecutor like StaticPool from hotdrink-wasm

attempts to cancel any computations. Doing it after would make StaticPool think that the result is still
needed.

Eager cancellation

The ability to add and remove constraints complicates when it is �ne to cancel activations, i.e., cancel the
method computation producing it. In the case where the constraint graph cannot change, writing to a
variable means that all other variables that in the same generation that depend on will read from the most
recent activation, guaranteed by the topological ordering of the plan; the old value is thus not required in
the new generation. Any method computation that depends on the previous activation will be replaced
by a new selected method, since the same constraints must be enforced in the new generation too. Thus,
when a variable is an output in the new solution graph, we can cancel the computation of its previous
activation. We will call canceling a variable’s old computation with only the criterion that it is an output in
the solution graph eager cancellation.

However, the same arguments for the correctness of eager cancellation do not apply in the case where
the constraint system can change. Consider the following example, with one constraint between 0 and 1
with the method 01 : 0 → 1, and another constraint between 1 and 2 with a method 12 : 1 → 2 .

438C → 0
01→ 1

12→ 2

Say we edit 0, which schedules two computations: 01 and 12 . If we now remove the constraint between
1 and 2 , there is no longer a connection between the two. Editing 0 again before the previous value of 1
is computed will result in the following: First, since 0 is written to, the previous value of 0 is marked as
not needed, but since its value was from an edit, no computation is canceled. Second, 1 receives a new
activation that is being computed from the new value of 0, and the computation of 1’s previous activation
is canceled. The problem now is that since the constraint between 1 and 2 is gone, 2 still depends on 1’ old

37

activation, the one we canceled. Thus, since the computation of 1’s activation was not complete before we
canceled it, neither was the computation of 2’s activation, leaving it in a failed state in the last generation.
This is visualized in Figure 3.4.

Figure 3.4: Eager cancellation may lead to failed computations in the new generation due to canceling
required dependencies. Activations that are not complete have dotted borders. The value 22 in generation 2
can be seen as a “virtual” value, as it is the same value as in the previous generation. This means that it still
depends on 11. The green arrow indicates that we can reuse the last computed value since 21 is no longer
bound by any constraints.

We do not want to end up with erroneous values due to canceling too early; we present two alternatives
for how to handle this.

1. The �rst alternative is to not use eager cancellation. Instead, use reference counting to know when
an activation is no longer required: in the example above, the computation of 11 would not have
been canceled, as it is still required by 21. This produces some overhead, with each activation having
to keep track of its dependencies, but always keeps the computations alive until they are no longer
needed.

2. The second alternative is to not consider failure due to cancellation in this case to be an error. Since
21 is no longer bound by any constraints, any value would be correct. The user also made further
edits and performed an action that removed the constraint, which suggests that they do not care
about the value of the variable’s old activation. Simply reusing the latest published value is then an
option, and it may even be more predictable since this is likely the same value as is currently shown
in the GUI. For the user, the variable is just no longer pending, instead of suddenly getting a new
value computed from values from the previous generation.

While the current implementation uses the �rst approach, we have considered using the second. The �rst
may be more “correct” according to the constraint system, but the new value of 21 would be based on values
from a generation that the user can no longer see in the GUI. The second approach would let the library

38

cancel computations that the user likely does not care about (since they made further edits, and likely want
new, updated values) earlier, which would allow work to be done on newer computations instead.

3.6 Macros Module

The library relies on Rust macros to make an ergonomic DSL for declaratively describing constraint systems.
For the same task, the Flow- and TypeScript-implementation of HotDrink use template literals and “method
chaining” respectively.

The macros are intended to be used for smaller constraint systems (up to a few dozen constraints) that
a programmer can write by hand, or an initial system if it will be expanded upon programmatically. For
instance, many of the examples in hotdrink-rs/examples use the macro, while the constraint systems
generated for benchmarks are constructed programmatically since they contain thousands of constraints.

3.6.1 component!

The component! macro is the primary way to de�ne small constraint systems. A simple example can be
seen below, followed by an explanation of what the di�erent parts do.

// Create a component with values of type i32

let component: Component<i32> = component! {

component MyComponent {

// Define three variables of type i32.

let a: i32 = 0, b: i32 = 0, c: i32;

constraint MyConstraint {

// Define a method (a, b) -> c that returns a normal expression

my_method(a: &i32, b: &i32) -> [c] = ret![a + b];

// Define a method (a, b) -> c that returns a block-expression

my_method_block(a: &i32, b: &i32) -> [c] = {

let x = a;

let y = b;

ret![x + y]

};

}

}

};

The macro starts o� by specifying the name of the component so that it can be referred to later, such as if it
is added to a ConstraintSystem, or for location information if an error happens within it.

Following that, the variables of the components are de�ned following the let-keyword. Each variable
must have a name and a type, followed by an optional initial value. If no such value is speci�ed, the macro

39

https://doc.rust-lang.org/reference/macros.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

will attempt to use the type’s Default implementation, and if that fails then a compile-time error will occur,
as seen in Figure 3.5. After having de�ned the variables, an arbitrary number of constraints may be de�ned.

Figure 3.5: Missing Default implementation.

Each constraint requires a name and a non-empty set of methods. If we allowed an empty set of methods,
then the constraint could never be enforced, and would thus not be very useful.

As shown in the component macro example above, methods start with an identi�er, followed by a
parameter list de�ning the variables the method reads from (immutable references) and their types, then a
list of outputs, and �nally the method body.

The macro �rst constructs a RawMethod from each method in the DSL. The RawMethod is then post-
processed and converted into a Method. A method can be constructed manually as follows.

let m1: Method<i32> = Method::new("m1", vec![0,1], vec![2], Arc::new(|inputs| {

let a = *inputs[0];

let b = *inputs[1]:

Ok(vec![Arc::new(a + b)])

}))

The macro takes care of many of the conversions for us, such as converting the Arc<T> to &T. The reason
that the types must be speci�ed in the parameter list is related to how values of multiple types are
stored in the constraint system. For instance, if we use an enum NumOrString for the values, where
&NumOrString implements TryInto<&i32> and TryInto<&String>, then this conversion can happen
automatically by specifying the desired type in the parameter list. That is, if the component has type
Component<NumOrString>, we can still write a method m(x: &i32) -> [y] = { ... }; , which stops
us from always having to manually unwrap the values. The component_type! macro from Section 3.6.2
simpli�es de�ning types that automatically implement the required conversion traits.

3.6.2 component_type!

Since the way to allow multiple types in a component is to use an enum, which can then be automatically
converted into its variants by the component macro if it implements the appropriate traits, it would be

40

https://doc.rust-lang.org/std/sync/struct.Arc.html

bene�cial to have a simple way of de�ning such a type. This is exactly what the component_type! macro
does: The programmer speci�es which types they would like to use in their constraint system, and the enum
is automatically constructed together with the required From and TryFrom implementations. Manually
implementing From to wrap the variants and TryFrom to unwrap them would easily reach 100 lines with
only a few variants, so this reduces a lot of boilerplate. The automatic conversion allowed by using these
traits improves ergonomics signi�cantly, as shown in the example below.

component_type! {

#[derive(Clone, Debug)]

enum NumOrString {

i32,

String

}

}

// Without automatic conversion (`Arc<T>` is still turned into `&T`)

m1(a: &NumOrString, b: &NumOrString) -> [c] = {

match (a, b) {

(NumOrString::i32(a), NumOrString::i32(b)) => Ok(vec![NumOrString::i32(a + b)]),

(a, b) => fail!("a and b are not numbers: {:?}", (a, b)),

}

};

// With automatic conversion

m2(a: &i32, b: &i32) -> [c] = ret![a + b];

In either case, calling the method with values that are not the correct variant will fail, but this is done
automatically by the macro in m2. In this example, the component_type! macro is used to automatically
generate the enum, along with the following trait implementations:

1. From<i32> for NumOrString to wrap numbers.

2. From<String> for NumOrString to wrap strings.

3. TryFrom<&NumOrString> for &i32 to unwrap numbers.

4. TryFrom<&NumOrString> for &String to unwrap strings.

The two last implementations are fallible since the value may not be of the correct variant. Note that
implementing From and TryFrom traits automatically provide implementations for Into and TryInto

respectively.

41

Another option is to use the derive_more crate, in which case one can write the following to generate
the same type. Using this removes the need to have the component_type! macro at all, and may be the
suggested way to generate such types in the future.

use derive_more::{From, TryInto};

#[derive(Clone, Debug, From, TryInto)]

enum NumOrString {

i32(i32),

String(String),

}

3.6.3 ret!

Since methods can perform conversions from the actual type of their inputs, we must also make sure to
convert them back after running the method body and computing the results. Method bodies should return
a value of type Result<Vec<Arc<T>>, MethodFailure>, e.g. Ok(vec![Arc::new(2), Arc::new(3)]) if
our component contains values of type i32.

The issue arises when the type is an enum with multiple variants: all values must be wrapped before
being stored in the Vec, which means that the component! macro cannot post-process the method body to
�x it. For the NumOrString type, we may have to return an expression like

Ok(Arc::new(NumOrString::String(s)), Arc::new(NumOrString::i32(i)))

The conversion must happen before storing the values in a homogeneous Vec, and can thus not happen in
a post-processing step. With ret! the expression above is simpli�ed to

ret![s, i]

The macro has multiple functions: it uses the Into trait to wrap the values in the appropriate enum-variants,
wraps each value in an Arc, combines them in a Vec, and �nally wraps the Vec in the Ok variant of Result.
This is all captured in the macro’s de�nition below.

#[macro_export]

macro_rules! ret {

($($e:expr),*) => {{ Ok(vec![$($e.into()),*]) }}

}

3.6.4 fail!

The fail! macro serves as a dual to returning a successful result with ret!, and represents a failed method
execution. It can contain a custom error message that speci�es what went wrong by using format!:
fail!("Method failure: {}", msg). The macro returns the Err-variant of Result, and contains a
MethodFailure with the speci�ed error message. It is de�ned as follows:

42

https://docs.rs/derive_more/0.99.14/derive_more/index.html

#[macro_export]

macro_rules! fail {

($($arg:tt)*) => {{

Err($crate::planner::MethodFailure::Custom(format!($($arg)*)))

}};

}

43

Chapter 4

Implementation of hotdrink-wasm

This chapter describes the implementation of hotdrink-wasm, a library that simpli�es the process of
generating WebAssembly-compatible data structures to enable usage of hotdrink-rs from JavaScript. It
also includes information on how to generate and use these wrappers, and why they are required. For more
speci�c implementation details, take a look at the published documentation, 1 or generate more up-to-date
documentation with the following command in the hotdrink-wasm directory: cargo doc --no-deps

--document-private-items --features thread.
Complete examples of how to use the library can be found in the examples/ directory in the same

repository as hotdrink-rs [65].

4.1 Overview

Creating the constraint system in hotdrink-wasm is no di�erent from that in hotdrink-rs. However, while
it may be implemented in the future, WebAssembly does not yet support generics [18]. This means that all
generic data structures and functions must be monomorphized [35] upon being compiled to WebAssembly.
For instance, if one constraint system has a value type of i32, and another has a value type of String,
we end up with two separate copies of the same code; one for ConstraintSystem<i32> and another for
ConstraintSystem<String>. When compiling the library to WebAssembly, types such as Component<T>
and ConstraintSystem<T> thus no longer exist, and cannot be exposed in the public API. The types can
still be used in Rust, but must be hidden behind types or functions that do not use generics.

We can, for instance, create a new type IntConstraintSystem that contains a ConstraintSystem<i32>,
and generate WebAssembly-bindings with wasm-bindgen. We will refer to the contained constraint system
as the inner constraint system.

#[wasm_bindgen]

pub struct IntConstraintSystem {

1https://docs.rs/hotdrink-wasm/

44

https://docs.rs/hotdrink-wasm/

inner: ConstraintSystem<i32>,

}

We can also implement methods on this struct that can be used from JavaScript:

impl IntConstraintSystem {

#[wasm_bindgen]

pub fn edit(&mut self, component: String, variable: String, value: i32) {

self.inner.edit(component, variable, value);

}

}

Though this struct only works for values of type i32, it demonstrates how the generic type can be hidden
behind a WebAssembly-compatible wrapper. A wrapper struct must be written for each value type one
wants to use in a constraint system. In order to automatically generate such a constraint system wrapper,
we can use the constraint_system_wrapper! macro, which has three main purposes.

1. Generate an enum that represents the possible values in a constraint system.

2. Generate a WebAssembly-compatible wrapper around a value type.

3. Generate a WebAssembly-compatible wrapper around a constraint system.

After generating the wrapper types for a given constraint system as seen in Listing 1, we can de�ne a
system to store it with hotdrink-rs, and store it within the wrapper as seen in Listing 2. The code can
then be compiled to WebAssembly, and the constraint system can be constructed by calling the function
my_constraint_system. As demonstrated in Listing 3, the constraint system can then be used from
JavaScript with an API similar to the one found for the ConstraintSystem type in hotdrink-rs.

hotdrink_wasm::constraint_system_wrapper! {
pub struct ConstraintSystemWrapper {
pub struct IntOrStringWrapper {
#[derive(Clone, Debug)]
pub enum IntOrString {
i32,
String

}
}

}
};

Listing 1: De�ning a constraint system wrapper with hotdrink-wasm.

45

#[wasm_bindgen]
pub fn my_constraint_system() -> ConstraintSystemWrapper {

let component = ...;
let mut cs = ConstraintSystem::new();
cs.add_component(component);
ConstraintSystemWrapper::wrap(cs)

}

Listing 2: Wrapping a constraint system made with hotdrink-rs.

let cs = wasm.my_constraint_system();
let wrapper = wasm.IntOrStringWrapper;

// Send changes from the GUI to the constraint system.
let variable = document.getElementById("s");
variable.addEventListener("input", () => {
cs.edit("MyComponent", "s", wrapper.String(variable.value));
cs.solve();

});

// Send changes from the constraint system to the GUI.
cs.subscribe("MyComponent", "i", v => { variable.value = v; });

Listing 3: Using the constraint system from JavaScript.

4.2 Heterogeneous Constraint Systems

As seen in Chapter 3, hotdrink-rs uses enums to allow values of multiple types in constraint systems. There
are other ways of doing this, with their own advantages and disadvantages. This section will describe two
other alternatives, and how the limitations of hotdrink-wasm a�ected the solution chosen for hotdrink-rs.
The solutions that were considered are

• wasm_bindgen::JsValue, a wrapper around values received from JavaScript,

• std::any::Any, a trait to emulate dynamic typing in Rust,

• and Rust enums.

Of these solutions, the �rst two were rejected, for reasons explained below.

4.2.1 The JsValue Type

The most “obvious” solution is to use wasm_bindgen::JsValue, which simply represents values received
from JavaScript. It does, however, have a number of �aws.

46

Figure 4.1: Type conversion in the constraint system wrapper. The value can be received by the wrapper
from JavaScript as a JsValue, but must then be converted to the type of the variables of the inner constraint
system.

1. As described in 4.6, a JsValue cannot be passed between threads since it contains a pointer to memory
that Web Workers cannot access. Consequently, it does not implement the Send trait, and attempting
to send it across the thread boundary in Rust results in a compile-time error. Using this strategy
would thus entirely eliminate the possibility of executing methods in parallel.

2. Using JsValue as the value type of hotdrink-rs would limit the usability of the library. By making
the value type a generic type parameter instead, we place nearly no restrictions on it.

These limitations are too severe to ignore, especially since multithreading is such a large part of our work.
JsValue was thus eliminated as a candidate for enabling heterogeneous constraint systems.

4.2.2 The Any Trait

The second alternative is to use the Any trait, which allows us to store pointers to any Rust value, with the
ability to safely attempt to downcast it to our desired type. By adding another constraint, Send, we can also
ensure that the types can be sent across threads safely.

This approach is not without its issues either. While it would work for hotdrink-rs, passing data
between JavaScript and Rust is more problematic. At some point, we must decide which concrete Rust types
to convert values received from JavaScript to, otherwise we run into the same limitations as in Section 4.2.1.

Each value we send to the constraint system wrapper must be converted before being passed to the
inner constraint system. Figure 4.1 shows the conversion steps. The concrete type selection problem can
also be shown with the code below. The question mark indicates the point where we must perform the
conversion, but do not know which type to convert the value to. 2

impl ConstraintSystemWrapper {

#[wasm_bindgen]

fn edit(&mut self, variable: String, value: JsValue) {

let converted: ? = convert(value);

self.inner_cs.edit(variable, Box::new(converted));

2Note that the value must be stored behind a pointer (Box is similar to unique_ptr in C++) so that its size can be determined
at compile-time. See https://doc.rust-lang.org/book/ch17-02-trait-objects.html.

47

https://doc.rust-lang.org/book/ch17-02-trait-objects.html

}

}

impl<T> ConstraintSystem<T> {

fn edit(&mut self, variable: String, value: Box<dyn Any>) { ... }

}

Whether we let wasm-bindgen take care of the conversion, or receive a JsValue and convert it ourselves,
some type must be selected. The type can be di�erent for each constraint system, and each variable within
it. We can thus not automatically generate a wrapper unless the programmer provides information about
which types they would like to use.

If the programmer wants to, e.g., use values of the types i32 and String, there must be some way
to specify which type to convert the value to. One way of doing this is to have two di�erent functions
edit_i32 and edit_string. However, new identi�ers cannot be generated automatically with declarative
macros due to hygiene (though procedural macros do not have this limitation) [6], and it requires that the
programmer selects the correct type. Passing in an argument to edit that speci�es the type would also
su�er from conversion errors potentially happening in edit. A third way is for edit to take some kind
of enum as an argument, where the caller passes in a value of the appropriate variant. In this case, any
conversion errors will happen before the value is passed in to edit. The last option leads us to the third
solution on how to store values of multiple types in the constraint system.

4.2.3 Rust Enums

Not every type can be compiled to WebAssembly: An overview of the available types can be found in the
wasm-bindgen guide [62]. Rust enums, for instance, do not have a direct translation to WebAssembly or
JavaScript. Since this is our main way of describing value types for components and constraint systems, we
require some kind of workaround to support WebAssembly. The macro wrap_enum! simpli�es the process
by creating a WebAssembly-compatible wrapper for such types.

hotdrink_wasm::wrap_enum! {

pub struct IntOrStringWrapper {

#[derive(Debug, Clone)]

pub enum IntOrString {

i32,

String

}

}

}

We call IntOrStringWrapper the wrapper type, and IntOrString the inner type.

48

wrap_enum! implements a superset of the functionality of the component_type!macro from hotdrink-rs,
and requires the same information as input. wrap_enum! therefore starts o� by invoking component_type!

to generate the From- and Into-implementations, followed by it generating the WebAssembly-compatible
constructors and code for conversion to a JsValue. Generating new constructors is required since the
enum (IntOrString) cannot be exposed directly to WebAssembly, and thus neither can its constructors.
To replace them, we can generate associated functions for IntOrStringWrapper for creating the variants
instead, as shown below.

#[wasm_bindgen]

pub struct IntOrStringWrapper {

inner: IntOrString

}

#[wasm_bindgen]

impl IntOrStringWrapper {

#[wasm_bindgen]

pub fn i32(value: i32) -> Self {

IntOrString::i32(value)

}

#[wasm_bindgen]

pub fn String(value: String) -> Self {

IntOrString::String(value)

}

}

These functions can then be used to create values of type IntOrStringWrapper from JavaScript, e.g.,
IntOrStringWrapper.i32(3) and IntOrStringWrapper.String("foo"). When this value is received
by Rust, the inner enum can be extracted from the wrapper.

The wrapper type IntOrStringWrapper can be used as the argument type for edit as follows, given
that the inner constraint system’s value type is the enum IntOrString de�ned earlier:

fn edit(&mut self, variable: String, wrapper: IntOrStringWrapper) {

let ios: IntOrString = wrapper.unwrap();

self.inner_cs.edit(variable, ios);

}

The macro will also automatically generate code for converting an IntOrString to JsValue:.

impl From<IntOrString> for wasm_bindgen::JsValue {

fn from(value: IntOrString) -> Self {

49

match value {

IntOrString::i32(i) => i.into(),

IntOrString::String(s) => s.into(),

}

}

}

This lets the library return a IntOrString directly to JavaScript, and it will appear there as the appropriate
type: an IntOrString of the i32 variant will result in a number, while a one of the String variant will
become a string. Naturally, each variant of the enum must already be compatible with WebAssembly, for
instance by generating the appropriate bindings with wasm-bindgen.

4.3 Generating a WebAssembly-Compatible Constraint System

In order to interact with a constraint system from WebAssembly, we must generate a WebAssembly-
compatible wrapper that replicates its API. The constraint_system_wrapper! macro creates a wrapper
type for single-threaded constraint systems. The following sections will analyze the most important parts
of the macro’s output to understand what it has to do to replicate the ConstraintSystem API.

We start with an example of an invocation of the single-threaded version of the macro:

hotdrink_wasm::constraint_system_wrapper! {

pub struct ConstraintSystemWrapper {

pub struct IntOrStringWrapper {

#[derive(Clone, Debug)]

pub enum IntOrString {

i32,

String

}

}

}

};

ConstraintSystemWrapper is the name of the generated constraint system wrapper type, and it will
contain an inner constraint system of type ConstraintSystem<IntOrString>. Everything from pub

struct IntOrStringWrapper and within is �rst passed on to the wrap_enum! macro to generate the
appropriate value type wrappers. The constraint_system_wrapper! macro thus gathers all code for
generating the appropriate wrappers in one place.

The constraint system wrapper contains functions that replicate each part of the ConstraintSystem

type’s API, such as the subscribe function. The subscribe function is relatively simple; the callbacks for

50

a given variable are �rst stored (as js_sys::Function objects) in a dedicated data structure within the
constraint system wrapper called an EventHandler. The callback sent to the inner constraint system adds
all received events to a queue, and after the subscribe has completed, the events are sent to the actual
callbacks provided from JavaScript. We cannot call the callbacks from JavaScript directly since passing it to
subscribe would require it to satisfy a Send constraint, which the callbacks from JavaScript do not. The
code below shows a simpli�ed version of the relevant part of subscribe.

...

inner.subscribe(component, variable, |event| { queue.add(event) });

for event in queue {

event_handler.handle_event(event);

}

Note that a call to inner.subscribe will immediately call the callback with the most recent value of the
variable to provide the initial values of the system, and since we are currently only using a single thread, all
relevant events are sent before the call completes.

The constraint system wrapper also has an associated function for solving the system, but unlike the
ConstraintSystem type from hotdrink-rs, the wrapper only has one solve variant named solve. This
method calls solve on the inner constraint system, which solves it on the main thread. If solving the system
succeeds, all events should be in the event queue, ready to be handled. Otherwise, an error with the failure
information is logged to the JavaScript console. This is shown in the (slightly simpli�ed) code below.

pub fn solve(&self) {

match self.inner.solve() {

Ok(()) => self.handle_events(),

Err(e) => {

log::error!("Update failed: {}", e);

}

}

}

The edit function does nearly no additional work, but must unwrap the value wrapper to get the
value within, as shown in the edit implementation in Section 4.2.3. The same applies to undo, redo,
enable_constraint and disable_constraint: the operation is simply propagated to the inner constraint
system.

4.4 Image Scaling Example

The easiest way to get started with hotdrink-wasm is to use a template such as the rust-webpack-
template [52], as this makes it easy to write Rust code, compile it to WebAssembly, and import it from

51

https://rustwasm.github.io/docs/book/reference/project-templates.html
https://rustwasm.github.io/docs/book/reference/project-templates.html

Figure 4.2: A simple image scaling example made with hotdrink-wasm and JavaScript.

JavaScript. To start using hotdrink-rs, one just has to use the template to generate a project, add
hotdrink-rs and hotdrink-wasm to the dependencies in Cargo.toml. The example uses the Rust nightly
channel (nightly-2021–03–01) and wasm-pack version 0.9.1; breaking changes may happen in later versions.
For more up-to-date information, take a look at the Rust and WebAssembly book, the wasm-pack book, and
the wasm-bindgen book [51, 78, 75].

This section describes how to build a more complex hotdrink-wasm example: image scaling. The com-
plete implementation can be found in the hotdrink-rs repository under examples/hotdrink-wasm-simple.

4.4.1 De�ning the Constraint System

To de�ne the constraint system, we must �gure out which constraints are actually required. We want the
relative height to be the absolute height divided by the initial height, the relative width to be the absolute
width divided by the initial height, and �nally a constraint that ensures that the aspect ratio is equal to the
absolute width divided by the absolute height.

A4;0C8E4_ℎ486ℎC =
01B>;DC4_ℎ486ℎC
8=8C80;_ℎ486ℎC

(4.1)

A4;0C8E4_F83Cℎ =
01B>;DC4_F83Cℎ
8=8C80;_F83Cℎ

(4.2)

0B?42C_A0C8> =
01B>;DC4_F83Cℎ
01B>;DC4_ℎ486ℎC

(4.3)

We can then translate this to a hotdrink-rs Component.

// lib.rs

let component: Component<Number> = hotdrink_rs::component! {

component ImageScaling {

let initial_height: i32 = 400, initial_width: i32 = 400,

relative_height: i32 = 100, relative_width: i32 = 100,

52

absolute_height: i32, absolute_width: i32,

aspect_ratio: f64 = 1.0;

// relative_height = absolute_height / inital_height

constraint RelativeHeight {

a(initial_height: &i32, absolute_height: &i32) -> [relative_height]

= ret![100 * absolute_height / initial_height];

b(initial_height: &i32, relative_height: &i32) -> [absolute_height]

= ret![initial_height * relative_height / 100];

}

// relative_width = absolute_width / inital_width

constraint RelativeWidth {

a(initial_width: &i32, absolute_width: &i32) -> [relative_width]

= ret![100 * absolute_width / initial_width];

b(initial_width: &i32, relative_width: &i32) -> [absolute_width]

= ret![initial_width * relative_width / 100];

}

// aspect_ratio = absolute_width / absolute_height

constraint AspectRatio {

c(absolute_height: &i32, absolute_width: &i32) -> [aspect_ratio]

= ret![*absolute_width as f64 / *absolute_height as f64];

a(aspect_ratio: &f64, absolute_height: &i32) -> [absolute_width]

= ret![(*aspect_ratio * *absolute_height as f64) as i32];

b(aspect_ratio: &f64, absolute_width: &i32) -> [absolute_height]

= ret![(*absolute_width as f64 / *aspect_ratio) as i32];

}

}

};

4.4.2 Wrapping the Constraint System

We require both integers and �oats, and must thus use a sum type as the value type in the constraint system.
Again, we can use hotdrink_wasm::constraint_system_wrapper! to generate the required types. This
will generate an enum Number to represent the sum of our two required types (i32 and f64), a wrapper
struct NumberWrapper to let us construct the variants from JavaScript, and the constraint system wrapper
struct NumberCs.

53

// lib.rs

hotdrink_wasm::constraint_system_wrapper! {

pub struct NumberCs {

pub struct NumberWrapper {

#[derive(Debug, Clone)]

pub enum Number {

i32,

f64

}

}

}

}

NumberCs can then be used from JavaScript with a very similar API to ConstraintSystem, but we �rst
require an instance of the type.

// lib.rs

#[wasm_bindgen]

pub fn create_image_scaling_cs() -> NumberCs {

let component = ...;

let mut cs = ConstraintSystem::new();

cs.add_component(component);

NumberCs::wrap(cs)

}

We can then call create_image_scaling_cs from JavaScript to create the constraint system.

4.4.3 Compilation to WebAssembly

Compiling the library to WebAssembly should be as simple as running wasm-pack build (if the template
was used). The result is an npm package placed in the ./pkg directory that can be imported from JavaScript.

4.4.4 Importing WebAssembly from JavaScript

How exactly the compiled WebAssembly is imported depends largely on the project setup; the instructions
here do not apply to all cases.

First of all, WebAssembly must be imported asynchronously. One can for instance use import, and
then add a callback in which the loaded WebAssembly can be used.

import("./pkg").then(wasm => { /* Use the WebAssembly module here */ })

Alternatively one can have a webpack entry point called bootstrap.js with the following contents:

54

https://www.npmjs.com/
https://webpack.js.org/

import("./index.js")

And then use the import statement in index.js:

import * as wasm from "./pkg";

A more general way of loading WebAssembly with WebAssembly.instantiateStreaming is explained
in Mozilla’s documentation [32], and does not depend on the WebAssembly being compiled to an npm
package.

4.4.5 Usage from JavaScript

After importing the WebAssembly code, we can construct our constraint system by using the function
create_image_scaling_cs that we de�ned earlier.

// Construct constraint system

let cs = wasm.create_image_scaling_cs();

// Send information about GUI interaction to the constraint system

let absoluteWidth = document.getElementById("absoluteWidth");

absoluteWidth.addEventListener("input", v => {

// Turn the string into a number

let parsed = parseInt(v);

// Turn the number into a Number (the Rust type we defined)

let wrapped = wasm.NumberWrapper.i32(parsed);

// Send the value to the constraint system

cs.edit("ImageScaling", "absolute_width", wrapped);

// Solve the system

cs.solve();

});

// ...

// Receive updates from the constraint system

cs.subscribe("ImageScaling", "absoluteWidth", v => {

absoluteWidth.value = v;

});

This binding has to be done for all variables. It can quickly become very repetitive. This, binding variables
from the GUI to the constraint system can be abstracted away in a function bind.

// Create a two-way binding between the GUI and the constraint system

function bind(component, variable, convert) {

55

let box = document.getElementById(variable);

box.addEventListener("input", () => {

cs.edit(component, variable, convert(box.value));

cs.solve();

});

cs.subscribe(component, variable, v => { box.value = v; })

}

// If the value type has an `i32` variant

function bindInt(component, variable) {

return bind(component, variable, s => wasm.ValueWrapper.i32(parseInt(s)));

}

// If the value type has a `String` variant

function bindText(component, variable) {

return bind(component, variable, s => wasm.ValueWrapper.String(s));

}

Since the implementation of such binders can vary a lot depending on the program’s needs, they are not
included in the library. For instance, for this particular example, only bindInt is required.

Given the above binders, and that we have de�ned the HTML elements with names corresponding to
the constraint system variables, we can bind the variables of the GUI to the ones in the constraint system.

bindInt("initial_height");

bindInt("initial_width");

bindInt("absolute_height");

bindInt("absolute_height_range");

bindInt("absolute_width");

bindInt("absolute_width_range");

bindInt("relative_height");

bindInt("relative_width");

To enable optional preservation of the aspect ratio, we can bind a checkbox to the aspect_ratio

variable. This is done by listening for changes to the checkbox, and either pinning or unpinning the variable
as appropriate.

let aspectRatio = document.getElementById("aspect_ratio_checkbox");

56

aspectRatio.addEventListener("change", () => {

if (aspectRatio.checked) {

cs.pin(component, "aspect_ratio");

} else {

cs.unpin(component, "aspect_ratio");

}

});

The complete image scaling example can be found in the project repository. The GUI allows for
interaction with any of its widgets, and it then automatically updates the other widgets. An image with a
size that corresponds to the speci�ed values is also shown and updated in real-time. Using the “preserve
ratio” checkbox ensures that the ratio between the height and width does not change when editing values,
and leads to a normal-looking image as seen in Figure 4.3. Unchecking the “preserve ratio” checkbox can
give results like the one seen in Figure 4.4.

Figure 4.3: Scaling an image while preserving its aspect ratio.

4.5 Bene�ts of Multithreading

Multithreaded constraint satisfaction method execution simpli�es the process of making a reactive sys-

tem [47], as some of the properties required for a reactive system show up automatically. The system is

57

Figure 4.4: Scaling an image without preserving its aspect ratio.

automatically responsive: while individual results of computations can take an arbitrary amount of time to
complete, they do not block the entire system. The status of the system can at all times be shown to the user,
who is free to make other edits while waiting. The system is also more resilient: bugs that would usually
make the system unresponsive, e.g., non-terminating operations, will only block a single thread, which is
eventually replaced. Errors also only propagate to relevant outputs, and a good state can be restored by
further edits from the user.

“Tackling the Awkward Squad for Reactive Programming” brings up some relevant concerns for reactive
programming [72]. The �rst is called the Reactive Thread Hijacking Problem: long-lasting computations
in a single-threaded environment can prevent the reactive program from responding to new input. This
issue is solved by executing methods outside of the main thread, which is implemented as a form of hidden
concurrency [72, p. 7] in hotdrink-rs and hotdrink-wasm. The second issue brought up is computations
with side e�ects. Strange behavior due to this is not prevented in hotdrink-rs or hotdrink-wasm, and
depends on a correct speci�cation of the constraint graph. If a variable of the constraint system is used
within a method without declaring it, the system provides no guarantee that it is updated in time. The plan
can change each time the system is solved, which can cause the variable to sometimes be computed before
it is used, and other times after it is used, potentially breaking constraints. However, only declared variables
will be available in method bodies. The programmer would have to speci�cally extract the variable from
the constraint system and arrange access to it by other means, so it should be di�cult to accidentally run
into this error.

58

4.5.1 Parallel Execution

Heavy computations in constraint satisfaction methods in a single-threaded constraint system can quickly
lead to delays that are noticeable to the user. Multithreaded execution provides two main bene�ts in such
instances:

1. The main thread is not blocked, as all computations happen on a di�erent thread.

2. Independent computations can be executed in parallel, which provides huge potential speedups.

The former allows the programmer to focus less on the performance,3 and enables implementation of
features that would otherwise block the GUI for too long. The latter may be useful for slower operations,
such as processing of large images or graphs, or for any other code that requires the processing of a lot of
data.

4.5.2 Guaranteed Responsiveness

Small mistakes or unexpected edge cases in algorithms can easily lead to in�nite loops. The example below
is rather simple, but has one major mistake: the domain of the function does not match the domain of the
factorial operation. In this example, the signed integer type i64 is used. This allows negative numbers to
be passed in as arguments, which is not handled by the function and results in an in�nite loop.

fn factorial(mut n: i64) -> i64 {

let mut factorial = 1;

while n != 0 {

factorial *= n;

n -= 1;

}

factorial

}

If the developer of the function only tests for correct inputs (natural numbers), then the implementation
appears to work. However, if the input is provided by a user, and the function is run on the main thread,
then control will never be returned to JavaScript and the event loop. The GUI will thus be completely
unresponsive, and the user has no way of undoing their change.

However, if we run the function on another thread, such as when a constraint satisfaction method is
executed in a multithreaded constraint system, this issue will be non-existent. Naturally, the result of the
operation will never be computed, but the user is free to change any other part of the GUI, even the input
to the factorial function. The old computation may then be canceled, and replaced with the new one.

3However, this is not necessarily always a good thing [86].

59

While this example is trivial, the issue can easily arise in more complex algorithms; many graph
algorithms must explicitly handle cycles to guarantee termination. For instance, if we run the Bellman-Ford
shortest path algorithm until it �nds no further improvements, it will never terminate for negative cycles.
Even something as simple as a depth-�rst search might not terminate if visited nodes are not marked
correctly.

Multithreaded method execution can thus ensure that a GUI remains responsive and partially usable in
the presence of a bug that leads to non-termination, or even just long computations.

4.6 Multithreading with Rust and WebAssembly

Unfortunately, using multithreading with Rust and WebAssembly is not as simple as using the standard
library or thread pools from rayon [45]. The standard library threads cannot be compiled to WebAssembly,
and the WebAssembly threads proposal is still a work in progress [70]. There is, however, a way to get
around this [8] by using Web Workers, but this has a number of limitations.

4.6.1 Limitations

Web Workers are intended to communicate with the main thread through message passing, and while most
JavaScript types can be sent without issue [68], there are some exceptions. For instance, when receiving
a JavaScript function object in Rust, it is exposed as an object of the js_sys::Function type, which
allows for storing and calling the function. This type, however, is not thread-safe for the same reason as
wasm_bindgen::JsValue is, namely that the values are managed by wasm-bindgen in a way that does not
allow them to cross thread-boundaries [29, 10]. The types JsValue and Function thus do not implement
Send, which is a marker trait that marks types that are safe to send across threads. Attempting to do so
with values of a type that does not implement Send will fail at compile-time.

Web Workers are also capable of communicating via memory sharing by using SharedArrayBuffer [59],
though this type has gone through multiple changes from 2018 until 2020 [59] due to Meltdown and Spec-
tre [60, 30], and was even disabled for a time [34]. SharedArrayBuffer can be used in the implementation
of Web Worker-based threads that can execute Rust closures similarly to std::thread::spawn.

While we can terminate Web Workers, thread termination causes some issues when running Rust code.
When terminating a worker, allocated memory may not be deallocated properly for values that have not
gone out of scope [46, 8]. This means that the terminated workers leak memory, and that terminating a
thread at the wrong time may leave locks permanently locked, which may lead to deadlocks.

4.6.2 Web Worker-Based Threads

Alex Crichton’s article about multithreading with Rust and WebAssembly [8] and his parallel raytracing
demo [46] have been very useful in creating an appropriate Rust abstraction over Web Worker-based

60

threads. Ingvar Stepanyan’s article “Using WebAssembly threads from C, C++ and Rust” also provides a
valuable, up-to-date overview of the current state of using WebAssembly threads in other languages [61].

There are already a few crates for using Web Worker-based threads, such as wasm-mt, web_worker,
wasm_thread, and wasm-bindgen-rayon. These do not, however, expose a way to terminate workers, a
feature we are interested in experimenting with [77, 80, 79, 76]. Creating our own implementation allows
us to customize it to �t our needs.

We begin by creating a data structure that represents the work we would like to execute in another
thread, and store a closure within it. The work — or more speci�cally, a pointer to it — can then be sent
to a Web Worker, which calls generic_worker_entry_point to send it back to Rust. Any code executed
within generic_worker_entry_point is then executed in the Web Worker’s associated thread.

pub struct Work {

func: Box<dyn FnOnce() + Send + 'static>,

}

The generic_worker_entry_point implementation is rather simple; it casts the pointer (a u32) back
to a Work-pointer (*mut Work), and then executes the stored closure.

#[wasm_bindgen]

pub fn generic_worker_entry_point(ptr: u32) -> Result<(), JsValue> {

let ptr = unsafe { Box::from_raw(ptr as *mut Work) };

(ptr.func)();

Ok(())

}

To give the Web Worker access to the WebAssembly module [85] (the code), the shared memory [84]
(which is implemented using SharedArrayBuffer), and the work to perform, we make it execute the script
below [87]. It starts by importing the WebAssembly shim, a JavaScript �le generated by wasm-bindgen

that de�nes the wasm_bindgen global, which simpli�es compilation and instantiation of the WebAssembly
module. The Web Worker will then wait until it receives the WebAssembly module and the shared
WebAssembly memory. The module is then instantiated [83], and the Web Worker thus has access to the
Rust code and can share memory with other instances of the module (such as the one on the main thread).
Once that is done, each message received by the Web Worker should be a pointer to Work de�ned in Rust.
Each of these pointers are sent to generic_worker_entry_point, which will execute the Work’s inner
closure.

importScripts('WASM_BINDGEN_SHIM_URL');

self.onmessage = msg => {

let [module, memory] = msg.data;

61

let instantiated = wasm_bindgen(module, memory);

self.onmessage = async msg => {

await instantiated;

wasm_bindgen.generic_worker_entry_point(msg.data);

};

};

We can then create a new Web Worker that executes the generic script we created, and send it the
current WebAssembly module and memory. The Web Worker is then ready to work; we can send it Work
that we would like it to perform.

let worker = Worker::new("worker_script.js");

// Send module and memory

let array = js_sys::Array::new();

array.push(&wasm_bindgen::module());

array.push(&wasm_bindgen::memory());

worker.post_message(&array)?;

// Send work

let work = Work { func: Box::new(|| { ... }) };

let ptr: *mut Work = Box::into_raw(work);

worker.post_message(&JsValue::from(ptr as u32))

To include worker_script.js in the library so that developers do not have to do it themselves, we
can include the script as a URL encoded blob as done in wasm_thread4. That is, we include the script itself
in the code as a String, replace the WASM_BINDGEN_SHIM_URL with the actual path, and get a URL to a
version of the �le stored in memory.

use wasm_bindgen::JsValue;

use web_sys::{Blob, Url};

/// Extracts path of the `wasm_bindgen` generated .js shim script

fn get_wasm_bindgen_shim_script_path() -> String {

js_sys::eval(include_str!("./script_path.js"))

.unwrap()

.as_string()

.unwrap()

4https://github.com/chemicstry/wasm_thread/blob/2dfcf37ef1fca9f2392272185a014280464fd028/src/lib.rs

62

https://github.com/chemicstry/wasm_thread/blob/2dfcf37ef1fca9f2392272185a014280464fd028/src/lib.rs

}

/// Generates worker entry script as URL encoded blob

pub fn create() -> String {

let wasm_bindgen_shim_url = get_wasm_bindgen_shim_script_path();

// Generate script from template

let template = include_str!("./generic_worker.js");

let script = template.replace("WASM_BINDGEN_SHIM_URL", &wasm_bindgen_shim_url);

// Create url encoded blob

let arr = js_sys::Array::new();

arr.set(0, JsValue::from_str(&script));

let blob = Blob::new_with_str_sequence(&arr).unwrap();

Url::create_object_url_with_blob(&blob).unwrap()

}

As mentioned in Section 4.6.1, cancellation of threads may lead to deadlocks if we are not careful. We
must ensure that no worker can be terminated while holding a shared lock, and that a worker cannot
acquire a shared lock after the termination signal has been sent. In the implementation PoolWorker, each
worker will begin by locking access to synchronized meta-information about its current state. The worker
will then check if the meta-information says that it has been terminated, in which case it will not do any
further work. This data is speci�c to this worker, so if it stops executing while holding the lock, no other
workers are a�ected. The only other party that has access to this lock is the main thread, but if the main
thread has terminated the worker, it has also discarded the shared state. If the worker manages to lock the
shared state and �nds that it has not been terminated, it cannot be terminated until the lock is released.
The worker will then wait until it receives more work before it can �nally be terminated again. Pseudocode
can be seen below, and the full implementation can be seen in the repository in the spawn method in
hotdrink-wasm/thread/pool/pool_worker.rs.

// Worker thread

loop {

let work = {

shared.outer_lock.lock();

if shared.terminated {

break;

}

let work = shared_queue.lock().pop();

shared.ready = false;

63

work

};

work.run();

outer_lock.lock();

shared.ready = true;

}

// Main thread

if shared.outer_lock.try_lock() {

if shared.unused_result && !shared.ready {

shared.terminated = true;

worker.terminate();

worker = Worker::new();

}

}

If the main thread does not get the lock, we know that the thread is busy getting more work, and should
not be terminated. If the main thread does get the lock, and decides to terminate the worker, then the
worker will observe that the termination �ag is set before trying to acquire the task queue lock.

4.6.3 Web Worker-Based Thread Pools

One of the main goals of the library is to make it impossible for poorly implemented constraint satisfaction
methods to make the GUI unresponsive. This means that we must execute them in separate threads, but
spawning a new Web Worker for each method can become slow and memory intensive. A thread pool
that spawns an appropriate amount of workers for the tasks at hand is thus necessary to reach a good
compromise. We call the work to be executed in the thread pool a task.

Static thread pool

The �rst alternative is to maintain a static number of workers at all times, as seen in the implementation of
the StaticPool type in hotdrink-wasm. This means that the overhead of starting a new Web Worker, which
is approximately 40ms [33] (or around 250ms in our tests, but this includes instantiating the WebAssembly
module as well), is avoided when processing new tasks.

The main idea is that executing a task on the thread pool puts the task in a shared queue, from which
the workers take tasks when they are ready. However, an issue with this approach is that having = workers
only allows up to = parallel tasks, and if none of them terminate, no progress will be made for any other

64

tasks. The GUI will, however, continue to accept new user input, which may potentially terminate the
workers that are “stuck”, at which point new work can be done.

When executing a new task in the thread pool, the meta-information about each worker is accessed
to determine if it should be restarted. The conditions for restarting may change depending on which
termination strategy has been selected (See Section 4.6.4). Workers that no longer produce a useful result,
or have worked for too long, are then sent the termination signal, and the shared state with that worker is
discarded. An entirely new worker is then started, replacing the previous one.

Dynamic thread pool

The DynamicPool type reverses the control, making the main thread give the workers tasks instead of
having them take tasks when ready. A task may be passed to workers that are considered ready (awaiting a
task). A worker is considered busy until it completes the task. We cannot send tasks to workers that are
not ready, as a task is not guaranteed to terminate; doing so could result in a task never getting to execute.

In the case that there are no ready workers, we must spawn new ones; waiting within the call to Rust
would block the main thread, and thus the GUI. Instead, a new worker is spawned for each task that requires
it. This guarantees that each task that can be executed, actually will be, as opposed to the static pool which
may stop if there are su�ciently many tasks that do not terminate.

An issue with the dynamic pool is that if there are no ready workers, then having to spawn a new
one may increase the time that computation takes by orders of magnitude. Assuming a task takes 1ms to
execute, its execution time may suddenly take over 200 times as long as one would expect if we have to
wait for a worker to get started. The cost of the overhead becomes worse when dozens — if not hundreds
— of workers are spawned when all methods need to be executed. The memory usage will also increase,
especially since the stacks of canceled threads are not cleaned up properly [8].

Our library currently spawns new workers once they are required, and makes no attempt to prepare
them ahead of time. A possible optimization is to use a worker bu�er with a few idle workers; a new task can
then be assigned to a worker immediately, and a new worker to take its place is spawned in the background.
The bu�er could be improved further by attempting to predict how many workers are required.

The programmer can select a thread pool implementation that satis�es their needs. The StaticPool is
less resource-intensive, but with = workers, there must not be more than = − 1 long-running tasks at once.
Otherwise, new tasks must wait for one of them to be completed. To guarantee that all tasks that can run in
parallel actually are, the DynamicPool must be used, at the cost of more memory usage and computational
overhead when spawning many workers.

4.6.4 Termination Strategies

There are many di�erent ways of deciding when a worker should be terminated. Terminating too often,
and we may have to replace them more often than we should. Terminating too infrequently, and we may
end up with many unnecessary workers and computations wasting processing power and memory.

65

Never With this strategy, workers are never terminated. Long-running tasks will continue until completion,
and non-terminating tasks will continue inde�nitely.

Unused result and not done For a worker to be terminated with this strategy, its result must no longer
be needed, and the worker must still be working on its task. The �rst requirement guarantees that
stopping the computation does not lead to missing results, and the second avoids the additional
overhead of starting a new worker when it can be reused. An issue with this strategy is that workers
may be very close to being done and still be terminated. It may be more e�cient to let a worker �nish
a task instead of aborting the task early, but we cannot know how long the task will take to complete.

Adding a timer requirement Adding to the previous strategy, we can add a con�gurable timer require-
ment for terminating workers. For instance, we could only terminate workers that were assigned a
computation where the result is no longer needed, are not done, and have been working for more
than 50ms. There is still a chance that such workers �nish at the moment we terminate them, but
this should be rare.

An issue with this strategy is that a potentially long-running task will not be terminated if a new
value is given too quickly. Let us say we perform two edits in the GUI in quick succession: the �rst
computation may no longer be relevant, but as it has been running for such a short time, we do not
terminate the worker. This could result in many workers being occupied with computing results that
are not needed.

4.7 Data Flow in a Multithreaded Constraint System

The issues described in Section 4.6.1 prevent us from implementing the multithreaded constraint system as
straightforwardly as desired. Speci�cally, not being able to send values of type js_sys::Function across
threads means that we cannot implement subscribing as easily as in hotdrink-rs. Adding a callback to
a ConstraintSystem that calls a js_sys::Function would fail, as the call is done within the provided
thread pool implementation. We thus had to �nd a workaround that allows the event handlers de�ned in
JavaScript to be executed on the main thread, which leads to a complex data �ow. An overview of this data
�ow can be seen in Figure 4.6, and may be helpful to use as a reference while reading the rest of this section.

The solution to the problem makes heavy use of Web Workers; understanding how they communicate
with the main thread is very useful when trying to understand it. First of all, assuming w is a web worker,
messages can be sent to it with w.postMessage(msg). To receive messages from it, a callback is de�ned as
follows: w.onmessage = e => { ... }. The worker can de�ne a callback self.onmessage = e => {

... } to specify what to do upon receiving a message, and self.postMessage(msg) to send messages to
subscribers of the worker. See Figure 4.5 for a visual representation of this.

During the solving of a system, the methods of the plan will eventually be scheduled to be executed in
a Web Worker-based thread pool capable of executing Rust code. After all of them have been scheduled,

66

Figure 4.5: Web Worker message passing.

Figure 4.6: Data �ow between JavaScript (yellow), hotdrink-wasm (blue) and hotdrink-rs (red). Dotted
lines represent data being “sent back” via channels or callbacks; the tail label represents what the sender
does to send it, and the head label represents what the receiver does to receive it.

the call to solve is completed, and the main thread can respond to user events while methods are being
computed in the background. Upon completing the execution of a method, the responsible Web Worker
will send an event to the EventListener.

The EventListener is a Web Worker-based thread that listens to events on a Receiver5, the receiving
end of a Rust channel. It will then “publish” this event to its subscribers with the Web Worker message
passing mechanism. The EventListener can be subscribed to by calling listen on the constraint system,
at which point the event is on the main thread. This is very useful, as we can now send the event back to the
constraint system with cs.listen(e -> cs.notify(e.data)), which will call the callbacks appropriate
for the event.

We thus manage to call JavaScript callbacks on events by using Web Worker message passing to send
events back to the main thread (without blocking it), while executing methods in parallel.

4.8 Generating a Multithreaded Constraint System

In the same way as constraint_system_wrapper! generates a WebAssembly-compatible wrapper for
a single-threaded constraint system, constraint_system_wrapper_threaded! generates one for multi-
threaded constraint systems. One of the main di�erences between the two is that the latter requires that
the programmer speci�es a thread pool implementation, the number of threads, and which termination

5https://doc.rust-lang.org/std/sync/mpsc/struct.Receiver.html

67

https://doc.rust-lang.org/std/sync/mpsc/struct.Receiver.html

strategy to use.

crate::constraint_system_wrapper_threaded! {

pub struct ConstraintSystemWrapper {

pub struct IntOrStringWrapper {

#[derive(Clone, Debug)]

pub enum IntOrString {

i32,

String

}

}

thread_pool: StaticPool,

num_threads: 4,

termination_strategy: TerminationStrategy::UnusedResultAndNotDone

}

};

Other than this di�erence, the usage of the macro is the same.
The generated code has to be used a bit di�erently than the output of constraint_system_wrapper!,

and we recommend reading Section 4.7 �rst to get a better understanding of why.
In addition to the inner constraint system, and an event handler that stores JavaScript callbacks, the

constraint_system_wrapper_threaded! must store an EventListener and the thread pool to use. As
described in Section 4.7, the EventListener runs a Web Worker-based thread that listens for all events
in the constraint system. With Web Workers, it is possible to attach a JavaScript callback that handles
messages sent from it, which is a way of notifying the main thread of events that have happened. The user
of the generated constraint system must be sure to call cs.listen(e -> cs.notify(e.data)) to capture
events that the event listener received, and to send them back to the constraint system to be handled. The
listen function attaches a callback by setting the EventListener Web Worker’s onmessage property, and
the notify function sends the event to the constraint system. The JavaScript callbacks must always be
called from the main thread; this workaround lets the main thread know when events it must react to have
happened in the worker threads.

The subscribe function is very similar to the subscription mechanism seen in Section 4.3, other than
instead of adding events to a queue to be handled immediately, they are sent to the EventListener, which
will use postMessage to send the event to the main thread by calling the callback added with listen.

inner.subscribe(component, variable, |event| { event_listener_channel.send(event); });

The call to subscribe can complete before all events have been generated, and the main thread is free to
continue tasks such as updating the GUI and handling user input.

68

1 let cs = new ConstraintSystem();
2 let comp = wasm.get_component(); // Get a pre-made component
3 let box = document.getElementById("a");
4 box.addEventListener("input", () => {
5 box.value = comp.edit("a", box.value) // A reference is needed here
6 cs.solve();
7 });
8 cs.add_component(comp); // `comp` is moved, and can't be used further

Listing 4: Use-after-move error in JavaScript.

Other than solve using the stored thread pool implementation, such as a StaticPool or DynamicPool
instead of DummyExecutor, the rest of the macros are nearly identical.

4.9 Pitfalls

4.9.1 Use after Move

Constraint systems can be modi�ed during runtime from JavaScript like they can be modi�ed from Rust,
but since JavaScript does not have a borrow checker, some surprising errors can occur when using the
library.

Trying to use a value after it has been moved in Rust will result in a compile-time error similar to the
one seen in Figure 4.7. Making the same mistake in JavaScript will instead result in a runtime error without
a clear explanation. A simple example is the code seen in Listing 4, where calling edit on a component

Figure 4.7: Use after move in Rust.

after it has been added to the constraint system would result in a crash. This is because the component
is moved on line 8, and the reference is no longer valid for the lifetime of the callback that runs line 5.
When an edit is made and the callback is executed, the invalid value of comp is passed to Rust, producing
an exception.

4.9.2 Breaking the Borrowing Rules

The borrowing rules are enforced at runtime when interacting with Rust from WebAssembly. Programs
that would fail to compile in Rust will instead result in error messages such as “recursive use of an object

69

detected which would lead to unsafe aliasing in rust”. This can happen in cases where we call a function
like the one below from JavaScript.6.

#[wasm_bindgen]

fn foo(a: &mut T, b: &T) { ... }

If we call this function from JavaScript with the same argument twice, like foo(x, x), we have a mutable
and an immutable reference to the same value, which breaks the borrowing rules of Rust. Since the Rust
compiler is cannot verify our JavaScript code, we get a runtime error.

In earlier implementations, methods on the constraint system wrappers required a mutable reference to
modify it. If we then called another method within the callback provided to subscribe, we could end up in
a situation where the constraint system was mutably borrowed twice.

cs.subscribe(..., () => { cs.edit(...); })

In the code above, we need a mutable reference to cs to add a callback, and if the callback is called before
subscribe returns, edit requires another mutable reference.

This issue can be solved with interior mutability [21, 48]. The �elds that need to be mutable are wrapped
in a Mutex, which allows us to modify the value without having to mutably borrow the owner of the value
(the constraint system wrapper). We then only require immutable references, which we can have multiple of
without breaking Rust’s borrowing rules. We do, however, have to be careful not to deadlock by attempting
to lock the �elds multiple times.

6Inspired by the issue at https://github.com/rustwasm/wasm-bindgen/issues/1578

70

https://github.com/rustwasm/wasm-bindgen/issues/1578

Chapter 5

C/C++ Bindings

Since hotdrink-rs is implemented in pure Rust, we are not limited to compiling it to WebAssem-
bly. hotdrink-c is a proof-of-concept library that demonstrates how a constraint system made with
hotdrink-rs can be compiled to and used from C.

5.1 Creating a Dynamic Library

To compile a crate to a dynamic library that can be used from C, we add the following option to Cargo.toml.

[lib]

crate-type = ["cdylib"]

Running cargo build will then produce a dynamic library in the target folder, which can then be linked
to a C program, e.g., with gcc main.c target/libfoo.so. An appropriate C header �le can be generated
with cbindgen1, or written manually if desired. More information about the interoperability between Rust
and C can be found in The Embedded Rust Book.

5.2 Creating a C-Compatible Constraint System

The hotdrink-c library has the same typing problem as hotdrink-wasm: we cannot expose the
Component<T> type directly. This struct is not made with support for C in mind, and it does not fol-
low the C ABI. Component<T> also has a generic type parameter, which causes another problem: the type
is monomorphized at compile-time, meaning that the type parameter must be determined by that point.
One solution to this is to wrap types like Component<i32>, for instance by creating a type Component_i32
as follows:

1We can also go the other way with rust-bindgen, and to WebAssembly with wasm-bindgen like in Chapter 4.

71

https://github.com/eqrion/cbindgen
https://docs.rust-embedded.org/book/interoperability/rust-with-c.html
https://en.wikipedia.org/wiki/Application_binary_interface
https://github.com/rust-lang/rust-bindgen
https://github.com/rustwasm/wasm-bindgen

struct Component_i32 {

inner: Component<i32>,

}

We can then expose an opaque pointer to this type (as described in the Rustonomicon [53]) to hide the inner
Component<i32> from C, and then create an API that operates on the pointer instead. While not necessary
for this example, the same could be done for ConstraintSystem<T>.

5.2.1 Construction and Destruction

Regarding the API, we will begin with a way to create a new component. We de�ne a function
component_new that returns a pointer to a Component_i32, which the rest of the API will continue to work
with. For practical usage, one would likely create a separate constructor for each di�erent component, e.g.,
one for representing a Rectangle and another for a sign-up form.

#[no_mangle]

pub extern "C" fn component_new() -> *mut Component_i32 {

let my_component = hotdrink_rs::component! { ... };

Box::into_raw(Box::new(my_component))

}

The component_new function places our struct on the heap with Box, and returns a pointer to use from C.
To avoid memory leaks, we must also provide a way to free this memory from C. Since the memory was
allocated by a Box, it should also be freed by one [4]:

#[no_mangle]

pub unsafe extern "C" fn component_free(component: *mut Component_i32) {

Box::from_raw(component);

}

We can then use our newly de�ned type and its API from C as follows:

Component_i32 *component = component_new();

component_free(component);

5.2.2 Subscribing

To be able to do anything interesting with our functions for creating and destroying constraint systems, we
must be able to subscribe to variables. We enable this by de�ning a function called component_subscribe.
Besides some string conversion, the component_subscribe function is relatively straightforward, and does
not do much more than calling methods on the inner Component<i32>.

72

https://en.wikipedia.org/wiki/Opaque_pointer

#[no_mangle]

pub unsafe extern "C" fn component_subscribe(

component: *mut Component_i32,

variable: *mut c_char,

callback: extern "C" fn(i32),

) {

let variable = CStr::from_ptr(variable).to_str().unwrap();

(*component).inner.subscribe(variable, move |e| {

if let Event::Ready(value) = e {

callback(*value)

}

});

}

Note that many errors are deliberately ignored with unwrap() to simplify the code. We also assume that
the functions are used correctly, i.e., a valid pointer is passed in.

5.2.3 Editing

We can then create a function edit for performing edits to variables. If the values in the constraint system
can have multiple di�erent types, we can create more variants of the function, such as component_edit_f64,
or alternatively create a wrapper type like in Section 4.2.3.

#[no_mangle]

pub unsafe extern "C" fn component_edit(

component: *mut Component_i32,

variable: *mut c_char,

value: i32,

) {

let variable = CStr::from_ptr(variable).to_str().unwrap();

(*component).inner.edit(variable, value).unwrap();

}

5.2.4 Solving

Finally, we need to be able to solve the component after making an edit. This can easily be done with a call
to solve on the inner Component<i32>.

#[no_mangle]

pub unsafe extern "C" fn component_solve(component: *mut Component_i32) {

73

(*component).inner.solve().unwrap();

}

5.3 Using the API

With the features described above, the API is complete enough to demonstrate its complete usage from
C. Note that since C does not have anonymous functions, passing in callbacks is not as streamlined as it
would be in many other languages. This would be even worse if the example implementation from this
chapter required handlers for the other event types. To improve the ergonomics of writing event handlers,
one could make a custom Callback struct with optional handlers per event, but the following is su�cient
for this example:

#include <stdio.h>

void callback_a(x: i32) { printf("a = %i\n", x); }

void callback_b(x: i32) { printf("b = %i\n", x); }

void callback_c(x: i32) { printf("c = %i\n", x); }

int main(void) {

Component_i32 *component = component_new();

component_subscribe(component, "a", callback_a);

component_subscribe(component, "b", callback_b);

component_subscribe(component, "c", callback_c);

component_edit(component, "a", 10);

component_solve(component);

component_free(component);

}

Running the program will now give the following output (comments added for clarity).

// Initial values

a = 0

b = 0

c = 0

// Set a to 10

a = 10

// After solve

c = 10

74

Chapter 6

Performance Analysis

This chapter describes the performance of hotdrink-rs and how it was measured. The performance is
also compared with the performance of earlier implementations of HotDrink.

6.1 Constraint Systems Used in Benchmarks

A selection of constraint systems with di�erent “shapes” were constructed to test the di�erent implementa-
tions’ on their worst- and best-case scenarios. Each of the following sections describes a speci�c kind of
constraint system and why it was chosen.

6.1.1 Linear-oneway

The linear-oneway system seen in Figure 6.1 is for testing how well the implementation manages to avoid
unnecessary calls to the simple planner. An optimal implementation will only require a single call before it
detects that no other stay constraints may be added, and then terminates.

Figure 6.1: Linear-oneway.

For this system, a stay constraint added to any variable but var0 will fail. If a stay constraint is added to
var3, then the constraint between var2 and var3 cannot be enforced since its only method also writes to
var3. This would make two methods write to the same variable, which would not result in a valid solution
graph. Optimizations should avoid trying to add stay constraints to variables where it would not succeed.

6.1.2 Linear-twoway

The linear-twoway system seen in Figure 6.2 is an extension of the linear-oneway system. Once a single
constraint is enforced, the direction of the data �ow can be determined, avoiding further calls to the simple

75

planner. If any variable in the chain gets a stay constraint added to it, then the other constraints it is
attached to must pick the methods that read from that variable, and the �ow will lead away from it. Since
all the other variables are then de�nitely written to, no more stay constraints may be added.

Figure 6.2: Linear-twoway.

For instance, if a stay constraint is successfully added to var3, then the constraint between var2 and
var3 cannot be enforced with right, as that would result in two writes to the same variable. The same
applies to left from the constraint between var3 and var4. This means that the two constraints that var3 are
connected to each have a single method remaining, and those may then be selected. Selecting them will in
turn cause var2 and var3 to be written to, which eliminates even more methods. This continues until all
methods not in the solution graph are eliminated.

6.1.3 Ladder

The ladder system in Figure 6.3 is more di�cult for the pruner to handle, with the data�ow direction not
being uniquely determined unless speci�c variables are de�nitely written to. This gives us an idea of how
the planner fares when pruning is not necessarily possible. The ladder constraint system is taken from the
test models in the repository of the TypeScript implementation of HotDrink [31].

Figure 6.3: Ladder.

Adding a stay constraint to var0 eliminates the method lower3 that writes to it, but there are still two
more methods left: lower1 and lower2. This means that we cannot cascade pruning through the entire
system. We cannot eliminate lower1 or lower2 until we add a stay constraint to either var1 or var2.

76

6.1.4 Unprunable

The “unprunable” system in Figure 6.4 is made speci�cally to make pruning as di�cult as possible. Once a
stay constraint is added, at most one method can be eliminated, and the change will not cascade as it does
in the linear systems. This gives us a worst-case example for planning and shows how important it is that
the simple planner is fast, since it may be called many times.

Figure 6.4: Unprunable.

Adding a stay constraint to var0 will not eliminate down_right nor up_right from the constraint between
var0, var1 and var2. It is not until we add a stay constraint to var1 or var2 we can remove any of the
methods. Similarly, we cannot eliminate any methods from the constraint between var1, var3 and var4
until either var3 or var4 gets a stay constraint.

6.1.5 Random

While it is di�cult to predict how the library will be used in the real world, attempting to generate a
partially random constraint system can provide some insight into the expected performance. The algorithm
is implemented for hotdrink-rs and reused in benchmarks for WebAssembly, and also implemented for
the Flow and TypeScript implementations of HotDrink. To guarantee that the resulting system can be
solved, the algorithm works similarly to a reverse planner. We know that there must at all times be a free
variable with an accompanying free method, and start by adding that.

At the start, there are no constraints, which means that the system is trivially solvable. For each
iteration, we write to a previously unused variable, which will then make it a free variable. We also write
to a previously used variable to encourage the graph to be connected. This means that at this point, we can
enforce the constraint by selecting the method that writes to that variable. The next iterations may make
the previously free variable connected to multiple constraints, but will always add a new free variable.
To solve the system, all we have to do is to select the method that writes to the latest free variable in the
last constraint that was added. The actual implementation allows for setting the number of variables per
constraint, and how many methods it can have. This provides a little more variation in the constraint
systems. A constraint system generated by the algorithm can be seen in Figure 6.5.

77

Algorithm 1: RandomConstraintSystem
Input: The desired number of constraints
Output: A random constraint system of the requested size

1 DB43_E0A801;4B ← {0};
2 D=DB43_E0A801;4B ← {1 . . . =D<_2>=BCA08=CB};
3 while actual constraints < desired constraints do
4 DB43 ← a random used variable;
5 if D=DB43_E0A801;4B = ∅ then
6 add a fresh unused variable
7 end
8 D=DB43 ← a random unused variable;
9 >Cℎ4AB ← a set of random variables;

10 2 ← constraint between {DB43,D=DB43} ∪ >Cℎ4AB;
11 2.033 (<(>Cℎ4AB → DB43));
12 2.033 (<(>Cℎ4AB → D=DB43));
13 for E ∈ >Cℎ4AB do
14 2.033 (<(>Cℎ4AB \ E → E));
15 end
16 add 2 to set of constraints
17 end

Figure 6.5: A randomly generated constraint system.

78

Table 6.1: Simple planner benchmarks in milliseconds (CPU: Intel i5–8265U).

Type # of constraints hotdrink-rs

Linear-oneway 75000 27
Linear-twoway 75000 28
Ladder 75000 22
Random 75000 92
Unprunable 75000 68

Linear-oneway 100000 39
Linear-twoway 100000 40
Ladder 100000 29
Random 100000 139
Unprunable 100000 90

6.2 Optimization Methodology

Using �amegraphs [5] to get a better understanding of the performance has been vital for the optimization
of hotdrink-rs. Guessing which part of the code is the bottleneck is unlikely to give good results, as what
we expect to be slow is often optimized away [66].

The main strategy for optimizing hotdrink-rs was to begin by generating a �amegraph of the planner
or solver to �nd areas of the code to optimize. Through the development of the library, we came across
several functions that took up a disproportionate amount of time, either from performing more work than
required, or too many allocations, making them clear optimization targets. After attempting to optimize the
functions, the performance was measured again with a new �amegraph and the statistical benchmarking
with Criterion.rs to verify potential improvements.

A �amegraph of a call to the solve method can be seen in Figure 6.6. We see that the simple planner
takes up about half the execution time for this particular constraint system, meaning that any improvements
made to it would likely a�ect the hierarchical planner a fair amount as well.

6.3 Simple Planner Benchmarks

For our benchmarks, we chose a number of constraints that would take approximately 100 milliseconds to
�nd a plan for, since this is around the time where GUI responsiveness is perceived as instantaneous [40,
p. 135]. Note that we would also have to have time to execute the plan.

As seen in the results in Table 6.1, the simple planner is capable of �nding a solution for constraint
systems with more than 75000 constraints in the allotted time. For all systems other than the randomly
generated one (which tends to have more methods per constraint), even 100,000 constraints is possi-
ble. The results were produced with the command cargo bench simple_planner, executed in the
hotdrink-rs/hotdrink-rs directory.

79

Figure 6.6: Flamegraph of a call to the solve method. This can be generated in the project directory
hotdrink-rs/hotdrink-rs with the command cargo flamegraph --example run_solve.

80

Figure 6.7: Simple planner performance on di�erent constraint systems.

Table 6.2: Hierarchical planner benchmarks in milliseconds (CPU: Intel i5–8265U).

Type # of constraints hotdrink-rs

Linear-oneway 20000 54
Linear-twoway 20000 57
Ladder 1000 62
Random 1000 68
Unprunable 500 144

Looking at how the simple planner performs on di�erent constraint systems in Figure 6.7, we see that
while the random and unprunable systems are much slower to plan for than the others, the order of growth
appears to be approximately the same. The growth appears to be linear, which is what we expect from the
simple planner.

6.4 Hierarchical Planner Benchmarks

The benchmarks for the hierarchical planner are quite di�erent from the ones for the simple planner, and
can be seen in Table 6.2. The �rst result is that the hierarchical planner can handle much fewer variables
in the allotted time, and the second is that the structure of the constraint system a�ects the result a lot.
The results were produced with the command cargo bench hierarchical_planner, executed in the
hotdrink-rs/hotdrink-rs directory.

81

Figure 6.8: Hierarchical planner performance on di�erent constraint systems.

How much the constraint system structure a�ects the result becomes very clear when comparing
planning for di�erent numbers of constraints, as seen in Figure 6.8. While the time to plan for the linear
systems maintains a near-linear growth, planning for the random and unprunable quickly takes many times
longer when the input size increases.

This di�erence is not surprising, since a plan for the linear systems can be found in a single call to the
simple planner, while the less pruning-friendly systems may require a number of calls equal to the number
of variables.

6.5 Solver Benchmarks

If we include both the planning phase (with the hierarchical planner) and actually executing the plan, the
number of variables we can have in a system continues to decrease, even when the methods in question are
trivial. The results can be seen in Table 6.3, and can be replicated by running cargo bench solve.

Since we are still using the hierarchical planner, there is still a rather large di�erence in performance
between the di�erent constraint systems, as seen in Figure 6.9.

82

Table 6.3: Solver benchmarks in milliseconds (CPU: Intel i5–8265U).

Type # of constraints hotdrink-rs

Linear-oneway 5000 119
Linear-twoway 5000 124
Ladder 1000 64
Random 1000 71
Unprunable 500 115

Figure 6.9: Solver comparison.

83

6.6 Comparison to Other Implementations

This section compares the performance of the di�erent implementations of HotDrink. The comparison will
benchmark hotdrink-rs 1 compiled to both native code and WebAssembly, the Flow-implementation of
HotDrink 2, and the TypeScript implementation of HotDrink 3. hotdrink-rs compiled to WebAssembly and
the older implementations were executed in the browser, speci�cally in Chromium version 90.0.4430.212.

The comparison was done by performing a complete solve of the di�erent constraint systems to get
accurate results of the libraries’ performance in practice, as opposed just measuring planning speed. The
benchmarks can be run as follows:

Rust Execute the command cargo bench thesis_update in hotdrink-rs/hotdrink-rs.

WebAssembly Execute the following command in the directory hotdrink-rs/hotdrink-wasm, and visit
localhost:8000 to start the benchmarks. The console must be opened before the benchmarks have
started, or after they are complete, as they are being executed on the main thread.

wasm-pack test --chrome --release

Flow Obtain a compiled version of the library, place it in hotdrink-rs/benches/hotdrink-flow/ with
the �le name hotdrink.js, then open index.html.

TypeScript Obtain a compiled version of the library, place it in the directory hotdrink-rs/benches/

hotdrink-typescript/ with the �le name hotdrink.min.js, then open index.html.

The results can be seen in Table 6.5. The performance with few constraints is unstable and may give
di�erent numbers for di�erent executions. In addition, there are many factors that may a�ect the results:

1. Di�erent languages.

2. Di�erent execution environments.

3. While all the planning algorithms are based on QuickPlan, there are still many di�erences.
hotdrink-rs relies heavily on pruning to lower the number of simple planner calls, the Flow
implementation does some pruning and is partially incremental, and the TypeScript implementation
is incremental without any pruning.

All this makes it di�cult to see exactly what causes the di�erences in performance. See Table 6.4 for an
overview of the biggest di�erences in the planner implementations.

Since the Rust- and WebAssembly-implementations both use pruning, they can solve the linear systems
very quickly, as they only need to call the simple planner once to determine which methods must be selected.

1https://github.com/HotDrink/hotdrink-rs/tree/325185f47�c5b39199d62bb83a297b309ec0cc8
2https://git.app.uib.no/Jaakko.Jarvi/hd4/-/tree/ab7a100a/
3https://github.com/HotDrink/hotdrink/tree/c96f3b03c932206�5fe17c7e1c1517c64f54fc7

84

hotdrink-rs/hotdrink-rs
hotdrink-rs/hotdrink-wasm
localhost:8000
hotdrink-rs/benches/hotdrink-flow/
hotdrink-rs/benches/hotdrink-typescript/
hotdrink-rs/benches/hotdrink-typescript/

Table 6.4: Planner feature comparison between HotDrink-implementations.

Implementation Language Pruning Incremental

Rust Yes No
WebAssembly Yes No
Flow Partial Partial
TypeScript No Yes

As we move towards less prunable systems, such as the ladder, random and unprunable, the planning time
increases a lot, as expected. In these systems, the planner has to call the simple planner = times, where = is
the number of variables in the component. In general, the WebAssembly implementation is approximately
twice as slow as the Rust implementation but behaves in the same way since they use the same underlying
algorithm.

The Flow- and TypeScript-implementations are much slower for most of the systems, but there are
some notable exceptions. The Flow-implementation manages to solve the linear-twoway systems fairly
quickly, but it is much slower on the linear-oneway systems, even though pruning should work for either.
The TypeScript implementation does not do any pruning at all, which is a likely cause of its much lower
performance on the linear systems. Both of them, however, perform a lot better than Rust and WebAssembly
on the unprunable systems. This is likely due to their incremental planners, as The Upstream Constraint

Technique [73, p. 45] allows them to inspect much fewer constraints: in an unprunable system with #
constraints, the incremental implementation lets them get away with analyzing approximately log2 #
constraints since this constraint system is shaped like a binary tree. This leads to completely di�erent time
complexities, and the di�erence in performance grows greater the more constraints there are in the system,
as seen in Figure 6.10.

85

Table 6.5: Constraint system solve benchmarks in milliseconds (CPU: Intel i5–8265U).

Type # of constraints Rust Wasm Flow TypeScript

Linear-oneway 100 0.3 1 52 104
Linear-twoway 100 0.4 1 20 107
Ladder 100 1 3 35 180
Random 100 1 4 36 732
Unprunable 100 5 16 23 37

Linear-oneway 500 3 10 425 2819
Linear-twoway 500 3 11 90 2657
Ladder 500 17 62 286 5299
Random 500 19 54 352 19211
Unprunable 500 116 331 118 179

Linear-oneway 1000 7 26 1669 11802
Linear-twoway 1000 7 26 203 10172
Ladder 1000 63 251 1640 19342
Random 1000 73 212 1269 83456
Unprunable 1000 472 1274 269 352

86

Figure 6.10: Time to solve unprunable systems. The poor performance of the Rust and WebAssembly
implementations of HotDrink on unprunable constraint systems becomes more apparent in larger constraint
systems.

87

Chapter 7

Memory-E�cient Data Structures

This chapter describes the work of minimizing the amount of memory used by methods and constraints.
Speci�cally, it includes three di�erent sets of data structures that can be used to model a constraint graph.
As well as the obvious bene�t of it using less memory, this may also improve performance by allowing use of
bitwise operations, and by making the data structures used in planning more cache-friendly. hotdrink-rs
uses a variant of the �rst technique presented. The alternative techniques de�ned in this section are
intended to guide future improvements to the library.

The described data structures will only include the parts that are relevant to de�ne a constraint graph;
data such as names and the method bodies is not included. We are only interested in the relative memory
usage of the di�erent techniques, and make a number of simpli�cations. For instance, we assume that the
number of variables and methods are the same for each constraint. Also, while hotdrink-rs technically
allows for all variables involved in a constraint to be both read from and written to by its methods, this
should be fairly rare; we thus assume that each method only uses each variable once, either as an input
or output, but not both. Stay constraints can easily be represented with a single index representing the
variable that the stay constraint is for, and are not taken into account. While we must know how many
variables there are in the component containing the constraints, all three strategies are independent of the
component’s representation; we can thus compare the data structures by looking at the memory usage of
only the constraints. See Table 7.1 for an overview of symbols that are used.

To have concrete numbers to work with, we assume that a 64-bit architecture is used. An overview of
the sizes of di�erent data structures can be seen in Table 7.2.

Table 7.1: Symbols and their meanings.

Symbol Meaning

V Variables of a component
R Variables of a constraint
M Methods of a constraint

88

Table 7.2: Sizes of types on a 64-bit architecture. The variable = is the number of elements in the Vec/BitVec.
Both Vec and BitVec have a capacity (64 bits), length (64 bits), and a pointer to the heap where their elements
are stored (64 bits), for a total of 192 additional bits.

Type Size in bits

usize 64
Vec<T> 192 + = · B8I4> 5 ())
BitVec<Lsb0, u8> 192 + b=+78 c · 8

7.1 Naive Implementation

Variable objects are stored in the component in an array. A method object must map between variables in a
component and the sequence of input arguments to the method, and similarly for the outputs, the results of
the method. We begin by de�ning NaiveMethod, which has two vectors of indices (referring to variables of
the Component) that represent the method’s inputs and outputs.

struct NaiveMethod {

inputs: Vec<usize>,

outputs: Vec<usize>

}

With this simple representation, each Vec takes up a constant 192 bits, in addition to the indices contained
within them that take up 64 bits each.

De�nition 7.1.1 (Size of naive method). BI=< (') = 384 + |' | · 64

A NaiveConstraint is simply a container for Methods that all use the same variables.

struct NaiveConstraint {

methods: Vec<NaiveMethod>

}

It requires 192 bits for the Vec itself, in addition to the memory taken up by its |" | NaiveMethods.

De�nition 7.1.2 (Size of naive constraint). BI=2 (',") = 192 + |" | · BI=< (')

The current implementation of hotdrink-rs uses a variation of the naive strategy, but additionally
stores a Vec<usize> in each constraint for easy access to the variables that they use. This adds another 192
bits for the Vec, as well as 64 bits for each variable in the constraint.

De�nition 7.1.3 (Size of constraint in hotdrink-rs). BIℎ3AB (',") = 384 + 64 · |' | + |" | · BI=< (')

For context, we also show a possible de�nition of Component, which includes its size and constraints.
The size itself (the number of variables) only requires 64 bits, and assuming each constraint uses the same
number of variables gives us another |� | · BI=2 (',") bits. Finally, the Vec itself takes up 192 bits.

89

struct Component {

size: usize,

constraints: Vec<Constraint>

}

7.2 Representing Method Inputs and Outputs with Individual Bits

The �rst optimization is that we can operate on the bit-level instead of having an entire usize to tell which
variables are being used. That is, instead of having a vector of indices, we simply set the individual bits at
the corresponding indices. For instance, if we have 4 variables in a component and want to mark 0, 2, and 3
as inputs, we can represent the information with 4 bits. We set the bits at index 0, 2, and 3 to 1 to get 1011.

We can use the bitvec-crate [3] to simplify the process of storing individual bits. It allows us to create
BitVec, a Vec-like type that can store individual bits. For example, BitVec<Lsb0, u8> means that the
indexing starts at the least signi�cant bit (Lsb0), and that the underlying type used is Vec<u8>. In addition
to the 192 bits it requires when empty, an underlying type of u8 means that it will require more memory
in increments of 8: 0 additional bits to represent 0 variables, 8 additional bits to store 1–8 variables, 16
additional bits to store 9–16 variables, and so on.

Instead of having two separate BitVecs, we can use the same one for both inputs and outputs to avoid
doubling the constant 192 bits. We then use the �rst half of the bits for inputs and the second for outputs.
When the number of variables is low, e.g. 4, we can then �t all the indices in a single u8, instead of using
two where only 4 of the bits are used.

struct BitMethod {

ins_and_outs: BitVec<Lsb0, u8>

}

In addition to the bits used by a BitVec’s contents, we need 192 bits for the BitVec itself.

De�nition 7.2.1 (Size of bit-method). BI1< (') = 192 + b |' |+78 c · 8

By only changing the representation of method inputs and outputs, we may leave many bits unused.
For instance, let us say that there are 1000 variables in a component; we then require 2000 bits to mark
method inputs and outputs. With a constraint that only uses 5 variables, each method would leave 1990
bits unused, which leads to worse memory usage than the naive solution. We need to store which variables
the constraint uses, for instance in a Vec<usize>, and make the methods’ indices refer to the variables’
position in the constraint. See 7.1 for a visualization of the translation between constraint indices and
component indices.

De�nition 7.2.2 (Component index and constraint index). A variable’s index in its component is called
its component index. For each constraint the variable is involved in, its constraint index is its index in the
constraint.

90

For instance, a variable with index 10 in the component may have a constraint index 2 if it is the third
variable used in a constraint. A variable only has a constraint index in constraints it is used in, and can
have a di�erent one for each constraint.

struct ExtendedConstraint {

variables: Vec<usize>,

methods: Vec<Method>

}

Since we now add variables �eld with the indices of the variables involved in the constraint, our
ExtendedConstraint will require an additional |' | · 64 bits of memory, though it can now use BitMethods
instead of NaiveMethod to o�set this.

De�nition 7.2.3 (Size of extended constraint). BI42 (',") = 384 + |' | · 64 + |" | · BI1< (')

�><?>=4=C 0 1 2 3 4 . . . 99

�>=BCA08=C 0 2 4

"4Cℎ>3 8=?DCB 0 1 "4Cℎ>3 >DC?DCB 2

Figure 7.1: Variable lookup when using bit-indices. To �nd a variable’s component index, we �rst �nd out
which bit is set in the method inputs or outputs. If the third bit is set in the method’s inputs, the variable
has a constraint index of 2; we look at the third variable used by the constraint and �nd the value 4. Thus
the method reads from the variable with component index 4.

7.3 Representing Constraint Variables with Individual Bits

We can apply the same trick as we did to method inputs and outputs to the constraint itself. Instead of
having a list of indices indicating which variables it is using, we can use BitVec and mark the bits of the
component that are involved in the constraint.

struct BitConstraint {

variables: BitVec<Lsb0, u8>,

methods: Vec<Method>

}

A constraint will then use 192 + b |+ |+78 · 8c bits to represent its variables, instead of the previous |' | · 64
when using Vec<usize>.

De�nition 7.3.1 (Size of bit-constraint). BI12 (+ , ',") = 384 + b |+ |+78 · 8c + |" | · BI1< (')

91

7.4 Comparison

Above, we explored space-saving optimizations. Below, we analyze potential savings in typical scenarios,
and for di�erent constraint system sizes. Since we ignore stay constraints, we will assume that each
constraint involves at least 2 variables. We will then use at least 4 bits (2 inputs and 2 outputs) to represent
the variables used by a BitMethod. Each variable will thus take up at most 2 bits each, which simpli�es the
formula from BI1< (') = 192 + b |' |+78 c · 8 to BI1< (') = 192 + 2 · |' |. We apply the same reasoning to the
formula for the size of BitConstraint, BI12 . The formulas for calculating the size of the constraints are
then as follows:

384 + 64 · |' | + |" | · (384 + |' | · 64) (Current representation)

192 + |" | · (384 + |' | · 64) (Naive representation)

384 + |' | · 64 + |" | · (192 + 2 · |' |) (BitVec in methods)

384 + 2 · |+ | + |" | · (192 + 2 · |' |) (BitVec in constraints)

To make the math easier to follow, we rename |+ | to E , |� | to 2 , |' | to A , and |" | to<. We also reorder parts
of the formulae to get the following:

384 + 64A +< (384 + 64A)

192 +< (384 + 64A)

384 + 64A +< (192 + 2A)

384 + 2E +< (192 + 2A)

BitVec in methods vs. naive representation

We then compare the representations, starting with the naive representation and BitVec in methods.
Constraints must have at least one method to be able to be enforced, and can at most have a number of
methods equal to the number of variables; any more would mean that one method outputs to a subset of
another method’s outputs. The method with the fewest outputs would then always be chosen over the
other [73, p. 37]. Using BitVec to represent method inputs and outputs performs worse when there are few
methods: we start by analyzing the case where each constraint has A variables and 1 method.

384 + 64A +<(192 + 2A) < 192 +<(384 + 64A)

384 + 64A + 192 + 2A < 192 + 384 + 64A (m = 1)

64A + 2A < 64A (Subtract constants)

66A < 64A

92

In the result above, we see that even in the worst case, using BitVec to represent method inputs and outputs
only takes up 2A bits more than the naive representation.

To both simplify the calculations and to see how large the potential savings can become, we will assume
that the number of methods is about the same as the number of variables, i.e.,< = A .

384 + 64< +< (192 + 2<) < 192 +< (384 + 64<)

384 + 64< + 192< + 2<2 < 192 + 384< + 64<2 (Expand expressions)

384 + 256< + 2<2 < 192 + 384< + 64<2

192 + 256< + 2<2 < 384< + 64<2 (Subtract 192)

192 − 128< − 2<2 < 64<2 (Subtract 384<)

192 − 128< − 62< < 0 (Subtract 64<)

< < 1.007 . . . (Find positive root)

This shows that when a constraint has more than one pair of methods and variables, using BitVec to
represent method inputs and outputs is better than the naive representation. Most of the constraint systems
constructed in Chapter 6 have between 1 and 2 variables per method within each constraint. The only
exception is the random constraint system, which may have a single method no matter how many variables
there are, but tends to have around 4 variables per method.

BitVec in methods vs. current implementation

The current implementation of Constraint already has the variables �eld to avoid recomputing it from
method inputs and outputs, which means that the bene�t of minimizing memory consumption in methods
is even greater. Since we then have 192 more bits within Constraint to store the Vec, and |+ | · 64 to store
the variables, we end up with the following inequality instead (bit indices in methods on the left, actual
implementation on the right). We again replace A with< since they are likely to be similar.

384 + 64< +< (192 + 2<) < 384 +< (384 + 64<)

384 + 64< + 192< + 2<2 < 384 + 384< + 64<2 (Expand expressions)

384 + 256< + 2<2 < 384 + 384< + 64<2

256< + 2<2 < 384< + 64<2 (Subtract 384)

−128< − 2<2 < 64<2 (Subtract 384<)

−128< − 62<2 < 0 (Subtract 64<)

< < 0 (Find positive root)

Since< is always positive, we will always save memory compared to the current implementation.

93

Table 7.3: Relative bits used to store a component per number of methods. The number of variables in the
component is 50, and the number of variables per constraint is the same as the number of methods.

1 method 5 methods 20 methods 50 methods

hotdrink-rs 896 4224 34944 182784
Naive 640 3712 33472 179392
BitVec in methods 642 1714 6304 18184
BitVec in constraints 678 1494 5124 15084

BitVec in constraints vs. BitVec in methods

We continue by comparing the usage of BitVec in methods with using it in constraints as well. This time,
the result is independent of<, which makes replacing A with< an unnecessary simpli�cation.

384 + 2E +< (192 + 2<) < 384 + 64A +< (192 + 2<)

2E +< (192 + 2<) < 64A +< (192 + 2<) (Subtract 384)

2E < 64A (Subtract< (384 + 2<))

E < 32A (Divide by 2)

This result shows that we save memory as long as the total number of variables in the component is less
than 32 times the number of variables per constraint. For instance, if each constraint uses 5 variables,
we will save memory up until we have 160 variables in the component. That is, while using BitVec to
represent variables used by constraints saves memory in smaller constraint systems, we want to optimize
memory usage in large constraint systems (thousands of variables).

Table 7.3 and Table 7.4 show how much memory each representation consumes depending on the
number of variables and methods per constraint, and a plot of nearly the same data (limiting the number of
variables and methods) can be seen in Figure 7.2. In addition, to see what the comparison would look like if
A and< can be di�erent, see Figure |7.3. Based on our own experience, it is rare to create constraint systems
with more than a few (2–5) variables and methods per constraint, while programmatically generated
constraint systems easily reach thousands (or hundreds of thousands) of variables in total. To optimize this
kind of system, limiting usage of BitVec to methods appears to be the optimal strategy. Based on the data
in Table 7.3, it can reduce the required memory consumption of components by more than 53% if there
are 5 variables and 5 methods per constraint, and over 80% if there are 20 variables and 20 methods per
constraint.

7.5 Drawbacks

While the bene�ts to memory usage are clear, the space-saving strategies are more complex to implement.
With the naive solution, one could simply inspect the inputs and outputs of methods to �nd out which

94

Table 7.4: Relative bits used to store a component per number of methods. The number of variables in the
component is 10000, and the number of variables per constraint is the same as the number of methods.

1 method 5 methods 20 methods 50 methods

hotdrink-rs 896 4224 34944 182784
Naive 640 3712 33472 179392
BitVec in methods 642 1714 6304 18184
BitVec in constraints 20578 21394 25024 34984

Figure 7.2: A plot of the memory usage per strategy. The memory usage of the currently implemented
strategy and the naive strategy grows quite quickly when the number of variables and methods per
constraint increases. The constant factor included when using BitVec in constraints causes memory usage
to be high early on. This leaves using BitVec in methods as the optimal strategy.

95

Figure 7.3: A comparison of naive strategy and using BitVec in methods. This is a more accurate represen-
tation that takes into account that A and< are separate variables. Its three-dimensional nature can make
the plot di�cult to understand; run computing/memory_usage_plot_3d.py to interact with it.

96

variables of a component they use, without having to translate bit indices through a constraint. To implement
the change, the Method API (or how it is used) must change. Some possible solutions include

1. having the inputs and outputs methods require a constraint that can interpret the set bits,

2. only being able to access method inputs and outputs through a constraint,

3. or manually performing the translation when checking the set bits of the method.

In addition to changing the API, the extra translation may also a�ect performance; to �nd the component
indices of variables used by a method we must now check each individual bit of its inputs and outputs.
Using set bits to mark used variables is thus a trade-o� between memory usage and performing additional
work, and must be evaluated further before deciding if it is worth it. Exactly how to implement this — if at
all — is yet to be decided.

97

Chapter 8

Discussion

This section describes some of the positive and negative experiences of implementing hotdrink-rs,
hotdrink-wasm and hotdrink-c with Rust and WebAssembly. It also discusses how the �nal implementa-
tion turned out, and the results found in the performance analysis in Chapter 6.

8.1 Rust

Overall, Rust and its associated tooling o�ers a productive development environment. Some parts of the
implementation may have been more di�cult because of the choice of language, but it has resulted in a
signi�cantly faster implementation for many constraint systems. The following sections describe more
speci�c advantages and disadvantages of the language in the context of our work.

8.1.1 Strict Type System

Many other implementations of constraint systems use languages that do not require types to be known at
compile-time, such as the implementations of HotDrink in Flow and TypeScript, QuickPlan implemented
in Common Lisp[73, p. 62], and ConstraintJS in JavaScript [41]. However, implementations of Blue and
DeltaBlue exist in Smalltalk, C, C++, Object Pascal, and Common Lisp, so this does not always apply.
TypeScript and Common Lisp can use type annotations for static type checking, but make it easy to use
dynamic typing where it is necessary.

Rust is a statically, strongly typed language, which introduces a few pain points when implementing
heterogeneous data structures. For instance, supporting methods with an arbitrary amount of arguments
as seen in Section 8.1.2, or methods with inputs and outputs of multiple types as seen in Section 8.1.3.

The type system and tooling (such as the compiler, clippy, and the language servers) also provide a
number of bene�ts. First of all, Rust’s type system guarantees that type errors are caught at compile-time.
This proved especially useful during large-scale refactoring of the library. For instance, when changing the
type signature of a function, the library will no longer compile until all uses have been modi�ed to support

98

the change. Ensuring that all uses are updated after such a change can quickly become a monumental task
in a dynamic language where errors resulting from the change will not be detected until runtime (if at all),
unless the change is supported by refactoring tools [55, p. 1].

Another bene�t of types is that they serve as a form of documentation that makes it easier to use the
library correctly. Combined with a language server that provides information about which types and data
structures are available, types become a huge help for both users and developers of the library.

Since Rust does not have a garbage collector and allows low-level control of memory, there are many
decisions to make that a�ect large parts of the codebase. For a simple value, we need to know what part
of the program should own it, and then ensure that we only use references to it where the compiler is
convinced that the reference is still valid. If there is no clear owner, and we want multiple parts of the
program to maintain references to it, then we may want to choose a Rc, a reference counted pointer. If we
want to share the value among multiple threads, we must use an atomically reference counted pointer (an
Arc) instead, to make sure that the count is incremented atomically. If multiple threads should be able to
modify the value, then we must allow interior mutability, e.g., with Arc<Mutex<T>> or Arc<RwLock<T>>.
All of these decisions often propagate through the program, and while it ensures that we share data safely,
it can quickly complicate the various APIs.

8.1.2 Methods With an Arbitrary Number of Arguments

Unless we generate a separate struct for each method we use, we must make the single Method struct general
enough to represent all possible methods. If we have to represent<1 : 0 → (1, 2) and<2 : (1, 2) → 0 with
the same data structure, then we could for instance use a Vec.

struct Method<T> {

ins: Vec<usize>,

outs: Vec<usize>,

f: fn(Vec<T>) -> Vec<T>,

}

By using Vec we make the inner function more general, at the cost of losing compile-time errors when the
method is called with the wrong number of arguments.

8.1.3 Methods With Arbitrary Return Types

To represent a method that takes both an integer and a string as input, we can use sum types as the value
type in the constraint system. This would make Method<IntOrString> the type we are looking for, without
having to change the internal representation of a method. Doing this in a dynamically typed language is
again much simpler since nothing stops us from passing in and returning any type.

99

8.1.4 Variable Access

In languages like JavaScript and Python, each component can have a �eld for each variable they contain.
This means that the variables could be accessed like comp.a and comp.b instead of using strings for indexing
like in comp.variable("a") in hotdrink-rs. While the availability of a variable is checked at runtime in
either implementation, the Rust implementation returns an Option to signify that the variable may not
exist.

In order to get compile-time errors when accessing variables, we can instead generate a separate struct
for each component, though this would require that the component cannot have new variables added
during runtime. Doing this would also require many changes to the existing implementation to support the
di�erent component data structures, but may be worth investigating further.

8.1.5 Multithreading in Rust

Rust is built with good support for parallelism in mind, and it uses its ownership system to catch concurrency
errors at compile-time [11]. For instance, erroneous usage of data that is not safe to pass between threads
(is not Send), or does not synchronize access (is not Sync), will result in a program that fails to compile.
This forces usage of atomically reference counted values (Arc) for shared data that needs to live until all
threads are done with it, or wrapping of values in a Mutex if multiple threads need to modify the value.
Rust has been very helpful in implementing the parallel solver correctly.

8.2 WebAssembly

While creating a simple Rust project that compiles to WebAssembly is made relatively easy with
wasm-bindgen, introducing parallelism has complicated matters a great deal. WebAssembly is still being
worked on, and information about it and related projects can sometimes quickly become outdated; this was
especially noticeable with information on how to implement Web Worker-based threads. Knowing exactly
what still applies can be di�cult, like in Alex Crichton’s article on multithreading with Rust and Wasm [8]:
Spectre and Meltdown’s e�ect on SharedArrayBuffer has changed the speci�cation a lot in the last few
years [59].

8.2.1 Multithreading with Web Workers

Using Web Workers for multithreading is far from as straightforward as using Rust’s standard library.
First of all, wasm-pack must be run with the --target no-modules option, which makes the compiled
WebAssembly more di�cult to use, as it is no longer a JavaScript module (though a shim generated with
wasm-bindgen exports a symbol of the same name that can be used to make the process easier). Additional
document headers must also be set to enable usage of SharedArrayBuffer [59]. Finally, a thread-like
wrapper must be built around web_sys::Worker, and a script for them to run must be included. While

100

there are a few libraries that implement this wrapper already, as mentioned in Section 4.6.2, they do not
allow cancellation of threads; we therefore made our own implementation.

Another issue is that the types wasm_bindgen::JsValue and js_sys::Function cannot be sent be-
tween threads; this has complicated the design of hotdrink-wasm, as discussed in Section 4.7. Exposing
Rust types to JavaScript only works for ones that are compatible, or are contained within a wrapper-struct
that hides them, such as the constraint system wrapper. This complicates the process of creating WebAssem-
bly-compatible bindings in some cases, but the same applies when creating bindings for other languages,
such as C, and may be unavoidable.

8.2.2 Cancellation

Di�erent thread implementations have the capability of canceling threads, such as the pthread speci�cation
with pthread_cancel [43], Worker.terminate() for Web Workers in Javascript [88], or Thread.stop in
Java [27]. Adding the same capabilities to Rust has been suggested [69], but has been rejected for many of
the same reasons for why Java’s Thread.stop was deprecated [27]: canceling threads causes many issues
that are di�cult to deal with.

Breaking invariants If a thread can be canceled at any point, then it may also happen during an operation
that maintains some data invariant. It could for instance happen while modifying some shared data,
or while writing to a �le, in which case data may become corrupted [44].

Failing to free resources If the thread is immediately stopped instead of letting the thread �nish on its
own, it may not free all the resources it is supposed to. This does not only apply to memory, but also
mechanisms for sharing memory safely, such as locks. A locked mutex may then never be unlocked,
which may cause a deadlock to occur.

However, these issues do not usually apply to Web Workers. Once a worker is terminated, the script it
is running will be aborted, and any resources will eventually be garbage collected [9, 67, 1]. Web Workers
tend to use message passing with channels to communicate with the main thread, and thus do not require
locks since there is no shared data. Being canceled in the middle of a computation means that no values are
ever sent to another thread, which means that the corruption does not spread. They cannot modify the
Domain Object Model (DOM) either, leaving them isolated and safe to terminate.

However, this changes when we introduce SharedArrayBuffer, which is used to share memory used
by WebAssembly. This enables memory sharing in the Web Worker-based thread implementation in
hotdrink-wasm, and re-introduces the issues with cancellation. Since Rust has no concept of a thread exit,
the thread’s stack will also remain, which causes a memory leak [8].

All of these issues may indicate that using thread cancellation to forcibly stop user code may cause
more problems than it solves.

101

8.3 Implementation and Results

This section discusses the �nal implementations of hotdrink-rs and hotdrink-wasm, and how the results
answer our research questions.

8.3.1 Features and API

Other than parallel solving, undo and redo, there are few new features that do not exist in earlier im-
plementations of HotDrink. There are not many deliberate changes to the API of the library either: the
changes that have been made are often there to make it work in Rust and WebAssembly, and not to improve
ergonomics. One example of this is that modi�cations to the system should always be made through a
ConstraintSystem or Component; modifying a Variable directly will neither notify the constraint system
of the change nor update the priority of the variable. Another example is subscription to variables through
the constraint system wrapper as described in Section 9.8. A lot more work can be done to make the API
more user-friendly.

8.3.2 Performance

In the introduction of this thesis, we asked how much the library’s performance could be improved with Rust
and WebAssembly. With the benchmarks from Section 6.6, we see that hotdrink-rs can be many times
faster than earlier implementations in systems where the pruning optimization technique is applicable. On
the other hand, it performs poorly on systems where it cannot take advantage of pruning. The incremental
planners, however, appear to do the exact opposite: they perform well on the unprunable system and worse
on the others. This suggests that the two optimization techniques should not be thought of as replacements
of one another, but should rather be used together to ensure good performance for all systems. Making the
planner implementation in hotdrink-rs incremental is thus likely required to guarantee that it is much
faster than the earlier implementations for all systems. Note that in hand-crafted constraint systems with
less than a hundred variables, the time it takes to create a plan is already negligible, even in the worst case.
Thus, for most practical purposes, the relatively bad performance on unprunable systems is not a problem.

There are many di�erences between the di�erent implementations, such as the language, execution
environment, optimization techniques, and the exact implementation of the planning algorithm. It is
thus di�cult to know exactly how much each of these contributed to the di�erences in performance.
The execution environment factor (e.g., a web browser) can be eliminated by compiling hotdrink-rs to
WebAssembly; the di�erence this makes can be seen in Figure 6.10. Further comparisons of individual parts
of the algorithms can be made to remedy this limitation of our work.

8.3.3 Responsiveness

We also asked if we could guarantee GUI responsiveness during solving, and have attained partial success.
With constraint satisfaction methods being executed outside of the main thread, we guarantee that the user

102

code in methods does not block the GUI. The user is free to make further modi�cations, which can even
cause irrelevant computations to be canceled. However, the planning step is still executed on the main
thread; a constraint system of su�cient size may take long enough to plan for to create a noticeable delay
for the user. Other limitations include the issues with cancellation as discussed in Section 8.2.2, and extra
overhead from having multiple threads running.

Overall, the solution appears to succeed in its goal of guaranteeing responsiveness in the presence
of long or non-terminating computations in methods, given that the planning step completes within the
desired time frame. To improve upon the guarantee, the planning step itself could also be done in another
thread in future versions of the library.

8.3.4 Memory-E�cient Data Structures

While not implemented in hotdrink-rs, the new data structures introduced in Chapter 7 can provide
a substantial decrease in memory consumption; speci�cally, they can halve the memory consumption
in systems with �ve variables and methods per constraint, and save even more memory as this number
increases. During our work on optimizing the planning algorithm of hotdrink-rs, we found that using
less memory could often give a greater speedup than trying to cache results of computations. Using the
new representations of constraint systems could thus not only save memory but also provide performance
bene�ts.

103

Chapter 9

Future Work

Our exploration of constraint system GUIs has opened up many new avenues for further study. This
chapter includes further enhancements that we believe may be useful to implement for hotdrink-rs and
hotdrink-wasm. For instance, making the planner incremental would likely improve planning time for
unprunable constraint systems, and smarter scheduling of methods would increase how many computations
actually run in parallel during solving.

9.1 Planner Optimization

We �rst describe improvements to planning.

9.1.1 Making the Planner Fully Incremental

While hotdrink-rs performs well in constraint systems where it is possible to use pruning, it falls short of
the incremental implementations in constraint systems such as the unprunable one. By making the planner
fully incremental, as described in Zanden’s paper about QuickPlan [73], hotdrink-rs will likely be much
faster than the Flow and TypeScript implementations for all constraint systems.

A drawback of incremental planning is that we would have to store information about the latest solution,
which would increase the memory consumption, but the impact is small — at at most doubling the memory
size requirement for the non-incremental planner. The e�ect this will have on the performance of the
planner must still be researched.

9.1.2 Minimizing Allocation

The hierarchical planner currently requires the constraint system to be mutable in order to add stay
constraints and prune the system. Since we do not want the hierarchical planner to modify the original
constraint system, we create a clone instead. This, as well as all intermediate plans that are created by the
simple planner, require a lot of unnecessary allocation that slows down the planning.

104

Figure 9.1: Flamegraph of the simple planner on the unprunable system.

We could solve the former issue by creating a mutable wrapper around an immutable constraint system
to keep track of stay constraints and pruned parts, or simply allow the system to be mutated in a way that
can be undone after planning. To improve the simple planner, a version that does not store the plan but
simply checks if a plan exists would likely speed up the process. Actually constructing the plan is only
necessary to do once.

9.1.3 Reusing Variable Reference Counts

The current implementation of the simple planner stores information about how many constraints still
reference variables. This is done to be able to check in constant-time which variables are free. The issue is
that this data is re-computed for each call to the simple planner; computing it in the hierarchical planner
and gradually modifying it would likely speed up solving, especially in unprunable systems that call the
simple planner many times. As seen in Figure 9.1, the count_variable_refs function can take up nearly
half of the time spent in the simple planner.

9.2 Improved Scheduling

While the current planner respects data dependencies to maintain correctness, it does nothing to maximize
parallelism. In a chain-shaped plan such as the one in Figure 9.2, one task is created per method, even
though the inputs of<2 depend on the output of<1. This means that the second thread is idle until the
�rst completes. Depending on the structure of the dependency graph formed by the plan, this thread could
have been used for performing other useful work instead.

A task in this context is just a unit of work, which will eventually be executed by a thread once one is
ready. Even with a limited number of threads, an arbitrary amount of tasks can be scheduled by placing
them in a queue until they can be executed. In the current implementation, a task corresponds to the
execution of a single method, while smart scheduling may require that a task involves execution of multiple
methods in sequence. Let the plan be the one seen in Figure 9.3. With the current scheduler, <3 could
be scheduled right after <2, in which case the second computation would not be able to start anyway.
Meanwhile, the green or blue path could have been computed instead. In this example, the �rst task that

105

Figure 9.2: Scheduling a chain is done ine�ciently, with one task per method even when one is dependent
on another. The second task will then have to wait for the �rst to complete, wasting a thread.

Figure 9.3: In a plan such as this one, a smarter delegation of tasks can be used to (1) execute the plan faster
and (2) use fewer threads to do so.

must be completed is<1, followed by three separate tasks:

1. <2 then<3

2. <4 then<5

3. <6 then<7

Then �nally the last task, the execution of<8.
By combining the execution of multiple methods into one task, we only require three threads to always

compute all paths in the DAG in parallel, while the current solution may schedule the entire blue and green
paths before starting the red path. In this case, if we are using 4 threads that compute<2,<3,<4 and<5,
then only<2 and<4 execute in parallel. Then, when one of them completes, the computation of<6 will
start.

This issue becomes worse the longer the chains are: with three chains of length = each, the entire �rst
chain may be computed sequentially, followed by the second, then the third. This negates half the point of
using multithreaded method execution1, and would be very nice to avoid.

9.2.1 Breadth-First Scheduling

As long as the plan is still topologically ordered, we can modify its order as we please. By scheduling
methods in a breadth-�rst manner, we prioritize methods with few dependencies.

Continuing with the example from Figure 9.3, we can change the plan from [<1,<2,<3,<4,<5,<6,<7,<8]
to the equally valid plan [<1,<2,<4,<6,<3,<5,<6,<8]. The latter is created by performing a breadth-�rst
search through the solution graph from root-methods, i.e., methods with no dependencies. We now schedule
methods with the fewest dependencies �rst, instead of wasting a thread on a method that must wait for its

1The other one being that the main thread is not blocked.

106

inputs to be computed. In the previous plan,<2 and<3 are scheduled successively, even though<3 cannot
make progress until<2 is done. In the new plan, we schedule<2 and<4 successively instead, which lets us
execute them in parallel.

To implement this, start by maintaining a count of the references to each method. Schedule all methods
with zero references, then for each one, decrement the reference count of all methods that depend on them.

let scheduled: Queue = [];

for m in plan {

if m.refs == 0 {

schedule(m);

scheduled.enqueue(m);

}

}

while !scheduled.is_empty() {

let m = scheduled.dequeue();

for d in m.dependents {

if d.refs == 1 {

schedule(d);

scheduled.enqueue(d);

}

d.refs -= 1;

}

}

The �rst step works since there are no inputs for the methods to wait for. Once there are none with no
dependencies left, we must move on to scheduling ones that have one dependency. If we look at the
dependencies of the methods just scheduled and �nd one with one reference, then we know that the current
method is the only one it depends on. We can thus schedule it and decrement its reference count to zero.
The methods that did not have a count of one must depend on other methods we must schedule �rst.
Continuing the search from the newly scheduled methods lets us traverse the DAG further, repeating the
process.

9.2.2 Multi-Method Tasks

Instead of having tasks consist of executing a single method, we can combine independent chains into larger
tasks. This approach would require a lot more changes to the current implementation. In the previous
example, we would instead have the �ve tasks below:

1. <1

2. <2,<3

107

3. <4,<5

4. <6,<7

5. <8

Each of these combined tasks would be scheduled as usual.
Any valid plan would start with task 1 to maintain topological ordering, but any ordering of the three

that follow are valid. With this solution, we would not schedule tasks that depend on other non-completed
tasks unless required, and each thread would compute the entire chain in one go instead of splitting it
between threads.

9.2.3 Deferred Scheduling

The above scheduling strategies do not take the execution time of tasks into account. This means that they
may end up scheduling tasks that can only be executed after a long time. If we instead let tasks schedule
their dependencies upon completion, tasks will never be scheduled until they can actually be executed.

For instance, if we have two chains [0, 1, 2] and [3, 4, 5], then the breadth-�rst scheduling strategy with
four threads would assign threads to 0 and 3 followed by 1 and 4 . If 3 is very slow, then the thread assigned
to 4 will be idle for a long time. What we could do instead is to schedule all methods with no dependencies
�rst (roots), then add a callback for them to call upon completion. This callback would decrement the
dependency counter of the method’s dependents, and if they have no dependencies left then they are
scheduled. For the previous two-chain example, this would mean that 0 and 3 are scheduled, and upon 0’s
completion, 1 is scheduled. If 1 completes before 3 then 2 will be scheduled. Once 3 actually completes, 4 is
scheduled, but no work was wasted on it before it could actually be computed.

Note that some extra care must be taken when implementing this in a multithreaded context. Say two
threads complete task 1 and task 2 respectively, both of which are dependencies of task 3. If both threads
decrement task 3’s counter at the same time, then it will be 0 for both of them, which makes both threads
schedule the task. This can be corrected by using the atomic operation fetch_sub that decrements the
value, then returns the previous one.

It is also important that we do not schedule any tasks before having set all callbacks, as this could
result in some tasks never being scheduled. An example of this is if we have three tasks 0 → 1 → 2: 0 is
scheduled �rst since it is a root, and upon completion, it schedules 1. If 1 completes before its callback is
set, then 2 is never scheduled. A solution to this is to set all callbacks before scheduling any tasks.

The scheduler is not implemented in hotdrink-rs, but an experimental implementation of the algorithm
exists. The implementation can be found in the repository under hotdrink-rs/examples, and can be
run using cargo run --example deferred_scheduling. If more details about the execution is desired,
logging can be enabled with by setting the environment variable RUST_LOG to info or trace.

108

Algorithm 2: DeferredScheduling
Input: A plan

1 A>>CB = ∅;
2 for < ∈ ?;0= do

/* Find root tasks */
3 if m.deps_left = 0 then
4 A>>CB ← ∪ {<};
5 end

/* Set callback to schedule dependents */
6 begin m.on_completion
7 for 3 ∈<.34?4=34=CB do
8 if d.deps_left.fetch_sub(1) = 1 then
9 B2ℎ43D;4 (3);

10 end
11 end
12 end
13 end

/* Schedule root tasks */
14 for A ∈ A>>CB do
15 B2ℎ43D;4 (A);
16 end

9.3 Using Procedural Macros for the Component DSL

While it may be possible to add more compile-time checks to the declarative component! macro, we believe
a better approach would be to turn it into a procedural macro [42, 71]. Declarative macros are limited in
what they can express, e.g., they cannot easily compare identi�ers, something which procedural macros
have no problem with.

The �rst issue with the existing macro is that many type annotations must be repeated unnecessarily.
Though the programmer knows that the concrete type of i is i32, the compiler loses this information when
the value is stored as an enum variant; while the type can be detected during runtime, the code has already
been generated by the macro, and no compile-time errors are provided to the programmer.

// Compile-time information about i's type is lost

let i: i32 = 5;

let ios: IntOrString = IntOrString::Int(i);

// Must now use ios as IntOrString, not i32

// We can check at runtime

match ios {

IntOrString::Int(i) => ...,

109

IntOrString::String(s) => ...,

}

A similar issue would apply when using the Any trait, except that we do not even know the possible variants.

let i: i32 = 5;

let any: Box<dyn Any> = Box::new(i);

// We can check if it has a specific type at runtime

match any.downcast::<i32>() {

Ok(i) => ...,

Err(e) => ...,

}

You can see an example of the redundant type annotations below. The programmer must specify types
in method parameter lists, even though they have already done so in the variable declarations.

component Component {

let i: i32, s: String;

constraint C {

m(i: &i32) -> [s] = ret![...]

m(s: &String) -> [i] = ret![...]

}

}

With a procedural macro, the Abstract Syntax Tree (AST) of the macro contents can be modi�ed program-
matically, which removes the need for type annotations in method parameter lists. This removes a whole
class of possible user errors from the macro since users can no longer use wrong type annotations.

It may also be possible to assert that the method body returns a value of the correct type at compile-time,
guaranteeing that the concrete type of a variable does not change. For instance, the current implementation
allows erroneous code such as this:

component Component {

let i: i32, j: i32, s: String;

constraint C {

m(i: &i32) -> [j] = ret![String::from("abc")];

}

}

This code is accepted because the String has an Into implementation that allows it to be converted to the
enum used to store values in this component. However, the concrete type of j will now change, which
leads to a runtime error if an attempt to use it as &i32.

110

9.4 Undo and Redo in Mutable Constraint Systems

The current implementation of undo and redo is experimental and mainly serves to demonstrate another
bene�t of letting the constraint system control all variable values.

An issue with the current implementation is that it does not take modi�cations to the constraint system
into account; adding a new constraint and then undoing the latest change will revert variable values, but
not remove the newly added constraint. This could lead to the latest added constraint being broken. To �x
this, undo and redo must not only modify variable values, but also ensure that the state of the constraint
system itself matches the selected generation.

9.5 Dynamic Constraint System Construction

The component! macro makes it much easier to create components, but there are no macros for creating
individual constraints and methods. Consequently, dynamic construction of constraint systems (adding
new constraints during runtime) requires knowledge about how to create objects of these types. Boilerplate,
such as automatic conversion of method inputs and wrapping of method outputs, must also be implemented
manually.

An issue with having macros for individual constraints and methods is that they do not have access to
the variables or types from the outer component, which could limit its capabilities.

9.6 Pre- and Postconditions

An interesting subject for further study is pre- and postconditions for constraints, or even for individual
methods. The main motivation for support for pre- and postconditions would be to enable automated
testing of methods, as well as to o�er a way of specifying the constraint to be maintained explicitly in
code. In the current implementation, constraints are only de�ned by how their methods are implemented;
there is no guarantee the methods enforce the intended relation between variables. See the erroneous
implementation of the Sum constraint below.

// a + b = c

constraint Sum {

m(a: &i32, b: &i32) -> [c] = ret![a - b];

m(a: &i32, c: &i32) -> [b] = ret![a - c];

m(b: &i32, c: &i32) -> [a] = ret![b + c];

}

The code actually enforces the constraint 0 = 1 + 2 , not 0 + 1 = 2 , but unless this is tested, the mistake may
go unnoticed. There is thus a discrepancy between the intended constraint written as a comment, and the
one actually enforced by the method implementations.

111

To �x this, we could implement postconditions by adding assertions to constraints, or even individual
methods.

// Example syntax

@postcond(a + b == c)

@testcase(a=1, b=2, c=3)

constraint Sum { ... }

By verifying that the postcondition holds after each method execution, the programmer could be noti�ed if
the constraint is not enforced after solving. We would thus have a form of testable documentation that is
veri�ed during runtime. This could also be extended with test case annotations that generate tests to be
run by cargo test.

Postconditions could also be used for solver optimization: if a postcondition already holds, then there
is no reason to re-enforce the constraint (unless the method has side e�ects). Con�guration of when to
check postconditions could be added; checking for errors could for instance only be used if the library was
compiled in debug mode.

Preconditions could also be useful: when values are expected to satisfy certain requirements before the
constraint is enforced, a precondition could be added to verify it. If methods would receive invalid values,
an error could be reported to the user.

@precond(is_valid_email(s), "The supplied email is not valid")

constraint ConstraintInvolvingEmail { ... }

This is already possible by conditionally using the fail! macro in a method, but requires the logic to
be duplicated through all the method bodies. Another possibility would be to create a separate validator
constraint:

constraint EmailIsValid {

// Alternative 1, may fail with `fail!`

m(s: String) -> [s] = { ... }

// Alternative 2, sets a status flag

m(s: String) -> [s_status] = { ...}

}

The �rst alternative would automatically propagate the error to all methods that use the result. The second
provides more �exibility, but the programmer must manually check the status �ag.

9.7 Enabling and Disabling Components

Users may perform actions that make parts of a GUI irrelevant, for instance checking a checkbox. If this
part is modeled as a component, it should be made easy to disable all widgets for variables within it to show

112

the user that they have no e�ect. For the programmer to do this manually, they would have to keep track
of all relevant variables, and connect the widgets to the controls for enabling and disabling the component.
The component itself already knows which variables it contains, so this results in the programmer having
to do redundant work. A better alternative is to have two methods enable and disable implemented for
components, which will then automatically send an event to all of its variables. The programmer would
only have to decide when to call the methods, and then handle one additional event type for variables.

9.8 Improvements to Subscribing from JavaScript

Currently, subscribe function in the constraint system wrapper takes one argument per callback, such as
the pending-, ready-, and error-callbacks. It may not be clear to the programmer which argument correlates
to which callback, and ignoring an event type sometimes requires explicitly ignoring it by setting its handler
to undefined. The following example demonstrates how the three callbacks can be speci�ed.

comp.subscribe("a",

v => { ... }, // handle ready-events

undefined // explicitly ignore pending-events

// implicitly ignore error-events

);

The programmer can provide fewer arguments to implicitly ignore setting trailing callbacks. Callbacks less
likely to be provided should therefore be last, which is why the ready-callback is the �rst parameter.

It would likely be much more ergonomic to allow the programmer to pass in an object with only the
event handlers they want:

comp.subscribe("a", {

on_pending = () => { ... },

on_ready = () => { ... },

on_error = () => { ... },

});

Any unspeci�ed callbacks are interpreted as not wanting to handle that speci�c event. If future imple-
mentations add more events, the current solution requires even more arguments, which would not be
backward-compatible if the order changes. By using an object instead, the programmer would not have to
make any changes unless they wanted to handle the new events.

The reason why we do not do this already is that wasm-bindgen does not support conversion of objects
to an appropriate struct such as a HashMap.

#[wasm_bindgen]

pub fn subscribe(..., callbacks: HashMap<String, Function>) { ... }

113

However, by serializing the data with serde or serde-wasm-bindgen it should be possible to get this to
work as desired [58, 56, 57].

114

Chapter 10

Conclusion

In this project, we have explored the design space of constraint-based GUI programming for web applications.
In particular, we have focused on static typing and multithreading. Concretely, we implemented a new
version of HotDrink with Rust and WebAssembly, examined its performance and responsiveness-guarantees,
and compared it to earlier implementations.

We compared the planning algorithm of hotdrink-rs with two previous implementations and found
that our implementation is several orders of magnitude faster on systems where the pruning optimization
technique is applicable. On the other hand, the incremental planning algorithms of the previous implemen-
tations can be much faster in constraint systems where this is not the case. This indicates that pruning
alone is not su�cient to provide good performance for all constraint systems, and that making the planner
incremental may be an optimization that is worthwhile to implement.

hotdrink-rs also supports running constraint satisfaction methods in parallel, which guarantees
responsiveness in the face of slow (or even non-terminating) computations. It is compatible with both
Rust’s standard library threads when compiling to native instructions, as well as Web Worker-based threads
when compiling to WebAssembly. The Web Worker-based threads can also be canceled in order to avoid
computing results that are no longer required.

Finally, we also present new data structures for storing constraints and methods that can roughly
halve the memory consumption for the constraint systems used in our benchmarks, and save even more in
constraint systems with more variables and methods in each constraint.

115

Glossary

API Application Programming Interface. 15, 16, 18, 20, 22, 25, 26,
27, 44, 50, 99, 102

AST Abstract Syntax Tree. 110

crate A Rust package. 61, 71, 90

DAG Directed Acyclic Graph. vi, 106, 107
DFA Deterministic Finite Automaton. 13
DOM Domain Object Model. 101
DSL Domain-Speci�c Language. 4, 5

eDSL Embedded Domain-Speci�c Language. 16

GUI Graphical User Interface. i, 1, 2, 3, 4, 7, 8, 12, 13, 14, 38, 56,
57, 59, 60, 64, 65, 66, 68, 79, 102, 103, 104, 112, 115

item Functions, types, etc. in Rust. 15

WebAssembly A binary instruction format that can be executed in a web
browser. 5, 44, 45, 48, 49, 50, 51, 54, 55, 60, 77, 101

116

Bibliography

[1] Abort a running script. url: https://html.spec.whatwg.org/multipage/webappapis.html#
abort-a-running-script (visited on 2021-07-14).

[2] Adam and Eve. url: http://stlab.adobe.com/group__asl__overview.html (visited on 2021-06-
13).

[3] bit-vec. url: https://crates.io/crates/bit-vec (visited on 2020-10-27).

[4] Box::leak. url: https://doc.rust-lang.org/std/boxed/struct.Box.html#method.leak
(visited on 2021-06-15).

[5] cargo-�amegraph. url: https://github.com/flamegraph-rs/flamegraph (visited on 2021-07-09).

[6] concat_idents. url: https://doc.rust-lang.org/std/macro.concat_idents.html (visited on
2021-07-23).

[7] ConstraintJS. url: https://soney.github.io/constraintjs/ (visited on 2021-06-14).

[8] Alex Crichton. Multithreading Rust and Wasm. Oct. 24, 2018. url: https://rustwasm.github.io/
2018/10/24/multithreading-rust-and-wasm.html (visited on 2021-01-14).

[9] Dedicated workers and the Worker interface. url: https://html.spec.whatwg.org/multipage/
workers.html#dom-worker-terminate-dev (visited on 2021-07-14).

[10] Ensure that JsValue isn’t considered Send. url: https://github.com/rustwasm/wasm-bindgen/
pull/955 (visited on 2021-06-29).

[11] Fearless Concurrency. url: https://doc.rust-lang.org/book/ch16-00-concurrency.html
(visited on 2021-07-14).

[12] Flow. url: https://flow.org/ (visited on 2021-06-02).

[13] Charles Gabriel Foust. “Guaranteeing Responsiveness and Consistency in Dynamic, Asynchronous
Graphical User Interfaces”. en. Accepted: 2016-07-08T15:06:17Z. Doctoral dissertation. Texas A &
M University, Jan. 2016. url: https://oaktrust.library.tamu.edu/handle/1969.1/156821
(visited on 2020-10-21).

[14] Charles Gabriel Foust. HotDrink in TypeScript. url: https://github.com/HotDrink/hotdrink
(visited on 2021-06-02).

117

https://html.spec.whatwg.org/multipage/webappapis.html#abort-a-running-script
https://html.spec.whatwg.org/multipage/webappapis.html#abort-a-running-script
http://stlab.adobe.com/group__asl__overview.html
https://crates.io/crates/bit-vec
https://doc.rust-lang.org/std/boxed/struct.Box.html#method.leak
https://github.com/flamegraph-rs/flamegraph
https://doc.rust-lang.org/std/macro.concat_idents.html
https://soney.github.io/constraintjs/
https://rustwasm.github.io/2018/10/24/multithreading-rust-and-wasm.html
https://rustwasm.github.io/2018/10/24/multithreading-rust-and-wasm.html
https://html.spec.whatwg.org/multipage/workers.html#dom-worker-terminate-dev
https://html.spec.whatwg.org/multipage/workers.html#dom-worker-terminate-dev
https://github.com/rustwasm/wasm-bindgen/pull/955
https://github.com/rustwasm/wasm-bindgen/pull/955
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://flow.org/
https://oaktrust.library.tamu.edu/handle/1969.1/156821
https://github.com/HotDrink/hotdrink

[15] Gabriel Foust, Jaakko Järvi, and Sean Parent. “Generating Reactive Programs for Graphical User
Interfaces from Multi-Way Data�ow Constraint Systems”. In: Proceedings of the 2015 ACM SIGPLAN

International Conference on Generative Programming: Concepts and Experiences. GPCE 2015. Pittsburgh,
PA, USA: Association for Computing Machinery, 2015, pp. 121–130. isbn: 9781450336871. doi:
10.1145/2814204.2814207. url: https://doi.org/10.1145/2814204.2814207.

[16] John Freeman et al. “Helping programmers help users”. In: Proceedings of the 10th ACM international

conference on Generative programming and component engineering. 2011, pp. 177–184.

[17] Bjorn N. Freeman-Benson, John Maloney, and Alan Borning. “An Incremental Constraint Solver”.
In: Commun. ACM 33.1 (Jan. 1990), pp. 54–63. issn: 0001-0782. doi: 10.1145/76372.77531. url:
https://doi.org/10.1145/76372.77531.

[18] GC Post-v1 Extensions. url: https://github.com/WebAssembly/gc/blob/dfc44cc394d71f6a7d
94f2d87fb6b3d98b440356/proposals/gc/Post-MVP.md (visited on 2021-07-06).

[19] Andreas Haas et al. “Bringing the Web up to Speed with WebAssembly”. In: SIGPLAN Not. 52.6 (June
2017), pp. 185–200. issn: 0362-1340. doi: 10.1145/3140587.3062363. url: https://doi.org/10.
1145/3140587.3062363.

[20] Magne Haveraaen and Jaakko Järvi. “Semantics of multiway data�ow constraint systems”. en. In:
Journal of Logical and Algebraic Methods in Programming 121 (June 2021), p. 100634. issn: 2352-
2208. doi: 10.1016/j.jlamp.2020.100634. url: https://www.sciencedirect.com/science/
article/pii/S235222082030119X (visited on 2021-02-18).

[21] Interior Mutability. url: https://doc.rust-lang.org/reference/interior-mutability.html
(visited on 2020-09-15).

[22] Jaakko Järvi. HotDrink in Flow. url: https://git.app.uib.no/Jaakko.Jarvi/hd4 (visited on
2021-06-02).

[23] Jaakko Järvi, Gabriel Foust, and Magne Haveraaen. “Specializing Planners for Hierarchical Multi-Way
Data�ow Constraint Systems”. In: SIGPLAN Not. 50.3 (Sept. 2014), pp. 1–10. issn: 0362-1340. doi:
10.1145/2775053.2658762. url: https://doi.org/10.1145/2775053.2658762.

[24] Jaakko Järvi et al. “Algorithms for User Interfaces”. In: SIGPLANNot. 45.2 (Oct. 2009), pp. 147–156. issn:
0362-1340. doi: 10.1145/1837852.1621630. url: https://doi.org/10.1145/1837852.1621630.

[25] Jaakko Järvi et al. “Expressing Multi-Way Data-Flow Constraint Systems as a Commutative Monoid
Makes Many of Their Properties Obvious”. In: Proceedings of the 8th ACM SIGPLAN Workshop on

Generic Programming. WGP ’12. Copenhagen, Denmark: Association for Computing Machinery,
2012, pp. 25–32. isbn: 9781450315760. doi: 10.1145/2364394.2364399. url: https://doi.org/10.
1145/2364394.2364399.

118

https://doi.org/10.1145/2814204.2814207
https://doi.org/10.1145/2814204.2814207
https://doi.org/10.1145/76372.77531
https://doi.org/10.1145/76372.77531
https://github.com/WebAssembly/gc/blob/dfc44cc394d71f6a7d94f2d87fb6b3d98b440356/proposals/gc/Post-MVP.md
https://github.com/WebAssembly/gc/blob/dfc44cc394d71f6a7d94f2d87fb6b3d98b440356/proposals/gc/Post-MVP.md
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1016/j.jlamp.2020.100634
https://www.sciencedirect.com/science/article/pii/S235222082030119X
https://www.sciencedirect.com/science/article/pii/S235222082030119X
https://doc.rust-lang.org/reference/interior-mutability.html
https://git.app.uib.no/Jaakko.Jarvi/hd4
https://doi.org/10.1145/2775053.2658762
https://doi.org/10.1145/2775053.2658762
https://doi.org/10.1145/1837852.1621630
https://doi.org/10.1145/1837852.1621630
https://doi.org/10.1145/2364394.2364399
https://doi.org/10.1145/2364394.2364399
https://doi.org/10.1145/2364394.2364399

[26] Jaakko Järvi et al. “Property models: from incidental algorithms to reusable components”. In: Pro-
ceedings of the 7th international conference on Generative programming and component engineering.
2008, pp. 89–98.

[27] Java Thread Primitive Deprecation. url: https://docs.oracle.com/javase/9/docs/api/java/
lang/doc-files/threadPrimitiveDeprecation.html (visited on 2021-07-14).

[28] JavaScript. url: https://developer.mozilla.org/en-US/docs/Web/javascript (visited on
2021-06-02).

[29] JsValue. url: https://rustwasm.github.io/wasm- bindgen/api/wasm_bindgen/struct.
JsValue.html (visited on 2021-01-14).

[30] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: 2019 IEEE Symposium on

Security and Privacy (SP). 2019, pp. 1–19. doi: 10.1109/SP.2019.00002.

[31] ladder-100.js. url: https://github.com/HotDrink/hotdrink/blob/c96f3b03c932206ff5fe17c
7e1c1517c64f54fc7/test/models/ladder-100.js (visited on 2021-07-18).

[32] Loading and running WebAssembly code. url: https://developer.mozilla.org/en-US/docs/
WebAssembly/Loading_and_running (visited on 2021-05-19).

[33] Guillaume Cedric Marty. How fast are web workers? July 2, 2015. url: https://hacks.mozilla.
org/2015/07/how-fast-are-web-workers/ (visited on 2021-01-14).

[34] Mitigations landing for new class timing attack. url: https://blog.mozilla.org/security/2018/
01/03/mitigations-landing-new-class-timing-attack/ (visited on 2021-06-29).

[35] Monomorphization. url: https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
(visited on 2021-07-06).

[36] B.A. Myers et al. “The Amulet environment: new models for e�ective user interface software devel-
opment”. In: IEEE Transactions on Software Engineering 23.6 (1997), pp. 347–365. doi: 10.1109/32.
601073.

[37] Brad A Myers. Why are human-computer interfaces di�cult to design and implement. Tech. rep.
Carnegie-Mellon Univ Pittsburgh Pa Dept of Computer Science, 1993.

[38] Brad A. Myers. “Separating Application Code from Toolkits: Eliminating the Spaghetti of Call-Backs”.
In: Proceedings of the 4th Annual ACM Symposium on User Interface Software and Technology. UIST ’91.
Hilton Head, South Carolina, USA: Association for Computing Machinery, 1991, pp. 211–220. isbn:
0897914511. doi: 10.1145/120782.120805. url: https://doi.org/10.1145/120782.120805.

[39] Brad A. Myers et al. “Garnet Comprehensive Support for Graphical, Highly Interactive User Inter-
faces”. In: Readings in Human–Computer Interaction. Ed. by RONALD M. BAECKER et al. Interactive
Technologies. Morgan Kaufmann, 1995, pp. 357–371. isbn: 978-0-08-051574-8. doi: 10.1016/B978-
0-08-051574-8.50037-6. url: https://www.sciencedirect.com/science/article/pii/
B9780080515748500376.

119

https://docs.oracle.com/javase/9/docs/api/java/lang/doc-files/threadPrimitiveDeprecation.html
https://docs.oracle.com/javase/9/docs/api/java/lang/doc-files/threadPrimitiveDeprecation.html
https://developer.mozilla.org/en-US/docs/Web/javascript
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen/struct.JsValue.html
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen/struct.JsValue.html
https://doi.org/10.1109/SP.2019.00002
https://github.com/HotDrink/hotdrink/blob/c96f3b03c932206ff5fe17c7e1c1517c64f54fc7/test/models/ladder-100.js
https://github.com/HotDrink/hotdrink/blob/c96f3b03c932206ff5fe17c7e1c1517c64f54fc7/test/models/ladder-100.js
https://developer.mozilla.org/en-US/docs/WebAssembly/Loading_and_running
https://developer.mozilla.org/en-US/docs/WebAssembly/Loading_and_running
https://hacks.mozilla.org/2015/07/how-fast-are-web-workers/
https://hacks.mozilla.org/2015/07/how-fast-are-web-workers/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://doi.org/10.1109/32.601073
https://doi.org/10.1109/32.601073
https://doi.org/10.1145/120782.120805
https://doi.org/10.1145/120782.120805
https://doi.org/10.1016/B978-0-08-051574-8.50037-6
https://doi.org/10.1016/B978-0-08-051574-8.50037-6
https://www.sciencedirect.com/science/article/pii/B9780080515748500376
https://www.sciencedirect.com/science/article/pii/B9780080515748500376

[40] Jakob Nielsen. Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1994. isbn: 9780080520292.

[41] Stephen Oney, Brad Myers, and Joel Brandt. “ConstraintJS: Programming Interactive Behaviors for
the Web by Integrating Constraints and States”. In: Proceedings of the 25th Annual ACM Symposium

on User Interface Software and Technology. UIST ’12. Cambridge, Massachusetts, USA: Association for
Computing Machinery, 2012, pp. 229–238. isbn: 9781450315807. doi: 10.1145/2380116.2380146.
url: https://doi.org/10.1145/2380116.2380146.

[42] Procedural Macros. url: https://doc.rust-lang.org/reference/procedural-macros.html
(visited on 2021-07-12).

[43] pthread_cancel. url: https://linux.die.net/man/3/pthread_cancel (visited on 2021-07-14).

[44] pthread_setcanceltype. url: https://linux.die.net/man/3/pthread_setcanceltype (visited on
2021-07-14).

[45] rayon. url: https://crates.io/crates/rayon (visited on 2020-11-10).

[46] Raytrace Parallel Docs. url: https://rustwasm.github.io/docs/wasm-bindgen/examples/
raytrace.html (visited on 2021-01-14).

[47] Reactive Manifesto. url: https://www.reactivemanifesto.org/ (visited on 2021-07-05).

[48] RefCell<T> and the Interior Mutability Pattern. url: https://doc.rust-lang.org/book/ch15-05-
interior-mutability.html (visited on 2020-09-15).

[49] Micha Reiser and Luc Bläser. “Accelerate JavaScript Applications by Cross-Compiling to WebAssem-
bly”. In: Proceedings of the 9th ACM SIGPLAN International Workshop on Virtual Machines and

Intermediate Languages. VMIL 2017. Vancouver, BC, Canada: Association for Computing Machinery,
2017, pp. 10–17. isbn: 9781450355193. doi: 10.1145/3141871.3141873. url: https://doi.org/10.
1145/3141871.3141873.

[50] Rust. url: https://www.rust-lang.org/ (visited on 2021-06-02).

[51] Rust and WebAssembly. url: https://rustwasm.github.io/docs/book/ (visited on 2021-07-25).

[52] rust-webpack-template. url: https://rustwasm.github.io/docs/book/reference/project-
templates.html (visited on 2021-08-01).

[53] Rustonomicon. url: https://doc.rust-lang.org/nomicon/ffi.html (visited on 2021-07-26).

[54] Michael Sannella. “Skyblue: A Multi-Way Local Propagation Constraint Solver for User Interface
Construction”. In: Proceedings of the 7th Annual ACM Symposium on User Interface Software and

Technology. UIST ’94. Marina del Rey, California, USA: Association for Computing Machinery, 1994,
pp. 137–146. isbn: 0897916573. doi: 10.1145/192426.192485. url: https://doi.org/10.1145/
192426.192485.

120

https://doi.org/10.1145/2380116.2380146
https://doi.org/10.1145/2380116.2380146
https://doc.rust-lang.org/reference/procedural-macros.html
https://linux.die.net/man/3/pthread_cancel
https://linux.die.net/man/3/pthread_setcanceltype
https://crates.io/crates/rayon
https://rustwasm.github.io/docs/wasm-bindgen/examples/raytrace.html
https://rustwasm.github.io/docs/wasm-bindgen/examples/raytrace.html
https://www.reactivemanifesto.org/
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
https://doi.org/10.1145/3141871.3141873
https://doi.org/10.1145/3141871.3141873
https://doi.org/10.1145/3141871.3141873
https://www.rust-lang.org/
https://rustwasm.github.io/docs/book/
https://rustwasm.github.io/docs/book/reference/project-templates.html
https://rustwasm.github.io/docs/book/reference/project-templates.html
https://doc.rust-lang.org/nomicon/ffi.html
https://doi.org/10.1145/192426.192485
https://doi.org/10.1145/192426.192485
https://doi.org/10.1145/192426.192485

[55] Max Schäfer. “Refactoring Tools for Dynamic Languages”. In: Proceedings of the Fifth Workshop on

Refactoring Tools. WRT ’12. Rapperswil, Switzerland: Association for Computing Machinery, 2012,
pp. 59–62. isbn: 9781450315005. doi: 10.1145/2328876.2328885. url: https://doi.org/10.
1145/2328876.2328885.

[56] serde. url: https://serde.rs/ (visited on 2021-07-16).

[57] serde-wasm-bindgen. url: https://github.com/cloudflare/serde-wasm-bindgen (visited on
2021-07-16).

[58] Serializing and Deserializing Arbitrary Data Into and From JsValue with Serde. url: https://rustwasm.
github.io/docs/wasm-bindgen/print.html#serializing-and-deserializing-arbitrary-

data-into-and-from-jsvalue-with-serde (visited on 2021-07-16).

[59] SharedArrayBu�er. url: https://developer.mozilla.org/en- US/docs/Web/JavaScript/
Reference/Global_Objects/SharedArrayBuffer (visited on 2021-06-28).

[60] SpectreAttack. url: https://spectreattack.com/ (visited on 2021-06-28).

[61] Ingvar Stepanyan. Using WebAssembly threads from C, C++ and Rust. July 12, 2021. url: https:
//web.dev/webassembly-threads/ (visited on 2021-07-18).

[62] Supported Rust Types and their JavaScript Representations. url: https://rustwasm.github.io/
docs/wasm-bindgen/reference/types.html (visited on 2021-07-06).

[63] Rudi Blaha Svartveit. hotdrink-rs crate. url: https://crates.io/crates/hotdrink-rs (visited on
2021-07-28).

[64] Rudi Blaha Svartveit. hotdrink-rs docs. url: https://docs.rs/crate/hotdrink-rs (visited on
2021-07-28).

[65] Rudi Blaha Svartveit. hotdrink-rs repository. url: https://github.com/HotDrink/hotdrink-
rs/tree/thesis (visited on 2021-07-28).

[66] Systems Performance Work Guided By Flamegraphs. url: https://github.com/flamegraph-
rs/flamegraph#systems-performance-work-guided-by-flamegraphs (visited on 2021-07-09).

[67] Terminate a worker. url: https://html.spec.whatwg.org/multipage/workers.html#terminat
e-a-worker (visited on 2021-07-14).

[68] The structured clone algorithm. url: https://developer.mozilla.org/en-US/docs/Web/API/
Web_Workers_API/Structured_clone_algorithm (visited on 2021-06-24).

[69] Thread::cancel() support. url: https://internals.rust-lang.org/t/thread-cancel-support/
3056 (visited on 2021-07-14).

[70] Threads Proposal for WebAssembly. url: https://github.com/WebAssembly/threads (visited on
2021-01-14).

121

https://doi.org/10.1145/2328876.2328885
https://doi.org/10.1145/2328876.2328885
https://doi.org/10.1145/2328876.2328885
https://serde.rs/
https://github.com/cloudflare/serde-wasm-bindgen
https://rustwasm.github.io/docs/wasm-bindgen/print.html#serializing-and-deserializing-arbitrary-data-into-and-from-jsvalue-with-serde
https://rustwasm.github.io/docs/wasm-bindgen/print.html#serializing-and-deserializing-arbitrary-data-into-and-from-jsvalue-with-serde
https://rustwasm.github.io/docs/wasm-bindgen/print.html#serializing-and-deserializing-arbitrary-data-into-and-from-jsvalue-with-serde
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://spectreattack.com/
https://web.dev/webassembly-threads/
https://web.dev/webassembly-threads/
https://rustwasm.github.io/docs/wasm-bindgen/reference/types.html
https://rustwasm.github.io/docs/wasm-bindgen/reference/types.html
https://crates.io/crates/hotdrink-rs
https://docs.rs/crate/hotdrink-rs
https://github.com/HotDrink/hotdrink-rs/tree/thesis
https://github.com/HotDrink/hotdrink-rs/tree/thesis
https://github.com/flamegraph-rs/flamegraph#systems-performance-work-guided-by-flamegraphs
https://github.com/flamegraph-rs/flamegraph#systems-performance-work-guided-by-flamegraphs
https://html.spec.whatwg.org/multipage/workers.html#terminate-a-worker
https://html.spec.whatwg.org/multipage/workers.html#terminate-a-worker
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm
https://internals.rust-lang.org/t/thread-cancel-support/3056
https://internals.rust-lang.org/t/thread-cancel-support/3056
https://github.com/WebAssembly/threads

[71] David Tolnay. Procedural Macros Workshop. url: https://github.com/dtolnay/proc-macro-
workshop (visited on 2021-07-12).

[72] Sam Van den Vonder et al. “Tackling the Awkward Squad for Reactive Programming: The Actor-
Reactor Model”. In: Proceedings of the 4th ACM SIGPLAN International Workshop on Reactive and

Event-Based Languages and Systems. REBLS 2017. Vancouver, BC, Canada: Association for Computing
Machinery, 2017, pp. 27–33. isbn: 9781450355155. doi: 10.1145/3141858.3141863. url: https:
//doi.org/10.1145/3141858.3141863.

[73] Brad Vander Zanden. “An Incremental Algorithm for Satisfying Hierarchies of Multiway Data�ow
Constraints”. In: vol. 18. 1. New York, NY, USA: Association for Computing Machinery, Jan. 1996,
pp. 30–72. doi: 10.1145/225540.225543. url: https://doi.org/10.1145/225540.225543.

[74] Waker. url: https://doc.rust-lang.org/std/task/struct.Waker.html (visited on 2021-08-01).

[75] wasm-bindgen. url: https://rustwasm.github.io/docs/wasm-bindgen/ (visited on 2021-07-25).

[76] wasm-bindgen-rayon. url: https://crates.io/crates/wasm-bindgen-rayon (visited on 2021-07-
18).

[77] wasm-mt. url: https://crates.io/crates/wasm-mt (visited on 2021-01-14).

[78] wasm-pack. url: https://rustwasm.github.io/docs/wasm-pack/ (visited on 2021-07-25).

[79] wasm_thread. url: https://crates.io/crates/wasm_thread (visited on 2021-01-14).

[80] web_worker. url: https://crates.io/crates/web_worker (visited on 2021-01-14).

[81] WebAssembly. url: https://webassembly.org/ (visited on 2021-06-02).

[82] WebAssembly. url: https://developer.mozilla.org/en-US/docs/WebAssembly?source=
techstories.org#in_a_nutshell (visited on 2021-06-04).

[83] WebAssembly Instance. url: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/WebAssembly/Instance (visited on 2021-06-29).

[84] WebAssembly Memory. url: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/WebAssembly/Memory (visited on 2021-06-29).

[85] WebAssembly Module. url: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/WebAssembly/Module (visited on 2021-06-29).

[86] N. Wirth. “A plea for lean software”. In: Computer 28.2 (1995), pp. 64–68. doi: 10.1109/2.348001.

[87] worker.js. url: https://github.com/rustwasm/wasm-bindgen/blob/837e354aefe672dc3111f
6658a9b0705846e859a/examples/raytrace-parallel/worker.js (visited on 2021-07-18).

[88] Worker.terminate(). url: https://developer.mozilla.org/en-US/docs/Web/API/Worker/
terminate (visited on 2021-07-14).

122

https://github.com/dtolnay/proc-macro-workshop
https://github.com/dtolnay/proc-macro-workshop
https://doi.org/10.1145/3141858.3141863
https://doi.org/10.1145/3141858.3141863
https://doi.org/10.1145/3141858.3141863
https://doi.org/10.1145/225540.225543
https://doi.org/10.1145/225540.225543
https://doc.rust-lang.org/std/task/struct.Waker.html
https://rustwasm.github.io/docs/wasm-bindgen/
https://crates.io/crates/wasm-bindgen-rayon
https://crates.io/crates/wasm-mt
https://rustwasm.github.io/docs/wasm-pack/
https://crates.io/crates/wasm_thread
https://crates.io/crates/web_worker
https://webassembly.org/
https://developer.mozilla.org/en-US/docs/WebAssembly?source=techstories.org#in_a_nutshell
https://developer.mozilla.org/en-US/docs/WebAssembly?source=techstories.org#in_a_nutshell
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Instance
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Instance
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Memory
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Memory
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Module
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Module
https://doi.org/10.1109/2.348001
https://github.com/rustwasm/wasm-bindgen/blob/837e354aefe672dc3111f6658a9b0705846e859a/examples/raytrace-parallel/worker.js
https://github.com/rustwasm/wasm-bindgen/blob/837e354aefe672dc3111f6658a9b0705846e859a/examples/raytrace-parallel/worker.js
https://developer.mozilla.org/en-US/docs/Web/API/Worker/terminate
https://developer.mozilla.org/en-US/docs/Web/API/Worker/terminate

[89] Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. “Handling Bidirectional Control Flow”. In:
Proc. ACM Program. Lang. 4.OOPSLA (Nov. 2020). doi: 10.1145/3428207. url: https://doi.org/
10.1145/3428207.

123

https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207

	Introduction
	Motivation
	Research Questions and Expected Results
	Areas of Improvement
	Planner Improvements
	Multithreaded Solving
	Minimizing the Memory Footprint
	Component DSL
	Generalizing the Core Library

	Terminology
	Thesis Outline

	Background
	Multiway Dataflow Constraint Systems
	Planning Algorithms
	Related Work

	Implementation of hotdrink-rs
	Overview
	Creating Components
	Editing Variables
	Solving
	Subscribing
	Creating Constraint Systems

	Model Module
	Constraint System
	Component
	Constraint
	Method
	Error Propagation

	Planner Module
	Simple Planner
	Hierarchical Planner

	Method Executor Module
	Solver Module
	Activation

	Macros Module
	component!
	component_type!
	ret!
	fail!

	Implementation of hotdrink-wasm
	Overview
	Heterogeneous Constraint Systems
	The JsValue Type
	The Any Trait
	Rust Enums

	Generating a WebAssembly-Compatible Constraint System
	Image Scaling Example
	Defining the Constraint System
	Wrapping the Constraint System
	Compilation to WebAssembly
	Importing WebAssembly from JavaScript
	Usage from JavaScript

	Benefits of Multithreading
	Parallel Execution
	Guaranteed Responsiveness

	Multithreading with Rust and WebAssembly
	Limitations
	Web Worker-Based Threads
	Web Worker-Based Thread Pools
	Termination Strategies

	Data Flow in a Multithreaded Constraint System
	Generating a Multithreaded Constraint System
	Pitfalls
	Use after Move
	Breaking the Borrowing Rules

	C/C++ Bindings
	Creating a Dynamic Library
	Creating a C-Compatible Constraint System
	Construction and Destruction
	Subscribing
	Editing
	Solving

	Using the API

	Performance Analysis
	Constraint Systems Used in Benchmarks
	Linear-oneway
	Linear-twoway
	Ladder
	Unprunable
	Random

	Optimization Methodology
	Simple Planner Benchmarks
	Hierarchical Planner Benchmarks
	Solver Benchmarks
	Comparison to Other Implementations

	Memory-Efficient Data Structures
	Naive Implementation
	Representing Method Inputs and Outputs with Individual Bits
	Representing Constraint Variables with Individual Bits
	Comparison
	Drawbacks

	Discussion
	Rust
	Strict Type System
	Methods With an Arbitrary Number of Arguments
	Methods With Arbitrary Return Types
	Variable Access
	Multithreading in Rust

	WebAssembly
	Multithreading with Web Workers
	Cancellation

	Implementation and Results
	Features and API
	Performance
	Responsiveness
	Memory-Efficient Data Structures

	Future Work
	Planner Optimization
	Making the Planner Fully Incremental
	Minimizing Allocation
	Reusing Variable Reference Counts

	Improved Scheduling
	Breadth-First Scheduling
	Multi-Method Tasks
	Deferred Scheduling

	Using Procedural Macros for the Component DSL
	Undo and Redo in Mutable Constraint Systems
	Dynamic Constraint System Construction
	Pre- and Postconditions
	Enabling and Disabling Components
	Improvements to Subscribing from JavaScript

	Conclusion
	Bibliography

