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Abstract

Post–Quantum Cryptography studies cryptographic algorithms that quantum comput-
ers cannot break. Recent advances in quantum computing have made this kind of cryp-
tography necessary, and research in the field has surged over the last years as a result.
One of the main families of post–quantum cryptographic schemes is based on finding
solutions of a polynomial system over finite fields. This family, known as multivariate
cryptography, includes both public key encryption and signature schemes.

The majority of the research contribution of this thesis is devoted to understanding
the security of multivariate cryptography. We mainly focus on big field schemes, i.e.,
constructions that utilize the structure of a large extension field. One essential contri-
bution is an increased understanding of how Gröbner basis algorithms can exploit this
structure. The increased knowledge furthermore allows us to design new attacks in this
setting. In particular, the methods are applied to two encryption schemes suggested in
the literature: EFLASH and Dob. We show that the recommended parameters for these
schemes will not achieve the proposed 80–bit security. Moreover, it seems unlikely that
there can be secure and efficient variants based on these ideas. Another contribution
is the study of the effectiveness and limitations of a recently proposed rank attack. Fi-
nally, we analyze some of the algebraic properties of MiMC, a block cipher designed
to minimize its multiplicative complexity.
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Outline

This doctoral thesis comprises five chapters, and is based on four research papers. The
first chapter presents a general introduction, and explains how the work of this thesis
fits in the bigger picture of cryptography. A more specific overview of the research field
is given in Chapter 2. Chapter 3 provides a brief summary of the papers, and Chapter 4
contains conclusions and final remarks. Finally, the four research papers are included
in Chapter 5, listed as follows:

I Øygarden, M., Felke, P., Raddum, H., and Cid, C. Cryptanalysis of the multi-
variate encryption scheme EFLASH. In Cryptographers Track at the RSA Con-
ference, pages 85-105. Springer, 2020.

II Øygarden, M., Felke, P., and Raddum, H. Analysis of Multivariate Encryption
Schemes: Application to Dob. In International Conference on Public-Key Cryp-
tography (PKC), pages 155-183. Springer, 2021.
Invited to the Journal of Cryptology.

III Øygarden, M., Smith–Tone, D., and Verbel, J. On the Effect of Projection on
Rank Attacks in Multivariate Cryptography. To appear in PQCrypto: Interna-
tional Conference on Post-Quantum Cryptography, 2021.

IV Eichlseder, M., Grassi, L., Lüftenegger, R., Øygarden, M., Rechberger, C.,
Schofnegger, M., and Wang, Q. An Algebraic Attack on Ciphers with Low–
Degree Round Functions: Application to Full MiMC. In: International Con-
ference on the Theory and Application of Cryptology and Information Security
(Asiacrypt), pages 477-506. Springer, 2020.

Note that the papers have been ordered thematically, not chronologically.

Notation and Conventions
The papers presented in Chapter 5 use different notation, which is introduced in the
individual papers. The remaining chapters adhere to the following conventions. Unless
otherwise stated, F denotes a finite field. If there is a need to specify the size of the



vi Outline

field, we will also write Fq or Fqn , where q is the power of a prime number. We will
also make use of the polynomial rings:

Rq,n = Fq[x1, . . . ,xn]/〈xq
1 − x1, . . . ,xq

n − xn〉, and

Rq,n = Fq[x1, . . . ,xn]/〈xq
1, . . . ,x

q
n〉.

All computations of polynomials in the univariate ring Fq[X ] will implicitly be per-
formed over the quotient ring Fq[X ]/〈Xq −X〉. Homogeneous polynomials will be de-
noted by superscript h, e.g., gh. Moreover, for a fixed polynomial f of degree l, we will
use f h to denote its leading form, i.e., the homogeneous degree l part of f . This extends
to sequences of polynomials, where we write F = { f1, . . . , fm}, and Fh = { f h

1 , . . . , f h
m}.

Finally, while the thesis will predominantly be written in the “mathematical we”, it
will occasionally use the first person singular to emphasize when a statement is my
own opinion.
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Chapter 1

General Background

1.1 Introduction to Cryptography

Cryptography is the study of secure communications in the presence of adversaries.
Historically, its use was mainly limited to message confidentiality for state and military
leaders. Sensitive messages were turned into unintelligible ciphertexts that could ide-
ally only be read by their intended recipient. This was traditionally achieved through
steganography and linguistics, but the twentieth century saw a sharp shift in focus to-
wards mathematics and computer science. Open, academic research started in earnest
after the second world war. Claude Shannon published one of the foundational works
of modern cryptography in 1949 [100]. The first open encryption standard, DES, was
published in 1977 [85], which further accelerated the advancement of the field. Nowa-
days, cryptography is an active research area and covers more aspects of communi-
cation security, such as authentication, ensuring message integrity, and providing non–
repudiation. It provides a crucial component of everyday life, including communication
via mail and messaging apps, browsing the internet using HTTPS, and e–commerce.

Research in cryptography includes both the design of secure primitives and pro-
tocols, as well as cryptanalysis; the search for weaknesses in said designs. Proposed
schemes are only secure up to a specified security level. This level is an estimated lower
bound of the resources needed by a third party to bypass the effect of the scheme, such
as retrieving secret information or forging signatures. It is typically measured in time,
memory, or data (e.g., amount of known plaintext–ciphertext pairs). An attack that falls
below this lower limit is regarded as a break, even if the procedure is computationally
impractical. Thus, cryptanalysis is not only a nefarious activity, but considered a vi-
tal part of modern cryptography. For instance, design principles are often motivated
by attacks found through such analysis. Moreover, trust in a cipher is typically only
obtained after years of (unsuccessful) third–party cryptanalysis.
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The cryptographic primitives, upon which more elaborate protocols are built, are
traditionally divided into three categories: hash functions, secret key (symmetric) prim-
itives and public key (asymmetric) primitives.

Hash Functions

A cryptographic hash function is an algorithm that maps input of arbitrary length to an
output of fixed length. We furthermore require the mapping to be pre–image resistant,
second pre–image resistant, and collision resistant. The most commonly used hash
functions are the SHA2 and SHA3 families that have been standardized by the (US)
National Institute for Standards and Technology (NIST) [87, 88].

Secret Key Primitives

In symmetric ciphers, the communicating parties share the same secret key. Examples
include block ciphers, stream ciphers, authenticated encryption, and message authen-
tication codes. Block ciphers are the common choice for bulk encryption, with the
Advanced Encryption Standard (AES)[86] being the most popular variant.

Public Key Primitives

Public key, or asymmetric, cryptography includes a public key, in addition to the se-
cret key. The secret key is known by only one of the communicating parties, whereas
the public key is assumed to be known by everyone, including potential adversaries. In
public key encryption schemes, a message is encrypted using the public key, and de-
cryption is only feasible by use of the secret key. Asymmetric encryption is generally
more cumbersome than using symmetric primitives, so this type of scheme is com-
monly used as a Key Encapsulation Mechanism (KEM), where two parties derive the
secret key of, e.g., a block cipher.

The other main class of public key primitives is signature schemes, which are used
to verify the authenticity of (the hash value of) messages. Only the owner of the secret
key can efficiently compute signatures for a given message, which can then be verified
by anyone with access to the public key.

The most common public key encryption and signature schemes in use today are
based upon the Integer Factorization Problem (IFP) such as RSA [97], the Discrete
Logarithm Problem (DLP) like Elgamal [53], or the Elliptic Curve Discrete Logarithm
Problem (ECDLP) such as EdDSA [19].
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1.2 Post–Quantum Cryptography

1.2.1 Quantum Computing and Algorithms
In 1994, Peter Shor showed that a large–scale quantum computer can solve IFP, DLP,
and ECDLP in polynomial time [101]. Hence, if such a quantum computer were to
be constructed, it would be able to break the public key cryptosystems currently in
use today. In 1997, Lov Grover presented a quantum search algorithm with quadratic
speedup [66]. Search problems can be encountered in a wider array of cryptographic
applications, and this algorithm provides at least a theoretical speed–up for attacking
symmetric ciphers and hash functions. On the other hand, there is a significant con-
stant factor overhead that is associated with quantum error–correction, and it has been
argued (see e.g., [11]) that Grover’s algorithm might not be able to outperform classical
approaches in practice. Either way, the speed–up of Grover’s algorithm is less dramatic
than the exponential speed–up of Shor’s algorithm, and doubling the key length is, for
instance, sufficient to secure symmetric ciphers.

Quantum computing were long seen as a purely theoretical field, but in the recent
years much resources have been devoted to the research and development of this tech-
nology. Serious actors such as IBM, Microsoft and Google, as well as universities
and agencies in various countries, all have their programs on quantum computing [84,
Section 7.4.1]. In 2019, Google announced that their quantum computer was able to
achieve so–called “quantum supremacy”, i.e., solving a problem that is out of reach for
modern day (classical) supercomputers [9]. In 2020, a quantum computer developed
in Hefei, China, did also achieve quantum supremacy, for a different problem [114].
Nevertheless, implementing Shor’s algorithm for large integers remains a tremendous
challenge, and it is not likely to be feasible in the very near future. A 2019 report
from the (US) National Academies of Sciences, Engineering, and Medicine (NASEM)
writes ([84, p. 157]):

“Key Finding 1: Given the current state of quantum computing and recent rates of
progress, it is highly unexpected that a quantum computer that can compromise RSA 2048
or comparable discrete logarithm-based public key cryptosystems will be built within the
next decade.”

Defending against potential future quantum computers is no easy task. Three reasons
are often pointed out for why this is a lengthy process.

• Firstly, developing and properly analyzing post–quantum cryptographic schemes,
i.e., cryptosystems based on mathematical problems believed to be hard to solve
by quantum computers, requires several years.

• Secondly, it is a slow process to completely replace old primitives in protocols
that are in use. An illustrative example, pointed out in [84], is that while several
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works following a 2004 paper by Wang et al., [108] found severe weaknesses in
the hash function MD5, Microsoft did not fully restrict its use in its systems until
a 2014 update [81].

• Thirdly, a determined adversary can store encrypted messages today, with the
intent of decrypting later. Thus, quantum safe cryptography should ideally be
implemented well in advance full–scale quantum computers.

With all this in mind, it seems wise to start the shift to post–quantum cryptography
sooner rather than later. Indeed, the 2019 NASEM report concludes on this issue as
follows ([84] page 188):

“Key Finding 10: Even if a quantum computer that can decrypt current cryptographic
ciphers is more than a decade off, the hazard of such a machine is high enough–and the
time frame for transitioning to a new security protocol is sufficiently long and uncertain–
that prioritization of the development, standardization, and deployment of post–quantum
cryptography is critical for minimizing the chance of a potential security and privacy
disaster.”

1.2.2 Post–Quantum Standardization
The potential threat quantum computers would pose against current public key cryp-
tosystems prompted the National Institute of Science and Technology (NIST) to start
the work towards new standards. In late 2016 the agency sent out a call for propos-
als of new, post–quantum key establishment and digital signature schemes [96]. By
the end of 2017, NIST had received 69 acceptable submissions, and started the first
round of their Post–Quantum Cryptography (PQC) standardization process. This pub-
lic “competition–like” process relies on the cryptographic research community for se-
curity and efficiency analysis. In the summer of 2020 the third, and current, round
was announced with seven finalists and eight alternate candidates [1]. NIST aims to
select a small number of the finalists for new key establishment and digital signature
standards by 2022; some of the alternate candidates may be standardized after an addi-
tional fourth round.

The post–quantum cryptographic schemes are typically divided into five families,
depending on their underlying mathematical problem. These are: Lattice–based, Code–
based, Hash–based, Isogeny–based, and Multivariate schemes. The families differ in
underlying hardness assumptions and performance characteristics. There is also an
intrinsic motivation to standardize schemes from different families, in order to achieve
robustness against a sudden breakthrough in cryptanalysis (page 5, [1]). This thesis
will mainly be concerned in the multivariate family, which we further introduce here.
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1.3 Multivariate Cryptography

Let F be a fixed set of m quadratic polynomials pi ∈ F[x1, . . . ,xn], for 1 ≤ i ≤ m.
The Multivariate Quadratic (MQ)–problem asks to find (if possible) a solution a =

(a1, . . . ,an) ∈ Fn which satisfies pi(a) = 0 for all 1 ≤ i ≤ m. The MQ–problem has
been shown to be NP–complete for F= F2 [61]. It is also believed to be hard on aver-
age, when m ≈ n. The problem is furthermore expected to be difficult even for quantum
computers, and the best known quantum algorithms are based on Grover’s algorithm
applied to either a direct search [98], or in conjunction with dedicated classical algo-
rithms [20, 57].

The MQ–problem can be used to construct both encryption and signature schemes.
In both cases the public key is a polynomial system F, but its properties differ depend-
ing on the setting. For encryption, we want the map F : Fn → Fm to be (almost) in-
jective, and encrypting a plaintext a ∈ Fn simply consists of evaluating F(a) = c ∈ Fm.
Decryption is done by finding a solution to the system F(x)− c = 0. In the signature
setting, it is necessary for F to be (almost) surjective. The user signs a (hashed) docu-
ment h ∈ Fm by finding a valid solution to F(x)−h = 0; verification is performed by
evaluating F at the signature.

In order for decryption/signing to be efficient, it is necessary to generate F in a
structured manner. Typically, the legitimate user chooses random invertible matrices
S ∈ Fn×n and T ∈ Fm×m, and constructs the public key as the composition

F = T ◦F′ ◦S : Fn −→ Fm, (1.1)

where the central map, F′, is a simple (often publicly known) system of m polynomials
over F[x1, . . . ,xn], which is easy to solve. The role of the matrices S and T is to hide the
structure of the central map from an attacker, but the effectiveness of this concealment
is largely dependent on the chosen F′. For instance, the first multivariate encryption
scheme, the C∗ scheme by Matsumoto and Imai in 1988 [80], was subject to an efficient
attack by Patarin [90], due to the chosen central map. This spurred a long line of
research into designing different central maps, and/or effective modifications to the
basic composition in Equation (1.1).

Multivariate cryptography has been an active research area for the last three
decades, with much research going into both the design and analysis of new schemes.
The state of the art as of late 2017 at the start of the NIST PQC–competition, was the
existence of several promising signature schemes, whereas good multivariate encryp-
tion schemes seemed harder to design. Furthermore, the more well–studied schemes
can typically be divided into two subfamilies: oil–and–vinegar (OV) and big field. All
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this is reflected in the fact that the two multivariate constructions that made it to the
third round of the PQC process was the signature finalist Rainbow [42](OV family),
and the alternate signature candidate GeMSS [32](big field family). In section 2.1 we
will dive deeper into the big field family, which is the setting for three of the articles
comprising this thesis.

Recent Multivariate Analysis in the NIST PQC Process

In late 2020, attacks against both Rainbow and GeMSS were published [24, 105].
The team behind the Rainbow submission has released a note arguing that, while they
acknowledge the new attack, they still regard the round 3 parameters to achieve their
proposed security [34]. At the time of writing, no similar public statement has been
issued by the team behind GeMSS.

Paper 3 in this thesis is concerned with further analyzing the techniques used in
attack against GeMSS.

1.4 New Designs for Block Ciphers and Hash Functions

We already noted in Section 1.2.1 that quantum computers are not considered to pose
a serious threat against AES or SHA2/SHA3. However, while these primitives are
reasonably efficient for use in traditional cryptographic protocols, they are cumbersome
to use in some modern constructions (see e.g., [17, Table 1], or [6]). This has motivated
new designs for block ciphers and hash functions, which are more tailored to specific
use–cases. Oftentimes, this includes a more succinct algebraic description than their
traditional counterparts. A closer look at this trend will be provided in Section 2.4, and
Paper 4 will be concerned with the analysis of one such construction, MiMC.



Chapter 2

Specific Background

2.1 Big Field Schemes

Recall that Equation (1.1) requires a central map F′ : Fn → Fm that is easy to solve, in
the sense that for a given y ∈ Fm, it is easy to compute an element x ∈ Fn satisfying
F′(x) = y. The big field family of multivariate schemes aims to construct this central
map as having a simple description over an extension field. To be more specific, for a
positive integer n, we fix an extension field isomorphism φ : Fn

q → Fqn , and let F′ be
the composition F′ = φ−1 ◦F ◦φ , for a polynomial F(X) ∈ Fqn[X ]. Recalling that the
Frobenius morphism is linear over Fq, it is common to let the polynomial F(X) consist
of monomials that are the multiplication of at most two Frobenius powers, i.e., Xqi1+qi2 ,
for integers i1, i2. This ensures that the associated polynomials over the base field Fq

are quadratic. There are two main strategies in the literature for constructing maps F
that are easy to solve:

1. F consists of a single quadratic monomial, F(X) = X1+qθ

, for an integer 1 ≤ θ ≤
n where gcd(qn − 1,qθ + 1) = 1. This choice of central map was used for C∗

[80] and its variants, including PFLASH [35], whose security will be analyzed in
Paper 3, and EFLASH [30], which will be attacked in Paper 1. C∗ and PFLASH
uses exponentiation to invert F , while EFLASH utilizes the bilinear relations
discovered in [90].

2. The second type of central map is used in the Hidden Field Equations (HFE)
scheme [92], and its variants. A degree bound DHFE is chosen, and F is defined
as

F(X) = ∑
i, j∈N

qi+q j≤DHFE

αi, jXqi+q j
+ ∑

i∈N
qi≤DHFE

βiXqi
+ γ, (2.1)
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for constants αi, j,βi,γ ∈ Fqn . A root of F can now be found using (variations of)
the Berlekamp algorithm [18], whose efficiency mainly depends on DHFE .

In [77], Macario–Rat and Patarin propose a third strategy for constructing a central map
F , resulting in the Two–Face family. Consider F(X) = Y , for a fixed Y . While F itself
has a high degree, and is not easy to invert directly, there is a corresponding bivariate
polynomial equation E2(X ,Y ) = 0, which has a low degree in the X–variable. Given
Y , the legitimate user can easily recover X by finding a root of this latter equation. The
security of the encryption variant of the Two–Face family, known as the Dob encryption
scheme, will be analyzed in Paper 2.

2.1.1 Security of Big Field Schemes
Analysis of big field schemes can typically be divided into four categories: Gröbner
basis attacks, rank attacks, differential attacks, and ad hoc attacks. The complexity of
Gröbner basis attacks, also known as direct attacks, have been particularly difficult to
determine for big field schemes, and Section 2.2 is devoted to these techniques. Rank
attacks have also proved to be extremely efficient; we will return to them in Section
2.3.

Differential attacks constitute the third major class, and is perhaps best exemplified
by the works by Dubois et al., ([49, 50]) which broke SFLASH [93], an early descen-
dant of the C∗ scheme. This class of attacks is now better understood than the other
classes. Theorem 2 in [102] has shown that schemes based on the HFE central maps
are resistant against these attacks; PFLASH and EFLASH, the most recent variants of
the C∗ scheme, are protected against differential attacks through the projection modifier
[43, 29], which we will introduce in the next subsection.

2.1.2 Modifications
Directly using big field central maps in the composition of Equation (1.1), sometimes
referred to as ‘unmodified’ or ‘nude’ versions, tend to lead to insecure constructions.
For instance, we have already noted that C∗ was broken by Patarin in [90]. Faugère and
Joux solved the first HFE Challenge by computing a Gröbner basis in [58]. Macario–
Rat and Patarin concludes from experiments in [77] that the nude version of the Dob
encryption scheme seemed to be weak; this is indeed shown to be the case in Appendix
D of Paper 2.

Certain modifications are then made in order to make these schemes secure against
certain attacks. We list the most commonly used modifications in the following. F :
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Fn → Fm will refer to an ‘unmodified’ version of a scheme, as defined in Equation
(1.1). We denote the public key, after applying specific modifier(s), as P.

1. The minus (-) modifier removes a of the polynomials from the public key. If
τ : Fm → Fm−a,(y1, . . . ,ym) 7→ (y1, . . . ,ym−a) is the projection on the first m− a
coordinates, the public key with this modification is given as P = τ ◦F : Fn →
Fm−a.

2. The plus (+) modifier appends l randomly chosen quadratic polynomials to the
public key. If Hl : Fn → Fl is the map consisting of these polynomials, then
P= F||Hl : Fn → Fm+l .

3. The projection (p) modifier refers to the idea of projecting the plaintext space onto
some subspace1. This is achieved by applying a linear embedding π : Fn′ → Fn,
for some n′ < n, resulting in P= F ◦π : Fn′ → Fm.

4. The internal perturbation (ip) modifier chooses k linear forms (v1, . . . ,vk) : Fn →
Fk, and adds quadratic combinations of them to F to generate the public key.
For a randomly chosen quadratic function, Hip : Fk → Fm, the public key is P =

F+(Hip ◦ (v1, . . . ,vk)) : Fn → Fm.

5. The Q+ modifier randomly chooses t quadratic polynomials (q1, . . . ,qt) : Fn → Ft

and adds linear combinations of them to form the public key. For a linear map
HQ+ : Ft → Fm, we get P = F+(HQ+ ◦ (q1, . . . ,qt)) : Fn → Fm. Note that this
is somewhat similar to the plus modifier, but the important difference is that the
number of public polynomials does not increase.

6. The vinegar (v) modifier is applied to the univariate mapping F(X), that is used
to construct F. It is most commonly used to modify HFE, so we describe it in this
setting. Consider v ‘vinegar variables’ xv = (x1, . . . ,xv), and polynomials βi,γ ∈
Fqn[xv], where the βi–polynomials are linear, and γ is quadratic. The central map
for HFE with vinegar now uses the polynomial

F(X ,xv) = ∑
i, j∈N

qi+q j≤DHFE

αi, jXqi+q j
+ ∑

i∈N
qi≤DHFE

βi(xv)Xqi
+ γ(xv). (2.2)

The legitimate user may now partially evaluate F(X ,xv) at a fixed value xv ∈ Fv
q

to recover an HFE polynomial, as described in Equation (2.1). This is similar to
the (ip) modifier, with the difference that v extra variables appear in the public
polynomials.

1A more suitable name for this modifier might be “embedding”, but we stick to “projection”, as this is more
commonly used in the literature.
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The various modifications work against different attacks, and the drawbacks of using
them may differ between encryption and signature schemes. They are often used in
combinations. For instance, PFLASH and EFLASH are schemes built on C∗ with the
projection and minus modifiers. GeMSS is a variant of HFEv-, i.e., it uses the HFE
central map with minus and vinegar. Finally, the Dob encryption scheme uses the Q+

and (ip) modifiers.
Note that this exposition only scratches the surface of multivariate cryptography,

and we end this section with a few suggestions for further reading. Section 4 of [110]
provides an extended list of modifications that have been discussed in the literature.
A recently written overview of multivariate schemes can be found in Section 3.1 of
[33]. Finally, [31] studies the possible modifications to use with the C∗ map, and their
potential parameters.

2.2 Polynomial System Solving

Let P = (p1, . . . , pm) be the public key of a multivariate scheme, where each pi is
a quadratic polynomial in Rq,n = Fq[x1, . . . ,xn]/〈xq

1 − x1, . . . ,x
q
n − xn〉. Given a tuple

y = (y1, . . . ,ym) ∈ Fm
q , we are interested in analyzing the complexity of finding an ele-

ment x = (x1 . . . ,xn) ∈ Fn
q satisfying P(x) = y. Note that we want to find x with entries

in Fq, as opposed to any extension of Fq, which is why we include the quotient relations
in Rq,n. Solving this problem allows an attacker to decrypt an intercepted plaintext, or
forge the signature of a document. A polynomial system with m = n is known as a de-
termined system, and the case m > n and m < n will be referred to as overdetermined
and underdetermined, respectively. Encryption schemes tend to be (over)determined
in order to be (“probabilistically”) injective, whereas signature schemes are often (un-
der)determined, which increases the likelihood that a valid signature exists for any
document. Extremely overdetermined systems, where m exceeds the number of mono-
mials, are easily solved by linearization. There also exists probabilistic algorithms to
find a solution in polynomial time for very underdetermined systems (n ≥ m(m+3)/2
for fields of even characteristic [82] and n ≥ m(m + 1)/2 for fields of odd charac-
teristic [37]). Somewhat underdetermined systems, say n = αm for a rational number
1 < α . m/2, are often converted into determined systems with m−bαc+1 polynomi-
als and variables, using the methods described in [106]. For this reason, all polynomial
systems discussed in this section are assumed to be either determined or overdeter-
mined.

The general mathematical tool for solving polynomial systems involves computing
a Gröbner basis. The necessary theory, along with efficient algorithms for computing
said basis, is introduced in the next subsections. We then discuss the class of semi–
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regular sequences, and how they relate to ‘generic’2 polynomial systems. It turns out
that computing Gröbner bases for the public keys of big field multivariate schemes are
easier than what one would expect for ‘generic’ systems. This is often heuristically
explained through the notion of a first fall degree which will be the focus of the subse-
quent subsection. Finally, we discuss other algorithms for polynomial system solving.

2.2.1 Gröbner Bases
We start by recalling a few of the key concepts behind Gröbner bases; a more detailed
overview can be found in [39]. For a fixed system of equations P(x) = y, we define its
associated ideal

I = 〈p1(x)− y1, . . . , pm(x)− ym〉.

Before continuing, we need a way of ordering the monomials of Fq[x1, . . . ,xn]. While
there exist several important monomial orders, it is usually most efficient to compute a
basis in the graded reverse lexicograhpic (grevlex) order. It is defined as follows.

Definition 1 (Grevlex Ordering) The grevlex ordering is a total order relation ≥ on
the set of monomials of Fq[x1, . . . ,xn], which satisfies the following property. For two
monomials a = xa1

1 . . .xan
n , and b = xb1

1 . . .xbn
n we have a > b if either

• deg(a) > deg(b), or

• deg(a) = deg(b), and ai0 < bi0 for the largest integer 1≤ i0 ≤ n such that ai0 6= bi0 .

For a fixed monomial ordering ≥, we define the leading monomial of any polynomial
f ∈ Fq[x1, . . . ,xn], LM( f ), to be the largest monomial in f , according to ≥, and the
leading coefficient, LC( f ), to be its associated coefficient. The leading term is then
LT ( f ) = LC( f ) ·LM( f ).

Definition 2 (Gröbner Basis) Fix a monomial ordering ≥, and consider an ideal I ⊂
Fq[x1, . . . ,xn]. A Gröbner basis associated with I and ≥, is a finite set of polynomials
G = (g1, . . . ,gk)⊂ I, such that for any f ∈ I we have that LT ( f ) is divisible by LT (gi)

for some 1 ≤ i ≤ k.
A Gröbner basis G is furthermore said to be reduced if for all gi ∈ G we have i)

LC(gi) = 1, and ii) no monomial of gi lies in 〈LM({G \ gi})〉. Here LM({G \ gi})
denotes the set consisting of the leading monomials of all polynomials in {G\gi}.

2Note that our use of “generic polynomial systems” is different from the definition found in algebraic
geometry. The usage of “generic” is more cavalier in the cryptographic literature. For instance, a generic
quadratic polynomial system of m polynomials in Rq,n is said to have property X , if the (vast) majority of
systems of m quadratic polynomials in Rq,n have property X .
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Gröbner bases have several interesting properties that make them an important tool in
the study of polynomial ideals. A reduced Gröbner basis for a fixed monomial or-
der exists, and is unique for any nonzero polynomial ideal I, though it does in general
depend on the chosen ordering. As the name suggests, it does indeed form a basis
for I. The remainder after dividing by a Gröbner basis is unique, which leads to an
efficient method for determining ideal membership, and allows for computations in
Fq[x1, . . . ,xn]/I. More interesting to us will be the role Gröbner bases play in poly-
nomial system solving. In general, computing a Gröbner basis in the grevlex order
for I is only the first step; the Gröbner basis is typically transformed into a Gröbner
basis in the lexicographical order. Under certain assumptions, this latter basis will con-
tain a univariate polynomial where a root can be found. Back substitution with a fixed
root yields another univariate polynomial, and repeating this process leads to a solution
(more information can be found in Section 2 of [28]). There are examples of systems
arising in cryptography where the complexity of finding a solution is dominated by the
order changing or root finding step (see e.g., MiMC in the modelling described in [3]).
The polynomial systems we are investigating in Papers 1 and 2 will, however, be much
more well behaved. These papers study encryption systems, so we can reasonably ex-
pect a unique solution for a given y1, . . . ,ym. Furthermore, the base field is F2, and
augmenting I with the field equations x2

i + xi, 1 ≤ i ≤ n in I, ensures that the ideal is
radical. Hence, by the Nullstellensatz, the Gröbner basis will be (x1 + y1, . . . ,xn + yn),
for all graded monomial orders.

2.2.2 Computing Gröbner Bases
Buchberger proposed an algorithm for computing Gröbner bases in his thesis [26],
and several others have been developed since. Perhaps most notable is Faugère’s F4

algorithm [54], which often provides a significant speed–up when compared to Buch-
berger’s algorithm. Faugère subsequently improved upon this, by reducing the number
of unnecessary computations performed, in the F5 algorithm [55]. Yet another note-
worthy mention is the M4GB algorithm due to Makarim and Stevens, which in some
cases seem to improve upon F4 in terms of memory and run time [79]. This is just the
tip of the iceberg when it comes to Gröbner basis algorithms; a deeper dive into this
research area can be found in the survey presented in [52].

For the rest of this thesis, we will focus on the F4 algorithm for computing Gröbner
bases. This is the default algorithm used in the computer algebra system MAGMA,
which serves as one of the main reference softwares for Gröbner basis computation in
the cryptographic literature. It is also what we have used for the experiments presented
in this work.
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Complexity Estimates

Most modern Gröbner basis algorithms make use of linear algebra. The relation be-
tween polynomial systems and linear algebra is given by (variants of) Macaulay matri-
ces, which we define for quadratic polynomial systems as follows:

Definition 3 Let P be an (inhomogeneous) polynomial system in Rq,n, of degree two.
An (inhomogeneous) Macaulay matrix of P at degree D, MD(P), is a matrix with entries
in Fq, such that:

1. The columns are indexed by the monomials of degree ≤ D in Rq,n, according to a
fixed order.

2. The rows are indexed by the possible combinations xα pi, where 1 ≤ i ≤ n and
xα ∈ Rq,n is a monomial of degree ≤ D− 2. The entries in one row corresponds
to the coefficients of the associated polynomial.

Similarly, we define the homogeneous Macaulay matrix of P at degree D, MD(P), by
considering Ph ∈ Rq,n, only including monomials of degree D in the columns, and rows
associated to combinations xα ph

i , deg(xα) = D−2.

Indeed, in the homogeneous setting a Gröbner basis can be computed through Gaus-
sian elimination on Macaulay matrices up to some degree ≤ n, as observed by Lazard
in [72]. In the cryptographic literature, it has been common to estimate the complexity
of Gröbner basis algorithms by the complexity of performing linear algebra on large
“Macaulay–like” matrices up to some degree. Let Dsolv = Dsolv(P) denote the solving
degree, which is the degree associated with the largest matrix in a Gröbner basis com-
putation of P, using a fixed algorithm. Under the assumption that all monomials up
to this degree appear in the computation, we estimate the complexity of computing a
Gröbner basis of P to be:

ComplexityGB,F2
= O

((Dsolv

∑
i=0

(
n
i

))ω )
, (2.3)

for F2, and

ComplexityGB,Fq
= O

((
n+Dsolv

n

)ω )
, (2.4)

when q > Dsolv. In both cases 2 ≤ ω ≤ 3 is the linear algebra constant. A similar
statement for a fixed, intermediate field 2≤ q≤Dsolv can easily be deduced by counting
monomials in Rq.n, up to and including degree Dsolv.
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We see that determining the solving degree for a given polynomial system P is a
crucial component for estimating the complexity of computing a Gröbner basis. This is
a question that has attracted much research attention. Unfortunately, determining Dsolv

seems in general to be as difficult as computing the Gröbner basis itself, but we are
able to say more under some assumptions on P. In the following subsections we will
present two of the ideas for estimating Dsolv that are most commonly used in the setting
of big field schemes: the degree of semi–regularity, and the first fall degree. Before
that, we will briefly discuss linear algebra algorithms.

Linear Algebra Complexities

The value used for the linear algebra constant ω in Equations (2.3) and (2.4) often
has a significant impact when it comes to choosing secure parameters for multivariate
schemes. The naive Gaussian method, ω = 3, is outperformed by Strassen’s method,
which has an asymptotic value of ω = 2.81 [104]. Note that the latter method is also
in use for matrices of practical size. Over F2, further speed–ups may be obtained by
the ‘four Russians method’ [12], but it does not improve upon the asymptotic value of
Strassen. The currently best known asymptotic value is ω = 2.37 [73], but it is unlikely
that this can be implemented in practice, making it an example of a so–called “galactic
algorithm”[75].

We have so far only mentioned algorithms for dense linear algebra, but the matrices
arising from polynomial systems tend to be sparse. For instance, for quadratic systems,
each row in a Macaulay matrix at any degree D over F2 has at most only

(n
2

)
+ n+ 1

non zero entries. In some cases this observation can be used directly with sparse matrix
algorithms, as we will see later in Section 2.2.5. The F4 family of algorithms can also
take advantage of sparse linear algebra, as can for instance be seen in the linear algebra
package used in the FGb library [59, 56].

2.2.3 Semi–Regularity
The solving degree is well understood for an important class of polynomial systems,
the semi–regular sequences, which has been studied by Bardet, Faugère, Salvy and
Yang [14, 16]. We briefly describe some of the key results from these works, following
the two important cases; the boolean polynomial ring, and when the underlying field F
is large (depending on m and n). We start with the definition of the degree of regularity
for these cases.

Definition 4 a) Let Ih = 〈ph
1, . . . , ph

m〉 be the ideal of a homogeneous, overdetermined
polynomial system in F[x1, . . . ,xn], for any field F. Then the degree of regularity, dreg,



2.2 Polynomial System Solving 15

of Ih is defined as

dreg = dreg(Ih) = min
{

d ≥ 0
∣∣∣ dimF({p ∈ Ih | deg(p) = d}) =

(
n+d −1

d

)}
.

b) Let now Ih = 〈ph
1, . . . , ph

m〉 be the ideal of a homogeneous polynomial system in R2,n.
Then the degree of regularity, dreg, of Ih is defined as

dreg = dreg(Ih) = min
{

d ≥ 0
∣∣∣ dimF2({p ∈ Ih | deg(p) = d}=

(
n
d

)}
.

Version a) of the definition can be of interest, even though we are concerned with
solving polynomial systems over the ring Rq,n. This is the case if q is so large that
computations involving the field equations xq

i − xi = 0 are infeasible. Indeed, we may
instead compute a Gröbner basis over Fq[x1, . . . ,xn], and then recover a solution in Fq

by changing monomial order and finding a root, as briefly mentioned earlier.
Definition 4 ensures that the leading terms of the elements of Ih will cover all mono-

mials of degree dreg(Ih), which makes the degree of regularity an upper bound for the
degree of the polynomials of a Gröbner basis of the homogeneous ideal Ih. We extend
the definition to an affine ideal I = 〈p1, . . . , pm〉, to be dreg(I) = dreg(Ih), where Ih =

〈ph
1, . . . , ph

m〉, and ph
i the upper homogeneous part of pi. Note that if pi belongs to the

Boolean polynomial ring, we will consider ph
i over R2,n = F2[x1, . . . ,xn]/〈x2

1, . . . ,x
2
n〉.

Semi–regular sequences can now be defined as systems that exhibit only trivial syzy-
gies (see Section 2.2.4) up to the degree of regularity.

Definition 5 a) A set of homogeneous polynomials (ph
1, . . . , ph

m) in F[x1, . . . ,xn], for any
field F, is said to be semi–regular if for all 1≤ i≤m and any g∈ F[x1, . . . ,xn] satisfying

gph
i ∈ 〈ph

1, . . . , ph
i−1〉 and deg(gph

i )< dreg,

then g is in the ideal 〈ph
1, . . . , ph

i−1〉.

b) A set of homogeneous polynomials (ph
1, . . . , ph

m) in R2,n is said to be semi–regular if
for all 1 ≤ i ≤ m and any g ∈ R2,n satisfying

gph
i ∈ 〈ph

1, . . . , ph
i−1〉 and deg(gph

i )< dreg,

then g is in the ideal 〈ph
1, . . . , ph

i 〉.

Note that in b), we require g to be in 〈ph
1, . . . , ph

i 〉 (as opposed to 〈ph
1, . . . , ph

i−1〉 in a) ).
This is to include the homogeneous field syzygies (ph

i )
2 = 0. As before, we will say

that an affine polynomial system (p1, . . . , pm) is semi–regular, if (ph
1, . . . , ph

m) is.
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The class of semi–regular sequences are well understood. The complexity of
Matrix–F5 for homogeneous semi–regular systems are given by Equations (2.3) and
(2.4), with dreg in place of Dsolv. In practice, this estimate is also used for inhomoge-
neous semi–regular systems. Moreover, the Hilbert series of these systems are explic-
itly given, and the degree of regularity can be computed by finding the first nonpositive
coefficient in these series (see [16]). If di denotes the degree of ph

i , then these series
are:

Sm,n(z) =
m

∏
i=1

(1− zdi)/(1− z)n, for F[x1, . . . ,xn] and (2.5)

Tm,n(z) = (1+ z)n
/ m

∏
i=1

(1+ zdi), for R2,n. (2.6)

It is worth pointing out that there is no easy way to a priori determine whether a general
polynomial system is semi–regular. Indeed, since the definition of semi–regularity
relies on the degree of regularity of the associated ideal one would potentially have to
compute the ideal up to the degree predicted by the series in Equations (2.5) and (2.6).
Hence, in many cases the question of determining semi–regularity of a system is about
the same order as that of computing its Gröbner basis. However, there is a widespread
belief that random polynomial systems (i.e., polynomials where the coefficient of each
monomial up to some fixed degree is chosen uniformly at random from the underlying
field) are semi–regular with a high probability. This observation has been supported by
numerous experiments (see for instance the end of Section 3 in [14]). Some progress
in this direction can be found in [99], where Semaev and Tenti prove that a class of
random, overdetermined boolean systems will have dreg as predicted by the series in
(2.6), with probability tending to 1 as n → ∞. Unfortunately, the polynomial systems
we will be concerned with in this work are not covered by this result, and so we will
have to rely on heuristic assumptions on the semi–regularity of random systems.

2.2.4 First Fall Polynomials

In [58], Faugère and Joux solved an instance of the HFE cryptosystem, expected to
achieve 80–bit security, by Gröbner basis computation. The computation only needed
to work with polynomials of degree ≤ 4, which is notably smaller than the degree of
regularity expected for random systems of the same size. In particular, the authors noted
that this is caused by a significant number of degree fall polynomials, i.e., combinations
of polynomials occurring in the computation, where the highest degree cancels out,
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and the resulting polynomial is not reduced to 0 by any combination of previously
considered polynomials. These new polynomials can further be used for creating new
pairs in an F4 algorithm, potentially leading to even more degree fall polynomials. If a
sufficient number of them can be found, the whole Gröbner basis can be computed by
only manipulating polynomials of low degree, which turned out to be the case for the
HFE system.

The question of why the HFE polynomial system behaves so differently from ran-
dom polynomial systems has been studied in several works. Most relevant for us is that
of Dubois and Gama [51] as well as Ding and Hodges [44]. These works focus on de-
termining at which degree the initial degree fall polynomials appear, known as the first
fall degree, Dff. We will present the definition according to [44]3, but first we fix some
notation.

Let Ph = (ph
1, . . . , ph

m) ∈ Rm
q,n denote the homogeneous quadratic part of the public

key P, and let
[

Rq,n
]

ν
denote the graded ν–th part of Rq,n. Then Ph induces a map:

ψPh
: Rm

q,n −→ Rq,n

(r1, . . . ,rm) 7−→ ∑
m
i=1 ri ph

i ,
(2.7)

which in turn splits into graded maps ψPh

ν−2 :
[

Rq,n
]m

ν−2 −→
[

Rq,n
]

ν
. The Rq,n–module

Syz(Ph)ν = Ker(ψPh

ν−2) is known as the ν–th grade of the (first) syzygy module of
Ph. When ν = 4, Syz(Ph)4 will contain the Koszul Syzygies, which are generated by
(0, ...,0, ph

j ,0, ...,0, ph
i ,0, ...,0) (ph

j is in position i and ph
i is in position j), and the field

syzygies, which are generated by (0, ...,0, ph
i ,0, ...,0) (ph

i in position i). These syzygies
correspond to the cancellations ph

j ph
i + ph

i ph
j = 0 and (ph

i )
2 = 0, which we will refer to

as the trivial syzygies. Moreover, define the submodule T(Ph)ν ⊆ Syz(Ph)ν to be the
ν–th graded component of the module generated by the Koszul and field syzygies, and
denote S(P)ν = Syz(Ph)ν/T(P

h)ν .

Definition 6 The first fall degree associated with the quadratic polynomial system P is
the natural number

Dff = min{ D ≥ 2 | S(P)D 6= 0 }.

The first fall degree is generally less than or equal to the degree of regularity4, and can
as such be seen as a more conservative choice for security estimates. For certain cases

3The definitions found in the papers [51] and [44] use different quotient rings. Note that both works use
the name “degree of regularity”, which is unfortunate, seeing that the definitions are in general different from
that of the degree of regularity introduced earlier by Bardet et al. This is why some later works prefer to use
the name “first fall degree”.

4An exception would be semi–regular sequences where the number of monomials of degree dreg is equal
to the number of non–trivial polynomial combinations at this degree, but these would be rare cases.
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it is also possible to upper bound the first fall degree, by finding specific syzygies that
will occur in the system. Such an upper bound was proved in [44] for HFE, while HFE-
and HFEv/HFEv- was upper bounded by Ding–Kleinjung and Ding–Yang in [45] and
[47], respectively. There is also a bound suggested by Petzoldt [94], which was found
by extrapolating experimental results.

The First Fall Assumption and its Limitations

The first fall degree is often taken to be a good approximation for the solving degree
of the HFE family of systems (particularly over F2), and, more generally, to the family
of big field schemes. This is sometimes known as the first fall assumption, or first
fall heuristic. For instance, both GeMSS [32] and GUI [41], the two HFEv- entries
in the NIST competition, used Petzoldt’s bound (the smallest in the literature) when
estimating the solving degree for direct attacks. Cartor and Smith–Tone adapted ideas
from [45] when estimating the solving degree for EFLASH [30].

This assumption should, however, be used with great care. It is easy to construct
polynomial systems with a low first fall degree, but high solving degree, as discussed in
[46]. Systems with this property can also arise naturally in cryptography. For instance,
due to their simple algebraic structure, some of the ciphers discussed in Section 2.4
have modellings that yield a low first fall degree. Yet, it seems unlikely that the first fall
degree is a useful tool in this setting. Even in the big field multivariate setting, some
care is needed. For example, [46] performs experiments on variations of HFE where
the Fq–linear part is allowed to exceed Dh f e; the difference between the solving and
first fall degree seem to increase in some of these cases (a similar behaviour is also
observed for the Extended Dob System, in Paper 2).

Nevertheless, the use of the first fall degree is not without merit for big field
schemes, especially when considered over F2. The central maps used in variants of
HFE, C∗, and Dob can all be considered a simple polynomial that will generate many
degree fall polynomials at a small degree. The number of these degree fall polyno-
mials are more closely studied in Papers 1 and 2 for the C∗ map and the Dob map,
respectively. Intuitively speaking, these degree fall polynommials cause something of
a ‘chain reaction’ when computing a Gröbner basis for such systems (over the base
field), as more and more degree fall polynomials are being found from the previous
ones. In the F4 algorithm we typically observe this in the form of several successive
steps are being performed at the first fall degree, until a solution is found. The use of
modifiers distorts this to some extent, particularly by increasing the first fall degree,
but the overall picture remains. In the experiments performed in Papers 1 and 2, we
only observe cases where the solving degree is equal to either Dff or Dff+1, though we
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cannot rule out the possibility that there could be larger discrepancies for bigger param-
eters. Perhaps more concerning is the possibility that first fall polynomials might leak
information about the secret modifiers, which was demonstrated and exploited in Pa-
per 2. For these reasons, I strongly believe that the first fall degree is a crucial property
to study for big field schemes over F2. The picture is different for other polynomial
systems arising in cryptography. While a low first fall degree could potentially be a
weakness here (and analysts should strive to understand its cause), one should be care-
ful about jumping to conclusions regarding the complexity of computing Gröbner bases
based on this alone.

We conclude this subsection by noting that there are two systems which we can
prove that we are able to solve by only manipulating polynomials up to degree Dff,
without having to rely on any assumptions. The first is C∗ where the linear polynomials
used in Patarin’s attack [91] will be found at degree 3. For the majority of choices of n
and θ , we can expect enough linear polynomials to solve the system; see [40] for more
information. The second example is nude Dob, which is dealt with in Appendix D of
Paper 2.

2.2.5 Other Algorithms for Polynomial Solving

XL and its Variants

The ‘eXtended Linearization’ (XL) algorithm was introduced by Courtois et al., in
[38], and is a rediscovery of the ideas of Lazard [72]. Assuming that there is a unique
solution to the polynomial system, the core idea is to generate a large Macaulay matrix
at some degree called the operating degree, Do, directly from the given system, and find
the solution by reducing this matrix. For generic systems, we typically have Do = dreg,
or Do = dreg +1 [112], and [8] notes that the matrices appearing in XL are larger than
the matrices used in F5. The reason why XL may still be important in certain settings
lies in its simplicity; the Macaulay matrix is extremely sparse, and can be constructed
directly from the polynomial system. Thus making it ideal to use sparse black box
matrix solvers such as (improvements of) the Wiedemann algorithm [109]. Assuming
that the Macaulay matrix is close to being square of size N, and has at most α nonzero
entries in each row, then this algorithm is expected to recover a kernel vector in about
3N2α field multiplications. Moreover, the Macaulay matrix need not be stored, so this
procedure may require less memory when compared to other methods.

The XL–Wiedemann approach is particularly useful in settings where we can rea-
sonably expect that Dsolv, dreg and Do coincide. Larger experimentation with XL–
Wiedemann in this setting has been performed by [36]. As for the setting of big field
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schemes, recall from Section 2.2.4 that a typical behaviour of F4 for these systems is
to run several successive steps of degree (close to) Dff, generating a multitude of de-
gree fall polynomials, until a solution is found. This property is not exploited by the
XL algorithm (although some variants aim to capture it, see e.g., [83]). Hence, the XL–
Wiedemann procedure is in general unlikely to outperform F4 for direct attacks against
big field schemes.

Lastly, we note that the XL algorithm has inspired several different variations, an
overview of which can be found in [112].

Hybrid Methods and the Crossbred Algorithm

Hybrid methods in the setting of polynomial system solving typically refers to methods
that combine exhaustive search with Gröbner basis techniques or sparse linear algebra
[21, 22, 15]. Fixing the value of some variables will reduce both the time and mem-
ory required when working with the matrices associated with the reduced systems. A
guess that leads to no solutions is easily spotted, as it yields a Gröbner basis G = {1}.
The drawback is that this process needs to be repeated about Fa

q times, where a is the
number of guessed variables. In practice this is a useful strategy when the underlying
field is small, and a drop in the solving degree can be obtained after fixing a few vari-
ables. For semi–regular systems, we can use Equations (2.5) and (2.6) with n− a in
place of n, under the additional assumption that the systems remain semi–regular af-
ter fixing variables. The effect of fixing variables is much harder to quantify for big
field systems. The equations provided in Papers 1 and 2 predict how the number of de-
gree fall polynomials changes as variables are fixed, and there are experimental results
where this affects both the first fall degree and solving degree.

While the hybrid method can mainly be thought of as first fixing variables, and then
reducing a large matrix, the crossbred algorithm of Joux and Vitse [68] is something
of the opposite. The idea is to reduce a large Macaulay matrix in a precomputation
step, in order to derive a system that is easier to solve in a brute force step. More
specifically, the variables are split into two sets; Xg and Xl . The algorithm is typically
run such that the polynomials of the derived system only contains monomials with
degree 1 in the Xl–variables (the Xg–variables may have a much higher degree). The
brute force step is then performed by fixing values for the variables in Xg, and the
derived system is partially evaluated at this guess. This results in a linear system in the
Xl–variables, and the validity of the guess is checked by finding a solution to this latter,
linear system. There are many factors that comes into play when setting the parameters
for this algorithm, and its complexity is highly dependent on the input polynomial
system. Further discussions on this can be found in [68] or [89].
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Other Techniques

So far we have discussed the main algorithms that have been used for solving polyno-
mial systems from multivariate schemes. For completeness, we conclude this section
with a short overview of two more polynomial systems solving methods that have been
relevant to other cryptographic constructions.

Variable elimination for Boolean polynomials have been studied by Greve et al.,
in [65]. The behaviour of these techniques when applied to toy versions of the block
ciphers LowMC [6] and Prince [25], has been investigated in [64]. A new approach
for polynomial system solving was proposed by Lokshtanov et al., in 2017 [76]. While
this algorithm was not considered to outperform other methods for parameters relevant
to cryptography, this may have changed due to very recent (May 2021) improvements
by Dinur [48]. In particular, Dinur uses this variant to break several instances of the
LowMC cipher that is used in Picnic [113], an alternate signature candidate for the
NIST PQC–competition.

2.3 Rank Attacks

The central maps discussed in Section 2.1 will all have a low Q–rank when seen as
quadratic polynomials over the basis X =

(
X ,Xq, . . . ,Xqn−1

)
. The idea to exploit this

property was first suggested by Kipnis and Shamir, who studied the (unmodified) HFE
system [69]. The ideas have since developed to an entire class of key recovery attacks,
known as rank attacks.

2.3.1 Fundamental Concepts

To simplify the exposition, we let q be an odd prime for the remainder of this section.
Let F′ ∈ Fqn[X ]/〈Xqn − X〉 be a (homogeneous) Fq–quadratic polynomial, and k an
integer 0 ≤ k ≤ n− 1. Then F∗k will denote the symmetric matrix satisfying (F′)qk

=

XF∗kX>. For instance, if F′ is the HFE central map and d = dlogq(Dh f e)e, then F∗0

can only take non zero values in its upper left d ×d submatrix, so it will, in particular,
have rank at most d. More generally, F∗k, will be zero, except at a d×d submatrix that
is shifted k places to the right, and k places down (indices taken mod n).

Let M ∈ Fn×n
qn be an invertible matrix that is associated with an Fqn–basis over Fq (as

defined in Proposition 2 of [23]), and consider the public key of an unmodified big field
scheme, (p0, . . . , pn−1) = F = T ◦F′ ◦S. If Pi denotes the symmetric matrix associated
with the public polynomial pi, and x = (x0, . . . ,xn−1), then we can write the public key
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as:

(xP0x>, . . . ,xPn−1x>) = (xWF∗0W>x>, . . . ,xWF∗(n−1)W>x>)M−1T, (2.8)

where W = SM (see [23]). In the case of unmodified HFE, we see that WF∗kW> will
have rank at most d, for any 0 ≤ k ≤ n− 1. Since T is invertible, this means that
there will be linear combinations of the public matrices P0, . . . ,Pn−1 that has rank at
most d. Finding such a linear combination requires solving an instance of the MinRank
problem (Definition 7). Once a solution to this problem is found, an attacker can use it
to construct invertible matrices T ′, S′, as well as an HFE central map F′′ of degree Dh f e,
such that we can write the public key as F = T ′ ◦F′′ ◦S′ [23]. The recovered T ′, S′ and
F′′ are not necessarily the same maps as the private key, but an attacker can nevertheless
use it to decrypt/sign as efficiently as the legitimate user. Indeed, the recovered triplet
is considered to be one of the equivalent keys, as studied in [111].

Other works have studied this approach with different central maps, as well as how
various modifiers affect it; HFE- [107], HFEv- [95] and PFLASH/EFLASH [29].

The most time consuming step of the attack described in the previous section is that
of solving an instance of the MinRank problem. We give a description of the search
version of the problem in the following.

Definition 7 (MinRank Problem). Let a positive integer r, and nx matrices Mi ∈ Fm×n
q ,

for 0 ≤ i ≤ nx − 1 be given. The search version of the MinRank problem is to find a
nontrivial set of constants (x0 . . . ,xnx−1) ∈ Fnx

q such that

Rank

(
nx−1

∑
i=0

xiMi

)
≤ r.

The problem is, in general, NP–complete [27], and several methods for solving it have
been suggested in the literature: linear algebra search [62], minors modelling [60],
KS–modelling [69], and support minors modelling [13].

2.3.2 Recent Developments of Rank Attacks
In November 2020, Tao, Petzoldt and Ding proposed a new version of the rank attack
that bypasses the effect of both the minus and vinegar modifiers [105]. Indeed, the
attack breaks the parameters of GeMSS, the HFEv- variant that made it to the third
round of the NIST PQC–process. From Equation (2.8), we recall that each public
matrix Pk, 0≤ k≤ n−1 can be written as a linear combination of the matrices WF∗iW>,
0 ≤ i ≤ n−1. Due to the translation of the nonzero submatrix along F∗0, . . . ,F∗n−1, the
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authors of [105] note that if u ∈ Fn
qn is a vector such that uW has weight 1, then each

vector uPk, 0 ≤ k ≤ n− 1 can be written as a linear combination of only d vectors.
In particular, if we define uP∗ to be the matrix having rows uPk, for 0 ≤ k ≤ n− 1,
it will have rank at most d. Hence, u can be found by solving an instance of the
MinRank problem. Note that this approach does not require T to be invertible, and so
the minus modifier will not make the problem harder (we refer to [105] for details on
how to include the vinegar modifiers). On the other hand, the attack requires W to be
invertible, in order to ensure the existence of a vector u such that uW has weight 1. In
Paper 3, we investigate how this attack works when W is not invertible, which will be
the case for schemes using the projection modifier.

2.4 Symmetric Ciphers of Low Multiplicative Complexity

Modern cryptographic techniques, including Fully Homomorphic Encryption (FHE),
Multi-Party Computation (MPC), and various proof systems, provide new settings for
block ciphers and hash functions. The new protocols depend on different metrics than
what has traditionally been the case for these primitives, such as strongly favouring a
low multiplicative complexity or depth, or operating over particular fields. As a result,
the “traditional” block ciphers and hash functions tend to be inefficient in these settings
(see e.g., [6] for a discussion on AES in MPC protocols, or Section 6.2 in [17] for
SHA2/SHA3 in the STARK setting). This observation motivated the development of
new cryptographic primitives, starting in 2015 when Albrecht et al. designed LowMC,
a block cipher with a small number of AND gates [6]. In 2016 Albrecht et al. suggested
MiMC, which has a particularly simple algebraic description [2]. The MiMC5 block
cipher treats the plaintext as a single element in a large finite field, and each round
consists of addition with a known constant, the secret key K, and the cubing operation.
That is, for a number of rounds r, the i–th round function is simply

Ri(x) = (X +K +Ci)
3, for 1 ≤ i ≤ r, (2.9)

for K,Ci ∈ Fq, where C1, . . . ,Cr are known round constants. MiMC has further-
more inspired the variants GMiMC [5] and HadesMiMC [63], and primitives in the
MARVELlous–family [10, 7] have followed the philosophy of utilizing a succinct alge-
braic description. In the following, we will refer to these constructions as “algebraically
simple ciphers”.

5Here, and in Paper 4, we focus on version MiMC–n/n (see [2]).
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2.4.1 Security Analysis of Algebraically Simple Ciphers
The security of this new class of symmetric ciphers is not well understood, but we may
still make a few, broad comments. Techniques that are widely used in traditional block
cipher analysis, such as differential and linear attacks, seem to be largely inefficient
in this new setting (see e.g., Section 4.2 of [2]). On the other hand, the simple alge-
braic description makes the designs potentially vulnerable to algebraic attacks. Indeed,
the parameters of Jarvis and Friday, two of the initial members of the MARVELlous–
family, were broken using Gröbner basis methods [4]. Another potential concern is the
small degree of the round function. If the polynomial representation of the block ci-
pher does not reach maximal degree, it could open the door for interpolation attacks
[67, 74], the GCD–attack [2], and higher–order differential techniques [71, 70].

In Paper 4, we analyze the degree growth of MiMC, both in encryption and decryp-
tion directions, and discuss how it can be exploited.



Chapter 3

Overview of Papers

Paper I: Cryptanalysis of the Multivariate Encryption Scheme EFLASH

Morten Øygarden, Patrick Felke, Håvard Raddum, and Carlos Cid. Cryptographers
Track at the RSA Conference, pages 85-105. Springer, 2020.

EFLASH [30] is a multivariate encryption scheme that uses the C∗ central mapping,
as well as the projection and minus modifiers. In this work, we analyze the behaviour
of Gröbner basis algorithms on polynomial systems from variations of the EFLASH
scheme. Our work goes beyond earlier analysis, in the sense that we examine all the
relations that corresponds to degree fall polynomials. This allows us to not only esti-
mate the first fall degree, but also the exact number of degree fall polynomial we will
find, for step degrees 3 and 4. These estimates are then confirmed by experiments.

The novel approach presented in the paper yields a smaller upper bound in the first
fall degree, than what was anticipated by the authors of EFLASH. Since our exper-
iments furthermore seem to indicate that the solving degree is close to the first fall
degree for EFLASH polynomial systems, we conclude that the parameters suggested
for this scheme are too optimistic. For instance, we estimate that parameters proposed
for 80–bit security, will achieve at most 69 bits of security.

Paper II: Analysis of Multivariate Encryption Schemes: Application to Dob

Morten Øygarden, Patrick Felke, and Håvard Raddum. In International Conference
on Public-Key Cryptography (PKC), pages 155-183. Springer, 2021. Invited to the
Journal of Cryptology.

Paper 2 contains several contributions. The first part can be seen as a generalization of
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the ideas from Paper 11. We continue to analyze the number of degree fall polynomials,
not just the degree where they appear. The considered setting is now that of general
big field schemes with modifications. The approach is to first estimate the dimension
of the space of degree fall polynomials caused by the unmodified central map, and
then account for the various modifiers. The motivating example is the Dob encryption
scheme; the encryption variant of the larger Two–Face family suggested by Macario–
Rat and Patarin [77]. Based on the Dobbertin permutation, it relies on the ip and Q+

modifications to achieve security. The resulting estimate of the number of degree fall
polynomials in variations of the Dob encryption scheme is seen to be precise in the
experiments we have performed. This holds true, even if an attacker fixes the value for
a number of variables.

The second part of Paper 2 describes a novel attack against the Dob construction.
With the new understanding of how modifications affect degree fall polynomials, an
attacker can recover certain polynomials that carry information about the secret modi-
fiers. This allows the attacker to piece together the homogeneous quadratic part of the
modifier polynomials, which can then be used to speed up decryption. Finally, we dis-
cuss how this approach makes the proposed parameters for the Dob encryption scheme
fall short of 80–bit security.

Paper III: On the Effect of Projection on Rank Attacks in Multivariate Cryptog-
raphy

Morten Øygarden, Daniel Smith–Tone, and Javier Verbel. To appear in PQCrypto: In-
ternational Conference on Post-Quantum Cryptography, 2021

In [105], Tao, Petzoldt and Ding propose a new rank attack against the HFEv- signa-
ture scheme. While it is straightforward to see that the attack can be generalized to
include other big field variations utilizing vinegar and minus, the idea relies on the fact
that the input matrix, S is invertible. Hence, it is not clear how the projection modifier
affects the attack. This is the main question that is explored in Paper 3. We focus on
the signature schemes PFLASH, as well as HFEv- with projection (pHFEv-). We prove
upper bounds on the rank of the MinRank part of the attack in both settings. The central
maps are different enough to warrant distinct approaches, even though the end result
is that the rank increases by p, where p is the projection modifier, for both schemes.
In particular, this proves that the new rank attack breaks the suggested parameters for
PFLASH.

The upper bounds are observed to be tight in the experiments we are able to run.

1This generalization is made explicit in Section 4.1 of this Thesis.
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Finally, for pHFEv-, we compare the impact of projection, with that of increasing the
HFE degree.

Paper IV: An Algebraic Attack on Ciphers with Low–Degree Round Functions:
Application to Full MiMC

Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten Øygarden, Chris-
tian Rechberger, Markus Schofnegger, and Qingju Wang. International Conference on
the Theory and Application of Cryptology and Information Security (Asiacrypt), pages
477–506. Springer, 2020.

MiMC is an algebraically simple permutation, proposed by Albrecht et al. in 2016 [2].
In this paper we analyze how the algebraic degree of binary MiMC–n/n grows with
the number of rounds. This allows us to lower bound the number of rounds before
the maximal algebraic degree can be reached – in both encryption and decryption di-
rection. From these observations we discuss known and secret key distinguishers on
binary MiMC.

The large number of rounds needed to reach maximal algebraic degree in the de-
cryption direction, coupled with the simple algebraic description in the encryption di-
rection, furthermore allows us to design a key recovery attack on block cipher versions
of MiMC. While the attack is impractical, requiring half the code book, it is neverthe-
less the first attack described for full round MiMC.
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Chapter 4

Conclusions

This chapter summarizes and concludes on the work that was performed for big field
cryptosystems, namely Papers 1 – 3. From here on, it is assumed that the reader is
familiar with these works, which can be found in Chapter 5. We start by making explicit
the relation between Papers 1 and 2. In Section 4.2 I will discuss the recent trends in
big field multivariate cryptography, and how the research presented in this thesis fits
into this bigger picture. Finally, I list some of the open problems in this direction.

4.1 Connecting Papers 1 and 2

We will now see how the machinery of Paper 2 generalizes the results of Paper 1. Fol-
lowing the notation of Paper 2, let P be the public polynomials of a fixed instance of
EFLASH with parameters d, n and a. Write m = d −a for the number of public poly-
nomials, and let M be the ideal generated by the a removed polynomials (considered
over B(n)). As in Equation (10) of Paper 2, we are interested in determining

Nν = dimν(S(F))+dimν(PM)−dimν(M), (4.1)

for ν = 3,4. We expect dim3(S(F)) = 3d, due to the polynomials associated with α ,
β1 and β2, as described in Paper 1. Furthermore, dim3(PM) = 0 and dim3(M) = na.
Hence, Equation (4.1) predicts N3 = 3d − na, which is the same as Equation (10) in
Paper 1.

In Section 4.3 of Paper 1, we show that dim4(S(F)) = (3n− 9)d. Moreover, we
expect dim4(PM) = am, by considering the possible products of public and removed
polynomials. If a is small compared to d, we expect the generators of M to form a
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4–semi–regular system, which yields dim4(M) = a
(n

2

)
−
(a+1

2

)
. Hence,

N4 = (3n−9)d +am−a
(

n
2

)
+

(
a+1

2

)
.

Recalling that m = d −a, this is the same as Equation (12) of Paper 1.

The behaviour for EFLASH that was observed in Table 3 of Paper 1 seems analo-
gous to the different variants of N(α,β )

ν observed for the Dob system, though I am still
unsure about its exact cause.

4.2 Impact on Big Field Cryptography

It is well–known that the simple central maps used in big field cryptosystems make the
constructions vulnerable to rank attacks and Gröbner basis methods. Certain modifiers
have, up until now, been considered reasonable countermeasures; minus and ip have
been popular for encryption schemes, whereas minus and vinegar are typically used for
signatures.

Papers 1 and 2 cast doubt on the viability of this strategy for encryption schemes.
One of the conclusions we can draw is that the modifiers used in this setting are not as
effective as previously believed. The gluing technique discussed in Section 6 of Paper
2, is not restricted to the Dobbertin permutation, and I expect it to also be applicable for
other big field constructions that exhibit similar behaviour in terms of degree fall poly-
nomials. Signature schemes fare more favourably against this attack, since the number
of modifiers has only a small impact on the signing time. A case in point would be the
signature variant of Dob [77], where the proposed 128–bit parameters suggest using
d = 257 for the extension field degree, and then remove 129 of the public polynomials.
I doubt that the ideas from Paper 2 will be able to break these parameters. On the other
hand, the new rank attack of Tao, Petzoldt and Ding [105] pose a serious threat to sig-
nature schemes. Indeed, neither minus, nor the vinegar modifier provide much security
against this idea. However, Paper 3 shows that projection increases the rank of such an
attack. This is a modification that does not increase the decryption time for encryption
schemes, but it provides an exponential increase to the signing time. Moreover, it does
not increase the security against methods related to Gröbner basis techniques. Hence,
this is something of a converse situation to what we saw from Papers 1 and 2 with
the minus modifier. If we wish to secure big field constructions with the “traditional”
choices of modifiers discussed in this thesis, it would seem that we need to apply a
significant amount of both projection and minus modifiers (or a different combination
of modifiers with similar behaviour). It is an open question whether there will be any
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encryption or signature big field scheme that remain efficient under this restriction.
All of the “classical” big field constructions discussed in this thesis follow the same

pattern. The central map is quadratic, and the modifiers can be applied by composing
with specialized1 affine maps over Rq. The recent advances in cryptanalysis against
such schemes have motivated some authors to break this mold. Indeed, in January
2021, Macario–Rat and Patarin proposed using cubic polynomials, and discusses new
modifiers in this setting [78]. Smith–Tone, in a work published in April 2021 [103],
retains the quadratic central map, but suggests a new modifier that is fundamentally
nonlinear. These novel designs for big field schemes are not covered by the above
discussion, and it will be interesting to see if they will hold up to third party analysis.

4.3 Open Problems

Listed below are the main open problems in big field cryptography that I have identified
during my research.

• A possible direction to advance the analysis presented in Paper 2 is to include
different central maps and modifiers. A few natural examples include the HFE
central map and the vinegar modifier. Expanding the discussion on the minus
modifier that was briefly presented in Section 4.1 of this thesis, could also be
included here.

• One drawback of Paper 1 (resp. Paper 2), is that we are only able to give formulas
predicting the number of degree fall polynomials up to degree 4 (resp. 5). Finding
exact formulas for larger degrees seems to be difficult, but determining reasonable
upper bounds might be more feasible. Such bounds would provide insight into
the complexity of various attacks, and would, in turn, be valuable for designing
new schemes. This could, for instance, help determine how secure instances of
PFLASH would look like, which was left as an open question in Paper 3.

• The complexity of the attack in Paper 2 is not dominated by the process of finding
information about the secret modifiers. Rather, we are limited by the second step
where we, somewhat naively, apply this extra information in a polynomial system
solving step. The reason why this second step is still expensive, is that the lin-
ear parts of the Q+ polynomials are still unknown. It would be interesting to see
if this second step could be improved. Since an attacker now knows the homo-
geneous quadratic part of the secret structure, a promising approach might be to

1To be more specific, maps that can be described component wise as x 7→ ∑cixi+r, for constants ci ∈ Fq,
and r a specialized element in Rq,n of degree at most 2.



32 Conclusions

proceed with rank techniques. This would yield “equivalent” matrices S′ and T ′.
The corresponding univariate polynomial we obtain after composing with these
matrices, will still have a high Fq–linear degree, which is related to the missing
linear components. This information might be used to recover the entirety of the
Q+ polynomials.

• For completeness, it would also be interesting to see how other modifiers affect
the new rank attack of [105], similar to the analysis performed for the projection
modifier in Paper 3. For instance, the Q+ modifier adds t random polynomials
to the system, and I would, a priori, expect it to increase the rank of the attack
by t. At first glance, the ip modifier adds

(k
2

)
different polynomials. However,

the Q–rank of each of these polynomials will be restricted to k, and since they
are generated by the same linear forms, I expect the modifier to only increase
the rank of the attack by k. This intuition should be paired with a more rigorous
examination, as well as experiments, before drawing any final conclusions.

• Finally, it seems to me that the design of new modifiers, specifically aimed at
thwarting the improved rank and Gröbner basis techniques, will play a crucial
role if big field cryptosystems are to be successful in the future. The recent works
[78, 103] mentioned at the end of the previous section can be seen as examples in
this direction. I believe that further design of such modifiers, as well as analysis
of them, is a promising research direction for the future.
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Abstract. EFLASH is a multivariate public-key encryption scheme pro-
posed by Cartor and Smith-Tone at SAC 2018. In this paper we investi-
gate the hardness of solving the particular equation systems arising from
EFLASH, and show that the solving degree for these types of systems
is much lower than estimated by the authors. We show that a Gröbner
basis algorithm will produce degree fall polynomials at a low degree for
EFLASH systems. In particular we are able to accurately predict the
number of these polynomials occurring at step degrees 3 and 4 in our
attacks. We performed several experiments using the computer algebra
system MAGMA, which indicate that the solving degree is at most one
higher than the one where degree fall polynomials occur; moreover, our
experiments show that whenever the predicted number of degree fall
polynomials is positive, it is exact. Our conclusion is that EFLASH does
not offer the level of security claimed by the designers. In particular, we
estimate that the EFLASH version with 80-bit security parameters offers
at most 69 bits of security.

1 Introduction

Public-key cryptosystems whose security is based on the hardness of solving
multivariate polynomial systems over finite fields have been studied for several
decades. This problem is believed to be hard to solve even for full–scale quantum
computers, and so multivariate cryptography has received increasing attention
the past years as post–quantum cryptography has become ever more important.
A noteworthy initiative in this area is the ongoing post–quantum standardization
process by the National Institute of Standards and Technology (NIST).

One of the earliest and most notable examples of multivariate cryptosystems
is the encryption scheme C∗ proposed by Matsumoto and Imai in 1988 [22]. Their
idea was to let the public polynomial system defined over a small base field have
a secret, but simple description over a larger extension field, where decryption
can be done efficiently. While C∗ was broken by Patarin in 1995 [23], several
schemes were later proposed based on the same underlying idea; these are often



referred to as big field schemes. One generalisation is to make the central map
over the extension field more complex. Examples include HFE and its variants
[24], as well as k–ary C∗ [18]. Another idea is to keep the simple description
over the extension field, but alter the resulting public key with modifiers that
enhance the security against known attacks, as for example done in SFLASH [25]
and PFLASH [7].

While there are presently several multivariate signature schemes that have
resisted years of cryptanalysis, designing multivariate encryption schemes seems
to be much more challenging. Examples of multivariate encryption schemes that
have been successfully cryptanalysed include not only the original C∗ [22][23],
but also HFE [24][3], ABC [28][21], ZFHE [27][5] and SRP [29][26]. This obser-
vation is further echoed by the fact that all four multivariate cryptosystems that
have made it to the second round of the NIST standardization process are signa-
ture schemes. EFLASH [6], proposed by Cartor and Smith-Tone at SAC 2018,
is yet another attempt to design a secure and efficient multivariate encryption
scheme. At its core, EFLASH is a modified C∗ scheme with a new decryption
strategy to maintain effectiveness.

1.1 Our Contribution

We present a direct algebraic cryptanalysis of EFLASH, based on the notion
of first fall degree. We do so by developing a method to estimate this degree
for the equation systems arising from EFLASH – an original approach which
is different from the rank–based analysis that has been used against somewhat
similar HFE variants. We are not only able to predict the first fall degree itself,
but also the exact number of first fall polynomials occurring at step degrees 3
and 4. Our analysis indicates that EFLASH does not offer the level of security
claimed by the designers; in particular, we are able to successfully cryptanalyse
the EFLASH version with 80-bit security parameters. Ultimately, we hope that
our approach can lead to a deeper understanding of the impact similar modifiers
have on big field schemes.

1.2 Organisation

The paper is organised as follows. In Section 2 we go through the required prelim-
inaries for our analysis. This includes a description of EFLASH, a brief discussion
on the complexity of Gröbner basis algorithms, along with the notions of first
fall and solving degrees, as well as some results on univariate and multivariate
representation of polynomials. In Section 3 we present and discuss the previously
suggested bound on the first fall degree of EFLASH. In Section 4 we develop
the theory behind our new approach for estimating this degree for EFLASH,
and put it to the test by experiments in Section 5. We discuss the implications
that our analysis and experiments have on the security of EFLASH in Section
6. Potential follow-up work is discussed in Section 7, with our conclusions in
Section 8.



2 Preliminaries

2.1 Description of EFLASH

EFLASH is a public-key encryption scheme proposed at SAC 2018 [6]. The
system is built around the C∗ encryption scheme by Matsumoto and Imai [22],
using both the minus-modifier that removes some polynomials from the public
key, and the embedding of the plaintext space Fnq into a larger space Fdq . The
signature scheme PFLASH [10, 7] is built in the same way, and EFLASH can be
seen as the encryption variant of PFLASH.

The C∗ scheme has operations taking place in Fdq and Fqd . The encryption
for C∗ can be explained as follows: the plaintext and ciphertext spaces are both
Fdq . Let S and T be two invertible d× d-matrices over Fq, defining linear trans-

formations of Fdq . Fix an isomorphism between Fdq and Fqd , denoted by φ, where

φ : Fdq −→ Fqd . Finally, we have the central mapping X 7→ X1+qΘ over Fqd .
These mappings are combined together into P ′ as follows

P ′ = T ◦ φ−1 ◦X1+qΘ ◦ φ ◦ S. (1)

Since the exponent of X has q-weight 2 and all other operations are linear, P ′

can be expressed as d quadratic polynomials in d variables over Fq. The secret
key of the C∗ scheme are the two matrices S, T , and the public key consists of
the polynomials P ′. Encryption of a plaintext x into the ciphertext y is done by
computing y = P ′(x). Decryption by someone knowing S and T can be done
efficiently by inverting all operations in (1).

In [23] the basic C∗ scheme was broken, by finding bilinear polynomials
fi(x, y) = 0 that relate the plaintext x with the ciphertext y. Computing the
polynomials fi’s turns out to be easy, more so when knowing S and T . In fact,
the most efficient decryption is actually done by inserting the values of y in the
fi’s, and solving the resulting linear system of equations to recover the plaintext.

EFLASH expands the C∗ scheme by adding an embedding π at the beginning
and a projection τ in the end. More specifically, for n < m < d, the operations
π and τ are defined as

π : Fnq −→ Fdq
(x1, . . . , xn) 7−→ (x1, . . . , xn, 0, . . . , 0)

and
τ : Fdq −→ Fmq

(y1, . . . , yd) 7−→ (y1, . . . , ym)

The plaintext space of EFLASH is then Fnq and the ciphertext space is Fmq .
The mappings π and τ are added as wrappers around the C∗ scheme, so the
complete EFLASH mapping P becomes

P = τ ◦ P ′ ◦ π.

The complete diagram of mappings is shown in Figure 1.
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Fig. 1: Diagram of EFLASH mappings.

The extra mappings π and τ just add and remove some coordinates, so P
can still be expressed as m quadratic polynomials over Fq in n variables. The
size of the projection τ is an important parameter, so for convenience we define
a = d−m to be the number of polynomials removed from P ′. The public key of
EFLASH consists of the m polynomials in P , and the secret key is still the two
matrices S, T (we assume the exponent Θ is publicly known).

Encryption in EFLASH is done the same way as for C∗: the plaintext x is
transformed into ciphertext y by computing y = P (x). On the other hand de-
cryption is not as completely straightforward as for C∗. For a given ciphertext
y = (y1, . . . , ym), the decryptor will exhaustively try all possible values for the
missing coordinates ym+1, . . . , yd, and decrypt every choice using the bilinear
polynomials fi(x, y) from the C∗ scheme. This results in up to qa possible plain-
texts embedded in Fdq , and the one whose last d − n coordinates are all zero
is chosen as the correct one. As n < m we can expect there will be only one
possible plaintext fulfilling the restriction given by π. In [6] the authors analyse
the probability of there being two or more possible plaintexts matching a given
ciphertext, which would lead to a decryption failure. For the suggested choices
of n,m, d the probability is approximately 2−17, which is still non-negligible.

Table 1 shows the parameters suggested in [6] for 80- and 128-bit security
levels against an attacker with either a classical or quantum computer available.

In the remainder of the paper we will fix q = 2. Although most of the theory
presented in later sections can be generalised to other fields, this is what is often
used in practice and in particular what is suggested in EFLASH (Table 1).



Table 1: Suggested parameters (q, n,m, d) for EFLASH.

80-bit security 128-bit security

classical adversary (2, 80, 96, 101) (2, 134, 150, 159)

quantum adversary (2, 160, 176, 181) (2, 256, 272, 279)

2.2 Gröbner Basis Algorithms

As is the case for all multivariate encryption schemes, the plaintext (a1, ..., an)
associated to the ciphertext (y1, ..., ym) can be found through direct attacks,
that is, by solving the polynomial system

p1(x1, ..., xn) + y1 = ... = pm(x1, ..., xn) + ym = 0,

where pi(x1, ..., xn), 1 ≤ i ≤ m, are the quadratic polynomials that make up
the public key P . The usual strategy for solving such a system is to compute
a Gröbner basis (see [8] for further details) for the ideal 〈pi + yi〉1≤i≤m in the
grevlex monomial order, using a state–of–the–art algorithm such as F4 [14] or
F5 [15]. Since we implicitly include the field equations, the system generates a
radical ideal. The solution of this system can by design be assumed to be unique
and thus we are able to solve it directly from the Gröbner basis, which is by the
above remark x1 + a1, . . . , xn + an for any term ordering.

In our setting the F4 algorithm will proceed step–wise, and to each step there
is an associated step degree D, which is the maximal degree of the polynomials
involved in this step. The complexity of each step is dominated by reduction of
a Macaulay matrix associated with these polynomials. If we define the solving
degree, Dsolv, to be the step degree associated with the largest such matrix (this
notation was introduced in [13]), then the complexity of the algorithm (in the
Boolean case) can be estimated by:

ComplexityGB = O
( (Dsolv∑

i=0

(
n

i

))ω )
, (2)

where n is the number of variables and 2 ≤ ω ≤ 3 is the linear algebra constant.
This makes Dsolv crucial for estimating the complexity of a direct attack, but
in general this value is difficult to determine. It is also worth noting that Dsolv

is not necessarily the highest degree encountered in the algorithm; indeed [13]
shows examples of this for HFE–systems, while we will also see examples where
this is the case for EFLASH in Section 5.

An important class of polynomial systems where Dsolv can be determined is
the class of semi–regular sequences [2]. In this case Dsolv will coincide with the
degree of regularity Dreg, which for quadratic polynomial systems over F2 can
be calculated as the degree of the first non–positive term in the series [1]:

Tm,n(z) =
(1 + z)n

(1 + z2)m
. (3)



From experiments it seems to be the case that randomly generated polynomial
systems will behave as semi–regular sequences [2], and the degree of regularity is
in many instances sensible to use for complexity estimation. However, it is well
known that polynomial systems associated with big field multivariate cryptogra-
phy tend to have a lower solving degree than what is predicted by the degree of
regularity; see for example [16]. For these schemes the notion of first fall degree
(Definition 1), which in general provides a lower bound for the solving degree,
has been often used to estimate the complexity of solving such systems [11, 12].
The authors of EFLASH have also chosen this path, and in [6] a bound for the
first fall degree was derived and used to estimate the resistance of this scheme
against algebraic attacks. We will later argue that this derived bound for the first
fall degree is not tight, but the idea of using this invariant as an approximation
for the solving degree seems justified for EFLASH. Indeed, in all our experiments
we find the solving degree to be either the same or one greater than the first fall
degree (see Section 5). We end this subsection by recalling the definition of first
fall degree.

Consider the graded quotient ring B = F2[x1, ..., xn]/〈x21, ..., x2n〉, where Bν ⊂
B is the set of homogeneous polynomials of degree ν in B. Let ph1 , ..., p

h
m ∈ B2

be the homogeneous quadratic part of the polynomials in the public-key P ,
and pli, 1 ≤ i ≤ m be the corresponding linear, or lower-degree, terms, so that
pi = phi + pli. We can then define the map

ψν−2 : Bmν−2 −→ Bν
(f1, ..., fm) 7−→

∑m
i=1 fip

h
i

Any element of ker(ψν−2) is called a syzygy. Now let ν = 4. Then particu-
lar syzygies are the Kozul syzygies, generated by (0, ..., 0, phj , 0, ..., 0, p

h
i , 0, ..., 0)

where phj is in position i and phi is in position j, and the field syzygies generated

by (0, ..., 0, phi , 0, ..., 0) (phi in position i). These syzygies will boil down to the
relations phj p

h
i + phi p

h
j = 0 and (phi )2 = 0. Since they are always present, and not

depending on the polynomials phi themselves, these syzygies generate the trivial
syzygies, T (ψν−2) ⊆ ker(ψν−2).

Definition 1. The first fall degree associated with the quadratic polynomial sys-
tem p1, ..., pm is the natural number

Dff = min{ d ≥ 2 | ker(ψd−2)/T (ψd−2) 6= 0 }.

Remark 1. The elements (0, ..., 0, phj , 0, ..., 0, p
h
i , 0, ..., 0) and (0, ..., 0, phi , 0, ..., 0)

will, strictly speaking, not be syzygies themselves when solving for p1, ..., pm in
F2[x1, ..., xn]. For example, phj pi+p

h
i pj 6= 0 will in general be of degree 3. We still

call these degree falls trivial, as they do not give any new or useful information
in an actual attack. This fact can be seen as follows.

When trying to solve a system by multiplying equations with all monomials
up to some degree, the multiplications are done by increasing degrees. That is,
all monomials of degree ≤ D− 1 are used before multiplying with monomials of



degree D. The Kozul syzygies will give the degree fall polynomial

phj pi + phi pj = phj (phi + pli) + phi (phj + plj) = phj p
l
i + phi p

l
j .

However, the very same polynomial can be expressed using only multiplication
with the lower-degree monomials in plj and pli:

plipj + pljpi = pli(p
h
j + plj) + plj(p

h
i + pli) = plip

h
j + pljp

h
i .

Hence the degree fall generated by phi and phj does not give us anything new
when we already have multiplied with all lower-degree terms. Moreover it is a
priori clear that these polynomials reduce to zero modulo pj , pi and therefore
give no new information when computing a Gröbner basis, except slowing the
computation down.

The same holds for the field syzygies, where it is easy to see that the poly-
nomial pipi = pi can be ”generated” by the (lower-degree) constant 1 as 1 · pi.

2.3 Univariate and Multivariate Representation of Polynomials

Our analysis will rely heavily on the easy description the central map of EFLASH
has as univariate polynomial over the extension field. The idea of exploiting this
simple description in cryptanalysis was also used in the Kipnis–Shamir attack
on HFE in [20], and we refer to their work for further details on the following
result. We will write w(t) to denote the binary weight of an integer t. Recall that
this is defined as

∑
zi, where t =

∑
zi2

i is the 2–adic representation of t.

Theorem 1. Let P (X) ∈ F2d [X]/〈X2d + X〉 and fix an isomorphism φ be-
tween F2d and (F2)d. With this isomorphism, P (X) admits d unique polynomi-
als p1, ..., pd ∈ F2[x1, ..., xd]/〈x21 +x1, ..., x

2
d+xd〉. Furthermore, the degree of the

polynomials p1, ..., pd is given by max{w(t) | Xt ∈MP }, where MP is the set of
monomials in P (X) with non-zero coefficients.

Based on this result we will define the 2–weight associated with a polynomial

P (X) ∈ F2d [X]/〈X2d +X〉 to be w(P ) =max{w(t) | Xt ∈MP }. There are two
particular actions over the extension field, and their corresponding actions over
the base field, that are worth pointing out. First, we note that raising P (X)

to a power of 2, i.e. (P (X))2
i

, will correspond to applying an invertible linear
transformation on the associated multivariate polynomials p1, ..., pd.

The second action is that the multivariate polynomials associated with the
product H(X)P (X) will be d sums of the form

∑
hjpi, where hi is a multivariate

polynomial of maximum degree equal to w(H). These actions (on the multivari-
ate polynomials) are exactly the ones performed by Gröbner basis algorithms.
Linear maps do not affect the degree of the polynomials, so if T ◦φ−1◦P (X)◦φ◦S
is the central map of an unmodified big field scheme (e.g. original C∗ or HFE),
then the degree fall polynomials encountered when computing a Gröbner basis



can be described by the two aforementioned actions on the univariate polynomial
P (X). More specifically, we will call any combination

F (X) =
∑
i,j

[Ci,jHi(X)P (X)]2
j

∈ F2d [X]/〈X2d +X〉,

where

w(F ) < w(P ) + max{w(Hi)},

a 2–weight fall polynomial. This will in turn admit d multivariate degree fall
polynomials.

We note that in the Faugère–Joux attack on HFE [16] these 2–weight fall
polynomials are the reason for the effectiveness of algebraic attacks on this cryp-
tosystem. Likewise, in [18] specific q–weight fall polynomials (i.e. the natural
generalisation to other fields of size q) were constructed in order to show the
first fall degree of k–ary C∗, another generalisation of C∗. Things get more com-
plicated as modifiers are added to the public key, particularly in the case for the
minus modifier. However we will describe how to deal with this in Section 4.

3 Suggested First Fall Degree Bound

In this section we discuss an upper bound for the first fall degree that was sug-
gested for EFLASH in [6]4. Since EFLASH can be seen as a special case of HFE-,
the bound is derived following a similar line of reasoning as was used for this
latter scheme in [12]. The idea is to first examine how the minus modifier affects
the Q–rank of the quadratic form associated with the central map, and then
apply this to the upper bound derived in Theorem 4.1 of [11]. The arguments
made in Section 5.1 of [6] is that the minus modifier is even more effective at
increasing the Q–rank when applied to EFLASH than it is for HFE-, due to the
extreme sparseness of the central map of the former. This led to the following
upper bound for EFLASH [6]:

Dff,EFLASH ≤ a+ 3. (4)

However we argue that focusing on Q–rank alone does not reveal the entire
picture when the (unmodified) central map is as simple as it is in EFLASH. To
this end we introduce the following notation, which will also be important for
our own estimates of first fall degree:

Definition 2. Consider the quotient ring F2d [X]/〈X2d + X〉, and an instance
of C∗. Let y ∈ Fd2 represent a given ciphertext, and V = φ ◦ T−1(y). We then
define

Q = X1+2Θ + V (5)

4 The authors call this the degree of regularity, but are in fact describing the first fall
degree.



to represent the central map associated to C∗ over F2d [X]/〈X2d +X〉. We also
define the following 2–weight fall equations:

α = X2d−ΘQ+X2ΘQ2d−Θ = X2d−ΘV +X2ΘV 2d−Θ , (6)

β1 = XQ = X2+2Θ +XV and (7)

β2 = X2ΘQ = X1+2Θ+1

+X2ΘV. (8)

Since we are not removing any polynomials (i.e. a = 0), Equation (4) predicts
that the polynomial Q defined above has first fall degree 3 (this is also pointed
out in Example 4.3 in [11]). Here Q is treated as any polynomial with Q–rank
2, and following the proof of Theorem 4.1 in [11], we find that the predicted
first fall degree is due to the existence of the univariate polynomials β1 and
β2, which would correspond to quadratic multivariate polynomials. However, in
the definition above there is also a third 2–weight fall polynomial, α, which will
correspond to linear multivariate polynomials (these are the same that Patarin
found in his original attack on C∗ [23]). Thus there seems to be more information
in the system than what is captured by methods based on the Q–rank alone. It is
indeed the case that removing public polynomials makes it more difficult for an
attacker, but we will see in the next section that there may still be combinations
of multivariate degree fall polynomials, generated by the relations α, β1 and β2
present in the polynomial system. Again, methods based on the Q–rank alone
do not seem to fully capture this.

Another notable difference between EFLASH and HFE- is the large dimen-
sion of the embedding (n < d) present in the former. We will see that this
modifier also plays a role in determining the number of degree fall polynomials
in a system. While it does not have the same impact as the minus modifier, there
are parameters for which this affects the first fall degree of a system; see Section
5 for examples.

4 The First Fall Degree of EFLASH

This section starts off with a brief discussion on the impact the choice of Θ may
have on the security of EFLASH. The condition that gcd(2d − 1, 2Θ + 1) = 1 is

needed for the map X1+2Θ to be a bijection, and has been a requirement for this
family of cryptosystems ever since the original paper of Matsumoto and Imai
[22]. While not explicitly stated in [6], it seems reasonable to assume that this is
also the case for EFLASH. We will later see that the total number of degree fall
polynomials in the original C∗–scheme will have a big impact on the complexity
of algebraic attacks towards EFLASH.

The question of how different choices of Θ affect the number of degree fall
polynomials has partly been studied in [9]. In that work the authors consider
the effect Θ has on the number of linearisation equations, which can be seen
as a special subset of degree fall polynomials of degree 1. Examples of special
values for Θ from this work are Θ = d/3 and Θ = 2d/3. In these cases it is



shown that there are only 2d/3 linearisation equations, and so it is unlikely that
these choices for Θ can be used in an efficient instantiation of EFLASH (as d
linear equations are used for decryption). On the other hand, there are also cases
found in [9] that renders more than d linear equations, which could benefit an
attacker. What would amount to special cases in our analysis will ultimately go
beyond linear equations: for D = 3, degree falls polynomials will also include
quadratic polynomials, and cubic polynomials when D = 4. It is beyond the
scope of this paper to identify every such special case. Therefore for the rest
of this paper, unless otherwise stated, all equations and formulas are assumed
to hold for general choices of Θ. General is here used in a non–technical sense
by which we mean that we expect the result in question to hold for all values
Θ = 0, 1, . . . , d− 1, save for a few exceptions.

4.1 The Effect of Removing Polynomials

We wish to obtain a representation of the central map of EFLASH that in
some sense not only preserves the easy description given over the univariate
polynomial ring, but also keeps track of what is lost due to the minus modifier,
τ . Consider the cryptosystem in a state before τ has been applied (but after
the linear transformation T , see Figure 1). Finding a plaintext associated with
a fixed ciphertext would amount to solving the system of quadratic polynomials
pi(x1, ..., xn) = 0, for 1 ≤ i ≤ d (for ease of notation we are assuming the fixed
ciphertext to be part of the pi–polynomials). Let

q1
q2
...
qd

 = T−1


p1
p2
...
pd

 , (9)

in other words, each qi is a linear combination of the polynomials p1, ..., pd.
Even though the polynomials pj are depending on the x–variables, we will at

an intermediate step want to consider them as formal variables. In an effort to
keep the notation precise, we will write p̂1, ..., p̂a to denote the polynomials as
formal variables that will be removed by τ . On the other hand, p̄a+1, ..., p̄d will
denote the formal variables associated with the polynomials unaffected by τ (i.e.
the public polynomials). We will also write q∗i to denote the linear combinations
defined in Equation (9), but now depending on the formal variables p̂j and p̄k.

In the previous section we have considered sums of the form
∑
X2i1+...+2ikQ2j

in the univariate polynomial ring F2d [X]/〈X2d + X〉. We will now inspect the
same sums, but treat Q as a formal variable in the bivariate polynomial ring

AXQ := F2d [X,Q]/〈X2d + X,Q2d + Q〉. We will furthermore write Q as Q =
(q∗1 + q∗2γ + ... + q∗dγ

d−1), where γ is a primitive element associated with the
isomorphism φ. We then consider the following composition of maps:

AXQ (F2[x1, ..., xn, p̂1, ..., p̂a, p̄a+1, ..., p̄d])
d (F2[x1, ..., xn])d

φ−1 evP,a



where evP,a acts entry–wise in the d–vector space by ”evaluating” the formal
variables p̂ to 0, and regarding p̄ as polynomials in x–variables. To be more
precise, evP,a : (z1, ..., zd) 7→ (ev∗P,a(z1), ..., ev∗P,a(zd)), where:

ev∗P,a : F2[x1, ..., xn, p̂1, ..., p̄d] −→ F2[x1, ..., xn]

xi 7−→ xi for 1 ≤ i ≤ n
p̂j 7−→ 0 for 1 ≤ j ≤ a
p̄k 7−→ pk(x1, ..., xn) for a+ 1 ≤ k ≤ d.

It is straightforward to check that if t is an integer with 2–weight D − 2, then
evP,a ◦ φ−1(XtQ) will result in d polynomials of degree at most D, which are
generated by the public polynomials pa+1, ..., pd. We will use this new notation
to show the following lemma, which will be key in our ensuing analysis. An
interpretation is that the minus modifier τ only obscures the degree fall poly-
nomials by adding polynomials generated from a small set, namely the removed
polynomials p1, ..., pa.

Lemma 1. Let evP,0◦φ−1(
∑
Xk1Qk2) give d polynomials over F2[x1, ..., xn] that

are degree fall polynomials of degree < D = w(k1) + 2w(k2). Then, for a > 0
the degree D–parts of the d polynomials evP,a ◦ φ−1(

∑
Xk1Qk2) are generated

by p1, ..., pa.

Proof. Let g be any of the d polynomials in F2[x1, ..., xn, p̂1, ..., p̄d], that are in
the image of φ−1(

∑
Xk1Qk2). Fix polynomials h1, h2, ..., ha+1 such that we can

write g on the triangular form:

g = h1(x1, ..., xn, p̂2, ..., p̂a, p̄a+1, ..., p̄d)p̂1

+ h2(x1, ..., xn, p̂3, ..., p̂a, p̄a+1, ..., p̄d)p̂2

...

+ ha(x1, ..., xn, p̄a+1, ..., p̄d)p̂a

+ ha+1(x1, ..., xn, p̄a+1, ..., p̄d)

Recall that when a > 0 then ev∗P,a(p̂j) = 0 for 1 ≤ j ≤ a. Since we are working
over a field of characteristic 2, we can equivalently think of this as addition with
all terms containing the p̂j–variables and then evaluating everything using ev∗P,0.
Note that all p̂i change to p̄i when evaluated with ev∗P,0 instead of ev∗P,a. This
can then be written out as follows:

ev∗P,a(g) = ev∗P,0(g +
∑

1≤i≤a

hip̄i)

= ev∗P,0(g) + ev∗P,0(
∑

1≤i≤a

hip̄i)

= ev∗P,0(g) +
∑

1≤i≤a

hipi.



By assumption ev∗P,0(g) has degree < D so any term of degree D must come
from

∑
1≤i≤a hipi, which proves the statement.

One observation that can be drawn from this lemma is that if the number of
degree fall polynomials that would be generated by a similar polynomial system
with a = 0 exceed the number of highest degree combinations generated by the
removed polynomials (i.e. the possible combinations of xi1 ...xiD−2

p̂j), then there
will be linear combinations of the degree fall polynomials that can be written
without the use of p̂j–elements. These can in turn be found by an attacker
through the use of Gröbner basis algorithms. This is the intuition that will be
further explored in the following subsections, but first we illustrate the point for
the bilinear equations in the following example:

Example 1. Consider an EFLASH instance with a = 1. Recall from Equa-

tion (6) in Definition 2 that the bilinear relations come from α = X2d−ΘQ +

X2ΘQ2d−Θ . By Lemma 1 we can write evP,1 ◦ φ−1(α) as d polynomials in the
ring F2[x1, ..., xn], whose degree 3–part are linear combinations of xip̂1 for 1 ≤
i ≤ n. This means that the homogeneous degree 3–part has at most dimension n,
whereas the image of evP,1 ◦φ−1(α) has dimension d (under the assumption that
the resulting d polynomials are linearly independent). Since d > n for EFLASH,
this means that there will be d− n different independent linear combinations of
these polynomials that can be written without using p̂1. As a result a Gröbner
basis algorithm will find d− n linear relations at D = 3.

It is worth pointing out that the embedding modifier π, while needed to
protect against differential attacks and more sophisticated attacks, as e.g. in
[4], actually weakens the effect of the minus modifier τ . Indeed, had there been
no embedding, i.e. d = n, we would not expect to find any linear relations at
D = 3 in the example above. Thus in this special case we see there is a trade-off
between π and τ . Without the embedding one would have to deal with the above
mentioned attacks while the classic attack by Patarin would be prevented. On the
other hand, by applying the embedding you would get back parts of the linear
relations from Patarin’s classical attacks while preventing the above attacks.
This shows that more research is required to better understand how to securely
combine the two kinds of modifiers.

In the next two subsections we will focus on how things evolve when in-
creasing the step degree D. We start by generalising Example 1 to include more
degree falls at D = 3.

4.2 First Fall Polynomials at D = 3

In Definition 2 we saw that with a = 0, we will in addition to the linear poly-
nomials given by α (Equation (6)) also have two more quadratic degree falls
given by β1 and β2 (Equations (7) and (8)). The 3d multivariate polynomials
associated to these will in general account for all the degree fall polynomials
that show up at step degree D = 3. Lemma 1 implies that when a > 0 these



polynomials will generally be of degree 3, where the degree 3–part is further
generated by the polynomials xipj , for 1 ≤ i ≤ n and 1 ≤ j ≤ a. Hence there
are 3d resulting polynomials where the top degree is generated by na elements,
and so an estimate of the number of degree fall polynomials at D = 3 can be
found by merely subtracting the two. To be more precise, recall from Section
2.2 that ker(ψD−2)/T (ψD−2) denotes the vector space of non–trivial degree fall
polynomials at degree D. We write {#Pdf}D = dim

(
ker(ψD−2)/T (ψD−2)

)
for

its dimension, and derive the following estimate for {#Pdf}3:

N3(n, d, a) = 3d− na. (10)

When N3 is negative, we do not expect to find any degree fall polynomials. In
this case we take max{N3, 0} as the estimate for {#Pdf}3. The accuracy of this
estimate will be tested in Section 5

4.3 First Fall Polynomials at D = 4

The analysis gets more complicated at step degree 4, mainly due to the syzygies
appearing in the polynomial system at this degree. More specifically we wish to
find out what polynomials in AXQ that will correspond to multivariate degree
falls that are considered trivial, in the sense of Remark 1, by Gröbner basis
algorithms. The following lemma classifies these polynomials.

Lemma 2. The polynomials associated with

evP,a ◦ φ−1
[
(X1+2Θ )2

k1
Q2k2

]
, for 0 ≤ k1, k2 ≤ d− 1.

can be written on the form:∑
1≤i≤d

a+1≤j1≤d
i 6=j1

bi,j1pipj1 +
∑

a+1≤j2≤d

cj2pj2 , for bi,j1 , cj2 ∈ F2. (11)

Proof. We prove the statement for the case k2 = 0 (other values of k2 can be
written as a power of 2 of this case). For the ciphertext (y1, ..., yd), write:

y′1
y′2
...
y′d

 = T−1


y1
y2
...
yd

 .
Recall that we included the ciphertext in the definition of the pi–polynomials,

so this must be accounted for when considering X1+2Θ (which will contain no
constant terms). We then have:

(X1+2Θ )2
k1
Q =

[ d∑
i=1

(qi + y′i)γ
(i−1)2k1

]
·
[ d∑
j=1

q∗j γ
j−1
]
,



and so if g is any of the d polynomials in φ−1
(
(X1+2Θ )2

k1
Q
)
, we can write:

g = q∗1

[ d∑
i=1

g1i(qi + y′i)

]
+ ...+ q∗d

[ d∑
i=1

gdi(qi + y′i)

]
for some gji ∈ F2. Recall that the qi’s are linear combinations of p1, ...pd (written
out in F2[x1, ..., xn]) and will be unaffected by ev∗p,a. The q∗i ’s are linear com-
binations of the formal variables p̂1, ..., p̄d. Since the evaluation map sends all
the variables p̂1, ...p̂a to zero, the statement (11) in the lemma now follows from
ev∗p,a(g).

We note that a system of quadratic polynomials p1, ..., pd with the property that
a sum of the form

∑
i 6=j bi,jpipj , with bi,j ∈ F2, results in a non–trivial degree fall

(i.e. one not generated by Kozul Syzygies) would be a very degenerate system,
not suitable for multivariate cryptography. We may assume therefore that a
polynomial system associated with C∗ is very unlikely to have this property.
Thus, under the assumption that no such non–trivial relation exists, Lemma
2 implies that any degree fall polynomial that originates from a sum of the

form
∑
k1,k2

ck1,k2(X1+2Θ )2
k1
Q2k2 is simply a linear combination of the public

polynomials pa+1, ..., pd. As this gives no new information to an attacker, it
should be regarded as trivial (similar to what was discussed in Remark 1).

We may now return to the question of what degree fall combinations that
should be counted. The polynomials α, β1 and β2 discussed earlier, when multi-
plied with X2i will also generate degree fall polynomials for D = 4. Indeed, our
experiments suggest that all of degree fall polynomials at this step degree are
generated by these elements.

At first glance there will be 3dn multivariate polynomials associated with
the elements X2iα, X2iβ1 and X2iβ2 for 1 ≤ i ≤ d. Note that here we are using
the fact that the variable X may be written using linear combinations of the

n variables x1, ..., xn. Hence, multiplying by all X,X2, ..., X2d−1

will effectively
only give n different combinations, as opposed to d. However, not all of these
should be counted, for various reasons. We list the exceptions below:

– Xβ1 = X2Q and X2Θβ2 = X2Θ+1

Q are both elements belonging to D = 3.

– X2Θβ1 = X1+2ΘQ = Xβ2, will be cases of the trivial degree falls discussed

in Lemma 2. The same is true for X2d−Θβ1 = (X1+2Θ )2
d−Θ

Q and X22Θβ2 =

(X1+2Θ )2
Θ

Q. Lastly, the following is a sum of two trivial degree falls: Xα =

(X1+2Θ )2
d−Θ

Q+X1+2ΘQ2d−Θ .

– From X2d−Θα = X2d−Θ+1

Q+X2d−Θ+2ΘQ2d−Θ = X2d−Θ+1

Q+
(
X22Θβ1

)2d−Θ
we see that X2d−Θα can be written out as a polynomial generated by β1,
and one regular polynomial of degree 3. For this reason, the degree fall

polynomials generated by either X2d−Θα or X22Θβ1 do not bring anything
new to the system once the other has been created, and so only one should

be counted. The same is true for X2Θα = X2d−Θβ2 +X2Θ+1

Q2d−Θ .



There are two, five and two relations from the first to last bullet point,
respectively, which do not count towards generating new degree fall polynomials
made from X2iα,X2iβ1 and X2iβ2. Summing these up we find that the adjusted
number of degree fall polynomials at a = 0 should be (3n− 9)d.

At first it may seem that the degree 4 part will be generated by a
(
n
2

)
elements,

namely all combinations xixj p̂k, but this does not take into account the trivial
syzygies arising from the fact that the p̂k’s are ultimately polynomials in the xi–
variables. Thus one should retract all combinations of trivial syzygies involving
the p̂k–elements, namely the field syzygies; p̂2k+ p̂k = 0 and Kozul syzygies of the
types p̂ip̂k+p̂kp̂i = 0, for i, k ∈ {1, . . . , a}, and p̂kp̄j+p̄j p̂k = 0, for k ∈ {1, . . . , a}
and j ∈ {a+1, . . . , d}. There are a such field equations,

(
a
2

)
of the Kozul syzygies

of the first type and a(d − a) Kozul syzygies of the second type. This sums up
to

a+

(
a

2

)
+ a(d− a) = ad+

a− a2

2
,

which should be subtracted from a
(
n
2

)
to give the precise number of degree

fall polynomials lost due to τ . Similar to the case D = 3, we can now add
together everything discussed so far to obtain an estimate of the number of
linearly independent degree fall polynomials at D = 4:

N4(n, d, a) = (3n− 9)d− a
(
n

2

)
+ ad+

a− a2

2
. (12)

Again, N4 may become negative, so we take max{N4, 0} to be our estimate
for {#Pdf}4.

5 Experimental Results

We now present experimental results to test the validity of the formulas from the
previous section predicting the number of first fall polynomials. In the first set
of experiments (Table 2) we vary the choices of parameters d, n, a and Θ. The
numbers N3 and N4 have been calculated according to equations (10) and (12),
and the predicted first fall degree is the first degree where we expect a positive
value. We then give the first fall degree and the number of first fall polynomials
obtained at this step from the Gröbner basis routine in the MAGMA computer
algebra system. In all our experiments the degree of the first fall polynomials were
maximal, i.e. one less than the first fall degree. The solving degree is measured as
the degree associated with the step having the largest matrix in the algorithm.
In Section 5.1 of [6] the authors note that smaller EFLASH–systems could be
solved at degree equal to or one lower than for random systems of the same
parameters (Dreg in our notation). As the systems (and hence also Dreg) grow
in size, it was suggested to use the bound in Equation (4), namely a + 3. We
have included both Dreg and this bound in the last two columns of the table
for comparison. One can notice that these values do not seem to be an adequate
measure of the solving degree in our experiments.



Table 2: Experimental Results for EFLASH with varying parameters.

d n a θ N3/N4 Dff Dff {#Pdf}Dff Dsolv a+ 3 Dreg

(predicted) (Magma) (Magma)

51 49 5 13 -92/1403 4 4 1403 4 8 9

51 49 3 13 6/3660 3 3 6 4 6 9

53 39 7 13 -114/887 4 4 887 5 10 7

56 40 9 8 -192/-336 ≥ 5 4 20 5 12 7

56 40 4 8 8/3314 3 3 8 4 7 7

60 50 4 8 -20/3794 4 4 3794 4 7 8

63 50 3 7 39/5394 3 3 39 4∗ 6 8

63 50 3 5 39/5394 3 3 39 4∗ 6 8

∗ The highest degree reached in MAGMA was 5, but this step occurred after 50 linear
relations were found, and consequently had little impact on the running time.

Note that the first two entries satisfy the condition n > d−a = m. This is to
emphasise that the validity of our theory is not only restricted to EFLASH (e.g.
the parameters in the PFLASH signature scheme are taken to be n > d − a).
There are several observations from Table 2 that we would like to point out.
The first is that when at least one of the predictions N3 and N4 is positive,
then our theory accurately predicts both the first fall degree and the number
of polynomials obtained. An odd case in this regard happens in the fourth row,
where we do not expect any degree fall polynomials at D = 4, but the GB
algorithm is still able to find a small number of them. Secondly, we note that
the recorded first fall degree and solving degrees are either the same or one
apart in all the experiments. It is possible that this relation may be understood
through the number of first fall polynomials. For example, a low {#Pdf}Dff
could imply Dsolv = Dff + 1, whereas a large {#Pdf}Dff implies Dsolv = Dff ,
but any further exploration into this is beyond the scope of this paper.

The third point we wish to elaborate on from Table 2 is that the last two
experiments differs only in Θ = 7 and 5. Here 7 is a divisor of d = 63, while 5 is
not. We obtain the same number of degree fall polynomials, indicating that for
direct methods it does not seem to make a difference whether Θ divides d, as
opposed to other attacks (see e.g. [17]).

In the next set of experiments we have fixed the value of the parameters
d = 56, n = 40 and Θ = 8, while only varying the number a of removed public
polynomials. Note that when a = 9 this is the same case as presented in row 2
of Table 2. In these experiments we only present N4 from equation (12) and the
first fall degree and number of first fall polynomials measured by MAGMA.

For 6 ≤ a ≤ 8 in Table 3 we find a positive value for N4 and in these cases
the theory exactly matches the experimental results. For 9 ≤ a ≤ 11 the theory
predicts no degree fall polynomials at D = 4, but MAGMA is still able to find a
small number of degree fall polynomials here. We see that this number decreases
by 9 as a is increased. When a = 12 public polynomials have been removed, no
degree fall polynomials are detected at D = 4, but a substantial amount is found
at D = 5.



Table 3: Effects of increasing a for d = 56, n = 40, Θ = 8. The entry marked with ∗

has been measured at D = 5.

a Measured Dff N4 {#Pdf}Dff
6 4 1857 1857

7 4 1127 1127

8 4 396 396

9 4 −336 20

10 4 −1069 11

11 4 −1803 2

12 5 −2538 8552∗

This type of behaviour observed for 9 ≤ a ≤ 11, with a small set of degree
fall polynomials not predicted by Equation (12) has also been observed for other
sets of parameters, so we do not believe that the parameters considered in Table
3 form a special case with regards to this. At this point we are not able to explain
what causes these degree fall polynomials.

6 Security Estimation for EFLASH

Based on our results from previous sections, we now examine the suggested 80–
bit security parameters for EFLASH versus classical and quantum adversaries
(Table 1), using our formula for N4(n, d, a) in Equation (12). We find

N4(80, 101, 5) = 8026 and N4(160, 181, 5) = 22546,

which means that we expect that these sets of parameters will both admit a first
fall degree of 4. From the experiments in the previous section we observed that
when N4 gives a positive number, it predicts the number of degree fall polynomi-
als precisely. Furthermore, in all our experiments we find that the solving degree
is at most one greater than the first fall degree. In Table 4 we have computed
the complexity of solving the EFLASH equation system on these parameter sets
using Equation (2) when Dsolv is 4 and 5. We have chosen to include two values
that are typically used for ω: 2.4 corresponding to the smallest known value
(here up to 1 decimal precision), and 2.8 which is the value from Strassen’s algo-
rithm. From Table 4 we find that both sets of parameters fail to achieve 80–bit
security in all scenarios, with the exception of the parameters versus quantum
adversaries under the most pessimistic (for an attacker) assumptions (ω = 2.8
and Dsolv = 5).

For the suggested 128–bit security parameters in Table 1 we get a negative
number for N4 and so we are not able to predict the first fall degree for these
cases. We have however seen that the minus modifier does not work as effectively
for EFLASH as initially believed, and so it is very likely that these parameters
will also fail to achieve their proposed security level.



Table 4: The complexity of solving the 80–bit security parameters suggested with re-
spect to a classical adversary (left table) and a quantum adversary (right table).

ω
Dsolv 4 5

2.4 250 259

2.8 258 269

ω
Dsolv 4 5

2.4 259 271

2.8 269 283

7 Further Work

Following the attack described in this paper, one may wonder whether it is
possible to fix the EFLASH scheme. We have seen that the relations β1 and β2
play a crucial role in the low first fall degree for this system. They are a direct
consequence of the small base field, so it seems natural to try and choose a larger
base field to mitigate this. The problem with this approach is that the condition
for the central map to be injective, gcd(qd− 1, qΘ + 1) = 1, can only be satisfied
when q is even. Furthermore, if Fq is chosen to be a small extension field of F2,
then the system can always be solved as a system over F2, and so the existence
of β1, β2 ultimately seems unavoidable. The minus modifier does help, but as we
have seen it also strongly affects the efficiency of decryption in EFLASH. Since
qa needs to be low in order for decryption to be efficient, the designer is limited
in the use of this modifier. For these reasons we cannot think of parameters that
would result in instances of EFLASH that seem both efficient and secure.

A related question is whether the analysis presented here would have an
impact on the security of the signature scheme PFLASH. As mentioned earlier,
EFLASH and PFLASH share the same central map, and so the latter will also
suffer from the same degree fall generators α, β1 and β2. The main difference is
that signature schemes can allow a significant number of public polynomials to
be removed without becoming inefficient. This can be seen from the suggested
parameters for PFLASH in [7], where roughly one third of the public polynomials
are removed. We are at this point not able to conclude either way on the security
of the current PFLASH parameters, but our work shows the need for an updated
security analysis against direct attacks for this scheme.

It will also be interesting to see if the ideas presented in this work may have
an impact on other multivariate big field schemes that also benefit from the
minus modifier. We point out that our methods not only predict the first fall
degree, but also the number of degree fall polynomials obtained at this degree. It
remains to be seen if this information can be used in other ways by an attacker.

One idea is to use this information in conjunction with the Joux–Vitse algo-
rithm [19]. For example, if we predict k degree fall polynomials at degree D, then
it may be the case that combining MacD−1 and the k degree fall polynomials of
degree ≤ D − 1 leads to optimal parameter choices for this algorithm (see [19]
for notation and more details on this). This could be paricularly interesting in
cases where the first fall degree and solving degree may be far apart.



8 Conclusions

With the prospect of quantum computers becoming a reality, cryptographers
have looked for quantum-safe public-key encryption algorithms that can replace
RSA. The C∗ scheme was proposed more than 30 years ago and is based on the
MQ problem which is considered quantum-safe. However, the basic C∗ scheme
was quickly broken and cryptographers have since tried to find variants that
may lead to secure quantum-safe public-key schemes. Some signature schemes
built around the C∗ construction have indeed withstood cryptanalysis; however
it has proven to be much harder to come up with secure and efficient encryption
algorithms based on it. EFLASH is one recent attempt.

However we have shown in this work that non-trivial degree fall polynomi-
als arise rather early in a Gröbner basis attack when the central mapping is
just a power-function and q is even (in particular when q = 2, as suggested for
EFLASH). Two techniques that have been proposed for overcoming the deficien-
cies of the basic C∗ system are to embed the plaintext space in a larger field,
and to remove some of the polynomials in the public key before it is published.
In this work we have seen that these two techniques to some extent work against
each other, and we have shed some light on how much security is actually gained
by the removal of some of the public polynomials.

During this work we were able to explain and give formulas for how many
degree fall polynomials will appear at step degrees 3 and 4 in a solving algorithm.
Experiments of fairly large instances show that our formulas give the exact
number of degree fall polynomials when the predicted number is positive, giving
confidence that we have captured the whole picture in our analysis. However, in
some cases we get a few non-trivial degree fall polynomials when our formulas
predict none, so more research is needed to explain these.

Based on our analysis we are very confident that we will indeed see a large
number of non-trivial degree fall polynomials at step degree 4 for the suggested
80-bit security parameter sets for EFLASH. In all likelihood the solving degree
for an actual EFLASH system will then be at most 5, giving solving complexities
significantly lower than the claimed security. This means that EFLASH does
not withstand direct Gröbner basis attacks, and should therefore be considered
insecure.
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Abstract. In this paper, we study the effect of two modifications to
multivariate public key encryption schemes: internal perturbation (ip),
and Q+. Focusing on the Dob encryption scheme, a construction utilis-
ing these modifications, we accurately predict the number of degree fall
polynomials produced in a Gröbner basis attack, up to and including
degree five. The predictions remain accurate even when fixing variables.
Based on this new theory we design a novel attack on the Dob encryp-
tion scheme, which breaks Dob using the parameters suggested by its
designers.
While our work primarily focuses on the Dob encryption scheme, we also
believe that the presented techniques will be of particular interest to the
analysis of other big–field schemes.

1 Introduction

Public key cryptography has played a vital role in securing services on the in-
ternet that we take for granted today. The security of schemes based on integer
factorization and the discrete logarithm problem (DLP) is now well understood,
and the related encryption algorithms have served us well over several decades.

In [25] it was shown that quantum computers can solve both integer fac-
torization and DLP in polynomial time. While large scale quantum computers
that break the actual implementations of secure internet communication have
yet to be built, progress is being made in constructing them. This has led the
community for cryptographic research to look for new public key primitives that
are based on mathematical problems believed to be hard even for quantum com-
puters, so called post–quantum cryptography.

In 2016 NIST launched a project aimed at standardizing post–quantum pub-
lic key primitives. A call for proposals was made and many candidate schemes
were proposed. The candidates are based on a variety of problems, including the
shortest vector problem for lattices, the problem of decoding a random linear
code, or the problem of solving a system of multivariate quadratic equations over
a finite field (the MQ problem).

The first encryption scheme based on the MQ problem, named C∗, was pro-
posed in [21] and was broken by Patarin in [23]. Since then, much work has



gone into designing new central maps, as well as modifications that can enhance
the security of existing ones. Several multivariate schemes have been proposed
following C∗, for instance [24, 5, 27, 28]. While some of the schemes for digital
signatures based on the MQ problem seem to be secure, it has been much harder
to construct encryption schemes that are both efficient and secure. The papers
[16, 22, 29, 26, 1], all present attacks on MQ-based public key encryption schemes,
and as of now we are only aware of a few (e.g., [9, 32]) that remain unbroken.

In [20] a new kind of central mapping is introduced, which can be used
to construct both encryption and signature schemes. The novel feature of the
central mapping is that it has a high degree over an extension field, while still
being easy to invert. The encryption variant proposed in [20] is called Dob and
uses two types of modifications to its basic construction.

Our Contribution

The initial part of our work provides a theoretical analysis of (combinations
of) two modifications for multivariate cryptosystems. The Q+–modification was
(to the best of our knowledge) first proposed in [20], while the second, internal
perturbation (ip), has been in use for earlier schemes [12, 8, 9]. More specifically,
we develop the tools for computing the dimension of the ideal associated with
these modifications, at different degrees. This in turn provides key insights into
the complexity of algebraic attacks based on Gröbner basis techniques.

As an application, we focus on the Dob encryption scheme proposed in [20].
We are able to deduce formulas that predict the exact number of first fall polyno-
mials for degrees 3,4 and 5. These formulas furthermore capture how the number
of degree fall polynomials changes as an attacker fixes variables, which also allows
for the analysis of hybrid methods (see e.g., [3]).

Finally, the newfound understanding allow us to develop a novel attack on the
Dob encryption scheme. Through analyzing and manipulating smaller, projected
polynomial systems, we are able to extract and isolate a basis of the secret
modifiers, breaking the scheme. While the details of the attack have been worked
out for the Dob encryption scheme, we believe the techniques themselves could
be further generalised to include different central maps and modifications.

Organisation

The paper is organized as follows. In Section 2 we recall the relation between Fd2
and F2d , as well as the necessary background for solving multivariate systems
over F2. In Section 3 we develop the general theory that explores the effective-
ness of the modifications Q+ and ip . Section 4 introduces the Dob scheme,
and we deduce formulas that predict the number of degree fall polynomials for
this construction. Experimental data verifying the accuracy of these formulas
is presented in Section 5. In Section 6 we develop the novel attack on the Dob
encryption scheme, using the information learned from the previous sections.
Finally, sections 7 and 8 discuss and conclude the work.

2



Table of definitions

Throughout the paper we will use the notation in Table 1. We list it here for
easy reference.

Term Meaning

B(n) B(n) = F2[x1, . . . , xn]/〈x21 + x1, . . . , x
2
n + xn〉

B(n) B(n) = F2[x1, . . . , xn]/〈x21, . . . , x2
n〉

B(n)ν The set of homogeneous polynomials of degree ν in n variables.
〈R〉 The ideal associated with the set of polynomials R.
〈R〉ν The ν–th degree part of a graded ideal 〈R〉.

dimν(〈R〉) The dimension of 〈R〉ν as an F2–vector space.

Ph A set of homogeneous quadratic polynomials over B(n)2
Syz(Ph)ν The grade ν part of the (first) syzygy module of Ph. (See section 2.1)

T (Ph)ν The grade ν part of the trivial syzygy module of Ph. (See section 2.1)

S(Ph)ν S(P)ν = Syz(P)ν/T (Ph)ν .
Q+, qi, t The Q+ modifier, with q1, . . . , qt added quadratic polynomials.
(ip), vi, k The internal perturbation modifier with v1, . . . , vk linear forms.

N
(α,β)
ν Estimate of the number of degree fall polynomials at degree ν.

Table 1: Notation used in the paper

2 Preliminaries

Multivariate big–field encryption schemes are defined using the field Fqd and the
d-dimensional vector space over the base field, Fdq . In practical implementations,
q = 2 is very often used, and we restrict ourselves to only consider this case in
the paper.

2.1 Polynomial System Solving

A standard technique used in the cryptanalysis of multivariate schemes, is to
compute a Gröbner basis associated with the ideal 〈pi + yi〉1≤i≤m, for a fixed ci-
phertext y1, . . . , ym (see for example [7] for more information on Gröbner bases).
As we are interested in an encryption system, we can reasonably expect a unique
solution in the boolean polynomial ring B(n). In this setting the solution can be
read directly from a Gröbner basis of any order.

One of the most efficient algorithms for computing Gröbner bases is F4 [15].
In the usual setting, the algorithm proceeds in a step–wise manner; each step
has an associated degree, D, where all the polynomial pairs of of degree D are
reduced simultaneously using linear algebra. The degree associated with the most
time consuming step is known as the solving degree, Dsolv, and time complexity

3



of F4 can be estimated to be:

ComplexityGB = O
( (Dsolv∑

i=0

(
d

i

))ω )
, (1)

where 2 ≤ ω ≤ 3 denotes the linear algebra constant. Determining Dsolv is in
general difficult, but there is an important class of polynomial systems that is well
understood. Recall that a homogeneous polynomial system, Fh = (fh1 , . . . , f

h
m) ∈

B(n)m, is said to be semi–regular if the following holds; for all 1 ≤ i ≤ m and
any g ∈ B(n) satisfying

gfhi ∈ 〈fh1 , . . . , fhi−1〉 and deg(gfi) < Dreg, (2)

then g ∈ 〈fh1 , . . . , fhi 〉 (note that fhi is included since we are over F2). Here
Dreg is the degree of regularity as defined in [2], (for i = 1 the ideal generated by
∅ is the 0–ideal). We will also need a weaker version of this definition, where we
say that Fh is D0–semi–regular, if the same condition holds, but for D0 < Dreg

in place of Dreg in eq. (2). An inhomogeneous system F is said to be (D0–)semi–
regular if its upper homogeneous part is. For a quadratic, semi–regular system
F over B(n), the Hilbert series of B(n)/F is written as (Corollary 7 in [2]):

Tm,n(z) =
(1 + z)n

(1 + z2)m
, (3)

and the degree of regularity can be computed explicitly as the degree of the first
non–positive term in this series. Determining whether a given polynomial system
is semi–regular may, in general, be as hard as computing a Gröbner basis for it.
Nevertheless, experiments seem to suggest that randomly generated polynomial
systems behave as semi–regular sequences with a high probability [2], and the
degree of regularity can in practice be used as the solving degree in eq. (1). We
will denote the degree of regularity for a semi–regular sequence of m polynomials
in n variables as Dreg(m,n). On the other hand, it is well known that many big–
field multivariate schemes are not semi–regular (e.g., [16][5]). In these cases the
first fall degree is often used to estimate the solving degree ([10][22]). The first
fall degree, according to [10], will be defined in definition 2, but before that we
recall the definition of a Macaulay matrix associated to a polynomial system.

Definition 1. Let P be an (inhomogeneous) polynomial system in B(n), of de-
gree two. An (inhomogeneous) Macaulay matrix of P at degree D, MD(P), is a
matrix with entries in F2, such that:

1. The columns are indexed by the monomials of degree ≤ D in B(n).
2. The rows are indexed by the possible combinations xαpi, where 1 ≤ i ≤ n

and xα ∈ B(n) is a monomial of degree ≤ D − 2. The entries in one row
corresponds to the coefficients of the associated polynomial.

Similarly, we define the homogeneous Macaulay matrix of P at degree D, MD(P),
by considering Ph ∈ B(n), only including monomials of degree D in the columns,
and rows associated to combinations xαphi , deg(xα) = D − 2.
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Syzygies and Degree Fall Polynomials. Let Ph = (ph1 , . . . , p
h
m) ∈ B(n)m2

denote a homogeneous quadratic polynomial system. The set Ph induces a map:

ψP
h

: B(n)m −→ B(n)
(b1, . . . , bm) 7−→

∑m
i=1 bip

h
i ,

(4)

which in turn splits into graded maps ψP
h

ν−2 : B(n)mν−2 −→ B(n)ν . The B(n)–

module Syz(Ph)ν = Ker(ψP
h

ν−2) is known as the ν–th grade of the (first) syzygy
module of Ph. When ν = 4, Syz(Ph)4 will contain the Koszul Syzygies3, which
are generated by (0, ..., 0, phj , 0, ..., 0, p

h
i , 0, ..., 0) (phj is in position i and phi is in

position j), and the field syzygies, which are generated by (0, ..., 0, phi , 0, ..., 0) (phi
in position i). These syzygies correspond to the cancellations phj p

h
i + phi p

h
j = 0

and (phi )2 = 0. As they are always present, and not dependent of the structure
of Ph, they are sometimes referred to as the trivial syzygies. More generally, we
will define the submodule T (Ph)ν ⊆ Syz(Ph)ν to be the ν–th graded component
of the module generated by the Koszul and field syzygies, and denote S(P)ν =
Syz(Ph)ν/T (Ph)ν .

Definition 2. The first fall degree associated with the quadratic polynomial sys-
tem P is the natural number

Dff = min{ D ≥ 2 | S(P)D 6= 0 }.

Representations over base and extension fields For any fixed isomorphism
Fd2 ' F2d , there is a one–to–one correspondence between d polynomials in B(d)

and a univariate polynomial in F2d [X]/〈X2d +X〉 (see 9.2.2.2 in [4] for more de-
tails). For an integer j, let w2(j) denote the number of nonzero coefficients in the
binary expansion of j. For a univariate polynomial H(X), we define maxw2

(H)
as the maximal w2(j) where j is the degree of a term occurring in H. Let P (X)
be the univariate representation of the public key of a multivariate scheme, and
suppose there exists a polynomial H(X) such that

maxw2
(H(X)P (X)) < maxw2

(H(X)) + maxw2
(P (X)). (5)

Then the multivariate polynomials corresponding to the product H(X)P (X) will
yield degree fall polynomials from (multivariate) degree maxw2(H) + maxw2(P )
down to degree maxw2

(HP ).

It was mentioned in [16] that the presence of polynomials satisfying eq. (5)
was the reason for Gröbner basis algorithms to perform exceptionally well on
HFE–systems. Constructing particular polynomials that satisfy eq. (5) has also
been a central component in the security analyzes found in [10] and [22].

3 Here we follow the nomenclature used, for instance, in [18].
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3 Estimating the Number of Degree Fall Polynomials

We start by introducing a general setting, motivated by the Dob encryption
scheme which we will focus on later. Let F : Fn2 → Fm2 be a system of m quadratic
polynomials over B(n). Furthermore, consider the following two modifiers4:

1. The internal perturbation (ip) modification chooses k linear combinations
v1, . . . , vk, and adds a random quadratic polynomial in the vi’s to each poly-
nomial in F .

2. The Q+ modifier selects t quadratic polynomials q1, . . . , qt, and adds a ran-
dom linear combination of them to each polynomial in F .

Let Hip be the random quadratic polynomials in v1, . . . , vk and HQ+ the random
linear combinations of q1, . . . , qt. A modification of the system F can then be
written as

P : Fn2 −→ Fm2
x 7−→ F(x) +Hip(x) +HQ+(x).

(6)

The problem we will be concerned with in this section is the following: given
full knowledge of the degree fall polynomials of the system F , what can we say
about the degree fall polynomials of the system P?

3.1 The Big Picture

Let Fh and Ph denote the homogeneous parts of the systems F and P respec-
tively, and consider them over B(n). For a positive integer α ≤ k, we define V α to
be the homogeneous ideal in B(n) that is generated by all possible combinations
of α linear forms from the ip modification, i.e.:

V α = 〈(vi1vi2 · · · viα)h | 1 ≤ i1 < i2 < . . . < iα ≤ k〉. (7)

In other words, V α is the product ideal

α︷ ︸︸ ︷
V 1 · V 1 · . . . · V 1. Similarly, for the

quadratic polynomials associated with the Q+ modifier we define Qβ for a pos-
itive integer β ≤ t to be the product ideal:

Qβ = 〈(qi1qi2 · · · qiβ )h | 1 ≤ i1 < i2 < . . . < iβ ≤ t〉. (8)

Finally, for 0 ≤ α ≤ k and 0 ≤ β ≤ t, we define the ideal of different combinations
of the modifiers, M (α,β) = 〈V α, Qβ〉, along with the boundary cases M (α,0) =
V α, M (0,β) = Qβ and M (0,0) = 〈1〉.

The following result is an important first step to understand how the degree
fall polynomials in F behave when modifiers are introduced to the scheme.

4 The authors of [20] named these two modifiers ⊕ and “ + ”. Note that in earlier
literature (c.f. [31]), the “ + ” modification refers to a different modification than
what is described in [20], and the ⊕modification has been called internal perturbation
(ip). (To the best of our knowledge, the “ + ” modification from [20] has not been
used in earlier work). To avoid any confusion, we have chosen to stick with the name
(ip) and use Q+ for [20]’s “+”
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Lemma 1. Let Ph, Fh, M (2,1) be defined as above, and ψP
h

be as defined in

eq. (4). Then 〈ψPh(S(F))〉 and 〈ψPh(Syz(Fh))〉 are homogeneous subideals of
〈Ph〉 ∩M (2,1).

Proof. We show the statement for 〈ψPh(Syz(Fh))〉; the case of 〈ψPh(S(F))〉 is

similar. First note that ψP
h

(Syz(Fh)) is a group, as it is the image of a group
under a group homomorphism. Secondly, for any element a = (a1, . . . , am) ∈
Syz(Fh), and any r ∈ B(n), we have rψP

h

(a) = ψP
h

((ra1, . . . , ram)), where

also (ra1, . . . , ram) ∈ Syz(Fh). It follows that ψP
h

(Syz(Fh)) is indeed an ideal.

The inclusion 〈ψPh(Syz(Fh))〉 ⊆ 〈Ph〉 follows directly from the definition of

ψP
h

. For the other inclusion we note that, by construction, we can write phi =

fhi +
∑t
j=1 bi,jq

h
j +
∑k
j,l=0 ci,j,l(vjvl)

h, for all 1 ≤ i ≤ m and for suitable constants

bi,j , ci,j,l ∈ F2, where fhi , phi are the polynomials of Fh and Ph respectively.

When a ∈ Syz(Fh), the fhi –parts in ψP
h

(a) will vanish, and we are left with a
polynomial that can be generated from the elements of V 2 and Q1. Hence we

also have 〈ψPh(Syz(Fh))〉 ⊆M (2,1).

In particular, there is the following chain of ideals

〈ψP
h

(S(F))〉 ⊆ 〈ψP
h

(Syz(Fh))〉 ⊆ 〈Ph〉 ∩M (2,1) ⊆M (2,1). (9)

We now allow ourselves to be slightly informal, in order to see how this all
relates in practice to the cases we are interested in. At each degree ν, the di-

mension dimν(M (2,1)) of M
(2,1)
ν as a vector space over F2 can be seen as a mea-

sure of how much information the modifiers can hide. An interesting case from

an attacker’s point of view is when 〈ψPh(S(F))〉ν0 has the maximal dimension

dimν0(〈ψPh(S(F))〉) = dimν0(M (2,1)), for a relatively small ν0. While ‘excess’

polynomials in 〈ψPh(S(F))〉ν0 will sum to 0 in B(n), there is a chance that the
corresponding inhomogeneous polynomials will result in degree fall polynomials
when treated over B(n). In particular, this yields an upper bound Dff ≤ ν0 on
the first fall degree. We can do even better in practice.

Note that (M (2,1)〈Ph〉)ν will be a subspace of (the row space of) the Macaulay
matrix Mν(P). As this matrix can be constructed by an attacker, we should
count the possible combinations of polynomials from both (M (2,1)〈Ph〉) and the

image of ψP
h

(S(F)). Some caution is warranted when counting these combina-

tions. For instance, ψP
h

(ms) ∈ M (2,1)〈Ph〉 for any m ∈ M (2,1) and s ∈ S(F),
so we need to be careful in order to not count the same elements twice. For
now we will keep up with our informal theme and denote ‘M (2,1)〈Ph〉 mod-
ulo these collisions’ by PM(2,1) . We will deal with it more properly when com-
puting its dimension in section 3.3. We also show later, in appendix A, that

〈ψPh(T (Fh))〉 ⊆ M (2,1)〈Ph〉, which is why we will focus on 〈ψPh(S(F))〉 (as

opposed to 〈ψPh(Syz(Fh))〉).
We now have everything needed to discuss estimates of the number of degree

fall polynomials at different degrees. We start by assuming that none of the
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degree fall polynomials we get from S(F) (under ψP
h

) can be reduced by lower–
degree Macaulay matrices of P. This allows us to directly use dimν(S(F)). We
furthermore add dimν(PM(2,1)), and subtract by dimν(M (2,1)). This yields the

expression for our first estimate of degree fall polynomials, N
(0,0)
ν , at degree ν:

N (0,0)
ν = dimν(S(F)) + dimν(PM(2,1))− dimν(M (2,1)). (10)

In a sense, N
(0,0)
ν can be thought of as estimating the number of degree fall

polynomials, as an effect of ‘over saturating’ M
(2,1)
ν . When N

(0,0)
ν is a positive

number, this is the number of degree fall polynomials we expect to find (based on

this effect); if N
(0,0)
ν is negative, there is no such over saturation, and we do not

expect any degree fall polynomials at degree ν. The benefits of having the ex-
pression in eq. (10) is that the study of the relatively complex polynomial system
Ph can be broken down to studying three simpler systems. The dimensions of
M (2,1) and PM(2,1) can, in particular, be further studied under the assumptions
that the modifiers form a semi–regular system. In addition to being a reasonable
assumption as the modifiers are randomly chosen, this is also the ideal situation
for the legitimate user, as this maximizes the dimension of M (2,1). Indeed, the
study of M (2,1) and PM(2,1) will be continued in the following subsections. Before
that, we will generalize the ideas presented so far, arriving at several expressions
that can be used to estimate the number of degree fall polynomials.

Generalised Estimates of Degree Fall Polynomials. Let M (α,β)Syz(F)
denote the module {ms | m ∈ M (α,β), s ∈ Syz(F)} (which is well–defined since
Syz(F) is a B(n)–module), and define

S(F)M(α,β) := [M (α,β)Syz(F)]/T (F).

Instead of considering all the syzygies S(F), we can start with submodules of
the form S(F)M(α,β) . The benefit is that the ideal we need to ‘over saturate’
will now be M (α,β)M (2,1). In section 5 we will see several examples where this

yields a better estimate than N
(0,0)
ν . Following through with this idea, along with

the same considerations discussed prior to eq. (10), we arrive at the following
estimate for α, β ≥ 0:

N (α,β)
ν = dimν(S(F)M(α,β))− dimν(M (α,β)M (2,1))

+ dimν(PhM(α,β)M(2,1)).
(11)

Recalling the convention that M (0,0) = 〈1〉, this is indeed a generalisation of
eq. (10).

We now have several different estimates for degree fall polynomials, varying
with the choice of α, β. Any of these may be dominating, depending on the
parameters of the scheme. The general estimate at degree ν is then taken to be
their maximum:

Nν = max{0, N (α,β)
ν | 0 ≤ α ≤ k and 0 ≤ β ≤ t}. (12)
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Note in particular that if Nν = 0, then all our estimates are non–positive, and
we do not expect any degree fall polynomials at this degree.

Consider now the main assumptions underlying these estimates. Firstly, recall
that we assumed that none of the degree fall polynomials that can be made from
ψP(S(F)M(α,β)) will be reduced to 0 when solving the system P. Secondly, the
formulas implicitly assume that all the polynomials in M (α,β)M (2,1) need to be
reduced before we can observe degree fall polynomials. The third assumption,
concerning Ph

M(α,β)M(2,1) , will be specified in section 3.3.
Finally, we stress that the aim of this section has been to investigate one of

the aspects that can lead to a system exhibiting degree fall polynomials. The
estimates presented should not be used without care to derive arguments about
lower bounds on the first fall degree. Nevertheless, we find that in practice these
estimates and their assumptions seem to be reasonable. With the exception of a
slight deviation in only two cases (see Section 4.3), the estimates lead to formulas
that are able to describe all our experiments for the Dob encryption scheme that
will be investigated in Section 4.

3.2 Dimension of the Modifiers

The estimate given in eq. (11) requires knowledge of the dimension of (products
of) the ideals M (α,β). These will in turn depend on the chosen modifications V α

and Qβ . In this section we collect various results that will be needed to determine
these dimensions. We start with the following elementary properties.

Lemma 2. Consider M (α,β) = (V α +Qβ), and positive integers α0, α, β0, β, ν.
Then the following holds:

(i) V α0V α = V α0+α and Qβ0Qβ = Qβ0+β.
(ii) V α0Qβ0 ⊆ V αQβ if α ≤ α0 and β ≤ β0.

(iii) M (α0,β0)M (α,β) = M (α0+α,β0+β) + V α0Qβ + V αQβ0 .
(iv) dimν(M (α,β)) = dimν(Qβ) + dimν(V α)− dimν(Qβ ∩ V α).
(v) dimν(M (α0,β0)M (α,β)) = dimν(M (α0+α,β0+β)) + dimν(V α0Qβ)

+ dimν(V αQβ0)− dimν(M (α0+α,β0+β) ∩ V α0Qβ)

− dimν(M (α0+α,β0+β) ∩ V αQβ0)− dimν(V α0Qβ ∩ V αQβ0)

+ dimν(M (α0+α,β0+β) ∩ V α0Qβ ∩ V αQβ0).

Proof. Properties (i) – (iv) follow from the appropriate definitions in a straight-
forward manner; we give a brief sketch of property (v) here. From property (iii)
we know that M (α0,β0)M (α,β) can be written as the sum of the three ideals
M (α0+α,β0+β), V α0Qβ and V αQβ0 . We start by summing the dimension of each
of these three ideals individually. Any polynomial belonging to exactly two of
these subideals is now counted twice, which is why we subtract by the combina-
tions intersecting two of these ideals. Lastly, a polynomial belonging to all three
of the subideals will, at this point, have been counted thrice, and then subtracted
thrice. Hence, we add the dimension of intersecting all three subideals.
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The dimension dimν(V α) can be further inspected using the following result.

Lemma 3. Suppose that v1, . . . , vk are k linearly independent linear forms in
B(n). Then

dimν(V α) =
∑

i≥α,j≥0
i+j=ν

(
k

i

)(
n− k
j

)
(13)

holds under the conventions that
(
a
b

)
= 0 if b > a, and

(
a
0

)
= 1.

Proof. As v1, . . . , vk are linearly independent, we can choose n− k linear forms
of B(n), wk+1, . . . , wn, that constitute a change of variables

B(n) ' B′ = F2[v1, . . . , vk, wk+1, . . . wn]/〈v21 , . . . , w2
n〉.

For any monomial γ ∈ B′, we will define degv(γ) as its degree in the v1, . . . , vk-
variables, and degw(γ) as its degree in the variables wk+1, . . . , wn. The elements

of V α of (total) degree ν, is now generated (in B
′

as an F2–vector space) by all
monomials γ such that degv(γ) ≥ α and degv(γ) + degw(γ) = ν. The number
of all such monomials are counted in eq. (13).

Lemma 4. Let qh1 , . . . , q
h
t be a D0–semi–regular system of homogneous quadratic

polynomials over B(n). Then, for any 2 ≤ ν < D0, we have

dimν(Q1) =

(
n

ν

)
− [zν ]Tt,n(z),

where [zν ]Tt,n(z) denotes the coefficient of the monomial zν in the expansion of
the series Tt,n(z), as given in eq. (3).

Proof. By assumption, the series Tt,n(z) coincides with the Hilbert series of
B(n)/Q1, for the terms with degree 2 ≤ ν < D0. From the additive property of
the Hilbert function, we have that dimν(Q1) = dimν(B(n))− [zν ]Tt,n(z), and it
is well–known that dimν(B(n)) =

(
n
ν

)
.

Lemma 5. Suppose that (v1, . . . , vk, q1, . . . , qt) is D0–semi–regular, and con-
sider 1 ≤ α ≤ k and 1 ≤ β ≤ t. Then

(V α ∩Qβ)ν = (V αQβ)ν ,

holds for all ν < D0.

Proof. (Sketch) The product of any pair of ideals is contained in their intersec-
tion. For the other direction, consider a non–trivial element e ∈ (V α ∩ Qβ)ν .
Then, for some polynomials fi, gj , we can write e =

∑
fiq

h
i1
· · · qhiβ ∈ Q

β
ν , and

e =
∑
gjvj1 · · · vjα ∈ V αν , which yields the syzygy∑

fi(q
h
i1 · · · q

h
iβ

) +
∑

gj(vj1 · · · vjα)h = 0.
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By assumption, all syzygies of degree < D0 of (v1, . . . , vk, q
h
1 , . . . , q

h
t ) will be

generated by the field and Koszul syzygies of the vi– and qhj –polynomials. It

follows that (after possibly reducing by syzygies generated by only qh1 , . . . , q
h
t )

we have fi ∈ V α. Similarly, we have gj ∈ Qβ . In particular, e ∈ V αQβ .

A general characterisation of the ideal V αQβ is trickier. We are content with
discussing some special cases of its dimension, which will be of interest to us.

Example 1 Suppose that (v1, . . . , vk, q1, . . . , qt) is D0–semi–regular, and let 1 ≤
α ≤ k and 1 ≤ β ≤ t.

(a) The generators of V αQβ are of degree α+2β, hence dimν(V αQβ) = 0 for all
ν < α+ 2β. (This also holds without the D0–semi–regularity assumption).

(b) Suppose furthermore that D0 > α + 2β + 1. Then dim(α+2β+1)(V
αQβ) =(

t
β

)
dimα+1(V α). To see this, note that 〈V αQβ〉α+2β+1 is generated by el-

ements of the form vl1 . . . vlαqc1 . . . qcβxr, where 1 ≤ l1 < . . . < lα ≤ k,
1 ≤ c1 < . . . < cβ ≤ t and 1 ≤ r ≤ n. The semi–regularity assumption as-
sures that there will be no cancellations (save for the ones already accounted
for in dimα+1(V α)).

(c) Suppose furthermore that D0 > α + 2β + 2, then dim(α+2β+2)(V
αQβ) =(

t
β

)
dimα+2(V α) −

(
k
α

)[(
t
β

)
t −

(
t

β+1

)]
. The reasoning is similar to (b), with

the difference that dimα+2(V α) will now include the polynomials of the form
qhc (vl1 . . . vlα)h. There are

(
k
α

)[(
t
β

)
t−

(
t

β+1

)]
combinations of these that will

reduce to 0 over B(n) (when multiplied with the combinations qhc1 . . . q
h
cβ

).

3.3 Dimension of PM(α,β)M(2,1)

As noted in section 3.1, we want PM(α,β)M(2,1) to be M (α,β)M (2,1)〈Ph〉, modulo

the polynomials of the form ψP
h

(ms), for ms ∈ S(F)M(α,β)M(2,1) . Computing
the dimension of (M (α,β)M (2,1)〈Ph〉)ν directly might be difficult, seeing that Ph
depends on M (2,1). To tackle this, we start with the assumption that the can-
cellations in M (α,β)M (2,1)〈Ph〉 are only generated by the ‘generic’ cancellations,
and cancellations coming from the underlying structure, depending on F . By
‘generic’ cancellations we mean those generated by the Koszul– or field syzygies
in either the phi – or mj–polynomials. The assumption furthermore implies that

the second type of cancellations will lie in the image of ψP
h

(S(F)M(α,β)M(2,1)).
Let GSR be a system of homogeneous quadratic polynomials, of the same size
and number of variables as Ph, such that {V 1, Q1,GSR} forms a semi–regular
system. With the assumption outlined above, we have

dimν(PM(α,β)M(2,1)) = dimν(M (α,β)M (2,1)GSR)− dimν(S(F)M(α,β)M(2,1)). (14)

Indeed, any would–be cancellations that are over–counted in the term
dimν(M (α,β)M (2,1)GSR) would be subtracted in −dimν(S(F)M(α,β)M(2,1)).
S(F)M(α,β)M(2,1) requires knowledge of the underlying central map, F , and

will be dealt with in the next section. Computing the dimensions of the product
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ideal M (α,β)M (2,1)GSR has many similarities with the work that was done in
the previous subsection. In particular, the dimension at degree ν is zero if the
degrees of all of its generators are > ν. We conclude with the following short
example, which covers the other cases that will be the most relevant to us.

Example 2 Let GSR be a system of d homogeneous quadratic polynomials over
B(n), such that {V 1, Q1,GSR} forms a semi–regular system. Then

dimν(M (2,1)GSR) = n
[
dimν−2(Q1) + dimν−2(V 2)

]
,

holds for ν = 4, 5.

4 Number of Degree Fall Polynomials in the Dob
Encryption scheme

There are several ways to construct a central map F : Fd2 → Fd2. For big–field
schemes, the idea is to fix an isomorphism φ : Fd2 → F2d between the vector space
over the base field and the extension field, and choose two random invertible
d×d-matrices over F2, called S and T . F is then constructed as the composition
F = S ◦ φ−1 ◦ F ◦ φ ◦ T , where F (X) ∈ F2d [X], maxw2

(F ) = 2, and such that
F (X) = Y is easy to solve for any given Y . In particular, this ensures that F
is a system of d quadratic polynomials, and ciphertexts can easily be decrypted
with the knowledge of the secret S, T and F . There are two main ways in the
literature to construct F with these properties:

1. F (X) = Xe, where w2(e) = 2. This is the case for C∗ [21].
2. F (X) =

∑t
i=0 ciX

ei , where we have w2(ei) ≤ 2 for all i, and each ei is
bounded by a relatively small constant b. This is used in HFE [24].

Indeed, both C∗ and HFE have been suggested with the ip–modification, known
as PMI an ipHFE, respectively [8, 12]. These schemes were broken in [17, 14], by
specialised attacks recovering the kernel of the linear forms of the ip–modification.
Nevertheless, a later version of the C∗ variant, PMI+ [9], also added the “ + ”
modification in order to thwart this attack, and remains unbroken. We note that
ipHFE, PMI and PMI+ all fits into the framework presented in section 3, and
the techniques presented here can be used to understand their resistance against
algebraic attacks (recall that the “+” modification does not increase the security
versus algebraic attacks). A comprehensive study of these schemes are beyond
the scope of this work, as we focus on a newer construction that utilizes both
the ip– and Q+–modification.

4.1 The Dob Encryption Scheme

The Two–Face family, introduced in [20], presents a third way to construct a
function F (X). Writing Y = F (X), we get the polynomial equation

E1(X,Y ) = Y + F (X) = 0.
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When F has the Two–Face property, it can be transformed into a different
polynomial E2(X,Y ) = 0, which has low degree in X and have 2–weight at
most 2 for all exponents in X. The degree of E2 in Y can be arbitrary. Given
Y , it is then easy to compute an X that satisfies E2(X,Y ) = 0, or equivalently,
Y = F (X).

For a concrete instantiation, the authors of [20] suggest the polynomial

F (X) = X2m+1 +X3 +X, (15)

where d = 2m−1. Dobbertin showed in [13] that F is a permutation polynomial.
In [20], based on the results of [13], it is further pointed out that

E2(X,Y ) = X9 +X6Y +X5 +X4Y +X3(Y 2m + Y 2) +XY 2 + Y 3 = 0

holds for any pair Y = F (X). Note that F itself has high degree in X, but the
highest exponent of X found in E2 is 9 and all exponents have 2–weight at most
2.

The public key F associated with eq. (15) under the composition described
at the beginning of section 4 is called nude Dob, and was observed in [20] to be
weak. More precisely, experiments show that the associated multivariate system
has solving degree three. Indeed, in appendix D we will show that this is the
case for any d.

The (full) Dob encryption scheme is made by extending nude Dob with the
two modifications, Q+ and ip, as described at the beginning of section 3. The
public key is the d quadratic polynomials P, constructed according to eq. (6).
The secret key consists of S, T,Hip and HQ+

. The plaintext space of the scheme
is Fd2 and encryption is done by evaluating y = P(x), producing the ciphertext
y.

To decrypt, the receiver of a ciphertext y guesses on the values of vi(x) and
qj(x) for all 1 ≤ i ≤ k and 1 ≤ j ≤ t, and computes the corresponding values
of the polynomials in Hip and HQ+

. These values are added to y, removing the
effect of the modifiers when the guess is correct. The resulting value y′ is then
the ciphertext of the nude Dob. This can be decrypted by first multiplying y′

with S−1, resulting in Y from the central mapping, which is then inverted using
E2 and multiplied with T−1 to recover the candidate plaintext x0. The initial
guess is then verified by checking if all vi(x0) and qj(x0) indeed evaluate to the
guessed values.

In order for decryption to have an acceptable time complexity, the size of the
modifications, k and t, can not be too large. To decrypt a ciphertext one must
on the average do 2k+t−1 inversions of P before the correct plaintext is found.
In [20] it is suggested to use k = t = 6 for 80–bit security.

For the remainder of this work, we let F and P denote the public keys of
nude Dob and the (full) Dob encryption scheme, respectively.

4.2 Syzygies of the Unmodified Dob Scheme

The goal of this subsection is to estimate the dimension of S(F)ν , for ν = 3, 4, 5.

We start by inspecting F (eq. (15)) over the extension field F2d [X]/〈X2d +X〉.

13



Note that maxw2
(F ) = 2, and consider the following polynomials:

G1 = XF and G2 = (X2m +X2)F. (16)

One finds that G1 and G2 are both products of F and a polynomial of 2–weight
one, but the resulting polynomials still have maxw2

(Gi) = 2. They are then
examples of polynomials satisfying eq. (5) from section 2.1, and will correspond
to 2d degree fall polynomials at degree three, down to quadratic polynomials.
They form all the syzygies we expect at degree three, hence we set

dim3(S(F)) = 2d. (17)

Recall that it was noted in [20] that experiments of nude Dob had a solving
degree of three, though the authors did not provide a proof that this is always
the case. The presence of G1 and G2 ensures that the first fall degree of nude
Dob is three. A complete proof that the solution of nude Dob can be found by
only considering polynomials of degree three is a little more involved, and is
included in appendix D.

Things get more complicated for dimensions ν > 3. While we expect the
two polynomials G1 and G2 to generate a significant part of the syzygies, we
also expect there to be other generators, as well as cancellations to keep track of.
Due to the complexity of fully characterizing the higher degree parts of S(F), we
instead found an expression for its dimension at degrees ν = 4, 5 experimentally.
The experimental setup is further described at the end of this subsection. Note
that the formulas we present in this subsection will be a multiple of d. This
strongly suggests that all the syzygies of the system come from its extension field
structure. These relations could then, in principle, be written out analytically
as was the case for ν = 3. In particular, this makes it reasonable to expect the
formulas to continue to hold for larger values of d (i.e., beyond our experimental
capabilities).

In the subsequent formulas we introduce the following notation, which will
be useful to us later. Whenever counting the syzygies that can be generated from
syzygies of lower degree, we will multiply by n (the number of variables in an
associated multivariate system), as opposed to d. For instance, let (gi,1 . . . , gi,d),
1 ≤ i ≤ d denote the dmultivariate syzygies associated with G1. Then xj(gi,1 . . . , gi,d),
1 ≤ j ≤ n are syzygies at ν = 4, and we will count all of these as5 nd. For the
Dob encryption scheme we of course have n = d, so this distinction may seem
unnecessary at the moment, but later, in section 5, we will also consider the case
n < d as an attacker may fix certain variables.

For ν = 4, we find the following expression:

dim4(S(F)) = (2n− 1)d, (18)

where we note that the term 2nd has been generated by G1 and G2, as described
above.
5 Not all of these will be linearly independent in S(F). For example, the d syzygies

associated with (X2m +X2)G1 will correspond to syzygies in T (Fh). This does not
really matter, as the expressions eq. (18) and eq. (19) corrects for this.
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For ν = 5, we have

dim5(S(F)) =

(
2

(
n

2

)
− n− 2d− 20

)
d. (19)

Once more, some of these terms can be understood from the syzygies of lower
degrees. The contribution from the polynomials G1 and G2 from ν = 3 will now
be the 2

(
n
2

)
d term. The term ‘−d’ from ν = 4 will now cause the ‘−nd’ term.

Experimental Setup. The experiments used to test eq. (18) and eq. (19) have
been done as follows. The public polynomials of nude Dob are first generated,
and we consider their upper homogeneous part, Fh, over B(d). Dimν(S(F)) is
computed as the dimension of the kernel of the homogeneous Macaulay matrix
Mν(Fh), minus dimν(T (Fh)). For ν = 4, 5 we tested all odd d, 25 ≤ d ≤ 41, all
matching the values predicted by eq. (18) and eq. (19).

4.3 Degree Fall Polynomials of the (modified) Dob Scheme

We now have all the tools needed to write out explicit formulas for (variants of)

the estimates N
(α,β)
ν , ν ≤ 5, for the Dob scheme. The approach for the formulas

is as follows. Equation (11) is used as a foundation, and dimν(S(F)) is given
according to section 4.2. For the dimension of the modifiers, and PM(α,β)M(2,1) , we
will combine the results discussed in section 3.2 and section 3.3. In particular,
we will assume that the chosen modifying polynomials {v1, . . . , vk, q1, . . . , qt}
form a (ν + 1)–semi–regular system. The dimensions that are not covered by
combining the results discussed so far, will be commented on separately. For the
convenience of the reader, the non–trivial dimensions have been marked with an
overbrace in the equations. The exceptions are eq. (24) and eq. (25), which are
covered in greater depth in appendix B. Recall also our convention that

(
a
b

)
= 0,

if b > a, and
(
a
0

)
= 1.

ν = 3. At this degree we only consider N (0,0).

N
(0,0)
3 =

dim3(S(F))︷︸︸︷
2d −

dim3(V
2)︷ ︸︸ ︷(

(n− k)

(
k

2

)
+

(
k

3

))
−

dim3(Q
1)︷︸︸︷

nt .
(20)

ν = 4.

N
(0,0)
4 =

dim4(S(F))︷ ︸︸ ︷
(2n− 1)d+

dim4(PM(2,1) )︷ ︸︸ ︷
d

(
t+

(
k

2

))
−

dim4(Q
1)︷ ︸︸ ︷(

t

(
n

2

)
−

(
t

2

)
− t
)

−

dim4(V
2)︷ ︸︸ ︷((

k

2

)(
n− k

2

)
+

(
k

3

)
(n− k) +

(
k

4

))
+

dim4(Q
1∩V 2)︷ ︸︸ ︷

t

(
k

2

)
.

(21)
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At ν = 4, we also consider the estimate N
(1,0)
4 , i.e., multiplying everything

with the k linear forms from the ip–modifier. In particular, this means that
(S(F)M(1,0))4 is spanned by the combinations vhj (gi,1 . . . , gi,d), 1 ≤ j ≤ k and
1 ≤ i ≤ 2d, where we recall that (gi,1 . . . , gi,d) denote the 2dmultivariate syzygies
associated with G1 and G2 (eq. (16))

N
(1,0)
4 =

dim4(S(F)
M(1,0))︷︸︸︷

2kd −

dim4(V
3)︷ ︸︸ ︷((

k

3

)
(n− k) +

(
k

4

))

−

dim4(Q
1V 1)︷ ︸︸ ︷

t

(
k(n− k) +

(
k

2

))
.

(22)

ν = 5. At degree 5, S(F)M(2,1) (in eq. (14)) is no longer trivial. Indeed, it will
now consist of the possible combinations vhj1v

h
j2

(gi,1 . . . , gi,d) and qhj (gi,1 . . . , gi,d).

N
(0,0)
5 =

dim5(S(F))︷ ︸︸ ︷(
2

(
n

2

)
− n− 2d− 20

)
d−

dim5(Q
1)︷ ︸︸ ︷(

t

(
n

3

)
− n

(
t

2

)
− tn

)

−

dim5(V
2)︷ ︸︸ ︷((

k

2

)(
n− k

3

)
+

(
k

3

)(
n− k

2

)
+

(
k

4

)
(n− k) +

(
k

5

))

+

dim5(Q
1∩V 2)︷ ︸︸ ︷

t

((
k

2

)
(n− k) +

(
k

3

))

+

dim5(P
M(2,1))︷ ︸︸ ︷

ntd+ d

((
k

2

)
(n− k) +

(
k

3

))
− 2dt− 2d

(
k

2

)
.

(23)

As mentioned above, it is a bit more involved to derive N
(1,1)
5 and N

(2,1)
5 ,

and we will refer to appendix B for more details. It would also appear that
our assumptions are slightly off for these two estimates, as our experiments
consistently yield 4d more degree fall polynomials than we are able to predict
(see remark 3 for more details). We present the experimentally adjusted versions
in Equations (24) and (25):

N
(1,1)
5 = d

(
k(2n− k − 2) + t(2 + k) +

(
k

3

)
+ 4

)
−

(
t

2

)
n−

(
k

3

)(
n− k

2

)

−

(
k

5

)
−

(
k

4

)
(n− k)− t

(
k

(
n− k

2

)
+

(
k

2

)
(n− k)− kt

)
.

(24)
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N
(2,1)
5 = 2d

((
k

2

)
+ t+ 2

)
−
((

k

4

)
(n− k) +

(
k

5

))

− t
((

k

2

)
(n− k) +

(
k

3

))
−

(
t

2

)
n.

(25)

5 Experimental Results on Degree Fall Polynomials

In the previous section we developed the theory on how to estimate the number
of first fall polynomials, ending up with several formulas. This section is focused
on the accuracy of these formulas, and how they can be used by an attacker. Note
that since we are interested in the unique structure of the Dob encryption scheme,
we will always assume that ‘generic’ degree fall polynomials do not interfere.
More specifically, when inspecting a system of d polynomials in n variables at
degree ν, we assume that d and n is chosen such that Dreg(d, n) > ν.

5.1 Fixing Variables

The formulas separate d, the size of the field extension, and n, the number of
variables. While the Dob encryption scheme uses d = n, an attacker can easily
create an overdetermined system with n < d by fixing some variables. This
approach, known as the hybrid method, can be viewed as a trade–off between
exhaustive search and Gröbner basis techniques, and its benefits are well–known
for semi–regular sequences [3]. From eqs. (20) to (25), we find that for the relevant
choices of parameters (d, t, k), a greater difference between n and d can increase
the number of degree fall polynomials. This means that a hybrid method will
have a more intricate effect on a Dob system, than what we would expect from
random systems. To a certain extent, an attacker can “tune” the number of
degree fall polynomials, by choosing the amount of variables to fix. Of course,
if the intent is to find a solution of the polynomial system through a Gröbner
basis, this comes at the added cost of solving the system 2r times, where r is
the number of fixed variables, but in section 6 we will present a different attack
that circumvents this exponential factor.

Finally, one could ask whether it is reasonable to expect eqs. (20) to (25)
to be accurate after fixing a certain number of variables. It is, for instance,
possible that different degree fall polynomials will cancel out, as certain variables
are fixed. However, if past experience with the hybrid method is any indicator,
such cancellations are very rare, and we see no reason that the extension field
structure increases the probability for such cancellations to happen. As we will
see in section 5.3 this is supported by the experiments we have run; the formulas
remain precise, even as n is varied.
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5.2 Using the Degree Fall Formulas

We briefly recall how the formulas found in section 4.3 relate to the public poly-
nomials of a Dob encryption scheme. Let P be the polynomial system associated
with a Dob scheme of fixed parameters (d, n, t, k) (where n is as described in
section 5.1). We expect the non–trivial dimension (i.e., the dimension of the
part that is not generated by T (F)) of the kernel of Mν(P) to be given by the

maximal of the formulas N
(α,β)
ν , for ν = 3, 4, 5.

If a step–wise algorithm such as F4 is used, we expect the formulas to predict
the number of degree falls polynomials, but only at the first fall degree. Suppose,
for instance, that N3 = 0, but N4 > 0. Then this algorithm runs a second step
at degree 4, using the newly found degree fall polynomials. This means that
there are effectively more available polynomials in the system when (if) a step
of degree 5 is performed, and in this case we do not expect the formulas we have
for N5 to be accurate.

Note in particular that if all the formulas we have are non–positive, an at-
tacker is likely required to go up to step degree ≥ 6 in order to observe first fall
polynomials.

5.3 Experimental Results

We have run a number of experiments with the Dob system of varying parameters
(d, n, t, k). A subset of them is presented in table 2, and the rest can be found
in appendix G. Gröbner bases of the systems were found using the F4 algorithm
implemented in the computational algebra system Magma. The script used for
the experiments is available at [19].

In table 2 (and appendix G) we use the following notation. ‘Dff ’ is the ex-
perimentally found first fall degree. ‘N (predicted)’ is the number of first fall
polynomials as predicted by the equations in section 4.3. ‘N (Magma)’ is the
number of first fall polynomials read from the verbose output of Magma, writ-
ten as ‘degree : {# degree fall polynomials at this degree}’. The solving degree
Dsolv was found experimentally by Magma. This has been measured as the degree
where the most time consuming step of the algorithm took place. In the instances
where the algorithm did not run to completion due to memory constraints, we
give Dsolv as ≥ X, where X is the degree of the step where termination occurred.
The degree of regularity for semi–regular systems of the same size, Dreg(d, n),
is also given. ‘Step Degrees’ lists the degrees of the steps that are being per-
formed by F4 up until linear relations are found. Once a sufficient number of
linear relations are found, Magma restarts F4 with the original system, as well as
these linear relations. This restart typically needs a few rounds before the entire
basis is found, but its impact on the running time of the algorithm is negligible,
which is why we have chosen to exclude it when listing the step degrees. For
convenience, the step where first fall polynomials are found is marked in blue
and the solving step marked in red. Purple is used to mark the steps where these
two coincide.
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Table 2: Degree fall polynomials for Dob encryption schemes of
various parameters.
d n t k Dff N N Dsolv Step

(+) (ip) (predicted) (Magma) (Dreg(d, n)) Degrees

53 53 0 0 3 N
(0,0)
3 : 106 2:106 3 (9) 2,3,3

53 53 0 3 4 N
(0,0)
4 : 1999 3:1999 4 (9) 2,3,4,4

53 53 3 0 4 N
(0,0)
4 : 1596 3:1596 4 (9) 2,3,4,4

59 29 0 7 4 N
(1,0)
4 : 21 3:21 5 (5) 2,3,4,4,5

37 25 2 3 4 N
(0,0)
4 : 692 3:692 4 (5) 2,3,4,4

31 29 0 8 5 N
(1,1)
5 : 478 4:478 5 (6) 2,3,4,5,5,5

31 30 0 8 5 N
(2,1)
5 : 264 4:264 5 (6) 2,3,4,5,5,5,4

39 37 1 7 5 N
(2,1)
5 : 136 4:136 ≥ 6 (7) 2,3,4,5,5,5,6...

57 38 4 6 5 N
(1,1)
5 : 2086 4:2086 ≥ 6 (6) 2,3,4,5,5,6. . .

57 37 4 6 5 N
(1,1)
5 : 2847 4:2847 5 (6) 2,3,4,5,5

129 50 6 6 5 N
(0,0)
5 : 64024 4:64024 ≥ 5 (6) 2,3,4,5,5...

A first observation is that in all experiments we find that ‘N (predicted)’
matches ‘N (Magma)’. We also find that fixing variables affects the cross–over

point between the formulas N
(α,β)
ν , as for instance seen in the rows 6 and 7. We

note that N
(0,0)
ν tend to be dominant when n << d, and that N

(2,1)
5 only seems

to have an impact when k is large and t is small.

For the majority of cases we observe that Dff = Dsolv or Dsolv + 1, but
one should be careful in drawing any conclusions from this, seeing that our
experiments are in practice limited to computations of D < 6. The relation
between n and Dsolv is also noteworthy. For instance, in row 9 we have d = 57
and n = 38; Dff is 5, but Dsolv ≥ 6. In row 10 we fix one more variable, n = 37
(while keeping everything else as before), and find Dsolv = 5.

Impact on Known Attacks. The solving degree of big field schemes are often
estimated using the first fall degree. In cases where Dsolv > Dff , we observed
instances where it is beneficial for an attacker to fix (a few) variables in order to
lower the Dsolv for each guess. Without a better understanding of Dsolv and how
it is affected by fixing variables, it seems that the approximation Dff ≈ Dsolv

is conservative, yet reasonable, when estimating the complexity of direct/hybrid
attacks against Dob system.

Another attack that may greatly benefit from the detailed formulas for degree
fall polynomials obtained in section 3, is an adapted version of the distinguishing
attack that was proposed for HFEv- (Section 5 in [11]). An attacker fixes random
linear forms, and distinguishes between the cases where (some of) the fixed linear
forms are in the span of (v1, . . . , vk), and when none of them are, by the use of
Gröbner basis techniques. Indeed, if one of the fixed linear forms are in this span,
the number of degree fall polynomials will be the same as for a system with k−1
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ip linear forms. Hence, a distinguisher based on the formulas presented here will
work even without a drop in first fall degree, making the attack more versatile.

The deeper understanding for how the modifiers work allows for an even more
efficient attack on the Dob scheme, which we now present.

6 A New Attack on the Dob Encryption Scheme

In the previous two sections we have studied how degree fall polynomials can
occur in the Dob scheme, and have verified the accuracy of our resulting for-
mulas through experiments. In this section we will show how all these insights
can be combined to a novel attack. In section 6.1, we shall see that adding an
extra polynomial to the system can leak information about the modification
polynomials. We will see how this information can be used to retrieve (linear
combinations of) the secret ip linear forms, and the homogeneous quadratic part
of the Q+ modification, in sections 6.2 and 6.3. We investigate how Gröbner
basis algorithms perform with this extra information in section 6.4, and finally
discuss the complexity of the entire attack in section 6.5.

6.1 Adding an Extra Polynomial

In section 3.1 we discussed how products of the modifiers and public polynomials
affect the number of degree fall polynomials, through PM(2,1) . One would also
expect a similar effect to take place when adding a random polynomial to the
system.

Consider a set of parameters for the Dob scheme, where the number of first

fall polynomials is determined by N
(0,0)
ν , for some ν > 3. Let P be the public

key of this scheme, and consider a randomly chosen homogeneous polynomial pR
of degree ν − 2. As it is unlikely that the randomly chosen pR has any distinct
interference with P, we expect (〈pR〉 ∩M (2,1))ν to be generated by the possible
combinations pRq

h
i , and pR(vjvl)

h. Furthermore, since the generators of S(F)

have degree at least 3, we do not expect any collision between ψP
h

(S(F)) and
〈pR〉 at degree ν (cf. section 3.3). From these considerations, we estimate the
number of degree fall polynomials for the system {P, pR} at degree ν to be:

Nν({P, pR}) = N (0,0)
ν (P) + t+

(
k

2

)
. (26)

We ran a few experiments that confirm this intuition, the details are given in
table 3. First, we confirmed that the degree fall polynomials of P were indeed

given byN
(0,0)
ν (P), before applying Magma’s implementation of the F4 algorithm

on the system {P, pR}. Recall also our convention that
(
0
2

)
= 0 when applying

eq. (26).
With all this in mind, assume for the moment that d = n, and consider

a homogeneous Macaulay matrix of {Ph, pR} at degree ν, Mν({Ph, pR}). Any
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Table 3: First fall polynomials of Dob encryption
schemes with an added, randomly chosen poly-
nomial pR.
d n deg(pR) t k Dff N N

(Q+) (ip) (predicted) (Magma)

31 29 2 2 2 4 N4 : 705 3:705

45 30 2 6 0 4 N4 : 342 3:342

75 39 3 6 6 5 N5 : 4695 4:4695

39 37 3 6 0 5 N5 : 9036 4:9036

element in the (left) kernel of this matrix can in general be written as:

hRpR +

d∑
i=1

hip
h
i = 0, (27)

for some homogeneous quadratic polynomials hi ∈ B(d)ν−2, 1 ≤ i ≤ d, and hR ∈
B(d)2. From the discussion above, we expect that the only way pR contributes
to these kernel elements is through the trivial syzygies, multiplications with phi
or pR, and through multiplying with the generators of M (2,1). It follows that
any polynomial hR, from eq. (27), will be in the span of6

H := {ph1 , . . . , phd , pR, qh1 , . . . , qht , (v1v2)h, . . . , (vk−1vk)h}. (28)

Hence, given enough kernel elements of Mν({Ph, pR}), a set of generators of
Span(H) can be found. In the next subsection we will generalise this observation
to the case where a number of variables are fixed, i.e. n < d.

6.2 Gluing Polynomials

Let Wη denote a non-empty subset of r variables, i.e. Wη = {xη1 , . . . , xηr} for
integers 1 ≤ η1 < . . . < ηr ≤ d. For n = d − r, there is a natural projection
map associated to Wη, πWη : B(d)→ B(d)/Wη ' B(n), that fixes the variables
in Wη to 0. For any polynomial system R over B(d), we will also write πWη (R)
to mean the system consisting of all polynomials in R under πWη

. Suppose now

that the number of first fall polynomials of a Dob system P is given by N
(0,0)
ν ,

after fixing r variables to 0, i.e., n = d − r. Let Wη be the set of variables we
fix. Following a similar line of reasoning as in section 6.1, we find that πWη

(hR)
from a kernel element of the Macaulay matrix associated with πWη

({Ph, pR})
will no longer be in the span of H, but rather lie in the span of πWη (H). To ease
notation, we will write Hη = πWη (H). A natural question is whether we can

6 If pR has degree ≥ 3, then the syzygy p2R + pR = 0 will be of degree > ν. In this
case pR will not be among the generators of H. We shall see later, in Remark (2),
that the effect of pR can also be removed in the degree 2 case, but at an added cost
to the run time.
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recover H, by using different variable sets W1, . . . ,Wρ, and finding generators
for the associated polynomial setsH1, . . . ,Hρ. We answer this question positively
in this subsection.

Let W̃η := {x1, . . . , xd}\Wη denote the complement of Wη, and note that Hη
only contains information about the set of monomials A(Wη) := {xixj | xi, xj ∈
W̃η}. In order to guarantee that the family H1, . . . ,Hρ can give complete infor-
mation about H we need to ensure that for any choice of 1 ≤ i < j ≤ d, we have
xi, xj ∈ W̃η for at least one 1 ≤ η ≤ ρ. In other words, the sets W̃1, . . . , W̃ρ must
cover all possible quadratic monomials.

In practice, both d and the size r of the variable sets will be determined by
the chosen Dob parameters7. This naturally leads to the following problem:

Definition 3 (The (Quadratic) (r,d)–Covering Problem). For integers
1 < r < d − 1, find the smallest number ρ of variable sets, each of size r, such
that

A(W1) ∪ . . . ∪A(Wρ) = {xixj | 1 ≤ i < j ≤ d}.

In Appendix E we present a constructive solution to this problem, which provides
a good upper bound for ρ that is sufficient for our use case. The upper bound is
given by the following lemma

Lemma 6. The (Quadratic) (r,d)–Covering Problem is upper bounded by

ρ ≤
(⌈ d
b(d−r)/2c

⌉
2

)
.

We illustrate the strategy for recovering H in the simple case when d = 3r. In
this particular case, the method above yields ρ = 3, where W1, W2 and W3 are
pairwise, disjoint variable sets. We may write the following matrix:

W1 ∗W1 W1 ∗W2 W1 ∗W3 W2 ∗W2 W2 ∗W3 W3 ∗W3


H1 0 0 0 ∗ ∗ ∗

H2 ∗ 0 ∗ 0 0 ∗

H3 ∗ ∗ 0 ∗ 0 0

Here Wi ∗ Wj , i, j ∈ {1, 2, 3}, is understood as a list of the monomials xaxb
where xa ∈Wi and xb ∈Wj (under any fixed ordering and a 6= b), and we write
Hl to mean the rows associated with a fixed set of generators for Hl. A 0 in
the matrix means that the respective submatrix is the zero matrix, whereas ∗
denotes that the submatrix may take non-zero values. By construction, if the
submatrix whose rows are Hl, and columns are Wi ∗Wj , is denoted by ∗, then
it forms a set of generators for H restricted to the monomials in Wi ∗Wj . In

7 We will see later that the gluing also requires some overlap between the variable
sets, but this is not a problem for the parameters we are interested in.
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particular, the submatrix with columns W3 ∗W3 and rows H1 spans the same
row-space as the submatrix with columns W3 ∗W3 and rows H2. We will use
this observation to construct a new matrix, denoted H1 ∩W3 H2, that combine
the useful information from H1 and H2 in the following procedure.

1. Since {ph1 , . . . , phd , pR} are known, we start by finding t+
(
k
2

)
vectors in the row

space of H2 that are linearly independent of πW2({ph1 , . . . , phd , pR}). Denote
the set of these vectors Y2.

2. If |W3 ∗W3| >> d+ t+
(
k
2

)
+ 1, then for each vector yi ∈ Y2, we can expect

a unique vector zi in the row space of H1, such that yi + zi is 0 along the
columns associated with W3 ∗W3. Find such an zi for each yi ∈ Y2 through
Gaussian elimination.

3. We now have t+
(
k
2

)
pairs (yi, zi) that are used to define the (t+

(
k
2

)
)×
(
d
2

)
matrix (H1 ∩W3

H2) over F2 in the following manner. For each row index i0
and column index j0, we define the entry at [i0, j0] to be

(H1 ∩W3 H2)[i0, j0] =

{
yi0 [j0], if j0 is associated with a monomial in W3 ∗W3

yi0 [j0] + zi0 [j0], otherwise.

The above procedure uses the common information found in the columns of
W3 ∗W3 to combine vectors from H1 and H2. We may think of this as “gluing”
polynomials along W3 ∗W3, hence the name of the technique. Now consider the
following matrix.

W1 ∗W1 W1 ∗W2 W1 ∗W3 W2 ∗W2 W2 ∗W3 W3 ∗W3[ ](H1 ∩W3
H2) ∗ 0 ∗ ∗ ∗ ∗

H3 ∗ ∗ 0 ∗ 0 0

Note in particular that the polynomials associated with (H1 ∩W3
H2) forms

a set of generators for π
W1∗W2

(H). In order to recover the information of the
monomials in W1 ∗ W2, we need only glue the vectors of (H1 ∩W3 H2), with
combinations from the row space of H3, using the same procedure as described
above. Since both (H1 ∩W3

H2) and H3 may take non–zero values at W1 ∗W1

and W2 ∗ W2, we expect the gluing to result in t +
(
k
2

)
unique polynomials

if |(W1 ∗ W1) ∪ (W2 ∗ W2)| >> d + t +
(
k
2

)
+ 1. By construction, all of the

resulting t+
(
k
2

)
polynomials associated with (H1 ∩W3

H2)∩W1
H3 will be in the

span of 〈ph1 , . . . , phd , pR, qh1 , . . . , qht , . . . (vivj)h . . .〉, but none of them in the span
of 〈ph1 , . . . , phd , pR〉. Hence we define G to be the set consisting of the polynomials
{ph1 , . . . , phd , pR}, as well as the polynomials associated with (H1∩W3H2)∩W1H3,
and note that G is, by construction, a system of polynomials that are linearly
equivalent to H.

As a proof of concept, we implemented retrieving G from a toy example of
the Dob scheme, with d = 45, t = 6 and k = 0, using the method described
above. The interested reader can find more details in appendix C, example 3.
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The General Case In the case of a general family of variable sets W1, . . . ,Wρ,
we will not be able to set up the straightforward matrices that was shown above.
The gluing process can still be done in a similar, iterative manner. For instance,
the submatrix associated with Hη will have 0 for each monomial xixj where xi
or xj ∈ Wη, and ∗ otherwise. As above, we expect to be able to glue Hη with

Hψ if the number of their common ∗–monomials exceeds d+ t+
(
k
2

)
+ 1.

6.3 Retrieving the Linear Forms from ip

Suppose now that a set of generators G for Span(H) has been found, as described
in section 6.2. The goal is to recover k linear forms that are generators for
〈v1, . . . , vk〉. In order to simplify our arguments we will assume k ≥ 5. The cases
2 ≤ k ≤ 4 will be discussed in Remark 1.

Consider the kernel of the homogeneous Macaulay matrix M3(G). From
the definition of H (eq. (28)), we find that Span(H) contains all the homoge-
neous nude Dob–polynomials fh1 , . . . , f

h
d , as well as all the combinations (vivj)

h,
1 ≤ i < j ≤ k. Each polynomial (vivj)

h generates the two kernel elements
vi(vivj)

h and vj(vivj)
h (which are trivial when working over B(d)). The nude

Dob–polynomials will generate the 2d kernel elements associated with the degree
fall polynomials discussed in section 4.2. We would like to separate these two
types of kernel elements. To this end, we suggest constructing a smaller system,
G′, by removing three polynomials from G, that are in the span of {ph1 , . . . , phd}.
Indeed, the idea is that this will work as a self–imposed minus modifier, which
will remove the effect of the Dob–polynomials of G at degree 3.

On the other hand, some kernel elements generated by combinations of the
(vivj)

h–elements can still be observed for G′ at degree 3. More specifically, sup-
pose G′ was created from G by removing ph1 , p

h
2 and ph3 . Then Span(G′) may not

necessarily contain (v1vj)
h itself, for any 2 ≤ j ≤ k, but it will contain the

combination (v1vj)
h + b1,jp

h
1 + b2,jp

h
2 + b3,jp

h
3 , for some b1,j , b2,j , b3,j ∈ F2. By

considering these equations for all j, and eliminating ph1 , p
h
2 and ph3 , we find that

Span(G′) will contain a polynomial z1 =
∑k
j=2 aj(v1vj)

h, where a2, . . . , ak ∈ F2

are not all 0, using the assumption that k ≥ 5. The polynomial v1z1 will subse-
quently be reduced to 0 over B(d). Similarly, we are guaranteed to find polyno-
mials z2, . . . , zk. We assume that these are the only contributors to the kernel.
In particular, this means that each kernel element of M3(G′) can be written as∑
ligi = 0, with gi ∈ G′, and each li a linear form in Span({v1, . . . , vk}). It

follows that an attacker can retrieve a basis v∗1 , . . . , v
∗
k of 〈v1, . . . , vk〉, by deter-

mining k linearly independent li’s from these kernel elements.

Remark 1. In the text above, we suggest removing a = 3 polynomials from G,
and assumed k ≥ 5. We note that removing a = 2 polynomials is the smallest
number needed for the prediction8 2d − ad to be non–positive, but this setting

8 This formula follows a similar line of reasoning as in section 4.3, but with the minus
modifier instead of Q+. Cf. also [22] for a study on how the minus modifier affects
degree fall polynomials for a somewhat related scheme.
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could lead to some complications if the prediction turns out to be slightly off.
Hence, a ≥ 3 seems to be reasonable in order to exclude any interference from
the Dob–structure at degree 3. Subsequently, we assume k ≥ a + 2 in order to
guarantee the existence of the polynomials zi.

When k = 4, an attacker might choose a = 2, as described above. Some
experiments also seem to suggest that we can still find enough generators for
〈v1, v2, v3, v4〉, even when choosing a = 3 (even though our arguments does not
hold in this case). Hence we do not expect k = 4 to pose any real challenge for an
attacker. Lastly, if k = 2, 3, then

(
k
2

)
is so small that an attacker can skip this step

of the attack altogether and simply guess the values for the vivj–combinations
directly in the step described in the next section.

The retrieval of G and v∗1 , . . . , v
∗
k, as described in this subsection, has been im-

plemented and verified on the toy example with parameters d = 63, t = 1 and
k = 4. This is further described in example 4, in appendix C.

6.4 Solving the Extended Dob System

Assume now that an attacker has followed the steps described in the previ-
ous subsections, and has recovered a system G (section 6.2), as well as a basis
{v∗1 , . . . , v∗k} that generates 〈v1, . . . , vk〉 (section 6.3). Now fix a set of generators
q∗1 , . . . , q

∗
k for the polynomials that are in Span(G), but not in

Span({ph1 , . . . , phd , pR, (v∗i v∗j )h | 1 ≤ i < j ≤ k }).

With all this information, we consider the associated extended Dob system, PE ,
defined by:

PE := {p1, . . . , pd, pR, q∗1 , . . . , q∗t , v∗1 , . . . , v∗k}. (29)

For any given ciphertext, an attacker with access to an extended Dob system can
guess constant values for the polynomials pR, q

∗
1 , . . . , q

∗
t , v
∗
1 , . . . , v

∗
k, and check the

guess by finding a Gröbner basis for PE .

Remark 2. It might be in the interest of an attacker to find a system PE that does
not depend on the random element pR. If this is the case, one can choose a second
random element p′R, and construct a second system
P ′E = {p1, . . . , pd, p′R, q′∗1 , . . . , q′∗t , v′∗1 , . . . , v′∗k }. A third system, P ′′E =
{p1, . . . , pd, q′′∗1 , . . . , q′′∗t , v′′∗1 , . . . , v′′∗k }, independent of the random elements pR
and p′R, can now be found by determining generators for Span(PE)∩Span(P ′E).
Solving the latter system P ′′E could be easier, as one does not have to guess values
for the random element. As a result, this could be a beneficial trade–off if the
attack is not dominated by finding extended Dob systems. By abuse of notation,
we will also call this latter system P ′′E an extended Dob system, as long as we
are careful about the factor 2 in the complexity estimates.

In order to get a better understanding of solving extended Dob systems, we
introduce the following modification for multivariate schemes.
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Definition 4. For a polynomial system P ′, we define the modification L+ by
choosing l0 linear forms, and appending linear combinations of them to each
polynomial in P ′.

Consider an extended Dob system, PE , where all coefficients have been guessed
correctly. Since q∗i does not contain any information about the linear part of the
qi–polynomials, it follows that Span(PE) will contain a Dob system that is only
modified with the L+–modification, where l0 = t. Moreover, this Dob system has
d equations and d − k variables9. The problem of estimating the complexity of
finding a solution to PE , can then be reduced to that of estimating the complexity
of finding a Gröbner basis for Dob with the L+–modification. While a thorough
analysis of this L+–modification is beyond the scope of this work, we point out
a couple of immediate properties.

Firstly, seeing that the first fall degree only depends on the upper homoge-
neous part of a polynomial system, it is unaffected by the L+–modification. In
particular, we expect 2d degree fall polynomials at degree 3, as in the case for
nude Dob (section 4.2). Secondly, if running an algorithm such as F4, a second
batch of degree fall polynomials will emerge at the first step of degree 4. To see
this, note that Dob with the L+–modification can be written over the quotient

ring F2d [X]/〈X2d +X〉 as

FL+
(X) = X(X2m +X2) + L(X) + CE , (30)

where CE is a constant in F2d , and L(X) =
∑m
i=1 ciX

2i , with ci ∈ F2d , is a
polynomial of binary weight one. XFL+

is one of the combinations that induce
degree fall polynomials at degree 3, and X4XFL+

will correspond to cubic10

(multivariate) polynomials found at the second step of degree 3. Upon running
a subsequent step at degree 4, the polynomial L(X)X4XFL+ will correspond
to d multivariate cubic polynomials, and would hence be counted as degree fall
polynomials.

We ran a few experiments for extended Dob systems, PE , the results of which
can be found in appendix F.

6.5 Complexity of the Attack

The attack proposed in this section has two main parts. The first step is to
construct an extended Dob system, PE . In the second step, an attacker solves
this system for a particular ciphertext. Suppose an attacker fixes d−n variables
in order to find ρ polynomial systems H1, . . . ,Hρ from the kernel elements of
Macualay matrices of degree D0 ≥ 3. The gluing operations, determining the
linear forms v∗1 , . . . , v

∗
k, and the quadratic forms q∗1 , . . . , q

∗
t only involve Macaulay

9 Here we implicitly assume that k variables have been eliminated by the linear forms
v∗i .

10 For nude Dob, the polynomial X5F can be used to create linear polynomials
(eq. (34)). The crucial difference is that in this case, the linear term X can be
cancelled out at degree 3, whereas this is not possible for a general L(X).
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matrices of degree at most three. Hence, we expect the first step to be dominated
by recovering generators for the polynomial systemsHi. While the optimal choice
of attack parameters may depend on the parameters of the Dob encryption
scheme, as a rule of thumb it seems best to first minimize D0, then n, and lastly ρ.
In practice, minimizing n involves choosing the smallest n such that Dreg(d, n) >
D0, for a fixed d. Kernel elements of the resulting sparse, homogeneous Macaulay
matrix can be found using a variant of the Wiedemann algorithm [30] (see also
[6] for an implementation of a version adapted to the XL algorithm). Section VI
of [30] shows that one kernel vector can be retrieved after three iterations with
probability > 0.7, and as a simplification we estimate the complexity of finding
a sufficient number of kernel elements in each of the ρ Macaulay matrices as
3
0.7

(
t+

(
k
2

)) (
n
D0

)2(n
2

)
. Recall from remark 2 that the first step is performed

twice if the attacker wishes to remove the effect of pR from PE ; let δ = 1 denote
if this is the case, and δ = 0 otherwise. It follows that the total attack complexity
can be estimated as

CAttack = max

{
2δρ

3

0.7

(
t+

(
k

2

))(
n

D0

)2(
n

2

)
, CPE ,δ

∣∣∣∣ δ ∈ {0, 1}}, (31)

where CPE ,δ denotes the complexity of finding a solution for PE (with or without
pR, depending on δ). While we do not have a general estimate for the complexity
this second step, we discuss how to estimate it in the case of the 80–bit secure
parameter set proposed in Section 2.4 of [20], in the following.

Security of the Suggested Parameters. Let d = 129, and t = k = 6 for
the Dob encryption scheme. Using equations (3) and (21) we find that it is not

possible to choose an n such that N
(0,0)
4 is positive, and Dreg(129, n) > 4. For

degree 5, we find that n = 50 is the smallest number such that N
(0,0)
5 is positive,

and Dreg(129, 50) > 5. Indeed, for this choice of parameters, we get:

N
(0,0)
5 (129, 50, 6, 6) = 64024,

which is exactly the number of degree fall polynomials observed in the last row of
table 2. For this choice of parameters, ρ is upper bounded by 15, due to lemma 6.
In this case we can do even better, and use ρ = 11, as described in appendix E.
Choosing δ = 1, we find that the first step requires about 263 operations. For
step two, we note from table 4 in appendix F that the extended Dob system
with modifications t = k = 6 has a solving degree of 4 in all the experiments we
can run. Conjecturing that this behaviour extends to d = 129, we estimate the
complexity of step two to be CPE ,1 = 212

(
123
4

)ω
, where the factor 212 is the cost

of finding the correct constants for q∗1 , . . . , q
∗
6 and v∗1 , . . . , v

∗
6 . We have also used

123 = 129− 6 as the number of variables in this system, seeing that 6 variables
are eliminated by the linear forms v∗i .

Using ω = 2.4, step two is estimated at 267. Using Strassen’s algorithm with
ω = 2.8 (a rather pessimistic choice for an attacker as it assumes that it is not
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possible to take advantage of the sparse matrix structure of the systems), the
estimate is 277 for step two. Either option leads to a time complexity below the
proposed 80–bit security.

7 The Security of the Dobbertin Permutation for
Cryptographic Use

A natural question to ask is whether it is possible to find parameters for an
efficient and secure version of the Dob encryption scheme. As our attack can be
split in two phases, one could either try to make either of these infeasible for an
attacker. We have seen that the modifications of the Dob encryption scheme is
not as effective as initially hoped in hiding the degree fall polynomials of nude
Dob. Furthermore, an attacker has a lot of flexibility in fixing variables, and
gluing together polynomials that reveals information about the secret modifica-
tions. Even if secure parameters could be found for degree five, there is always
the question of how the number of degree fall polynomials grows for larger de-
grees, i.e., determining Nν for ν > 5. For these reasons it seems likely that a
significant increase to t, k, and/or d is needed, which would in turn have a large
negative impact on decryption time and/or public key size.

Another idea could be to make solving the extended Dob system (phase two
of the attack) infeasible. We note for instance that if the suggested parameters
(see section 6.5) had instead used t = 12 and k = 0, then the extended system
would not have been susceptible to a straightforward hybrid attack, since the
computations would likely go up to at least degree five for each guess (see table 4
and the surrounding discussion in appendix F). We do, however, stress that
essentially basing the security on the L+ modification (definition 4) seems like a
risky endeavour: an attacker is still able to learn a lot of information about the
structure of the system from its degree fall polynomials. This extra information
could potentially be exploited in a more sophisticated attack.

On the other hand, the analysis presented in this work may not prove much
of a threat to the use of the Dob permutation in signature schemes. The authors
of [20] suggested the minus modification for a Dob signature scheme. While there
is reason to believe that this modification has similar characteristics to the Q+

modification (we note that the behaviour of the Q+ modification is somewhat
reminiscent to what was analysed in [22], though the central maps differ), the
key difference is that signing time does not depend exponentially on the number
of polynomials removed. For instance, in [20] a version of the Dob signature
scheme is suggested using d = 257, and removing 129 polynomials for 128–bit
security. It seems unlikely that our techniques will be successful when such a
large number of modifications are in place, even when degrees > 5 are taken into
account.

Lastly, we note that the analysis presented here has solely been focused on the
Dobbertin permutation, and hence the security of the generalisations discussed
in [20], i.e., the families ‘Pat’, ‘Mac’ and ‘Super Two–Face’, remains an open
question.

28



8 Conclusions

We have presented an analysis of the effectiveness the Q+ and ip modifications
against algebraic attacks. The theory was then applied to the Dob encryption
scheme, along with a novel attack on this construction. Not only does the attack
break the suggested parameter set, its flexibility and effectiveness allows us to
conclude that the Dobbertin permutation seems unsuited for use in encryption
schemes.

There are several directions where the ideas presented here may inspire future
work. Firstly, the modifications are treated as ideals, whose dimensions can be
examined. If different types of modifications, such as minus and vinegar, can
be included in this framework, it could lead to a deeper understanding of the
security of an even larger subclass of big–field schemes. Secondly, the attack
introduces new tools for the cryptanalysis of multivariate schemes. The gluing
technique allows an attacker to collect useful information after fixing a number of
variables. As there is no need for correct guesses, the exponential factor usually
associated with hybrid methods is avoided. Furthermore, the technique does not
rely on heuristic assumptions on the relation between the first fall and solving
degrees.

In light of this, we believe that security analyses of big–field multivariate
schemes ought not only focus on the first fall degree directly, but also how this
degree changes when fixing variables. Cryptographers wishing to design encryp-
tion schemes by adding limited modification to an otherwise weak polynomial
system should be particularly aware of the effect presented in this work.
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A Trivial Syzygies under ψPh

The image ψP
h

(T (Fh)), where T (Fh) denotes the trivial syzygies, warrants
some extra attention. Write phi = fhi +

∑
j ai,jmj , where mj denote the modifiers

qhi and (vivl)
h. Then the image of a Koszul syzygy is

ψP
h

((0, . . . , 0, fhi0 , 0 . . . , 0, f
h
j0 , 0 . . . , 0) = fhi0

(∑
j

aj0,jmj

)
+ fhj0

(∑
j

ai0,jmj

)
.

Note that the same polynomial can be written as(∑
j

aj0,jmj

)
phi0 +

(∑
j

ai0,jmj

)
phj0 = fhi0

(∑
j

aj0,jmj

)
+ fhj0

(∑
j

ai0,jmj

)
.

A similar observation can be done for the field syzygies, which ensures that

〈ψPh(T (Fh))〉 ⊆M (2,1)〈Ph〉.

B Deriving Formulas for Degree Fall Polynomials

N
(1,1)
5 : Let us start by examining (S(F)M(1,1))5. The polynomials involving the

quadratic polynomials from Q+, qhi , are easy to classify, as they would only
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appear as products with the 2d degree fall polynomials at ν = 3 (from eq. (16)).
The elements containing the ip linear forms are slightly more involved. At first
glance, the ν = 3 syzygies will generate 2d · dim2(V 1), but we also need to take
into consideration the cancellations appearing at ν = 4 (which sums up to the
−d term in eq. (18)). Assuming that none of these cancellations can be factorized
by a linear form in Span(v1, . . . , vk) (which is highly likely when n >> k), we
will need to subtract by −kd to account for these cancellations.

Turning our attention to the modifiers, we can combine (v) and (ii) from
Lemma 2, to get

dim5(M (2,1)M (1,1)) = dim5(M (3,2)) + dim5(V 1Q1)− dim5(M (3,2) ∩ V 1Q1).

Expecting that (Q2 ∩ V 3)5 is empty, and using Lemma 2 (iv), we can further
rewrite this as

dim5(M (2,1)M (1,1)) = dim5(Q2) + dim5(V 3) + dim5(V 1Q1)

− dim5(Q2 ∩ V 1Q1)− dim5(V 3 ∩ V 1Q1).

Example 1 (c) covers dim5(V 1Q1), and we will deal with the intersections through
ad hoc arguments. We expect 〈Q2 ∩ V 1Q1〉5 to be generated by the the pos-
sible combinations qiqjvl, so we estimate its dimension to be k

(
t
2

)
. Similarly,

〈V 3 ∩ V 1Q1〉5 is expected to be generated by the combinations vivjvrql, and its

dimension will be counted by t
(
k
3

)
.

Lastly, we examine PM(1,1)M(2,1) . At degree 5 the only possible combinations
are vivjvrpl, and viqjpl, and we need not have to worry with intersections, as
we did for PM(2,1) . All this information sums up to the following:

(
N

(1,1)
5

)′
=

dim5(S(F)
M(1,1) )︷ ︸︸ ︷

d

(
2k(n− k) + 2

(
k

2

)
+ 2t− k

)
−

dim5(Q
2)︷ ︸︸ ︷(

t

2

)
n

−

dim5(V
3)︷ ︸︸ ︷((

k

3

)(
n− k

2

)
+

(
k

4

)
(n− k) +

(
k

5

))

−

dim5(Q
1V 1)︷ ︸︸ ︷

t

(
k

(
n− k

2

)
+

(
k

2

)
(n− k) +

(
k

3

))
+ k

(
t2 −

(
t

2

))

+

dim5(Q
2∩V 1Q1)︷ ︸︸ ︷(
t

2

)
k +

dim5(V
3∩V 1Q1)︷ ︸︸ ︷(
k

3

)
t +

dim5(PM(1,1)M(2,1) )︷ ︸︸ ︷
d

(
kt+

(
k

3

))
.

(32)

Remark 3. We have run tests for dim5(S(F)M(1,1)), dim5(M (2,1)M (1,1)) and
dim5(PM(1,1)M(2,1)), and separately they agree with what we have counted above.

However, when running tests for (N
(1,1)
5 )′ as a whole, we find that the theoretical
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formula presented in eq. (32) consistently undershoots the number of degree fall
polynomials by 4d. For this reason, we adjust eq. (24) in the main part of the

text by this value, i.e., N
(1,1)
5 =

(
N

(1,1)
5

)′
+ 4d.

N
(2,1)
5 : The degree five part of S(F)M(2,1) will be in the span of the degree fall

polynomials at degree 3 (from G1 and G2 eq. (16)), multiplied with the modifiers
qi and vjvl. An application of Lemma 2 (iv) and (v) leads to

dim5(M (2,1)M (2,1)) = dim5(V 4) + dim5(Q2) + dim5(V 2Q1)

Example 1 (b) is used to compute dim5(V 2Q1), and we furthermore expect no
polynomials of degree five in PM(2,1)M(2,1) . All this sums up to the following
estimate:

(
N

(2,1)
5

)′
=

dim5(S(F)
M(2,1) )︷ ︸︸ ︷

2d

((
k

2

)
+ t

)
−

dim5(V
4)︷ ︸︸ ︷((

k

4

)
(n− k) +

(
k

5

))

−

dim5(Q
1V 2)︷ ︸︸ ︷

t

((
k

2

)
(n− k) +

(
k

3

))
−

dim5(Q
2)︷ ︸︸ ︷(

t

2

)
n .

(33)

Similarly to what was discussed in remark 3, we also find that the theoretically

predicted
(
N

(2,1)
5

)′
is off by 4d in experiments. Hence, we adjust for this in

eq. (25) by setting N
(2,1)
5 =

(
N

(2,1)
5

)′
+ 4d.

C Experimental Examples

In order to test our attack strategy, we implemented and verified the following
two toy examples in Magma. We checked that we do indeed find t +

(
k
2

)
poly-

nomials that are in Span(ph1 , . . . , p
h
d , pR, q

h
1 , . . . , q

h
t , . . . , (vivj)

h, . . .), but not in
Span(ph1 , . . . , p

h
d , pR). For the latter example we also verified that we retrieve k

linear forms in Span(v1, . . . , vk). The implementation is available at [19].

Example 3 The first toy example is that of a Dob encryption scheme where
d = 45, t = 6 and k = 0. Fixing no variables, n = d, we find that the equations
eqs. (20) to (22) are negative, and hence we do not expect this system to have any
degree fall polynomials at degrees ≤ 4. If we instead fix 15 variables, n = 30, we

get N4 = N
(0,0)
4 = 336. If we, in addition, add a randomly chosen homogeneous

quadratic polynomial pR to the system, we get 342 degree fall polynomials at
degree 4 (see eq. (26)).

Following section 6.2, we split the variables into three disjoint sets: W1 =
{x1, . . . , x15}, W2 = {x16, . . . , x30} and W3 = {x31, . . . , x45}. Let P denote the
public polynomials of the scheme, and for i = 1, 2, 3, compute the kernel of
M4(π

Wi
({P, pR})). Let Hi be the system of polynomials that gets multiplied with

pR in creating these kernels, and find a basis for it (which will be of dimension
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d+ t+ 1 = 52). The polynomial sets H1, H2 and H3 are now glued together as
detailed in section 6.2. Note in particular that we do not expect any problems
with the gluing, seeing that |W3 ∗W3| =

(
15
2

)
= 105 > 52.

Example 4 The second toy example had parameters d = 63, t = 1 and k = 4.

Fixing no variables, we find N4 = N
(1,0)
4 = 25. If we fix 21 variables, we find

that N
(0,0)
4 is dominant, i.e., N4 = N

(0,0)
4 = 445. Adding a random quadratic

polynomial yields 452 degree fall polynomials at degree 4 (see eq. (26)).
As in the example above, we divide into three equal sets: W1 = {x1, . . . , x21},

W2 = {x22, . . . , x42} and W3 = {x43, . . . , x63}, and followed the steps described
in Sections 6.2 and 6.3.

D Nude Dob is Fully Broken at Degree 3

In [20] it is stated that experiments indicate that nude Dob has a solving degree
3. We will show that this is indeed the case. In the following, all computations

are over either B(d) or F2d [X]/〈X2d +X〉. Consider F (X) +C = 0, where F is
as defined in eq. (15), and C ∈ F2d a ciphertext we wish to solve for. Tedious
hand calculation shows that

C2
(
(1 +X2)(XF )

)2m
+ (C2 +X4)F 2m+1

+X2m+1

(C2F 2 + F 4)

+C2m+2F 2m + C2m+2XF +
(
(X4 +X2)(XF ) + (X2 +X)CF

)2
}

(I)

=
X16 + (C2m+1

+ C2m+2 + C4 + C2)X4

+(C2 + 1)X8 + (C2m+2 + C4)X2 + C2m+3X.

}
(II)

(34)

The polynomial (II) is linearized and of degree 16. Thus its zeros form subspace
of dimension at most 4. It follows that (II) will correspond to a linear system
l1(x1, . . . , xd) = . . . = ld(x1, . . . , xd) = 0 of rank at least d − 4, from which a
plaintext from an intercepted ciphertext can be easily recovered.

It remains to show that polynomial (I) can be computed from the public
key, using polynomials of degree at most 3. Recall from section 4.2 that XF
correspond to degree fall polynomials down to degree two. Each such polynomial
will correspond to a solution ai,j , γi,j , βi, δ ∈ F2, for the equation

(a1,0 + a1,1x1 + . . .+ a1,dxd)p1 + . . .+ (ad,0 + ad,1x1 + . . .+ ad,dxd)pd+∑
γi,jxixj +

∑
βixi + δ = 0.

As described in section 4.2, we expect this solution space to be of dimension 2d.
Let d1, . . . , d2d be a basis of the degree fall polynomials derived in this step, i.e.,
a basis of the partial polynomials

∑
γi,jxixj +

∑
βixi + δ from this solution

space. Since the only terms in (I) of 2–weight four are generated from (XF ) and
can be substituted by the above degree fall polynomials, we may find solutions
a′i,j , β

′
i, δ
′ ∈ F2 for the following system.

(a′1,0 + a′1,1x1 + . . .+ a′1,dxd)p1 + . . .+ (a′d,0 + a′d,1x1 + . . .+ a′d,dxd)pd+

(a′d+1,1x1 + · · ·+ a′d+1,dxd)d1 + · · ·+ (a′3d,0 + a′3d,1x1 + · · ·+ a′3d,dxd)d2d+

β′1x1 + · · ·+ β′dxd + δ′ = 0.
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In particular, the linear forms from (II) can be written lj =
∑
β′ixi + δ′, where

the β′ and δ′–coefficient will be associated with solutions of this system.
Since all the systems described above only includes polynomials of degree at

most three, finding a plaintext remains practical, even for d = 129. In practice
one can also apply algorithms that can exploit degree fall polynomials, such as
F4. If this is the case, the polynomials associated with XF will be found in the
first step of degree three, and the linear polynomials (II) will be found in the
ensuing step of degree three.

E Proof of Lemma 6

By a slight abuse of notation we will consider W̃η to include integers, by listing
the index of the variables it contains. Recall the (r, d) covering problem, which

can be stated as follows: for given d and r < d−1, find ρ subsets W̃η ⊂ {1, . . . , d}
of size d − r, such that for any pair (i, j) where 1 ≤ i < j ≤ d, {i, j} ⊂ W̃η for
at least one η.

Proof (of Lemma 6). Let s = b(d − r)/2c. We divide {1, . . . , d} into blocks of
size s:

Cb = {(b− 1)s+ 1, . . . , bs}, for 1 ≤ b ≤ bd/sc
.

Let the sets W̃η for 1 ≤ η ≤
(bd/sc

2

)
be defined as the union of Ca and Cb,

for all choices of 1 ≤ a < b ≤ bd/sc. In the case d − r is odd, we also add one

arbitrary extra number to each set to make sure that each W̃η contains exactly
d− r numbers.

Any {i, j} ⊂ {1, . . . , sbd/sc} will then be contained in at least one W̃η. If

both i and j belong to the same block Cb, then all W̃η involving Cb will contain

{i, j}. If i ∈ Ca and j ∈ Cb for a 6= b, then the set W̃η = Ca ∪ Cb will contain

{i, j}. Hence the
(bd/sc

2

)
sets constructed will cover all pairs from {1, . . . , sbd/sc}.

If s divides d we are done. Otherwise, to cover all pairs of numbers in
{1, . . . , d} it is sufficient to create bd/sc new W̃ -sets consisting of
{sbd/sc+ 1, . . . , d} ∪ Cb ∪ {s− (d− sbd/sc) extra numbers},
where 1 ≤ b ≤ bd/sc, and the extra numbers are arbitrary. The total number of

sets will then be
(dd/se

2

)
, and replacing s with b(d− r)/2c we get Lemma 6.

For the particular case d = 129, r = 79 (which is used in Section 6.5) we get
ρ ≤ 15. Doing the exercise in practice we find that ρ = 11 is sufficient to solve
the problem by extending the block C5 to cover all numbers 101, . . . , 129, and
modifying slightly the sets involving C5.

F Experiments with Extended Dob Systems

In table 4 we have run some experiments on the extended Dob System, without
the random polynomial qR (see remark 2). We have chosen to fix k = 6, and
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vary t = 3, 6, 10. As noted in section 6.4, all the systems has 2d degree fall
polynomials at degree 3. Furthermore, additional degree fall polynomials will be
found at the first step of degree 4. This can be observed under “Step Degrees”,
where the initial degrees are 2, 3, 3, 4, 4(. . .). The exceptions are when t = 3,
where a solution is found already at degree 3. Despite the low first fall degree,
the solving degree seems to grow with t.

Table 4: Step and Solving Degrees
for Extended Dob Systems
d t (Q+) k (ip) Dsolv Step Degrees

55 3 6 3 2,3,3,3,3

67 3 6 3 2,3,3,3,3

55 6 6 4 2,3,3,4,4,3,3

61 6 6 4 2,3,3,4,4,3,4

65 6 6 4 2,3,3,4,4,4

67 6 6 4 2,3,3,4,4,4

55 10 6 5 2,3,3,4,4,5

67 10 6 ≥ 5 2,3,3,4,4,5. . .

G Experiments with the Dob Encryption System

There is substantial freedom in the choice of parameters, d, n, t, k, that can
be associated to a Dob encryption system (with some fixed variables). In light
of this, we find that elaborate experimentation is necessary in order to gain
confidence in the degree fall estimates presented in Equations (20) – (25) of
section 4.3. We hope to make a stride towards such confidence by presenting
various experiments in Tables 5 – 8 (in addition to what was presented in Table
2 of section 5). The setup of the tables is as described in section 5.3. An entry
where none of our formulas predict a positive value is marked with a “-” under
“N (predicted)”. We also do need register the experimentally found number
of degree fall polynomials, “N (Magma)”, if the registered first fall degree is
the same as Dreg(d, n). Experiments that ran out of memory has been marked
with an inequality in Dsolv, and “. . .” under “Step Degrees”. The last number
in “Step Degrees” marks the step that ran out of memory. It is worth noting
that in all the experiments we have run, the number of degree fall polynomials
we predict, “N (predicted)”, matches exactly the number of registered first fall
polynomials. Furthermore, in the cases where “N (predicted)” is marked with
“-”, the experimental first fall degree is indeed ≥ 6.
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Table 5: Dob encryption scheme for various parameters,
Dff = 3, 4.
d n t k Dff N N Dsolv Step

(Q+) (ip) (predicted) (Magma) (Dreg(d, n)) Degrees

53 53 0 5 4 N
(1,0)
4 : 45 3:45 5 (9) 2,3,4,4,5,4

49 49 0 0 3 N
(0,0)
3 : 98 2:98 3 (9) 2,3,3

29 29 3 0 4 N
(0,0)
4 : 528 3:528 4 (6) 2,3,4,4

29 29 4 0 4 N
(0,0)
4 : 155 3:155 4 (6) 2,3,4,4,4

33 32 4 0 4 N
(0,0)
4 : 237 3:237 4 (6) 2,3,4,4,4

29 29 0 2 3 N
(0,0)
3 : 31 2:31 3 (6) 2,3,3,3,3,3

29 29 0 3 4 N
(0,0)
4 : 739 3:739 4 (6) 2,3,4,4

31 31 0 3 4 N
(0,0)
4 : 822 3:822 4 (6) 2,3,4,4

31 30 0 3 4 N
(0,0)
4 : 842 3:842 4 (6) 2,3,4,4

31 31 0 4 4 N
(1,0)
4 : 139 3:139 4 (6) 2,3,4,4,4

29 29 0 4 4 N
(1,0)
4 : 131 3:131 4 (6) 2,3,4,4,4

33 33 0 4 4 N
(1,0)
4 : 147 3:147 4 (7) 2,3,4,4,4

35 35 0 4 4 N
(1,0)
4 : 155 3:155 4 (7) 2,3,4,4,4

29 25 0 4 4 N
(0,0)
4 : 250 3:250 4 (5) 2,3,4,4,4

31 31 0 5 4 N
(1,0)
4 : 45 3:45 ≥ 5 (6) 2,3,4,4,5...

29 29 1 4 4 N
(1,0)
4 : 25 3:25 5 (6) 2,3,4,4,5,4

35 26 0 6 4 N
(1,0)
4 : 5 3:5 5 (5) 2,3,4,4,5

59 29 0 7 4 N
(1,0)
4 : 21 3:21 5 (5) 2,3,4,4,5

31 29 2 2 4 N
(0,0)
4 : 702 3:702 4 (6) 2,3,4,4,3

37 24 0 5 4 N
(0,0)
4 : 204 3:204 4 (5) 2,3,4,4

37 25 0 5 4 N
(1,0)
4 : 165 3:165 4 (5) 2,3,4,4,3

37 24 1 4 4 N
(0,0)
4 : 508 3:508 4 (5) 2,3,4,4

37 25 1 4 4 N
(0,0)
4 : 434 3:434 4 (5) 2,3,4,4

79 33 0 6 4 N
(0,0)
4 : 500 3:500 4 (5) 2,3,4,4

83 34 0 6 4 N
(0,0)
4 : 561 3:561 4 (5) 2,3,4,4
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Table 6: Dob encryption scheme for various parameters, Dff ≥ 5.
d n t k Dff N N Dsolv Step

(Q+) (ip) (predicted) (Magma) (Dreg(d, n)) Degrees

53 53 0 8 ≥ 6 - - ≥ 6 (9) 2,3,4,5,6. . .

37 37 5 0 5 N
(0,0)
5 : 12617 3:397, 4:12220 5 (7) 2,3,4,5,4,3

35 30 0 8 5 N
(1,1)
5 : 1568 4:1568 5 (6) 2,3,4,5,5

35 34 0 8 5 N
(3)
5 : 224 4:224 6 (7) 2,3,4,5,5,6

41 31 0 9 5 N
(3)
5 : 218 4:218 5 (6) 2,3,4,5,5,5

35 35 1 6 5 N
(2)
5 : 2714 4:2714 5 (7) 2,3,4,5,5,5

31 29 2 4 5 N
(1)
5 : 5869 4:5869 5 (6) 2,3,4,5,5

31 31 0 6 5 N
(2)
5 : 4407 4:4407 5 (6) 2,3,4,5,5

33 32 0 6 5 N
(2)
5 : 4984 4:4984 5 (6) 2,3,4,5,5

33 32 0 7 5 N
(2)
5 : 2596 4:2596 5 (6) 2,3,4,5,5

33 32 0 8 5 N
(3)
5 : 244 4:244 6 (6) 2,3,4,5,5,5,6

33 32 0 9 6 - - 6 (6) 2,3,4,5,6,6

33 31 0 8 5 N
(2,1)
5 : 314 4:314 5 (6) 2,3,4,5,5,5

31 28 0 8 5 N
(1,1)
5 : 1172 4:1172 5 (6) 2,3,4,5,5

33 28 0 9 6 - - 6 (6) 2,3,4,5,6

35 28 0 6 5 N
(1,1)
5 : 5964 3:49, 4:5915 5 (6) 2,3,4,5,4,5

37 35 6 0 5 N
(0,0)
5 : 8048 4:8048 5 (7) 2,3,4,5,5

37 37 6 0 5 N
(0,0)
5 : 6364 4:6364 5 (7) 2,3,4,5,5,3

39 37 6 0 5 N
(0,0)
5 : 9030 4:9030 5 (7) 2,3,4,5,5,3

37 35 7 0 5 N
(0,0)
5 : 2969 4:2969 5 (7) 2,3,4,5,5,5

37 35 8 0 6 - 4:4817 5:96104 6 (7) 2,3,4,5,6,5

39 38 6 0 5 N
(0,0)
5 : 8136 4:8136 5 (7) 2,3,4,5,5,3

39 38 5 0 5 N
(0,0)
5 : 14940 3:429, 4:14511 5 (7) 2,3,4,5,4,3

37 36 7 0 5 N
(0,0)
5 : 1644 4:1644 5 (7) 2,3,4,5,5,5,3

39 38 2 4 5 N
(0,0)
5 : 5458 4:5458 5 (7) 2,3,4,5,5

39 38 4 2 5 N
(0,0)
5 : 16112 4:16112 5 (7) 2,3,4,5,5

37 36 2 4 5 N
(0,0)
5 : 5578 4:5578 5 (7) 2,3,4,5,5

39 39 0 6 5 N
(1,1)
5 : 6255 4:6255 5 (7) 2,3,4,5,5

37 37 0 6 5 N
(1,1)
5 : 5769 4:5769 5 (7) 2,3,4,5,5

35 35 0 6 5 N
(1,1)
5 : 5299 4:5299 5 (7) 2,3,4,5,5

33 33 0 6 5 N
(1,1)
5 : 4845 4:4845 5 (7) 2,3,4,5,5

37 36 0 6 5 N
(1,1)
5 : 5940 4:5940 5 (7) 2,3,4,5,5

39 35 0 6 5 N
(1,1)
5 : 6883 4:6883 5 (7) 2,3,4,5,5

37 35 0 6 5 N
(1,1)
5 : 6091 4:6091 5 (7) 2,3,4,5,5

37 34 0 6 5 N
(1,1)
5 : 6222 4:6222 5 (7) 2,3,4,5,5

35 34 0 6 5 N
(1,1)
5 : 5454 4:5454 5 (7) 2,3,4,5,5

35 33 0 6 5 N
(1,1)
5 : 5589 4:5589 5 (7) 2,3,4,5,5

33 31 0 6 5 N
(1,1)
5 : 5103 4:5103 5 (6) 2,3,4,5,5
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Table 7: Dob encryption scheme for various parameters, Dff ≥ 5.
d n t k Dff N N Dsolv Step

(Q+) (ip) (predicted) (Magma) (Dreg(d, n)) Degrees

37 37 1 6 5 N
(1,1)
5 : 2816 4:2816 5 (7) 2,3,4,5,5,5

39 38 1 6 5 N
(1,1)
5 : 3304 4:3304 5 (7) 2,3,4,5,5,5

39 39 1 6 5 N
(1,1)
5 : 2910 4:2910 5 (7) 2,3,4,5,5,5

37 36 1 6 5 N
(1,1)
5 : 3182 4:3182 5 (7) 2,3,4,5,5,5

43 37 1 6 5 N
(1,1)
5 : 5384 4:5384 5 (7) 2,3,4,5,5

43 39 1 6 5 N
(1,1)
5 : 4718 4:4718 5 (7) 2,3,4,5,5,5

41 39 1 6 5 N
(1,1)
5 : 3814 4:3814 5 (7) 2,3,4,5,5,5

41 38 1 6 5 N
(1,1)
5 : 4184 4:4184 5 (7) 2,3,4,5,5,5

37 36 2 6 5 N
(1,1)
5 : 400 4:400 ≥ 6 (7) 2,3,4,5,5,6. . .

37 30 2 6 5 N
(1,1)
5 : 3100 4:3100 5 (6) 2,3,4,5,5

37 30 3 6 5 N
(1,1)
5 : 1350 4:1350 5 (6) 2,3,4,5,5

37 31 2 6 5 N
(1,1)
5 : 2730 4:2730 5 (6) 2,3,4,5,5

37 32 2 6 5 N
(1,1)
5 : 2328 4:2328 5 (6) 2,3,4,5,5

41 35 2 6 5 N
(1,1)
5 : 2578 4:2578 5 (6) 2,3,4,5,5,5

41 34 2 6 5 N
(1,1)
5 : 3028 4:3028 5 (6) 2,3,4,5,5

41 34 3 6 5 N
(1,1)
5 : 630 4:630 ≥ 6 (6) 2,3,4,5,5,6. . .

41 35 3 6 ≥ 6 - - ≥ 6 (6) 2,3,4,5,6. . .

47 33 3 6 5 N
(1,1)
5 : 3603 4:3603 5 (6) 2,3,4,5,5

37 29 4 6 5 N
(1,1)
5 : 231 4:231 5 (6) 2,3,4,5,5,5

43 32 5 6 6 - - 6 (6) 2,3,4,5,6

47 32 5 6 5 N
(1,1)
5 : 34 4:34 6 (6) 2,3,4,5,5,6

61 36 6 6 6 - - 6 (6) 2,3,4,5,6

75 39 6 6 5 N
(0,0)
5 : 4674 4:4674 5 (6) 2,3,4,5,5

33 31 0 7 5 N
(1,1)
5 : 3009 4:3009 5 (6) 2,3,4,5,5

33 30 0 7 5 N
(1,1)
5 : 3387 4:3387 5 (6) 2,3,4,5,5

37 33 0 7 5 N
(1,1)
5 : 3900 4:3900 5 (6) 2,3,4,5,5

37 34 0 7 5 N
(1,1)
5 : 3473 4:3473 5 (7) 2,3,4,5,5

37 35 0 7 5 N
(1,1)
5 : 3011 4:3011 5 (7) 2,3,4,5,5,5

35 30 0 7 5 N
(1,1)
5 : 4179 4:4179 5 (6) 2,3,4,5,5

35 33 0 7 5 N
(1,1)
5 : 3024 4:3024 5 (7) 2,3,4,5,5

39 35 0 7 5 N
(1,1)
5 : 3943 4:3943 5 (7) 2,3,4,5,5

39 36 0 7 5 N
(1,1)
5 : 3474 4:3474 5 (7) 2,3,4,5,5,5

39 37 0 7 5 N
(1,1)
5 : 2970 4:2970 5 (7) 2,3,4,5,5,5

39 35 0 8 5 N
(2,1)
5 : 394 4:394 ≥ 6 (7) 2,3,4,5,5,5,6. . .

41 34 0 8 5 N
(1,1)
5 : 1408 4:1408 5 (6) 2,3,4,5,5,5

49 36 0 8 5 N
(1,1)
5 : 4060 4:4060 5 (6) 2,3,4,5,5

57 38 0 8 5 N
(1,1)
5 : 7000 4:7000 5 (6) 2,3,4,5,5

55 37 0 8 5 N
(1,1)
5 : 6638 4:6638 5 (6) 2,3,4,5,5

53 37 0 8 5 N
(1,1)
5 : 5494 4:5494 5 (6) 2,3,4,5,5
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Table 8: Dob encryption scheme for various parameters, Dff ≥ 5.
d n t k Dff N N Dsolv Step

(Q+) (ip) (predicted) (Magma) (Dreg(d, n)) Degrees

49 34 3 6 5 N
(1,1)
5 : 3894 4:3894 5 (6) 2,3,4,5,5

51 35 3 6 5 N
(1,1)
5 : 4195 4:4195 5 (6) 2,3,4,5,5

53 35 4 6 5 N
(1,1)
5 : 2525 4:2525 5 (6) 2,3,4,5,5

51 35 4 6 5 N
(1,1)
5 : 1669 4:1669 5 (6) 2,3,4,5,5,5

49 33 4 6 5 N
(1,1)
5 : 2219 4:2219 5 (6) 2,3,4,5,5

57 36 4 6 5 N
(1,1)
5 : 3564 4:3564 5 (6) 2,3,4,5,5

57 35 4 6 5 N
(1,1)
5 : 4237 4:4237 5 (6) 2,3,4,5,5

65 37 6 6 5 N
(1,1)
5 : 780 4:780 5 (6) 2,3,4,5,5,5

81 41 0 7 5 N
(0,0)
5 : 25534 4:25534 5 (6) 2,3,4,5,5

81 42 0 7 5 N
(1,1)
5 : 23613 4:23613 5 (6) 2,3,4,5,5

81 43 0 7 5 N
(1,1)
5 : 23487 4:23487 5 (6) 2,3,4,5,5

83 41 0 7 5 N
(0,0)
5 : 29450 4:29450 5 (6) 2,3,4,5,5

83 42 0 7 5 N
(0,0)
5 : 24910 4:24910 5 (6) 2,3,4,5,5

83 43 0 7 5 N
(1,1)
5 : 24643 4:24643 5 (6) 2,3,4,5,5

37 30 2 7 5 N
(1,1)
5 : 1127 4:1127 5 (6) 2,3,4,5,5

41 31 3 7 5 N
(1,1)
5 : 58 4:58 6 (6) 2,3,4,5,5,6

45 32 2 8 5 N
(1,1)
5 : 88 4:88 6 (6) 2,3,4,5,5,6

89 43 3 5 5 N
(0,0)
5 : 55986 2:424, 3:8514, 4:47048 5 (6) 2,3,4,5,3

93 44 2 6 5 N
(0,0)
5 : 46246 4:46246 5 (6) 2,3,4,5,5
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Abstract. The multivariate scheme HFEv- used to be considered a
promising candidate for a post-quantum signature system. First sug-
gested in the early 2000s, a version of the scheme made it to the third
round of the ongoing NIST post-quantum standardization process. In
late 2020, the system suffered from an efficient rank attack due to Tao,
Petzoldt, and Ding. In this paper, we inspect how this recent rank at-
tack is affected by the projection modification. This modification was
introduced to secure the signature scheme PFLASH against its prede-
cessor’s attacks. We prove upper bounds for the rank of projected HFEv-
(pHFEv-) and PFLASH under the new attack, which are tight for the
experiments we have performed. We conclude that projection could be a
useful tool in protecting against this recent cryptanalysis.

Keywords: post-quantum cryptography, multivariate cryptography, min-
rank

1 Introduction

Multivariate cryptography has received increased attention over the last years,
due to its potential of providing quantum–safe public key cryptosystems. Sig-
nature schemes based on these ideas seemed particularly promising, with one
finalist, Rainbow [12], and one alternate candidate, GeMSS [8], reaching the
third and current round of the NIST post–quantum standardization process.
Recently, new attacks have been presented against both of these candidates [3,
24]. The rank attack against GeMSS seems particularly effective, breaking all
the suggested parameters for this scheme.

A similar story took place over a decade ago, when the signature scheme
SFLASH was broken [14]. In the aftermath, it was discovered that this attack
can be avoided by projecting the input space [13], and the amended scheme,
PFLASH [9], has withstood cryptanalysis up until this point. In this article, we
study the effect of projection on the new rank attack from [24], with a particular



interest in the setting of HFEv- (the core of the GeMSS scheme), and PFLASH.
After briefly describing the schemes and the attack, we prove that the attack also
applies to PFLASH, breaking all of the proposed parameters. We then provide
upper bounds for the rank in both the setting of HFEv- and PFLASH. We
test the validity of these results through experiments, before concluding with a
discussion on possible secure parameters and the impact these changes have on
signing time.

Notation. For readability, we use the following notational conventions through-
out the article. Fn1×n2

q will denote the space of matrices of size n1 × n2 over Fq,
and matrices will be written in bold. Row (resp. column) entries in matrices
will be written as an integer modulo n1 (resp. n2). For two matrices A and B,

we let A|B denote their horizontal concatenation, and A ⊕ B =

[
A 0
0 B

]
is the

direct sum. Maps over Fq will be written using capital letters, while maps over
extension fields, Fqn , will be written with lowercase letters.

2 Big Field Cryptosystems

We start by describing a general big field cryptosystem, with the vinegar, minus
and projection modifiers. Let q be the power of a prime, n a positive integer, and
fix an isomorphism φ : Fnq → Fqn . Define ψ = φ× idv : Fn+vq → Fqn × Fvq , where
ψ = φ if v = 0. A quadratic central map is chosen of the form F = φ−1 ◦ f ◦ ψ :
Fn+vq → Fnq , where f is specifically chosen in a way such that it is efficient to find
preimages of it. Choose a linear map U = (S⊕ idv)◦U ′ : Fn+v−pq → Fn+vq , where
both S : Fn−pq → Fnq and U ′ : Fn+v−pq → Fn+v−pq are linear maps of full rank.
Let T : Fnq → Fn−aq be a linear map of full rank. Then the public key is created
as the composition P = T ◦ F ◦U : Fn+v−pq → Fn−aq . Figure 1 gives an overview
of the construction. We will say that the scheme uses the minus modification

Fn+v−p
q

U
Fn+v
q

F

ψ

Fqn × Fv
q

f
Fqn

φ−1

Fn
q

T
Fn−a
q

Fig. 1: Diagram of a general big field scheme with minus, vinegar and projection
modifiers.

if a > 0, the vinegar modification if v > 0, and the projection modification if
p > 0.
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HFEv-. The signature scheme HFEv- is based on the HFE central map pro-
posed in [21]. It inspired two submissions to the NIST post–quantum standard-
ization process: GeMSS [8] and Gui [11], where the former advanced to the third
round as an alternate candidate. Fix a positive integer D, and denote the vine-
gar variables by xv = (xn+1, . . . , xn+v). The central map is constructed from a
polynomial f of the form

fhfe(X,xv) =
∑
i,j∈N

qi+qj≤D

αi,jX
qi+qj +

∑
i∈N
qi≤D

βi(xv)Xqi + γ(xv),

where αi,j ∈ Fqn , the βi’s are linear maps Fvq → Fqn , and γ is a quadratic map
Fvq → Fqn . The rank attack introduced in [24], which we will recall in the next
section, breaks GeMSS with the proposed parameters for the third round of the
NIST Standardization process [8].

PFLASH. The signature scheme PFLASH [13, 9] is based on the C∗ cryp-
tosystem [18], and it uses the projection and minus modifiers. Since there are no
vinegar modifiers, we will simply write U = S for the input map. For an integer

0 < θ < n − 1, the central map is based on the monomial fC∗ = X1+qθ , which
is a bijection when gcd(qθ + 1, qn − 1) = 1. In this case, fC∗ can be inverted by
exponentiation. With the secret key, one can also compute bilinear relations of
inputs and outputs of the central map [20], which can be used to find preimages
of the public key, as used in [7]. We also refer to [6] for more information on the
security of PFLASH.

3 New Rank Attack

In this section, we briefly recall the new rank attack against HFEv-, that was
introduced in [24]. More information about the underlying constructions can also
be found in [2]. For simplicity, we consider Fq to be a field of odd characteristic
in this section, but note that the results generalize to even fields as well (see e.g.,
Section 6.3 in [2]). In particular, the results in later sections will also hold in the
binary case. Recall that xv = (xn+1, . . . , xn+v) denotes the vinegar variables,
and that all matrix entries are counted modulo n. For X ∈ Fqn [X] we will write

X = (X,Xq, . . . , Xqn−1

).

Proposition 1 ([24]). Let fhfe be an HFEv- polynomial over Fqn . Then,

fhfe(X,xv) = (X,xv)

[
A B
B> D

]
(X,xv)>,

where A = [αi,j ] ∈ Fn×nqn , B = [βi,j ] ∈ Fn×vqn and D = [δi,j ] ∈ Fv×vqn . Also, for
each 0 ≤ k < n

(fhfe(X,xv))
qk

= (X,xv)F∗k(X,xv)>,

3



where F∗k ∈ F(n+v)×(n+v)
qn and its (i, j)-coordinate is given by

αq
k

i−k,j−k if 0 ≤ i, j < n− 1

βq
k

i−n,j−k if n ≤ i < n+ v and 0 ≤ j < n

βq
k

i−k,j−n if n ≤ j < n+ v and 0 ≤ i < n

δq
k

i−n,j−n otherwise.

Let M ∈ Fn×nqn be an invertible matrix associated with a vector basis of
Fqn over Fq (see Proposition 2 [2]), and let us consider an HFEv- public key
(P1, . . . , Pn−a) = T ◦ F ◦ U . If Pi is the symmetric matrix such that Pi(x) =
xPix

>, then we have

(xP1x
>, . . . ,xPn−ax

>) = (xWF∗0W>x>, . . . ,xWF∗(n−1)W>x>)M−1T,

where W = UM̃ and M̃ = M⊕ Iv. By symmetry we have the following matrix
equation

(P1| · · · |Pn−a) =
(
WF∗0W>| · · · |WF∗(n−1)W>

) (
M−1T⊗ In+v

)
. (1)

For any vector u ∈ Fn+vqn , we define

uF∗ :=

 uF∗0

...

uF∗(n−1)

 ∈ Fn×(n+v)qn , and uP∗ :=

 uP1

...
uPn−a

 ∈ F(n−a)×(n+v)
qn .

Notice that if the central map of the given public key (P1, . . . , Pn−a) has uni-
variate degree at most D, then

rank (eF∗) ≤ dlogq(D)e,

where e ∈ Fn+vqn is any vector of weight one. Since p = 0, W is nonsingular, and
by equation (1), we have

rank (uP∗) ≤ dlogq(D)e,

where u = eW−1. In [24] the authors find such a vector u by solving an instance

of the MinRank problem with n + v matrices in F(n−a)×(n+v)
q and target rank

dlogq(D)e. Furthermore, [24] shows how this vector u can be used to recover
an equivalent key for (P1, . . . , Pn−a). That is, to find linear maps T ′, U ′ and a
HFEv- central map F ′ of degree at most D, such that

(P1, . . . , Pn−a) = T ′ ◦ F ′ ◦ U ′.

The complexity of this attack is dominated by performing the MinRank step to
recover u. This computation in turn relies heavily on the rank of uP∗, which
will be our primary focus in the next sections.
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4 Effect of Projection on the New Rank Attack

We now turn our attention to how the projection modification affects the recently
introduced rank attack that was described in the previous section. The first thing
to notice is that the invertibility of the input transformation S is required to
justify the rank bound. Thus, one may wonder whether the projection modifier
masks the rank property just as it was shown to protect PFLASH from the
attack on SFLASH, see [14, 22].

Despite the similarities between the HFE and C∗ central maps, we find that
there are subtle differences in how projection affects the different schemes. As a
result, we consider the two settings separately in the following subsections.

4.1 Projection and the HFE Central Map

We adopt an approach dual to that of [25], where removing equations was shown
to be equivalent to increasing the degree of the central map. Specifically, we prove
that projection is equivalent to increasing the degree of the central map. Thus
pHFEv- with degree bound D and projection p is an instance of HFEv- with
degree bound qpD.

For any Fq-subspace K of Fqn there exists a linear polynomial of the form

minK(X) =
∏
α∈K

(X − α),

having K as its kernel. This polynomial is also known as the minimal polynomial
of K, see [10]. We start by showing the following result.

Lemma 1. There is a bijective correspondence between k-dimensional subspaces
of Fqn and (n− k)-dimensional subspaces of Fqn given by

W 7→ Im(minW (X)).

Proof. Let Vk be the collection of k-dimensional subspaces of Fqn . Define the map
ψk : Vk → Vn−k by ψ(W ) = Im(minW (X)) = W ′. Note that since minW (X)
has kernel of dimension k, and is Fq–linear, the space W ′ will have dimension
n − k, and ψk is thus well–defined. Moreover, minW ′(minW (X)) = 0, and by
degree considerations we have, more exactly, minW ′(minW (X)) = Xqn −X.

Suppose that

minW (X) =
k∑
i=0

αiX
qi and minW ′(X) =

n−k∑
i=0

βiX
qi .

5



Then we observe that the composition is

minW ′ ◦minW (X) =
n−k∑
i=0

k∑
j=0

αq
i

j βiX
qi+j

=
n∑
r=0

 ∑
0≤i≤n−k

0≤j≤k, j+i=r

αq
i

j βi

Xqr = Xqn −X.

(2)

Recalling that αk = βn−k = 1, we find that this relation produces a system of
n bilinear equations in the k − 1 coefficients αj and the n − k − 1 coefficients
βi. Now fix a space W ′ in the image of ψk, and let βi be the fixed, associated
constants of minW ′(X). Ordering the equations from r = n−1 to r = 0, we may
sequentially solve for αj . In fact, other than the Frobenius powers applied to the
αj values, the system is triangular, and hence uniquely solvable (see Appendix
A for a small toy example of this). Thus, ψk is injective. Since the action of
taking the orthogonal complement twice yields the original space, the number
of subspaces of dimension k and of dimension n− k are equal. It follows that ψk
is also surjective, and hence a bijection.

Now let S be a linear map5 Fnq → Fnq with kernel of dimension p. Using Lemma
1, we choose π to be the unique minimal polynomial such that φ−1(Im(π)) =
Im(S). Note that π has degree qp. Then we have an exact sequence

Fnq
φ−1◦π◦φ−−−−−−→ Im(S)→ 0.

Since Fq-vector spaces are free (and therefore projective) Fq-modules, there exists
an S′ such that the following diagram commutes:

Fnq Im(S) 0

Fnq

φ−1(π(φ))

S
S′

If S′ is singular, then its rank is at least n−p, and its kernel is then contained
in the kernel of S. If necessary, we can replace S′ with a nonsingular linear map
by redefining its value on ker(S′) to map into ker(φ−1 ◦ π ◦ φ). We may then
without loss of generality choose S′ to be of full rank. Thus, we obtain the matrix
equation S = S′Q, where xQ = φ−1 ◦ π ◦ φ(x).

5 This is a slight abuse of notation from the S defined in Section 2, which had Fn−p
q as

its domain. This is easily remedied by composing with a projection along the n− p
first coordinates.
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We may now apply this result in the case of an HFEv- scheme. In this case,
we have the public key[

P1| · · · |Pn−a
]

=
[
UM̃F∗0M̃>U>| · · · |UM̃F∗(n−1)M̃>U>

] (
M−1T⊗ In

)
,

where M̃ = M⊕ Iv and U = U′(S⊕ Iv)
6. We observe that

ŨM̃F∗iM̃>Ũ> = U′(S⊕ Iv)M̃F∗iM̃>(S> ⊕ Iv)U
′>

= U′(S′Q⊕ Iv)M̃F∗iM̃>(Q>S′> ⊕ Iv)U
′>

= U′(S′QM⊕ Iv)F
∗i(M>Q>S′> ⊕ Iv)U

′>

We may further rewrite the last expression to obtain

U′(S′M⊕ Iv)(M
−1QM⊕ Iv)F

∗i(M>Q>M−> ⊕ Iv)(M
>S′> ⊕ Iv)U

′>

We finally note that

X(M−1QM⊕ Iv)F
∗i(M>Q>M−> ⊕ Iv)X

> = XG∗iX>,

where X =
[
X Xq · · · Xqn−1

x1 · · ·xv
]

and where

G(X,x1, . . . , xv) = F (π(X), x1, . . . , xv).

Thus the public key can also be expressed as[
P1| · · · |Pn−a

]
=
[
U′′M̃G∗0M̃>U′′>| · · · |U′′M̃G∗(n−1)M̃>U′′>

] (
M−1T⊗ In

)
,

where U′′ is the nonsingular map U′(S′ ⊕ Iv). Thus, the pHFEv-(n,D, a, v, p)
public key is also an HFEv-(n, qpD, a, v) public key.

This allows us to follow the same reasoning used in the attack of HFEv- with
degree D = qp+d, and we have proved the following upper bound.

Proposition 2. Let (P1, . . . ,Pn−a) be the symmetric matrices of the public key
of an instance of pHFEv-(n,D, a, v, p), where p is the projection corank. Then
there is a non–zero tuple u ∈ Fn−pqn such that uP∗ has rank at most p+ d, where
d = dlogqDe.

We will test the tightness of this upper bound in Section 5.

4.2 Projection and the C∗ Central Map

Define the symmetric matrix F∗iC∗ , associated with fq
i

C∗ , in a manner similar to
Proposition 1. Describing F∗iC∗ is simpler than what was done in Proposition 1,
seeing that it is 1 at the entries (i, θ+i) and (θ+i, i), and 0 elsewhere (recall that

6 Following our slight abuse of notation when compared with Section 2: U ′ will now
be an invertible linear map Fn+v

q → Fn+v
q
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entries are counted modulo n). While we may apply the theory from Section 4.1,
the problem is that we no longer have a bound D on the non–zero part of F∗0C∗ .
Following the same reasoning as before would have yielded an upper bound of
2 + 2p for the rank, but it is possible to do better.

We define v = (v0, . . . , vn−1) = uSM ∈ Fnqn , and examine what rank the
matrix vF∗C∗ can take. Note that the entry vi, for i ∈ Zn, will contribute to the
two entries in positions

e1(i) = (i, i+ θ) and e2(i) = (i− θ, i− θ) , (3)

in the matrix vF∗C∗ . Fix an integer i0, and consider the pair vi0 and vi0+θ. They
will now contribute to four entries in vF∗C∗ , but two of them, e1(i0) = (i0, i0 + θ)
and e2(i0 + θ) = (i0, i0), appear in the same row. It follows that the pair vi0 and
vi0+θ can only make a contribution of at most three to the rank of vF∗. This is
the key observation for the following result.

Lemma 2. Let I = {i0, . . . , ik−1} be a set of k integers in Zn, such that ij+1 =
ij + θ, for 0 ≤ j < k − 1. Consider the vector vI = (v0, . . . , vn−1), where
vj ∈ Fqn \ {0} if j ∈ I, and vj = 0 otherwise. Then vIF

∗
C∗ has rank at most

k + 1.

Proof. For l = 1, 2, let El(x) be the n × n matrix that is 1 at entry el(x) (as
defined in (3)), and 0 elsewhere. Then we can write vIF

∗
C∗ as the sum

vIF
∗
C∗ =

k−1∑
j=0

(
E1(ij) + E2(ij)

)
.

From the discussion prior to the lemma, we know that E1(ij0) + E2(ij0+1) has
rank 1, for 0 ≤ j0 < k−1. Hence, vIF

∗
C∗ can be written as the sum of 2k−(k−1)

matrices of rank 1, which proves the upper bound.

The next step is to look at which of these vectors vI we can find in the image
of SM. This leads to the following upper bound.

Proposition 3. Let (P1, . . . ,Pn−a) be the symmetric matrices of the public key
of an instance of PFLASH with projection p. Then there is a non–zero tuple
u ∈ Fn−pqn such that uP∗ has rank at most 2 + p.

Proof. Let I be as defined in Lemma 2, and consider an associated vector vI ,
with the difference that vj ∈ Fqn if j ∈ I (i.e., allowing 0 in these entries
as well). SM has cokernel of dimension p, so choosing I of order p + 1 will
guarantee that there is a non–trivial way to choose the entries in vI such that it
lies in the image of SM. This can seen by performing Gaussian elimination on
SM, where the entries corresponding to I are being eliminated last. If all vj for
j ∈ I are non–zero, we are done by Lemma 2. Otherwise, suppose one of them
is zero, say vil = 0. Then we may split I into the two (potentially empty) sets
I1 = {i0, . . . , il−1}, and I2 = {il+1, . . . , ip}. Upon considering the two associated
vectors vI1 and vI2 , we may write vIF

∗
C∗ = vI1F

∗
C∗ + vI2F

∗
C∗ . Using Lemma 2

8



on vI1F
∗
C∗ and vI2F

∗
C∗ , along with the fact that |I1|+ |I2| = p ensures that the

rank of vIF
∗
C∗ sums up to at most p+ 2.

Finally, the cases where several entries vj , j ∈ I are zero, are dealt with by
induction on this argument.

This upper bound is tight for the experiments we have run for PFLASH; more
information can be found in Section 5. For now, we note that the integer set
I used in the proof of Proposition 3 is not unique, and we can even consider a
more general class of sets, than what was discussed in Lemma 2. Indeed, from the
entries in (3), we note that the pair vi0 and vi0+2θ will in particular contribute to
the entries e1(i0) = (i0, i0 +θ) and e2(i0 +2θ) = (i0 +θ, i0 +θ), each of which lies
in the same column. Note that Lemma 2, and the proof of Proposition 3, could
easily have been adopted to sets I where the consecutive indices have relative
distance 2θ, as opposed to θ. Furthermore, we can use combinations of θ and 2θ
for distance, as shown in the following result, which is a direct generalization of
Lemma 2. The proof is identical to that of the aforementioned lemma.

Lemma 3. Let I = {i0, . . . , ik−1} be a set of k integers in Zn, such that for
0 ≤ j < k − 1, the difference ij+1 − ij is congruent to either θ or 2θ mod n.
Consider the vector vI = (v0, . . . , vn−1), where vj ∈ Fqn \ 0 if j ∈ I, and vj = 0
otherwise. Then vIF

∗
C∗ has rank at most k + 1.

Number of Solutions for the MinRank Step. Recall that [24] suggests
setting u0 = 1, in order to avoid finding multiples of the same solution to the
MinRank–step of the attack. Let I a set of the form described in Lemma 3. Note
that any such I of order p + 1 could have been used to prove Proposition 3.
Hence, we expect each choice of I to, in general, correspond to a unique solution
u of the MinRank problem of rank p + 2. If gcd(n, θ) = 1, and 2(p + 1) < n,
there are n2p ways to construct I (2p combinations of distances θ and 2θ, with
n rotations).

We ran a few toy examples to test this theory, by running the MinRank–step
for the parameters q = 2, n = 13, θ = 3, and p = 1, 2 and 3. In each test we found
all possible solutions u, and inspected the corresponding v = uSM. In each test
the number of solutions were indeed n2p, and the v-vectors corresponded to all
the different choices for I.

Weak Choices of n and θ. In special cases, it would be possible to derive
a lower upper bound than what was presented in Proposition 3. This can, for
instance, happen if the set I from Lemma 3 of order k ≥ 1 is a loop, in the sense
that ik−1 − i0 ≡ θ or 2θ mod n. This is possible if the following equation has a
solution:

xθ + y2θ ≡ 0 mod n, x, y ∈ Z≥0, and x+ y = k − 1. (4)

Solutions for this condition, with low values of k, can be found when the least
common multiple of n and θ is small, or equivalently, when gcd(n, θ) is large.
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Indeed, we can observe this effect in the last two rows of the right side of Table
1: in both tests we have n = 14 and p = 4, but they differ by θ = 5 and 6. In the
first case, we have gcd(14, 5) = 1, and we find no solutions u such that uP∗ has
rank 5. In the second case we have gcd(14, 6) = 2, and x = 1, y = 3 is a solution
of (4), with k = 5. The resulting effect is that we are able to find solutions of u
such that uP∗ is of rank 5. We include the condition gcd(n, θ) = 1 in our other
PFLASH experiments in order to exclude weak cases like these.

5 Experiments

In the previous section we proved an upper bound on the rank of uP∗, for both
pHFEv-, and PFLASH; we will now examine this bound through experiments.

All tests have been performed as follows. After creating the public key P ,
we construct uP∗ with the indeterminate vector u, where u0 = 1. For rank r,
we follow the minors modelling [17], by computing the (r + 1)× (r + 1) minors
of uP∗, and solving the associated polynomial system using the implementation
of F4 [15] in the Magma Computer Algebra System7, see [4]. For efficiency, we
did not always include all the minors when computing the Gröbner basis. We
chose the rank r to be one less than, or equal, to the upper bound determined
in Propositions 2 and 3 for pHFE- and PFLASH, respectively. Red marks that
the polynomial system from the minors modelling at this rank was inconsis-
tent, whereas blue indicates that we were able to find solutions. The results are
presented in Table 1.

Table 1: Experimentally found rank of uP∗ for various parameters of pHFE- (left)

and PFLASH (right). The number X indicates that there are no u such that uP∗ has

rank ≤ X. The number X means that we were able to find a solution u yielding uP∗

of rank ≤ X. See Section 4.2 for a discussion on †.

q n a p D
Upper
Bound

Rank
of uP∗

2 13 0 1 5 4 3, 4

2 13 0 2 5 5 4, 5

2 13 0 3 5 6 5

2 15 0 4 5 7 6

2 13 0 0 9 4 3, 4

2 13 4 1 9 5 4, 5

2 13 4 2 9 6 5, 6

2 17 6 1 9 5 4, 5

2 13 4 0 17 5 4, 5

2 13 4 1 17 6 5, 6

2 13 0 2 17 7 6

q n a p θ
Upper
Bound

Rank
of uP∗

2 21 0 1 13 3 2, 3

2 21 0 2 13 4 3, 4

4 31 0 1 7 3 2

4 13 0 3 5 5 4, 5

4 25 8 0 11 2 1, 2

4 25 8 1 11 3 2, 3

4 17 5 3 7 5 4, 5

2 15 1 4 7 6 5, 6

2 15 0 5 7 7 6

4 14 4 4 5 6 5

4 14 4 4 6 6† 5

7 Any mention of commercial products does not indicate endorsement by NIST.
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We note that in all our experiments, the upper bound seems to be tight. The
notable exception is the last row on the right side of Table 1, where gcd(n, θ) 6= 1,
as discussed in Section 4.2. The tests include cases where fC∗ is not a permuta-
tion, i.e., gcd(qn − 1, qθ + 1) 6= 1, and this does not seem to have an effect on
this attack. Finally, the target r and the dimension of uP∗ cannot be too close,
in order to ensure that the solutions we find are truly a result of the extension
field structure of the scheme. We have chosen to keep (n − a) > r + 3 in our
experiments. Indeed, in an earlier experiment with pHFE- of parameters q = 2,
n = 13, a = 4, p = 2 and D = 17, we found a unique solution to u at r = 6, even
though our upper bound is seven here. Upon further inspection, this solution was
in the subfield Fq (as opposed to being in Fqn proper, which is the case for the
other tests), and we have not been able to find such solutions when rerunning
the case. Hence, we conclude that this was a “false positive” caused by the small
parameters of the test.

6 Complexity

In this section we compute the complexity of signing for pHFEv- and PFLASH.
The inversion methods are quite disparate, so, again, we separate the exposition.

6.1 pHFEv- Signing

For this subsection we consider the base field q = 2. This is what was used in
the GeMSS submission, which is what we will use as a baseline for comparing
pHFEv-. The most complex step of the inversion of an HFEv- public key lies in
the application of the Berlekamp algorithm, see [1], for inverting the central map.
In the case of pHFEv-, there is a tension between the complexity of inverting
the degree D polynomial and the number, 2p, of times that the polynomial must
be inverted.

As shown in Section 4, an instance of pHFEv-(n,D, a, v, p) is also an instance
of HFEv-(n, 2pD, a, v). Thus, we may always invert pHFEv-(n,D, a, v, p) by us-
ing the inversion procedure for HFEv-(n, 2pD, a, v). On the other hand, we may
invert the instance of pHFEv- by inverting the central map of degree D, until
the preimage lies in the image of the input projection. For each preimage, the
probability that it lies in the image of a corank p projection is 2−p. To see which
is the better of the two methods, we begin by making the analysis in [8] for the
complexity of inversion more tight.

As noted in [8, Theorem 1], the complexity of Berlekamp applied to a polyno-
mial of degree D isO (M2n(D)(n+ log2D) log2D), where M2n(D) is the number
of operations in the field F2n required to multiply two polynomials of degree D.
The well-known formula, see [5], for this quantity

M2n(D) = O (D log2D log2 log2D)

produces a complexity of

O
(
D(log2D)2(n+ log2D) log2 log2D

)
.
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The above quantity only provides the algebraic complexity of polynomial in-
version over F2n . Since each multiplication in F2n requires 2n2+n bit operations,
we have that inverting the central map has a bit complexity of

O
(
(2n2 + n)D log2(D)2(n+ log2D) log2 log2D

)
.

Since we are considering values of log2D that are far less than n, we may further
simplify to obtain the approximate bit complexity

Cn3D log2(D)2 log2 log2D,

for some constant C. We note that log2 log2D may be as large as three or four,
for the values of D needed to secure against [24]. It is thus a nontrivial factor in
this expression.

Since the complexity of inverting pHFEv-(n,D, a, v, p) is 2p times the com-
plexity of inverting HFEv-(n,D, a, v), it is a factor of

(p+ log2D)2 log2(p+ log2D)

log2(D)2 log2 log2D

faster than inverting the scheme as an instance of HFEv-(n, 2pD, a, v).
Thus, securing the parameters of GeMSS while maintaining the array of

parameters merely requires applying the projection modifier with a sufficiently
large corank p to secure the scheme from the attack of [24]. We should note that
projection does have the negative effect of increasing the signature failure rate
by a factor of approximately e2

p

, but the rate is still exp(2p − 2a+v) which is
negligible for any realistic parameters.

Parameters for pHFEv-. Let d = dlog2De. Similar to [24], we use the support
minors equations to derive a bilinear system in nx+ny variables, where nx = n+v

and ny =
(
n′

d+p

)
, and n′ =

⌈
(n+v)(d+p+1)

n−a

⌉
+ d+ p+ 1. Such a bilinear system is

expected to be solved at degree 3. The overall complexity of solving this system
is then given by O

(
(nxn

2
y + n2xny)ω

)
, where ω is the linear algebra constant.

In Appendix B, Table 2, we consider the third round parameters of GeMSS,
and compute the size of the projection that is needed to achieve the required
security level.

6.2 PFLASH Signing

For PFLASH, we recommend using the private key to derive the linearization
equations proven to exist by Patarin in [20]. With these equations the legitimate
user can find a preimage of the public key in one step instead of inverting the
input and output transformations and using exponentiation to invert the central
map.

As shown in Section 4, the rank of uP∗ is p+2. The parameters suggested in
[9] had p = 1, which makes them vulnerable to the rank attack we have studied.
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It is, once again, possible to protect against this by increasing the projection.
However, the signing time will now be multiplied by a factor qp, which favours the
use of a small ground field, maybe even q = 2. In this setting, direct methods may
also become an issue. Particularly a generalized version of the analysis presented
in [19], perhaps using some of the notions from [26] should be considered. This
is, however, beyond the scope of this article, and we leave it as an open question
to determine if and how secure and efficient parameters for PFLASH may be
chosen.

7 Conclusion

We have studied how projection affects the new rank attack from [24]. For the
pHFEv- and PFLASH systems we have derived an upper bound on how the
rank grows with the projection p, which in turn can be used to estimate the
complexity of the attack as a whole. These bounds were furthermore observed
to be tight in experiments.

While projection is a cheap modification for encryption systems, it does in-
crease the signing time for signature schemes, typically by a factor of q for each
dimension. Nevertheless, in the HFEv- setting, we note that projecting is a use-
ful alternative to simply increasing the degree D. PFLASH can also be made
secure against rank attacks by increasing p, but we believe more analysis on
direct attacks are needed before we can suggest potential parameters.
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A Toy Example of Composing Minimal Polynomials

We provide a small toy example of the bilinear system from the proof of Lemma
1. Consider n = 5 and k = 2. Then, by Equation (2), and recalling α2 = β3 = 1,
we have

minW ′ ◦minW (X) = Xq5 −X

= α0β0X + (β0α1 + β1α
q
0)Xq + (β0 + β1α

q
1 + β2α

q2

0 )Xq2

+ (β1 + β2α
q2

1 + αq
3

0 )Xq3 + (αq
3

1 + β2)Xq4 +Xq5 .

If the βj ’s are known constants, we note that α1 is uniquely determined by

the equation αq
3

1 + β2 = 0. Subsequently, α0 will be uniquely determined by

αq
3

0 + β2α
q2

1 + β1 = 0.

B GeMSS Minrank Complexity

In Table 2, we consider the third round parameters of GeMSS, and compute the
size of the projection that is needed to achieve the required security level. We
do this for two values of ω: ω1 = 2.37 is the best known asymptotic bound [16],
and ω2 = 2.81 is the more realistic value from Strassen’s algorithm [23].
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Table 2: Complexity of the MinRank attack from [24] against the GeMSS pa-
rameters with projection. The value p1 (resp. p2) is the minimum projection
needed to achieve security with ω1 (resp. ω2), and Cω1

(resp. Cω2
) denotes log2

of the resulting complexity.

Scheme (n, v,D, a) p1 Cω1 p2 Cω2

GeMSS128 (174, 12, 513, 12) 2 136 0 139

BlueGeMSS128 (175, 14, 129, 13) 4 140 1 128

RedGeMSS128 (177, 15, 17, 15) 6 131 4 128

WhiteGeMSS128 (175, 12, 513, 12) 2 136 0 139

CyanGeMSS128 (177, 13, 129, 14) 4 140 1 128

MagentaGeMSS128 (178, 15, 17, 15) 6 131 4 128

GeMSS192 (265, 20, 513, 22) 7 192 5 201

BlueGeMSS192 (265, 23, 129, 22) 9 192 7 201

RedGeMSS192 (266, 25, 17, 23) 12 192 10 205

WhiteGeMSS192 (268, 21, 513, 21) 7 192 5 201

CyanGeMSS192 (270, 22, 129, 23) 9 192 7 201

MagentaGeMSS192 (271, 24, 17, 24) 12 192 10 205

GeMSS256 (354, 33, 513, 30) 14 263 10 267

BlueGeMSS256 (358, 32, 129, 34) 16 267 11 256

RedGeMSS256 (358, 35, 17, 34) 18 258 14 256

WhiteGeMSS256 (364, 29, 513, 31) 14 263 10 263

CyanGeMSS256 (364, 32, 129, 31) 16 263 12 263

MagentaGeMSS256 (366, 33, 17, 33) 19 263 15 267
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Abstract. Algebraically simple PRFs, ciphers, or cryptographic hash
functions are becoming increasingly popular, for example due to their
attractive properties for MPC and new proof systems (SNARKs, STARKs,
among many others).
In this paper, we focus on the algebraically simple construction MiMC,
which became an attractive cryptanalytic target due to its simplicity,
but also due to its use as a baseline in a competition for more recent
algorithms exploring this design space.
For the first time, we are able to describe key-recovery attacks on all
full-round versions of MiMC over F2n , requiring half the code book. In
the chosen-ciphertext scenario, recovering the key from this data for the
n-bit full version of MiMC takes the equivalent of less than 2n−log2(n)+1

calls to MiMC and negligible amounts of memory.
The attack procedure is a generalization of higher-order differential crypt-
analysis, and it is based on two main ingredients. First, we present a
higher-order distinguisher which exploits the fact that the algebraic degree
of MiMC grows significantly slower than originally believed. Secondly, we
describe an approach to turn this distinguisher into a key-recovery attack
without guessing the full subkey. Finally, we show that approximately
dlog3(2 ·R)e more rounds (where R = dn · log3(2)e is the current number
of rounds of MiMC-n/n) can be necessary and sufficient to restore the
security against the key-recovery attack presented here.
The attack has been practically verified on toy versions of MiMC. Note
that our attack does not affect the security of MiMC over prime fields.

Keywords: Algebraic attack · MiMC · Higher-order differential



1 Introduction

The design of symmetric cryptographic constructions exhibiting a clear and
ideally low-degree algebraic structure is motivated by many recent use cases,
for example the increasing popularity of new proof systems such as STARKs
[8], SNARKs (e.g., Pinocchio [43]), Bulletproofs [19], and other concepts like
secure multi-party computation (MPC). To provide good performance in these
new applications, ciphers and hash functions are designed in order to minimize
specific characteristics (e.g., the total number of multiplications, the depth, or
other parameters related to the nonlinear operations). In contrast to traditional
cipher design, the size of the field over which these constructions are defined has
only a small impact on the final cost. In order to achieve this new performance
goal, some crucial differences arise between these new designs and traditional
ones. For example, we can consider the substitution (S-box) layer, that is, the
operation providing nonlinearity in the permutation: In these new schemes, the
S-boxes composing this layer are relatively large compared to the ones used in
classical schemes (e.g., they operate over 64 or 128 bits instead of 4 or 8 bits)
and/or they can usually be described by a simple low-degree nonlinear function
(e.g., x 7→ xd for some d). Examples of these schemes include LowMC [4], MiMC
[3], Jarvis/Friday [6], GMiMC [2], HadesMiMC [30], Vision/Rescue [5], and
Starkad/Poseidon [29].

The structure of these schemes has a significant impact on the attacks that
can be mounted. While statistical attacks (including linear [41] and differential
[11] ones) are among the most powerful techniques against traditional schemes,
algebraic attacks turned out to be especially effective against these new primitives.
In other words, these constructions are naturally more vulnerable to algebraic
attacks than those which do not exhibit a clear and simple algebraic structure.
For example, this has been shown in [1], in which algebraic strategies covering
the full-round versions of the attacked primitives are described. Although the
approaches can be quite different, most of them exploit the low degree of the
construction.

In this paper, we focus on MiMC [3]. The MiMC design constructs a crypto-
graphic permutation by iterated cubing, interleaved with additions of random
constants to break any symmetries. A secret key is added after every such round
to obtain a block cipher. The design of MiMC is very flexible and can work with
binary strings as well as integers modulo some prime number. Security analysis by
the designers rules out various statistical attacks, and the final number of rounds
is derived from an analysis of attack vectors that exploit the simple algebraic
structure. We remark that the designers chose the number of rounds with a
minimal security margin for efficiency. For a more detailed specification and a
summary of previous analysis, we refer to Section 2.3.

Since its publication in 2016, MiMC has become the preferred choice for
many use cases that benefit from a low multiplication count or algebraic simplic-
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Table 1: Various attacks on MiMC. In this representation, n denotes the block
size (and key size). The unit for the attack complexity is usually the cost of
a single encryption (number of multiplications over F2n necessary for a single
encyption). The SK and KR attacks can be implemented using chosen plaintexts
CP and/or chosen ciphertexts CC. The memory complexity is negligible for all
approaches listed.
Type n Rounds Time Data Source
KR? 129 38 265.5 260.2 CP [40]

SK 129 80 2128 XOR 2128 CP/CC Section 4.1
SK n dlog3(2n−1 − 1)e − 1 2n−1 XOR 2n−1 CP/CC Section 4.1

KK 129 160 (≈ 2 × full) – 2128 Section 4.3
KK n 2 · dlog3(2n−1 − 1)e − 2 – 2n−1 Section 4.3

KR 129 82 (full) 2122.64 2128 CC Section 5
KR 255 161 (full) 2246.67 2254 CC Section 5
KR n dn · log3(2)e (full) ≤ 2n−log2(n)+1 2n−1 CC Section 5

KR ≡ Key-Recovery, KR? ≡ attack on a variant of MiMC proposed in a low-memory
scenario, SK ≡ Secret-Key Distinguisher, KK ≡ Known-Key Distinguisher

ity [31,44]. It also serves as a baseline for various follow-up designs evaluated in
the context of the public “STARK-Friendly Hash Challenge” competition5.

1.1 Our Contribution

As the main results in this paper, we present

(1) a new upper bound for the algebraic degree growth in key-alternating ciphers
with low-degree round functions,

(2) a secret-key higher-order distinguisher on almost full MiMC over F2n ,
(3) a known-key zero-sum distinguisher on almost double the rounds of MiMC,
(4) the first key-recovery attack on full-round MiMC over F2n .

We also show that the technique we use for MiMC is sufficiently generic to
apply to any permutation fulfilling specific properties, which we will define in
detail. Our attacks and distinguishers on MiMC, as well as other attacks in the
literature, are listed in Table 1.

Secret-Key Higher-Order Distinguishers. After recalling some preliminary
facts about higher-order differentials, in Section 3 we analyze the growth of
the algebraic degree for key-alternating ciphers whose round function can be
described as a low-degree polynomial over F2n .

For an SPN cipher over a field F where each round has algebraic degree δ,
the algebraic degree of the cipher is expected to grow essentially exponentially in
5 https://starkware.co/hash-challenge/
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δ. Several analyses made in the literature [20,18,17] confirm this growth for most
ciphers, except when the algebraic degree of the function is close to its maximum.
As a result, the number of rounds necessary for security against higher-order
differential attacks generally grows logarithmically in the size of F. Different
behaviour has been observed for certain non-SPN designs, such as some designs
with partial nonlinear layers where the algebraic degree grows exponentially in
some (not necessarily integer) value smaller than δ [26].

In Section 3, we show that if the round function can be described as an
invertible low-degree polynomial function in F2n , then the algebraic degree grows
linearly with the number of rounds, and not exponentially as generally expected.
More precisely, let d denote the exponent of the power function x 7→ xd used to
define the S-boxes. Then, we show that in the case of key-alternating ciphers
over F2n , the algebraic degree δ(r) as a function in the number of rounds r is

δ(r) ∈ O(log2(dr)) = O(r).

As an immediate consequence, our observation implies that roughly n · logd(2)
rounds are necessary to provide security against higher-order differential attacks,
much more than the expected ≈ logδ(n− 1) rounds.

Distinguishers on MiMC over F2n . Our new bounds on the number of rounds
necessary to provide security against higher-order differential cryptanalysis have
a major impact on key-alternating ciphers with large S-boxes. A concrete example
for this class of ciphers is MiMC [3], a key-alternating cipher defined over F2n (for
odd n ∈ N), where the round function is simply defined as the cube map x 7→ x3.
Since any cubic function over F2n has algebraic degree 2, one may expect that
approximately log2(n) rounds are necessary to prevent higher-order differential
attacks. Our new bound implies that a much larger number of rounds is required
to provide security, namely approximately n · log3(2).

As a concrete example, in Section 4 we show that MiMC-n/n has a security
margin of only 1 or 2 rounds against (secret-key) higher-order distinguishers
(depending on n), which is much smaller than expected by the designers. Moreover,
we can set up a known-key distinguisher for approximately double the number of
rounds of MiMC, by showing that the same number of rounds is necessary to
reach the maximum degree in the decryption direction. Our findings have been
practically verified on toy versions.

We remark that the designers presented other non-random properties (includ-
ing GCD and interpolation attacks) that can cover a similar number of rounds.
The number of rounds proposed by the designers were chosen in order to provide
security against key-recovery attacks based on these properties. As we are going
to show, the number of rounds is not sufficient against our new attack based on
a higher-order differential property.

Results using the Division Property. For completeness, in Section 4.5 we search
for higher-order distinguishers for MiMC-n/n with the division property [45]
proposed by Todo at Eurocrypt 2015, a powerful tool for finding the best integral
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distinguishers for block ciphers. By modeling the most recently proposed variant
of the bit-based division property, which is called three-subset bit-based division
property without unknown subset in [33], we are able to reproduce exactly the same
higher-order distinguishers for cases with small n-bit S-boxes, where n ∈ {5, 7, 9}.
However, as far as we know, it is an open problem to model the three-subset
bit-based division property for a larger S-box of size bigger than 9 in practical
time. Therefore, we conclude that the division property is unlikely to help us for
the ciphers we focus on.

Key-Recovery Attack on MiMC-n/n and on Generic Ciphers. A trivial
way to extend an r-round distinguisher to an (r + 1)-round key-recovery attack
is based on guessing the last round key, partially decrypting/encrypting, and
finally exploiting the distinguisher to filter wrong key guesses. Unfortunately,
this strategy does not work for MiMC, since guessing the full last round key
required to invert the large S-box is equivalent to exhaustive key search. Another
key-recovery approach that has been combined with integral distinguishers is
based on interpolating the Boolean polynomials that define the final rounds.
However, this strategy requires evaluating the distinguisher several times to
collect enough equations, which is not feasible for our distinguisher due to its
large data complexity.

In Section 5, we show how to solve this problem. Instead of guessing the last
round key, we set up an equation over F2n with the master key as a variable.
To obtain this equation, we symbolically express the zero sum at the input to
the last round as a polynomial function of the key, whose coefficients depend on
the queried ciphertexts. We show how the resulting polynomial equation can be
solved efficiently to recover the key. As a result, in the chosen-ciphertext case
only, recovering the key from this data for the full n-bit version of MiMC takes
the equivalent of less than 2n−log2(n)+1 calls to MiMC, 2n−1 chosen ciphertexts,
and negligible amounts of memory. Moreover, we show that approximately
dlog3(2 · R)e more rounds (where R = dn · log3(2)e is the current number of
rounds of MiMC-n/n) can be necessary and sufficient to restore the security
against the key-recovery attack presented here. This would, for example, imply
that we need to add 5 more rounds for the most used version MiMC-129/129
(which currently has 82 rounds).

A Generic Strategy. Our strategy is an instance of a broader class of algebraic
key-recovery approaches based on solving equations in the key variables. As such,
it shares some ideas with other algebraic approaches like optimized interpolation
attacks. However, while most algebraic key-recovery approaches of the last years
construct and solve systems of many Boolean linear equations, we use a single
univariate equation of higher degree that can be solved with polynomial factoring
algorithms such as Berlekamp’s algorithm. In Section 6, we outline a more
detailed and generic procedure for such an attack. It is interesting to note that a
comparatively old technique which basically disappeared for the cryptanalysis of
AES-like ciphers turns out to be very competitive for schemes with large S-boxes.
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2 Preliminaries

In this section, we recall the most important results about polynomial represen-
tations of Boolean functions and summarize the currently best known results
regarding the growth of the algebraic degree in the context of SP networks.
We also provide the specification of MiMC and give an overview of previous
cryptanalytic results.

We emphasize that in general it is only possible to give a lower bound
regarding the number of rounds which we can attack using higher-order differential
techniques, in the following denoted as “necessary number of rounds to provide
security”. While upper-bounding the algebraic degree is more important from an
adversary’s point of view, lower bounds on the degree are much more relevant
when arguing about security against algebraic attacks (such as e.g. [39,37,48,24])
from a designer’s viewpoint. However, at the current state of the art and to the
best of our knowledge, it seems hard to find such a lower bound for a given cipher
without investigating concrete instances experimentally – which, of course, limits
the scope of any analysis.

2.1 Polynomial Representations over Binary Extension Fields

We denote addition (and subtraction) in binary extension fields by the symbol
⊕. For n ∈ N, every function F : F2n → F2n can be uniquely represented by an
n-tuple (F1, F2, . . . , Fn) of polynomials over F2 in n variables with a maximum
degree of 1 in each variable. In this representation, Fi is of the form

Fi(X1, . . . , Xn) =
⊕

u=(u1,...,un)∈{0,1}n

ϕi(u) ·Xu1
1 · · · · ·X

un
n , (1)

where the coefficients ϕi(u) can be computed by the Moebius transform.
As is common, we denote functions F : Fn2 → F2 as Boolean functions and

functions of the form F : Fn2 → Fm2 , for n,m ∈ N, as vectorial Boolean functions.

Definition 1. The algebraic normal form (ANF) of a Boolean function F :
Fn2 → F2, as given in Eq. (1), is the unique representation as a polynomial over
F2 in n variables and with a maximum univariate degree of 1. The algebraic degree
δ(F ) of F – or δ for simplicity – is the degree of the above representation of F as
a multivariate polynomial over F2. If G : Fn2 → Fn2 is a vectorial Boolean function
and (G1, . . . , Gn) is its representation as an n-tuple of multivariate polynomials
over F2, then its algebraic degree δ(G) is defined as δ(G) := max1≤i≤n δ(Gi).

The link between the algebraic degree and the univariate degree of a vectorial
Boolean function is well-known, and is for example established in [22]: the
algebraic degree of F : F2n → F2n can be computed from its univariate polynomial
representation, and is equal to the maximum hamming weight of the 2-ary
expansion of its exponents.
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Lemma 1. Let F : F2n → F2n be a function and let F (X) =
∑2n−1
i=0 ϕi · Xi

denote the corresponding univariate polynomial description over F2n . The alge-
braic degree δ(F ) of F as a vectorial Boolean function is the maximum hamming
weight6 of its exponents, i.e., it is δ(F ) = max0≤i≤2n−1 {hw(i) |ϕi 6= 0} .

2.2 Higher-Order Differential Cryptanalysis

Higher-order differential attacks [39,37] form a prominent class of attacks exploit-
ing the low algebraic degree of a nonlinear transformation such as a classical
block cipher. If this degree is sufficiently low, an attack using multiple input
texts and their corresponding output texts can be mounted. In more detail, if
the algebraic degree of a Boolean function f is δ, then, when applying f to all
elements of an affine vector space V ⊕ c of dimension greater than δ and taking
the sum of these values, the result is 0, i.e.,

⊕
v∈V⊕c f(v) = 0.

Security Against Higher-Order Differential Attacks – State of the Art.
To prevent higher-order differential attacks against iterated block ciphers, one
would usually want the maximum algebraic degree to be reached (well) within
the suggested number of rounds. To achieve this goal, and to assess the security
margins, it is crucial to estimate how the algebraic degree grows with the number
of rounds.

The algebraic degree of composing two functions, F,G : Fn2 → Fn2 , can be
generically bounded by

deg(F ◦G) ≤ deg(F ) · deg(G), (2)

and hence an upper bound is found by iterative use of this on the round function.
The resulting bound does, however, fail to reflect the real growth of the algebraic
degree for many cryptosystems, and the problem of estimating the growth has
been widely studied in the literature. After the initial work of Canteaut and
Videau [20], a tighter upper bound was presented by Boura, Canteaut, and De
Cannière [18] at FSE’11. There, the authors show how to deduce a new bound
for the algebraic degree of iterated permutations for a special category of SP
networks over (F2n)t, which includes functions that have a number t ≥ 1 of
balanced S-boxes as their nonlinear layer. Specifically, the authors show that the
algebraic degree of the considered SP network grows almost exponentially, except
when it is close to its maximum.

Proposition 1 ([18]). Let F be a function from FN2 to FN2 corresponding to
the concatenation of t smaller S-boxes S1, . . . , St defined over Fn2 . Then, for any
function G from FN2 to FN2 , we have

deg(G ◦ F (·)) ≤ min
{

deg(F ) · deg(G), N − N − deg(G)
γ

}
, where (3)

6 Given x =
∑χ

i=0 xi · 2
i for xi ∈ {0, 1}, the hamming weight of x is hw(x) =

∑χ

i=0 xi.
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Fig. 1: The MiMC encryption function with r rounds.

γ = max
i=1,...,n−1

n− i
n− δi

≤ n− 1, (4)

and where δi is the maximum degree of the product of any i coordinates of any of
the smaller S-boxes.

Thus, the number of rounds necessary to prevent higher-order differential
attacks is in general bigger than the one obtained using the trivial bound in
Eq. (2).

2.3 Specification and Previous Analysis of MiMC

MiMC [3] is a key-alternating n-bit block cipher, where in each round the same
n-bit key is added to the state. The nonlinear component of the construction is
the evaluation of the cube function f(x) = x3 over F2n . Additionally, a different
round constant is added in each round to break symmetries, where the first round
constant is 0. The total number of rounds is then

r = dn · log3(2)e ,

and we refer to Fig. 1 for a graphical representation of the encryption function.
MiMC is defined to work over prime fields and binary fields. In this paper,

we focus on the binary field versions of MiMC7, for which the block size n has to
be odd in order for the S-box to be a permutation.

MiMC: Related Attacks in the Literature. The designers recommend MiMC with
dn·log3(2)e rounds [3]. They derive this number of rounds by considering a variety
of different key-recovery attacks on MiMC. According to their analysis, the most
powerful attacks are interpolation [35] and GCD attacks. About higher-order
differential attacks, the authors claim that “the large number of rounds ensures
that the algebraic degree of MiMC in its native field will be maximum or almost
maximum. This naturally thwarts higher-order differential attacks [...]”.

The first attack on MiMC-n/n [40], presented at SAC 2019, targets a reduced-
round version of MiMC proposed by the designers for a scenario in which the
attacker has only limited memory, but it does not affect the security claims of
7 Since the only subspaces of Fp, where p is a prime number, are {0} and Fp itself, our
attack does not affect the security of MiMC over prime fields.
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full-round MiMC. The Feistel version of MiMC was attacked shortly after, by
using generic properties of the used Feistel construction instead of exploiting
properties of the primitive itself [16]. Finally, a specific attack on MiMC using
Gröbner bases was considered in [1]. The authors state that by introducing
a new intermediate variable in each round, the resulting multivariate system
of equations is already a Gröbner basis and thus the first step of a Gröbner
basis attack is for free. However, recovering univariate polynomials from this
representation and then applying techniques like the GCD attack will result in a
prohibitively large computational complexity, since the recovered polynomials
will be of degree ≈ 3r after r rounds. Hence, the authors conclude that MiMC
cannot be attacked directly by using known Gröbner basis techniques.

3 Higher-Order Differentials of Key-Alternating Ciphers

Our bound on the growth of the algebraic degree does not depend on the cubing
of the round function in MiMC, so we introduce the following generalization of
the result on MiMC from Section 2.3.

3.1 Setting

Let Erk : F2n → F2n be a key-alternating cipher defined by

Erk(x) := kr ⊕R(· · ·R(k1 ⊕R(k0 ⊕ x)) · · · ) (5)

over r ≥ 1 rounds, where k0, k1, . . . , kr ∈ F2n are derived from a master key
k ∈ F2n using a key schedule. Each round function R : F2n → F2n is defined as
some invertible univariate polynomial function

R(x) := ρ0 ⊕
d⊕
i=1

ρi · xi (6)

of univariate degree d ≥ 3, where ρi ∈ F2n and ρd 6= 0. We will, without loss of
generality, assume d ≤ dinv, where dinv denotes the degree of the compositional
inverse of R (otherwise, an attacker would target the decryption function instead).
Furthemore, we assume that the round function has low univariate degree, i.e.,
low compared to the size of F2n . In other words, we work with d� 2n − 1.

3.2 Growth of the Degree

In this section, we show that the algebraic degree δ of a key-alternating cipher
Erk grows much slower than commonly presented in the literature. More precisely,
in some cases it can grow linearly in the number of rounds and not exponentially.

Proposition 2. Let Erk be a an r-round key-alternating block cipher with a
round function R of degree d, as defined in Eq. (5). If r ≤ Rlin − 1, where

Rlin =
⌈
logd

(
2n−1 − 1

)⌉
≈ (n− 1) · logd(2), (7)
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then the algebraic degree δ of Erk is at most n− 2. Consequently, a (secret-key)
higher-order distinguisher using at most 2n−1 data can be applied to Erk.8

Proof. Due to the relation between the word-level degree and the algebraic degree,
Erk reaches its maximum algebraic degree of n− 1 if at least one monomial with
the exponent 2n−2j−1 (for 0 ≤ j < n) appears in the polynomial representation.
Indeed, note that all these monomials have an algebraic degree of n− 1. Since
the smallest exponent of this form is 2n − 2n−1 − 1 = 2n−1 − 1, and since the
degree of Erk after r rounds is at most dr, we require dr ≥ 2n−1 − 1 to make
x2n−1−1 appear, or equivalently,

r ≥ dlogd(2n−1 − 1)e.

Hence, the degree is not maximal for r < dlogd(2n−1 − 1)e and a higher-order
distinguisher using at most 2n−1 data can be applied.

The Difficulty of Lower-Bounding the Growth of the Degree. We point
out that it is always possible to set up a (secret-key) higher-order distinguisher if
the number of rounds is smaller than Rlin. However, a number of rounds greater
than or equal to Rlin does not necessarily provide security.

One of the main problems in order to derive a sufficient condition for the
number of rounds that provides security is the difficulty of analyzing the non-
vanishing coefficients in the polynomial representation of Erk. Note, in general it
is not easy to give a condition guaranteeing that a particular monomial appears,
since many factors (including the secret key, the constant addition, and the
details of the S-box) influence the result.

Without going into the details, we consider the influence of the S-box in some
concrete examples. Working with R(x) = xd for a certain 3 ≤ d ≤ 2n − 2 (where
d 6= 2d′ for d′ ∈ N), we focus for simplicity only on two extreme cases d = 2d′ ± 1.
By exploiting Lucas’s Theorem9:

– If d = 2d′ + 1 for some d′ ∈ N, then the output of a single round is sparse:

(x⊕ y)2d′+1 = x2d′+1 ⊕ x2d′

· y ⊕ y2d′

· x⊕ y2d′+1

(note that it contains only 4 terms instead of d+ 1 = 2d′ + 2).
– If d = 2d′ − 1 for some d′ ∈ N, then the output of a single round is full, since

(x⊕ y)2d′−1 =
2d′−1⊕
i=0

xi · y2d′−1−i.

8 We denote our bound by Rlin to indicate the almost linear growth of the algebraic
degree for this specific class of constructions.

9 By Lucas’s Theorem,
(
n
m

)
≡
∏k

i=0

(
ni
mi

)
(mod 2), it follows that where n =

∑k

i=0 ni ·
2i and m =

∑k

i=0 mi · 2i is the 2-ary expansion of n and m, respectively.
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Even if a single round is not sparse, the output of several combined rounds is
not guaranteed to be full (even if it is in general dense). As a concrete example,
while the output of (x⊕ k0)3 ⊕ k1 is full, the same is not true for

((x⊕ k0)3⊕k1)3 ⊕ k2 = x9 ⊕ x8 · k0 ⊕ x6 · k1 ⊕ x4 · k2
0 · k1 ⊕ x3 · k2

1

⊕ x2 · (k0 · k2
1 ⊕ k2

0 · k2
1 ⊕ k4

0 · k1)⊕ x · k8
0 ⊕ c(k0, k1, k2),

(8)

where both x5 and x7 are missing, and where c(k0, k1, k2) is a function that
depends only on the keys. This simple example emphasizes the difficulty of
analyzing the sparsity of the polynomial that defines Ek.

3.3 Comparison with Other Bounds

We now compare the new number of rounds necessary to provide security against
secret-key higher-order distinguishers with other possible bounds. An alternative
strategy is to apply generic bounds focusing on the algebraic degree of the round
function, as recalled in Proposition 1. Recall that Rlin is the number of rounds
from Proposition 2, and we will denote the number of round based on generic
bounds by Rgen. The comparison will make use of δlin(r), the upper bound on
the algebraic degree after r rounds following Proposition 2. The upper bound
from Eq. (3) will be denoted by δgen(r). Note that δgen(r) can, for example, take
advantage of a slower growth in the algebraic degree, as in Eq. (8) by considering
two rounds instead of one. Despite this, the overall trend of δgen(r) will still be
exponential. On the other hand, if the round function can be described by a
polynomial of low univariate degree d over F2n , we expect a linear behaviour in
δlin(r):

δlin(r) ≤ blog2(dr + 1)c ≈ r · log2(d).
As a result, the round numbers Rlin and Rgen necessary to provide security grow
respectively linearly and logarithmically in the size n of the field, namely

Rlin ∈ O(n) and Rgen ∈ O(logδ(n)).

A concrete comparison of δlin(r) and δgen(r) for MiMC-129/129 is given in
Fig. 2. In this setting we have δlin(r) = blog2(3r + 1)c, and δgen(r) has been
derived using the observation that two rounds of MiMC have algebraic degree
two (see Appendix A for more details). In particular, we find Rgen = 13 and
Rlin = 81.

Remark. We emphasize that every (invertible) S-box/round function in Fn2 can
be rewritten as a polynomial over F2n . The crucial point here is that given a
“random” S-box/round function over Fn2 , the corresponding polynomial over F2n

has in general a high univariate degree (e.g., d ≈ 2n− ε for some small ε). In such
a case, even if our argument still holds, the final result becomes meaningless, since
logd(2n − 1) ≈ log2n−ε(2n − 1) ≈ 1 is basically constant (i.e., it does not grow
linearly with n). Hence, our results turn out to be relevant only for S-boxes/round
functions for which the corresponding polynomial over F2n has “small” degree
(namely, small compared to the field size, i.e., d� 2n).
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Fig. 2: Different upper bounds of the growth of the algebraic degree for MiMC-
129/129. The trivial bound is 2r. A tighter bound, δgen(r), exploits the observation
that 2 rounds only have degree 2 (see Eq. (8)). Our new bound, δlin(r), is linear
in the number of rounds.

4 Distinguishers for Reduced-Round and Full MiMC

Exploiting the previous result, we now discuss the possibility to set up higher-order
differential distinguishers and attacks on MiMC [3]. We show that

(1) MiMC has a security margin of only 1 or 2 round(s) against (secret-key)
higher-order distinguishers, depending on n, and that

(2) a zero-sum known-key distinguisher can be set up for approximately double
the number of rounds of MiMC.

4.1 Secret-Key Higher-Order Distinguisher for MiMC

The results just presented allow to set up a nontrivial (secret-key) higher-order
distinguisher on dlog3(2n−1−1)e−1 rounds of MiMC, where dlog3(2n−1−1)e−1 <
dn · log3(2)e for all n. Consequently, the security margin is reduced to

1 ≤ dn · log3(2)e −
(
dlog3(2n−1 − 1)e − 1

)
≤ 2

rounds. To give some concrete examples, MiMC has 1 round of security margin
for n ∈ {33, 63, 255}, and 2 rounds of security margin for n ∈ {31, 65, 127, 129}.

4.2 Practical Results

In this section we compare the results from Proposition 2 with practical results
from scaled-down versions of MiMC. The tests10 have been performed in the
following way: Instead of computing the ANF of a keyed permutation (which
10 The source code for the attacks and the tests is available on https://github.com/

IAIK/mimc-analysis.
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Table 2: Theoretical and practical round numbers necessary to prevent higher-
order distinguishers for MiMC over F2n .

Param. Theoretical Practical
n Rlin Rgen R
7 4 5 5
9 6 5 6
11 7 7 7
13 8 7 9
15 9 7 10
17 11 7 11
33 21 9 21
65 41 11 -
129 81 13 -

is expensive even for small field sizes), we evaluate the higher-order differential
zero-sum property (as given in Section 2.2) for a specific input vector space.
Namely, for random keys, random constants, and an input subspace of dimension
n− 1, we look for the minimum number of rounds r for which the corresponding
sum of the ciphertexts is different from zero. Such a number corresponds to the
number of rounds necessary to prevent higher-order distinguishers. In order to
avoid the influence of weak keys or round constants, we repeated the tests multiple
times (with new random keys and round constants). The practical number of
rounds we give in each row is the smallest number of rounds among all tested
keys and round constants necessary to prevent higher-order distinguishers. This
means that a potentially higher number of rounds can be attacked by choosing
the keys and round constants in a particular way.

The results, denoted R, are given in Table 2. We also present Rlin (from
Proposition 2) and Rgen (see Appendix A) for comparison. We emphasize that
the theoretical values predicted by Rlin match the practical results in about half
of the cases, and are off by at most one.

4.3 Known-Key Zero-Sum Distinguisher for MiMC

A known-key distinguisher is a scenario introduced in [38] where the attacker
knows the key, and it is important in all settings in which no secret material is
present. To succeed, the attacker has to discover some property of the attacked
cipher that holds with a probability higher than for an ideal cipher, or is believed
to be hard to exhibit generically. The goal of a known-key zero-sum distinguisher
is to find a set of plaintexts and ciphertexts whose sums are equal to zero. To do
this, the idea is to exploit the inside-out approach. By choosing a subspace of
texts V , one simply defines the plaintexts as the rdec-round decryption of V and
the ciphertexts as the renc-round encryption of V . Such a distinguisher can then
cover renc + rdec rounds. Examples of this approach are given in the literature
for Keccak [18,7,10], Luffa [18,7], or PHOTON [49].
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In the case of MiMC, the idea is to choose V as a subspace of F2n of dimension
n− 1. The maximum number of encryption rounds renc for which it is possible
to guarantee a zero sum has been given in the previous paragraph. Based on
Section 4.2, we can set up a known-key distinguisher on (more than) full MiMC-
n/n. For our distinguisher on MiMC, we first recall the following result from [17].

Proposition 3 (Corollary 3 of [17]). Let F be a permutation of Fn2 . Then,
deg(F−1) = n− 1 if and only if deg(F ) = n− 1.

Corollary 1. Let renc be the number of rounds necessary for MiMC over F2n

to reach its maximum algebraic degree in the encryption direction. The same
number of rounds is necessary for reaching the maximum algebraic degree in the
decryption direction, i.e., rdec = renc = dlog3(2n−1 − 1)e.

It follows that, given a subspace V ⊆ F2n of dimension n − 1, the sums of
the corresponding texts after rdec − 1 decryption rounds and renc − 1 encryption
rounds are always equal to zero, i.e.,⊕

w∈V⊕v
R−(rdec−1)(w) = 0︸ ︷︷ ︸

Zero sum

R−(rdec−1)

←−−−−−−− V ⊕ v Rrenc−1

−−−−−→ 0 =
⊕

w∈V⊕v
Rrenc−1(w)︸ ︷︷ ︸

Zero sum

for each v ∈ F2n . Hence, a known-key zero-sum distinguisher can be set up for

2 · (dlog3(2n−1 − 1)e − 1) ≈ 2(n− 1) · log3(2)− 2 =
= n · log3(2)︸ ︷︷ ︸

= full MiMC

+ [(n− 2) · log3(2)− 2]

rounds of MiMC-n/n, which is much more than full MiMC-n/n.

4.4 Impact of the Known-Key Distinguisher on Full MiMC

Sponge Function. In [3], the authors propose a hash function by instantiating
a sponge construction with MiMCπ, a fixed-key version of MiMC. The sponge
hash function is indifferentiable from a random oracle up to 2c/2 calls to the
internal permutation P (where c is the capacity) if P is modeled as a randomly
chosen permutation [9]. Thus, even if it is not strictly necessary, it is desirable
that MiMC is resistant against known-key distinguishers.

For completeness, we mention that even if there is a way to distinguish
a permutation from a random one, it seems difficult to exploit a zero-sum
distinguisher of the internal permutation of a sponge construction in order to
attack the hash function. To give a concrete example, consider the case of
Keccak: As a consequence of the zero-sum distinguisher found on 18-round
Keccak-f [1600], the number of rounds has been increased from 18 to 24 in the
second round of the SHA-3 competition in order to avoid “non-ideal” properties
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(see [18,10] for more details). However, the best known attack on the Keccak
hash function can only be set up when using 6-/7-round Keccak-f [32].

In any case, we remark that such distinguishers based on zero sums cannot be
set up for an arbitrary number of rounds, and they do indeed exploit the internal
properties of a primitive using the inside-out approach found in this paper and
in other literature. Hence, they cannot be considered meaningless.

Other Approaches. Even though the original MiMC paper only specifies a
sponge-based hash function using MiMC, there are various applications and/or
specific considerations that would make a block-cipher-based approach more
advantageous (like, for example, being forced to use a block size which is too
small for a sponge-based approach). Another way to turn a block cipher into a
hash function is to use a compression function like the Davies–Meyer one together
with something like the Merkle–Damgård construction. Similar to the case of
sponge constructions, the security of such an algorithm is proven in the ideal
cipher model [12]. This choice is, however, not supported by the MiMC designers,
who use our results to support their advice against using a block-cipher-based
approach (even though such implementations can still be found11). It follows
that, since the attacker has control of the key in such scenarios, it is desirable for
MiMC to be resistant against known- and chosen-key distinguishers, even if it
does not seem to be strictly necessary.

4.5 Results Using the Division Property

Finally, in Appendix C we present our practical results obtained using “Mixed
Integer Linear Programming (MILP)”, which models the propagation of the
(conventional) bit-based division property.

The (conventional) bit-based division property [47] was proposed to investigate
integral characteristics of block ciphers at a bit level. With this approach, the
integral property of each bit is studied independently. Naturally, this strategy
allows to capture more information of the propagation than the word-level
version, and thus integral characteristics for more rounds can be found with this
new technique. For example, the integral distinguishers of SIMON32 have been
improved from 10 rounds [45] (the current best result at word level) to 14 rounds
[51] (obtained by the experimental method cited before).

Instead of separating the parity into the two cases “0” and “unknown” as for
the (conventional) bit-based division property, three-subset bit-based division
property [47] was introduced to enhance the accuracy of the conventional one,
where the parity is separated into three sets, i.e., “0”, “1”, and “unknown”. It
shows that the three-subset bit-based division property can indeed be more
accurate than the two-subset bit-based division property for some ciphers [34,52].
However, it becomes harder to efficiently model the three-subset division property
propagation even for ciphers with simple structures. Recently, [33] pointed out
11 https://github.com/HarryR/ethsnarks/blob/master/src/gadgets/mimc.hpp
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that the three-subset division property has a couple of known problems when
applied to cube attacks, and proposed a modified three-subset bit-based division
without the “unknown” set to overcome these problems. By modeling this modified
version of the three-subset bit-based division property for our cases with small
n-bit S-boxes, where n ∈ {5, 7, 9}, we confirm the practical results given in
Table 2.

However, as far as we know, it is still an open problem to model the (modified)
three-subset bit-based division property for a larger S-box of size bigger than
9. The S-boxes we focus on in this paper can be described as a (low-degree)
polynomial function in F2n , where n is much larger than 9. Therefore, the division
property, which is commonly believed as the most efficient tool to find the best
integral distinguishers, might not help us as much for the ciphers we focus on.

5 Key-Recovery Attack on MiMC

Since the security margin of MiMC with respect to a (secret-key) higher-order
distinguisher is of only 1 or 2 round(s) depending on n, it is potentially possible to
extend a distinguisher to a key-recovery attack. Given a subspace V of plaintexts
whose sum is equal to zero after r rounds, we can consider r+ 1 rounds, partially
guess the last subkey and decrypt, and filter wrong key guesses that do not satisfy
the zero sum:

V ⊕ v Rr(·)−−−→
⊕

w∈V⊕v

Rr(w) = 0︸ ︷︷ ︸
Higher-order distinguisher

R−1(·)←−−−−−−−−
Key guessing

{Rr+1(w) | w ∈ V ⊕ v}︸ ︷︷ ︸
Ciphertexts

.

However, since the subkeys of MiMC are equal to the master key plus constants,
and due to the single full-state S-box, even a (partial) decryption of a single
round requires guessing the full key. As a result, a key-recovery attack on full
MiMC based on this strategy seems infeasible.

In this section, we present an alternative strategy that allows to break full-
round MiMC. Since a trivial key-guessing approach is inefficient, our idea is to
construct a polynomial of low degree, which we can then try to solve.

5.1 Strategy of the Attack

From Proposition 2 and Proposition 3, a zero sum can be set up for at least
d(n− 1) log3(2)e − 1 = dn log3(2)e − ε rounds in the encryption and decryption
direction with a vector space V⊕v of dimension n−1, where ε ∈ {1, 2}. Recalling
that dn · log3(2)e is the number of rounds of full MiMC, we define rZS, rKR as

rZS = d(n− 1) log3(2)e − 1 and rKR = 1 + (dn log3(2)e − d(n− 1) log3(2)e) ,

where rZS is the number of rounds that we can cover with a zero sum, rKR =
dn · log3(2)e − rZS ∈ {1, 2}.

Let fr(x,K) be the function corresponding to r rounds of MiMCk(·) (and
f−r(x,K) be r rounds of decryption, MiMC−1

k (·)), where x is the input text and
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K is a symbolic variable that represents the secret key k. We intend to use these
functions to create a polynomial from which we can deduce k. More precisely, for
a fixed vector space V ⊕ v, we consider the equations⊕

x∈MiMC−1
k

(V⊕v)

frKR(x,K)

︸ ︷︷ ︸
=F (K)

= 0 and
⊕

x∈MiMCk(V⊕v)

f−rKR(x,K)

︸ ︷︷ ︸
=G(K)

= 0. (9)

After having received all x values from an oracle, the attacker can construct
one of the polynomials F (K) = 0 or G(K) = 0. The secret key k can now be
determined by finding the roots of either of these polynomials.

In the case of MiMC, the degree of a single encryption round is 3, while the
degree of a single decryption round is (2n+1 − 1)/3 (which is significantly larger
than 3 for large n). Due to the slow degree growth in the encryption direction of
MiMC, we will focus on finding the roots of F (K) given in Eq. (9).

Finding the Roots of Univariate Polynomials. Let F (X) ∈ F2n [X]/〈X2n +
X〉 be a univariate polynomial of degree D. Furthermore, let M(D) denote a
number such that multiplying two polynomials of degree ≤ D over F2n requires
O(M(D)) operations in F2n . For instance, a straightforward method would yield
M(D) = D2, whereas M(D) = D · log(D) · log log(D) holds for methods based
on fast Fourier transforms [21]. The Berlekamp algorithm for determining the
roots of F is then expected to require C ∈ O (M(D) log(D) log (2nD)) operations
in F2n (see [28, Chapter 14.5]).

5.2 Details of the Attack

Assume V ⊕ v is a coset of a subspace V of dimension n− 1. We define

W = MiMC−1
k (V ⊕ v) ≡ {MiMC−1

k (x) ∈ F2n |x ∈ V ⊕ v}

under a fixed secret key k. Here, we present the details of the attack for the cases
rKR = 1 and rKR = 2, and we analyze the computational cost. We introduce the
following notation:

∀d ∈ N : Pd :=
⊕
x∈W

xd, (10)

and whenever possible we will make use of the fact that squaring is a linear
operation over F2n . More specifically, computing P2d only requires a single
squaring operation once Pd is calculated:

P2d :=
⊕
x∈W

x2d =
(⊕
x∈W

xd

)2

= P2
d . (11)

This allows to reduce the total number of XOR operations.
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Algorithm 1: Attack on MiMC – Case: rKR = 1.
Input: Vector subspace V of ciphertexts of dimension dim(V) = n− 1.
Output: Secret key k.

1 P1,P2,P3 ← 0.
2 for x ∈ V ⊕ v do
3 p← MiMC−1

k (x) from the decryption oracle.
4 P1 ←P1 ⊕ p.
5 q ← p2.
6 P3 ←P3 ⊕ q · p.
7 P2 ← (P1)2.
8 F (K) = P1 ·K2 ⊕P2 ·K ⊕P3.
9 Find a solution k of F (K) = 0 – see Section 5.1 (filter multiple solutions by

brute force).
10 return k.

Case: rKR = 1. Since a single round of MiMC is described by (x ⊕ k)3 =
k3 ⊕ k2 · x⊕ k · x2 ⊕ x3, the function F (K) is given by

F (K) = K2 ·P1 ⊕K ·P2 ⊕P3.

A complete pseudo code of the attack can be found in Algorithm 1, which makes
it easy to see that the cost of the attack is well approximated by

– |V| = 2n−1 multiplications,
– |V| = 2n−1 + 1 squarings,
– 2 · |V|+ 1 = 2n + 1 n-bit XOR operations,
– cost of finding the roots of a univariate polynomial of degree 2.

Case: rKR = 2. The attack for the case rKR = 2 is similar. From Eq. (8) (using
k0 = k, k1 = k ⊕ c1 and k2 = 0), the function F (K) is described by

F (K) = K8 ·P1 ⊕K5 ·P2 ⊕K4 · (P2 · c1 ⊕P1)⊕K3 · (P4 ⊕P2)
⊕K2 · (P4 · c1 ⊕P3 ⊕P1 · c2

1)⊕K · (P8 ⊕P6 ⊕P2 · c2
1)⊕ (P9 ⊕P6 · c1 ⊕P3 · c2

1),

where c1 is the round constant of the first round. As also noted in Section 3.2,
while P9 is the largest Pd in this expression, both P5 and P7 are missing, and
hence do not need to be computed. A complete pseudo code of the attack can be
found in Algorithm 2. Again, it is easy to see that the cost of the attack is well
approximated by

– 2 · |V|+ 6 = 2n + 6 multiplications,
– 2 · |V|+ 4 = 2n + 4 squarings,
– 3 · |V|+ 8 = 3 · 2n−1 + 8 n-bit XOR operations,
– cost of finding the roots of a univariate polynomial of degree 8.
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Algorithm 2: Attack on MiMC – Case: rKR = 2.
Input: Vector subspace V of ciphertexts of dimension dim(V) = n− 1.
Output: Secret key k.

1 P1,P2,P3, . . . ,P9 ← 0.
2 for x ∈ V ⊕ v do
3 p← MiMC−1

k (x) from the decryption oracle.
4 P1 ←P1 ⊕ p.
5 q2 ← p2.
6 q3 ← q2 · p.
7 P3 ←P3 ⊕ q3.
8 q6 ← q2

3 .
9 P9 ←P9 ⊕ q6 · q3.

10 P2 ← (P1)2.
11 P4 ← (P2)2.
12 P6 ← (P3)2.
13 P8 ← (P4)2.
14 F (K) = K8 ·P1 ⊕K5 ·P2 ⊕K4 · (P2 · c1 ⊕P1)⊕K3 · (P4 ⊕P2)⊕K2 ·

(P4 · c1 ⊕P3 ⊕P1 · c2
1)⊕K · (P8 ⊕P6 ⊕P2 · c2

1)⊕ (P9 ⊕P6 · c1 ⊕P3 · c2
1).

15 Find a solution k of F (K) = 0 (filter multiple solutions by brute force).
16 return k.

5.3 Complexity Estimation

As we have just seen, our attack requires half of the code book (namely, 2n−1

chosen ciphertexts). Here we show that our attacks are better than exhaustive
search (from the computational point of view). In order to do this, we measure
the time complexities in equivalent encryption operations.

A single encryption round in MiMC requires one addition, one squaring
operation, and one multiplication in the extension field. Since the cost of a single
n-bit XOR operation is much smaller than the cost of a multiplication over F2n ,
and since the number of XOR operations is similar to the number of multiplications,
in the following we do not consider XOR operations. After this simplification, we
find that the time complexity of rKR = 1 is dominated by 2n−1 squaring and
multiplication operations or, equivalently, 2n−1 encryption rounds. A similar line
of reasoning reveals that rKR = 2 is comparable to 2n encryption rounds.

Since the cost of solving a single low-degree equation is negligible, and one
unit of encryption contains dn · log3(2)e rounds, it follows that the cost of our
attacks is about

rKR · 2n−1

dn · log3(2)e

encryptions for rKR ∈ {1, 2}. That is, the computational cost of the key-recovery
part of our attacks is upper-bounded by 2n−log2(n)+1, and hence the total cost is
smaller than that of a brute-force attack (namely, 2n encryptions) for each n ≥ 3.
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5.4 Practical Verification

We implemented Algorithm 1 and Algorithm 2 in the computer algebra system
Magma, and verified both algorithms for all odd integers n ∈ [5, 35]. We note that
Algorithm 1 (rKR = 1) yields the correct answer for all the tested 5 ≤ n ≤ 35,
even if dn log3(2)e 6= d(n− 1) log3(2)e. Namely, in practice it is possible to cover
one more round with a zero sum than what we theoretically expect. In other
words, d(n− 1) log3(2)e rounds of the decryption function of MiMC fail to obtain
the maximum algebraic degree for these parameters, which is reached after
d(n− 1) log3(2)e + 1 rounds (see Appendix B for more details on the degree
growth of MiMC−1). Since we are not able to prove this behavior for larger values
of n, we leave it as an open question whether Algorithm 1 can be applied to
MiMC for odd integers n > 35.

Considerations on Data and Computational Costs of this Attack. A
possible drawback of our attack is the cost. Since we are not able to provide
an estimation of the growth of the degree in the decryption direction, we can
only exploit the fact that a certain number of rounds are necessary in order to
achieve maximum degree. It follows that the attacker is forced to use half of
the code book in order to set up the attack, which also has an impact on the
computational cost.

Even if our attack is not practical, we believe it provides valuable theoretical
insight. It is also in line with several other attacks found in the literature, which
are set up under a similar assumption on the data and/or computational cost. To
give some concrete examples, consider the case of zero-correlation attacks [14],
which exploit linear approximations that hold with probability 1

2 . The crucial
limitation for basic zero-correlation linear cryptanalysis is that it requires half
of the code book. Only follow-up works have been able to reduce this data
requirement, including the more powerful distinguisher called multiple zero-
correlation (MPZC) linear distinguisher proposed in [15], which exploits the fact
that there are numerous zero-correlation linear approximations in susceptible
ciphers. While needing (close to) the full code book is an inherent property of
zero-correlation attacks, the reason for the high data complexity in our case is
purely due to the specification of MiMC and the attacked number of rounds, and
not due to an inherent property of our attack.

Splice-and-cut meet-in-the-middle attacks and biclique attacks are other
examples of attacks that often come with time complexities relatively close to
exhaustive search. Indeed, an extension of the biclique approach first described
in [13] has a brute-force phase for a number of rounds as part of the attack. It
can in principle work for any number of rounds and is hence best described as a
particular optimization of brute-force key guessing. However, later variants then
showed examples where the gain over brute force was in the order of millions [36].
Still, we note that the complexity of biclique attacks scales differently than our
attack, whose runtime cost depends strongly on the details of the target cipher
MiMC.
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Finally, we point out that any attack that is better than brute force is relevant,
even if it requires unrealistic amounts of data or storage. Indeed, the main goal
of cryptanalysis is finding a “certificated weakness”, that is, an evidence that the
cipher does not perform as advertised. In other words, in academic cryptography,
a weakness or a break in a scheme is usually defined quite conservatively: It may
require impractical amounts of time, memory, or data.

The Number of Rounds Needed for Security. It may be of interest to
estimate the number of rounds needed for MiMC to be resistant against this
attack. To this end, we bound the operations needed to compute all monomials
of odd degree, up to a maximum degree D.

Lemma 2. Let 1 ≤ D ≤ 2n − 1 and x ∈ F2n . The overall number of operations
needed to compute all odd powers xi for i ∈ [3, D] is given by 1 squaring and⌊
D−1

2
⌋
multiplications.

Proof. From x, calculate and store q := x2. The odd powers of x can now be
successively computed as xi+2 = xi · q for all odd integers i in the interval
[1, D − 2]. This yields a total of 1 squaring and

⌊
D−1

2
⌋
multiplications.

Assume for simplicity that dn · log3(2)e − 1 rounds can be covered by a zero
sum, and that the cost of solving the final polynomial equation is negligible.
As before, we expect the time complexity to be dominated by the number of
operations needed to construct the polynomial F (K). Since the degree of this
polynomial is upper-bounded by 3rKR , by Lemma 2 at most [(3rKR − 1)/2] · 2n−1

multiplications are required to compute all monomials with odd exponents in
F (K) (where all monomials with even exponents are computed via Eq. (11)).

Since one encryption of MiMC costs dn · log3(2)e multiplications, the number
of extra rounds ρ for MiMC must satisfy

(3ρ+1 − 1) · 2n−2 ≥ 2n · (dn · log3(2)e+ ρ)

in order to provide security against the attack just presented. This would, for
example, require at least ρ = 5 extra rounds for n = 129 (more generally, if R
is the number of rounds of MiMC-n/n, then ρ ≈ dlog3(2 ·R)e more rounds are
sufficient to restore the security12). We remark that this rough estimation is not
intended to replace the number of rounds proposed by the designers.

6 An Algebraic Attack on Ciphers with Low-Degree
Round Functions

Here we generalize the key-recovery attack on MiMC described in Section 5 and
discuss a generic attack strategy for any block cipher working over (F2n)t, where
n, t ∈ N, t ≥ 2 and n ≥ 3.
12 In more details, ρ ≥ log3(4 · (R+ ρ) + 1)− 1. The previous estimation is obtained by

assuming ρ ≤ R/2.
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6.1 Setting

We consider an r-round block cipher Erk : (F2n)t → (F2n)t with

Erk(x) = (Rr ◦Rr−1 ◦ · · · ◦R1)(x⊕ k),

and where R,Ri : (F2n)t → (F2n)t are defined by Ri(x) = R(x)⊕ k(i). Here, R
denominates the (nonlinear) round function. Since Erk consists of t components,
we can write

Erk(x) = (Erk,1(x), . . . , Erk,t(x)),

where Erk,i : (F2n)t → F2n . We denote the compositional inverse of Erk by E−rk .
We assume that

(1) the i-th round key k(i) ∈ (F2n)t is derived from the master key k =
(k1, . . . , kt) ∈ (F2n)t by some low-degree (e.g., linear) key schedule,

(2) the round function R can be described by a polynomial

R(x = (x1, . . . , xt)) =
⊕

j=(j1,...,jt)∈{0,1,...,2n−1}t

j1+···+jt≤d

αj · xj1
1 · · · · · x

jt

t

of low-degree d with coefficients αj ∈ (F2n)t.

Our attack requires the symbolic evaluation of the encryption function Er′k for a
small number of rounds r′ to be relatively easy, which motivates the requirements
of a low-degree round function R and a low-degree key schedule. This ensures
that the polynomial representation of Er′k can be computed efficiently. In both
cases, low-degree means low compared to the size of the field F2n , i.e., d� 2n− 1.
A cipher in the literature that satisfies above assumptions and does indeed use
low-degree round functions is, e.g., HadesMiMC [30].

6.2 Strategy of the Attack

The idea of our generic attack is to recover the secret master key k of a cipher
Erk by exploiting a given higher-order distinguisher over the subset X ⊆ (F2n)t
covering 1 ≤ rZS < r rounds in the encryption or the decryption direction. For the
sake of simplicity, we follow the approach of the attack on MiMC in Section 5 and
assume that the higher-order distinguisher covers rZS rounds in the decryption
direction.

In our attack, we symbolically evaluate ErKR
k (y) with respect to the remaining

rKR := r − rZS rounds in the encryption direction and obtain polynomials
(1 ≤ i ≤ t)

ErKR
(K1,...,Kt),i(Y ) ∈ F2n [K1, . . . ,Kt, Y1, . . . , Yt]

over F2n with the master key words Kj and plaintext variables (Y1, . . . , Yt) =: Y
as indeterminates – in short, one polynomial for each of the t components of
ErKR
k (y). In general, we work with rKR � rZS , since the symbolic evaluation of

ErKR
k (y) is expensive.
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Algorithm 3: Attack on a generic cipher Erk over (F2n)t.
Input: Number of rounds r of the cipher Erk, number of rounds rZS in the

decryption direction and a subset X ⊆ (F2n )t satisfying the zero sum⊕
x∈X E

−rZS
k (x) = 0.

Output: Secret key k = (k1, . . . , kt).
1 rKR ← r − rZS.
2 for each 1 ≤ i ≤ t do
3 Compute the symbolic evaluation

fi = fi(Y1, . . . , Yt,K1, . . . ,Kt) = ErKR
(K1,...,Kt),i(Y1, . . . , Yt) of word i in the

encryption direction for rKR rounds.
4 for each monomial Y i11 . . . Y itt ·K

j1
1 . . .Kjt

t in fi with i1 + · · ·+ it ≥ 1 do
5 Pi1,...,it ← 0.
6 for each x ∈ X do
7 y = (y1, . . . , yt)← E−rk (x), via the decryption oracle.
8 Pi1,...,it ←Pi1,...,it

⊕
yi11 · · · · · y

it
t .

9 Replace Y i11 . . . Y itt ·K
j1
1 . . .Kjt

t with Pi1,...,it ·K
j1
1 · · · · ·K

jt
t .

10 Fi(K1, . . . ,Kt)← fi(K1, . . . ,Kt).
11 Find a solution k = (k1, . . . , kt) of F1(k1, . . . , kt) = · · · = Ft(k1, . . . , kt) = 0.
12 return k = (k1, . . . , kt).

Having a zero sum after rZS rounds in the decryption direction with respect
to the subset X ⊆ (F2n)t means that⊕

x∈X
E−rZS
k (x) = 0.

The main observation behind our attack is the following: We exploit the relation13

0 =
⊕
x∈X

E−rZS
k (x) =

⊕
x∈X

(
ErKR
k ◦ E−rk

)
(x) =

⊕
y∈E−r

k
(X )

ErKR
k (y) (12)

to set up the following equations (1 ≤ i ≤ t) over F2n in the variables k1, . . . , kt:

Fi(k1, . . . , kt) :=
⊕

y∈E−r
k

(X )

ErKR
(k1,...,kt),i(y) = 0. (13)

Again, ErKR
(k1,...,kt),i(y) denotes the symbolic evaluation of the i-th word after

rKR rounds in the encryption direction with the master key words as variables
k1, . . . , kt and evaluated at y ∈ F2n . Once we have set up the equation system
arising from Eq. (13), we apply Gröbner basis techniques to solve this system
over F2n for the key variables k1, . . . , kt.

In Algorithm 3 we summarize the approach of our generic attack and present
a pseudo code of the attack procedure. For completeness, a rough complexity
estimation of the attack is derived in Appendix E.
13 Note that in this representation, Erk = ErZS

k ◦ ErKR
k and E−rZS

k = ErKR
k ◦ E−rk .
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6.3 Comparison with Related Work

Interpolation Attacks. Originally introduced as a standalone attack, interpola-
tion attacks [35] are algebraic attacks that express the (potentially round-reduced)
cipher as a polynomial equation with unknown, key-dependent coefficients, and
recover these coefficients from known inputs and outputs. More recently, this
approach has been combined as a key-recovery approach together with integral
distinguishers.

Attack on CAST. In an attack [42] on the CAST cipher the authors use a
higher-order differential distinguisher to set up an equation system and finally
solve this systems for the key variables. In contrast to our attack, the authors of
[42] work with linear equation systems over F2. While this is sufficient for CAST,
working at bit level is in general more expensive than working on word level
when analyzing ciphers that are natively defined at word level.

Optimized Interpolation Attacks. One type of optimized interpolation attacks
was described in [23], where the authors find attacks on reduced-round versions
of LowMC which are more efficient than previous attacks based on key guessing
[25]. A similar attack was also used to break the full-round version of the
Frit permutation in an Even–Mansour setting [26]. The overall strategy of this
interpolation attack is to find a distinguisher (for example a constant sum in
the encryption direction in the case of LowMC) with which one attacks the
construction by finding the unknown monomials of the sums of the symbolic
representations in the inverse direction. By determining these (key-dependent)
monomials, the full key can eventually be found. Since the approach in [23] shares
some similarities with our proposal, we describe the differences between these
two strategies in detail.

The main difference regarding the two strategies concerns the way in which
the system of equations Fi(K) = 0 is constructed and consequently solved:

– In [23], the idea is to construct the function using a “standard” interpolation
technique. Specifically, the attacker does not care about the specification of
the monomials of F , which are simply considered as unknowns. Hence, the
idea is to recover (interpolate) the unknown coefficients of FK(C), and then
use various ad-hoc techniques (which are not part of the framework described
in this section) in order to recover the actual secret key.

– In our case, we heavily exploit the simple algebraic structure of the round
function in order to construct the system of equations Fi(K) = 0. In other
words, the system of equations is constructed by using a symbolic evaluation
and not by interpolation techniques.

We emphasize that the possibility to set up one of the two attacks does
not imply the possibility to set up the other one. For example, it seems hard
to use the attack presented in [23] against full-round MiMC, while we show
that our strategy can break it. Indeed, since we already need 2n−1 data for the
distinguishing property (i.e., half of the code book), we do not see how to apply
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the approach from [23] to MiMC without further increasing the data complexity
due to data needed for the interpolation step.

Attack on Pyjamask. Only recently, a similar attack on Pyjamask, competing
in the ongoing NIST call for lightweight authenticated encryption, has been
presented [27]. The authors propose an attack on the full block cipher Pyjamask-
96 by combining higher-order differentials with an in-depth ad-hoc analysis of
the system of equations obtained for 2.5 rounds of Pyjamask-96. As is the case
for CAST, the attack is set up at bit level.

Cube Attacks. Although our attack and cube attacks [24] exploit low degrees in
the polynomial description of a cipher, they are quite different from a conceptual
point of view and can be regarded as two different cryptanalytic methods. To
justify this conclusion, we briefly present the idea behind cube attacks and
contrast them with our attack ideas.

Given a cipher with input variables x0, . . . , xn−1 as the public variables (IV
bits, plaintext bits, tweak bits, etc.), and xn, . . . , xn+m−1 as the secret variables
(key bits), the output of the cipher can be regarded as a polynomial f = f(x)
in x = (x0, . . . , xn+m−1). For every set I ⊂ {0, . . . , n − 1}, f can be uniquely
decomposed into

f = tI · fS(I) + q,

where tI :=
∏
i∈I xi denotes the product of all variables indexed by elements in I,

the polynomial fS(I) does not contain any variables from tI , and where q misses
at least one variable from tI . The polynomial fS(I) is also called the superpoly
with respect to I. For any subset I ⊆ {0, . . . , n − 1} of size |I|, the authors of
[24] call the set CI of 2|I| vectors, where all the |I| variables indexed by I range
over all possible combinations of elements in F2 and the remaining n+m− |I|
variables remain undetermined, a |I|-dimensional Boolean cube. Then the sum of
f over all values in the cube CI yields the equation of polynomials⊕

v∈CI

f(v) = fS(I).

Cube attacks consist of two steps. First, attackers recover the superpoly in the
offline phase. In this phase, the attacker might need to try sufficiently many cubes
and assignments for the remaining public variables such that the superpoly fS(I)
is a balanced function of the secret variables. Moreover, determining the actual
coefficients of fS(I) requires the additional assumption that the attacker is allowed
to tweak both public and secret variables. Then, with this usable superpoly, during
the online phase, the attacker leaves the secret variables undetermined and queries
the encryption oracle with every value c ∈ CI and gets f(c) ∈ F. Eventually, the
attacker computes

fI :=
⊕
c∈CI

f(c).

The secret key information can be recovered by solving the corresponding equation
system fI = fS(I).
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Compared with our attack, cube attacks involve an initial step of finding
balanced superpolies that contain independent secret variables. Apart from that,
cube attacks do not exploit the algebraic structure of a cipher, since they rely on
the assumption of tweakable black box polynomials. In this sense, our attack is
different, since it makes heavy use of the algebraic structure of a cipher when
symbolically evaluating a certain number of rounds. Furthermore, cube attacks
use the assumption that both key and plaintext variables are tweakable, while we
rely on the assumption that some rounds of the cipher can be efficiently evaluated
symbolically (which is why we work with low-degree round functions).

7 Concluding Remarks and Future Work

Reducing the Cost of the Attack. As shown in Appendix E, two steps – namely,
(1st) the construction of the system of equations Fi(k1, . . . , kt) = 0 for 1 ≤ i ≤ t
and (2nd) solving such a system – mainly constitute the cost of the attack. In
general, it could make sense to balance the costs of the two steps in order to
either minimize the total cost of the attack or maximize the number of rounds
that can be broken.

In more detail, consider the case in which the cost of the attack is well
approximated by the cost of constructing the system of equations Fi(K) = 0.
Since this cost grows with the size of the subspace V, one strategy could be to
consider a smaller subset X .14 Obviously, this implies in general the possibility
to cover fewer rounds rZS using a higher-order distinguisher, which means that
more rounds rKR must be covered in general. However, the overall cost of the
attack may benefit from this strategy. On the other hand, the case in which the
attack cost is well approximated by the cost of solving the system of equations
Fi(K) = 0 requires the opposite strategy.

Moreover, we point out that the attacks can be improved by exploiting the
details of the cipher. To give a concrete example, consider the case of MiMC
given in Algorithm 2: The attack and its computational complexity benefit from
the fact that F (K) does not depend on P5 or P7. As another example, consider
the case of an SPN cipher where the round function is defined as

R(x = (x1, . . . , xt)) = M × (S(x1), S(x2), . . . , S(xt)),

where M ∈ (F2n)t×t and S : F2n → F2n (here, ‘×’ denotes matrix-vector
multiplication). The cost of the attack can potentially be reduced by taking into
account the fact that all monomials in the polynomial representation R depend
only on a single variable xi.

Further Generalization: Ciphers over Fp. Finally, the attack strategy can be
generalized to include ciphers over (Fp)t for a prime p. This is of particular
14 We note that we cannot adopt this strategy for MiMC since we are not able to

predict the growth of the degree of MiMC−1. With such an estimation, the strategy
proposed here can potentially reduce the cost of the attack.

26



importance since many of the new applications named in the introduction (e.g.,
STARKs and MPC) natively work over Fp, which means that many of the
recently proposed primitives are natively constructed over Fp. We remark that
the strategy of the attack does not depend on the details of the field F. Hence, the
only thing that seems to preclude this possibility seems to be a lack of knowledge
regarding efficient distinguishers over (Fp)t. Indeed, while it is well-known how to
find a higher-order distinguisher over Boolean fields (e.g., by exploiting division
property tools present in the literature [46,50,52]), the same is not yet true for
prime fields.
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SUPPLEMENTARY MATERIAL
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Scripts and Implementations

The MAGMA script Magma_Script_MiMC_Univariate_Attack has two input
parameters: N and version. N is an odd integer that decides the block size of
MiMC, i.e., MiMC-N/N . The second parameter version ∈ {1, 2} determines
whether to use Algorithm 1 or Algorithm 2. The script creates an instance
of MiMC-N/N , and runs a key-recovery attack using the chosen algorithm. It
outputs the roots of F (K), as well as the secret key k for comparison.

We also provide the file zero_sum_tester.cpp, which contains the code we
used to find the zero sums for MiMC. It accepts three parameters: the field size,
the number of rounds, and the dimension of the vector space.

A Key-Alternating Ciphers with δ = 2: Lower Bound of
Rgen

In order to compare our theoretical results (namely, Rlin) with the ones already
known in the literature (namely, Rgen), we first provide a lower bound of Rgen –
similar to the one provided in Eq. (3) – for this specific case.

Lemma 3. Let n ≥ 3. Under the assumption of Proposition 1, let S be an S-box
on S : Fn2 → Fn2 of algebraic degree 2, and let γ be defined as in Proposition 1.
First of all, γ ≤ n+1

2 . Moreover, in the case in which the function F : FN2 → FN2
for N = n · t is the concatenation of t S-boxes just defined, then for any function
G from FN2 to FN2

deg(G ◦ F ) ≤ min
{

deg(G) · deg(F ), N − 2× N − deg(G)
n+ 1

}
. (14)

Proof. By definition, note that δi ≤ 2i and that δi ≤ n − 1 for each i. Since
2i ≤ n− 1 if i ≤ (n− 1)/2, it follows that

γ = max
1≤i≤n−1

(
n− i
n− δi

)
≤ max

{
max

1≤i≤n−1
2

(
n− i
n− 2i

)
;n− n− 1

2 − 1
}

= n+ 1
2 ,

where max n−1
2 +1≤i≤n−1

(
n−i
n−δi

)
= n− n−1

2 − 1. The bound given in Eq. (14) is
obtained by replacing γ with (n+ 1)/2 in Eq. (3).

By experiments and working on the cube S-box S(x) = x3, we found that
γ = n+1

2 for each odd n ≤ 33. For this reason, we conjecture the following.

Conjecture 1. For the cube S-box S(x) = x3 : F2n → F2n , we conjecture that γ
is always equal to n+1

2 for every (odd) n.

Lastly, we have already noted in Eq. (8) that two rounds of MiMC have
algebraic degree 2. Using this observation, along with Lemma 3, we derive an
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iterative upper bound, δgen(r), for r rounds of MiMC−n/n. Define δgen(1) = 2,
and for r ≥ 2 the following holds:

δgen(r) = min
{
∆(r),

⌊
n− 2× n− δgen(r − 1)

n+ 1

⌋}
,

∆(r) =
{

2δgen(r − 1) when r is an odd integer,
δgen(r − 1) when r is an even integer.

This bound is used in Fig. 2 and Table 2.

B Algebraic Degree Growth of MiMC−1

While not needed for our attack, we also analyzed the degree growth of MiMC
in the decryption direction. The results of the tests we applied and the size of
the vector space dimensions necessary for higher-order distinguishers are shown
in Table 3.

As we can see, the algebraic degree does not increase in the second round
for the instances we tested, and after that it starts growing slowly. Moreover,
it seems to remain consistent after roughly half the number of rounds, until it
finally reaches its maximum in the final round.

n
r′ 2 3 4 5 6 7 8 9 10 11 12

7 5 6 6 – – – – – – – –
9 6 7 8 8 – – – – – – –
11 7 9 9 10 10 – – – – – –
13 8 10 11 11 12 12 12 – – – –
15 9 11 12 13 14 14 14 14 – – –
17 10 13 14 15 16 16 16 16 16 – –
19 11 14 15 16 17 18 18 18 18 18 –

Table 3: Data complexities necessary for zero sums when evaluating MiMC in
the decryption direction for various block sizes and round numbers.

C Division Property and Automatic Tools

The division property [45] – proposed as a generalization of integral and higher-
order differential distinguishers at Eurocrypt 2015 – has already been applied to
find new generic distinguishers for both SPN and Feistel constructions. However,
the original division property treats the round function at word level, therefore
by its nature some propagation information cannot be captured. In this paper,
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we evaluate some of our practical cases by mixed integer linear programming
(MILP) based on the bit-based division property, namely, two-subset bit-based
division property and three-subset bit-based division property.

We first introduce some notations for bit vectors. For any n-bit vector ~x and
0 ≤ i ≤ n− 1, we denote xi as its i-th bit. Given two n-bit vectors ~u and ~x, we
define π~u(~x) = Πn−1

i=0 x
ui
i . Moreover, ~u � ~k denotes ui > ki for all i.

C.1 Two-Subset Bit-Based Division Property

Todo and Morii [47] first introduced the bit-based division property to investigate
integral characteristics at a bit level for block ciphers. In the bit-based division
property, two cases are considered where ~u can be classified into two sets, which
is therefore called the two-subset bit-based division property (2-Subset-BDP),
according to which the parity of π~u(~x) is even or unknown. The definition of the
two-subset bit-based division property is as follows.

Definition 2 (Two-Subset Bit-Based Division Property [47]). Let X be
a multiset of n-bit vectors, and K be a set of n-bit vectors. When the multiset X
has the division property D1n

K , it fulfills the following conditions:

⊕
~x∈X

π~u(~x) =
{
unknown, if ∃ ~k ∈ K s.t. ~u � ~k,
0, otherwise.

Our Practical Results with 2-Subset-BDP.

“Small” S-Box. We model the S-boxes of size 5 and 7 by a set of linear inequalities
as in [64]. Given an S-box, we first compute a set of vectors A (also called division
trail table) that is composed of all pairs of division property input and output of
the S-box, and then calculate the H-Representation of the convex hull of A, which
is a set of linear inequalities that can describe the vectors of the S-box accurately,
by using the inequality_generator() in SageMath,15.A greedy algorithm is
usually applied to reduce the number of inequalities in order to speedup the
process of the MILP.

Based on this method, we add 21 and 1216 inequalities respectively for the
5-bit and 7-bit cube S-boxes in Table 2 to the MILP model. After calling MILP
solvers, we find a 2-round zero-sum property for them, i.e., this MILP-aided
evaluation only provides us a lower bound of 3 rounds that are necessary to
prevent higher-order distinguishing attacks. However, the practical results for
n = 5, 7 are 4, 5 rounds, which refutes the commonly believed fact that one can
always find the best integral distinguisher using 2-Subset-BDP for block ciphers,
even when not taking the secret keys into consideration.

15 https://www.sagemath.org
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“Big” S-Box. Generating linear inequalities for the H-representation of the convex
hull, often by using SageMath, requires an exponential complexity in the number
of input and output pairs. In the case of our 9-bit cube S-box, in order to build
the MILP model, 15612 inequalities are added. Such a large number of linear
equations make the whole MILP quite heavy for the off-shell optimization solvers,
which might eventually result in out-of-memory errors. In [60], an exhaustive list
of compact representations in logical condition modeling against 4-bit S-boxes
was proposed, and in [53], the Quine-McCluskey and the Espresso algorithm was
applied to generate inequalities for 8-bit S-boxes. Unfortunately neither method
is helpful for applications with S-boxes much larger than 8 bits (e.g., 129 bits).

We choose to model larger an S-box by modeling COPY, AND, and XOR operations
in the ANF following rules as given in [64]. The bounds obtained by this automatic
tool are far worse than the practical results, actually they are even worse than
the bounds retrieved by 2-Subset-BDP. Besides the hereditary inaccuracy of
2-Subset-BDP, this unpleasant gap originates from the way we model the S-box
that easily inserts a large amount of invalid division trails to the solution pool,
which leads to a quicker loss of the zero-sum property than the cipher would.

C.2 Three-Subset Bit-Based Division Property

Three-subset bit-based division property (3-Subset-BDP) [47], where ~u is divided
into three sets: “0”, “1” and “unknown”, is proposed to enhance 2-Subset-BDP
for detecting more features. [34,52]. A formal definition is given as follows:

Definition 3. (Three-Subset Bit-Based Division Property [47]). Let X be a mul-
tiset of n-bit vectors. Let K and L be two sets of n-bit vectors. When the multiset
X has the division property D1n

K,L, it fulfills the following conditions:

⊕
~x∈X

π~u(~x) =

unknown, if ∃~k ∈ K s.t. ~u � ~k,
1, else if ∃ ~̀ ∈ L s.t. ~u = ~̀,
0, otherwise.

Algorithms that can model this more precise version of the division property
efficiently should enable us to achieve better results compared with the one
obtained by the 2-Subset-BDP. However, when applied to block ciphers where
secret keys are added, it raises phenomenons that counter the intuitive.

Influence of Involving Secret Keys. In the key-independent setting, K and L
can be processed independently. However, when secret round keys are added
to the intermediates, vectors in L will affect the propagation of vectors in K.
A rule in [47] was proposed to handle the propagation: Assuming a round key
is xored with the i-th bit, then for all ~̀ ∈ L satisfying `i = 0, a new vector
(`1, `2, . . . , `i ∨ 1, . . . , `n) is appended to K. This propagation rule evokes the
problem which is called unknown-producing problem in [33].
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Influence of Focusing on Single Trail. Another important propagation rule is
XOR rules for calculating vectors in L′ from L. If ~̀ is not included in L before,
then it is inserted to L′; otherwise it is removed from L′. This XOR rule results in
the problem which is called cancellation problem in [33].

C.3 Three-Subset Bit-Based Division Property without the
Unknown Subset

According to the propagation rules for the 3-Subset-BDP, the unknown-producing
problem implies that all the vectors in Li should be determined when the secret
key is xored, and the cancellation problem implies that focusing only on one
single trail is not enough. Furthermore, after iterating i rounds, the amount of
vectors in Ki and Li explodes, which makes it harder to trace the propagation of
3-Subset-BDP.

Motivated by modeling 3-Subset-BDP efficiently, the variant three-subset
division property [34] was proposed to handle the unknown-producing problem.
However, the cancellation problem is ignored in their model, which made their
results worse than the ones by 3-Subset-BDP. In [52], the breadth-first search
algorithm and the pruning technique were combined to model the 3-Subset-BDP.
As a result, it guarantees that the sizes of Ki and Li decrease dramatically.
However, the pruning technique is useful only when the size of Li is reasonably
small, which heavily limits its applications.

To overcome these problems and model the 3-Subset-BDP efficiently, recently,
[33] proposed a model formulating the 3-Subset-BDP without the unknown
subset16.

Definition 4. (Modified Three-Subset Bit-Based Division Property [33]). Let X
and L be multisets of n-bit vectors. When X has the division property D1n

L , it
fulfills the following conditions:⊕

~x∈X

π~u(~x) =
{

1, if there are odd number of ~u′s in L,
0, otherwise.

In this new model, L is a multiset. When undertaking the propagation of bit
vectors, we count the number of bit vectors in L. Accordingly, the propagation
rules are slightly modified to guarantee the propagation of vectors for the multiset.
More details can be found in [33].

Our Practical Results with 3-Subset-BDP. We build MILP models for the
modified 3-Subset-BDP for our practical experiments for cases of MiMC with
an n-bit S-box, where n ∈ {5, 7, 9}. We obtain exactly the same results with
the practical ones in Table 2. Therefore, we conclude that by modeling the
modified 3-Subset-BDP with the help of MILP automatic tools, we can evaluate
16 The idea of handling the cancellation problem is mentioned in [52], but it is not

utilized in their MILP models.
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an accurate bound resistant to higher-order distinguishing attacks for MiMC
with “small” S-boxes.

However, as far as we know, there are no efficient methods to model a larger
S-box with the (modified) 3-Subset-BDP. Thus, our Rlin bound derived in this
paper can evaluate S-boxes of any size, and give a bound very close to the
practical result by experiments.

D Multivariate Attack Approach for MiMC

In this section, we consider attacking MiMC by solving a system of equations
over F2. We will thus have n key variables. While this approach leads to a less
efficient attack on MiMC when compared to our main approach described in
Section 5, it may be useful for other cryptographic constructions which work
only over F2.

D.1 Generating Low-Degree Equations in the Key Bits

Our goal is to find the key bits by solving a system of n key variables in n
polynomials over F2. Only for simplicity, we focus on the instances where we can
choose rKR = 1 rounds of encryption. In order to build this system, we evaluate
MiMC in the encryption direction over one single round symbolically, where we
keep the key bits as variables and where we use the concrete values obtained by
the oracle for the input bits.

This step results in n sums of 2n−1 values, where each sum is a degree-1
polynomial over F2 in the variables k1, k2, . . . , kn. This is the case because all
monomials pi, pi · pj for i 6= j, and ki · kj for i 6= j, where i ∈ [1, n], j ∈ [1, n],
are removed after substitution and summation. The remaining monomials pi · kj ,
where i ∈ [1, n], j ∈ [1, n], are linear in the key bits after substitution.

D.2 Solving a System of n Linear Equations in n Variables

Since we know that the sum in each bit after one single round is 0 due to the
number of chosen ciphertexts, our equation system has the following structure:

f1(k1, k2, . . . , kn) = 0
f2(k1, k2, . . . , kn) = 0
...
fn(k1, k2, . . . , kn) = 0

where each fi : (F2)n → F2 is a degree-1 polynomial. As shown in the following,
the complexity of solving such a system of n linear equations in n variables can
be given as the complexity of Gaussian elimination, which is

T3 ∈ O(n3)

bit operations, and thus well within the allowed time frame for the attack.
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n Time Data
33 228.61 2n−1

63 257.68 2n−1

193 2186.07 2n−1

255 2247.67 2n−1

513 2504.66 2n−1

Table 4: Attack complexities when using the multivariate approach.

Low-Degree Polynomial. Here we briefly analyze the cost of solving a polynomial
system over Fn2 of algebraic degree d. For d = 1, this system is linear and can
be solved in a number of bit operations in O(n3) with Gaussian elimination. If
d > 2, the best strategy may be to solve the system using a dedicated brute-force
algorithm, as presented in [56]. For optimal choices of algorithm parameters17,
this is expected to require 4d · log(n) · 2n bit operations. In many instances, it
may therefore be less costly to brute-force the polynomial system in this way
than brute-forcing the encryption system directly. Lastly, techniques of solving
quadratic polynomial systems (i.e., d = 2) have received extensive study from the
cryptographic community. Under some assumptions on the polynomial system,
[55] estimates the asymptotic time complexity of this problem to be in O

(
20.841n).

D.3 Summary of the Attack

In total, following steps are necessary.

1. (Online) Request the decryptions of 2n−1 chosen ciphertexts.
2. (Offline) For each of the obtained plaintexts, evaluate a single round of

MiMC in the encryption direction and keep the key bits as variables.
3. (Offline) Solve the resulting system of n linear equations in n unknown key

variables.

D.4 Attack Complexity

Note that since the algebraic degree of one round is only 2, we can obtain at
most n different monomials for each bit position (namely, degree-1 monomials
in the key bits) if we directly substitute the plaintext bits with the concrete
values obtained from our oracle. Since we can therefore omit the computation
of all monomials of the form ki · kj , where i 6= j and i ∈ [1, n], j ∈ [1, n], the
symbolic evaluation of a single round of MiMC is similarly expensive as the direct
evaluation, and we approximate this complexity by n2. Building the sums adds
17 Here, we mean optimality with respect to the time complexity. In practice, the

authors note that the optimal choice depends on the available hardware (see [56,
Sect. 5]).
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an additional ≤ n2 bit operations, and due to the number of input vectors we
thus arrive at a total complexity of

CA ≤ 2n−1 (2n2)
bit operations. Optimistically assuming18 that we need only n2 bit operations
for a direct evaluation of f(x) = x3, the cost of exhaustively searching for the
correct key is around

CE = 2n ·
(
n2 ·

⌈
n

log2(3)

⌉)
bit operations, and CA < CE .

Finally, the number of chosen ciphertexts required for the zero sum results in
a data complexity of 2n−1, and the memory complexity is negligible at n2, both
for the symbolic evaluations and for the final solving step involving an n × n
matrix over F2. The final complexities are shown in Table 4.

E (Rough) Complexity Estimations of the Attack
Proposed in Section 6

For our complexity estimations of the attack proposed in Section 6, we count finite
field operations over F2n . We consider multiplications and squarings separately,
since the squaring operation is an F2-linear operation in fields of characteristic 2.

As is the case for the attack on MiMC in Section 5, the generic attack
strategy is composed of two steps. First, we construct the system of equations
Fi(k1, . . . , kt) = 0 for 1 ≤ i ≤ t, and then we solve this system over F2n for
k1, k2, . . . , kt. We recall that the cost of the first step grows with the size of X ,
the subset needed for a zero sum. Since estimating the complexity for these steps
more precisely would require a thorough analysis of the particular polynomial
system in question, in the following we briefly describe these two steps without
going into all the details an attacker could potentially exploit.

E.1 Setting Up the Equation System

For the equation system, we first need to symbolically evaluate rKR encryption
rounds, which results in t polynomials

ErKR
(K1,...,Kt),i(Y1, . . . , Yt), 1 ≤ i ≤ t,

of degree D = D(rKR) over F2n in variables K1, . . . ,Kt and Y1, . . . , Yt. Every
monomial Y i11 · · ·Y

it
t in any polynomial ErKR

(K1,...,Kt),i(Y1, . . . , Yt) needs to be
replaced by

Pi1,...,it :=
⊕

y=(y1,...,yt)∈E−r
k

(X )

yi11 · · · · · y
it
t ,

18 We ignore the cost for key additions and constant additions, as well as the memory
(or additional computation time) needed to store (or compute) the round constants.
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leaving us with t polynomials in the key variables K1, . . . ,Kt as indeterminates.
Here we need an estimation for computing all Pi1,...,it , or equivalently to write
down a system of equations of the form as in Eq. (13).

For t = 1, the number of multiplications and squarings needed was stated in
Lemma 2. The situation is more complicated for t ≥ 2, since several strategies can
be used to compute the monomials and minimize the number of multiplications,
the number of squarings, or the memory cost. Since this depends on the details
of the considered primitives, in the following we limit ourselves to present a
high-level analysis of two extreme cases, namely n = 1 (which corresponds e.g.
to LowMC) and n ≥ 3 and D ≤ 2n − 1 (which corresponds e.g. to HadesMiMC).

The Number of Needed Multiplications for Specific Cases. Here we
limit ourselves to analyze two extreme cases, namely

(1) n = 1;
(2) n ≥ 3 and D ≤ 2n − 1.

In the first case, the number of multiplications can be upper-bounded by
the number of different monomials, namely

∑D
i=1
(
t
i

)
where D < t. This is done

through successive multiplications by degree, i.e., every monomial of degree d can
be computed by combining a monomial of degree d−1 with a single multiplication.

In the second case, we propose the following Lemma.

Lemma 4. Let D be an integer with 1 ≤ D ≤ 2n − 1. The number of non-
squaring based multiplications needed to compute all monomials of total degree at
most D in t variables over F2n is upper-bounded by(

D∑
i=2

(
i+ t− 1
t− 1

))
− t · D − 1

2

Proof. It is a well-known fact that the number of different monomials of degree d
in t variables isMd =

(
d+t−1
t−1

)
. As above we use a successive multiplication, where

every monomial of degree d can be computed by combining a monomial of degree
d− 1 with a single multiplication. It follows that the number of multiplications
needed to compute all monomials in at least two variables up to degree D is
upper-bounded by

M =
D∑
i=2

(Mi − t) =
(

D∑
i=2

(
i+ t− 1
t− 1

))
− (D − 1)t.

Lastly, we add the t univariate monomials to M , which by Lemma 2 amounts to
at most t · D−1

2 multiplications.

We note that a monomial with all univariate degrees being even can be
generated by squaring a lower-degree monomial. This fact is not considered in
Lemma 4 since such a squaring is counted as a non-squaring-based multiplication.
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Hence, there may be a different tradeoff between squarings and non-squaring-
based multiplications when counting the number of multiplications for computing
all monomials of total degree at most D in t variables. Potentially, the tradeoff
may be improved in favour of squarings when dealing with a concrete cipher.

E.2 Complexity Estimation for Solving the Equation System

For t > 1, the resulting equation system is a multivariate polynomial system.
If we additionally have n > 1, the standard strategy for finding the solutions
of such systems19 is through a Gröbner basis [57]. Such an attack essentially
consists of first computing a Gröbner basis in degrevlex order, then converting
it to the lex order, and finally factorizing a univariate polynomial in this basis
and back-substituting its roots. It is in general a hard problem to estimate the
complexity needed for these steps. As largely done in the literature, we assume
that the most expensive step is the first one (i.e., computing a Gröbner basis in
degrevlex order). For generic systems, the complexity of this step for a system
of N polynomials fi in V variables is O

((
V+Dreg
Dreg

)ω) operations over the base
field F, where Dreg is the degree of regularity [54] and 2 ≤ ω < 3 is the linear
algebra constant. The degree of regularity depends on the number of polynomials
N, their degrees di, as well as the algebraic structure of the system. Closed-form
formulas for Dreg are only known for some special cases. For example, if V = N
(namely, the case considered in this attack), a simple closed form is given by
Dreg = 1 +

∑N−1
i=0 (di − 1). We remark that this is a pessimistic upper bound.

Indeed, the algebraically simple ciphers we are considering may exhibit more
algebraic structure than what is the case for generic systems.
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