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Abstract

According to the expanding-contracting polar cap paradigm (ECPC), dayside and nightside

reconnection control magnetosphere-ionosphere dynamics at high latitudes by increasing

and decreasing the open magnetic flux content, respectively. The dayside reconnection rate

can be estimated using parameters measured in the solar wind, but there is no reliable and

available proxy for the nightside reconnection rate. We aim to remedy this by using AM-

PERE to estimate a time series of open flux content. The AMPERE data set originates from

the global Iridium satellite system, enabling continuous measurements of the field-aligned

Birkeland currents, from which the open magnetic flux of the polar caps is derived. This

method provides seven years of open flux change estimates. A series of nightside reconnec-

tion rates are then derived by directly relating the dayside reconnection rate to the estimated

open flux change. Various proxies for the nightside reconnection rate are estimated by re-

lating several geomagnetic indices with our estimated nightside reconnection rate through

multivariate regression analysis.

By comparing the estimated open flux change with solar wind conditions and geomagnetic

indices, we find our open flux estimates are highly dependent on the magnitude of the Birke-

land currents. During low activity periods, the estimated open flux proves to be highly inac-

curate with improving accuracy for higher activity periods. We also find that the nightside

reconnection rate proxies fail to explain the majority of the variation in our estimated night-

side reconnection rate series and propose that this is mainly due to the inaccuracy of our

open flux estimates.
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Chapter 1

Introduction

Earth’s magnetosphere is the space surrounding the Earth dominated by its geomagnetic

field. Outside the magnetosphere, the interplanetary magnetic field (IMF), originating from

the Sun, is dominant. The solar wind propagates in conjunction with the IMF, carrying

plasma from the Sun. The geomagnetic field within the magnetosphere is approximately

shaped like a magnetic dipole close to Earth which becomes increasingly distorted further

away due to interaction with the solar wind. This relationship between the solar wind and

the magnetosphere is predominantly governed by the Dungey cycle, presented by Dungey

(1961).

The Dungey cycle describes the dynamic movement of the geomagnetic field lines induced

by interaction with the IMF. When the orientation of the interplanetary field lines has a

southward pointing component, they couple with the northward pointing geomagnetic field

lines at the subsolar point of the magnetosphere. The magnetopause magnetic coupling is

generally referred to as dayside reconnection with a reconnection rate, ΦD . Dayside recon-

nection causes the closed geomagnetic field lines, connected to both geomagnetic poles, to

turn into open field lines magnetically connected to the Earth and the Sun. These open field

lines are then pushed antisunward with the solar wind into the magnetotail stretching out

behind the Earth. Magnetic pressure builds up in the magnetotail lobes, eventually causing

the open magnetic field lines from the north and south pole to reconnect with each other in

the magnetotail. The magnetotail reconnection is generally referred to as nightside recon-

nection with a reconnection rate,ΦN .

Dayside and nightside reconnection are two of the fundamental processes driving iono-

spheric and magnetospheric electrodynamics. They significantly impact energetic particle

precipitation, auroral events, magnetic storms, ionospheric plasma convection, and other

processes. During stronger events, these processes can disrupt power grids on Earth’s sur-

face, cause radiation damage to satellites and destabilise low Earth orbit satellites due to
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increased drag. Knowing the rate of dayside and nightside reconnection will then give con-

siderable insight into these processes and how they depend on each other. ΦD is dependent

on the characteristics of the solar wind and can be readily estimated by applying solar winds

measurements to empirically derived coupling functions (e.g. Milan et al., 2015; Newell et al.,

2007; Perreault and Akasofu, 1978). ΦN , on the other hand, is very difficult to measure. To

circumvent this issue, several studies have resorted to using the expanding-contracting polar

cap paradigm (ECPC) to measure the nightside reconnection rate indirectly.

The ECPC, introduced by Cowley and Lockwood (1992), gives a qualitative description of how

the dayside and nightside reconnection rates are directly related to the topography of the

polar caps. Dayside reconnection opens magnetic flux in the magnetosphere, increasing the

size of the polar caps. Similarly, nightside reconnection closes the open flux, decreasing the

size of the polar cap. Since nightside reconnection is generally delayed after dayside recon-

nection and their heterogeneous coupling rates, the polar caps experience a semi-periodic

waxing and waning referred to as the ECPC. Based on the ECPC, if the dayside reconnection

rate and the change in open flux of the polar cap are both known, the nightside reconnection

rate can be estimated.

In earlier studies applying the ECPC, the open flux has been sporadically measured through

auroral imaging over short periods (e.g. Milan et al., 2007; Ohma et al., 2018). In this study,

we will attempt to establish a more continuous, long term estimate of the open flux. We will

use the active magnetosphere and planetary electrodynamics experiment (AMPERE) to es-

timate a time series of open flux content. The AMPERE data set originates from the global

Iridium satellite system, enabling continuous measurements of the field-aligned Birkeland

currents. The open magnetic flux of the polar caps can be derived from the Birkeland cur-

rent patterns. Using high time resolution open flux data derived from AMPERE and solar

wind measurements from the OMNI data set, it should, in principle, be possible to provide a

continuous estimate of the nightside reconnection rate.

The downside to this approach is that the AMPERE open flux series is an inaccurate and

noisy data set compared to sporadic auroral imaging used in earlier studies. The open flux

data also has to be differentiated, introducing additional complications. In this study, we

sacrifice quality in favour of the quantity of open flux data to quantify the relationship of the

ECPC. This study will explore how reliably the AMPERE open flux can estimate the nightside

reconnection rate.

Laundal et al. (2020) suggested a method for estimatingΦN using geomagnetic indices, cor-

related with magnetospheric coupling, which is the motivation for this project. Similar to

this approach, we will use our derived open flux series to explore how geomagnetic indices

can be used as a proxy for the nightside reconnection rate.
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Chapter 2

Theoretical Background

2.1 The Sun and the Solar Wind

The Sun is crucial for the existence of life on Earth as we know it. Electromagnetic radiation

from the Sun, mainly in the form of visible light, keeps the planet warm and able to sustain

life. This radiation is due to the high surface temperature of around 6000 K, powered by

thermonuclear reactions in the Sun’s core, where temperatures can reach as high as 1.57×107

K. The heat generated in the Sun’s interior is transported towards the surface and into the

solar atmosphere through radiation and convection.

Another significant way the Sun affects the Earth, especially Earth’s magnetosphere, is through

the solar wind and its accompanying magnetic field, called the interplanetary magnetic field

(IMF), which originates from the Sun. The solar wind consists of hot plasma released from

the upper atmosphere of the Sun, travelling radially out of the Sun at typically 400 km/s along

with the IMF. The solar wind plasma travels together with the Sun’s magnetic field due to the

infinite conductivity of the fully ionised plasma, known as the frozen-in approximation. The

frozen-in approximation means that the plasma and the magnetic field travel together. Sub-

sequently, the IMF in the heliosphere takes on a characteristic spiral structure caused by the

rotation of the sun.

2.1.1 The Parker Spiral

Without going into further detail, the rotation of the Sun and the frozen-in concept causes

the IMF to assume a spiral formation known as the Parker spiral (Parker, 1958). Figure 2.1

shows a simple illustration of the Parker spiral seen from above the solar system. The curved

black lines are the interplanetary magnetic field lines originating from the Sun at the centre.

Frozen into the IMF, the solar wind travels radially out of the Sun at speeds of ∼ 300 km/s.
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The dashed line shows the orbit of the Earth.

Figure 2.1: Illustration of the Parker spiral seen from above. Figure from Akasofu
(2011).

2.1.2 The Heliospheric Current Sheet

With the IMF frozen in with the plasma, a current is induced at the boundary where the po-

larity of the Sun’s magnetic field changes from away from the Sun to towards the Sun. The

boundary is known as the heliospheric current sheet, illustrated in Figure 2.2 as the three-

dimensional structure originating from the Sun. The smaller illustration to the upper right

shows the Sun represented by the circle to the left and the Earth represented by the circle

to the right in a vertical plane. The thick curved line represents the current sheet with the

magnetic field lines moving along the current sheet with opposite polarities on either side.

The current sheet assumes a wavy spiral shape due to the tilt of the magnetic axis relative to

the rotation axis of the Sun and magnetic activity on the Sun. The interplanetary field lines

can assume almost any direction in three-dimensional space when they reach the Earth.

Because of the shape of the Parker spiral, the IMF x-component, Bx , will be negatively cor-

related with the y-component By , relative to the geocentric solar magnetospheric coordinate

system (GSM). So when Bx is positive, By is negative and vice versa. Bz has a lesser correlation

with the other components and can be positive or negative in both cases. The GSM coordi-

nate system has its origin at the Earth’s centre, with the x-axis pointing directly towards the

Sun. The z-axis is the Earth’s magnetic dipole axis (positive towards North) projected onto
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the plane perpendicular to the x-axis.

Figure 2.2: The large schematic shows a three-dimensional illustration of the he-
liospheric current sheet. The smaller illustration to the upper right shows the
interplanetary magnetic field-lines moving along the current sheet in the Sun’s
equatorial plane. Figure courtesy of Akasofu S.-I.

2.2 The Geomagnetic Field

Earth’s magnetic field extends into space from its interior, with convection currents in the

outer core generating the magnetic field (Borovsky and Valdivia, 2018). The magnetic field

generated by the Earth is approximately that of a dipole field with the dipole axis tilted

about 9 degrees respective to Earth’s rotation axis. However, due to interaction with the so-

lar wind and the IMF, the dipole field approximation becomes increasingly distorted further

into space. Figure 2.3 shows the distortion of the geomagnetic field around the Earth. The

dashed lines show a normal dipole field for comparison, while the solid lines show the dis-

torted geomagnetic field. On the left side, facing the Sun, the closed field lines on the dayside

are compressed by the solar wind pressure and the remaining field lines are dragged antisun-

ward into a magnetotail. This process will be covered in more detail in the next section.
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Figure 2.3: The dashed lines indicate an undisturbed magnetic dipole field. The
solid lines illustrate the geomagnetic field, disturbed by the solar wind.

2.3 The Dungey Cycle

The Dungey cycle illustrated in Figure 2.4, suggested by and subsequently named after Dungey

(1961), formulates how the IMF interacts with the geomagnetic field when the IMF is point-

ing roughly southwards. Consider the solar wind travelling toward Earth with the IMF point-

ing southward. When the IMF is brought close to the magnetopause by the solar wind, the

southward pointing field lines of the IMF will couple with the northward pointing geomag-

netic field lines in a process called magnetic reconnection. The reconnecting field lines are

numbered 1’ and 1 in figure 2.4, commonly referred to as dayside reconnection. After the

interplanetary magnetic field line and the geomagnetic field line have reconnected, they will

turn into open magnetic field lines connected to both the Earth and the Sun. After recon-

necting, the open magnetic field lines are pushed towards the nightside of the Earth due

to the kinetic energy of the solar wind (2-5 and 2’-5’ in figure 2.4). The field lines fastened

to the Earth will be gradually stretched antisunward into a long tail-like shape, called the

magnetotail. With continuing reconnection on the dayside, magnetic pressure will build up

in the magnetotail. The build-up will eventually cause the open magnetic field lines of the

northern and southern hemispheres to couple with each other the same way the IMF and the

geomagnetic field lines couple with each other during dayside reconnection. The coupling
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Figure 2.4: The Dungey cycle in the magnetosphere and the ionosphere. The
numbers indicate the movement of a magnetic field line. Figure from Kivelson
et al. (1996)

in the magnetotail is usually referred to as nightside reconnection, represented by the field

lines numbered 6 and 6’ in figure 2.4. After the field lines have reconnected on the night side,

they return to a closed field line numbered 7 and another interplanetary field line numbered

7’. The closed field line will then move back toward the dayside like the field lines numbered

8 and 9 in figure 2.4.

The smaller illustration to the lower right in figure 2.4 shows where the magnetic field lines

intersect Earth’s ionosphere as they move across the polar cap, with the numbers matching

those of the main illustration. The ionospheric footprint of the magnetospheric convection

described by the Dungey cycle is also shown in figure 2.5 as the continuous arrowed lines, in-

dicating the direction of the convection. Here the numbers represent the magnetic local time

(MLT) of the ionosphere, where 12 MLT is towards the Sun and 24 MLT is antisunward. The

circle represents the open-closed field line boundary (OCB). The auroral zone is just equator-

ward of the OCB. Outside the OCB are the closed field lines (7-8 in figure 2.4), and inside the

OCB, also known as the polar cap, are the open field lines (2-5 in figure 2.4). The ionospheric

location of the dayside and nightside reconnection (1 and 6 in figure 2.4) are shown as the

dashed lines of the OCB at 12 MLT and 24 MLT respectively in figure 2.5.
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Figure 2.5: The flow of plasma mapped to the magnetic field lines just above
the ionosphere at high latitudes. The circle represents the open-closed field line
boundary, and the area inside the circle is called the polar cap. Figure from Cow-
ley and Lockwood (1992)

2.4 Geomagnetic Open Flux

In electromagnetism, the magnetic flux through a surface is given by the normal component

of the total magnetic field through a given surface multiplied by the area of the surface. In the

geomagnetic field, the open magnetic flux refers to geomagnetic field lines, coupled with the

IMF. In contrast, the closed magnetic flux is the field lines enclosed within the geomagnetic

dipole field, such that the field lines have both footpoints on Earth. As previously mentioned,

the OCB denotes the boundary between the open field lines and the closed field lines. The

total open magnetic flux, FPC , is given by the surface integral of the radial component of the

magnetic field over the polar cap:

FPC =
∫ pol ar cap

B ·dA (2.1)

where B is the magnetic field orthogonal to the surface, A, in our case B is the radial compo-

nent of the geomagnetic field, passing through the polar cap.
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2.5 The Expanding-Contracting Polar Cap Paradigm

The expanding-contracting polar cap paradigm (ECPC) presented by Cowley and Lockwood

(1992), details how the open magnetic flux of the polar caps varies in response to a two-

component ionospheric flow model. First, we look at the nature of the open flux of the polar

caps. The first component is driven by the dayside reconnection rate, which increases the

open flux of the polar cap. Similarly, the second component is driven by the nightside recon-

nection rate, responsible for decreasing the open flux of the polar cap. Here, the magnetic

reconnection rate describes the rate at which magnetic flux is transferred from an open to a

closed topology and vice versa. With magnetic flux given in Tm2 or Wb, change in flux due

to magnetic reconnection is given in units Wb/s, which is the same as voltage V.

Figure 2.6 illustrates the response of the polar cap to an impulse of dayside reconnection

from three different perspectives. In the first row, we see the Earth in the equatorial GSM

X-Y plane as the small circle with the black curve representing the magnetopause with the

closed field line magnetosphere shaded grey. The field lines at the magnetopause map down

to the OCB in the ionosphere. Initially, we have a closed flux of Ftot −F , where Ftot is the total

magnetic flux of each hemisphere of the magnetosphere and F is the open flux of the polar

caps. The second row shows the open-closed topography of a cross-section of the magne-

totail within the magnetopause (solid circle). Shaded in grey, we again have the closed field

lines of the magnetotail plasma sheet. Above are the open flux field lines mapping to the

northern hemisphere polar cap. Equivalently below are the open flux field lines mapping to

the southern hemisphere polar cap. The third row illustrates the polar cap with open flux F

within and MLT 12 pointing towards the Sun. The second column shows the opening of flux

and excitation of flows from the onset of dayside reconnection. In the first row, we see a bulge

in the magnetopause of previously closed field lines converted to open field lines with a total

flux change dF . In the second row, these newly opened field lines will move with the solar

wind toward the magnetotail as we saw in field lines 2-4 and 2’-4’ in figure 2.4. The open field

lines reach the magnetotail, usually within a few to tens of minutes depending on the solar

wind speed and how far back in the magnetotail we are looking. The field lines will converge

into the lobes creating similar bulges in the magnetopause boundary of open flux dF . In the

third row, we see a bulge created sunwards in the polar cap of open flux dF . This bulge maps

to the newly reconnected field lines created at the magnetopause illustrated in the first row.

The perturbations created in the respective boundaries represents a deviation from an equi-

librium state, exciting dynamic flows, represented by the blue arrows, approaching a new

zero-flow equilibrium. The third column shows the new zero-flow equilibrium boundaries

with the previous boundaries as the dashed red lines. In the new equilibrium, we have a total

open flux of F +dF in each hemisphere. The total flux of the magnetosphere hemispheres
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Figure 2.6: Illustration of a dayside reconnection event. The first row illustrates
the magnetosphere from the equatorial plane. The second row shows a cross-
section of the magnetotail and the final row shows the polar cap ionosphere. The
first column shows the respective systems at their initial state. The second row
shows the reaction induced by the onset of dayside reconnection. The last row
shows the aftermath of the dayside reconnection event. Reillustrated from figures
5 and 6 in Cowley and Lockwood (1992)

Ftot remains unchanged.

Similarly to the third row in figure 2.6, the polar cap has the opposite response to impulsive

nightside reconnection as shown in figure 2.7. Initially, we start with an open flux F . At the

onset of nightside reconnection, open magnetic field lines in the magnetotail couples, akin

to field lines 6 and 6’ in figure 2.4. These field lines map to Earth’s surface inside the OCB

on the antisunward edge. This coupling creates a bulge of closed flux dF inside the previous

OCB (Fig. 2.7b). The warping of the OCB will again create instability in the polar cap, exciting

ionospheric flow towards a new zero-flow equilibrium represented by the arrows in figure

2.7c. Afterwards the polar cap reaches a new equilibrium of open flux F −dF (Fig. 2.7d).

The rate of magnetic reconnection at the dayside is dependent on conditions in the solar

wind and, most importantly, the orientation of the IMF. The magnetic reconnection on the
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Figure 2.7: Illustration of the polar cap reaction to a nightside reconnection
event. Figure from Cowley and Lockwood (1992)

nightside cannot instantaneously adjust to match the dayside reconnection, resulting in sig-

nificant variations in the amount of open flux in the polar caps. Changes in the open flux,

and hence the size of the polar cap, can be a measure of the global reconnection rates. The

voltage, or flux transfer rates, on the dayside and nightside, is usually considered to be the

only means by which the amount of open flux can change (Milan et al., 2017). This direct

relationship gives us the following continuity equation for open flux:

dFPC

d t
=ΦD −ΦN (2.2)

where dFPC /d t is the rate of change in the open flux of the polar caps, ΦD the dayside re-

connection rate, and ΦN the nightside reconnection rate, and has dimensions of Wb/s or

equivalently volts (V) (Milan (2015)). Equation 2.2 is a variation of Faraday’s law, requiring

that the change in open magnetic flux within a closed loop (here described by the OCB) is

equal to the electric field integrated around the boundary (here associated with the day-

side and nightside reconnection). In the magnetosphere system, ΦD is responsible for the

accumulation of open magnetic flux in the system and expanding the polar caps. This ac-

cumulation of open flux leads to an inflation of the magnetotail lobes, building up magnetic

pressure. When this build-up is sufficiently high, the magnetic pressure is released by initiat-

ing magnetic reconnection in the magnetotail. The release reduces the amount of open flux

in the magnetosphere, given that ΦN is greater than ΦD , which is typically the case when

ΦN is present. Integrated over sufficiently long timescales, typically a few hours Laundal
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et al. (2020), the release of open flux in the magnetotail must balance its accumulation at the

magnetopause:

〈ΦN 〉 = 〈ΦD〉 (2.3)

Over shorter timescales, however, the variation of FPC can be as significant as a factor of 4 or

more, between 2.5% and 12% of the total magnetospheric flux (Milan et al., 2004).

2.6 The Dayside Coupling Function

There have been many attempts at quantifying the coupling of energy from the solar wind

into the magnetosphere. Dayside coupling is driven by the amount of the IMF Poynting flux

entering the magnetosphere, first defined as the ε parameter Perreault and Akasofu (1978):

ε= 4π

µ0
L2

0VX B 2 sin4 1

2
θ (2.4)

Here VX is the negative x-component of the solar wind speed in the GSM coordinate sys-

tem, B =
√

B 2
X +B 2

Y +B 2
Z is the magnitude of the IMF based on their respective GSM compo-

nents, and θ is the clock-angle between the IMF vector and the z-axis in the GSM Y-Z plane,

θ = arctan2(BY ,BZ ). For IMF along the positive Z-axis, we will then have a clock angle of

0◦ resulting in no reconnection. With IMF along the negative Z-axis, we have a clock-angle

of 180◦ resulting in maximum dayside reconnection. L2
0 is an approximate measure of the

cross-section of the magnetopause exposed to the interplanetary Poynting flux and was in

the previous paper estimated to be about L0 ≈ 7RE . B 2/µ0 is proportional to the electromag-

netic energy density in the solar wind, and VX is the rate of transport toward the magneto-

sphere. sin4(θ/2) represents the clock-angle dependency of the coupling between the solar

wind and the magnetosphere. The coupling rate goes from zero to a maximum as the IMF ro-

tates from a parallel to an anti-parallel alignment with the northward-pointing geomagnetic

field.

Figure 2.8 illustrates a diagram of the magnetosphere with closed magnetic field lines in red

and open magnetic field lines in blue in the GSM X-Z plane. ΦD quantifies the rate of flux

opening at the dayside, while ΦN quantifies the flux closing on the nightside. The dayside

reconnection rate is dependent on the upstream solar wind speed VX and the magnitude

and orientation of the interplanetary magnetic field B.

Many studies have used ε for estimating the magnetospheric energy input and then subse-

quently attempt to determine the partitioning of this energy into different energy sinks. Au-



14 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.8: Illustration of the magnetosphere with closed magnetic field lines in
red and open field lines in blue. ΦD quantifies the rate of flux opening at the day-
side magnetopause and ΦN the rate of flux closing in the nightside magnetotail.
ΦD depends on the solar wind speed towards the subsolar point, VX , and the ori-
entation and magnitude of the IMF, B. The lower right panel shows the near-Earth
magnetosphere with related regional geomagnetic indices. Figure from Milan
et al. (2012)
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roral precipitation power, joule heating, energisation of the ring current and auroral electro-

jets are among these energy sinks. These energy sinks are very difficult to measure directly,

leading to geomagnetic indices being used as proxies for the relative amount of energy trans-

ferred to the different magnetospheric systems Scurry and Russell (1991). These energy sinks

and geomagnetic indices will later be discussed in more detail.

The inset panel in figure 2.8 shows the areas around the OCB where the auroral electrojet

currents are illustrated in yellow, and the ring current around the Earth equator illustrated in

green, with the related geomagnetic indices AU/AL and SYM-H, respectively. Several studies

correlating geomagnetic indices and upstream solar wind conditions have been performed

to improve upon the ε parameter. One of these correlative studies, using ten different mag-

netospheric variables, were performed by Newell et al. (2007) resulting in the following cou-

pling function:

dΦMP

d t
=V 4/3

X B 2/3
Y Z sin8/3 1

2
θ (2.5)

where BY Z =
√

B 2
Y +B 2

Z is the magnitude of the IMF in the GSM Y-Z plane, dΦMP /d t de-

scribes the rate of magnetic flux opening at the magnetosphere. An issue with using geo-

magnetic indices when estimating ΦD is that they are also affected by ΦN , which are poorly

correlated over short timescales, leading to correlative studies resorting to data averaging

over long timescales, up to several hours, where 〈ΦN 〉 = 〈ΦD〉 as mentioned in the previous

section.

Another possible method is determining ΦD through the excitation of ionospheric convec-

tion, as it should be directly related to the magnetic flux transfer caused by reconnection.

These kinds of studies use cross-polar cap potential ΦPC as a measure for the ionospheric

convection (Reiff et al., 1981), and has the following relation toΦD andΦN :

ΦPC = 1

2
(ΦD +ΦN ). (2.6)

A difficulty with this approach is that both viscous interaction between the solar wind and

the magnetosphere and lobe reconnection occurring when IMF BZ > 0 can both excite iono-

spheric convection, independently of low latitude magnetopause reconnection measured by

ΦD (Axford and Hines, 1961). Also, with its dependency on bothΦD andΦN , it is only reliable

when the nightside reconnection rate is negligible.

A different method attempting to measure ΦD almost directly and instantaneously was pre-

sented in Milan et al. (2012). In this approach, ΦD is measured based on the expansion rate

of the polar cap during periods of no nightside reconnection (ΦN = 0). With respect to equa-
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tion 2.2 we obtain the following relation:

ΦD = dFPC

d t
, ΦN = 0. (2.7)

Milan et al. (2012) determined the location of the OCB from observations of the poleward

boundary of the auroral oval through global auroral imaging. From this method, the follow-

ing coupling function for the dayside reconnection was derived:

ΦD = LeffVX BY Z sin9/2 1

2
θ, Leff = 3.8RE

(
VX

4×105ms−1

)1/3

(2.8)

where Le f f is an empirically determined constant of proportionality, such thatΦD has units

of voltage and equals dFPC /d t when ΦN = 0. Equation 2.8 is the coupling function that will

be used as a proxy forΦD in the present thesis due to its direct relationship with the opening

of flux in the polar cap (Eq. 2.2), which is the main parameter of interest going forward. Some

disadvantages to this method are that there is no reliable automated method to measure FPC

from auroral images, and it is limited to periods of no nightside reconnection, which limit

the scope of possible statistical analyses.

2.7 Nightside Reconnection

In the following section, we discuss the rate at which open magnetic flux is closed in the

magnetotail through nightside reconnection. As discussed earlier, dayside reconnection is

solely responsible for the opening of magnetic flux in the polar caps and can be estimated

through solar wind measurements. Nightside reconnection, however, is solely responsible

for the closing of magnetic flux and has a more indirect relation to the IMF. It is often the

case that we get a surge in nightside reconnection several tens of minutes after the onset of

active dayside reconnection. Such delays arise partly due to the finite magnetic flux propa-

gation speed between the subsolar reconnection region and the reconnection region in the

tail. This information propagates with the accompanying solar wind or magnetospheric cur-

rents at speeds of a few hundred km s−1. With the magnetotail reconnection region being

around 100 to 150RE downstream from Earth Slavin et al. (1985), the information delay from

the subsolar region will be about 20-30 min. Once reconnection in the tail is initiated, the

information will then have to propagate back to the ionosphere corresponding to the Alfven

speed 1000 km s−1), adding 10 min to the delay. It is also not guaranteed that the opened flux

from a period of dayside reconnection will incite nightside reconnection after propagating

into the magnetotail. Whether or not nightside reconnection occurs is also dependent on
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the magnetotail being sufficiently inflated with magnetic pressure, which can lead to more

prolonged periods of weak dayside reconnection without an onset of nightside reconnec-

tion. The actual response in the magnetotail to changing interplanetary conditions remains

one of the significant areas of uncertainty in the magnetospheric system.

Figure 2.9 presents an idealised example, presented by Cowley and Lockwood (1992), illus-

trating the consequences of such delays in the nightside reconnection. The example starts

with a 2-hour interval of steady southward-directed IMF as indicated in the first graph, in-

ducing an equivalent 2-hour period of constant dayside reconnection, increasing the voltage

from zero to V volts, illustrated in the second graph. After a 1-hour delay, the onset of equal

nightside reconnection occurs with the same constant voltage and period indicated in the

third graph. The fourth panel shows the open magnetic flux of the system responding to the

periods of dayside and nightside reconnection. In the first hour of the reconnection event,

the polar cap experiences a growth phase with the size of the polar cap steadily increasing

due to the sole presence of dayside reconnection. After an hour, there is a 1-hour steady state

period of equal dayside and nightside reconnection where the size of the polar cap remains

constant. After the dayside reconnection subsides, only the nightside reconnection remains,

steadily decreasing the polar cap size back to its initial flux. The final graph shows the polar

cap potential response to ΦD and ΦN across the central polar cap at ionospheric heights,

assuming a circular expanding and contracting polar cap centred on the polar cap. During

the period of unbalanced dayside reconnection, ΦPC steadily increases to V /2 volts, in ac-

cordance with equation 2.6, increasing to V volts during the steady-state period. During the

subsequent period of unbalanced nightside reconnection, the potential drops back down to

V /2, finally returning to zero after all reconnection has ceased. Due to the finite information

propagation, there is about a 15 min delay for the polar cap potential to fully respond to the

changes inΦD andΦN .
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Figure 2.9: Graphs illustrating the response from a 2 hour period of dayside re-
connection, followed by a 2 hour period of nightside reconnection after a 1 hour
delay. Figure adopted from Cowley and Lockwood (1992)

2.7.1 Substorms

While dayside reconnection typically occurs at a steady rate, depending on the orientation of

the IMF, nightside reconnection is mainly associated with shorter and more intense bursts of

energy release from the magnetotail, known as substorms. What separates substorms from

other reconnection events is the increased reconnection rate, leading to a sudden increase

in ionospheric activity and brightening auroral arcs, especially in the nightside ionosphere.

In Milan et al. (2007), a quantitative study of magnetic substorms was performed, providing

some general statistics. On average, the substorm events lasted 70 min, closing 0.3 GWb of
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open flux. The average nightside reconnection rate was 85 kV. For comparison, the average

dayside reconnection rate was 31 kV for the same periods. On average, a substorm occurred

every 2.7 hours at regular FPC values, where the average onset was found at 0.65 GWb. During

higher activity periods, around 1 GWb, substorms were expected to initiate every 30 min.

There was also no evidence for any lower intensity nightside reconnection occurring outside

the substorm periods, indicating that substorms were the primary or only source of nightside

reconnection.

2.8 Magnetospheric Current Systems

Figure 2.10 shows an overview of the magnetic field configuration and current systems of

the magnetosphere in the northern hemisphere, from the Milan et al. (2017) review paper.

First, we have a 3D schematic of the geomagnetic field where the closed magnetic field in

blue and the open magnetic field in red propagating back into the magnetotail lobes (Fig.

2.10a). In general, currents flow where the geomagnetic field is distorted from a dipolar con-

figuration, leading to spatial gradients in the field where ∇×B 6= 0, which implies a current

according to Ampère’s law. In the second panel, we see the effect of this with the Chapman-

Ferraro currents on the magnetopause between the weaker magnetic field in the magne-

tosheath from the stronger field within the magnetosphere Chapman and Ferraro (1931). In

the equatorial plane of the closed magnetotail, where the magnetic field sharply turns from

sunward to antisunward, the cross-tail current flows from dawn to dusk, connecting with

the Chapman-Ferraro current. Substorm events with strong nightside reconnection will give

rise to stronger currents causing the cross-tail current to map into the nightside ionosphere

through the substorm current wedge (Fig. 2.10b). Finally we have the region 1 (R1) and region

2 (R2) field-aligned currents (FAC) or Birkeland currents heavily associated with the Dungey

cycle, expanded upon earlier. In the ionosphere, the Birkeland currents travel along the ge-

omagnetic field, and its magnitude is found to be strongly correlated with both dayside and,

likely, nightside reconnection Coxon et al. (2014). The region 1 currents in blue travel along

the open field lines inside the polar cap, while the region 2 currents in red travel along the

closed field lines. Other FACs are also present in the ionosphere, but the R1/R2 currents are

the most prominent. The ring current in magenta flows westward around the geomagnetic

equator is induced from Earth’s dipole field with an additional partial ring current excited

from the region 2 currents (Fig. 2.10c). Milan et al. (2017).



20 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.10: Schematic of the magnetic field configuration and current systems
of the terrestrial magnetosphere, focusing on the northern hemisphere. (a) Open
geomagnetic field lines (red) and closed field lines (blue). The open flux com-
prises field lines newly reconnected with the IMF with the rest of the open
field lines accumulated in the tail lobe. (b) Chapman-Ferraro currents (green)
flowing from dawn to dusk across the dayside magnetopause and from dusk
to dawn across the magnetotail magnetosphere. The cross-tail current (ma-
genta) flows from dawn to dusk across the closed tail-magnetosphere connecting
with Chapman-Ferraro tail currents at the edges. The substorm current wedge
(cyan), present during the substorm expansion phase, diverted from the near-
Earth cross-tail current through the nightside ionosphere. (c) The region 1 (blue)
and region 2 (red) field-aligned current system and the ring current (magenta).
The R1, R2 and partial ring current from the convection circuit are associated
with the Dungey cycle. The current flows from the magnetopause along R1 into
the ionosphere, then along R2 into the partial ring current at the dawnside. The
current flows along the partial ring current back into the ionosphere along R2
then out to the magnetopause along R1 on the duskside. Figure from Milan et al.
(2017)
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2.9 Ionospheric Current Systems

Figure 2.11 shows the electrodynamics of the polar ionosphere of the northern hemisphere.

Here the ionospheric convection related to the Dungey cycle is presented in black and the

OCB line in purple, both discussed earlier. In red and blue are the ionospheric footprints

of the Birkeland currents presented in figure 2.10c. The R1/R2 currents are associated with

shears in the magnetic field along the OCB, produced by the antisunward convection of open

magnetic field lines on the poleward edge of the OCB, and the opposite sunward convection

of closed field lines on the equatorward edge of the auroral zone.

The FACs, travelling parallel along the field lines, can be expressed as J∥, and the horizontal

currents in the ionosphere can then be expressed as J⊥. It is common to decompose the

horizontal currents into Pederson and Hall currents Laundal et al. (2015):

J⊥ = JH + JP (2.9)

where JH are the Hall currents and JP are the Pedersen currents. Pedersen currents are

defined to be parallel to the horizontal electric field E⊥, produced by the magnetosphere-

ionosphere plasma dynamics Parker (1996). The Hall currents are defined to be parallel to

B×E⊥. These currents are height integrated, providing the surface current density in the

ionosphere, ignoring height-based differences in current density. The Pedersen and Hall

currents can be further expressed as:

JP =ΣP E⊥ (2.10)

JH =ΣH B̂×E⊥ (2.11)

whereΣP andΣH are the Pedersen and Hall conductances, respectively. These conductances

are proportional to the electron density of the ionosphere, i.e. the density of charge carri-

ers. In figure 2.11a, the Pedersen currents are represented in green, and the Hall currents

are represented in orange. In general, the conductances are enhanced in the auroral zones

and the sunward side of the solar terminator, shaded grey in figure 2.11a. The Hall currents,

associated with the R1/R2 current system, propagating in the auroral zones are commonly

known as the eastward and westward electrojets. Both currents are flowing from the dayside

to the nightside ionosphere. The westward and eastward electrojets are often measured to

monitor magnetospheric activity. The magnitude of the electrojets is estimated by measur-

ing the magnetic perturbations at ground level caused by the currents. Measuring the elec-

trojets is possible because of Fukushima’s theorem, which states that for all points beneath
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the ionosphere, the magnetic fields from FACs and Pedersen currents exactly cancel each

other out Fukushima (1994). The theorem holds provided that the FACs are perpendicular

to the ground and that the ionospheric conductance is spatially constant. Neither of these

assumptions holds firmly in the polar ionosphere, but the magnetic perturbations from Hall

and Birkeland currents are still generally small compared to the Hall currents.
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Figure 2.11: The current systems of the northern hemisphere polar ionosphere.
(a) The purple circle indicates the OCB encircling the polar cap. The back ar-
rows indicate the twin-cell ionospheric convection pattern related to the Dungey
cycle. The upward and downward region 1 (blue) Birkeland currents are situ-
ated near the poleward edge of the PCB, and region 2 (red) Birkeland current at
the equatorward edge of the auroral zone corresponding to the currents in fig-
ure 2.10c. Region 0 Birkeland currents (magenta) flow in the cusp throat of the
convection pattern, here drawn for IMF By > 0. The grey shaded areas indicate
the auroral zones and the sunward region of the solar terminator, where con-
ductance is enhanced. Pedersen currents (green) flow horizontally between the
Birkeland currents and to a lesser degree across the polar cap due to low conduc-
tance. Hall current in the auroral zone from the eastward and westward electro-
jets and weaker currents flowing sunwards in the polar cap, both perpendicular
to the respective Pedersen currents. The substorm wedge FACs (cyan) and the
interconnecting substorm electrojet (green) are present during the substorm ex-
pansion phase. (b) Distribution of upward (red) and downward (blue) Birkeland
deduced by Iijima and Potemra (1976). (c) Ionospheric convection pattern with
the sole presence of dayside reconnection, expanding the polar cap. The dashed
red line of the OCB indicates the area with magnetic field lines mapping to the
magnetopause merging gap where reconnection occurs. (d) Ionospheric con-
vection pattern with the sole presence of nightside reconnection, contracting the
polar cap. Milan et al. (2017)
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2.10 Timescale Dependence of Solar Wind-Based Regression

Models of Ionospheric Electrodynamics

The motivation for this thesis is heavily based on the study performed in Laundal et al.

(2020). The study quantifies the timescale dependence between geomagnetic indices, day-

side and nightside coupling through simple linear regression. Considering a model estimat-

ingΦN usingΦD as a variable:

Φτ
N = c(τ)+d(τ)Φτ

D (2.12)

where τ denotes the time averaging window or timescale, defined as:

y(τ) = 1

τ

∫ t

t−τ
y(t )d t (2.13)

We know that ΦD and ΦN are poorly correlated over short timescales as it can take several

hours after a dayside reconnection event, for nightside reconnection to occur, and often at

different rates. This means that for small timescales, τ, d(τ) in Equation 2.12 is also small.

For the limit τ→∞, we get c(∞) = 0 and d(∞) = 1 since dayside and nightside reconnection

are equal for longer timescales (Eq. 2.3).

In Laundal et al. (2020), a set of geomagnetic indices: AL, AU, PCN, and ASY-H, are used

to build a model for estimating the nightside reconnection rate. The AL and AU indices

measure the westward and eastward electrojets, respectively. The PCN and ASY-H indices,

as well as a variant of the AL index, the SML index, will later be explained in more detail. The

geomagnetic indices can be written on the following functional form:

y =α+βΦPC (2.14)

assuming each index is a linear function of dayside and nightside reconnection rates. y rep-

resents any of the indices used in the study andΦPC represents the cross polar cap potential

(Eq. 2.6). α and β are proportionality coefficients. Since ΦPC is not known, we can use

Equations 2.12 and 2.6 to rewrite Equation 2.14 to a timescale dependent version that only

depends onΦτ
D :

yτ =α+βΦτ
PC =α+ 1

2
β(Φτ

D + c(τ)+d(τ)Φτ
D ),

yτ = a(τ)+b(τ)Φτ
D ,

(2.15)
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where

a(τ) =α+ 1

2
βc(τ) (2.16)

b(τ) = 1

2
β(1+d(τ)). (2.17)

Next, Equation 2.15 is used to estimate a(τ) and b(τ), for multiple timescales and indices,

through simple linear regression. Figure 2.12 presents the Pearson correlations coefficient,

r 2, between the regression model and the data for the respective indices. This correlation

gives the fraction of the data which the model explains. The horizontal axis represents the

timescale, in hours, of the averaging of the variables. We see all indices experience an in-

creasing correlation with their respective models for increasing timescales. The improving

correlation is expected since the indices are assumed to depend on both ΦD and ΦN (Eq.

2.14), but only ΦD is used in the regression model since ΦPC is not known. The poor cor-

relation at shorter timescales is because of ΦD and ΦN being poorly correlated at shorter

timescales and equal at longer timescales.

Figure 2.12: Laundal et al. (2020)

Using the previous equations, we can now derive an equation for nightside reconnection

which is independent of timescales. In the limit τ→∞, Equations 2.16 and 2.17 reduces to

a(∞) = α and b(∞) = β, respectively, since c(∞) = 0 and d(∞) = 1. By solving Equation 2.6

and replacingΦPC with Equation 2.14, we get:

ΦN = 2
y −α
β

−ΦD = 2
y −a(∞)

b(∞)
−ΦD . (2.18)
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a(∞) and b(∞) for each index can be estimated by averaging the data over several days. Fig-

ure 2.13 shows a time series of ΦN , calculated from Equation 2.18. The thin blue lines show

the ΦN estimated from the individual indices, and the thick blue line shows the average of

the four estimates. The green line shows the ΦD estimate for comparison. The vertical lines

denote the onset time for two substorms observed in global images of the aurora, produced

by the Far Ultra Violet (FUV) imager on the IMAGE satellite (Frey et al., 2004).

Figure 2.13: Laundal et al. (2020)

2.11 Geomagnetic Indices

Considering the ECPC (eq. 2.2), equation 2.8 will be used as a direct measurement for ΦD .

However, there is no consistent method to measure the nightside reconnection rate ΦN di-

rectly. Instead, it could be possible to use geomagnetic indices to estimate ΦN (Laundal

et al., 2020). These indices are measures of geomagnetic activity in various magnetospheric

systems. Next, we will go through the geomagnetic indices expected to be correlated with

nightside reconnection.

2.11.1 The SML Index

The SML index is a geomagnetic index from the SuperMAG database. SuperMAG is a world-

wide collaboration of organisations and national agencies that currently provide standard-

ised data from more than 300 ground-based magnetometers (Gjerloev, 2012). Some of these

stations around the northern hemisphere polar cap are illustrated in figure 2.14. SuperMAG
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utilises three-dimensional vector measurements of the magnetic field obtained from these

ground-based magnetometers. The SML index measures the maximum westward auroral

electrojet strength using data from magnetometer stations between 40◦ and 80◦ magnetic

north Newell and Gjerloev (2011). Specifically, the SML index is given by the minimum mea-

sured value of the H component by the ground magnetometer (minimum being the value of

largest magnitude as the SML index is almost always given in a negative value). The H com-

ponent represents the magnitude of the horizontal magnetic field perturbations at ground

level. This component comes from the (H ,D, Z ) coordinate system where H is the horizon-

tal perturbation of the magnetic field, D is the declination in degrees between geographic

north and the horizontal direction of the magnetic field. Z is the vertical component of the

magnetic field, positive towards Earth’s centre.

Figure 2.14: Geomagnetic stations used to measure the AL index (blue) and sta-
tions used to measure the SML index (red + blue). This illustration only shows the
active stations from 30 January 0841 UT, as there are likely more active stations in
present time. Newell and Gjerloev (2011)

Similarly to the SML index, there is also an SMU index, which measures the eastward elec-

trojet. The reason we are using the SML index in favour of the SMU index is that the SML

index also pick up perturbations caused by the substorm current wedge, which is present

during active nightside reconnection. For this reason, the SML index is expected to be much
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more correlated with nightside reconnection than SMU.

The AL and AU indices used in Laundal et al. (2020) are very similar to the SML and SMU

indices. They measure the westward and eastward electrojets, respectively, but only uses the

12 stations marked in blue in Figure 2.14.

In addition to SML, the SML-LT index will also be used. SML-LT is a regional version of the

SML index where the SML index is measured separately for each hour period of MLT Newell

and Gjerloev (2014). In this thesis, SML-LT will refer to the minimum SML value between

21 MLT and 03 MLT, the six-hour period centred around midnight. This is in an attempt to

minimise the impact from dayside reconnection on the SML index, so it may better describe

ongoing nightside reconnection. It is found that the SML-LT is better correlated with the

change in open flux dFPC /d t which we will come back to in a later section.

2.11.2 The PC Index

The Polar Cap (PC) indices, PCN and PCS for the northern and southern polar cap respec-

tively, was originally introduced by Troshichev and Andrezen (1985). It is based on data from

a single near pole station in each hemisphere, Qaanaaq (MLAT ∼ 85◦) and Vostok (MLAT ∼
−83◦). The purpose of these indices is to estimate the intensity of the sunward Hall currents

in the polar cap by measuring the magnetic field variations induced by the current. This Hall

current is associated with the antisunward convection in the polar caps. From this, the PC

index should estimate the loading of the magnetosphere associated with the dayside cou-

pling. Similarly, the PC index can respond to nightside coupling in the same order as with

dayside coupling (Huang, 2005). (Kauristie et al., 2017)

2.11.3 The ASY-H Index

The ASY-H index is part of the mid-latitude geomagnetic indices, SYM-H, ASY-H, SYM-D and

ASY-D (Iyemori and Toh, 2010). These indices aim to describe variations of the equatorial

magnetospheric ring current, earlier presented in Figure 2.10c (magenta). Specifically, they

measure disturbances in the magnetic field caused by the ring current. There are 11 stations

in total used to measure the disturbances, shown as the black circles in Figure 2.15. Only six

of the stations are used for deriving the index, some stations being favoured based on the

availability and condition of the data. The stations interconnected with the black lines in

Figure 2.15 are the ones who can replace each other. The stations are placed at mid-latitudes

to avoid disturbances caused by the auroral and equatorial electrojets.
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Figure 2.15: (Iyemori and Toh, 2010)

The indices describe the geomagnetic disturbance fields with a longitudinally asymmetric

(ASY ) and symmetric (SYM) disturbance index, both derived with H and D components. Al-

though the geomagnetic field is approximately like a dipole field, close to the surface, the

direction of the magnetic field at each observatory is generally different from the northward

dipole pole direction. The local geomagnetic field is then decomposed into a H component

along the dipole north direction and a D component, perpendicular along the east-west di-

rection.

The SYM-H index is calculated by taking the average of the disturbance H component at

each of the six stations. This H component is found at each station by subtracting the local

quiet-time magnetic field and normalising it based on the latitude of the respective stations.

The asymmetric component at each station is then obtained by subtracting the SYM-H index

from each disturbance field, such that the deviation from the average is then found at each

station. The ASY-H index is defined as the difference between the minimum and maximum

deviation from the SYM-H index.

The reason why we are using the ASY-H index is that it is expected to be the best correlated

with magnetospheric reconnection. ASY-H is the index that should be the most perturbed by

the partial ring current induced by the Birkeland currents, which are stronger during mag-

netosphere coupling.
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Chapter 3

Method

3.1 Determining the Open Magnetic Flux using AMPERE

3.1.1 Description of the AMPERE Data Set

The active magnetosphere and planetary electrodynamics experiment (AMPERE) (Anderson

et al., 2000, 2002, 2008; Waters et al., 2001) provide estimates of the Birkeland currents or

field-aligned currents (FACs) in the Northern and Southern hemisphere, using magnetome-

ter observations from the Iridium constellation. The Iridium satellite constellation consists

of about 90 commercial satellites, distributed over six orbital planes at 780 km altitude, pro-

viding global satellite telephone and data services (Waters et al., 2020). Each satellite carries

a magnetometer as part of its attitude control system. The magnetic field perturbation data

gathered from these satellites allows one to estimate the distribution of radial current densi-

ties or Birkeland currents.

Magnetic field measurements from the Iridium magnetometers have been available for space

physics research since 1999, provided initially at a sample period of 200 s. In 2009, the AM-

PERE project was developed, which enhanced the delivery and processing of the Iridium

magnetometer data, summarised in Anderson et al. (2014), reducing the sampling period

from 200 s to 20 s. With the improved sampling rate, the limiting factor becomes the time

taken for the satellites to reach full latitude coverage from one instance to another, about 9

min. From this limitation, the AMPERE field perturbation data are fitted from a 10 min data

collection window.

From the magnetic field perturbation maps, current density maps of the Birkeland currents

can be estimated as described by Waters et al. (2001). With the extensive coverage of the

AMPERE magnetic field data, the curl of the magnetic field perturbations, ∆B, is estimated
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through a spherical harmonic fitting technique. The current densities, J, are then estimated

by applying Ampere’s law:

∇×∆B =µ0J (3.1)

An example current density map is presented in figure 3.1, where the red regions indicate

upward currents and the blue regions indicate downward currents. The AMPERE current

maps are estimated every 2 min from a 10 min rolling data gathering window. However,

two current density maps 2 min apart will be based on mostly the same data and highly

correlated due to the 10 min data sampling window (Waters et al., 2020).

Figure 3.1: Example AMPERE current density map for 0520-0530 UT, 24 August
2010 Waters et al. (2020)

3.1.2 Determining the Region 1 / Region 2 Current Boundary

In Milan et al. (2015), a method of estimating the size of the polar cap, using AMPERE current

maps, is presented. Each AMPERE map covers the polar region poleward of 40◦ geomagnetic

latitude. The current maps are provided on a 24 × 50 polar grid, one grid cell for each MLT

hour (equivalent to 15◦ longitude) and each degree of co-latitude. Figure 3.2a presents an

example of such a current map where the grid cells are visible. The signatures of the region

1 and 2 (R1/R2) current system are also visible, similar to Figure 2.11b.

The R1/R2 current regions are assumed to have a circular shape, centred on a point, Λ0 =
(x0, y0), where y0 lies between 0◦ and 5◦ anti-sunward co-latitude, and x0 between ±2◦ along

the dawn-dusk meridian. In Figure 3.2a, Λ0 is estimated at the point (0◦,3◦), represented by
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the cross. For each radius, Λ, centred on (x0, y0), the mean current density, j , is found at

48 equally spaced points around the circumference of each circle in the range 0◦ ≤Λ ≤ 50◦.

The sum of the current densities, Σ j , around each circle is found after multiplying the dusk

sector currents (12-24 MLT) by -1, such that the regions 1 currents are positive, and the region

2 currents are negative in both the dawn and dusk sector. The summed current density, Σ j ,

as a function of radiusΛ is presented in Figure 3.2b.

The positive and negative peak values of Σ j are identified as region 1 and region 2 currents,

respectively. The latitude where Σ j = 0 between these peaks is identified as boundary be-

tween the R1/R2 currents, Λfit, presented by the black circle in Figure 3.2a. This process is

repeated for several differentΛ0 andΛfit until the combination with the greatest R1/R2 peak-

to-peak difference is used as the final fit. The fitted circle radii in the northern and southern

hemispheres, for 2010 to 2016, at a 2 min cadence, can be downloaded from the following

repository; https://doi.org/10.25392/leicester.data.11294861.v1.

https://doi.org/10.25392/leicester.data.11294861.v1
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Figure 3.2: (a) AMPERE current density map converted into a 24 × 50 grid for
0140 UT, 10 April 2011. The black circle represents the R1/R2 boundary fit, and
the cross represents the centre of the circle fit. (b) The circle integrated current
density plotted as a function of radius, Λ. The open circles represent local pos-
itive and negative peaks, with the solid circles representing the zero-crossings
between the peaks. The zero-crossing with the largest peak-to-peak magnitude
is identified as the R1/R2 boundary,Λfit. Figure from Milan et al. (2015)

3.1.3 Creating an AMPERE OCB Proxy

The R1/R2 boundary is closely related to but not necessarily equal to the open-closed field

line boundary (OCB), which we are trying to identify. Generally, the OCB tends to lie a few

degrees poleward of the R1/R2 current boundary, depending on the MLT. To account for the

OCB displacement, a correction term, K, is applied to the AMPERE R1/R2 boundary, based

on a process outlined in Burrell et al. (2020). The OCB correction is found by comparing

the median AMPERE R1/R2 boundary to the OCB referred from the Defense Meteorological

Satellite Program Special Sensor J (DMSP SSJ). The DMSP is a satellite system, where the

SSJ measures the electron energy flux from ionospheric particle precipitation (Redmon et al.

(2017)). Implementing the technique described in Kilcommons et al. (2017), a set of OCBs

were obtained by estimating the poleward boundary of auroral ovals, identified from the
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DMSP SSJ electron flux data. A generalised ellipse function (Eq. 3.2) is used to fit the offset

between the DMSP SSJ OCBs and the AMPERE R1/R2 boundaries:

K (λ) = a(1−e2)

1+e cos(λ−τ)
(3.2)

where λ is the MLT in radians, a is the semi-major axis, e is the eccentricity of the ellipse,

and τ is the offset of the ellipse’s axes in radians. The results of the OCB fitting process is pre-

sented in Figure 3.3, taken from Figure 3 in Burrell et al. (2020). In Figure 3.3, the dashed line

represents the median AMPERE R1/R2 boundary. The latitude difference, ∆φ, between the

median DMSP SSJ OCB for each MLT hour is represented by the blue dots with the respec-

tive error bars. The elliptical boundary correction (black line) is fitted onto the ∆φ series,

and the estimated parameters of Equation 3.2 are shown above the plot. The OCB correction

is slightly over 3 degrees poleward of the R1/R2 boundary on average. The grey histogram in

the background shows the number of DMSP SSJ OCB observations in each MLT bin.

Figure 3.3: Elliptical boundary correction (black line), K , fitted to the median
∆φ (blue dots) with respective error bars in each MLT bin. The grey histogram
presents the number of OCB boundary counts in each MLT bin. Burrell et al.
(2020)

3.1.4 Estimating the Open Flux within the AMPERE OCB

Now that the AMPERE OCB can be identified finding the total magnetic field within the OCB

is necessary to estimate the open flux (Eq. 2.1). The method described in Ohma et al. (2018)

will be applied to estimate the magnetic field. The OCB estimates are projected onto an

equal area grid map with a resolution of 1◦ in the latitudinal direction. The final grid map

consists of a total of 3720 grid cells in the region above 60◦ MLAT. The magnetic flux within

each grid cell is estimated by integrating Equation 4.15 in Richmond (1995) with the mag-

netic field within the cells represented by the International Geomagnetic Reference Field

(IGRF) (Thébault et al. (2015)). The total open magnetic flux is then found by the sum of the
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magnetic flux of all grid cells having their central location within the OCB.

3.1.5 The Open Flux Data Set

The final AMPERE data set with which we are working contains the (x0, y0) coordinates and

the radius of each AMPERE R1/R2 boundary fit, the estimated open magnetic flux for each

map, and a quality parameter estimated for each fit which we will come back to later. Figure

3.4 shows the histogram of the northern hemisphere open flux provided by the AMPERE

data set. The histogram shows the complete open flux data from 2010 to 2017 at a 2min

cadence, totalling about 1.5 million values. In reality, the open flux is expected to assume

an even distribution, but we see the values are distributed around several discrete values.

The discrete distribution is due to the radius, Λ, being fitted with a 1◦ resolution. However,

based on this assumption, we should expect only to see a single spike representing each

discrete radius. At the same time, in practice, we have a small distribution of values around

these peaks. There are several reasons attributed to these variations. Different values of

x0 and y0 leads to differences in open flux due to spatial variations in the IGRF for a fixed

radius. Temporal variations in the IGRF can also lead to different open flux values while

holding (x0, y0) constant. The OCB correction applied to the R1/R2 boundary fits has more

significant effects on the open flux for a large radius versus a small radius.

Figure 3.4: Histogram of entire AMPERE data set from 2010 to 2017 for the north-
ern hemisphere.

3.2 Curve Fitting the AMPERE Data

The upper plot of figure 3.5 shows the AMPERE North open flux values plotted for a full

day, 4 March 2010. The lower plot shows the direct derivative of the AMPERE open flux.

These plots visualise the staggered nature of the AMPERE data. Rather than having a smooth
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curve, the open flux values are jumping between different bins. As shown in the second plot,

this indicates the open flux is increasing or decreasing through short bursts of flux transfers

reaching up to several hundred MWb/s in magnitude. These magnitudes can not be the case

as the opening of flux is directly driven by the flux transfer rate of the dayside reconnection,

which never reaches these magnitudes.

The AMPERE data set include open flux values from both the northern and the southern

hemisphere. We have chosen to concentrate on data from the northern hemisphere instead

of combining them for several reasons. There are known to be systematic differences be-

tween the northern and southern hemispheres in which combining them can affect the av-

erage in a non-transparent way. When using the quality constraint, which will be elaborated

upon later, one could swap between north and south depending on whoever has a better fit

quality, which could lead to changes in open flux values that are not real. We use the north-

ern hemisphere in favour of the southern hemisphere because it should be closely related to

geomagnetic indices like the SML index, which is also measured in the northern hemisphere.

There is also more data coverage in the northern hemisphere. Additionally, the AMPERE data

from the northern hemisphere is found to be more reliable in general (Anderson et al., 2017).

From figure 3.4 & 3.5 we see that the raw data from the AMPERE set does not make for a

very precise representation of the realistic open flux. Finding the derivative of the open flux

(dFPC /d t ) can be very inaccurate. Different univariate regression analyses will be applied

to the AMPERE data to circumvent these issues in an attempt to find a more accurate and

workable representation of open magnetic flux.
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Figure 3.5: The upper plot shows the AMPERE open flux series of the northern
hemisphere for 04 March 2010. The lower plot shows the same open flux series
differentiated.

3.2.1 Polynomial Regression Representation of AMPERE Open Flux

The first type of analysis performed on the AMPERE data is a polynomial regression applied

to a rolling window. Assuming the rolling window has a length of 30 min, the fit function

applies a 2nd-degree polynomial regression on a 30 min window around the value for each

AMPERE value. From this regression, the vector containing the regression coefficients at the

centre of the window is returned to the corresponding timestamp. The polynomial regres-

sion will, in this thesis, be performed with several different lengths on the rolling window as

these can yield different results, and it is not apparent what an optimal time window would

be. Having a shorter time window offers a better resolution of the data but is more sensitive

to noise prevalent in the AMPERE data.

On the other hand, a longer time window is less sensitive to noise but may also show a lower

variation of the open flux than what we would see in reality. The relationship between differ-

ent geomagnetic processes is also expected to depend on different timescales, where match-

ing these timescales may yield better results. The upper plot in figure 3.6 shows the polyno-

mial interpolation performed on the AMPERE North data for three different window sizes,

30 minutes (orange), 60 minutes (green) and 90 minutes (red). The lower plot shows their

respective derivatives. The plots indicate how, for larger time windows, the fitted curve be-
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comes progressively smoother, while for smaller windows, more of the changes in the AM-

PERE data is picked up.

Figure 3.6: Plots of the open flux (upper) and change in open flux (lower) of the
OCB for a full day, 4 March 2010. The upper graph show the AMPERE North
fit (blue) plotted together with its polynomial regressions for rolling windows
of 30min (orange), 60min (green) and 90min(red). The lower graph shows the
derivatives of the respective polynomial fits.

3.2.2 Spline Representation of AMPERE Open Flux

The second type of analysis performed on the data set is a cubic spline interpolation. This

method breaks the data up in a series of equally spaced knots and performs a piecewise 3rd

degree polynomial fit between each knot. The preference for performing a spline interpo-

lation over a polynomial interpolation is the possible reduction of the interpolation error

and avoiding Runge’s phenomenon, in which oscillation can occur between points when in-

terpolating using high degree polynomials. Similarly to the polynomial interpolation, the

timescale dependence of the spline interpolation can be changed by changing the space be-

tween each knot. Figure 3.7 shows three spline interpolations performed in a similar fashion

to the polynomial interpolations in figure 3.6. Both plots in both figures are from the same

day, 4 March 2010. A striking difference between the spline fits and the polynomial fits is

that the spline fits are a lot smoother. The oscillation of the spline fit is limited to a 3rd de-
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gree polynomial between each knot. Increasing the space between each knot will therefore

reduce the number of oscillations in the fit. This also reduces the amount of variation cap-

tured by the spline method since the knots and the fit window are fixed. On the other hand,

the polynomial fit makes a separate fit for each value in the AMPERE data and can therefore

oscillate with the same 2min cadence as AMPERE. However, the oscillations are damped by

increasing the window size.

Figure 3.7: Plots of the open flux (upper) and change in open flux (lower) of the
OCB for a full day, 4 March 2010. The upper graph show the AMPERE North fit
(blue) plotted together with its spline interpolations for knot spacing of 30min
(orange), 60min (green) and 90min(red). The lower graph shows the derivatives
of the respective spline fits.

3.3 Concerning the AMPERE Quality Parameter

In addition to the open flux data, the AMPERE data set also comes with a quality parameter.

The quality parameter is automatically calculated for each R1/R2 boundary fit, described

in Milan et al. (2015). The fit quality is estimated by calculating the average peak-to-peak

current density between the R1/R2 currents, given in units µA m−1, meaning the quality pa-

rameter is proportional to the R1/R2 Birkeland current strength (Fig. 3.2b). The quality pa-

rameter is a general estimate for how accurately the circle fit predicts the R1/R2 boundary. It
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is more challenging to identify the R1/R2 boundary when the Birkeland currents are weak. In

the Milan et al. (2015) study, for example, fits of quality less than 0.15 were considered unre-

liable and ended up being discarded. The quality parameter will also be used in the present

study to filter out unreliable AMPERE data. The second panel in Figure 3.8 shows the quality

parameter plotted for the same time interval we have looked at earlier. The final panel illus-

trates the dayside reconnection, ΦD , calculated with Equation 2.8 and the SML index from

the SuperMAG database. As indicated from these panels, a possible issue with filtering out

low-quality data is that we create a bias towards higher activity periods, causing our model

to represent lower activity periods poorly. Filtering data based on the quality parameter will

be discussed in the next section concerning the selection of open flux data.

Figure 3.8: (a) The same open flux series plotted from earlier examples, 4 March
2010. (b) The AMPERE circle fit quality parameter plotted for the same period. (c)
The blue graph presentsΦD and the orange graph presents the SML index. Com-
paring these plots indicate how higher quality values are biased towards higher
activity periods.
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3.4 Data Selection

In this section, we will go through some of the data selection methods used to improve the

quality of the data we are analysing. The data we are selecting from envelops most the seven

years between 1st January 2010 and 1st January 2017, save for a few data gaps, at a 2 min

cadence.

3.4.1 Choosing an Appropriate AMPERE Fit

Earlier, it was presented how the AMPERE data could be fitted as a spline or polynomial fit.

Both fits could also be performed for different time windows / knot spacings as shown in fig-

ures 3.6 & 3.7. The different methods will be correlated with ΦD and different geomagnetic

indices expected to be highly correlated with ΦN , to figure out which one should work best.

Figure 3.9a showsΦD (solid), SML (dashed), PCN (dotted) and ASY-H (dash-dot) indices (ex-

planatory variables) correlated with F and dF /d t in black and red respectively. Additionally

there is the dashed blue line which is the SML-LT index which only takes into account night-

side activity. SML-LT will also be referred to as the modified SML* index.

(a) (b)

Figure 3.9: Plots ofΦD (solid), SML (dashed), PCN (dotted) and ASY-H (dash-dot)
indices correlated with F (black) and dF /d t (red) for both polynomial fit (a) and
spline fit (b). The plots show the Pearson correlation coefficient for time windows
/ knot spacing (timescales) between 10 min and 9 hours. The dashed blue lines F
and dF /d t correlated with the SML-LT index which only takes the nightside into
account. The correlation is performed on all seven years of data.

One immediate observation from these plots is that the explanatory variables show a much

stronger correlation with F than dF /d t . Interestingly, the correlation with F seems to ini-

tially be somewhat similar to what we saw in figure 2.12 from Laundal et al. (2020), even
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though we are correlating with the open flux and Laundal et al. (2020) is correlating with the

dayside reconnection. In figure 3.9 however, some of the correlations decrease for higher

"timescales", which is expected as we are not using any time averaging on the explanatory

variables. With dF /d t , on the other hand, the correlation is much lower. The lower corre-

lation is the opposite trend of what the theory suggests, where at least ΦD is more closely

related to the change in open flux.

From the plots, we see the correlation between dF /d t and the explanatory variables peak at

90 min for the polynomial fit and at 60 min for the spline fit. The lower correlation is likely

due to overfitting the curve to noise in the AMPERE data at lower timescales and flattening

of the AMPERE series at higher timescales. This flattening is also why the spline fit peaks at a

lower timescale than the polynomial fit. The spline shows much less variation for knot spac-

ings of equal length to a polynomial fit window length. Looking at the peaks of the respective

fits, it is not apparent which method has a better correlation with the explanatory variables.

By visually comparing daily plots of both methods, like in figures 3.6 & 3.7, the polynomial

fit seems to portray the AMPERE open flux series more accurately. The lower oscillation rate

of the spline fit often fails to pick up changes in AMPERE. The polynomial fit has also yielded

better results in regression analyses which will be presented in later sections. Building upon

these arguments, we will settle on the 90 min polynomial fit as the best dF /d t fit, which will

be used going forwards. From this point on, Ffit will refer to the 90 min polynomial fit of the

open flux and dFfit/d t to its derivative, representing the change in open flux.

3.4.2 Filtering AMPERE using the Quality Parameter

The seven years of AMPERE data being used contain numerous periods of insufficient qual-

ity data. An obvious way to filter out most of the insufficient data is by filtering based on the

AMPERE quality parameter mentioned earlier. The first plot in figure 3.10 shows the same

AMPERE open flux histogram from figure 3.4 and the second plot presents a histogram of

the AMPERE series after performing the polynomial fit in blue. The additional histograms

are after removing data with quality below the thresholds. After filtering away data of quality

beneath 0.15, 0.3 and 0.5, the remaining data encompasses about three quarters, half and

a quarter, respectively, of the total data. Notice how the remaining data tends to distribute

itself towards the higher open flux values. This is due to the quality parameter being propor-

tional to the FACs’ magnitude, stronger during high activity periods with high open flux. It is

more challenging to identify the boundary between the R1/R2 current system during lower

activity periods, leading to more noisy data in general. The second plot also showcases how

the polynomial curve fit has smoothed the flux data, while some of the discrete flux peaks

from AMPERE are still discernible.
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Figure 3.10: The first plot is the same AMPERE open flux histogram from figure
3.4 for comparison purposes. The blue histogram in the second plot shows the
entire open flux series like in the first plot, but after the polynomial fit has been
performed. The other histograms placed on top are after filtering away values
with quality lower than 0.15 (orange), 0.3 (green) and 0.5(red)

Figure 3.11 presents how filtering by quality affects the correlation between the explanatory

variables and dFfit/d t . Here we see the advantage of filtering the data by quality, with the

correlation of each parameter improving with increasing filter thresholds. A possible trade-

off with filtering away lower quality data is the loss of low flux values such that mostly high

flux data is taken into account.
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Figure 3.11: Correlation between the explanatory variables and dFfit/d t after fil-
tering out data under qualities 0, 0.15, 0.3 and 0.5.

Filtering out values under 0.5 in quality presents an additional side effect in the distribution

of the data. Figure 3.12, presents a histogram with the number of data points related to

each month of the year. The blue histogram is for the entire AMPERE data set, showing

a similar number of counts for each month. The slight variation in the number of counts

is due to the number of days in the respective months. The orange histogram shows the

counts left after filtering out values of quality less than 0.5. Here we see a clear bias towards

the summer months. There are, for example, about 3.4 times more values left in May versus

what is left in January after filtering out lower quality values. This difference is due to the

tilt of the Earth relative to the Sun throughout the year. During the summer months, the

northern hemisphere tilt toward the Sun increases the ionospheric conductivities, leading to

stronger Birkeland currents. Due to the nature at which the quality parameter is calculated,

this increase in Birkeland currents also increases the quality parameter value, creating a bias

in the data towards the summer months. It is not clear if this bias affects the final analysis

and will be ignored, but it is worth mentioning if it is proven otherwise.
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Figure 3.12: Histogram presenting the number of values related to each month
of the year. The entire AMPERE data set is presented in blue, and the values left
after filtering out lower quality data (less than 0.5) is presented in orange.

3.5 Estimating Change in Open Flux through Multiple Regres-

sion Analysis

Multiple regression analysis will be used to establish the relationship between the rate of

change in open flux and the dayside reconnection rate and geomagnetic indices. This is to

see if the geomagnetic indices can be used as parameters in a proxy for nightside recon-

nection rate. Multiple linear regression is used to find how several independent variables

(predictors) are linearly related to a dependent variable (response).

3.5.1 The Multiple Regression Model

A multiple linear regression model with q predictors and n values is as follows:

y = Xβ+ε (3.3)

where y is an n×1 response vector and X an n×(q+1) matrix, containing an intercept column

and q predictor columns. β is a (q+1)×1 vector of fixed parameters generated by the model,

and ε is the n ×1 residual vector. In detailed notation equation 3.3 can be expressed as:
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In our case, we want to use multiple regression analysis to create a proxy for the nightside

reconnection rate using ΦD as the parameter for the opening of flux and geomagnetic in-

dices for the closing of flux. In our model, these parameters will be used as predictors, and

dFfit/d t will be used as the dependent variable, y . Table 3.1 presents the correlation between

the explanatory variables and dFfit/d t (y) for all values, only positive values and only neg-

ative values of dFfit/d t . Ideally, ΦD is only correlated with positive y, and the geomagnetic

indices are only correlated with negative y. For negative y, the correlations seem reasonable,

withΦD showing very low correlation and all the indices being close to 0.3. For positive y, on

the other hand, in addition to having a correlation with ΦD as expected, there is also some

correlation with the different indices. The problem with this is that since the indices only

have positive values (negative for SML*), they are only able to model opening or closing of

flux, not both. This will sometimes lead to the indices indicating flux closing, while in re-

ality, the index is observing flux opening. For the PCN index, this even leads to the index

parameter alternating between describing flux opening and flux closing between different

regression analyses. Removing some of these variables might help minimise these issues,

but we will keep them, for now, to see if there is more reason for or against dropping them

later.

With our regression model having ΦD , SML*, PCN and ASY-H as predictors and dFfit/d t as

the response, equation 3.3 will take the following form:

ΦD SML* PCN ASY-H

y 0.25 0.19 -0.08 -0.14

y>0 0.32 -0.03 0.16 0.09

y<0 -0.002 0.28 -0.26 -0.28

Table 3.1: Correlation between the explanatory variables and positive, negative
and all values of dFfit/d t (y).
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In equation 3.5, the intercept vector is removed. This is because dayside and nightside re-

connection are equal over long timescales, 〈ΦD〉 = 〈ΦN 〉, usually over a few hours, well within

the seven years of data we are working. For long timescales, we then have:

〈
dFPC

d t

〉
= 〈ΦD〉−〈ΦN 〉 = 0 (3.6)

which means the intercept vector defaults to zero in the model.

3.5.2 Describing the Data Set

Before building the model or exploring the data further, some of the key metrics of the data

set are presented in table 3.2 to see how the data is distributed and if there are any outliers.

The count is the number of data points from about 1.8 million values to around 383 000 after

filtering out values with quality less than 0.5. Looking at the respective max/min values of

the different variables, we see that they all contain outliers falling well outside three standard

deviations of the respective variables. It is not evident whether or not these values should be

dropped as, especially forΦD and the indices, these are measured quantities that likely come

from actual observations and not errors. About 5.3% of the data lies outside three standard

deviations, which is much higher than expected for a normal distribution. According to the

three-sigma rule, only about 0.3% of the data should lie outside three standard deviations,

suggesting there is an overrepresentation of outliers, which is a reason for concern. Consid-

ering this, we will drop the outliers as they may lead to dubious results. For instance, it is

later found that the outliers lead to residuals deviating from a normal distribution.

ΦD SML∗ PCN ASY-H dFfit/dt

count 3.8e+05 3.8e+05 3.8e+05 3.8e+05 3.8e+05

mean 3.5e+04 -2.5e+02 2.3 3.1e+01 3.8e+02

std 3.5e+04 1.9e+02 1.5 2.1e+01 3.1e+04

min 0.0 -2.6e+03 -1.2e+01 0.0 -3.1e+05

25% 1.3e+04 -3.3e+02 1.4 1.7e+01 -1.7e+04

50% 2.7e+04 -2e+02 2.1 2.6e+01 5.9e+02

75% 4.7e+04 -1.1e+02 3.1 3.8e+01 1.8e+04

max 7.6e+05 3.3e+01 1.9e+01 3.6e+02 2.1e+05

+3 std 1.4e+05 3.3e+02 6.9 9.3e+01 9.3e+04

-3 std -6.9e+04 -8.3e+02 -2.2 -3.1e+01 -9.2e+04

Table 3.2: Descriptive statistics of the variables used in the regression model.
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3.5.3 Building and Evaluating the Model

To build our regression model, we will use the scikit-learn library for machine learning in

Python (Pedregosa et al., 2011). Before performing a linear regression analysis, we will split

the data into random train and test subsets. The training subset contains 80% of the data,

and the testing subset contains 20% of the data. A model will be generated by performing a

linear regression analysis on the training subset. The model then makes a prediction of the

testing subset. The purpose of doing this over-performing a linear regression on the whole

data set is to avoid overfitting, where the model becomes very good at predicting its own

data but worse at predicting a general data set. By passing the training data set through the

regression model, we end up with the following parameters:

β= (0.52, 45, −270, −190) (3.7)

This means that for example, a 1 V increase inΦD would lead to a 0.52 V increase in (dF /d t )reg

and a 1 nT decrease in SML* would lead to a 45 V decrease in (dF /d t )reg. The change in open

flux predicted by the regression model will be referred to as (dF /d t )reg to distinguish it from

dFfit/d t .

When evaluating the model, we will use the statsmodels library for Python (Seabold and Perk-

told, 2010). Before getting into specifics, there are a few fundamental assumptions made

when performing a multiple regression analysis:

1. There is a linear relationship between the dependent variable and the independent

variables

2. No multicollinearity between the independent variables

3. The residuals are homoskedastic

4. There is no autocorrelation of the residuals

5. The residuals are normally distributed

The assumptions affect the data differently when they do not hold. Some assumptions, if

violated, may reduce the reliability of the modelled parameters. The different assumptions

will be explained in more detail when we arrive at them while evaluating the model.

Checking for Linear Relationship between Dependent and Independent Variables

Linearity means that the dependent variable can be explained by a linear relationship be-

tween the independent variables. In our case, we expect linearity as the model being tested
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is based on the linear equation 2.2, with ΦD and ΦN represented by the independent vari-

ables. One way to identify if the relationships are non-linear is by examining residual plots of

the fitted model. Figure 3.13 shows the residual plot of our model. The residual plot is a scat-

ter plot with the predicted values (dF /d t )reg on the horizontal axis and its residuals with the

dependent variable on the vertical axis. The blue dots are from the training subset, and the

green dots are from the testing subset. The residual plots are produced with the Yellowbrick

machine learning extension for Scikit-Learn (Bengfort et al., 2018).

Figure 3.13: Residual plot showing the scattering between the predicted values
(dF /d t )reg and the residuals between (dF /d t )reg and dFfit/d t . The blue dots
show the residuals for the training subset and the green dots for the testing sub-
set.

Suppose there is a linear relationship between the variables in the model. In that case, we

expect the residuals to be randomly dispersed, and for non-linear relationships, we expect

to see some curvature or a distinct shape in the scatter plot. We see the residuals assuming

a diagonal shape with a semi-hard upper and lower edge in our plot. These cutoffs are likely

caused by removing outliers outside three standard deviations of the mean. A problem here

is that we do not see where the majority of the dots were found due to the sheer quantity of

data. Figure 3.14 shows the same plot again, but dots only have an opacity of 1%. Here it is

presented that the residuals are clustered around the centre. The histogram on the right side

also indicates that the residuals should be normally distributed.
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Figure 3.14: Same plot as in 3.13, but the dots opacity is reduced to 1%. The panel
to the right contains a histogram showing the distribution of the residuals.

Alternatively, we can create a hexbin plot to identify the distribution of the residuals more

clearly. The hexbin plot is a two-dimensional histogram with the predicted values along the

horizontal axis and the residuals along the vertical axis, just like the residual plots. But in-

stead of plotting a dot for each residual, a hexagon-shaped grid map is created, where the

number of residual points within each bin is counted and presented in a heat map. Figure

3.15 presents two such hexbin plots. On the left-hand side, the hexbin plot is plotted with

the number counts represented by a linear scale, and the panel to the right shows the same

hexbin plot, but with the number of counts on a logarithmic scale. From these plots, it be-

comes even more apparent that the majority of the residuals are "hugging" the origin with

no clear bias towards any direction. The residual plots do not indicate that the linearity as-

sumption is violated such that a linear regression model is appropriate.
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Figure 3.15: Hexbin plots of the residuals with the number of counts within each
bin represented by a linear (left) and logarithmic (right) heat map.

Checking for Multicollinearity

Multicollinearity occurs when one of the explanatory variables are highly correlated with

another explanatory variable. The problem with multicollinearity is that the coefficient es-

timates and their standard errors tend to be unreliable. The model will have difficulties iso-

lating the variables’ individual effects on the dependent variable with two highly correlated

variables. To detect multicollinearity, one can look at the correlation between the individual

variables. If the correlation between two variables is particularly high (close to 1 or -1), mul-

ticollinearity will likely become an issue. Table 3.3 is a correlation matrix presenting each

variables correlation with all other variables, including the dependent variable dFfit/d t . In

our case, the highest correlation is found between SML* and PCN at -0.62. The correlation

indicates a certain relationship between the two variables; though far from perfectly corre-

lated, it may not be clear if this correlation will be problematic for the model. The correlation

between dFfit/d t and the independent variables presented in this table are slightly higher

than those found in Table 3.1. This increase comes from removing outliers outside three

standard deviations of the mean from the data set.
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ΦD SML∗ PCN ASY-H dF/dt

ΦD 1.0 -0.36 0.47 0.38 0.29

SML∗ -0.36 1.0 -0.62 -0.54 0.20

PCN 0.47 -0.62 1.0 0.56 -0.062

ASY-H 0.38 -0.54 0.556 1.0 -0.13

dF/dt 0.29 0.20 -0.062 -0.13 1.0

Table 3.3: Correlation between the individual variables used in the regression
model.

Another way to detect multicollinearity is by looking at the variance inflation factor (VIF).

The VIF assesses how much the variance of the regression changes by removing and includ-

ing the different variables. If the variance is greatly affected by adding a certain variable,

there should be considerable multicollinearity between that variable and all those already

included in the model. So a higher VIF for a variable means more of the information of

that variable is already contained within the model. A general recommendation from the

statsmodels documentation is that if VIF is greater than 5, the variable is highly collinear

with the other explanatory variables, leading to large standard errors in the coefficient esti-

mates. In table 3.4 our initial VIFs are presented in the left column of values. We see that

all the indices have a VIF above 5, indicating that multicollinearity is too high between the

variables. Removing one of these indices should also reduce the VIF of the other indices, as

they all probably have some level of collinearity since they are all expected to be correlated

with nightside reconnection. The obvious contender here is the PCN index since it both has

the highest VIF and the worst correlation with dF fit/d t as presented earlier. By dropping the

PCN, we end up with the VIFs presented in the right column of table 3.4. Here we see all the

variables are below 5 since their collinearities are reduced by excluding the PCN index. From

here, we will be working with a new regression model where PCN is removed.

ΦD 3.29 2.91

SML∗ 5.55 4.40

PCN 7.50 -

ASY-H 5.91 4.86

Table 3.4: VIF of the explanatory variables before (left) and after (right) removing
the PCN index from the model.
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Checking for Heteroskedasticity

One of our assumptions for the regression model is that the residuals are homoskedastic. In

other words, homoskedasticity means that the variance of the residuals is constant across all

values of the independent variables. We assume there is no heteroskedasticity in our model,

which essentially means we have homoskedasticity, where the variance of the residuals is

constant. A problem associated with heteroskedasticity is that the standard errors of the

output are underestimated because the linear regression model does not detect the increase

in variance caused by heteroskedasticity. To check for heteroskedasticity, we can use the

Breusch-Pagan test. The Breusch-Pagan test performs a new regression to fit our indepen-

dent variables to the squared residuals from our original regression. If our independent vari-

ables are significant in explaining the variance in the residuals, then heteroskedasticity must

be present. In the Breusch-Pagan test, we have a null hypothesis that there is homoskedas-

ticity, meaning that if the test returns a p-value less than 0.05, we reject the null hypothesis,

and there is heteroskedasticity. In our case, the Breusch-Pagan test returns a p-value of 0,

which means the p-value is much less than 0.05, indicating the regression has very high het-

eroskedasticity.

Another method of identifying heteroskedasticity is by looking at residual plots to see if the

scatter of the residuals change with respect to the predicted values. By examining the clus-

tering of scatter points in figure 3.14, we see the main cluster of residuals peak around the

predicted value 0 and tapers for predicted values of increasing magnitude. The residuals

are lower in magnitude when the independent variables are greater in magnitude and vice

versa, indicating heteroskedasticity. From this, we should expect the error between dFfit/d t

and (dF /d t )reg to be at its greatest when (dF /d t )reg is close to zero. Two of the main rea-

sons for this trend in the errors are significant changes in dFfit/d t when there is little activity

present in the independent variables. And lags between dFfit/d t and (dF /d t )reg, causing

systematic differences between the two variables which are more prevalent when one of the

variables are close to zero. These effects can be observed when we will later look at specific

events.

Checking for Autocorrelation

Autocorrelation occurs when there is a significant correlation between a variable and a de-

layed version of itself. It essentially means that each of the residuals is affected by the one

before it, making the error terms dependent on each other. Our regression model assumes

that there is no autocorrelation, meaning we have independent error terms. Much like with

heteroskedasticity, the problem caused by autocorrelation is that the standard errors of the
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model cannot be relied upon. To test for autocorrelation of the residuals, we will use the

Ljung-Box test. With the Ljung-Box test, we have the null hypothesis that the residuals are

independently distributed, and there is no autocorrelation. Similarly to Breusch-Pagan, the

Ljung-Box test will return a p-value, where the null hypothesis is rejected if the p-value is less

than 0.05. Again for our model, the p-value defaults to 0, indicating that we have a strong

correlation in the residuals.

The autocorrelation function is plotted in figure 3.16with lags on the horizontal axis and the

correlations on the vertical axis. Additionally, there is also a blue-shaded region around the

horizontal axis, indicating the confidence intervals of the correlation. If the autocorrelation

values go beyond this shaded region, the correlation can be assumed to be statistically sig-

nificant. In our case, the autocorrelation seems to be very significant as we have a very low

confidence interval, barely intelligible from the horizontal axis.

Figure 3.16: Autocorrelation of the regression residuals for increasing lags.

In our model, the autocorrelation present is primarily due to variations in dFfit/d t not picked

up by the explanatory variables. Later we will find that the R-squared of the model is fairly

low, meaning the majority of the variation in dFfit/d t is not being represented by (dF /d t )reg.

As seen from the residual plots presented earlier, the errors are generally most significant

around zero, which is also probably where we have the greatest autocorrelation due to the

variations in dFfit/d t when the exploratory variables are small.
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Checking for Normally Distributed Residuals

Our last assumption is that the residuals of the regression are normally distributed. In fig-

ure 3.14, a histogram of the residuals was presented, where the residuals seem to assume

a normal distribution. Another way to check the normality is by visually assessing a Q-Q

(quantile-quantile) plot of the residuals, presented in figure 3.17. For each point (x, y) in

the Q-Q plot, a sample quantile (y-coordinate) plotted against the corresponding theoret-

ical quantile (x-coordinate). The sample quantiles represent each of the n residuals from

the regression model. Each value in the theoretical quantiles represents a quantile of a nor-

mal distribution partitioned into n equally probable quantiles, given in standard deviations

from the median. If the residuals are normally distributed, most of the points will be on the

straight red line. In our case, this is mostly true, except for some slight deviations towards

the outlying values. Regardless, the linearity of the points suggests that the residuals are

normally distributed.

Figure 3.17: Q-Q plot of the residuals (blue dots) compared to a normal distribu-
tion (red line).

3.5.4 Regression Model Summary

Moving on from testing the assumptions of the regression model, table 3.5 summarises some

of the results from the regression analysis. First, we have the mean absolute error (MAE), the

mean squared error (MSE) and the root mean squared error (RMSE), giving a measure of how

well our data fit the model. The mean absolute error is the mean of the absolute value of

the residuals of the model. The MAE gives an idea of the magnitude of the errors. The mean
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squared error is the mean of the squared errors. Squaring the residuals have the added effect

of "punishing" more significant errors over MAE. The root mean squared error is the square

root of the mean squared error. RMSE is usually favoured as it both punishes significant

errors and gives an error in the same units as the dependent variable. In units of open flux

change, the RMSE of the model gives us a total error of 25 kV. This error is quite significant

as the absolute mean value of dFfit/d t is only about 21 kV in comparison.

The R-squared metric provides a way to measure the goodness of fit between the model and

the data. The metric output is between 0 and 1, where 1 is a 100% matching fit between the

data and the model. In our case the R-squared is 0.203, which means the independent vari-

ables are explaining 20.3% of the variation in the dependent variable, dFfit/d t . A limitation

with R-squared is that the score will increase as the number of independent variables in-

creases, even if they have almost no correlation with the independent data. To combat this,

the adjusted R-squared metric penalises models with multiple variables with little impact on

the model, reducing the score. In our case, the R-squared and adjusted R-squared are the

same, so there are no unnecessary variables.

Next, we have summary statistics for each of the independent variables. The coef column

shows the estimated coefficients of the independent variables, producing the β vector:

β= (0.51, 46, −197) (3.8)

The next column shows the standard errors of the respective regression coefficients, measur-

ing how precisely the model estimates the coefficients. Dividing the regression coefficients

by their standard errors calculates the t-values. The higher the magnitude of the t-value, the

more significant the variable is in the regression model. In our case, ΦD is the most signifi-

cant for the model, and ASY-H is the least significant. Next is the p-value related to the null

hypothesis that the coefficients are equal to zero. If we fail to reject the null hypothesis, there

is a significant chance that the coefficients are zero, meaning they may have no real impact

on estimating the dependent variable. In our case, all p-values are near zero, so we reject

the null hypothesis, and the coefficients should not equal zero. We also see the same result

in the 95% confidence intervals presented in the last two columns. The confidence intervals

exclude zero for all variables, so their coefficients should not equal zero. However, due to

the residuals being heteroskedastic and suffering from autocorrelation, the standard errors

and the other statistics describing the uncertainty of the variables, all highlighted in red, are

unreliable. These uncertainties should likely be more significant if heteroskedasticity and

autocorrelation were not present.
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MAE: 1.92e+04 R-squared: 0.203

MSE: 6.25e+08 Adj. R-squared: 0.203

RMSE: 2.5e+04

coef std err t P> |t| [0.025 0.975]

ΦD 0.5135 0.002 293.071 0.000 0.510 0.517

SML 46.2543 0.312 148.472 0.000 45.644 46.865

ASY-H -196.5362 2.810 -69.934 0.000 -202.044 -191.028

Table 3.5: Summary statistics of the (dF /d t )reg regression
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Chapter 4

Results

This chapter presents the results and is divided into three parts. First, we present spectral

analysis periodograms of the different variables used in the study in order to identify period-

icities associated with various magnetospheric and solar processes. Second, we present the

summary statistics of two regression models alternative to the one presented in Section 3.5.

Last, we present our estimates by plotting them for a few selected days, giving a comprehen-

sive overview of the resulting observations.

4.1 Spectral Analysis of Magnetospheric Variables

The following section will look at periodograms of the different magnetospheric parameters

we are using and investigating. A periodogram is an estimate of the power density of a signal

for different sinusoidal periods. In our parameters, we might expect to observe periodicities

related to magnetosphere processes and the solar wind, i.e. substorm periodicity, solar ro-

tation, annual or semi-annual changes. For our data, we will use the Lomb-Scargle method,

a form of least-squares spectral analysis which allows for data gaps in the signal. Figure 4.1

presents the Lomb-Scargle periodograms for Ffit, dFfit/d t , ΦD , SML, PCN and ASY-H. The

power density of periodic signals of periods between 10 minutes and 400 days are plotted on

a linear time scale. Figure 4.2 presents the same plots on a logarithmic time scale to readily

observe the power distribution of shorter periods.
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Figure 4.1: Lomb-Scargle periodograms for Ffit, dFfit/d t ,ΦD , SML, PCN and ASY-
H for periods between 10 min and 400 days. The periodogram is plotted on a
linear time scale, showcasing the higher periodicities.
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Figure 4.2: Same periodograms as presented in Figure 4.1 with a logarithmic time
scale to better illustrate lower periodicities.

Comparing the periodograms for the different variables, we see several signatures shared
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amongst them. The largest amplitude in all variables, except for dFfit/d t , is found in peri-

ods between 350 and 400 days. These amplitudes are likely related to annual periodicities

present in the signals. Around 250 days, we see another signature that is present in all vari-

ables. In Figure 4.2, we see the periodograms are much noisier for lower periodicities. Es-

pecially for dFfit/d t , it is difficult to tell whether we are looking at actual signatures or noise

on the signal. However, the increase in amplitude seen in the red shaded areas might be of

interest. The shaded areas indicate periodicities related to the solar rotation period varying

from 24.47 days at the equator up to around 38 days near the poles, explaining the increases

in amplitude for this period. We can see this signature present in all variables, except for

dFfit/d t , meaning it is lost after differentiating Ffit.

4.2 Other Multiple Regression Models

In section 3.5, we went through multiple regression model, relating dFfit/d t toΦD , SML* and

ASY-H. Now we will present the results from two other regression models, one estimating

PhiN and the other estimating FPC . For these models, we will not go through the process

of testing for the different assumptions of the models as the results are very similar to that

of the dF /d t model. In the next two sections, we will present the other models’ summary

statistics and point out some of the differences between the models.

4.2.1 Nightside Reconnection Model

This model will exclude ΦD from the independent variables and try to predict the nightside

reconnection rate exclusively. The dependent variable, ΦN , is calculated by subtracting the

change in flux estimated by the polynomial regression, dFfit/d t , from the dayside reconnec-

tion rate estimated with Equation 2.8,ΦD . ΦN is calculated from the following equation:

ΦN =ΦD − dFfit

d t
(4.1)

For independent variables, the SML*, ASY-H and PCN indices are used. The PCN index was

allowed back into the model since the VIF is reduced by removing ΦD from the model. Ta-

ble 4.1 presents the summary results of theΦN ,reg regression model. The error estimates are

about the same as what we saw for the (dF /d t )reg model. On the other hand, the R-squared

is noticeably higher at 0.291 versus 0.203, almost a 50% increase. This increase, however,

does not necessarily mean that this method is better than the one presented in the previous

chapter. This increase in correlation is likely because of the independent variables correlat-
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ing with theΦD component from Equation 4.1 and not necessarily with dFfit/d t .

The motivation behind creating a model for ΦN is to force the coefficient of ΦD to be equal

to one. This is the same as assuming that the dayside reconnection rate is adequately es-

timated using PhiD . Since dFPC/d t and ΦD have the same units (Wb s-1) and should be

directly proportional to each other, it makes physical sense for both variables to have the

same size. From the (dF /d t )reg model, ΦD got a coefficient of 0.51, indicating that only half

of the dayside reconnection rate is impacting the open flux increase of the polar cap. We

will later compare how these models perform in comparison to each other when looking at

specific events.

MAE: 1.69e+04 R-squared: 0.291

MSE: 5.18e+08 Adj. R-squared: 0.291

RMSE: 2.28e+04

coef std err t P> |t| [0.025 0.975]

SML -41.8 0.540 -77.5 0.000 -42.9 -40.8

PCN 6422 66.9 96 0.000 6291 6553

ASY-H 444 4.92 90.4 0.000 435 454

Table 4.1: Summary statistics of theΦN ,reg regression

4.2.2 Open Flux Model

From Figure 3.9a, we see that ΦD and the different indices have much greater correlation

with Ffit than with dFfit/d t . Based on this information, performing a regression analysis

directly on the open flux series might yield a better result. Figure 3.8 gives a good indication

as to why the open flux and the other variables are so well correlated. Generally, for high

open flux values, the other variables are also greater in magnitude and the opposite for lower

values. The argument against building a model based on the open flux is that assuming the

geomagnetic indices are correlated with nightside reconnection, it makes less physical sense

for theΦD and the indices to explain better the open flux, based on Equation 2.2.

Table 4.2 presents the summary statistics of the Freg regression model. In this model, a con-

stant of 428 MWb has been added as some open flux is always expected to be present in the

polar caps. The open flux model also allowed for incorporating all the other variables with

respect to multicollinearity since much of the VIF is being absorbed by the constant.

The coefficients and errors we obtain here are very different to those of the previous models.

These numbers are difficult to compare with the other models since they explain different
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phenomena, open flux and change in open flux. One change worth note is the much im-

proved R-squared value at 0.538.

MAE: 6.99e+07 R-squared: 0.538

MSE: 6.99e+15 Adj. R-squared: 0.538

RMSE: 9.03e+07

coef std err t P> |t| [0.025 0.975]

const 4.28e+08 2.14e+05 1997 0.000 4.28e+28 4.28e+08

ΦD 1177 5.94 198 0.000 1167 1189

SML -4.97e+05 1139 -436 0.000 -4.99e+05 -4.94e+05

PCN 2.02e+06 1.27e+05 15.9 0.000 1.77e+06 2.27e+06

ASY-H 1.95e+06 1.05e+04 186 0.000 1.93e+06 1.97e+06

Table 4.2: Summary statistics of the Freg regression

4.3 Events

In this section, we will present the results from our models for a few selected days. Event 1 is

the same day presented in earlier examples from the previous chapter. This is the only event

presented with lower quality AMPERE data in it, showcasing why we choose to avoid these

periods. Event 2 presents a two day high activity period showing a large discrepancy between

the estimated nightside reconnection rate and the dayside reconnection rate, violating the

ECPC. Events 3 and 4 show two of the better days found in the seven-year period, where

the disparity between the open flux change from AMPERE and the regression models are

minimal.

4.3.1 Event 1

Figure 4.3 presents the model results for 4 March 2010, the same day we used as an exam-

ple in Chapter 3. Figure 4.3a presents the open flux series for the selected period. In blue

and orange are the AMPERE north open flux series, FAMPERE, and 90 min polynomial fit, Ffit,

respectively, same as in Figure 3.6. In addition, the black line shows the open flux series

predicted by the open flux regression model, Freg, presented in Section 4.2.2.

Figure 4.3b presents the polynomial fit open flux change, dFfit/d t , in orange and the dayside

reconnection,ΦD , calculated from Equation 2.8 is plotted in green. ΦN (purple), is calculated

by rearranging Equation 2.2 and solving for ΦN , ΦN = ΦD −dFfit/d t . The black line shows
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the nightside reconnection predicted by the regression model, ΦN ,reg, presented in Section

4.2.1. The purpose of this panel is to present what the different components of Equation 2.2

looks like, assuming ΦD and dFfit/d t are accurate, and to see how ΦN ,reg and ΦN relates to

each other.

In Figure 4.3c, the flux change model, (dF /d t )reg, from Section 3.5, is compared to dFfit/d t .

The green and purple graphs represent the components of the regression model responsible

for opening and closing of flux, respectively.

In Figure 4.3d, an alternative method of estimating open flux change is presented in black,

by subtracting ΦN ,reg (purple) from ΦD (green). Finally, in Figure 4.3e, the AMPERE quality

parameter is plotted.
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Figure 4.3: Different variables and regression models plotted for 4 March 2010.



4.3. EVENTS 67

Unlike the other events we will look at, Figure 4.3 presents a relatively low activity day. The

AMPERE quality stays below 0.5 for most of the day, which is less than in the data we used

when building the respective models. Plotting this low-quality data helps illustrate why we

avoid using the lower quality data. Throughout most of the day, except for the two short

periods of higher activity, we see the FAMPERE series is quite noisy, sporadically shifting be-

tween different highly dispersed open flux values. For example, between 00-03 UT and after

18 UT, it should not be possible for FPC to change so drastically as we see in these periods.

The noisy open flux data comes from the R1/R2 boundary fit method, failing to identify cor-

rectly at which colatitude the boundary is located. The consequence of these inaccurate

estimates is that the fitted open flux series, Ffit, estimates changes in open flux, which are

not present in reality. The differentiated open flux series, dFfit/d t , will, in return, show pe-

riods of flux opening or flux closing which does not exist. We can see an example of this

between 18-21 UT in Figure 4.3b. Here, dFfit/d t shows a period of strong flux opening, but

the dayside reconnection rate, ΦD , is barely present. The greater dFfit/d t than ΦD in this

period suggests that we have a negative nightside reconnection rate, ΦN , which should not

be possible. These periods of negative nightside reconnection are relatively common in the

data set where about 25% of the estimated ΦN values are negative. This amount is reduced

to around 13% after removing values under quality 0.5.

4.3.2 Event 2

Figure 4.4 plots a two day period from 15 to 17 July 2012. Here we see what looks like an

intense reconnection event lasting for about one and a half day. The event starts after 06 UT

the 15th, with ΦD increasing to the abnormally high value of 300 kV, considering 99% of the

ΦD values are below 100 kV (Fig. 4.4b, d). The dayside reconnection event lasts continuously,

slowly subsiding until about 15 UT the next day. In panels c and d, we see the nightside

reconnection derived from the geomagnetic indices producing a much lower reconnection

rate thanΦD .

A consequence of this imbalance is that the change in flux from the regressions models will

be continuously positive for the entire period. For example, integrating (dF /d t )reg from

panel c leads to a total open flux of 100 GWb, much greater than the maximum of around

2 GWb found in the AMPERE data. We can conclude from this event that there are instances

where the indices used fail to pick up on the magnitude of the nightside reconnection rate.
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Figure 4.4: Different variables and regression models plotted for 15 & 16 July 2012.
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4.3.3 Events 3 & 4

Figures 4.5 & 4.6 shows plots for 08 October and 21 December 2015, respectively. These are

two of the days where the closest resemblance between dFfit/d t and the regression models

were found. However, dFfit/d t and the regression models are still not reaching correlations

surpassing 0.5, meaning most of the variation in dFfit/d t is still not explained by the regres-

sion models.

In Figure 4.5 there is a sharp decrease in dFfit/d t from about 04 UT to 06 UT. In panels c

& d, we see the decrease reflected by the flux change estimated by the regression models.

However, the decrease estimated by the regression models precedes dFfit/d t by a few tens

of minutes. These premature occurrences of flux change estimated by the regression models

are fairly common in the time series as a whole, suggesting the geomagnetic indices used

to model the flux closing are a reaction to nightside reconnection before the open flux esti-

mated with AMPERE. In Figure 4.6 we see two similar signatures around 08 UT and 12 UT.

Judging by the flux opening and closing components of dFreg/d t (Fig. 4.5c) in the period

between 03 UT and 12 UT, 07 October 2015, we see a period of steady ΦD starting right after

03 UT and ending around 10 UT and a period of ΦN from around 05 UT to 12 UT. There

seems to be a slight increase in the ΦN component before 05 UT. This increase might be

due to the geomagnetic indices responding to the onset of ΦD . We also see this occurrence

reflected by FAMPERE series (Fig. 4.5a). After 03 UT, the open flux increases steadily until

a brief steady-state period (05 UT - 06 UT), followed by a short period of flux closing due

to stronger ΦN , around 06 UT. Afterwards, we again see a period of flux opening until the

dayside reconnection starts subsiding, around 09 UT. Finally, the open flux again decreases

from the delayedΦN induced by theΦD period (09 UT - 11 UT).

In panel b, there is a small spike in the nightside reconnection rate, derived from subtracting

dFfit/d t from ΦD , just after 03 UT. In this same period, ΦD quickly reaches 100 kV, while

dFfit/d t more slowly reaches the same magnitude. In this situation, we can assume that

dFfit/d t and ΦD should be equal in the beginning, with no nightside reconnection present.

But dFfit/d t is lagging behindΦD and does not detect the same increase in flux change. The

lag can be partly due to the averaging window of the polynomial fit dampening changes in

the AMPERE open flux estimates and partly due to the open flux estimates not being entirely

accurate.
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Figure 4.5: Different variables and regression models plotted for 08 October 2015.
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Figure 4.6: Different variables and regression models plotted for 21 December
2015.
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Chapter 5

Discussion

In this chapter, we will discuss our results and the choices we made throughout the study.

First, we discuss the fitting technique used to represent Ffit as the accuracy of the estimated

open flux has a significant impact on our results. We discuss the presence of dual-lobe re-

connection as a possible source of additional inaccuracies. Previous attempts at expressing

the ECPC by integrating ΦD and the geomagnetic indices are also briefly discussed. Next,

we attempt to quantify the error of the open flux change series, dFfit/d t . Finally, we dis-

cuss which of the different regression models is best at estimating changes in open flux or

nightside reconnection rate.

5.1 Limitations of the Open Flux Averaging

As explained in Section 3.4, the 90 min polynomial fit, Ffit, was the resulting fit chosen to

represent the polar cap open flux. This fit was ultimately decided upon due to retaining most

of the variation observed in the AMPERE open flux series while simultaneously minimising

the effect of noise. Because of the 90 min averaging of the open flux data, we are limited

in observing physical phenomena over shorter timescales. Among these phenomena is the

substorm phase with increased nightside reconnection, the substorm expansion phase. The

expansion phase is typically shorter than the 90 min averaging period. For example, in Milan

et al. (2007) substorm reconnection events were found to last 70 min, on average. The longer

averaging window means that we will not accurately observe the exact period of flux closing

caused by the nightside reconnection events. It is also difficult to observe variations in ΦN

during the nightside reconnection periods. Ideally, we want to obtain open flux data with a

shorter timescale dependence akin to the 10 min timescale of the AMPERE open flux series,

but this is unfortunately not viable due to the high level of noise in the open flux estimates,

and the satellite separation in each orbital plane in the first Iridium fleet used in this study.
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5.2 Impact of Dual-Lobe Reconnection

Magnetic reconnection between the magnetosphere and the IMF does not necessarily occur

only at the magnetopause or in the magnetotail. During prolonged periods of northward-

directed IMF, the IMF can reconnect with the sunward edge of both the magnetotail lobes,

referred to as dual-lobe reconnection (DLR) (Imber et al., 2006). The effect of DLR is that

open field lines mapping to the sunward edge of the polar cap are closed, meaning we have

flux closing on the dayside ionosphere. DLR also leads to what is known as horse collar

auroral events (Milan et al., 2020). It is not known how the presence of DLR might affect the

AMPERE open flux estimates, which can possibly lead to additional inaccuracies. DLR might

also affect the geomagnetic indices used, differently to how they are affected by nightside

reconnection. This is especially true for the modified SML* index, which only takes into

account SML measurements from the nightside quadrant. Ideally, the geomagnetic indices

would be affected at an equal rate from flux closing through nightside reconnection and

dual-lobe reconnection. However, since we are mostly focusing on high activity periods,

when BZ is generally southward, we do not expect much DLR activity.

5.3 Estimating Open Flux through Integration

From the ECPC (Eq. 2.2), the dayside and nightside reconnection rates are directly propor-

tional to the change in open flux. However, in empirical studies, the open flux itself is gen-

erally measured. Models estimating ΦD and/or ΦN are then integrated to fit the open flux

estimate (e.g Milan et al., 2012). This approach was also attempted early in the present study.

However, the integration method has led to poor results as will be discussed in this section.

In the first approach, a similar method to that used in Laundal et al. (2020) (Sec. 2.10) was

applied. Coefficients for the geomagnetic indices were estimated by applying Equation 2.15

over long timescales. Equation 2.18 was then applied, estimating the nightside reconnec-

tion rate using different geomagnetic indices. ΦD and ΦN , estimated from Equation 2.18,

were then integrated so they could be compared to the open flux series from AMPERE. This

method was attempted using different timescales and combining different indices as proxies

for ΦN , but some underlying issues limit this approach: The dayside and nightside recon-

nection rates estimated with this method do not exactly cancel each other out, such that the

integrated reconnection rates lead to the estimated open flux to diverge into greater positive

or negative values for increasing periods. This means that the estimated open flux becomes

increasingly unreliable as time passes since errors from previous values propagate into later

values due to the integration. Additionally, several data gaps exist in ΦD and in some of the
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indices, which are also problematic when integrating the data, leading to further propaga-

tion of errors.

Another method, based on multivariate regression analysis similar to the method in Section

3.5, was also explored. Instead of estimating the change in open flux with ΦD and different

indices, the explanatory variables were instead integrated and used in a regression model to

estimate the open flux. The problem with this approach was that the coefficients became in-

creasingly muted when building a model with data over a more extended period. The model

can work reasonably well when only examining a single day, but for more extended periods,

it becomes problematic with the coefficients reaching negligible values.

5.4 Estimating the Open Flux Error

When building a model based on Equation 2.2, the change in open flux estimated from the

AMPERE open flux series is arguably one of the least accurate variables. By estimating the

error in dFfit/d t , the accuracy of the variable can be estimated. Since dFfit/d t is a derivative

based on FAMPERE, it can be written as a finite difference:

fi = a(Ai − Ai−1) (5.1)

where f represents the change in open flux, A represents the open flux and a is a propor-

tionality constant. With the change in flux given in Wb s-1 and assuming there are 10 min

between independent AMPERE fits, we get the coefficient a = 1/(10 · 60s). From Equation

5.1, we obtain the following propagation of uncertainty:

σ2
f = 2a2σ2

A(1−ρA) (5.2)

where σ f and σA are the uncertainties of f and A, respectively, and ρA is the autocorrelation

of A. Before finding the uncertainty in the flux change, we must first find a value for the

uncertainty in the AMPERE open flux. As outlined in Section 3.1, there are several steps in

calculating the AMPERE open flux, each with a certain level of uncertainty. One important

source of variance is the one degree accuracy of the R1/R2 boundary circle fits. A one degree

increase or decrease in colatitude radius leads to significant jumps in the open flux values,

depending on how large the radius is. A one degree increase in colatitude at high latitudes

causes a smaller increase in open flux than a one degree increase at lower latitudes, due to

the area within the OCB having a quadratic relationship with the radius. For example, in the

AMPERE data set, there is a 31 MWb difference between a 10◦ and 11◦ colatitude circle fit,
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and a 103 MWb difference between a 29◦ and 30◦ fit, on average. More typically observed, a

one degree increase from 17◦ to 18◦ increases the open flux by 64 MWb, on average.

The mean change in open flux per change in colatitude can be written on the form, dFAMPERE(Λ)/dΛ.

By assuming the AMPERE method can accurately estimate the colatitude of the R1/R2 cur-

rent boundary the main source of uncertainty is given by the one degree accuracy, which

subsequently means the uncertainty in the open flux can be approximated as:

σA(Λ) = 1p
N

dFAMPERE(Λ)

dΛ
(5.3)

where N is the number of degrees of freedom in F . The open flux series used is the polyno-

mial fit with 90 min averaging. With there being 10 min between independent AMPERE fits,

we then have 9 independent measurements when fitting the open flux, such that N = 9.

Autocorrelation, presented earlier in Section 3.5.3, is the correlation of a series with a de-

layed copy of itself. For ρA, it is the autocorrelation of Ffit we will find, since this open flux

series is assumed to be the most accurate. Ffit was estimated from the 90 min polynomial

fit function, meaning there is a 90 min difference between two independent values in the

series, such that the autocorrelation should be found at a lag of 90 min. With a lag of 90 min,

the autocorrelation of A is found to be ρA = 0.715.

Figure 5.1 presents how σA and σ f changes with increasing magnetic colatitude, Λ. The

vertical axis on the right hand side shows the uncertainty of σA, and the axis on the left hand

side shows the uncertainty of σ f , calculated with Equation 5.2.

Figure 5.1: σA and σ f as a function of geomagnetic colatitude.
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The error graph for σ f and σA in Figure 5.1 can be considered a best-case scenario for the

errors in FPC and dFPC/d t , where the R1/R2 current boundary is assumed to be accurately

estimated within one degree.

Looking at the AMPERE open flux series from the figures in Section 4.3, we find examples of

events with different qualities of the boundary estimates: At time 1930 UT, 07 October 2015

(Fig. 4.5), there is an immediate two minute drop from 24◦ colatitude to 20◦ colatitude and

back again. Such a brief and abrupt change in the polar cap size is most likely due to the

current boundary being incorrectly fitted to 20◦ colatitude. This difference gives an open

flux estimate error of σA ≈ 117 MWb, which equates to σ f ≈ 148 kV, much greater than the

errors presented in Figure 5.1. This error is also related to a fit of relatively high quality of

0.83. For lower quality periods, the error can be much more extreme, for example at time

0104, 4 March 2010 (Fig. 4.3). Here we see a sharp spike between 30◦ and 14◦ colatitude,

resulting in errors of σA ≈ 433 MWb and σ f ≈ 543 kV. Figure 4.6 is an example of a period

where of the R1/R2 current boundary fit stays accurate within one degree. From 0400, 20

December 2015 until the end of the day, we only see one degree increments or decrements

in the R1/R2 boundary fit colatitudes, indicating that the fits should be accurate within one

degree colatitude.

Judging by the figures in Section 4.3 and the general trend of the R1/R2 boundary fits, it is

very difficult to make a generalised estimate of the error in FPC and dFPC/d t . When looking

at individual events, one might resort to some guesswork at within how many degrees the

accuracy of the boundary fit lies.

5.4.1 OCB Boundary Correction Error

Looking back at the OCB boundary correction term, K, presented in Section 3.1.3, the correc-

tion term was estimated as from median offset between the OCB and the R1/R2 boundary.

Figure 3.3 shows the median offsets with associated error bars for each MLT bin. Here, the

error bars suggest the offset between the OCB and the R1/R2 boundary varies by several de-

grees. From this, we can assume the median OCB offset is not representative of the OCB

offset at all times, meaning the OCB offset could differ on a case to case basis, leading to

additional errors in the open flux estimates.
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5.5 Determining the Best Model for Estimating the Open Flux

Change / Nightside Reconnection Rate

Three different regression models were created in the previous chapters to estimate various

variables. The first model, (dF /d t )reg, presented in 3.5, estimated the open flux change,

using ΦD , SML* and ASY-H as variables. The second model, ΦN ,reg, presented in Section

4.2.1, estimated the nightside reconnection rate, ΦN = ΦD − dFfit/d t , using SML*, ASY-H

and PCN as variables. The last model, Freg, presented in Section 4.2.2, estimated the open

magnetic flux usingΦD , SML*, ASY-H and PCN.

The open flux model, Freg, was made sinceΦD and the geomagnetic indices showed a much

higher correlation with Ffit than with dFfit/d t , (Fig. 3.9). We also see the R-squared being

significantly higher than the other models at 0.538. Despite the higher correlation, the open

flux model is found to poorly reflect dFfit/d t when differentiated, suggesting this model is

worse than the others at detecting flux changes. The differentiated open flux model is not in-

cluded in the event plots to keep the plots as simple as possible without much visual noise.

The worse performance also has a physical explanation since ΦD and the geomagnetic in-

dices, assuming the indices are proportional with the nightside reconnection rate, are both

describing flux change, not flux content. The high correlation of this model is mainly due

to the independent variables generally are greater in magnitude when the open flux is also

large, not because the variables are necessarily better at predicting the open flux at any given

time.

When determining the best proxy for estimating the nightside reconnection rate, the two

other models are better candidates. The models are compared to dFfit/d t to determine

which model has the better fit. The c panels in Section 4.3 shows this comparison with

(dF /d t )reg, and the d panels show the comparison with ΦN ,reg subtracted from ΦD . Both

models are very similar, the main difference being the ΦN ,reg model generally having values

of greater magnitude. An issue with the (dF /d t )reg is that the magnitude of the dayside and

nightside reconnection rates appear too low compared to dFfit/d t . TheΦD coefficient in this

model is about 0.51, while a value closer to 1 is expected since ΦD and dFfit/d t are given in

the same units. In the ΦN ,reg we remedy this issue by fitting the indices to the dependent

variable given asΦN =ΦD −dFfit/d t . In this situation dFfit/d t ,ΦD andΦN all have the same

absolute magnitude in accordance with the ECPC. Comparing the two methods, we also find

theΦN ,reg model to show the best resemblance with dFfit/d t , making it the best proxy for the

open flux change and, by extension, the nightside reconnection rate.
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Chapter 6

Conclusions

6.1 Conclusions

6.2 Using AMPERE to Monitor Changes in Open Flux

An open flux time series, Ffit, covering almost seven whole years, was estimated for the north-

ern hemisphere. Ffit was estimated by performing a rolling 90 min 2nd order polynomial

curve fit on open flux data derived from AMPERE Birkeland current maps.

Comparing Ffit to solar wind measurements and various geomagnetic indices, we see the

open flux estimates tend to be wildly inaccurate during low activity periods. Ffit will often

predict significant changes in open flux while there should be little to no reconnection ac-

tivity, which violates the assumptions of the ECPC. This trend can be observed in the quiet

periods of Figure 4.3.

For higher activity periods, however, Ffit is more accurate as the R1/R2 current boundary,

correlated with the OCB, becomes easier to identify with stronger Birkeland currents. The

AMPERE quality parameter reflects the magnitude of the Birkeland currents. The events

presented in Figures 4.5 & 4.6 are two of the best periods found when comparing dFfit/d t

and the estimated open flux change through multivariate regression. These are both very

high activity periods whereΦD exceeds 100 kV, placing these events in the 99th percentile in

terms of dayside reconnection activity.

We conclude that the open flux estimates are more accurate at higher activity periods based

on the improved correlation with ΦD and the geomagnetic indices and the noise reduction

in the AMPERE open flux series. However, we can not confirm exactly how accurate the

open flux estimates are in these higher-quality periods since we have no other simultaneous

measurements or estimates of the open magnetic flux to compare with Ffit.
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6.3 Producing a Nightside Reconnection Rate Proxy using Ge-

omagnetic Indices

We used multivariate regression analysis to create three different regression models using

ΦD and various geomagnetic indices as independent variables. Of these models, (dF /d t )reg

was designed to predict the open flux change, ΦN ,reg was designed to predict the nightside

reconnection rate derived from ΦN = ΦD −dFfit/d t , and Freg to predict the open flux. Of

these models, ΦN ,reg is concluded to offer the best proxy of the nightside reconnection rate

and, by extension, the open flux change. We obtain the following representation of the ECPC:

dFPC

d t
=ΦD −ΦN ,reg (6.1)

The open flux change derived from Equation 6.1 and dFfit/d t , respectively, have a Pearson

correlation factor of about 0.32. The correlation is improved to 0.42 if ignoring AMPERE

data with quality parameters below 0.5. These correlations mean that still more than half

of the variation in dFfit/d t is not being explained by the model. However, since we assume

dFfit/d t tend to be very inaccurate at depicting the real open flux change, the indices may be

better at predicting the nightside reconnection rate than our model suggests. Since we do not

know how precise our open flux estimate is, we cannot effectively predict how accurate the

regression model is. From the study performed in Laundal et al. (2020), we can assume the

use of geomagnetic indices is a viable method for predicting the nightside reconnection rate.

For our approach to work, a more accurate estimate of the open magnetic flux is necessary.
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