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ABSTRACT 

The non-heme iron and (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) dependent 

aromatic amino acid hydroxylases (AAAHs) family of enzymes include phenylalanine 

hydroxylase (PAH), tyrosine hydroxylase (TH), and tryptophan hydroxylase 1 and 2 

(TPH1 and TPH2). PAH catalyses the rate-limiting step in the catabolism of 

phenylalanine (L-Phe) that mainly takes place in the liver. TH catalyses the first and 

rate-limiting step in the biosynthesis of catecholamine neurotransmitters and hormones 

dopamine, norepinephrine and epinephrine in the brain and periphery. TPHs catalyse 

the first and rate-limiting step in the biosynthesis of serotonin in the peripheral (TPH1) 

and the central (TPH2) nervous systems. The AAAHs are of physiological and clinical 

importance. Dysfunctional PAH results in phenylketonuria (PKU), characterised by 

elevated levels of L-Phe in the blood, which can lead to brain damage. Catecholamine 

deficiency, due to dysfunctional TH, leads to motor dysfunction and neuropsychiatric 

disorders, such as TH deficiency (THD) and Parkinson’s disease. Reduced level of 

serotonin has been linked to anxiety disorder, depression, posttraumatic stress disorder 

and attention deficit hyperactivity disorder. Hence, the reactions catalysed by the 

AAAHs are important and tightly regulated. The aim of this thesis was to study the 

regulation of the AAAHs PAH and TH both in physiological and pathological states. 

We focused on regulatory mechanisms by selected post-translational modifications and 

protein-protein interactions and phosphorylation, investigating their role in the 

function, localisation and proteostasis of these enzymes using cellular and animal 

models. 

We investigated the role of DNAJC12, a type III member of the HSP40/DNAJ family, 

in the folding and degradation of wild-type (Wt) and mutant PAH. We observed a 

positive correlation between DNAJC12 and Wt and mutant PAH protein levels in the 

soluble cellular fractions. Detailed characterisations in liver lysates of the 
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hyperphenylalaninemic Enu1 mouse (p.V106A-PAH mutation) revealed increased 

ubiquitination, instability, and aggregation of mutant PAH compared with Wt PAH. 

Furthermore, we showed that in the liver lysates, DNAJC12 interacts with both Wt and 

mono-ubiquitinated PAH; also, PAH mutation did not alter mRNA expression of 

DNAJC12. Our results support the role of DNAJC12 not only in proper folding but also 

in the processing of misfolded ubiquitinated PAH. 

We characterised a new custom-made Pah-R261Q knock-in mouse carrying mutation 

c.782G>A in the Pah gene. The homozygous Pah-R261Q mice exhibited reduced PAH 

activity and BH4 responsive hyperphenylalaninemia. Moreover, the mutant mice 

presented a reduced BH4 content in the liver, altered lipid metabolism, and increased 

oxidative stress, including increased mRNA expression of DNAJC12. Furthermore, the 

Pah-R261Q mice displayed large amyloid-like ubiquitinated PAH aggregates. The 

colocalisation of mutant PAH with selective autophagy markers indicated the 

involvement of the autophagic pathway in the clearance of mutant aggregates. These 

findings indicate a paradigm shift from a loss-of-function disorder to a toxic gain-of-

function in PKU pathology. 

We next investigated the functional role of Ser31 phosphorylation in the regulation of 

TH in the cellular models. We observed that the perinuclear distribution of THpSer31 

was concomitant with Golgi complex and synaptic vesicle marker in rat and human 

dopaminergic cells. The co-distribution of THpSer31 with vesicular monoamine 

transporter 2 (VMAT2) and α-synuclein (α-syn) in cells and their detection as co-

immunoprecipitant in mouse brain lysate indicated an association of TH with vesicles. 

Furthermore, disruption of the microtubules caused accumulation of TH in the cell 

soma. Our study revealed that Ser31 phosphorylation regulates the subcellular 

localisation of TH by facilitating protein-protein interaction with VMAT2 and α-syn 

and enabling its transport toward axon terminals along microtubules.  

Finally, using SH-SY5Y cells, we sought to investigate the relationship between 

phosphorylation at different phosphosites and the nuclear distribution of TH, which 
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was earlier proposed to be associated with Ser19 phosphorylation. We indeed observed 

that THpSer19 was predominantly nuclear, yet the phospho-null mutant of Ser19 (V5-

TH-S19A) surprisingly accumulated significantly higher in the nuclear fraction when 

compared to Wt. Moreover, other phosphosites (Ser31 and Ser40) did not seem to 

influence the nuclear distribution of TH. When the phospho-null mutant of Thr8 (V5-

TH-T8A) was expressed in SH-SY5Y cells, recombinant TH in the nuclear fraction 

was significantly reduced compared to Wt and the phospho-mimicking mutant V5-TH-

T8E, indicating the potential role of Thr8 phosphorylation in the nuclear distribution 

of TH. In addition, inhibition of importin-β also reduced the amount of recombinant 

TH in the nucleus suggesting the involvement of the importin-β/RanGTP system in the 

nuclear localisation of TH in SH-SY5Y cells.  

To conclude, this study has brought new insights on the short-term regulation of 

AAAHs (PAH and TH) in physiological and pathological conditions by interacting 

with partners and by post-translational modifications, such as ubiquitination and 

phosphorylation (for TH), which ultimately affect their abundance, function and 

availability in different compartments of cells. Thus, this study has shed light on some 

of the molecular mechanisms involved in the proteostasis of AAAHs. Together, these 

findings open new research avenues to better understand disorders associated with the 

AAAHs. 
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1 GENERAL INTRODUCTION 

1.1 PROTEIN HOMEOSTASIS 

Proteostasis refers to the maintenance of function, amount, interactions, and location 

(both intracellular and extracellular) of each individual protein [1]. Thus, the state of a 

balanced proteome is crucial under normal conditions or in the face of an intrinsic or 

environmental stressor to prevent disease onset. Proteostasis depends on several 

regulated protein networks that control protein synthesis (transcription and translation), 

folding (chaperone assisted), trafficking, assembly/disassembly and degradation 

(ubiquitin-proteasome system and autophagy) [1, 2]. The robustness and adaptability 

of the integrated proteostasis networks govern the life of the protein from beginning to 

end, which is essential for the long-term health of the cell. Defects in any of the 

regulatory protein processing due to ageing, metabolic or environmental stress, or 

mutations associated with genetic disorders can trigger the breakdown of the entire 

network, loss of proteostasis, and disease development [3, 4]. 

1.1.1 PROTEIN FOLDING  

Protein folding is described as the self-assembly of a polypeptide, where the primary 

structure – the amino acid sequence – includes the necessary information to reach a 

three-dimensional native structure. However, despite Anfinsen’s discovery of the 

spontaneous self-assembly of an unfolded protein into its native conformation over 50 

years ago [5] and decades of intense research to understand the molecular mechanisms 

involved in protein folding, it remains a grand challenge to predict how proteins fold 

into their native state. The protein-folding problem poses several questions; i) The 

folding code: how the tertiary/quaternary native structure of a protein is determined by 

the physicochemical properties encoded in its simple amino-acid sequence?; ii) The 

folding rate: how can proteins fold so fast, given an almost unfathomable number of 
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possible conformations?; iii) The protein structure prediction: the long-standing 

problem of predicting the native structure of a protein from its amino acid sequence 

[6]. However, the recent breakthrough in protein structure prediction by artificial 

intelligence, the AlphaFold, holds a promising future in the research [7]. 

Anfinsen and colleagues' thermodynamic hypothesis of protein folding is a milestone 

in protein science. They postulated that the native structure of a protein is the 

thermodynamically stable structure with the lowest free energy (ΔG) [8]. 

Hydrophobicity and steric constraints are the primary determinants in folding 

complemented by many different small interactions, such as hydrogen bonds, van der 

Waals forces and salt bridges, giving rise to a stable and dynamic architecture [9, 10]. 

The folding rate conundrum made Cyrus Levinthal raise the question in the meeting 

Société de Chimie Physique, referred to as the “Levinthal’s paradox” [11]: “How does 

a protein quickly fold into its native state in microseconds out of near-infinite possible 

ways to fold?” This question led to the development of a powerful array of new 

experimental methods and advances in protein science [12]. As a consequence the 

kinetics of protein folding developed to emphasize a funnel-shaped energy landscape 

[13], which has been further supported by several studies [14]. The landscape has many 

high-energy states on the top and a few low-energy states at the bottom. The nascent 

polypeptides travel down the funnel, followed by a quick hydrophobic collapse and 

stochastic conformations to reach the most stable native conformation resulting in a 

decreased free energy, associated to a larger decrease in enthalpy than the decrease in 

entropy upon folding [6]. 

Over the years, the notion of a funnel-shaped free energy landscape has evolved to 

include the revised concept of the native state; rather than indicating the unique 

structure with the lowest energy, it represents the ensemble of soluble functional and 

fluctuating conformers, which fits with the increasing realisation of proteins as 

dynamic structures [15, 16]. The conformational fluctuations of proteins on the 

complex landscape are driven by their intrinsic thermodynamic properties [16], and the 
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inclusion of water interactions further exacerbates the complexity. The energy 

landscape becomes even more complicated when the system deviates into a misfolding 

and aggregation pathway. Similar to protein folding, even aggregation follows a 

hydration change (Figure 1.1) [17].  

 

Figure 1.1: Free energy and hydration landscape of the protein-folding process. Unfolded 
proteins are highly hydrated and have high conformational entropy. The proteins form more 
ordered intermediates that are less hydrated as they evolve downwards in the funnel. In some 
cases, these intermediates face a change in the landscape, which gives rise to metastable 
conformations, leading to less hydrated aggregated species (ordered or amyloid). Illustration 
adapted from [17] and created using Biorender.  

The other factors that can steer biologically active protein to aggregation depend on the 

intermediates formed during the folding process and their energy state, the energy 

barrier, and the exposed hydrophobic surface to an aqueous milieu [17]. 

Contrary to the protein folding in vitro, the cell interior is densely populated with 

different macromolecules and metabolites in a controlled redox environment; 

therefore, the protein folding in vivo employs a different mechanism to avoid 
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aggregation. Proteins are synthesized at the ribosomes as linear chains that must fold 

into the functional native structure, as defined above, in a crowded environment [18]. 

The crowded milieu puts an unfolded protein at risk of aberrant misfolding and 

aggregation, a hallmark of many neurodegenerative diseases [19]; therefore, cells have 

devised a complex network of molecular chaperones that prevent aggregation and 

promote folding [20]. Although several factors involved in protein folding in vivo have 

been identified, it remains challenging to determine the folding landscape in the cellular 

environment. Nevertheless, several experimental and theoretical studies have put 

forward the folding mechanism in a crowded environment in the cell. Proteins can start 

folding cotranslationally inside the ribosome exit tunnel as small modules and coalesce 

upon emergence from the exit tunnel [21]. Several ribosome-binding chaperones 

interact with nascent polypeptides, followed by chaperones, such as HSP70, with no 

affinity to the ribosome [21]. Furthermore, the molecular crowding increases the 

stability of compact states [22, 23], enhances folding rates [24] and induces 

conformational changes necessary for protein function [25]. 

1.1.2 CHAPERONE SYSTEM 

Molecular chaperones are proteins that interact, stabilize and assist another protein in 

the folding process and the maintenance of their native state [26]. Chaperones are 

categorized based on their sequence homology, and many are known as stress proteins 

or heat-shock proteins (HSPs), as their synthesis is induced under the condition of 

stress, such as heat shock or oxidative stress. Chaperones were initially named 

according to their molecular weight (HSP40, HSP60, HSP70, HSP90, HSP100 and the 

small HSPs). The chaperones that are involved in de novo protein folding and refolding, 

such as the HSP70s, HSP90s and the chaperonins (HSP60s), are ATP regulated and 

recognise exposed hydrophobic amino acid side chains of a non-native state; folding is 

then promoted during binding and release cycles driven by ATP and co-chaperones 

[27]. The small HSPs act as first-line defenders, buffering unfolded proteins against 

aggregation in an ATP-independent manner [28]. Moreover, molecular chaperones are 
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involved in diverse protein quality control roles, including oligomeric assembly, 

subcellular trafficking, and proteolytic degradation [20, 29]. 

1.1.2.1 The HSP70 cycle 

The HSP70s are one of the most ubiquitous classes of chaperones and are involved in 

all the typical chaperone functions mentioned above [30]. HSP70s almost always 

require HSP40s (also known as DNAJ proteins; discussed in section 1.4.2) and 

nucleotide exchange factors (NEF) as cofactors to function (Figure 1.2). These 

cofactors regulate the binding of client proteins to HSP70s by affecting the interaction 

between nucleotides and HSP70s [31]. The amino-terminal ATP-binding domain 

regulates the carboxy-terminal peptide-binding domain’s conformation. The latter 

constitutes a β-sandwich subdomain that recognizes hydrophobic amino acids and an 

α-helical lid segment. Together both domains regulate the binding affinity of client 

proteins in an ATP-dependent manner. The lid's ATP-bound open conformation state 

allows a high “on” and “off” rate for the folding polypeptides. Through ATP 

hydrolysis, which HSP40 accelerates, client interaction with HSP70 is stabilised due 

to closure of the lid [20]. DNAJ proteins can directly interact with unfolded client 

proteins and recruit HSP70 to the client protein [31]. NEF then catalyses ADP-ATP 

exchange resulting in lid opening and substrate release. The cycle begins again if the 

native state of the client protein is not achieved upon release to avoid aggregation.  
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Figure 1.2: The HSP70 cycle. Illustration adapted from [31] and created using Biorender. (1) 
The DNAJ-protein binds to the client protein and (2) interacts with Hsp70-ATP via its J-
domain, which facilitates the transient interaction of the client protein with the “open” peptide 
binding site of Hsp70. The J-domain and the client induce (3) ATP hydrolysis, causing a 
conformational change in Hsp70, closing the helical lid over the cleft, stabilizing client 
interaction and departure of J-protein from the complex. (4) Nucleotide exchange factor (NEF) 
then binds HSP70-ADP with high affinity; (5) a distortion of the ATP binding domain 
dissociates ADP, after which (6) ATP binds to Hsp70. Low-affinity interaction of the client 
protein with Hsp70-ATP causes its release from the complex. In the case that the native state 
is not attained upon release, the J-protein rebinds to exposed hydrophobic regions of the client 
protein, and the cycle begins again. Illustration adapted from [31] and created using Biorender. 

The (re)binding of HSP70 most likely results in conformational remodelling to remove 

kinetic traps in the folding process [32]. Moreover, increased expression of the 

molecular chaperone HSP70 could be critical in mitigating toxicity induced by protein 
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aggregation in disease models [33]. Several studies have suggested that chaperones, 

particularly HSP70, may have an essential role in the degradation of proteins through 

the ubiquitin-dependent proteasome system and the autophagic pathway by 

collaborating with other chaperones and co-chaperones [34, 35]. 

1.1.3 UBIQUITIN-PROTEASOME SYSTEM 

Cellular proteins are dynamically moving between states with varying turnover rates. 

In the midst of it, the ubiquitin-proteasome system (UPS) plays a crucial role in the 

degradation of most cellular proteins, including short-lived, misfolded and damaged 

proteins. Therefore, the UPS is critical in maintaining cellular function and represents 

the main pathway involved in the clearance of proteins, consisting of two consecutive 

steps: ubiquitination and proteolytic degradation [36]. However, when UPS is impaired 

due to increased accumulation of misfolded proteins, evidence suggests cooperative 

crosstalk between UPS and autophagy (Section 1.1.4) to maintain proteostasis [37].  

The ubiquitination pathway involves a three-step enzymatic cascade mechanism of 

ubiquitin activation, conjugation and ligation. This leads to the covalent attachment of 

ubiquitin, a highly conserved 76-amino acid residue protein, to a substrate protein to 

target it for proteolytic degradation (Figure 1.3). The ATP-dependent activation of 

ubiquitin by ubiquitin-activating enzyme E1 occurs by forming a thioester bond 

between the C-terminal glycine residue of ubiquitin and the sulfhydryl side group of a 

cysteine residue in the E1 protein. The activated ubiquitin is then transferred to the 

cysteine residue of a ubiquitin-conjugating enzyme E2. The ubiquitin ligase E3 

catalyses the final step of covalent attachment of ubiquitin to an ɛ-amino group of a 

lysine residue in the substrate protein [36, 38, 39]. The linkage of a ubiquitin molecule 

to a substrate is usually followed by the synthesis of polyubiquitin chain formation, in 

which the C-terminus of each ubiquitin is linked to the lysine residue (usually Lys48) 

of the previous ubiquitin. Proteins marked by mono-ubiquitin or polyubiquitin chains 

are typically degraded by the 26S proteasome complex [40, 41]. 
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Figure 1.3: The ubiquitin-proteasome system. Illustration created using Biorender. 
Overview of the ubiquitin-proteasome pathway. (1) In the first step, ubiquitin is activated by 
the E1 enzyme through adenylation and high-energy thioester bond formation. Second, the 
ubiquitin molecule is conjugated with the E2 enzyme via a high-energy thioester linkage. 
Finally, the E3 enzyme receives the ubiquitin molecule, recognises a protein substrate and 
catalyses the covalent attachment of ubiquitin to the substrate protein (mono-ubiquitination). 
(2) The mono- or poly-ubiquitinated protein substrate is then shuttled to the 26S proteasome 
for degradation. Illustration created using Biorender.  

The ATP-dependent assembly of two 19S cap-like regulatory particles on each end of 

a 20S cylindrical core particle forms the 26S proteasome complex [36]. The regulatory 

19S particles impart specificity and control, and the active site of the 20S core particle 

exhibits chymotrypsin-like, trypsin-like, and caspase-like proteolytic activities [42, 

43]. The proteasome unfolds, cleaves, and releases the substrates into short peptides 

which are then rapidly processed by aminopeptidases into amino acids and then 

recycled [44, 45].  

1.1.4 AUTOPHAGY 

Autophagy, which means self-eating, is a cellular process essential for balancing 

energy sources in response to nutrient stress and maintaining cellular homeostasis by 
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degrading cellular components. Although there are theme-specific variations, three 

forms of autophagy have been described: macroautophagy, microautophagy and 

chaperone-mediated autophagy, all of which lead to the same proteolytic degradation 

of cellular components in the lysosome [46].  

Macro and microautophagy can be either selective or non-selective (bulk), triggered by 

different signals. Selective autophagy involves selective degradation of, e.g., 

misfolded/aggregated proteins (aggrephagy), organelles (mitophagy, pexophagy, 

ribophagy, nucleophagy, reticulophagy), macromolecular complexes (lipophagy) and 

foreign bodies (bacterial and viral xenophagy) [47]. Both selective and non-selective 

autophagy engage the same core machinery. However, in selective autophagy, several 

receptor proteins (such as p62/SQSTM1 (sequestosome1), NBR1 and optineurin) 

facilitate the cargo selectivity that links labelled cargo to the growing phagophore by 

interacting with other adaptor proteins [48]. In macroautophagy, the cargo is 

sequestered into a double membrane-bound vesicle (autophagosomes) and delivered to 

the lysosome by vesicular fusion, forming the autolysosomes [49]. In the case of 

microautophagy, the cargo protein interacts with the surface protein of the lysosome 

and is internalized by the invagination of the lysosomal membrane creating small 

vesicles that detach into the lumen for degradation [50, 51]. Chaperone-mediated 

autophagy is selective. The only substrates processed by this mechanism are proteins 

containing a specific KFERQ motif in their amino acid sequence [52]. Heat shock 

cognate 70 (HSC70) is the only chaperone identified to directly bind to this motif [53]. 

Briefly, the core autophagosomal machinery consists of more than 30 autophagy-

related (Atg) proteins that have been identified and characterized. Initially identified in 

yeast, homologues are now known for all eukaryotes [54-57]. Atg machinery assembles 

upon autophagy induction at one or several phagophore assembly sites [58]. The 

phagophore formation is initiated by activation of unc-51-like kinase 1 (ULK1; human 

homologue of Atg protein) complex, regulated by mammalian target of rapamycin 

complex 1 (mTORC1) and adenosine monophosphate-activated protein kinase [59]. 
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The ULK1 targets class III phosphatidylinositol-3 kinases, notably Vps34 (vesicular 

protein sorting 34) and its binding partner beclin-1, promoting the production of PIP3 

(phosphatidylinositol 3-phosphate), which is essential for phagophore elongation and 

maturation [60]. Although ULK1 plays a crucial role in autophagy, the cascade can 

also be triggered by ULK1-independent pathways [61]. Other critical proteins involved 

in the autophagosome biogenesis and maturation are categorized into three subfamilies: 

LC3 (microtubule-associated protein light chain 3), GABARAP (γ-aminobutyric acid 

receptor-associated protein) and GATE-16 (Golgi-associated ATPase enhancer of 16 

kDa) [62]. Membrane trafficking factors such as the coat complexes COPI and COPII 

(coat protein complexes I and II), the vesicle- and organelle-identifying RAB (Ras-

related protein) GTPases, HOPS (homotypic vacuole fusion and protein sorting), and 

SNARE (soluble N-ethylmaleimide sensitive fusion protein receptor) mediate 

autophagosome fusion with lysosome [49, 63]. 

1.2 AROMATIC AMINO ACID HYDROXYLASES  

1.2.1 BACKGROUND 

The enzyme family of the (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4)- and non-

heme iron-dependent aromatic amino acid hydroxylases (AAAHs) includes the 

enzymes phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH) and the 

tryptophan hydroxylases (TPH1 and TPH2). Phylogenetic studies propose a common 

ancestry for AAAHs, and studies in lower eukaryotes indicate that PAH most likely is 

the ancestor of metazoan AAAHs [64-66]. The three mammalian enzymes are very 

similar in structure and domain organisation. TH and TPHs are homotetramers, 

containing four identical subunits, whereas PAH presents an equilibrium of dimeric 

and tetrameric forms [67, 68] (The representative tetrameric form of human PAH 

(hPAH) is shown in Figure 1.4). Each subunit of the mammalian enzymes is organized 

in three domains: An N-terminal regulatory domain including an ACT-domain fold 

(yellow), a catalytic domain (pink), containing an active-site with coordinated non-
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heme iron where the respective amino acid substrate is hydroxylated, and a C-terminal 

oligomerisation domain (green). PAH is also present in bacteria, both as dimeric [69] 

or monomeric [70, 71] forms, which only include the catalytic domain. 

 

Figure 1.4 Crystal structure of full-length human PAH with bound BH4. The figure was 
created in PyMol version 2.4.1 using PDB id 6HYC. Ribbon representation of tetrameric 
hPAH with BH4 drawn as sticks (blue) in all the active sites. Each subunit has three domains 
represented in different colours; N-terminal domain (yellow), the catalytic domain (pink) and 
the oligomerisation domain (green). The tetrameric PAH is a dimer of dimers. 

Each of the AAAH enzymes uses dioxygen (O2) and the cofactor BH4 to catalyse the 

incorporation of a hydroxyl group on the aromatic ring of the amino acid substrate. The 

AAAHs catalyze crucial neurometabolic reactions. PAH catalyses the hydroxylation 

of phenylalanine (L-Phe) into tyrosine (L-Tyr), which is further converted into 

fumarate, which converges on the citric acid cycle (Figure 1.5). The PAH-catalysed 

reaction is the rate-limiting step in the catabolic degradation of L-Phe and is mainly 

carried out in the liver. L-Tyr is also the precursor of the biosynthesis of catecholamine  
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(CA) neurotransmitters and hormones; dopamine (DA), norepinephrine and 

epinephrine. CAs are produced in the brain and the periphery, mainly in the adrenal 

medulla and sympathetic nervous system. TH catalyzes the first and rate-limiting step, 

which is the hydroxylation of L-Tyr in the meta position to convert it to 3,4-

dihydroxyphenylalanine (L-DOPA) (Figure 1.5). There are four isoforms of human TH 

(hTH, i.e. hTH1-4), resulting from alternative splicing of the TH gene. 

Deficiency of PAH activity, mainly due to mutations in the PAH gene, results in 

phenylketonuria (PKU), characterised by dramatically elevated levels of Phe in the 

blood, which is toxic for the brain and may result in irreversible neurological 

impairment if untreated [72]. Catecholamines are essential neuromodulators and are 

involved in proper motor function, cognition, memory, learning, reward, maintaining 

normal blood pressure and blood sugar, and dysfunctional TH leads to neuropsychiatric 

disorders [73, 74]. The disorders associated with deficiencies of the AAAHs are 

presented in Section 1.3. 

TPH1is localised in the periphery, mainly the pineal gland and enterochromaffin cells 

of the digestive system, whereas TPH2 is found in the central nervous system (CNS). 

TPH catalyses the first and rate-limiting step in the biosynthesis of serotonin, which is 

a precursor of the hormone melatonin. Serotonin is vital for regulating the sleep-wake 

cycle, thermoregulation, cardiovascular regulation, aggression, appetite, sexual 

behaviour, and learning [75], whereas melatonin is associated with regulation of the 

circadian rhythms such as consolidation of sleep and regulation of core body 

temperature, and sexual development [73, 75, 76]. Decreased levels of serotonin have 

also been linked to major depression, attention deficit hyperactivity disorder, 

generalised anxiety disorder and posttraumatic stress disorder [77-80].  

This thesis is mainly focused on mammalian PAH and TH. 
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Figure 1.5: The L-Phe metabolism and catecholamine biosynthesis. L-Phe is converted 
into L-Tyr in the liver by phenylalanine hydroxylase (PAH), which is further catabolised to 
fumarate, that feeds into the citric acid cycle, and acetoacetate. Catecholamine (dopamine, 
norepinephrine and epinephrine) biosynthesis occurs in the brain and adrenal gland, where L-
Tyr is hydroxylated to L-DOPA by tyrosine hydroxylase (TH). L-DOPA is then converted 
into dopamine by the enzyme aromatic L-amino acid dopa decarboxylase (AADC). Dopamine 
is the precursor in the synthesis of neurotransmitters norepinephrine and epinephrine by 
dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT), 
respectively. Catecholamines regulate TH by feedback inhibition. The illustration was created 
using Biorender.  
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1.2.2 AAAHS STRUCTURE 

As mentioned above, the AAAHs are homotetramers with identical subunits that are 

composed of divergent N-terminal regulatory domains (residues 22-110 in PAH), a 

central catalytic- (residues 111-410) and C-terminal oligomerisation (residues 411-

452) domains (see Figure 1.4 for the organization in PAH). The N-terminal regulatory 

domain varies in size and sequence identity (<15%), which is consistent with the 

different regulatory mechanisms for the different AAAHs, e.g. by 

phosphorylation/dephosphorylation, allosteric activation by L-Phe (PAH) or feedback 

inhibition by catecholamines (TH) and/or interaction with different protein partners 

[67, 81, 82]. The non-heme iron, substrate and cofactor bind in the catalytic domain, 

which shows the highest sequence identity among AAAH mammalian sequences 

(80%) [81], as well as high structural homology, as evidenced by accumulated partial 

and full-length AAAHs structures [83-87]. The C-terminal tetramerisation domain 

includes a long alpha-helix (residues 428-452 in PAH; 473-497 in hTH1; 415-438 in 

TPH1), which contains conserved hydrophobic heptad repeats that are critical for 

tetramer formation via coiled-coil interactions, although slightly different orientations 

of this domain are observed in the hydroxylase family [68]. 

The regulatory domain exhibits a typical α−β sandwich (βαββαβ) motif, characteristic 

of archetypical ACT domain fold. ACT is an abbreviation of three proteins that contain 

this fold- Aspartate kinase‐Chorismate mutase‐TyrA [88]. Architecturally, four-

stranded antiparallel β-sheets are flanked, on one side, by two short α-helices and, on 

the other side, by the catalytic domain. In addition to the ACT domain, the regulatory 

region includes an N‐terminal extension of different lengths among AAAHs. 

In the unactivated state of PAH, the ACTs are in physical contact with the core structure 

arranged as monomers, whereas in TH, the ACT regulatory domains dimerise and are 

located away from the central part of the core structure [85, 86, 89, 90]. The full-length 

structures of hPAH with BH4 [85] and hTH [86] have been solved by X-ray 

crystallography and cryo-electron microscopy (CryoEM), respectively, finally 
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superseding the composite models of AAAHs [67]. Moreover, evidence has been put 

forward that activation of PAH by its substrate L-Phe leads to dimerisation of ACTs 

similarly to TH [84, 91, 92]. 

The catalytic domain is predominantly made of α-helices (13 α-helices and 6 β-strands) 

and has a basket-like arrangement, with the iron in the active-site located 10 Å below 

the protein surface and coordinated by two histidine and one glutamic acid residues 

(Figure 1.6), forming a 2‐His‐1‐carboxylate facial triad (H285, H290, and E330 in 

hPAH and H331, H336 and E376 in hTH1) along with 2-3 three coordinated water 

molecules [82, 83]. 

 

Figure 1.6 Overlay of the catalytic domain of hPAH and hTH. The figure was created by 
PyMol using the PDB id 1PAH for hPAH (green) and 2XSN for hTH (magenta). The figure 
represents similarity in the structure of their catalytic domains. The orange sphere represents 
the catalytic iron. 

The tetramerisation domain comprises two antiparallel β-strands and a single 40 Å long 

C-terminal α-helix that forms the coiled-coil core of the tetramer, which is a dimer of 

dimers [83]. As mentioned above, PAH presents as an equilibrium of dimers, and 

tetramers, and the tetramer dissociates into functional dimers in a pH-dependent 

manner [84, 93]. Unlike TH and TPHs, PAH lacks a proper leucine zipper and has 
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abundant polar residues in the oligomerisation helices, which may explain the presence 

of dimeric PAH species [84]. 

1.2.3 MECHANISM OF AROMATIC AMINO ACID 

HYDROXYLATION AND BH4 SYNTHESIS 

The reaction of the AAAHs is the BH4- and non-heme iron-dependent hydroxylation 

of the aromatic ring of their respective substrates. Although a complete comparison of 

the enzymes relative substrate specificity is lacking, several studies have demonstrated 

that the AAAHs show partially overlapping substrate specificity [82, 94]. Both PAH 

and TPH can hydroxylate each other substrate in addition to their own but not L-Tyr. 

PAH hydroxylates L-Trp at a much slower rate than TPH hydroxylates L-Phe. TH can 

hydroxylate all three aromatic amino acids, with the highest affinity for L-Tyr, and it 

hydroxylates L-Phe at a much higher rate than L-Trp [95]. Also, L-DOPA has been 

shown to be a substrate for TH suggesting a DOPA oxidase activity that could 

contribute to neuromelanin formation [96].  

In any case, the catalytic mechanism is rather similar for all the AAAHs and require 

BH4, molecular oxygen and ferrous iron. The proposed hydroxylation mechanism is 

divided into two steps: (1) iron-mediated oxidation of the pterin cofactor to form the 

oxygen-containing reactive hydroxylating intermediate, followed by (2) incorporation 

of oxygen into the aromatic amino acid substrate [97]. As a result, both BH4 and 

substrate get hydroxylated in the reaction [98]. The hydroxylated BH4 (4a-OH-BH4) is 

regenerated back to the reduced form. First, the 4a-hydroxytetrahydrobiopterin 

dehydratase converts 4a-OH-BH4 to quinoid dihydrobiopterin (qBH2), which is then 

converted to BH4 by NADH-dependent dihydropteridine reductase. In the absence of 

dihydropteridine reductase, qBH2 is converted non-enzymatically to 7,8-dihydropterin 

(BH2), which is further converted to BH4 by NADPH-dependent dihydrofolate 

reductase. In addition, BH4 is constantly supplied by the de novo pathway from 

guanosine triphosphate (GTP). The enzymes involved in the BH4 biosynthesis are GTP 
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cyclohydrolase I, 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase 

(Figure 1.7) [99].  

 

Figure 1.7 The synthesis and regeneration of BH4. In the de novo pathway, guanosine 
triphosphate is converted to BH4 by three enzymes. GTP cyclohydrolase I, 6-
pyruvoyltetrahydropterin synthase and sepiapterin reductase. Two enzymes are involved in 
the regeneration of oxidised BH4 (4a-OH-BH4), 4a-hydroxytetrahydrobiopterin dehydratase 
and dihydropteridine reductase. The alternative salvage pathway includes non-enzymatic 
conversion of quinoid dihydrobiopterin (qBH2) to BH2 or 6-pyruvoyl-tetrahydropterin 
conversion to BH2 by a combination of aldose and carbonyl reductase, which is then converted 
to BH4 by dihydrofolate reductase. The illustration was created using Biorender. 

Malfunctioning of the final enzyme sepiapterin reductase can be bypassed by 

alternative salvage pathways by aldose and carbonyl reductase in the liver to synthesize 

BH4 (Figure 1.7). 
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1.2.4  REGULATION OF PHENYLALANINE HYDROXYLASE 

Full-length hPAH is abundant in the liver, but it is also expressed in the kidney and 

gall bladder [100]. L-Phe acts as a positive allosteric regulator of PAH in vitro and in 

vivo by inducing an activating conformational change [101, 102]. However, since the 

1970s, it has been debated whether the conformational change is initiated by L-Phe 

binding to an allosteric binding site in the regulatory domain [101, 103-108] or at the 

active site [109-111]. Isolated regulatory domains certainly dimerise in the presence of 

L-Phe, which binds at the dimerisation interface, as revealed by X-ray crystallography 

[112], suggesting that the final activating conformational change includes dimerisation 

of these domains. Small-angle X-ray scattering analyses also indicated that 

dimerisation happens in the full-length enzyme [84, 113, 114]. However, the 3D-

structure of L-Phe activated PAH has not been solved yet, and the mechanism by which 

L-Phe elicits the conformational change, including the initial binding site, has not been 

established.  

PAH shows positive cooperativity in response to increasing concentrations of L-Phe to 

avoid its neurotoxic accumulation [106, 115]. At low substrate concentration, the 

enzyme activity is reduced to maintain sufficient levels of phenylalanine for protein 

synthesis [106, 115]. Preincubation with L-Phe increases the enzyme activity and this 

effect is higher in rat PAH (10- to 30-fold increase), compared to humans (3- to 6-fold) 

due to a higher level of basal activity before activation [116, 117]. The enzyme activity 

shows an initial lag, which is increased by decreasing temperature and pH and can be 

eliminated by preincubating the enzyme with L-Phe [101, 118]. Several other amino 

acids can activate PAH, albeit at a much higher concentration than L-Phe [119, 120]. 

In contrast, the cofactor BH4 is a negative allosteric regulator of PAH in the absence of 

any other ligands. In hepatocytes, BH4 and PAH subunits are in equimolar 

concentration [121]. At low concentrations of L-Phe, PAH is believed to be mostly in 

complex with BH4 as an inactive and stable binary complex that is not easily activated 

by L-Phe [121]. The recently solved crystal structure of full-length hPAH in complex 
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with BH4 alone shows that the cofactor binds to the active site but in a position not 

suitable for catalysis [85]. Upon L-Phe binding at the active site, BH4 moves closer to 

the iron in a favourable catalytic position, appropriate for the formation of the ferryl 

hydroxylating intermediate.  

PAH activity is also regulated by phosphorylation. Several kinases can phosphorylate 

PAH at Ser16 in vitro, including PKA [106]. Phosphorylation decreases the 

concentration of L-Phe required to activate the enzyme, most probably by causing a 

subtle conformational change at the N-terminal tail that increases the accessibility of 

the substrate to the active site [122, 123]. 

1.2.5 REGULATION OF TYROSINE HYDROXYLASE AND 

CATECHOLAMINE SYNTHESIS 

The catecholamines are physiologically important neurotransmitters/hormones and a 

variety of regulatory mechanisms modulate the rate-limiting TH activity through both 

long-term (transcription, alternative RNA splicing, mRNA stability, and protein 

translation) and short-term regulation (substrate availability, allosterism, feedback 

inhibition by catecholamines, phosphorylation/dephosphorylation, protein-protein 

interactions (PPIs)) [124]. 

The TH gene encodes a single form of TH protein in most mammals but 4 different 

isoforms of TH in humans due to alternative splicing of TH mRNA [125, 126]. The 

isoform 1 of human TH (hTH1) is very similar to the isoform in most other species, 

and since it is also the most abundant in the brain, hTH1 is the most studied. The four 

isoforms of hTH differ by the number of residues inserted after the N-terminal of Ser31 

in hTH1. While isoform 2 (hTH2) and 3 (hTH3) have an additional 4 and 27 amino 

acid inserted, respectively; isoform 4 (hTH4) has both the 4 and 27 amino acid inserts. 

Although all isoforms are expressed in the brain and periphery, hTH1 and hTH2 are 

the most abundant in the brain [127]. The steady-state kinetic parameters of each 
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isoform are similar [128], which is expected given that the protein is identical in all 

isoforms except for the N-terminus region. 

TH activity is short‐term and reversibly activated by heparin [129, 130], phospholipids 

[131], and other polyanions [132] by decreasing the Km of the enzyme for its cofactor 

BH4 [133]. These polyanions bind to the N-terminal region of TH via electrostatic 

interactions and induce a conformational change that activates the enzyme [134-136]. 

It has been reported that nucleic acid (total RNA from liver and yeast, transfer and 

ribosomal RNA, and salmon sperm DNA) could also activate TH in a non-specific 

manner, most likely due to their polyanionic character [130].  

1.2.5.1 Catecholamine synthesis and feedback inhibition 

As mentioned above, TH catalyses the rate-limiting step in CA synthesis, i.e. it converts 

L-tyrosine to L-DOPA. L-DOPA is actively converted into DA by the enzyme aromatic 

amino acid decarboxylase (Figure 1.5). In the brain, dopamine is efficiently loaded into 

vesicles by vesicular monoamine transporter 2 (VMAT2) and transported from the 

soma toward the terminals, in addition to the local synthesis of CA in the terminal 

[137]. Calcium influx causes DA release from the vesicles into the synaptic cleft, where 

it acts as a neurotransmitter and binds to postsynaptic dopamine receptors. Also, 

dopamine D2 autoreceptor activation on the presynaptic terminal regulates TH activity 

via adenyl cyclase inhibition, reducing cAMP-dependent protein kinase (PKA) 

phosphorylation of TH [138]. Thus, the dopamine autoreceptors provide a mechanism 

whereby the extracellular DA concentration provides feedback inhibition of TH. Some 

of the DA is reuptaken by the presynaptic dopamine transporter (DAT) and stored in 

synaptic vesicles for the next release. In the adrenal medulla and brain, DA is further 

converted into norepinephrine (locus coeruleus) and epinephrine (medulla oblongata) 

by DBH and PNMT, respectively (Figure 1.5). 

Several studies have demonstrated that catecholamines DA, norepinephrine, and 

epinephrine form a bidentate CA-Fe3+ complex with ferric iron resulting in feedback 
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inhibition on TH activity, which gives the enzyme its peculiar “blue-green” colour 

[139, 140]. The half-maximal concentration (IC50) of catecholamines that inhibits TH, 

obtained with both isolated enzyme [140] and in rat striatal synaptosomes [141]), is in 

the low µM concentration and in agreement with the free cytoplasmic concentration of 

DA in neurons (~ 2 µM) [142]. A range of catechols can inhibit TH activity, but 

catecholamines have the highest affinity [140, 143]. The binding of CA in the catalytic 

site is competitive towards BH4 binding and inhibits catalysis; however, increasing 

concentration of reduced pterin decreases inhibition of TH by CAs [133]. The binding 

of CA not only blocks the activity but stabilises the enzyme as well [144]. Recently, 

the first-ever CryoEM structure of DA bound hTH revealed several the specific 

interactions of DA with the catalytic and regulatory domains of TH and the steric clash 

with BH4 in the active site, proving the decades-long observations of of DA/BH4 

competitive binding with TH [86, 133, 145]. Bueno-Carrasco et al. also offered the 

structural explanation of the feedback inhibition by DA and activation by Ser40 

phosphorylation of TH [140, 146]. Overall, it has been proposed that catecholamines 

exhibit two types of feedback inhibition on TH. Firstly, as a sensor of catecholamines' 

local concentration, a classical kinetic-mediated short-term, reversible inhibition. 

Secondly, a long-term, almost irreversible inhibition leading to a less active but more 

stable form of the enzyme [133]. 

1.2.5.2 Regulation of tyrosine hydroxylase by 

phosphorylation/dephosphorylation 

Phosphorylation is an important regulatory mechanism of TH and CA synthesis and 

has been reviewed extensively [82, 137, 145, 147]. TH1 is phosphorylated at N-

terminal Ser/Thr residues 8, 19, 31, and 40 by several protein kinases (Figure 1.8), in 

vitro, in situ, and in vivo [137, 147]. Ser40 was the first phosphorylation site of TH to 

be identified [148-150], and eight different protein kinases have been reported to 

phosphorylate this site in vitro (Figure 1.8). The cAMP-dependent protein kinase, 

protein kinase C (PKC) and cGMP-dependent protein kinase (PKG) have been shown 
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to phosphorylate Ser40 of TH in situ [147]. Upon phosphorylation at Ser40, TH is 

released from the feedback-inhibited state by CA, increasing its activity several-fold 

with a concomitant decrease in Km for BH4 [151]. DA is stabilised by hydrophobic 

interactions with L41, P326 and Y370, hydrogen bonds with the iron-coordinating 

residues H330, H335 and E375, and electrostatic interaction between the amine group 

and D44 [86]. Phosphorylation at Ser40 would create steric hindrance in this interaction 

freeing the regulatory domain from the active site resulting in the release of DA and 

activation of the enzyme. 

 

Figure 1.8 Schematic diagram of tyrosine hydroxylase (TH) phosphorylation sites. The 
kinases capable of modulating TH at phosphosites Thr8, Ser19, 31 and 40 are shown in their 
representative colours. PKA, protein kinase A; PKG, protein kinase G; PKC, protein kinase 
C; CaMKII, calcium- and calmodulin-stimulated protein kinase II; ERK, extracellular signal-
regulated protein kinase; MAPKAPK, MAPK-activated protein kinase; MSK, mitogen- and 
stress-activated protein kinase; CDK1, Cyclin-dependent kinase1; PRAK, p38-
regulated/activated kinase. The illustration was adapted from [147] and created by using 
Biorender. 

All isoforms of human TH (except hTH2) are phosphorylated at Ser31 or equivalent 

by an extracellular signal-regulated kinase (ERK) 1/2 and cyclin-dependent kinase 

(CDK) 5 [152-154], which leads to increased TH activity and stability in vitro and in 

situ [155-157]. Phosphorylation of Ser31 increases the phosphorylation rate of Ser40 

by 9-fold and TH activity more than 2-fold in vitro. Several stimulants can increase TH 

phosphorylation at Ser31; e. g., phorbol esters and nerve growth factor (NGF) increase 

the phosphorylation at Ser31 (THpSer31), but not at Ser40 (THpSer40) in the rat 
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pheochromocytoma (PC12) cells, which increases TH activity [158, 159]. Glial cell-

derived neurotrophic factor also increases THpSer31 both in substantia nigra and 

striatum of rat [160]. However, more recent studies have reported that ERK activation 

leads to increased Ser31 phosphorylation without increasing TH activity [161, 162]. 

THpSer31 is abundant in the terminals of dopaminergic neurons [137, 163].  

TH is phosphorylated at Ser19 by calcium/calmodulin-dependent protein kinase II 

(CaMKII), MAPK-activated protein kinase, and p38-regulated/activated kinase in vitro 

[150, 155, 164]. There is indirect evidence that CaMKII might be the kinase 

responsible for phosphorylating TH at Ser19 in vivo [165]. THpSer19 results in 

increased TH activity and stability through high-affinity binding to 14-3-3 proteins and 

by increasing the rate of phosphorylation at Ser40 in a hierarchical manner [164, 166-

168]. Recently, Ghorbani et al. reported that only in the absence of 14-3-3 proteins 

THpSer19 stimulates phosphorylation of Ser31 [169]. Furthermore, THpSer19 has also 

been reported to be mainly distributed in the nucleus of PC12D cells and to be a critical 

trigger for the degradation of TH by the ubiquitin-proteasome system [170, 171]. 

Although phosphorylation of TH at the Ser/Thr8 site has been investigated the least, 

some studies report that this site is phosphorylated by a proline-directed protein kinase, 

i.e., CDK1 in vitro and in cultured cells [150, 172, 173]. It has been reported that Ser8 

can be phosphorylated by ERK2 in vitro but at a slower rate than Ser31 [174]. In any 

case, the physiological role of Ser/Thr8 phosphorylation has not been established yet. 

Dephosphorylation plays a crucial role in modulating enzyme activity; among others, 

THpSer40 can be dephosphorylated by several protein phosphatases (PPs) in vitro. 

Both PP2A and PP2C can dephosphorylate TH at pSer40 and pSer19 in the bovine 

adrenal medulla, rabbit corpus striatum, rat brain, and dopaminergic cells [175-179]. 

In PC12 cells, treatment with the specific inhibitor of protein phosphatases okadaic 

acid increased Ser31 phosphorylation, suggesting the involvement of PP1 or PP2A in 

its dephosphorylation [177, 180]. In bovine adrenal chromaffin cells, PP2A but not PP1 

could dephosphorylate TH at pSer31 [177]. In bovine adrenal chromaffin cells, PP2A 
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but not PP1 could dephosphorylate TH at pSer31 [179]. The dephosphorylation rate of 

pSer31 is decreased in the presence of pSer19. The binding of 14-3-3 proteins to 

THpSer19 inhibits dephosphorylation of both pSer40 and pSer31 in vitro [169]. There 

are conflicting reports on the dephosphorylation of pSer8 [177, 179]. One study 

suggests that PP2A is responsible for dephosphorylating pSer8, whereas another study 

contradicts that finding. Overall, several studies have indicated that PP2A is the 

dominating phosphatase that predominantly acts on phosphorylated TH. 

1.3 DISEASES ASSOCIATED WITH DYSFUNCTIONAL 
AAAHS 

Dysfunctional enzymatic activity of AAAHs due to mutations has been associated with 

severe neurometabolic diseases leading to mental retardation and neuropsychiatric 

disorders. In this section, we will introduce diseases associated with dysfunctional PAH 

and TH. 

1.3.1  PHENYLKETONURIA 

Once described as an epitome of molecular genetics pathology, phenylketonuria is an 

inborn error of amino acid metabolism. Phenylketonuria (PKU; Online Mendelian 

Inheritance in Man (OMIM) #261600) is an autosomal recessive genetic disease caused 

by mutations in PAH, which can lead to intellectual disability if untreated [72]. The 

normal blood Phe concentration range is 50-110 µM and, depending on the severity of 

the L-phenylalanine accumulation, PKU is classified as mild hyperphenylalaninaemia 

(HPA) (120-600 µM), mild PKU (600-1200 µM) and classic PKU (>1200 µM) [72].  

The discovery of PKU was made by the Norwegian doctor Asbjørn Følling, who called 

the condition “phenylpyruvic oligophrenia” [181], shortly after it was renamed to 

“phenylketonuria” by Penrose and Quastel [182]. In the mid-90s, a low-phenylalanine 

diet to treat phenylketonuria was introduced, and a diagnostic test suitable for mass 

screening for HPA in the newborns was developed [183, 184]. The prevalence of PKU 
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is rare and varies worldwide, but PKU is the most recurrent among the inborn errors of 

metabolism group of disorders. In Europe, the prevalence is approximately 1:10,000 

live births, 1:15,000 in the USA; and in Latin America, it varies from one case per 

50,000 to one per 25,000 births. Asia and Africa have the lowest prevalence [72, 185].  

The gene coding for PAH in humans is located in chromosome 12, region 12q23.2. 

Chromosome 12 is rich in disease-associated loci, with 487 loci accounting for 5.2% 

of known “disease genes” [186]. The PAH genomic sequence spans about 170 kilobase 

pairs (kb) including its flanking regions with 13 exons (2.5 kb) and corresponding 

introns (85 kb). The PAH gene codes for a mature mRNA of approximately 2.4 kb, 

hence conforming to one of the lowest ratios for coding to non-coding among 

eukaryotic genes [187]. To date, more than 1188 human PAH mutations have been 

registered (http://www.biopku.org/home/pah.asp); these variations comprise missense 

mutations (65%), deletions (15%), splice variants (12%), insertions, duplications and 

indels (4%) and synonymous mutants (4%) indicating the existence of heterogeneity in 

PKU. The type of mutation and its position in the protein impose the effect on PAH 

stability and catalytic activity, which can lead to a spectrum of in vitro phenotypic 

outcomes [188, 189]. Very little or no residual enzyme activity results in the classic 

PKU phenotype, whereas partial inhibition of the enzymatic activity gives rise to mild 

HPA or mild PKU. The genotype-phenotype correlations reported in the past have 

varied widely. The majority of PKU patients are compound heterozygotes, as they 

carry two different PAH mutations leading to a phenomenon known as interallelic 

complementation, which can result in either a milder (positive complementation) or a 

more severe phenotype (negative complementation) than expected from the single 

allele [190]. Besides, even homozygous patients display differences in the phenotype, 

showing that genotype-phenotype correlations can be complicated even for monogenic 

diseases such as PAH deficiency [191, 192]. Thus, other factors may influence the 

phenotype, such as epigenetics, environmental factors, and gene products involved in 

proteostasis regulation, transport and metabolism of Phe, making PKU a complex trait 

disorder [192]. 
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Nevertheless, the large number of studies in cells have helped identifying genotype-

phenotype relationships and to classify the pathogenic loss-of-function for each 

mutation [193]. Overall, destabilising PAH mutations have emerged as the major 

pathomechanistic cause of PKU [188, 189]. Table I presents a selection of missense 

mutations, which are mostly located in the catalytic domain and/or induces instability, 

and are ordered by their frequency of occurrence from high to low.  

Table Ⅰ. PAH missense mutants with differing allele frequency, residual enzyme activity, 
protein stability and associated patient phenotype.  

PAH 
protein 
mutants 

Allele 
frequency 

(%)a 

PAH 
activity 

(%)b 

PAH domain/protein 
stability 

Phenotypic 
group 

p.R408W 19.2 ≤10 Catalytic/destabilising Severe PKU 

p.R261Q 5.5 ≤50 Catalytic/destabilising Mild PKU 

p.A403V 2.4 ≤50 Catalytic/destabilising Mild HPA 

p.A300S 1.5 ≥50 Catalytic/destabilising Mild HPA 

p.R297H 0.14 ≤50 Catalytic/destabilising Mild PKU 

p.V190A 0.13 ≤50 Catalytic/destabilising Mild HPA 

p.G218V 0.11 ≤50 Catalytic/destabilising Severe PKU 

p.R68G 0.05 ≤50 Destabilising Mild PKU 

p.E76G 0.04 ≤50 Destabilising Mild PKU 

p.A47V 0.03 ≥50 Destabilising Mild HPA 

p.A313T 0.01 ≤50 Catalytic/destabilising/affe
cts splicing 

Mild HPA 

a Allele frequency according to the BIOPKU database (http://www.biopku.org). 
b Residual in vitro PAH activity relative to Wt-PAH (100%) in expression studies in COS cells 
[193]. 
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There is irrefutable evidence that Phe accumulation in the brain causes the 

symptomatology observed in PKU patients. Amino acid entry into the brain is mediated 

by L-amino acid transporter1 at the blood-brain barrier [194]. A high concentration of 

Phe inhibits this transporter hence blocking the influx of other neutral amino acids, 

including Tyr and Trp, increasing the probability of neurotransmitter dysfunction. In 

fact, a reduced level of protein synthesis and neurotransmitters (serotonin and DA) has 

been reported in the brain of PKU patients [195, 196]. In addition, high Phe would also 

compete with Tyr and Trp, lowering TH and TPH activity, respectively.  

Genetically modified mice are powerful research models that are commonly used for 

studying human diseases. The first generation PKU mouse models were created by 

phenotype driven N-ethyl-N-nitrosourea (Enu) germline mutagenesis and named Enu1, 

Enu2 and Enu3. The Enu1 (enu1 allele) with the p.V106A-PAH mutation located in 

the PAH regulatory domain affects PAH stability resulting in reduced steady-state 

levels of PAH protein and enzymatic activity (approx. 5% of wildtype (Wt)), leading 

to mild HPA [197, 198]. The Enu2 (enu2 allele) presents the p.F263S-PAH mutation 

in the catalytic domain [197], and the Enu3 (enu3 allele) shows a splice site mutation 

generating frameshifted amino acids and premature termination codon affecting total 

PAH activity [198]. Both Enu2 and Enu3 mice exhibit high blood L-Phe levels (>1200 

µM), and are suitable models for severe, classic PKU. 

Overall, Phe accumulation appears to have multifactorial effects, and the clinical 

manifestation of untreated PKU is broad; such as morphological abnormalities of the 

brain (reduced size, hypomyelination, limited dendritic branching and synaptic 

density), motor dysfunction (tremor, dystonia), psychiatric symptoms (anxiety, 

psychosocial difficulties and depressed mood), cognitive dysfunction (mental 

retardation, repetitive behaviour, speech delay, autism), seizures and hypopigmentation 

[72, 199-202]. Several animal studies have also indicated oxidative stress in PKU, 

which has been associated with a high level of Phe or the diet [203-205]. Oxidative 

stress is associated with the generation of reactive radical species, reduced antioxidant 
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defences, protein and DNA damage, lipid peroxidation, and changes in the lipid profile, 

adding to the pathological phenotypes of PKU [206].  

1.3.1.1 PKU management 

As the pathophysiology of PKU is associated with high levels of Phe, the low-Phe diet 

is the cornerstone to manage PKU/HPA and prevent the most severe consequences of 

the disease. However, the diet should also contain sufficient caloric content to maintain 

biological needs and avoid the breakdown of body tissue which can lead to an elevated 

level of Phe in the plasma [207]. Phe tolerance must be scrutinised for each patient to 

avoid such a consequence. Undoubtedly dietary treatment is very successful; 

nevertheless, several studies have shown that early-treated PKU patients present 

several clinical psychiatric features as adults, notably depression and anxiety-related 

disorders [202], with an elevated risk of comorbidities [208]. In recent years, many 

alternative therapies for PKU have been approved or are in development [209]. The 

synthetic form of BH4 (Sapropterin, Kuvan ®) combined with a low-Phe diet could be 

used as an adjunct to the patients that are responsive to BH4 [210]. Another alternative 

(enzyme substitution therapy) that has recently been approved by the Food and Drug 

Administration (FDA) is based on the enzyme phenylalanine ammonia lyase (PAL) 

that is present in yeast, higher plants and some prokaryotes. PAL catalyses the non-

oxidative deamination of phenylalanine into trans-cinnamic acid and ammonia, which 

are non-toxic [211, 212]. Since the enzyme is non-human, it induces an immune 

response; hence, a PEGylated derivative of PAL (polyethylene glycol attached to PAL) 

was created to protect and stabilise the enzyme. In the United States, it is sold under 

the brand name Palynziq™ (pegcaliase-pqp3); and it has been approved in Europe for 

patients aged 16 and older to treat the underlying cause of PKU [212]. Although the 

therapy has proven to be useful for treating PKU, one cannot disregard its limitations, 

such as injection-site reaction, joint pain, rash, fatigue, headache, gastrointestinal 

symptoms, inguinal or axillary lymphadenopathy, dizziness and anaphylaxis [213]. 

Also, enzyme substitution therapy does not address the toxicity and oxidative stress 
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caused by misfolding of the mutant PAH, potentially leading to gain-of-function 

contribution to the HPA/PKU pathology.  

Pharmacological chaperones (PC) are small molecular compounds that are being used 

in clinical practice for some rare diseases caused by protein instability and could be a 

potential therapeutic approach to treat PKU, given the ability of PCs to bind a protein 

specifically and stabilise it [214]. BH4, the PAH cofactor, indeed shows a chaperone-

like effect on PAH [215], but not all patients respond to this treatment [216, 217]. Thus, 

a small molecule specific to PAH protein that can stabilise and rescue the mutant is 

optimal as a therapeutic PC to revert a disease phenotype caused by an unstable mutant 

protein. Compounds with PC potential for PKU treatment have previously been 

identified by screening diversity libraries monitoring PAH thermal stabilization [218, 

219]. 

1.3.2  TYROSINE HYDROXYLASE DEFICIENCY 

Tyrosine hydroxylase deficiency (THD; OMIM #605407) is a rare autosomal recessive 

disorder caused by mutations in the TH gene, which lead to catecholamine deficiency 

[220]. The gene coding for TH in humans is located in the short (p) arm of chromosome 

11 at position 15.5. In the past, THD was known as Segawa syndrome or dopa-

responsive dystonia (DRD). Among other genes involved in regulating DA synthesis, 

mutations in GTP cyclohydrolase I, an enzyme that catalyses the first step in the 

synthesis of BH4 (Figure 1.7), cause autosomal dominant DRD [221, 222]. So far, 

fewer than 100 patients with THD have been reported in the scientific literature, with 

a total of 40 different disease-related missense mutations, five nonsense mutations, and 

three mutations in the promoter region of the TH gene [223, 224]. 

THD has a broad phenotypic spectrum and has been categorised into various types. 

Furukawa and Kish described three groups based on the severity of the symptoms and 

responsiveness to levodopa: mild form (TH-deficient DRD), severe form (TH-deficient 

infantile parkinsonism), and very severe form (TH-deficient progressive infantile 
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encephalopathy) [225]. Willemsen et al. categorised THD in two phenotypes: an 

infantile-onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a 

complex neonatal parkinsonism with severe encephalopathy (type B) [222]. 

Symptom onset in mild type TH-deficient DRD and TH-deficient infantile 

parkinsonism is in the early years of life with normal development up to this point. 

Initial symptoms include lower limb dystonia, difficulty walking with diurnal 

fluctuation of the symptoms to truncal hypotonia, and parkinsonian symptoms such as 

hypokinesia, the rigidity of extremities, and tremor. Like type A described by 

Willemsen et al., the patients show a positive response to L-DOPA treatment without 

adverse motor side effects [222, 225]. The more severe phenotype (type B) has an onset 

of symptoms within a year of birth with a broader range of movement disorder to 

cognitive impairment and does not show a robust response to L-DOPA, usually 

hypersensitive to it, developing motor fluctuations and dyskinesia on low doses [222, 

225-227]. In any case, an accurate diagnosis of THD requires both clinical and 

laboratory findings, including genetic tests.  

Cerebrospinal fluid (CSF) analysis of catecholamine metabolites can support the 

clinical diagnosis of THD. DA is converted into homovanillic acid (HVA), 

norepinephrine and epinephrine into 3-methoxy-4-hydroxyphenylethylene (MHPG). 

Low HVA and MHPG reflect catecholamine deficiency in THD due to decreased TH 

activity. However, serotonin biosynthesis is not affected, hence the expected normal 

level of 5-hydroxyindolacetic acid (5-HIAA). Therefore, a low HVA:5-HIAA ratio in 

CSF suggests THD [222, 225, 228]. Also, mutational analysis of genes involved in DA 

biosynthesis and regulation is considered in the diagnosis [221, 229]. 

As mentioned above, a broad range of movement disorders as well as reduced TH 

activity and DA levels are associated with THD [228]. Although neurodegeneration is 

not observed in THD, it shares several traits with Parkinson’s disease (PD), in which 

motor abnormalities reflect striatal DA loss due to neurodegeneration in the brain 

[230]. 
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Several animal studies aiming to mimic THD by inactivating the TH gene (TH knock-

out) provided valuable insights into the catecholamines importance in perinatal 

development [231, 232]. A TH knock-in mouse model with the p.R203H mutation, 

equivalent to the human hTH1-p.R202H, has been generated and displays salient 

clinical features of human type B THD phenotype, including biochemical markers, 

making it an ideal model for the investigation of disease mechanisms and novel 

therapeutic approaches [227]. 

1.4 PROTEIN-PROTEIN INTERACTION IN AAAHS 

Several proteins have been identified that interact with aromatic amino acid 

hydroxylases. Still, the one that has been investigated the most in terms of PPIs, are 

14-3-3 proteins, α-synuclein, VMAT2, DNAJC12, aromatic amino acid decarboxylase, 

protein phosphatase 2, guanosine tri‐phosphate cyclohydrolase, DJ‐1 have been 

detected as physical interactors and contribute in its overall regulation [137, 233-235]. 

A few of the protein interactants were selected due to their involvement in the 

regulation of the AAAHs, contributing to overall proteostasis. The PPI partners of TH 

that are studied in this thesis are discussed in the following paragraphs.  

1.4.1  THE 14-3-3 PROTEINS 

The 14-3-3 proteins are ubiquitously expressed in all eukaryotic cells and consist of 

several isoforms. They are very conserved and display high sequence and structural 

identity, both within and across species. The number of isoforms differs among species 

ranging from 2 in the unicellular organisms Saccharomyces cerevisiae and 

Schizosaccharomyces pombe [236] to 12 in the plant Arabidopsis thaliana [237]. In 

mammals, the 14-3-3 protein family consists of seven known isoforms, named beta, 

gamma, epsilon, sigma, zeta, eta, and tau (β, γ, ε, σ, ζ, η and τ). Moore et al. in 1968 

first discovered and named the 14-3-3 protein family based on its elution and migration 

pattern on the two-dimensional diethylaminoethyl cellulose chromatography and starch 

gel electrophoresis (as compiled by [238]). 
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The 14-3-3s are ~30 kDa acidic proteins that can function as both homo- and 

heterodimers, except for 14-3-3σ which is a homodimer [239, 240]. Crystallographic 

studies of ligand-free 14-3-3 showed a cup-shaped dimer with nine antiparallel helices 

where the N-terminal helices of the two subunits form the dimer interface, and the C-

terminal form its walls [241]. The inner phosphopeptide-binding pocket is the most 

highly conserved region; however, the residues on the outer surface of the proteins 

exhibit variability among isoforms and may also play a role in isoform-substrate 

specificity [242]. Muslin et al. demonstrated that a phosphoserine motif is essential to 

interact with the 14-3-3s [243]. The binding of 14-3-3 can induce at least three effects 

in the target protein: (A) conformational change, (B) masking of a specific region 

(active site, a ligand-binding region, or PPI site), or (C) scaffolding of the two proteins 

[240]. 

The 14-3-3 proteins are adaptor proteins involved in a plethora of biological processes 

such as cell signalling, cell cycle progression, transcription, intracellular trafficking, 

apoptosis, regulation of enzyme activity, and protection against proteolysis [238, 244]. 

The family of proteins are also involved in a wide range of neurodegenerative disorders 

such as Creutzfeldt–Jakob disease, Alzheimer’s disease, PD and polyglutamine repeat 

diseases [238]. 14-3-3 proteins regulate several signalling pathways involved in cancer 

[245]. 

The first proteins identified to interact with 14-3-3 proteins were TH and TPH, which 

are activated upon binding [246, 247]. In vitro studies have revealed that 

phosphorylated TH (either THpSer19, THpSer19pSer40 or THpSer19pSer31) binds to 

14-3-3, but the affinity is increased if TH is phosphorylated at both sites [164, 169, 

248]. The extent of activation of phosphorylated TH by 14-3-3 proteins differs based 

on isoform, shown by some cellular studies [249, 250]. Ghorbani et al. have shown that 

all 14-3-3 homodimers and heterodimers bound with similar affinity but moderate 

differences in their activation of TH between the 14-3-3 isotypes, the total activation 

was highest for THpSer19pSer40 in the presence of 14-3-3γ [169, 251]. The 14-3-3 
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proteins assist in regulating access to both Ser31 and Ser40 and modulate their 

phosphorylation state dynamics [169]. 

1.4.2  DNAJC12 

DNAJC12 is a co-chaperone that belongs to the class III (subfamily C) of the 

DNAJ/HSP40 protein family [235]. The J-proteins or HSP40s that function as co-

chaperones of HSP70s represent a large protein family with at least 50 members in 

human [31, 252]. The DNAJC12 gene is 1.2 kb-long encompassing 5 exons which 

mapped in silico to chromosome 10q21.1 [253, 254]. The gene is expressed in most 

tissues, but at high levels in the adrenal gland, brain, liver, kidney, and pituitary gland 

[100]. 

DNAJC12 is a 24 kDa cytosolic protein comprised of 198 amino acids, and so far, only 

the structure of the first 100 amino acids, which corresponds to the J-domain, has been 

solved by NMR (PDB ID 2CTQ). The highly conserved J-domains include four α-

helices, with the central ones (helix II and III) forming an anti-parallel helical coiled-

coil motif around a hydrophobic core [255]. The most highly conserved short motif in 

the family, the histidine-proline-aspartate (HPD), is located in the loop between helix 

II and helix III. This motif is crucial for ATPase stimulation and in vivo function [256]. 

Still, little is known about the mechanism by which it exerts its function. DNAJC12, 

together with HSP70, is involved in folding newly synthesized and partially folded 

proteins in several compartments of eukaryotic cells as well as in promoting the 

degradation of its client protein [257]. Several studies have indicated that stress and 

physiological stimuli can regulate the expression of DNAJC12 [254, 258, 259].  

Recently, mutations in the DNAJC12 gene have been reported to cause HPA, dystonia, 

early-onset parkinsonism, and intellectual disability without mutations in the AAAHs 

gene or any other gene involved in BH4 metabolism [235, 260, 261]. Affinity capture-

mass spectrometry data from human interactome and human cells have shown direct 

interactions of DNAJC12 with PAH, TH, and TPHs, indicating that DNAJC12 is a 
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specific co-chaperone of AAAHs and maintains intracellular stability of its clients 

[235, 262].  

However, DNAJC12 functions extend beyond the AAAHs as several studies have 

suggested that they can be used as a potential biomarker of tumour progression. For 

example, the transcripts of DNAJC12 were upregulated in triple-negative breast cancer 

and aggressive phenotype of gastric cancer [263, 264]. A significant correlation to 

inadequate response to neoadjuvant concurrent chemoradiotherapy, characterized by 

lower tumour regression grade, was observed in rectal cancer with high expression of 

DNAJC12 [265]. Lastly, the co-chaperone may act as a potential therapeutic target as 

knocking down the expression of DNAJC12 significantly reduced the proliferation and 

invasiveness of gastric cancer cells [263, 264].  

1.4.3  ALPHA-SYNUCLEIN 

In 1912 Friederich Lewy made the first observations of the inclusions that are 

indicative of PD - the so-called 'Lewy bodies' [266]. Decades later, electron microscopy 

revealed that the true nature of Lewy bodies is abnormal filaments [267]; however, it 

was still unclear the role of inclusions in the aetiology of neurodegeneration. Two 

studies brought α-synuclein (α-syn) into the frontline, as they reported that missense 

mutations (p.A53T) in the SNCA gene coding for α-syn caused a rare, familial form of 

PD [268], and the presence of α-syn in the Lewy body of sporadic PD [269]. 

Synucleins are abundant neuronal protein, and the family consists of three members - 

α-synuclein, β-synuclein and γ-synuclein, which are similar in length and domain 

organization and share 55-62% sequence identity [270]. The first synuclein sequence 

was obtained from the Pacific electric ray (Torpedo californica), and it was named 

synuclein, because of its apparent localisation in presynaptic nerve terminals and the 

nuclear envelope [271].  

The α-syn is 140 amino acids in length and has an amphipathic lysine-rich, highly 

helical amino terminus, critical in membrane interactions, and a disordered, acidic 
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carboxy-terminal tail that has been implicated in interactions with proteins, metals and 

small molecules [272, 273]. The central region of α-syn (residues 65–90) is highly 

hydrophobic and it is known as the non-amyloid-β component of AD amyloid plaques, 

which is crucial for α-syn oligomerization [274, 275]. Conformational flexibility grants 

multifunction properties to α-syn and allows it to interact with membranes, proteins 

and protein complexes [276]; however, little is known about its conformational state. 

Native α-syn may exist in equilibrium between different conformational and/or 

oligomeric states, which can be influenced by several factors such as post-translational 

modification, fatty acid concentration, phospholipids, and metal ions, oxidative stress, 

etc. [277-282]. A complex and dynamic interplay between these modifications may 

affect α-syn aggregation, which may provide potential targets for future therapeutics.  

The α-syn protein is ubiquitously expressed throughout the brain, mainly at the 

presynaptic terminal and its exact function is still unclear. There is evidence that α-syn 

negatively regulates dopamine synthesis by inhibiting TH activity [178, 283]. α-syn 

also negatively regulates DA neurotransmission, as mice lacking α-syn show increased 

DA release upon electrical stimulation and significant reduction of vesicles at the distal 

pool of the presynaptic terminals [284]. In vitro studies have demonstrated that 

dopamine can modulate the aggregation of α-syn (both Wt and A53T); under 

physiological conditions, α-syn can self-assemble into small oligomers and 

protofibrils, which could further elongate into a mature amyloid fibril [285, 286]. Thus, 

incubating DA with pre-formed amyloid fibrils can disengage them into non-fibrillar 

soluble oligomers [287]. On the other hand, prolonged incubation with DA can 

promote α-syn aggregation into fibrils via off-pathway, soluble SDS-resistant and 

Thioflavin T negative oligomers intermediates [288]. Recently Mor et al. demonstrated 

in vivo aggregation of α-syn by DA, resulting in oligomeric species that reflect 

neurotoxic oligomers induced by DA in vitro [289]. Moreover, they showed that 

increased production of DA in A53T transgenic mice caused severe loss of 

dopaminergic nerve terminals before cell bodies, offering a new model of disease 

progression in PD [289, 290].  
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1.4.4  VMAT2 

The vesicular monoamine transporter 2 (VMAT2), also known as solute carrier family 

18 member 2 (SLC18A2) protein, is expressed in monoaminergic neurons of the central 

and peripheral sympathetic nervous systems and is encoded by the SLC18A2 gene [291, 

292]. Its 3D structure is not resolved yet; however, sequence analyses of related 

proteins suggest that VMAT2 includes 12 transmembrane domains with both C- and 

N-terminals located in the cytosolic side of the vesicle [291]. Putative glycosylation 

sites (three or four) are located in a loop between transmembrane domains I and II 

facing the vesicular matrix [291], which serves as part of a trafficking signal [293].  

VMAT2 is a transmembrane protein that transports monoamines (DA, norepinephrine, 

epinephrine, serotonin and histamine) into synaptic vesicles for its subsequent Ca2+-

stimulated release from the neuron [294]. The first evidence about monoamine uptake 

into bovine chromaffin granules through reserpine-sensitive VMAT was initially 

demonstrated by Kirshner [295]. Several studies have confirmed monoamine transport 

into the storage vesicles against a large concentration gradient (>105), which is driven 

by the electrochemical gradient generated by a transmembrane proton vesicular H+-

ATPase [291]. The proton-monoamine exchange occurs at a ratio of two translocated 

protons per one translocated amine; the first proton's efflux from the granule matrix 

generates a conformational change with high-affinity amine binding in the cytosolic 

phase of a transporter. The second proton's efflux induces large conformational change 

facilitating the movement of the amine from the cytosolic phase to the matrix phase 

with the consequent reduction of the amine binding affinity [296]. Structure-function 

studies have established the critical role of VMAT2 not only in sorting, storing and 

releasing of monoamines but also protecting them from autooxidation [291].  

VMAT2 is the only vesicular monoamine transporter expressed in CNS. Interference 

with its function could lead to impaired catecholamine homeostasis, DA-related 

cellular toxicity and neurodegeneration in the nigrostriatal DA system. Also, deletion 

of the VMAT2 gene leads to neonatal death in mice due to severely impaired 
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monoamine storage and vesicular release [297-300]. Although the function of VMAT2 

is demonstrated, other regulatory mechanisms such as its post-translational 

modification and PPIs are not well understood. Nevertheless, there are reports of 

VMAT2 interacting with TH and other enzymes in the DA biosynthesis pathway [233]. 

Moreover, HSC70 and α-synuclein have been reported to inhibit VMAT2 activity in 

synaptic vesicles and SH-SY5Y cells [301, 302]. 
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2 AIMS 

The main goal of this thesis is to study the regulation of the aromatic amino acid 

hydroxylases PAH and TH in normal and pathological states. We focus on two major 

regulatory mechanisms, PPIs and phosphorylation, investigating how they contribute 

to the function and proteostasis of aromatic amino acid hydroxylases in health and 

disease. The overarching goal is addressed through the following specific aims: 

• Investigate the role of DNAJC12 in the proteostasis of normal and PAH mutants 

in cellular and in vivo models. Specifically, using COS cells and the Enu1 mouse 

model of HPA, compare the interaction of Wt DNAJC12 with either Wt or PAH 

mutants associated with HPA/PKU.  

• Characterise the behavioural and metabolic phenotype of a novel knock-in PKU 

mouse bearing the Pah-R261Q, as well as investigate the effects of the R261Q 

mutation on PAH proteostasis in vivo, as in vitro studies have shown that it 

results in unstable and misfolded PAH. 

• Investigate the functional role of THpSer31, going beyond its customary 

association with an increased TH activity, and rather focusing on the subcellular 

localisation of TH and its PPIs using cellular models and immuno-based 

imaging.  

• Study the biological significance of the THpSer8 state, focusing on its role in 

the subcellular localisation of TH, notably nuclear localisation. This 

investigation is motivated because Thr8 phosphorylation in TH has been largely 

unexplored. We addressed this question using a range of complementary 

molecular and cellular biology approaches in a cellular model.  
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Kunwar Jung-KC, Nastassja Himmelreich, Karina S. Prestegård, Tie-Jun Sten Shi, Tanja 
Scherer, Ming Ying, Ana Jorge-Finnigan, Beat Thöny, Nenad Blau, and Aurora Martinez 

Hum Mutat. 2019 Jan 22; 40(4): 483-494. doi: 10.1002/humu.23712 

Paper Ⅱ 

The Pah-R261Q mouse reveals oxidative stress associated with amyloid-like 
hepatic aggregation of mutant phenylalanine hydroxylase. 

Oscar Aubi, Karina S. Prestegård, Kunwar Jung-KC, Tie-Jun Sten Shi, Ming Ying, Ann Kari 
Grindheim, Tanja Scherer, Arve Ulvik, Adrian McCann, Endy Spriet, Beat Thöny, Aurora 
Martinez 

Nat Commun. 2021 Apr 6;12(1):2073. doi: 10.1038/s41467-021-22107-1 

Paper Ⅲ 

Phosphorylation at serine 31 targets tyrosine hydroxylase to vesicles for transport 
along microtubules. 

Ana Jorge-Finnigan, Rune Kleppe, Kunwar Jung-KC, Ming Ying, Michael Marie, Ivan Rios-
Mondragon, Michael F. Salvatore, Jaakko Saraste, and Aurora Martinez 

J Biol Chem. 2017 Aug 25; 292(34): 14092–14107 doi: 10.1074/jbc.M116.762344 

Paper Ⅳ 

Phosphorylation at threonine 8 is associated with nuclear localisation of 
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Kunwar Jung-KC, Ana Jorge-Finnigan and Aurora Martinez 

Manuscript in preparation. 

 



42 

 

 

3.1 PAPER Ⅰ 

In paper I, we aimed to investigate the role of DNAJC12 in PAH – Wt and mutants – 

on folding and degradation. We first investigated the endogenous expression of 

DNAJC12 in COS-7 cells by transiently expressing PAH mutants associated with 

HPA/PKU of different severity. We observed a positive correlation between the levels 

of immunoquantified PAH and endogenous DNAJC12. The immunodetected levels of 

endogenous DNAJC12 were reduced for the most unstable PAH mutants, e.g., 

p.R408W, which gives rise to a highly unstable and misfolded PAH enzyme, resulting 

in rapid degradation and low immunodetection levels.  

We next sought to investigate the relation of DNAJC12 with mutant PAH in vivo, for 

which we used a mouse model (Enu1) that expresses the unstable and misfolded PAH 

mutant p.V106A-PAH. Western blot of liver lysates showed a reduction of mutant 

PAH levels in the Enu1, which mostly appeared to be mono-ubiquitinated compared to 

Wt mice that presented a significant fraction of full-length non-ubiquitinated-PAH. 

DNAJC12, however, was only immunodetected in the liver lysate of Wt mice and not 

in the mutant. To investigate if the reduction of DNAJC12 is due to accumulation in a 

specific compartment, we prepared nuclear and cytosolic fractions of liver lysates of 

Wt, heterozygote (Enu1/wt) and homozygote (Enu1/1) mice. The level of DNAJC12 was 

strongly reduced in heterozygous mice compared to Wt and almost absent in both 

fractions in the homozygote. 

Considering transcriptional down-regulation of the co-chaperone as a reason for the 

reduced immunodetection in Enu1/1 liver lysate, we performed mRNA quantification 

of Dnajc12 and Pah, as well as other selected genes based on their possible interactions 

with DNAJC12. However, no significant differences in mRNA expression were 

measured for any of the genes when comparing Wt and Enu1/1 mice liver samples. We 

then hypothesised if an intracellular co-aggregation of PAH and DNAJC12 could be 

the cause of the reduced immunodetection. To test this hypothesis, we prepared liver 

lysate using a buffer with lower ionic strength to diminish hydrophobic interaction. We 
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improved solubilisation by treating with Triton X-100 (1%) before subjecting the 

samples to SDS-PAGE. The optimised lysate preparation improved the 

immunodetection of DNAJC12 in the liver of homozygous mice. 

Immunohistochemistry data was very similar to western blot data, i.e., reduced PAH 

and DNAJC12 detection in Enu1/1 compared to Wt. Lastly, we performed 

immunoprecipitation assays to study possible complex formation between PAH and 

DNAJC12 in Wt and Enu1/1 mice. PAH was immunoprecipitated mainly as non-

ubiquitinated in Wt, whereas in Enu1/1, it was mostly mono-ubiquitinated. DNAJC12 

and HSC70/HSP70 were co-immunoprecipitated in both samples.  

Our results reveal a role of DNAJC12 in the processing of misfolded ubiquitinated 

PAH and support that this HSP40 co-factor is an important player both for proper 

folding and degradation of PAH. 

3.2 PAPER Ⅱ 

This study set out to characterise a new custom-made Pah-R261Q knock-in mouse 

model generated by introducing the mutation c.782G>A in the Pah gene by 

CRISPR/Cas9 technology. The mouse was subjected to heteroduplex mobility assay to 

screen for possible off-target mutation by guide RNA, and the colony was backcrossed 

frequently to avoid genomic drift. L-Phe levels, measured in dried blood spots, in 3-

month-old mice, showed a significant increase in Pah-R261Q (108.0±36.6 μM, n = 23 

mice) compared to both Wt (59.9±7.7 μM, n = 9; p <0.0001) and heterozygous 

PahR261Q/Wt (71.22±21.86 μM; n = 6; p = 0.0201), corresponding to mild HPA. Although 

Pah-R261Q mice were similar to their heterozygote and Wt counterparts in length, 

pigmentation, and behaviour, three-month-old male Pah-R261Q mice were heavier 

than Wt (27.8±0.4 vs 25.1±0.3 g, respectively). Analysis of various physiological 

parameters revealed reduced O2 consumption, CO2 production and respiratory 

exchange ratio when normalized to body mass for Pah-R261Q compared with Wt 

(0.988±0.087 vs 1.014±0.093). 
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Metabolic profiling, by chromatographic separation and mass spectrometry detection, 

revealed lipid metabolism alterations and oxidative stress in the Pah-R261Q mice. 

However, no significant alterations of the levels of BH4, aromatic amino acids and 

monoamine neurotransmitters in the brain were detected, and the neuromuscular 

function was similar as confirmed by rotarod performance. However, the concentration 

of BH4 in the liver was reduced by 50% in Pah-R261Q (28.0±1.7 pmol BH4/mg 

protein) compared with Wt mice (56.2±3.2 pmol/mg). We then tested the sensitivity 

toward the L-Phe challenge by administering 200 μg L-Phe/g body weight. Forty 

minutes post i.p. injection, Pah-R261Q showed a massive increase in L-Phe 

concentrations (990±220 μM) compared to Wt and heterozygous mice before returning 

to the basal level after 300 minutes. Pah-R261Q responded to BH4 treatment resulting 

in a 28% decrease in L-Phe content. 

The stability study on PAH protein was carried by Western blot and 

immunohistochemistry using liver samples. The results showed a reduction of total 

p.R261Q-PAH protein levels and increased ubiquitination in Pah-R261Q compared to 

Wt mice, indicative of instability or misfolding of this PAH mutant. To compare the 

mutation-specific aggregation pattern of PAH protein, a mouse model with mild HPA 

(Enu1) expressing the unstable p.V106A-PAH mutant, which is associated with PAH 

instability, was included in this study. The PAH aggregates' size was larger in Pah-

R261Q than in Enu1 mice as quantified from 3,3'-Diaminobenzidine (DAB) staining 

(the averaged area of DAB-stained particles was 0.18±0.06 and 0.11±0.03 μm2 for 

Pah-R261Q and Enu1, respectively). The distribution of PAH aggregates in the 

hepatocytes of both mice was different; PAH aggregates in Enu1 were distributed both 

in the cytoplasm and nucleus, whereas in Pah-R261Q, they were distributed at the 

cytoplasmic side of the nuclear membrane. 

The difference in size and distribution pattern of PAH aggregates in both mice 

suggested a distinct mechanism involved in misfolding and aggregation of these 

mutants. Interestingly, in silico evaluation by the program TANGO predicted a high 
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propensity (>50%) to form intermolecular cross-β (amyloid-like) aggregates in region 

254-263 (FLGGLAFQVF) only in the p.R261Q-PAH mutant, which was 

complemented by Amytracker™ 680 fluorescence assay and transmission electron 

microscopy (TEM), which showed a formation of amyloid-like amorphous aggregates 

for purified p.R261Q-PAH compared to p.Wt-PAH. 

We next investigated the mechanism involved in the clearance of mutant PAH. As the 

autophagy pathway removes larger aggregates [303], we performed 

immunohistochemical analysis on liver tissue of Wt, Pah-R261Q and Enu1 mice using 

the autophagic marker Ser403-phosphorylated p62 protein (p62/SQSTM1) and LC3. 

Both phosphorylated p62 and LC3 levels were elevated and colocalised with mutant 

PAH in Pah-R261Q compared to Wt and Enu1. These results suggest that the larger 

PAH aggregates in Pah-R261Q engage the autophagic system but not the smaller 

aggregates in Enu1. Also, TEM analysis showed a higher number of lysosomes and 

autophagic structures, i.e. double-membrane autophagosomes and autolysosomes in 

the Pah-R261Q mice.  

Finally, PAH and some genes related to BH4-synthesis, protein quality control, and 

oxidative stress pathways were selected and subjected to quantitative PCR analysis 

using Wt and Pah-R261Q mice's liver extracts. The data analysis indicated no 

significant change in PAH expression in both mice. The GCH1-feedback regulatory 

(Gchfr) and DNAJC12 gene were upregulated in the mutant mice, whereas the 

transcription factor Hsf1 and the molecular chaperone Hsp70 were downregulated. The 

expression levels of genes connected to protein degradation, e.g. Stub1, p62/SQSTM1 

and the oxidative stress-responsive transcription factor Ap-1, were not altered. 

In conclusion, the Pah-R261Q mouse exhibited lipid profile alterations and increased 

oxidative stress due to the accumulation of mutant PAH aggregates. The selective 

autophagy-lysosome pathway mediated by Ser403-phosphorylated p62 protein appears 

to be involved in the degradation of p.R261Q-PAH aggregates. 
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3.3 PAPER Ⅲ 

This study aimed to investigate the functional role of Ser31 phosphorylation and its 

relationship with interacting partners in the regulation of TH. Different cell lines, such 

as PC12 cells, SH-SY5Y, HEK293 and iCell DopaNeurons, were used to carry out this 

study.  

We studied the cellular distribution of THpSer31 using specific antibodies towards this 

phosphorylated form. THpSer31 signal resembled Golgi complex (GC) pattern in PC12 

cells and was co-detected with the GC marker GM130 in PC12Adh, iCell 

DopaNeurons, and PC12 cells. Treatment with brefeldin A, a drug that causes a 

reversible disruption of the Golgi, abolished the THpSer31 signal. Co-detection of 

THpSer31 and synaptic-like vesicle marker synaptotagmin I in iCell DopaNeurons, 

and PC12 cells, in addition to colocalisation of fluorescence signals of immunolabeled 

VMAT2 and THpSer31 in iCell DopaNeurons indicated that THpSer31 associates with 

synaptic vesicles. Moreover, chemical inhibition of the kinases (Cdk5 and ERK1/2) 

that are responsible for the phosphorylation of TH at Ser31 led to a strong reduction of 

both total-TH and THpSer31 in the microsomal fraction of PC12 cells. SH-SY5Y cells 

transiently expressing a phospho-null mutant of Ser31 (V5-TH-S31A) was also 

reduced in the microsomal fraction compared to cell transiently expressing the 

phospho-mimicking mutants (V5-TH-S31E).  

Surface plasmon resonance studies using purified recombinant humanTH1 showed a 

certain degree of interaction with trypsinised chromaffin-vesicle membranes. 

However, there was no difference in the interaction between TH (non-

phosphorylated/THpSer31) and the membrane, indicating that TH does not interact 

directly with the vesicles. VMAT2, a vesicular membrane protein that facilitates 

THpSer31 interaction with vesicles and α-syn was disclosed by in situ proximity 

ligation assay in SH-SY5Y cells and confirmed by immunoprecipitation, which was 

performed using mouse brain lysates. We next sought to investigate if this interaction 

leads to localisation of TH toward the terminals by disrupting the microtubule network 
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with nocodazole. In SH-SY5Y cells, the treatment led to reduced V5-TH-S31E signal 

in the neurite, whereas V5-TH-S31A signal was mostly accumulated in soma with or 

without treatment. In iCell DopaNeuron cells, inhibition of phosphorylation and 

disrupted microtubule system lead to decreased THpSer31 signal both in soma and 

neurites. However, drug washout led to the recovering of the lost signal both in soma 

and neurites, indicating that the axonal transport of TH depends on microtubule 

integrity. The anterograde transport of TH was also affected by mutant α-syn when co-

expressed with V5-TH-S31E in SH-SY5Y cells. 

Finally, we studied whether phosphorylation at Ser31 can modulate phosphorylation at 

Ser19 and Ser40. Our results in neuroblastoma cells showed less Ser19 and Ser40 

phosphorylation for the V5-TH-S31E mutant compared to V5-TH-S31A, suggesting 

that conformational constraints and its interaction with partners, such as α-syn or 

VMAT2, may affect its availability for phosphorylation in cellular models. 

To conclude, Ser31 phosphorylation appears to enable the association of TH with 

synaptic vesicles by interacting with VMAT2 and α-syn. This PPI facilitates the 

subcellular localisation of TH toward axon terminals via the microtubule system. 

3.4 PAPER Ⅳ 

This study aimed to investigate the physiological role of Thr8 phosphorylation in the 

regulation of TH. We relied on the use of overexpression of phospho-mimicking, and 

phospho-null TH mutants and detection of their V5-epitope tag due to the lack of useful 

commercially available phospho-Thr8 (pThr8) antibody and failure to custom create 

pThr8 antibody. We first examined the distribution of endogenous total-TH, which was 

both cytosolic and nuclear, whereas THpSer19 was mostly nuclear in SH-SY5Y cells. 

THpSer19 detection in the cytosol was improved upon treatment with guanidinium 

chloride (GuHCl), which breaks the protein-protein interaction. To investigate the role 

of Ser19 phosphorylation in TH nuclear localisation, we created the V5-TH-S19A 

(phospho-null) and V5-TH-S19E (phospho-mimicking) mutants by site-directed 
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mutagenesis. Immunofluorescence assay could not explain the difference in the nuclear 

distribution of Wt and mutant mutants when expressed in SH-SY5Y cells. Subcellular 

fractionation, followed by Western blot analysis, revealed that V5-TH-S19A was 

significantly higher in the nuclear fraction than V5-TH-Wt, eliminating the possibility 

that Ser19 phosphorylation has a role in the nuclear localisation of TH.  

We then hypothesised that Thr8 phosphorylation might have specific involvement in 

the nuclear localisation of TH since there are two nuclear localisation signals predicted 

by cNLS mapper (a web-based tool) adjacent to it [304]. We created V5-TH-T8A 

(phospho-null) and V5-TH-T8E (phospho-mimicking) mutants and expressed them in 

SH-SY5Y cells. Western blot analysis of nuclear and cytosolic fractions expressing 

phospho-null and phospho-mimicking mutants of Thr8 showed a significant reduction 

of V5-TH-T8A by 34% ±6 (p-value=0.0009; n=3) in the nuclear fraction compared to 

Wt, revealing the role of Thr8 phosphorylation in the regulation of nuclear localisation 

of recombinant TH. Surprisingly, V5-TH-T8E was also reduced in the nuclear fraction 

compared to Wt, but its level was however higher than for V5-TH-T8A. 

We further investigated whether nuclear localisation is regulated by hierarchical 

phosphorylation; we analysed phospho-null and phospho-mimicking mutants of Ser31 

and Ser40 in the nuclear and cytosolic fractions by Western blot, which did not show 

any difference in the detection of mutant mutants compared to Wt, further supporting 

the importance of Thr8 phosphorylation in the nuclear localisation of TH. Finally, we 

studied the mechanism involved in the nuclear import of TH by treating SH-SY5Y 

cells with importazole, an inhibitor of importin-β. Wb analysis showed a significant 

reduction of V5-TH-Wt by 39% ±22 (p-value= 0.04; n=3) in the nuclear fraction when 

compared to untreated samples. Overall, our data suggest that Thr8 phosphorylation 

regulates the nuclear localisation of TH via the importin-β/RanGTP pathway.  
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4 DISCUSSION 

The reactions catalysed by AAAHs are of physiological and clinical importance and 

are tightly regulated, both short-term and long-term. Disturbances in the function of 

AAAHs can lead to severe neurometabolic and neuropsychiatric disorders, caused by 

mutations in the hydroxylases themselves or on the regulatory proteins, as clearly 

exemplified in DNAJC12 deficiency [235]. Dysfunctional PAH can elevate 

phenylalanine in the blood to a toxic level, causing a detrimental effect on the brain 

development and function [72]. Reduced TH activity leads to decreased DA levels and 

a broad range of movement disorders [228]. Therefore, it is crucial to study 

mechanisms, such as post-translational modifications and protein-protein interactions, 

which regulate these enzymes to better understand the associated disorders and 

contribute to the development of optimised therapies. 

In this work, we have studied regulatory PPIs involved in the function and proteostasis 

of PAH and TH using cellular and animal models. Importantly, we characterised a 

novel Pah-R261Q knock-in mouse line with the nucleotide change c.782G>A in Pah 

exon 7, coding for p.R261Q-PAH, one of the most common PKU mutations in humans. 

4.1 CO-CHAPERONE DNAJC12: A DOUBLE EDGED SWORD?  

Recently, DNAJC12, a member of the HSP40 family, was reported as a specific co-

chaperone of AAAHs. Moreover, DNAJC12 deficiency has been associated with the 

clinical and metabolic spectrum of HPA, as well as dystonia and intellectual disability 

[235], without evidence of PAH, TH, TPHs or BH4 deficiency. The typical role of 

DNAJ/HSP40 co-chaperones is to assist the HSC70/HSP70 family of molecular 

chaperones in properly folding its client proteins in an ATP-dependent binding/release 

cycle. As further DNAJ proteins are characterised, several proteostatic control aspects 

have been revealed. In addition to protein folding, they protect misfolded clients from 
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aggregation and/or facilitate ubiquitination and active delivery of terminally misfolded 

proteins to degradative pathways (UPS or autophagy) [31, 305, 306].  

Anikster et al. demonstrated the role of DNAJC12 in the proper folding of PAH [235]. 

Our work (paper Ⅰ) provides new insights into the role of DNAJC12 on the degradation 

of its clients. We observed a positive correlation between the amount of soluble 

DNAJC12 and PAH (wildtype and mutants) in COS-7 cells and the Enu1 

hyperphenylalaninemic mouse expressing the unstable and misfolded p.V106A-PAH 

[307]. Surprisingly, DNAJC12 in the liver of mutant mice was not immunodetected in 

tissue homogenates, however solubilisation with Triton led to its immunodetection, but 

in reduced amounts. Quantitative analysis of mRNA transcripts dismissed the 

possibility that PAH mutation could affect gene expression of Dnajc12. Interestingly, 

in paper Ⅱ, a mouse with p.R261Q-PAH mutation showed upregulation of Dnajc12 

expression, most likely due to oxidative stress [254, 308]. Furthermore, co-aggregation 

of DNAJC12 mutants with Wt PAH, TH and TPH2 have been reported in a cellular 

system [261].  

We detected DNAJC12 as co-immunoprecipitant with both Wt and mono-

ubiquitinated mutant PAH, suggesting a role of DNAJC12 in the degradation of the 

client. In addition, it has been shown that overexpression of DNAJC12 in the presence 

of different PAH mutants leads to either an increase or decrease in PAH amount and 

activity, indicating a mutation-specific selective function in the folding and/or 

degradation of mutant PAH [261]. DNAJC12 may also have a role in the degradation 

of Wt PAH when the protein reaches the end of its life cycle, since comparable amounts 

of mono-ubiquitinated Wt and mutant PAH was observed (paper Ⅰ). There are reports 

of HSP40 promoting ubiquitination of its client protein, preventing deubiquitination 

and subsequent sorting to the proteasome [309, 310].  

Mutations in DNAJC12 have also been reported to cause early-onset, dopa-responsive 

non-progressive parkinsonism [260]. Additionally, the deficiency of monoamines and 

their metabolites, including DA, serotonin, homovanillic acid, and 5-
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hydroxyindoleacetic acid, in the cerebrospinal fluid of the affected individuals indicate 

the importance of DNAJC12 in the proper function of the enzymes involved in the 

biosynthesis of monoamines [311]. Although direct interaction of DNAJC12 with TH 

has been shown [235], we still lack substantial knowledge on how this interaction with 

either Wt or mutant TH affects their regulation at a cellular and molecular level. 

Based on our results and the knowledge available in the scientific community on the 

effects on PKU-associated PAH mutations [261], DNAJC12 could contribute to 

alleviate or even aggravate disease progression. Whereas the former effect may be 

associated with an effective folding of certain mutant clients prone to degradation 

and/or aggregation, the latter may appear related to a too effective degradation of 

mutants with catalytic activity. Understanding the mechanisms involved is, therefore, 

crucial to identify therapeutic strategies for the associated disorders. 

4.2 PROTEOSTASIS REGULATION OF WT AND MUTANT 

PAH AND TH; DEGRADATION SYSTEMS 

Both PAH and TH are subjected to various short-term regulatory mechanisms, 

contributing to their activity, stability and localisation. On the other hand, mutations 

can affect either their enzymatic activity directly or their regulation, but in any case, 

they often result in reduced stability and intracellular half-life, thus also resulting in 

reduced total activity [223, 227, 312]. To date, >1000 human PAH mutants have been 

registered in the locus-specific BIOPKU database 

(http://www.biopku.org/home/pah.asp). Actually, enzyme stability algorithms (FoldX) 

and enzyme activity are powerful predictors of phenotype and BH4 response using data 

from BIOPKU [188]. The large number of registered and characterized patients has 

resulted in reliable genotype-phenotype correlations. However, PKU patients 

homozygous for the frequent p.R261Q-PAH mutation exhibit highly variable 

phenotypes, from mild to severe PKU, with different BH4 responsiveness [189, 313-

315], indicating strong modifier traits and revealing this mutation as a very exciting 
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focus of study. The knock-in mouse encoding the p.R261Q-PAH mutation (paper II) 

exhibited lipid profile alterations and increased oxidative stress, which was likely due 

to the accumulation of p.R261Q-PAH aggregates, introducing a toxic gain-of-function 

concept for specific PKU-associated mutations. 

Mouse and human PAH share high sequence homology (92.5 % identity), structure, 

regulatory mechanisms and specific activity, with Arg261 being in the evolutionarily 

conserved catalytic domain. The residue R261 has a structural role, stabilising the 

active site secondary structure and dimer/tetramer formation [216]. The Arg261 

substitution to Gln would disrupt intra- and inter-subunit interactions, giving rise to an 

unstable protein [216, 312] (Figure S1; Paper II). More often than not, instability leads 

to accelerated degradation, but instability can also be followed by misfolding and 

aggregation. In fact, in silico prediction (TANGO [316]) showed a high propensity to 

form intermolecular cross-β (amyloid-like) aggregates for both human and mouse PAH 

in region 254-263 in the mutant (FLGGLAFQVF) but not in Wt (paper Ⅱ). Using 

purified recombinant p.R261Q-PAH, we confirmed the prediction by performing a 

fluorescence assay utilising luminescent conjugated oligothiophene dyes, a tracer 

molecule for visualising amyloid-like protein aggregates. Immunohistochemistry and 

TEM analysis further corroborated the hypothesis that the R261Q mutation leads to 

large amorphous aggregates but not fibrils. 

The present knowledge for many PKU-associated PAH mutants is the destabilisation 

of mutant proteins and degradation carried out preferentially by the UPS [317]. Our 

study on Pah-R261Q mice showed that selective autophagy might be involved in the 

degradation of the mutant PAH. The co-detection of p.R261Q-PAH with Ser403-

phosphorylated p62 and LC3 indicated the engagement of the autophagic system. The 

affinity of p62 for ubiquitinated protein increases when phosphorylated at Ser403; thus, 

Ser403-phosphorylated p62 enhances the autophagic degradation of ubiquitinated 

proteins in case of toxic accumulation of mutant aggregates [318]. The ubiquitinated-

protein bound to Ser403-phosphorylated p62 is efficiently sequestered in the 
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sequestosome, a membrane-free body of aggregates [319], followed by engulfment in 

the autophagosome through p62 interaction with lipidated LC3 and subsequent fusion 

with the lysosome, where the actual degradation process takes place [48]. The 

ubiquitinated-PAH mutants' selectivity for the degradation pathways appears 

dependent on the nature of the aggregates, as moderately aggregating Enu1 mutant 

p.V106A-PAH (not predicted to form amyloid-like aggregates by TANGO, paper Ⅱ), 

is also highly ubiquitinated but displays no co-detection with the autophagic markers. 

Døskeland and Flatmark initially showed recombinant hTH1 to be ubiquitinated and 

degraded in the reticulocyte lysate system [320]. Since then, several reports have 

emerged indicating phosphorylation of TH at the N-terminal to be a critical trigger for 

its proteasomal degradation [170, 171, 304, 321-323]. Furthermore, inhibition of 

proteasome increases ubiquitinated-THpSer40 to form insoluble aggregates in NGF-

stimulated PC12D cells [321]. Given the long half-life of TH (approximately 17 h, 30 

h and 29 in PC12 cells, in a subclone of PC12 cells and in chromaffin cells, respectively 

[324-326]), it is logical to expect that TH is subjected to both short-term and long-term 

regulation by degradative pathways. In fact, it has been reported to be short-term 

regulated in a phosphorylation-dependent manner by UPS and long-term by the 

lysosome [323]. 

4.3 REGULATORY SER/THR PHOSPHORYLATION OF TH 

AND CONSEQUENT PPI FORMATION 

PAH has one phosphosite and exhibits relatively simple phosphorylation mediated 

regulation compared to TH, which has four phosphosites with distinct roles. PAH is 

phosphorylated at Ser16, which facilitates its activation by L-Phe by inducing a subtle 

N-terminal conformational change and providing higher stability toward limited tryptic 

proteolysis [123]. Phosphorylation of TH not only increases enzyme activity in situ but 

also facilitates protein-protein interactions, promotes subcellular localisation, and 
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maintains protein availability which in turn maintains optimal catecholamine levels in 

cells [133, 137, 147, 327, 328] (paper III and paper IV).  

In paper Ⅲ, we investigated a novel functional role of Ser31 phosphorylation. Our 

results showed that TH associates with the Golgi complex and synaptic-like vesicles in 

a phosphorylation-dependent manner. The perinuclear distribution of THpSer31 

resembled a GC pattern in several cellular models (PC12 cells, iCell DopaNeurons), 

indicating a possible early TH interaction with vesicles. This hypothesis was further 

corroborated when we observed THpSer31 co-distribution with vesicle marker 

synaptotagmin I and VMAT2. Additionally, the data obtained from transient 

overexpression of V5-TH-S31A (phospho-null) and V5-TH-S31E (phospho-

mimicking) mutants were consistent with our observation. Ser31 phosphorylation of 

TH is important for its interaction with VMAT2 and α-syn since the phospho-null 

mutant exhibited reduced co-distribution (paper Ⅲ). 

A growing body of evidence suggests that synaptic and non-synaptic proteins are 

transported together as constituents of common cargoes, perhaps as a multiprotein 

complex; e.g., α-syn, synapsin-I and glyceraldehyde-3-phosphate dehydrogenase have 

been shown to co-transport in the axons of cultured hippocampal neurons [329, 330]. 

Both TH and α-syn have been shown to be rapidly transported by the fast components 

of the axonal transport, which mainly carry vesicular cargoes [331, 332]. Thus, TH and 

α-syn might tether to VMAT2 and co-transport as part of a multivesicular complex. 

The results from mice brain lysates and cellular models confirmed the interaction of 

THpSer31 with VMAT2 and α-syn. Moreover, it is known that α-syn interacts with TH 

inhibiting its activity [178]. Our results indicate that TH, together with VMAT2 and α-

syn, is transported toward the axon terminal, most likely in an inhibited state. 

Furthermore, additional regulatory or stabilising proteins, such as Hsc70 and DOPA 

decarboxylase, are known to interact with VMAT2 and TH [301, 333], which might 

co-transport with the same cargo [301, 333]. This kind of efficient “packaging” of 

multiple proteins may allow them to perform their complementary roles [334]. 
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TH and THpSer31 levels are higher in the terminals than soma, and the modulation of 

TH activity is maintained locally in each compartment [163]. Moreover, hTH2, which 

cannot be phosphorylated at the equivalent Ser31 site of hTH1 (due to the 4-amino acid 

insert of hTH2), shows abundance in the substantia nigra and is reduced at the 

terminals, indicating the importance of Ser31 phosphorylation in the subcellular 

localisation of TH [127, 335]. Still, hTH2, which is expressed in similar amounts in 

cells as hTH1, is present at the terminals [127]. This may be facilitated by the formation 

of heterotetramers with the more transport competent hTH1. However, this has to be 

confirmed experimentally.  

Stabilisation of TH seems to be important for the transport to the terminals, and binding 

of DA to TH is one of the strongest stabilising mechanisms [86]. A mouse model with 

dopamine transporter knockout exhibits reduced DA tissue content, TH expression and 

phosphorylation only in the terminals [336]. In line with this hypothesis, the knock-in 

mouse with the mutation p.R203H, equivalent to hTH1-p.R202H, shows reduced 

stabilisation by DA and exhibits a deficit in the striatal distribution of TH [227]. The 

altered nigrostriatal distribution of TH and lack of DA in synapse also affect DA 

reuptake by DAT, which is regulated by the D2 autoreceptor [337]. DA deficiency also 

leads to an increase in Ser40 phosphorylation and subsequent degradation of TH by the 

UPS in PC12D cells [322]. 

Prior studies have emphasised TH to be a cytosolic enzyme; however, its physiological 

interaction with membranes has been reported [338], and along with our study (paper 

Ⅲ), the subcellular distribution of TH in different compartments has been established 

[137]. For the first time, Nakashima et al. reported the nuclear distribution of Ser19 

phosphorylated TH in PC12D cells and associated the phosphorylation site with the 

proteasomal degradation of TH in the nucleus [170, 304]. However, the relationship 

between phosphorylation and nuclear localisation still remains unclear. Consistent with 

the previous report [170], we observed in SH-SY5Y cells that Ser19 phosphorylated 

TH presented a nuclear distribution (paper Ⅳ). Yet, it was intriguing to see a lack of 
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THpSer19 in the cytosol, as initially expected due to TH abundance in the cytosol. It 

is well known that THpSer19 interacts with 14-3-3 proteins [247, 339]. We 

hypothesised that this PPI might protect the epitope, hence the reduced detection of 

THpSer19 in the cytosol. Surprisingly, when V5-TH-S19A (phospho-null) and V5-

TH-S19E (phospho-mimicking) mutants were transiently expressed in SH-SY5Y cells, 

the amount of phospho-null mutant in the nuclear fraction was significantly higher than 

Wt and phospho-mimicking mutants, contradicting our initial hypothesis. Cellular 

distribution analysis of THpSer31 and THpSer40 did not suggest a role for these sites 

in TH nuclear localisation. We then tested if Thr8 phosphorylation is involved in the 

nuclear distribution of TH. The V5-TH-T8A mutant showed a significant reduction in 

the nuclear fraction of SH-SY5Y cells compared to V5-TH-Wt. Our data was not 

incompatible with other phosphosites being detected in the nuclear fraction, as these 

might reflect “passenger phosphosites”, whereas THpThr8 could actively be involved 

in the interaction with proteins related to nuclear import.  

It is known that several nuclear transport factors or carrier proteins, collectively called 

β-karyopherins, facilitate the translocation of large cargoes either into or out of the 

nucleus. β-karyopherins are divided into importins and exportins for their import and 

export roles, respectively. It is a prerequisite for cargoes to possess a Nuclear 

Localisation Signal (NLS) that can be recognised by an importin directly or by an 

adaptor protein [340]. TH has been predicted to contain two NLS downstream of Thr8 

phosphosite; Pro9-Arg38 and Lys12-Ile42 [304]. Furthermore, evidence of 

phosphorylation-mediated upregulation of nuclear import is emerging [341]. 

Phosphorylation within or upstream of NLS can promote nuclear localisation of 

cargoes either by increasing their affinity for a specific import factor that recognises 

the phosphate moiety or by modulating the recognition of NLS [342, 343].  

Since nuclear import requires protein-protein interaction, inhibiting the proteins 

involved in the pathway should affect the transport process. Treatment with 

importazole, a small molecule inhibitor of importin-β [344], decreased the nuclear 
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content of recombinant TH in SH-SY5Y cells, indicating an involvement of the 

importin-β/RanGTP pathway. The energy-dependent importin-β/RanGTP pathway 

relies on the Ran (RAs-related Nuclear protein) nucleotide state, which cycles between 

GDP- and GTP-bound states that regulate interactions between cargoes and carriers. 

Thus, by indicating its involvement of Thr8 phosphorylation in nuclear uptake, our 

results support a previously unavailable specific role for this phosphosite. Although the 

kinase responsible for phosphorylating Thr8 is still ambiguous, it has been reported 

that CDK1 is involved in the phosphorylation of Thr8 in cultured cells [150, 173]. 

However, among all the phospho-sites in TH, Thr8 has the lowest stoichiometry in situ 

and in vivo [147]. Ser8 phosphorylation of rat TH is high in PC12 cells and low in the 

corpus striatum, perfused rat adrenal medulla and bovine chromaffin cells [177], which 

correlates with the expression level of CDK1, low in non-mitotic tissues and high in 

PC12 cells [345]. 

So far, the nuclear localisation of TH has only been associated with proteasomal 

degradation. Phosphorylation mediated nuclear degradation has been shown for 

proteins, such as the transcription factor MYC oncoprotein [346]. Besides, we have 

observed the nuclear distribution of PAH aggregates in the hepatocytes of Enu1 mice 

(paper Ⅱ), where the nuclear UPS may degrade them [347]. However, further research 

is necessary to investigate if TH has an additional role in the nucleus since it has been 

long known to interact with polyanions [130, 132] yet the functional relevance of this 

interaction has not been clarified. 
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5 CONCLUSIONS AND FUTURE      
PERSPECTIVES 

In this thesis, we have studied the proteostatic regulation of two aromatic amino acid 

hydroxylases, PAH and TH, to elucidate the protein-protein interactions involved in 

their availability, distribution and subcellular localisation.  

In particular, we demonstrated a PAH mutation-specific interaction of the specific 

HSP40 co-chaperone of the AAAHs, DNAJC12, with non-ubiquitinated PKU-

associated mutants in COS cells. Furthermore, we showed a tight interaction of 

DNAJC12 with ubiquitinated mutant PAH in vivo, revealing a role in the degradation 

of PAH. These findings underscore the complex quality control system involved in the 

intracellular stability of PAH, and especially of disease-associated mutants. However, 

further investigations are necessary to unravel the mechanisms and interactions 

between DNAJC12 and AAAHs clients at the molecular level.  

We presented the metabolic and biochemical characterization of the novel Pah-R261Q 

knock-in mouse, and our findings imply a paradigm shift in the understanding of PKU 

pathology from a loss-of-function disorder to include a gain-of-function contribution 

from toxic protein misfolding and aggregation. We showed a strong connection 

between intracellular toxic aggregation of the p.R261Q-PAH mutant and increased 

oxidative stress with lipid profile alteration in the knock-in mice Pah-R261Q. Our 

results indicate that in this mouse model, the large PAH aggregates may be degraded 

by the p62/sequestosome-LC3 mediated autophagic pathway. The Pah-R261Q mouse 

model thus represents a valuable research tool to further investigate the proteostasis 

regulation of mutant PAH, and evaluate and discover additional biomarkers in PKU 

related to mutation-specific comorbidities. Moreover, this mouse model could help 

investigate pharmacological chaperone-based therapies targeting unstable and 

misfolded PAH mutants. 
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We also revealed a novel role for TH phosphorylated at Ser31 phosphorylation, 

elucidated in cellular models. Our data shows the co-distribution of TH with synaptic 

vesicles through association with VMAT2 and α-syn in a THpSer31 phosphorylation-

dependent manner. Furthermore, this phosphorylation-mediated PPI interaction 

facilitates the transportation of TH from the cell soma to the terminals. Moreover, our 

study directs toward a prospect for a therapeutic strategy to revert neuronal 

mislocalisation in disorders associated with THD by targeting and stabilising the PPI 

involved in the transport of TH.  

We investigated the nuclear distribution Ser19 and elucidated the role of the long 

under-researched Thr8 phosphorylation of TH in SH-SY5Y cells. We identified that 

Thr8 phosphorylation regulates the nuclear localisation of TH via the importin-

β/RanGTP pathway. Besides, hierarchical phosphorylation did not affect nuclear 

localisation. The nuclear distribution of TH has been associated with its proteasomal 

degradation. However, it is important to investigate if TH can enter the nucleus to 

perform an additional function or other reasons than to be degraded, such as modulation 

of gene expression by establishing PPIs. Furthermore, the role of Thr8 phosphorylation 

in an animal model needs to be investigated.  
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Abstract 

DNAJC12, a type III member of the HSP40/DNAJ family, has been identified as the specific co-

chaperone of phenylalanine hydroxylase (PAH) and the other aromatic amino acid hydroxylases. DNAJ 

proteins work together with molecular chaperones of the HSP70 family to assist in proper folding and 

maintenance of intracellular stability of their clients. Autosomal recessive mutations in DNAJC12 were 

found to reduce PAH levels, leading to hyperphenylalaninemia (HPA) in patients without mutations in 

PAH. In this work, we investigated the interaction of normal wild-type DNAJC12 with mutant PAH in 

cells expressing several PAH variants associated with HPA in humans, as well as in the Enu1/1 mouse 

model, homozygous for the V106A-Pah variant, which leads to severe protein instability, accelerated 

PAH degradation and mild HPA. We found that mutant PAH exhibits increased ubiquitination, 

instability, and aggregation compared with normal PAH. In mouse liver lysates, we showed that 

DNAJC12 interacts with monoubiquitin-tagged PAH. This form represented a major fraction of PAH 

in the Enu1/1 but was also present in liver of wild-type PAH mice. Our results support a role of 

DNAJC12 in the processing of misfolded ubiquitinated PAH by the ubiquitin-dependent 

proteasome/autophagy systems and add to the evidence that the DNAJ proteins are important players 

both for proper folding and degradation of their clients. 
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Abstract
DNAJC12, a type III member of the HSP40/DNAJ family, has been identified as the specific

co-chaperone of phenylalanine hydroxylase (PAH) and the other aromatic amino acid hydroxy-

lases. DNAJ proteins work together with molecular chaperones of the HSP70 family to assist

in proper folding and maintenance of intracellular stability of their clients. Autosomal recessive

mutations inDNAJC12were found to reduce PAH levels, leading to hyperphenylalaninemia (HPA)

in patients without mutations in PAH. In this work, we investigated the interaction of normal wild-

type DNAJC12 with mutant PAH in cells expressing several PAH variants associated with HPA in

humans, aswell as in theEnu1/1 mousemodel, homozygous for theV106A-Pahvariant,which leads

to severe protein instability, accelerated PAH degradation and mild HPA. We found that mutant

PAH exhibits increased ubiquitination, instability, and aggregation compared with normal PAH.

In mouse liver lysates, we showed that DNAJC12 interacts with monoubiquitin-tagged PAH. This

form represented a major fraction of PAH in the Enu1/1 but was also present in liver of wild-type

PAH mice. Our results support a role of DNAJC12 in the processing of misfolded ubiquitinated

PAHby the ubiquitin-dependent proteasome/autophagy systems and add to the evidence that the

DNAJ proteins are important players both for proper folding and degradation of their clients.

K EYWORDS

HSP40 co-chaperones, hyperphenylalanine, molecular chaperones, protein aggregation, protein

misfolding

1 INTRODUCTION

The aromatic amino acid hydroxylases (AAAHs) are a family of non-

heme iron- and tetrahydrobiopterin (BH4)-dependent enzymes that

catalyze the hydroxylation of their respective aromatic amino acid

substrates using O2 as an additional substrate (Fitzpatrick, 2015;

Skjærven, Teigen, & Martinez, 2014). In vertebrates, four genes code

for the AAAHs: phenylalanine hydroxylase (PAH), tyrosine hydroxy-

lase (TH), and tryptophan hydroxylases 1 and 2 (TPH1 and TPH2).

The AAAHs catalyze physiologically and clinically important reactions,

as the hydroxylation of L-Phe to L-Tyr, which is the first step in the

catabolic degradation of L-Phe (by PAH), the hydroxylation of L-Tyr to

L-DOPA, the rate-limiting step in the biosynthesis of catecholamines

(by TH), and the hydroxylation of L-Trp to 5-hydroxytryptophan, the

rate-limiting reaction in the synthesis of serotonin (by the TPHs).

Dysfunction of the AAAHs is associated with serious neurometabolic

disorders, such as phenylketonuria (PKU), which is caused by the

hyperphenylalaninemia (HPA) that results from variants in PAH, and

neurological and neuropsychiatric disorders caused by malfunction

and dysregulation of TH or the TPHs (Waløen, Kleppe, Martinez, &

Haavik, 2017).

Recent work has shown that mutations in DNAJC12—a co-

chaperone of the HSP40/DNAJ family, type III—lead to HPA,

dystonia, and intellectual disability (Anikster et al., 2017; Blau,

Martinez, Hoffmann, & Thony, 2018; Bouchereau et al., 2018;

Straniero et al., 2017; van Spronsen et al., 2017; Veenma, Cordeiro,

HumanMutation. 2019;40:483–494. c© 2019Wiley Periodicals, Inc. 483wileyonlinelibrary.com/journal/humu
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Sondheimer, &Mercimek-Andrews, 2018). Moreover, affinity capture-

mass spectrometry analysis in human cells has shown direct interac-

tions of DNAJC12 with PAH, TH, and the TPHs (Anikster et al., 2017;

Huttlin et al., 2015), which indicates that DNAJC12 is a specific co-

chaperone for the AAAHs that contributes to themaintenance of their

intracellular stability. The function of the DNAJ proteins in the quality

control machinery is believed to be the transfer of its specific protein

clients to the molecular chaperone HSC70/HSP70-HSP90 network

for proper folding (Kampinga & Craig, 2010), and PAH protein level

and activity are indeed reduced in cells that express mutant DNAJC12

(Anikster et al., 2017). Nevertheless, the complex molecular chaper-

one machinery is essential to maintain proteostasis in eukaryotic cells

not only by assisting in the folding of client proteins but also in the

intertwined triage decisions that affect the disposition of misfolded

proteins, which are degraded to avoid toxic aggregation and cellular

damage (Dekker, Kampinga, & Bergink, 2015; Pratt, Morishima, Peng,

& Osawa, 2010). In this context, the DNAJ-co-chaperones appear

essential for ubiquitin (Ub)-tagging and further degradation of the

clients by the Ub-dependent proteasome (Kampinga & Craig, 2010).

Furthermore, DNAJ and HSC70/HSP70 also participate in the degra-

dation of aggregated proteins by autophagy (Kaushik &Cuervo, 2012).

Proteins such as PAH, which do not include a specific sequence motif

for chaperone-mediated autophagy allowing direct translocation

across the lysosome membrane, usually follow a mechanism known

as selective autophagy (Kaushik & Cuervo, 2012). This selective

autophagosomal–lysosomal system also requires Ub-tagging of the

clients and collaborates with the Ub–proteasome in the degradation

of misfolded and aggregated proteins, where HSP70s and DNAJs play

an important role in the crosstalk between both systems (Fernandez-

Fernandez, Gragera, Ochoa-Ibarrola, Quintana-Gallardo, & Valpuesta,

2017; Kraft, Peter, & Hofmann, 2010).

PAH mutants often form amorphous aggregates when expressed

in Escherichia coli (Bjørgo, Knappskog, Martínez, Stevens, & Flatmark,

1998), and fibril formation has also been observed in vitro (Lean-

dro, Simonsen, Saraste, Leandro, & Flatmark, 2011). However, in

vivo amyloid or other fibrillary deposits, which are the pathological

manifestation of other protein folding defects via gain-of-function tox-

icity (Gregersen, 2006), have not been reported for PKU-associated

variants. The misfolded PAH mutants are considered to be effec-

tively degraded by the cellular quality control system when they

are expressed in eukaryote cells (Himmelreich et al., 2018; Pey,

Desviat, Gamez, Ugarte, & Perez, 2003; Waters, Parniak, Akerman, &

Scriver, 2000) or as observed in mammalian liver of mouse models of

HPA (Gersting et al., 2010; Sarkissian, Boulais, McDonald, & Scriver,

2000; Sarkissian, Ying, Scherer, Thony, & Martinez, 2012). PKU is

therefore considered a paradigm of misfolding disorders in which

the metabolic phenotype is mainly related to the conformational

destabilization caused by the mutation in the PAH structure, which

in turn is associated to the remaining PAH protein expression and

activity (Pey, Stricher, Serrano, & Martinez, 2007; Wettstein et al.,

2015). Recently, the aggregation of the unstable PAH variant p.V106A,

which is expressed by the Enu1/1 mousemodel of mild HPA (Sarkissian

et al., 2000), has also been observed when the mutant protein is

expressed in primary hepatocytes and COS-7 cells (Eichinger et al.,

2018). Furthermore, studies with both, the Enu1/1 and the Enu1/2

heteroallelic mouse models, which carry both the unstable V106A-Pah

(enu1 allele) and/or the catalytically deficient but stable F263S-Pah

(enu2 allele) variants, have shown that mutant forms of PAH, notably

p.V106A, are highly ubiquitinated and very unstable in vivo, indicating

that they are targets for proteasome-mediated degradation and

selective autophagy (Sarkissian et al., 2012).

To further investigate the involvement of DNAJC12 in the degrada-

tion of mutant PAH, we studied the interactions of the wild-type (wt)

co-chaperone with normal and mutant PAH forms expressed in COS

cells and in mouse liver. To study the interactions in vivo, we selected

the homozygote Enu1/1 mouse model. Despite the fact that the Pah

variant carried by these mice is extremely rare in human subjects

(0.2% of alleles in Japan) (Okano, Kudo, Nishi, Sakaguchi, & Aso, 2011),

the Enu1/1 is a model for pathological states associated with human

PAH instability and accelerated degradation (Gersting et al., 2010;

Sarkissian et al., 2000). We demonstrated that in the livers of these

mice, mutant p.V106A-PAH is found largely in a mono-ubiquitinated

state and forms a complex with DNAJC12, which supports the func-

tional association of the co-chaperonewith PAH degradation.

2 MATERIALS AND METHODS

2.1 Generation of plasmids for cellular expression of

PAH andDNAJC12

Generation of plasmids for recombinant expression of the PAH vari-

ants was performed as described (Himmelreich et al., 2018; Shen et al.,

2016) (Supporting Information Table S1). To generate an expression

plasmid for DNAJ12 (based on pCiNeo-Myc), total RNAwas extracted

from 1 × 106 cells (control fibroblasts) using the MasterPure RNA

purification kit (Epicentre Biotechnologies). Using random hexamer

primers (Invitrogen) and RevertAid reverse transcriptase (Thermo

Scientific), 1 𝜇g of total RNAwas reverse transcribed into cDNA, using

manufacturer's protocol (5 min at 25◦C, 60 min at 42◦C, and 5 min

at 70◦C). Nested-PCR for human DNAJC12 (NM_021800.2; CDS:

169–765)was performedwith the following parameters: Step 1: 98◦C,

1 min; Step 2: 98◦C, 15 s; Step 3: 55◦C, 30 s; Step 4: 72◦C, 40 s; Step

5: 72◦C, 5 min; Step 6: 4◦C, indefinitely. Steps 2–4 were repeated 35

times. The amplification primers for DNAJC12 were F1_hDNAJC12:

5′-4GTCTAGGATGACATCTGGTGTATTG29-3
′ together with

R1_hDNAJC12: 5′-884GTACTCAGCAATTCACAGACATGAC859-3
′

and F2_hDNAJC12: 5′-111TTCGAAGCTCACTGTGCCTCTTG133-3
′

together with R2_hDNAJC12: 5′-813GCATAGGGGACAGTCTTGCT

CTT791-3
′. After gel extraction (Bioline) and Sanger sequenc-

ing of the DNAJC12-PCR fragment, a third PCR was performed

to attach flanking NotI endonuclease restriction sites for lig-

ation with T4-DNA-ligase (Fermentas) into vector pCiNeo-

Myc (Promega) (F3_hDNAJC12_NOT_ATG: 5′-ACGCGGCCG

CATGGATGCAATACT together with R4_hDNAJC12_Not_STOP:

5′-TACGCGGCCGCTATTTCATAGTTTCT-3′). The NotI restriction

fragment was ligated into vector pCiNeo-Myc overnight at room

temperature before transformation into E. coli DH5a cells. The con-

structs were rechecked after plasmid minipreparation (Bioline) and
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thereafter stably transfected into the COS-7 cell line upon selection

with Neomycin in the cell culture medium (225 𝜇g⋅ml−1 G418, Life

Technologies).

2.2 Cell culture, transient transfection of

PAH-expressing plasmids, PAH andDNAJC12

expression, and cell lysate preparation

COS-7 cells were used for transient transfection of human PAH-

expressing plasmids. Cells were cultured in Dulbecos Modified Eagle

Medium, enrichedwith a 10% fetal calf serumplus 1%Pen/Strep under

standard conditions (37◦Cwith 5%CO2) in a sterile environment. One

day before transfection, 106 COS-7 cells were seeded in 10 cm cul-

ture dishes (Sarstedt). For the transfection with Fugene HD reagent

(Promega), the cells had a density of 50–70% confluence, and the

experiments were carried out according to the manufacturer's man-

ual. Plasmids pCMV-Flag-PAH (10 𝜇g) expressing either the wt or a

PAH-variant were co-transfected with 2 𝜇g of pSV-𝛽-Galactosidase

control vector (Promega) using 30 𝜇l of liposomal transfection reagent

in antibiotic-free media. After culturing the transfected cells for 72 hr,

the cells were harvested with trypsin, washed with 1× PBS, pH 6.8,

and shock-frozen in liquid N2 for storage at −80◦C. COS-7 cells stably

expressing DNAJC12 were used in three different variants, that is, as

“un-transfected” controls, and transfected with either wt or one of the

mutant PAH. Cell lysates were prepared bymacerating the cells in 1M

Sucrose, 1× PBS buffer, pH 6.8, containing protease inhibitor cocktail

(Roche Applied Science) (except DNAJC12 overexpressing cells, which

were lysed in water) 20 times through a 20 G needle followed by 3 ×
20 s sonification and centrifugation for 30 min at 13,000 rpm at 4◦C.

The cell extractswere desalted and further purified using ZebraDesalt

Spin columns (Pierce Biotechnology). The Myc-Tagged DNAJC12 was

also used as a marker for immunodetection of the antigen, and to val-

idate the antibody, which was selected based on its highest selectivity

for DNAJC12 toward other DNAJ-proteins.

2.3 Mice husbandry and genotyping

Heterozygous C57BL/6-enu1 mice (Enu1/wt) were kindly donated by

Dr. Soren W. Gersting from the Ludwig-Maximilians-University in

Munich to the University of Zurich (Beat Thöny) for colony forming,

and thereafter transferred to the laboratory animal facility at the Uni-

versity ofBergen. Theherepresentedanimal studies receivedapproval

from the National committee for the use of animals in research (Nor-

wegian Food SafetyAuthority) andwere conducted in accordancewith

the International and National regulations on the use of animals in

research. Homozygote mutant mice enu1/enu1 (Enu1/1) were gener-

ated by cross-breeding heterozygous femaleswith homozygousmales.

C57BL/6micewere used aswt controls. Animals used for experiments

were between 18 and 21 weeks of age with a body weight of 25–35 g.

Animals were housed in a controlled temperature room maintained

under alternating 12 hr light and dark cycles and, in between exper-

iments, had free access to food (standard chow) and water. Ear biop-

sies were collected for genotyping following a method as described

(McDonald & Charlton, 1997).

2.4 Preparation ofmouse liver lysates

Immediately after the sacrificewith CO2, the entire liverwas resected,

frozen in liquid nitrogen, and stored at −80◦C. The liver tissue was

manually ground into fine powder and stored in aliquots at −80◦C
until analysis. Liver lysate preparationwas performed at 4◦C. For stan-

dard initial immunodetection experiments, liver powder aliquots were

homogenizedwith a Tissue Lyser II (Qiagen) in PBS buffer, pH 7.4, con-

taining a protease inhibitor cocktail (Roche). The lysates were clarified

by centrifugation at 13,000 × g for 20 min, and the supernatants were

collected and stored in liquid nitrogen prior to use. To improve the sol-

ubilization of aggregates, the liver powder aliquots were homogenized

with a Tissue Lyser II in 4× volumes of 20 mMHepes, pH 7.4, 125 mM

NaCl, 1 mM EDTA, 2 mM PMSF supplemented with protease inhibitor

cocktail (Roche Applied). The lysates were clarified by centrifuga-

tion at 16,000 × g for 20 min. The supernatants were collected and

treated with 1% Triton X-100 for 1 hr with rotation, and centrifuged

at 20,000 × g for 15 min. The protein concentrations were measured

using a Direct Detect R© Infrared Spectrometer (Merck Life Science).

These conditions were also used for the preparation of lysates for

co-immunoprecipitation. Subcellular fractionation of nuclear and cyto-

plasmic fraction of liver extractswas performed using a nuclear extrac-

tion kit (Merck Life Science) on the liver powder.

2.5 mRNA quantification

Quantification of selected mouse mRNAs by RT-qPCR was per-

formed as described (Scherer et al., 2018), using the ABI assay

number Mm00500918_m1 (NCBI nucleotide sequence number

NM_008777.3) for Pah–mRNA, Mm01731394_gH (NM_ 031165.4)

for Hspa8–mRNA, Mm00517691_m1 (NM_001163434.1) for

Hspa5(BIP)–mRNA, Mm01322973_m1 (NM_ 008102.3) for Gch1–

mRNA, Mm00433149_m1 for Esr1–mRNA, Mm01201402_m1

(NM_008296.2) for Hsf1–mRNA, Mm00490634_m1 (NM_019719.3)

for Stub1–mRNA, Mm00622819_m1 (NM_177157.4) for Gchfr–

mRNA, Mm00497038_m1 (NM_001253685.1) for Dnajc12–

mRNA, Mm01729741_g1 (NM_001285429.1) for Eef1d–mRNA,

Mm00517691_m1 (NM_010478.2) for Hspa1b(Hsp70)–mRNA,

Mm02620446_s1 (NM_029771.3) for Gper1–mRNA, and

Mm00599821_m1 (NM_010157.3) for Esr2–mRNA. The murine

Gapdh gene was used as a control (ABI assay IDMm99999915_gl;

NCBI nucleotide sequence number NM_008084.3).

2.6 Expression and immunoblotting of PAH and

DNAJC12

Western blotting of the cell lysates was performed as described

(Himmelreich et al., 2018); 20 𝜇g of the total protein from the super-

natant was resolved in a 12 % SDS-PAGE, blotting for 50 min to a

nitrocellulose membrane (GE Healthcare) using a semidry transfer

method and blocking for 1 hr at room temperature in 5% milk powder

either in TBST with 0.1% (v/v) Tween (for DNAJC12 or M2-Flag) or

PBST0.1with 0.1% (v/v) Tween (for PAH,HSP70, and 𝛽-actin). Primary

antibodies against DNAJC12 (1:500 dilution, Abcam ab167425),
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PAH (1:1,000 dilution, Millipore MAB5278), M2-Flag (1:1,000

dilution, Sigma F1804), HSP70 (1:1,000 dilution, ab2787), and 𝛽-

actin (1:10,000, Sigma A5441) were incubated overnight at 4◦C

under constant movement. The secondary antibodies against rab-

bit (Dianova) and against mouse (Santa Cruz) were labeled with

a horseradish peroxidase tag, and detection with an ECL reagent

(Pierce) was performed according to manufacturer's recommen-

dations. Western blots of the liver lysates were performed using

SDS-PAGE 10% TGXTM gels (Bio-Rad) with 15 𝜇g total protein in

sample buffer consisting of 1% SDS and 100 mM DTT (final con-

centration) in each lane. The samples were transferred onto PVDF

membranes using a Transblot Turbo system (Bio-Rad) and immunos-

tained using as primary antibodies: anti-PAH (clone PH8) (1:5,000,

mouse; Merck Life Science), anti-DNAJC12 (1:300, rabbit; Abcam),

anti-ubiquitin (1:1,000, mouse; Thermo Fisher Scientific), anti-𝛽-actin

(1:1,000, mouse; Merck Life Science), anti-HSC70/HSP70 (1:5,000,

mouse; Enzo; this antibody recognizes both HSC70 and HSP70),

anti-GAPDH (1:1,000, rabbit; Abcam). Secondary antibodies for both

goat anti-rabbit IgG (H+L) horseradish peroxidase conjugate and

goat anti-mouse IgG (H+L) horseradish peroxidase conjugate were

from Bio-Rad. The membranes were developed by enhanced chemi-

luminescence and visualized using a ChemiDoc instrument (Bio-Rad).

The band intensities were quantified using Image Lab software v 5.1

(Bio-Rad).

2.7 Immunohistochemistry

Enu1/1 andwtmice (male, 6-month-old) were deeply anesthetizedwith

sodium pentobarbital (Mebumal; 20 mg⋅kg−1, ip), and then transcar-

dially perfused with 20 ml of warm saline solution (0.9%; 37◦C), fol-

lowed by 20 ml of a warm mixture of paraformaldehyde (4%; 37◦C)

with 0.4% picric acid in 0.16 M phosphate buffer, pH 7.2, and finally

with 50 ml of the same, but ice-cold, fixative. After perfusion, the liv-

ers were dissected and post-fixed in the same fixative for 90 min at

4◦Cand subsequently stored in 20% sucrose in PBS, pH7.4, containing

0.01% sodium azide (Merck Life Science) and 0.02% bacitracin (Merck

Life Science) at 4◦C for 4 days. The tissues were then embedded in

OCT compound (Tissue Tek, Miles Laboratories), frozen, cut into 20-

𝜇m-thick sections in a cryostat (Microm) and mounted on Superfrost

Plus microscope slides (Thermo Fisher Scientific). The sections were

dried at room temperature (RT) for 30 min and rinsed with PBS for

10 min. The sections were pretreated with 0.5 or 1% Triton X-100

(as indicated) in PBS for 1 hr at RT, and then incubated for 24 hr at

4◦C in a humid chamber with rabbit anti-PAH (1:200; Abcam) or rabbit

anti-DNAJC12 (1:400; Abcam) antisera diluted in PBS containing 5%

(w/v) normal goat serum. After incubation, the slides were rinsed with

PBS for 15 min at RT followed by a 2 hr incubation with donkey anti-

rabbit IgG–H&L (Alexa Fluor R© 488; 1:100; Abcam) diluted in 5%

normal goat serum in PBS, then washed in PBS for 15 min. Finally,

the sections were mounted with glycerol/PBS (9:1) containing 2.5%

DABCO (Merck Life Science). The specimens were analyzed using a

Leica TCS SP5 microscope (Leica Microsystems) equipped with X10

(0.5 numerical aperture, NA) and X20 water (0.75 NA) objectives, and

images were acquired with the LasAF software from Leica.

2.8 Co-immunoprecipitation

The supernatants from the liver lysates treated with 1% Triton X-

100 (see above) were incubated with an antibody against PAH (clone

PH8) (mouse;Merck Life Science), control IgGs (Merck Life Science), or

no antibody (only beads) with overnight rotation. Protein A/G PLUS-

agarose beads (Santa Cruz Biotechnology, Inc.) were incubated with

gentle rotation for 1 hr with the samples. The immunoprecipitants

were then pelleted, washed, and incubated at 95◦C for 10 min in 50 𝜇l

of sample buffer. The samples were analyzed using SDS-PAGE and

immunoblotting with anti-PAH (1:1,000, mouse, Merck Life Science),

anti-DNAJC12 (1:300, rabbit; Abcam), anti-ubiquitin (1:1,000, mouse;

Thermo Fisher Scientific), and anti-HSC70/HSP70 (1:5,000, mouse;

Enzo) antibodies as primary antibodies; anti-mouse kappa light chain

(HRP) (Abcam) and anti-rabbit IgG heavy chain (HRP) (Abcam) anti-

bodies were used as secondary antibodies for the detection of primary

antibodies to prevent unspecific recognition of accumulated heavy and

light chain from the immunoprecipitation. Also, for PAH immunode-

tection, both in input and immunoprecipitation, samples from wt mice

were diluted 10 times compared to Enu1/1 samples to prevent obscur-

ing of the weak PAH signal in the latter due to dynamic range.

2.9 Statistical analysis

Using Student's t-test, two-way comparison was performed for statis-

tical analysis, considering p-value <0.05 statistically significant. The

sample size nwas in all cases≥3.

3 RESULTS

3.1 Immunodetection of DNAJC12 in lysates of COS

cells expressing different PAH variants

To investigate the relative expression of PAH variants and endoge-

nous DNAJC12, we chose COS-7 cells as they have recently been

used to express PKU-associated PAH variants (Himmelreich et al.,

2018). COS-7 cells expressed low amounts of endogenous DNAJC12

(Figure 1a, first lane) until they were subjected to transient transfec-

tion of PAH (wt and variants) (Figure 1a), and we also observed that

the endogenous DNAJC12 also increased in stably transfected COS-7

cells expressing DNAJC12 with a Myc-Tag (Supporting Information

Figure S1, last lane). Normal COS-7 cells are thus a useful system to

overexpress human PAH-wt and PKU associated variants, as COS-7

cells with stable expression of DNAJC12 appeared to result in the

overexpression of the endogenous form of the co-chaperone that may

cause alteration of mechanisms and interaction with partners, such as

PAH. We selected 11 PAH variants characterized by different relative

residual PAH activity for inclusion in the present study according to

PAHvdb: Phenylalanine Hydroxylase Gene Locus-Specific Database

(www.biopku.org), that is, p.A47V, p.V190A, p.A300S, p.A313T and

p.A403V associated with mild HPA; p.R68G, p.E76 and p.R297H

with mild PKU; and p.G218V and p.R408W, associated with severe,

classic PKU (Figure 1a). Cell lysates were analyzed by Western

blotting for immunodetection of overexpressed PAH variants, both
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F IGURE 1 Expression analyses of the transient transfection of a subset of PAH-variants in COS-7 cells and endogenous DNAJC12 andHSP70.
(a)Western blots of PAHwt and variants (Himmelreich et al., 2018), the Flag-tag, DNAJC12, andHSP70 (n≥ 3). (b) Correlations between
immunoquantified DNAJC12 and PAH for each PAH variant expressed in the COS-7 cells, relative to immunoquantified DNAJC12 and PAH in the
wt-PAH sample normalized against 𝛽-actin, respectively. Amoderate positive correlation wasmeasured between the levels of immunoquantified
PAHwith the PAH antibody (on the∼52-kDa Flag-fused PAH) and endogenous DNAJC12 (∼24 kDa) (R2 = 0.5; dashed line). A stronger
relationship wasmeasured for a subset of variants, excluding p.R68G and p.R297H (R2 = 0.93; solid line)

with antibodies against PAH itself and Flag-tagged PAH, and for

endogenous DNAJC12 and HSP70 (Figure 1a). For PAH-wt, the

immunodetection pattern showed a strong 52-kDa full-length band,

corresponding to PAH with a fused Flag-tag, some minor degradation

bands of lower molecular weight, as well as bands of higher molec-

ular weight associated in previous studies with post-translationally

modified PAH (Doskeland & Flatmark, 1996; Sarkissian et al., 2012)

(see also Supporting Information Figure S1, showing results from

a different experiment; n = 7 performed). Moreover, a similar band

pattern was found for several of the PAH variants, with most revealing

decreased levels of the full-length PAH, whereas other variants, such

as p.R68G, presented stronger degradation bands (Figure 1a and

Supporting Information Figure S1). The immunoquantification of

the PAH variants relative to PAH-wt provided very similar values

by using either PAH or Flag antibodies. The immunodetected levels

of DNAJC12 were reduced for the most unstable PAH variants. In

particular, the expression of p.R408W, which produces a strongly

misfolded PAH enzyme, results in degraded PAH and provided very

low levels of immunodetected PAH protein and of endogenous

DNAJC12 (Figure 1a). As depicted in Figure 1b, we observed a mod-

erate positive correlation between the levels of immunoquantified

PAH with the PAH antibody (on the ∼52-kDa Flag-tagged PAH)

and endogenous DNAJC12 (∼24 kDa) (R2 = 0.51). Similar positive

correlations were obtained between the immunoquantified Flag

epitope and endogenous DNAJC12 (data not shown). The relationship

was actually very strong for a subset of variants excluding p.R68G

and p.R297H (R2 = 0.93). On the other hand, the immunodetected

endogenous HSP70 was not affected by the PAH variant expressed,

and the levels of this molecular chaperone appeared rather constant

(Figure 1a).

The correlation between PAH and DNAJC12 levels supports an

association between both proteins, and indicates a specific interaction

of the co-chaperone with the most severely misfolded PAH mutants.

We aimed to investigate the underlying molecular mechanisms for

the interaction, but in order to avoid any differences in expression of

endogenous DNAJC12 due to transcriptional and translational inter-

ference from the transient expression of PAH, we selected the Enu1/1

HPAmousemodel for analysis of endogenous expression of DNAJC12

and variant PAH.

3.2 Immunodetection of PAH, DNAJC12 and

HSC70/HSP70, and ubiquitination state of PAH in liver

lysates of wild-type and Enu1/1 mice prepared under

standard conditions

We investigated the interactions between DNAJC12 and PAH in

liver of Enu1/1 mice as they express the highly unstable PAH vari-

ant p.V106A-PAH. Western blot analyses of liver lysates showed the

expected reduction of PAH levels in the Enu1/1 compared with wt

mice (Gersting et al., 2010; Sarkissian et al., 2000) (Figure 2). We

also performed Western blot analysis of ubiquitin in livers, where

wt mice showed a major fraction of full-length non-ubiquitinated-

PAH (∼50 kDa) and a smaller fraction of monoubiquitinated-PAH,

whereas a large proportion of mutant PAH appeared to be monoubiq-

uitinated (55 kDa) in Enu1/1 livers (Figure 2a). These bands have

previously been identified based on immunodetection in Enu1/1 and

Enu1/2 and immunoprecipitation in Enu1/2 liver lysates (Sarkissian

et al., 2000; Sarkissian et al., 2012). Weak polyubiquitinated bands

were observed for both wt and Enu1/1 mice. As observed in the

lysates of COS-7 cells expressing wt and the most unstable PAH

mutants (Figure 1a), DNAJC12 was immunodetected in the liver

lysates from wt mice but not in lysates from Enu1/1 (Figure 2a).

On the other hand, the expression levels of HSC70/HSP70 were

not affected by the PAH genotype and these molecular chaperones

presented very similar levels in wild-type and Enu1/1 mice samples

(Figure 2a).
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F IGURE 2 Immunodetection of PAH, ubiquitinated protein, DNAJC12, andHSC70/HSP70 from liver lysates of wt and Enu1/1 mice prepared in
PBS buffer (a) and solubilizing buffer (b). 𝛽-actin was used as a loading control in both cases (n= 3). The histograms in both panels represent
immunoquantified protein levels by densitometric analysis; *p< 0.05; **p< 0.0005

F IGURE 3 Cellular distribution of DNAJC12 andHSC70/HSP70 in
wt, Enu1/wt, and Enu1/1 mice. DNAJC12 andHSC70/HSP70were
detected in the whole lysate, nuclear, and cytosolic fractions. The
purity of the fractions was tested with lamin beta1 (nuclear fraction
marker) and GAPDH (cytosolic fractionmarker)

DNAJC12 is mainly a cytoplasmic protein with a minor nuclear

localization (Choi, Djebbar, Fournier, & Labrie, 2014), and since

nuclear proteins are often poorly detected in whole tissue lysates,

we investigated whether a different cytoplasmic/nuclear distribution

of DNAJC12 in the normal and HPA mice could explain the different

immunodetected levels. The liver lysates of wt, heterozygous Enu1/wt,

and Enu1/1 were fractionated into cytosolic and nuclear fractions prior

to the SDS-PAGE and immunodetection. Lamin beta 1 and GAPDH

were used as the nuclear and cytoplasmic markers, respectively, to

validate the purity of the fractions obtained (Figure 3). PAH is mainly

distributed in the cytoplasmic fraction (data not shown), butDNAJC12

was detected in both the cytoplasmic and nuclear fractions, preferen-

tially in the former. The levels of DNAJC12 were in any case strongly

reduced in heterozygous mice compared with wt, and almost absent

in both fractions in the homozygote Enu1/1 (Figure 3), which indicated

that a change in the subcellular distribution is probably not the main

reason for the lack of immunodetected DNAJC12 in Enu1/1 mice.

We then considered two possibilities for the observed reduction

of immunodetected DNAJC12 in the liver lysates of Enu1/1 mice

(Figure 2a): (i) a possible transcriptional down-regulation of the co-

chaperone, or (ii) aggregation of the mutant p.V106A-PAH, leading

to concomitant aggregation of DNAJC12 in this case complexed with

PAH.We proceeded first with analysis of theDnajc12-mRNA level and

a few associated genes.

3.3 Quantification of gene expression of Pah,
Dnajc12, and associated players in liver of wild-type

and Enu1/1 mice

Possible differences in the transcriptional regulation between wt

and Enu1/1 mice were determined by mRNA quantification (RT-

qPCR). We measured the mRNA levels of Dnajc12 and Pah, as well

as those for other selected genes based on their possible interac-

tions with DNAJC12, including (i) the molecular chaperones Hsp70

(Hspa1b), Hsc70 (Hspa8), HSF1 (Hsf1), and BIP (Hspa5), the latter

being an endoplasmatic reticulum chaperone that is associated with

DNAJC12 in situations of cellular stress (Choi et al., 2014), and the
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TABLE 1 RelativemRNA quantification forDnajc12-mRNA,
Pah-mRNA, and other selected genes in liver of wt and Enu1/1 mice

Gene
Pah
genotype

Relative toDnajc12 in wt
mice defined as 1 p-Value

Pah wt/wt 111.99 (86.84± 144.42) 0.45

(n= 5) Enu1/1 98.14 (74.59± 129.13)

Hspa8 (Hsc70) wt/wt 415.85 (298.88± 578.60) 0.57

(n= 5) Enu1/1 374.13 (295.79± 473.22)

Hspa5 (Bip) wt/wt 237.25 (153.15± 367.54) 0.89

(n= 5) Enu1/1 250.38 (117.99± 531.33)

Gch1 wt/wt 39.48 (28.74± 54.23) 0.83

(n= 11) Enu1/1 38.24 (26.03± 56.18)

Esr1 wt/wt 19.77 (10.70± 36.53) 0.86

(n= 5) Enu1/1 21.25 (10.56± 42.79)

Hsf1 wt/wt 7.35 (5.90± 9.15) 0.21

(n= 6) Enu1/1 5.90 (4.21± 8.27)

Stub1 wt/wt 4.48 (3.54± 5.66) 0.49

(n= 6) Enu1/1 3.98 (2.85± 5.56)

Gchfr wt/wt 3.47 (2.49± 4.83) 0.58

(n= 11) Enu1/1 3.76 (2.68± 5.27)

Dnajc12 wt/wt 1.00 (0.45± 2.23) 0.78

(n= 11) Enu1/1 0.82 (0.29± 2.29)

Eef1d wt/wt 1.11 (1.01± 1.23) 0.76

(n= 5) Enu1/1 1.07 (0.81± 1.41)

Hspa1b
(Hsp70)

wt/wt 0.13 (0.07± 0.26) 0.73

(n= 5) Enu1/1 0.11 (0.05± 0.26)

Gper1 wt/wt 0.03 (0.02± 0.05) 0.61

(n= 11) Enu1/1 0.04 (0.02± 0.07)

Esr2 wt/wt 0.02 (0.01± 0.02) 0.91

(n= 5) Enu1/1 0.02 (0.01± 0.02)

co-chaperone/E3 ubiquitin-protein ligase CHIP (Stub1); (ii) the eukary-

otic translation elongation factor 1 delta EEF1D (Eef1d), which has

been found to interactwithDNAJC12 in a transcription factor interac-

tion network (Miyamoto-Sato et al., 2010); (iii) the estrogen receptors

1 and 2 ESR1 and 2 (Esr1, Esr2), and the G protein-coupled estrogen

receptor 1 (Gper1), which were analyzed because DNAJC12 expres-

sion has been associated with estrogen receptor status in breast can-

cers (De Bessa et al., 2006); and (iv) GTP cyclohydrolase 1 (Gch1)

and GTP cyclohydrolase 1 feedback regulatory protein (Gchfr), which

are involved in the synthesis of the PAH-cofactor tetrahydrobiopterin

(BH4). The results are presented in Table 1. Esr2 was not expressed,

Gper1 was faintly expressed, and Hsp70 also showed low expression.

Both Dnajc12 and Pah, notably the latter, were abundantly expressed

in mouse livers, with ∼112-fold higher expression of Pah with respect

to Dnajc12, and no difference in the mRNA levels for these two genes

between wt and Enu1/1 samples. Overall, no significant differences on

mRNA expression were measured for any of the studied genes upon

Pahmutation.

3.4 Immunodetection of PAH, DNAJC12, and

HSC70/HSP70, and ubiquitination state of PAH in liver

lysates of wild-type and Enu1/1 mice prepared using

improved solubilization conditions

We then investigated whether an intracellular co-aggregation of PAH

and DNAJC12might lead to decreased immunodetection. Aggregated

proteins and complexes are often poorly solubilized by 1%SDS and are

therefore prone to low detection in SDS-PAGE and Western blotting

due to precipitation upon sample preparation, notably under the heat

pretreatment (Juenemann, Wiemhoefer, & Reits, 2015). We thus opti-

mized the lysis of liver tissue and sample preparation steps by reducing

the ionic strength of the buffers to diminish hydrophobic interactions

and favor the extraction and immunodetection of proteins that may

form intracellular aggregates. We also included treatment with the

non-ionic detergent Triton X-100 (1%) before subjecting the samples

to SDS-PAGE (see Section 3.2 for details). Following immunoblotting,

it was indeed observed that these conditions lead to the detection of

DNAJC12 in the Enu1/1 liver lysates, at almost similar levels as for the

wt mice (Figure 2b). The use of the improved solubilization lysis condi-

tions also resulted in an increased level of immunodetected PAH in the

Enu1/1 mice relative to the wt (Figure 2a,b), but densitometric analy-

sis still revealed the expected reduction of total PAH and the increased

proportion of ubiquitinated-PAH in Enu1/1 when compared towtmice.

Immunoquantification of HSC70/HSP70 showed similar levels of this

molecular chaperone in bothmice.

3.5 Expression and distribution of PAH and

DNAJC12 analyzed by immunohistochemistry in livers

of wild-type and Enu1/1 mice

Further analyses of the DNAJC12 protein were performed using

immunohistochemistry in livers of the wt and Enu1/1 mice, which

also supported a preferential cytoplasmic localization of both PAH

and DNAJC12-like immunoreactivities (Figure 4). With the standard

protocol in which 0.5% Triton X-100 was included, the PAH sig-

nal was largely decreased in the Enu1/1 livers compared to the wt

(Figure 4, a,a1–a3,e,f), whereas DNAJC12, although strongly reduced

in the Enu1/1 mice, was clearly detected (Figure 4, b,b1–b3). Further-

more, despite the fact that higher concentrations of Triton X-100 may

alter the organelle integrity and protein distribution, the ability of the

detergent to solubilize possible complexes that include DNAJC12 and

to facilitate its interactionwith the anti-DNAJC12 antibodywas inves-

tigated. As seen in Figure 4c,c1–c3 and d,d1–d3, treatment with a

higher concentration (1%) of Triton X-100 did not alter the relative

proportions of PAH-like immunoreactivity, but reduced the difference

between levels of DNAJC12-like immunoreactivity in the livers of the

wt and Enu1/1 mice.

3.6 PAH ubiquitination state and

co-immunoprecipitation of DNAJC12

We next performed immunoprecipitation assays to study a possible

complex formation between PAHandDNAJC12 inmice liver. PAHwas
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F IGURE 4 Expression of PAH andDNAJC12-like immunoreactivities (LIs) in the liver tissues of Enu1/1 andwtmice. Low-magnification (a–d),
high-magnification (a1–d1,a2–d2) and highmagnificationmerged images (e,f). PAH-LI (green; a,a1,a2 and c,c1,c2,e,f) and DNAJC12-LI (green;
b,b1,b2 and d,d1,d2) aremainly expressed in the cytoplasm of the liver cells. In the samples processedwith 0.5% Triton X-100, significant
reduction of PAH andDNAJC12-LIs was observed in Enu1/1 compared to wt (a3,b3).With a higher concentration of Triton X-100 (1%), the
relative levels of PAH-LI were not affected (a3,c3) and the level of DNAJC12was increased in Enu1/1 and reduced in wt, though the difference
between both samples was still significant (b3,d3). Hepatocyte nuclei were counterstained with propidium iodide (PI; red; e,f). Lumen like
sub-structures are central vein (CV; a1–d1,a2–d2,e,f). Scale bars 250 𝜇m (a–d) and 75 𝜇m (a1–d1,a2–d2,e,f)

F IGURE 5 Immunoprecipitation (IP) of PAH and co-IP of
ubiquitinated proteins, DNAJC12, andHSC70/HSP70 in
the livers of the wt and Enu1/1mice. PAH-IP was
performed in liver lysates of wt and Enu1/1 mice prepared
at the improved solubilizing conditions (seemain text).
Ubiquitinated proteins andDNAJC12were co-detected by
immunoblotting (IB) with the indicated antibodies.
HSC70/HSP70was faintly detected as a
co-immunoprecipitant and required longer exposure of the
blot for the detection. Lysates incubatedwith only beads
and IgGs were used as controls

immunoprecipitated (IP) from liver lysates of wt and Enu1/1 prepared

at the improved solubilizing conditions and the samples were exam-

ined for PAH, ubiquitination, DNAJC12, and HSC70/HSP70 by West-

ern blot (Figure 5). The IP-PAH in wt liver is mainly non-ubiquitinated,

but amonoubiquitinated fraction is also present, whereas in the Enu1/1

mice a similar monoubiquitinated fraction was obtained, which for

these mice corresponds with the major IP-PAH form (Figure 5). Fur-

thermore, co-IP DNAJC12 was obtained in the IP-PAH samples from

both mice livers. It should be noted that the shift in the band pattern

of DNAJC12 in the co-IP sample compared with the migration of the

endogenous protein in the input (tissue lysate) (Figure 5) is due to the

oftenobservedhigher apparentmolecularweight for themorepurified

proteins, as is the case in IP samples.On theother hand,HSC70/HSP70

was faintly immunodetected in the IP-PAH samples (Figure 5), which
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suggested that HSC70 and/or HSP70, most probably have transient

interactions in complexes with both wt andmutant PAH. Furthermore,

all attempts to perform IP of DNAJC12 and detect co-IP PAH were

unsuccessful due to the inadequacyof theavailableDNAJC12antibod-

ies for this procedure (data not shown).

4 DISCUSSION

The function of the HSP70 family of molecular chaperones requires

the binding both of DNAJ/HSP40 co-chaperones that stimulate the

ATPaseactivity and facilitate client captureandofnucleotideexchange

factors that promote the dissociation of the ADP and the release of

the client protein (Dekker et al., 2015; Kampinga & Craig, 2010). The

binding of DNAJ to the HSP70s involves the conserved His-Pro-Asp

motif in the J-domain, and this interaction is a requirement for the

function of themolecular chaperones. Stimulation ofATPhydrolysis by

HSP70s aswell as the coordination of client binding for proper folding,

refolding, and release, are considered to be the main functions of the

DNAJ/HSP40 proteins. However, as more DNAJ proteins are charac-

terized, their varied involvement in many aspects of proteostatic con-

trol, in addition to folding, is being revealed, including protection of

misfolded clients from aggregation and contribution to the ubiquiti-

nation and delivery of terminally misfolded proteins to the ubiquitin–

proteasome or autophagy systems for degradation (Kampinga &Craig,

2010; Kraft et al., 2010; Shiber & Ravid, 2014; Zarouchlioti, Parfitt, Li,

Gittings, & Cheetham, 2018).

Except for the common J-domain (Hageman & Kampinga, 2009;

Kampinga et al., 2009), the large number of DNAJ proteins (50 anno-

tatedDNAJ/HSP40 proteins comparedwith the 11HSC70/HSP70s as

of October 2018) present a highly variable sequence that contributes

to the additional role of these proteins. In particular, type III (class C)

DNAJ-proteins present very little sequence similarity or domain shar-

ing, which seems to be associated to a high selectivity in client bind-

ing. DNAJC12 was earlier classified as a DNAJ protein with client-

independent function (Kampinga & Craig, 2010), but its interaction

with the AAAHs and its important role in proper folding of PAH has

recently beendemonstrated (Anikster et al., 2017).Ourpresent results

provide additional insights into the DNAJC12 role on PAH folding. By

analyzing a number of PAH variants associated with HPA/PKU of dif-

ferent severity, we observed a moderate positive correlation between

the immunodetected contents of soluble PAH and DNAJC12. Sub-

sequent immunoquantification of PAH and DNAJC12 levels in both

wt and Enu1/1 mice, the latter expressing the unstable and misfolded

p.V106A-PAH variant (Gersting et al., 2010), contributed to reveal the

mechanisms behind the correlation. Thus, the immunodetected con-

tent of both proteins increased in the mutant mice upon application of

solubilizing conditions to prepare the liver lysates, strongly indicating a

co-aggregation of DNAJC12 both in lysates of COS-7 cells expressing

unstable PAHvariants and in liver lysates of Enu1/1 mice. Furthermore,

the IP and co-IP experiments with Enu1/1 mice liver lysates showed

an interaction of DNAJC12 with the monoubiquitinated PAH variant,

pointing to a major role of the co-chaperone in targeting the degrada-

tion of misfolded PAH.

It has been suggested that the proteostatic pathways in dis-

ease states differ from those in the normal cellular cycles (Klaips,

Jayaraj, & Hartl, 2018). Our results, on the other hand, suggest that—

notwithstanding an increased aggregation and accelerated degrada-

tion for the PAH mutants (Figures 1 and 2)—the pathways may be

similar for both normal and variant PAH, since lysates from wt mice,

in addition to their specific major non-ubiquitinated PAH form, also

presentmonoubiquitinated PAHat comparable levels as for the Enu1/1

mice. Quantification of Dnajc12- and Pah-mRNA levels (Table 1) sup-

ports a much lower expression of DNAJC12 compared with PAH, as

also indicated by the relation of protein levels (Figure 4). This lower

expression of DNAJC12 may be associated to a regulatory role of the

co-chaperone in the folding/degradation of PAH. Together with ubiq-

uitination, DNAJC12 binding may determine the upper value for the

degradation-competent fraction of PAH, contributing to regulate the

steady-state levels of this enzyme, as also described for DNAJB mem-

bers interacting with wild-type and mutants of parkin (Kakkar, Kuiper,

Pandey, Braakman, & Kampinga, 2016). One can expect a challenged

proteostatic regulation in Enu1/1 liver, biased toward the degradation

of ubiquitinated misfolded mutant PAH, which recruits most of the

available DNAJC12.

The fact that DNAJC12 was co-immunoprecipitated with

monoubiquitinated IP-PAH from the Enu1/1 liver also provides

information on the possible mechanism for the degradation of PAH.

The general mechanism for the DNAJ- and HSC70/HSP70-assisted

degradation of misfolded client proteins with a tendency to aggregate

is believed to be the recognition of the non-ubiqutinated misfolded

client by the DNAJ followed by the recruitment of the HSP70machin-

ery (Dekker et al., 2015; Houck, Singh, & Cyr, 2012). This phase is

actually similar to the complex formation for folding or refolding of

the clients. However, in the case of misfolding, CHIP or other specific

E3-ubiquitin ligases can be recruited to the complex for polyubiquiti-

nation and targeting to the proteasome or, if the aggregation is severe,

to the autophagy system (Dekker et al., 2015; Houck et al., 2012;

Kampinga & Craig, 2010; Shiber & Ravid, 2014). Nevertheless, there is

also evidence that DNAJ proteins can recognize and bind clients that

are already mono- or polyubiquitinated, or that may be ubiquitinated

while bound to the co-chaperone, previous to complex formation with

the HSP70 machinery for further polyubiquitination (Dekker et al.,

2015; Kampinga & Craig, 2010; Shiber, Breuer, Brandeis, & Ravid,

2013). In particular, if the client tends to aggregate, it is expected that

the DNAJ:ubiquitinated-client complexes are more stable. On the

other hand, the dynamic complexes that engageHSP70present a quick

dissociation of the HSPs and release the client toward degradation as

fast as the ATP is hydrolyzed (Misselwitz, Staeck,Matlack, & Rapoport,

1999). Thus, these complexes including DNAJ:client:HSP70 are very

transient, unstable, and difficult to isolate and characterize (Alderson,

Kim, & Markley, 2016; Malinverni, Jost Lopez, De Los Rios, Hummer,

& Barducci, 2017), probably explaining that in our IP experiments

we mainly isolated the stable DNAJC12:monoubiquitinated PAH

complexes, whereas HSP70 is only present in a minor proportion in

the immunoprecipitated sample (Figure 5).

The direct interaction of DNAJ proteins with ubiquitinated

clients has been studied for DNAJB2 (alternatively known as HSJ1),
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which has an important role determining the fate of the clients

prior to the interaction with HSP70 and sorting to the proteasome

(Kampinga & Craig, 2010; Westhoff, Chapple, van der Spuy, Hohfeld,

& Cheetham, 2005). The selectivity of DNAJB2 toward mono- and

polyubiquitinated clients is provided by its ubiquitin interacting

motifs (UIMs). DNAJC12 does not have a canonical UIM, and it is

therefore not possible to speculate if it has an inherent higher affinity

for ubiquitinated-PAH than for non-ubiquitinated-PAH. DNAJC12 is

actually one of the shortest DNAJ proteins and does not contain iden-

tifiable domains other than the J-domain (Kampinga & Craig, 2010).

Further structural and biophysical studies on the interaction between

DNAJC12 and PAH and the other AAAHs are required to increase our

understanding on the selectivity and the mechanisms for folding and

degradation of these clients, both in health and in AAAH-associated

diseases (Blau et al., 2018; Bouchereau et al., 2018; Straniero et al.,

2017) .

Knowledge on the proteostatic pathways and the chaperone net-

works that regulate the intracellular stability of PAH appears to be

essential to understand how the system is affected by PKU-associated

mutations and other factors. Because PKU is known to be a complex

trait disease (Scriver & Waters, 1999), it is expected that mutations

and polymorphisms in genes that control the intracellular stability of

PAH, such as DNAJC12, may contribute to understanding the devia-

tions from the general genotype-phenotype correlations in PKU. Not

much is yet known about the interactions of DNAJC12 with the pro-

teasome and autophagy systems, and such knowledge may promote

the research onnovel therapies for disorders associated to theAAAHs.

Nevertheless, previous attempts to regulate HSP40 and HSP70 lev-

els pharmacologically have not been very successful and have shown

the complexity of the proteostatic regulation in health and disease, as

well as particular differences for each disease (Labbadia & Morimoto,

2015). Specifically, whereas DNAJC12 has been shown to be upreg-

ulated by endoplasmic reticulum stress (Choi et al., 2014), which is

known to induce proteinmisfolding and aggregation, this upregulation

has not been observed for cellular stress in general (Vleminckx et al.,

2002). In this work, we did not observe upregulation of eitherDnajc12

or Hspa1b expression (Table 1), which may indicate a mild stress effect

caused by the enu1 allele.

In conclusion, the present work showed the tight interaction

of DNAJC12 with ubiquitinated, mutant PAH, which indicated the

involvement of DNAJC12 in the degradation of PAH. Based on the

myriad of different mechanisms by which the DNAJ-proteins can reg-

ulate the ubiquitination and degradation of proteins by the protea-

some and/or autophagy, further studies are necessary to demonstrate

the detailed mechanisms and interactions between DNAJC12 and the

AAAHs clients at the molecular level. The work also reveals the com-

plex quality control system implicated in the intracellular stability of

PAH and contributes to the understanding of this disease as a complex

trait disease.
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Abstract 

Phenylketonuria (PKU) is caused by autosomal recessive variants in phenylalanine hydroxylase (PAH), 

leading to systemic accumulation of L-phenylalanine (L-Phe) that may reach neurotoxic levels. A 

homozygous Pah-R261Q mouse, with a highly prevalent misfolding variant in humans, reveals the 

expected hepatic PAH activity decrease, systemic L-Phe increase, L-tyrosine and L-tryptophan 

decrease, and tetrahydrobiopterin-responsive hyperphenylalaninemia. Pah-R261Q mice also present 

unexpected traits, including altered lipid metabolism, reduction of liver tetrahydrobiopterin content, and 

a metabolic profile indicative of oxidative stress. Pah-R261Q hepatic tissue exhibits large ubiquitin-

positive, amyloid-like oligomeric aggregates of mutant PAH that colocalize with selective autophagy 

markers. Together, these findings reveal that PKU, customarily considered a loss-of-function disorder, 

can also have toxic gain-of-function contribution from protein misfolding and aggregation. The 

proteostasis defect and concomitant oxidative stress may explain the prevalence of comorbid conditions 

in adult PKU patients, placing this mouse model in an advantageous position for the discovery of 

mutation-specific biomarkers and therapies. 
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Phenylketonuria (PKU) is caused by autosomal recessive variants in phenylalanine hydro-

xylase (PAH), leading to systemic accumulation of L-phenylalanine (L-Phe) that may reach

neurotoxic levels. A homozygous Pah-R261Q mouse, with a highly prevalent misfolding var-

iant in humans, reveals the expected hepatic PAH activity decrease, systemic L-Phe increase,

L-tyrosine and L-tryptophan decrease, and tetrahydrobiopterin-responsive hyperphenylala-

ninemia. Pah-R261Q mice also present unexpected traits, including altered lipid metabolism,

reduction of liver tetrahydrobiopterin content, and a metabolic profile indicative of oxidative

stress. Pah-R261Q hepatic tissue exhibits large ubiquitin-positive, amyloid-like oligomeric

aggregates of mutant PAH that colocalize with selective autophagy markers. Together, these

findings reveal that PKU, customarily considered a loss-of-function disorder, can also have

toxic gain-of-function contribution from protein misfolding and aggregation. The proteostasis

defect and concomitant oxidative stress may explain the prevalence of comorbid conditions

in adult PKU patients, placing this mouse model in an advantageous position for the discovery

of mutation-specific biomarkers and therapies.
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Phenylketonuria (PKU; MIM261600) is an autosomal
recessive inborn error of metabolism characterized by the
inability to break down the amino acid L-phenylalanine (L-

Phe). PKU is primarily caused by mutations in the human PAH
gene (NM_000277.2) encoding phenylalanine hydroxylase (PAH;
EC 1.14.16.1). PAH is a tetrameric, non-heme iron aromatic
amino acid hydroxylase that catalyzes the hydroxylation of L-Phe
to L-tyrosine (L-Tyr) using molecular oxygen as additional sub-
strate and the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4)1,2.
This is the rate-limiting step in the catabolic degradation of L-
Phe, which occurs predominantly in the cytoplasm of hepatic
cells. A consequence of deficient PAH catalysis is the accumula-
tion of L-Phe in the blood and ultimately in the brain of untreated
patients, causing growth retardation, intellectual disability, and
behavioral and neuropsychiatric disorders3. PKU has a prevalence
of approximately 1:10,000 livebirths worldwide and can be clas-
sified, based on the off-diet blood L-Phe concentrations, as mild
hyperphenylalaninemia (HPA) (120–600 µmol/L), mild PKU
(600–1200 µmol/L), and classic PKU (>1200 µmol/L)3. The low-
Phe diet is the cornerstone of PKU/HPA management and pre-
vents the most severe consequences of the disease. However,
controlled studies have shown that early treated PKU patients
present several psychiatric disturbances as adults, notably
depression and anxiety-related disorders4. Moreover, recent
investigations have revealed an elevated risk of comorbidities with
unexplained etiology in both early- and late-treated adult PKU
patients, with a high prevalence of cardiovascular and renal dis-
eases and overweight5,6. In the last years, many new treatments
for PKU have been approved or are in clinical development7. A
fraction of patients typically with mild and moderate PAH
mutations are responsive to synthetic formulations of BH4

(Sapropterin, Kuvan®), which is often used in combination with a
less restrictive diet8. Notwithstanding the considerable amount of
accumulated knowledge on PKU, there is a need for a more
profound mechanistic and pathophysiological understanding of
the disease, as well as novel therapies. These required studies
would greatly benefit from the availability of useful model
organisms.

Mouse (Mus musculus) models are a powerful research tool
owing to the small size, high reproductive rate, and relative ease
of genetic manipulation, compared to other mammals, and are
therefore most commonly selected to study human disease9.
There are evident differences between mice and humans, pri-
marily related to evolutionary divergences, for instance in size,
metabolic rate, life expectancy, and immune system, but overall,
the genetic and physiological similarities are high9. The first
generation of mouse models of PKU were created by phenotype-
driven N-ethyl-N-nitrosourea (Enu) germline mutagenesis. In
this manner, three HPA/PKU mouse models have previously
been established; namely, (i) Enu1 (enu1 allele), with the p.
V106A-PAH mutation, located in the PAH regulatory domain10;
(ii) Enu2 (enu2 allele), with the p.F263S-PAH mutation, located
in the catalytic domain10; and (iii) Enu3 (enu3 allele), with a splice
site mutation generating frameshifted amino acids and premature
termination codon11. Enu2 and Enu3 mice exhibit high blood L-
Phe concentrations (>1200 µmol/L) and appear as suitable
models for severe, classic PKU, with a total absence of PAH
activity albeit normal protein stability (Enu2), or total absence of
expressed PAH protein and activity (Enu3)11. In contrast, Enu1
mice present reduced PAH stability and thus decreased steady-
state levels of PAH protein and enzymatic activity (approximately
5% of normal controls), leading to mild HPA12. The available
mouse models have undoubtedly contributed to a better under-
standing of PKU at a biochemical and behavioral level and have
allowed testing of novel therapies such as enzyme substitution13

or genome base editing14. An increasing body of evidence

indicates that PKU is a prototypic genetic conformational dis-
order wherein the principal pathogenic determinant is the degree
of PAH protein instability caused by the specific mutations15. The
available strains do not adequately represent this primary
pathogenic mechanism (Enu2 and Enu3) or include murine
mutations that are non-existent or low recurrent in the human
PAH gene (Enu1), prompting us to generate a PKU mouse model
with a common PAH mutant associated with protein misfolding.

There are over 1100 registered human PAH variants (http://
www.biopku.org/), among which the nucleotide aberration c.782
G > A in Pah exon 7 coding for p.Arg261Gln (p.R261Q) mutation
seems to be an optimal candidate to generate a knock-in mouse
model. The R261Q mutation is one of the most abundant among
PKU patients, with an average allele frequency of approx. 6% (9-
14% in Mediterranean countries and the Middle East) and ~2% of
patients homozygous for this mutation (up to 12% in Medi-
terranean countries and the Middle East)15,16 (http://www.
biopku.org/). The associated phenotype when in homozygosity,
exhibits an unusual and unexplained variability from mild PKU
to classic PKU, with approximately 78% of the patients being
responsive to BH4

15–17 (http://www.biopku.org/). The R261Q
mutation has been predicted15 and indeed proven to result in
unstable and misfolded PAH18,19.

Hence, in the reported custom-made mouse model, the mutation
c.782G >A was introduced in the Pah gene by CRISPR/Cas9 tech-
nology based on the use of programmable nucleases as a tool for
targeted gene-editing, which is an efficacious and precise genome
engineering method20. In this work, we present the generation and
metabolic, biochemical and biological characterization of this Pah-
R261Q knock-in mouse line. The results obtained highlight (i) the
robustness of this mouse model as a general archetype for mild HPA
associated with PAH instability and misfolding, and (ii) the obser-
vation of large amyloid-like aggregates of mutant (p.R261Q-PAH)
in vivo, which appears associated to the observed proteostasis dys-
regulation, oxidative stress and additional comorbidities. Overall, the
Pah-R261Q mouse model paves the way for new exploratory ave-
nues of research and treatment.

Results
Generation, genotyping, and breeding of Pah-R261Q mice.
There is a high PAH sequence homology (92.5% identity) between
mouse and human PAHs, with Arg261 being in an evolutionarily
conserved region (Supplementary Fig. 1a). Structurally, the residue
Arg261 establishes several intra- and inter-subunit H-bonding and
electrostatic contacts in the dimers that are crucial to maintaining
the stability of the protein as well as proper oligomeric
configuration21,22 (detailed in Supplementary Fig. 1b, c). The
mutation p.R261Q is thus expected to trigger disruption of this
interaction network and, as seen in expression analyses in different
systems, elicit an unstable protein18,19,23 without substantially
affecting the catalytic efficiency of the folded tetramer19.

The custom-made mouse model with the p.R261Q-PAH
mutation was generated by CRISPR/Cas9 genome editing
technology, as schematically represented in Supplementary
Fig. 2a, and proven to have the correct genotype (Supplementary
Fig. 2b, c). The designed primers for genotyping amplified a 537
bp polymerase chain reaction (PCR) product, which, after
restriction fragment analysis with endonuclease BsmI, made it
possible to discriminate electrophoretically between PahWT/WT (2
fragments: 294 and 243 bp), homozygous PahR261Q/R261Q (3
fragments: 243, 171, and 123 bp), and heterozygous PahR261Q/WT

(4 fragments: 294, 243, 171, and 123 bp) mice (Supplementary
Fig. 2c). There is evidence that BLAST hits with three or more
total nucleotide mismatches have a low probability of off-target
effects, specifically if two of these mismatches are situated in the
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seed region24. In any case, we evaluated all 16 candidate loci
susceptible to being secondarily affected by the guide RNA
sequence (Supplementary Table 1). These genes were subjected to
heteroduplex analysis, all showing wild-type sequence, with no
detection of off-target interactions.

A retrospective examination of the maternal genotype effect in
the breeding revealed no abnormalities between homozygous
PahR261Q/R261Q mice (referred to as Pah-R261Q) and PahWT/WT

(WT) mice with respect to litters per mated female (3.7 ± 0.6 vs.
4.0) and progeny per litter (7.1 ± 0.4 vs. 7.0)25. Furthermore, the
compilation of historical data confirmed the expected offspring
genotypic distribution as predicted by Mendelian laws.

Pah-R261Q mice exhibit mild HPA, higher body weight in the
case of males, and reduced respiratory exchange ratio. Pah-
R261Q mice presented a small but significant increase in basal blood
L-Phe levels, measured in dried blood spots in 3-month old mice
(108.0 ± 36.6 µM, n= 23 mice) compared to both WT (59.9 ± 7.7
µM, n= 9; p < 0.0001) and heterozygous PahR261Q/WT (71.22 ±
21.86 µM; n= 6; p= 0.0201), analyzed by Brown–Forsythe and
Welch ANOVA test followed by Dunnett’s multiple comparisons
tests. Source data are provided as a Source Data file. The blood L-
Phe level in Pah-R261Q corresponds to very mild HPA in human
subjects. In contrast to the Enu2 PKU mouse model, which presents
weight and length reduction, hypopigmentation, behavioral, and
neurological problems26, Pah-R261Q were no different from their
heterozygote and WT counterparts in length, pigmentation, and
behavior. Three-month-old male Pah-R261Q mice, however, were
weightier than their WT counterparts (27.8 ± 0.4 vs. 25.1 ± 0.3 g,
respectively) (Fig. 1a). Pah-R261Q females were as expected lighter
than males and were not different in weight than their WT coun-
terparts (22.1 ± 1.6 vs. 21.1 ± 1.4 g, respectively). Apart from the
higher body weight in mutant males, we did not find gender-
associated variations for any other parameter or metabolite mea-
sured in this work; thus, the mice groups for each experiment
included evenly distributed males and females.

Various physiological murine parameters were controlled for
the 48 h metabolic cage examinations for WT and Pah-R261Q
(12 h acclimatization and 36 h of measured observations). The
amount of food intake was equal (Fig. 1b), and no significant
changes in activity and movement patterns were identified
(Fig. 1c). However, the rates of O2 consumption and CO2

production normalized to body mass (VO2 and VCO2, respec-
tively) were both decreased for Pah-R261Q compared with WT
(Fig. 1d and Supplementary Fig. 3a, b), and the calculated
respiratory exchange ratio (RER=VCO2/VO2) was also slightly
lower for Pah-R261Q than forWT (0.988 ± 0.087 vs. 1.014 ± 0.093;
the average for the total 36 h experimentation) (Fig. 1e, inset).
RER values are approximately 1.0, 0.8, and 0.7 for carbohydrates,
proteins, and fat, respectively, as sole metabolic fuel27. Never-
theless, in heavy activity periods RER increases and reaches values
>128, and RER values reflect metabolic fuel utilization more
accurately during periods of rest or mild exercise29. During the
12 h resting period, RER was closer to 0.8 for Pah-R261Q and 1 for
WT mice (Fig. 1e), indicating a higher utilization of fat and
protein as a fuel source during this period among the mutant
mice30. The decreased RER at rest also contributed to lower
energy expenditure in the same period compared with WT mice,
even for non-weight-normalized values (Fig. 1f), although this
difference did not translate into significantly lower energy
expenditure for the mutant mice per day.

Metabolic characterization of Pah-R261Q mice show lipid
metabolism alterations and oxidative stress. Detailed metabolic
profiling of Pah-R261Q compared with WT mice was performed

by measuring 72 relevant metabolic biomarkers in extracted
blood serum samples from 4-month-old mice. The complete list
of metabolites and the results obtained are presented in Supple-
mentary Table 2. Table 1 summarizes the individual values for the
17 metabolites displaying differences at p < 0.1 level, with either
higher or lower blood serum concentrations for Pah-R261Q
compared to WT. This p value was selected to avoid type II error
due to the limited sample size.

A blood serum L-Phe concentration in the mutant mice
corresponding to very mild HPA (113 ± 22 µM vs. 71.9 ± 10.3 µM
for WT) was obtained in this study, similar to the values obtained
from dried blood spots (see above). As seen in Table 1, the increased
serum L-Phe was accompanied by decreased levels of L-Trp and L-
Tyr, markers of the HPA phenotype, as well as decreased quinolinic
acid and a trend for reduced kynurenine, both downstream
metabolites of L-Trp. Interestingly, serum trimethyllysine, leucine,
and isoleucine, which have been shown to increase in adiposity and
altered lipid metabolism in humans31, were elevated in Pah-R261Q
(Table 1). Moreover, increased β-hydroxybutyrate is also an
established biomarker associated with impaired glucose homeostasis,
diabetes, and defense against oxidative stress32,33. Also, other serum
metabolites observed in lower concentrations in Pah-R261Q have
previously been linked to oxidative stress and immune function,
such as α-ketoglutaric acid, glutamic acid, and quinolinic acid34–37.
These biomarkers are tightly associated metabolically to creatine and
methylmalonic acid, and to the amino acids aspartic acid, alanine,
glutamine, and proline, all with decreased trends (Table 1).

The incorporation of these metabolites to the Krebs cycle—a
central hub of metabolism—through anaplerotic reactions is
increased in situations of oxidative and cellular stress38. Further-
more, the reduction in anaplerotic metabolites and increase in β-
oxidation in Pah-R261Q are in agreement with increased utilization
of proteins and fats as an energy source, as also inferred by the lower
resting-state RER in these mice compared to WT (Fig. 1e). We
acknowledge that the use of a high, explorative p value cutoff
(p < 0.1) may have generated spurious hits among the metabolite
biomarkers. However, we believe that the approach is justified by the
overall coherence of the findings that support lipidic metabolic
alterations and oxidative stress in the Pah-R261Q mice, in addition
to the expected mild HPA.

Pah-R261Q mice show no apparent neurological alteration but
a remarkable decrease of hepatic BH4. The elapsed time for a
mouse to maintain its balance on a rotating rod is a good indi-
cator of possible neurological deficits, as shown for the Enu2
mouse39. As illustrated in Supplementary Fig. 3c, Pah-R261Q had
comparable performance to WT on the rotarod test, supporting
that the PAH mutation has no impact in neuromuscular function
or motor coordination, at least for young mice. We also corro-
borated no alterations in the levels of aromatic amino acids L-
Phe, L-Tyr, and L-Trp (Supplementary Table 3) and monoamine
neurotransmitters (Fig. 2a) in the brain. In addition, as seen in
Fig. 2, we confirmed no significant difference in the total levels of
BH4 in the brain, where BH4 acts as a cofactor of the other
aromatic amino acid hydroxylases tyrosine hydroxylase (TH) and
tryptophan hydroxylase 2 (TPH2) and of neuronal nitric oxide
synthase (NOS)2. However, the concentration of BH4 in the liver,
where it acts as the essential cofactor for the hydroxylating
PAH reaction, showed a startling 50% reduction in Pah-R261Q
(28.0 ± 1.7 pmol BH4/mg protein) compared with WT mice
(56.2 ± 3.2 pmol/mg) (Fig. 2b).

Pah-R261Q mice are sensitive to L-Phe challenge concomitant
with BH4 responsive hyperphenylalaninemia. When we admi-
nistered Pah-R261Q mice an L-Phe challenge—equivalent to the
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L-Phe loading test that is applied to HPA/PKU patients for their
phenotypic classification40—a transient but very prominent ele-
vation of blood L-Phe values was observed. As shown in Sup-
plementary Fig. 4, 40 min after i.p. injection with 200 µg L-Phe/g
body weight, Pah-R261Q mice presented a massive increase in

L-Phe concentrations (990 ± 220 µM), before returning to basal
levels ca. 300 min later. A similar L-Phe challenge caused much
lower increases of L-Phe concentrations in heterozygous and WT
mice (Supplementary Fig. 4). The transient L-Phe-increase in
Pah-R261Q mice allowed us to investigate the response to

Fig. 1 Physiological and metabolic characterization of Pah-R261Q compared withWTmice. a Bodyweight distribution by sex and genotype. The weight of
WT mice (controls) was in agreement with averaged registered data (https://www.jax.org/strain/000664). Data are presented as mean ± SD, with
individual values plotted as circles (females) and triangles (males) (n= 10 WT male, 14 WT female, 31 Pah-R261Q male, 26 Pah-R261Q female mice).
Statistical significance for the weight difference for males in the two groups was calculated by two-tailed unpaired t test; p= 0.0031 (**). b–f Metabolic
cage experiments, performed for 48 h, with 12 h of acclimation followed by 36 h of recordings. n= 3 WT and 5 Pah-R261Q mice in independent
experiments, with one mouse per cage and 121 observations/animal. b Cumulative feed consumption (g). c Mice activity with continuous recording,
expressed as mean ± SD. Inset, total activity for each mouse group presented as mean ± SD, individual values are plotted as circles. d Total Volume of O2

consumed and volume of CO2 produced for each mice type, obtained from the integration of the area under the curve (AUC) from data in Supplementary
Fig. 3. Data are presented as the mean AUC ± SD, with individual values plotted as circles. Statistical significance for the difference between both mice
groups was calculated by two-tailed unpaired t test; p= 0.0011 (**) for O2 and p < 0.0001 (****) for CO2. e Respiratory exchange ratio (RER) along the
recording time. Inset: averaged RER presented as mean ± SD; the circles represent mean for the group at each time point. Statistical significance for
differences between both groups was calculated by two-tailed unpaired t test; p < 0.0001 (****). f Energy expenditure obtained by indirect calorimetry
expressed as mean ± SD. In all panels, the data for WT are depicted in purple and Pah-R261Q in ochre. Source data are provided as a Source Data file.
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Table 1 Blood serum concentrations of the metabolites whose levels were increased/decreased in Pah-R261Q mice in respect to
the control WT group. Concentrations are expressed as arithmetic mean ± SD; n= 19 WT and 19 Pah-R261Q mice.

Metabolite (name) WT (µM) Pah-R261Q (µM) Difference p Value (MW)a

Phenylalanine 71.9 (10.3) 113 (22) 41.1 0.0000004
β-Hydroxybutyrate 150 (99) 282 (133) 132 0.029
Trimethyllysine 0.803 (0.165) 0.976 (0.213) 0.173 0.050
Leucine 143 (23) 164 (42) 21 0.075
Isoleucine 87.5 (12.8) 101 (24) 13.5 0.091
α-Ketoglutaric acid 38.6 (15.2) 26.3 (10.8) −12.3 0.003
Glutamic acid 39.5 (20.7) 29.4 (10.2) −10.1 0.008
Alanine 444 (71) 362 (80) −82 0.010
Tryptophan 103 (24) 82.9 (30.9) −20.1 0.013
Quinolinic acid 0.178 (0.090) 0.130 (0.041) −0.48 0.023
Creatine 154 (40) 127 (30) −27 0.026
Aspartic acid 27.4 (14.4) 22.7 (11.0) −4.7 0.043
Glutamine 687 (76) 622 (112) −65 0.043
Tyrosine 81.3 (25.3) 77.9 (14.0) −3.4 0.050
Methylmalonic acid 0.701 (0.095) 0.585 (0.118) −0.116 0.060
Kynurenine 0.740 (0.234) 0.573 (0.264) −0.167 0.080
Proline 90.2 (25.4) 73.0 (17.2) −17.2 0.085

aTwo-tailed p values for differences between serum concentration in WT and Pah-R261Q mice were obtained from Mann Whitney (MW) U test.
See also Supplementary Table 2.

Fig. 2 Neurotransmitter and BH4 content, and BH4-responsiveness in the Pah-R261Q mouse model. a Monoamine neurotransmitter content in brain
lysates; data are presented as mean ± SD, individual values are plotted as circles (n= 5 WT and 5 Pah-R261Q mice). Abbreviations (from left to right):
levodopa, 3-ortho-methyldopa, dopamine, homovanillic acid, norepinephrine, 3-methyl-4-hydroxyphenylglycol, epinephrine, 5-hydroxytryptophan,
serotonin, and 5-hydroxyindoleacetic acid. b BH4 determination in whole brain and liver lysates, presented as mean ± SD, individual values are plotted as
circles (n= 6 WT and 5 Pah-R261Q). Statistical significance for the difference in brain BH4 content between both groups was calculated by two-tailed
unpaired t test; p < 0.0001 (****). c Blood L-Phe concentration after L-Phe challenge in placebo-control (black) and BH4-treated (pink) Pah-R261Q mice
(n= 5 placebo and 6 treated mice). L-Phe (200 µg L-Phe/g body weight) was administered by i.p. at time 0 and L-Phe concentration was monitored at 0,
35, 90, 150, and 300min. The BH4 treated mice received (by i.p.) 20mg/kg BH4 in 2% ascorbic acid and 10% DMSO, for 4 days, twice a day, previous to
L-Phe administration, and the placebo control received the same solution without BH4. Data are presented as mean ± SD. Inset, area under the curve (AUC)
for the time dependence of L-Phe concentration between 0 and 300min for placebo and BH4-treated groups. Individual values are represented by circles.
Statistical significance for the difference between both groups was calculated by two-tailed unpaired t test; p= 0.0299 (*). In panels a and b the data for
WT are depicted in purple and for Pah-R261Q in ochre. Source data are provided as a Source Data file.
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BH4-treatment. As seen in Fig. 2c, significantly lower blood L-Phe
level was measured after an L-Phe challenge (200 µg/g body
weight) was administered following a BH4 treatment (20 mg/kg
body weight for 4 days, twice a day41), compared with placebo.
BH4 treatment resulted in a 28% decrease in L-Phe content as
calculated from the area under the curve (Fig. 2c, inset). Patients
with the R261Q mutation in homozygosity present variable HPA
phenotype but about 74% are positive responders to BH4 treat-
ment (http://www.biopku.org/), and the results with the mutant
mice are consistent with the BH4-responsive phenotype.

Hepatic p.PAH-R261Q protein presents increased ubiquitina-
tion and aggregation. After the investigation of the metabolic
status of Pah-R261Q mice, we also studied the effect of the
mutation on the function and stability of PAH in the mouse liver.
Immunodetection by Western blot of the PAH protein (p.R261-
PAH and WT-PAH, for the mutant and WT proteins, respec-
tively) in liver lysates showed the typical 51-kDa PAH band for
WT mice, and two PAH bands at 51- and 56-kDa for the het-
erozygous PahR261Q/WT and homozygous PahR261Q/R261Q (Pah-
R261Q) mutant mice (Fig. 3a). The 56-kDa PAH band, present in
both mice with the mutant allele, was recognized by the anti-
ubiquitin antibody (Fig. 3b). This band has been identified as
mono-ubiquitinated PAH in previous studies with Enu1 and
Enu1/2 HPA mouse models42,43. The 51-kDa non-ubiquitinated
PAH band was strongly reduced in Pah-R261Q, as best observed
in the immunoquantified PAH levels normalized to WT control

mice (Fig. 3c). We also measured PAH activity in the liver lysates,
and for each genotype, the relative specific activity correlated well
with the relative levels of non-ubiquitinated PAH protein in liver
lysates (Fig. 3c). Nevertheless, the results with Pah-R261Q (11.6 ±
1.5% non-ubiquitinated protein vs. 16.9 ± 3.3% specific activity,
both relative to WT) support low level of PAH activity for the
ubiquitinated enzyme.

The reduction of total p.R261Q-PAH protein levels and
increased ubiquitination observed by Western blot in Pah-
R261Q compared to WT mice, indicative of instability and
misfolding of this PAH variant (Fig. 3a, b), was followed-up by
immunofluorescence staining of hepatic tissue which confirmed a
substantial reduction in PAH protein in Pah-R261Q (Fig. 4). The
specificity of the PAH antibody was further proven by an antigen
pre-adsorption test showing almost complete loss of PAH
immunoreactivity in hepatic tissue of WT mice after incubation
with PAH antibody preabsorbed with purified recombinant PAH
(Supplementary Fig. 5). Moreover, the immunofluorescence
images of Pah-R261Q revealed scattered PAH-immunoreactivity
in discrete bright points, consistent with aggregation, as well as an
increase in ubiquitination signal that presented substantial
colocalization with mutant PAH (Fig. 4). To investigate the
mutation dependent PAH misfolding and aggregation, we also
performed immunofluorescence of hepatic tissue of the Enu1
mouse model of mild HPA, which expresses the unstable p.
V106A-PAH variant, also associated with PAH instability,
leading to a considerable decrease of functional PAH in the liver
(5% of WT)42,44,45. Enu1 liver also presented largely decreased

Fig. 3 PAH content in liver lysates of homozygous and heterozygous Pah-R261Q mice. a Western blots for immunodetection of PAH (α-PAH) (a) and
ubiquitinated protein (α-Ub) (b) showing the decrease in non-ubiquitinated PAH (non-Ub-PAH; ~51 kDa band) and increase of mono-ubiquitinated PAH
(mono-Ub-PAH; ~56 kDa) from genotype PahWT/WT to PahR261Q/WT to PahR261Q/R261Q. The blots are representative from n= 3 replicates for each
mice group. GAPDH was used as loading control. c Overview of relative PAH specific activity normalized to activity in PahWT/WT liver lysates (23.2 ±
2.4 nmol L-Tyr/min/mg protein) (n= 4 mice for each genotype) and non-Ub-PAH protein (51 kDa) levels from densitometric analysis normalized to both
PahWT/WT liver lysates as well as to GAPDH loading control (n= 3 mice for each genotype). Data are presented as mean ± SD for PahWT/WT (purple),
PahR261Q/WT (green), and PahR261Q/R261Q (ochre), individual values are represented as circles. Differences between genotypes were analyzed by one-way
ANOVA followed by Tukey test; differences in PAH activity, p= 0.0005 (***) for PahWT/WT vs. PahR261Q/WT, p < 0.0001 (****) for both PahWT/WT vs.
PahR261Q/R261Q and PahR261Q/WT vs. PahR261Q/R261Q; differences in PAH level, p= 0.0080 (**) for PahWT/WT vs. PahR261Q/R261Q. Source data are provided as
a Source Data file.
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and particulate PAH-immunoreactivity and increased ubiquitina-
tion. There were, however, differences in the aggregation pattern
of mutant PAH between both HPA-mouse models (Fig. 4) as
well as in the size of the PAH aggregates, larger in Pah-R261Q
than in Enu1.

We further studied the distribution of PAH aggregates between
the nucleus and the cytoplasm in hepatic cells. The use of the
nuclear pore marker Nup98 and 3D-rendering of the stacks of
confocal images revealed that the smaller aggregates of mutant
PAH in Enu1 appeared more ubiquitously distributed in
hepatocytes, where they are also present in the nucleus (Fig. 5a).
On the other hand, the PAH aggregates in Pah-R261Q did not
show nuclear localization and appear distributed at the cytoplas-
mic side of the nuclear membrane (Fig. 5a). As fluorescence
detection may alter the shape and size of macromolecules and
complexes, we also performed immunohistochemistry (IHC) with
optical detection by DAB staining in order to assess the size of the
mutant PAH aggregates in hepatic tissue (Fig. 5b, c). The averaged
area of DAB-stained particles was 0.18 ± 0.06 and 0.11 ± 0.03 (SD)
µm2 for Pah-R261Q and Enu1, respectively (Fig. 5c).

Amyloid-like aggregation of p.PAH-R261Q. The different size
and nucleocytoplasmic distribution of the aggregates of p.R261Q
and p.V106A PAH variants in Pah-R261Q and Enu1 livers,
respectively, suggests different misfolding and aggregation
mechanisms for these two mutants. As larger aggregates,

especially those with amyloid aggregation, can be cytotoxic46, we
investigated if the mutant protein p.R261Q-PAH could aggregate
through cross-β-sheet prone motives around the mutation site.
Positively, in silico evaluation with the program TANGO47 pre-
dicted a high (>50%) propensity to form intermolecular cross-β
(amyloid-like) aggregates in region 254–263 in the mutant
(FLGGLAFQVF), while the same region in the WT sequence
(FLGGLAFRVF) was not predicted to be prone to amyloid-like
aggregation (Supplementary Fig. 1), for both the human and
mouse PAH sequences. We tested the propensity of all PAH
missense variants registered at BIOPKU (http://www.biopku.org),
and also included p.V106A-PAH (Enu1), which is very rare in
human48. The calculations supported a high susceptibility
to undergo this type of aggregation for a few variants, i.e., p.E78V,
p.N167Y, p.P211L, p.R261G, and p.E390G, all rare, but not for
p.V106A (Enu1).

To confirm the formation of amyloid-like aggregates by the
mutant p.R261Q-PAH we used the Amytracker™ 680 fluorescence
assay with purified recombinant mutant protein. An accelerated
formation of amyloid-like aggregates was observed for p.R261Q-
PAH compared to WT-PAH (Supplementary Fig. 6a). After 5 h
incubation, parallel samples of p.R261Q-PAH without Amy-
tracker were visualized by transmission electron microscopy
(TEM). Imaging revealed larger amorphous aggregates of a
diameter up to >100 nm, together with small aggregates of about
20 nm diameter, whereas fibrillary structures were not observed
(Supplementary Fig. 6b).

Fig. 4 Distribution of PAH in hepatic tissue ofWT and mouse models Pah-R261Q and Enu1. Immunofluorescence of PAH and ubiquitin (Ub) detection in
hepatic tissue ofWT, Pah-R261Q, and Enu1mice, revealing the distribution pattern of PAH (green) and Ub (red). PAH was strongly reduced in both Enu1 and
Pah-R261Q when compared to WT, whereas Ub was highly expressed in both mutant mice. The micrographs are representative for n= 3 biological
replicates in each mice group. The fluorescence intensity (mean ± SD) calculated in 14 stacks of confocal images, relative to WT (=1), was 0.264 ± 0.105
(Pah-R261Q) and 0.154 ± 0.029 (Enu1) for PAH, and 1.315 ± 0.035 (Pah-R261Q) and 1.405 ± 0.103 (Enu1) for Ub. Colocalization of PAH and ubiquitin
(yellow) was observed in both mutant mice, as highlighted in the inset. DAPI was used for nuclear staining (blue). Source data are provided as a Source
Data file.
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PAH aggregates in Pah-R261Q mice colocalize with autophagy
markers and are associated with oxidative stress. Larger aggre-
gates are commonly processed by autophagy rather than by the
ubiquitin-dependent proteasome system (UPS)49. We thus per-
formed immunofluorescence microscopy of liver samples of WT,
Pah-R261Q, and Enu1 mice with autophagy markers Ser403-
phosphorylated p62 protein (p62/SQSTM1 (sequestosome-1)), a
selective receptor and marker for autophagic clearance50,51. The
level of phosphorylated p62 (P-p62) was indeed much higher in
Pah-R261Q than in Enu1 mice, which presented similar immu-
nodetected levels as in WT mice (Fig. 6a). Immunofluorescence

staining with the standard marker for autophagosomes LC3 was
also increased in Pah-R261Q, but not in Enu1, compared with WT
(Fig. 6b). Both autophagy markers P-p62 and LC3 presented
colocalization with mutant PAH in Pah-R261Q mice (Fig. 6a, b).
These results suggest that the larger PAH aggregates in Pah-
R261Q, but not the smaller aggregates in Enu1, engage the
autophagic system. Moreover, we also performed TEM imaging of
hepatic tissue, which showed hepatocytes with normal cell and
organelle morphology in Pah-R261Q and no abnormality in nuclei
or the nuclear membrane (Supplementary Fig. 7a). We noticed
an increased number of lysosomes and of autophagic structures,

Fig. 5 Nuclear distribution of mutant PAH protein in Pah-R261Q and Enu1 mice liver. a Immunofluorescence of PAH (green) and the nuclear pore marker
Nup98 (red) in hepatic tissue of Enu1 and Pah-R261Q mice (left panels), and 3D-rendering of stacks of confocal images using the surface tool in Imaris
software at two different magnifications (middle and right panels). The images reveal the subcellular distribution of PAH in the nucleus and cytoplasm of
Enu1 mice, whereas in Pah-R261Q mice PAH is distributed in the cytoplasm. Hoechst was used for nuclear staining (blue). b Immunohistochemically DAB-
stained hepatocytes from WT, Pah-R261Q, and Enu1 mice at low (left panels) and high (right panels) magnification. Arrows indicate PAH immunoreactive
hepatocytes in Pah-R261Q and Enu1 mice. a, b The micrographs are representative of n= 3 biological replicates in each mice group. c Two representative
PAH immunoreactive hepatocytes at higher magnification in Pah-R261Q (left) and Enu1 (right) mice are shown, where arrowheads point to PAH-positive
particle-like structures. Measurement of PAH particle size was performed in 30 µm-thick liver sections (n= 10) for each mice. At least 400 single PAH-
positive particles in randomly selected regions of liver sections from each mice group were analyzed, and the size distribution of PAH-positive particles in
Pah-R261Q and Enu1 hepatocytes is shown (lowest panel). Data are presented as mean ± SD and each dot represents a PAH-positive particle. The difference
in size is statistically significant, as calculated by the two-tailed unpaired t test; P value < 0.0001 (****). Source data are provided as a Source Data file.
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i.e., double-membrane autophagosomes and autolysosomes (Sup-
plementary Fig. 7b) and exhaustive counting of these structures
confirmed that they were increased in Pah-R261Q compared to
WT mice whereas no difference in the number of peroxisomes and
lipid drops was found (Supplementary Fig. 7c).

The nuclear quality control system customarily collaborates on
the degradation of misfolded cytoplasmic proteins and small
aggregates52. However, larger aggregates may hinder nuclear
uptake46, leading to toxic accumulation of the aggregates in the
cytoplasm, saturation of the autophagy system, and increased
oxidative stress49,53. For some aggregation disorders associated

with the formation of amyloid fibrils by Tau, such as
polyglutamine diseases, AD and Tau-dementia, invaginations or
indentations of the nuclear membrane, filled by fibrillary rods, as
well as nuclear pore pathology are observed54,55. These alterations
are also observed in ALS/FTD caused by aggregation of TDP-43
in non-fibrillary oligomeric amyloid-like aggregates56 and seem
related with the interference of the proteins with the nucleocy-
toplasmic system, e.g., microtubules in the case of Tau54 or the
nuclear transport machinery in the case of TDP-4356, resulting in
the invaginations. The lack of nuclear invaginations in Pah-
R261Q is in accordance with the non-fibrillary nature of the PAH

Fig. 6 Colocalization of mutant PAH in Pah-R261Q mice with autophagic markers. Immunofluorescence micrographs showing the codistribution of PAH
(green) with autophagy markers p62 phosphorylated at Ser403 (P-p62, red) in (a) or LC3 (red) in (b) in hepatic tissue from WT, Pah-R261Q and Enu1 mice. Both
markers were increased in Pah-R261Q when compared to both WT and Enu1. The fluorescence intensity (mean ± SD) calculated in 14 stacks of confocal images,
relative to WT (=1), was 1.326 ± 0.121 (Pah-R261Q) and 0.778 ±0.158 (Enu1) for P-p62 (a), and 2.277 ± 0.174 (Pah-R261Q) and 1.535 ± 0.175 (Enu1) for LC3
(b). Pah-R261Q but notWT or Enu1 showed clear colocalization (yellow) of PAH with both P-p62 (a) and LC3 (b), as highlighted in the insets. Hoechst was used for
nuclear staining (blue). All micrographs are representative for n= 3 biological replicates in each mice group. Source data are provided as a Source Data file.
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aggregates and with PAH being a cytoplasmic enzyme with no
known functional association with the nucleocytoplasmic system.

Despite a lack of significant disturbances in nuclear morphol-
ogy in Pah-R261Q, it appears that the aggregates of p.R261Q-
PAH do not enter the nucleus (Fig. 5a), which can be associated
with overload of the cytoplasmic quality control system and
oxidative stress. We measured the total equivalent antioxidant
capacity (TEAC) in liver lysates of both HPA models (Enu1 and
Pah-R261Q) and WT mice by the Trolox assay. Pah-R261Q but
not Enu1 presented elevated TEAC values compared with WT
(Supplementary Fig. 8), indicating a specific upregulation of the
antioxidant response in Pah-R261Q mice in agreement with the
metabolic changes associated with oxidative stress (see above and
Table 1).

Gene (mRNA) expression assays. Finally, ten genes related to the
PAH system, protein quality control, and oxidative stress path-
ways were selected and subjected to analysis by quantitative
TaqMan mRNA expression in liver extracts (RT-qPCR; results
overview in Table 2). In absolute terms, Pah and Hsc70 showed
the highest levels of gene expression. Comparatively, for Pah-
R261Q vs. WT mice, we found the following: (i) Pah expression
was not altered; (ii) expression of the GCH1-feedback regulatory
(Gchfr) gene was upregulated; (iii) the PAH specific Hsp40 co-
chaperone Dnajc12 exhibited increased expression levels while
two heat shock family members, namely the transcription factor
Hsf1 and the molecular chaperone Hsp70 were downregulated,
and the expression of the constitutive Hsc70 was unmodified; (iv)
no significant changes in expression levels were identified for
targets associated with protein degradation, Stub1 (coding for
the co-chaperone CHIP, with ubiquitin ligase activity) and the
autophagy marker Sqstm1 (coding for p62/SQSTM1), and for the
oxidative stress-responsive transcription factor Ap-1. The impli-
cation of these results together with the other findings in this
work are discussed below.

Discussion
Mouse models of genetic diseases do not always entirely recapi-
tulate the main phenotypic characteristics found in patients9. The

Pah-R261Q knock-in mouse that carries a frequent mutation in
HPA/PKU patients exhibits reduced total hepatic PAH activity
and presents phenotypic traits characteristic of homozygous
patients with the R261Q:R261Q genotype, such as increased L-Phe
and decreased L-Trp and L-Tyr in blood compared to WT, sen-
sitivity to L-Phe challenge, and responsiveness to BH4 supple-
mentation (http://www.biopku.org)8,16. Moreover, there is similar
PAH residual activity (~15% ofWT) in both Pah-R261Qmice and
homozygous humans16, however, we encountered a remarkable
difference between absolute blood L-Phe-levels in mice and
patients. While patients present metabolic phenotypes from mild
PKU to classic PKU (off-diet blood L-Phe values > 600 µmol/L)
(247 records in http://www.biopku.org; see also refs. 16,17), our
mouse model exhibited very mild HPA (~110 µmol L-Phe/L).
Thus, for the same PAH genotype with similar remaining activity,
the blood L-Phe concentration (metabolic phenotype) is higher in
humans, which might be explained by a lower steady-state level of
hepatic PAH in humans compared with mice. There is a high
similarity in sequence, structure, specific activity and regulatory
properties of human and mouse PAH, and thus different PAH
amounts between rodents and humans have been associated with
differences in the rate of transcription, translation, and/or protein
homeostasis57. Nevertheless, based on the similar propensity to
aggregate through a cross-β-sheet formation for human and
mouse PAH around the mutation area (Supplementary Fig. 1), it
is very probable that similar amyloid-like soluble aggregates are
formed in the liver of patients with the Arg261→Gln mutation.

The Pah-R261Q mouse appears to offer considerable potential
for mechanistic and therapeutic investigations as it presents with
a tunable blood L-Phe concentration. By applying an L-Phe
challenge, we could transiently attain L-Phe concentrations
characteristic of PKU, and by adjusting the L-Phe concentration
and length of supplementation, it might be possible to modulate
the metabolic phenotype and fully develop the capacity of this
mouse model as a prototype to study a range of mild to severe
forms of HPA. Furthermore, upon L-Phe challenge, the resulting
transient HPA in Pah-R261Q is responsive to treatment with BH4

(Kuvan®). Consequently, this mouse model can contribute to
evaluate protocols and understand the multifactorial mechanisms

Table 2 Relative mRNA quantification for selected genes in liver of WT and Pah-R261Q mice.

Gene (name) Pah genotype Expression level (relative to WT mice, defined as 1) Fold changea p Valueb

Pah WT 1.0000 (0.7878 ± 1.2693) 1.15 0.2273
R261Q 1.1524 (1.0967 ± 1.2110)

Gch1 WT 0.2512 (0.2146 ± 0.2939) 1.08 0.5440
R261Q 0.2714 (0.2115 ± 0.3483)

Gchfr WT 0.0163 (0.0131 ± 0.0203) 1.70 0.0024
R261Q 0.0277 (0.0228 ± 0.0336)

Dnajc12 WT 0.0040 (0.0030 ± 0.0053) 1.78 0.0048
R261Q 0.0071 (0.0057 ± 0.0088)

Hsp70 WT 0.0010 (0.0007 ± 0.0015) 0.31 0.0012
R261Q 0.0003 (0.0002 ± 0.0005)

Hsc70 WT 0.9704 (0.7478 ± 1.2592) 1.34 0.0855
R261Q 1.2983 (1.0279 ± 1.6399)

Hsf1 WT 0.0280 (0.0251 ± 0.0313) 0.65 0.0054
R261Q 0.0183 (0.0140 ± 0.0238)

Stub1 WT 0.0156 (0.0126 ± 0.0193) 1.22 0.0808
R261Q 0.0191 (0.0175 ± 0.0208)

Sqstm1 WT 0.2483 (0.2203 ± 0.2799) 1.04 0.6389
R261Q 0.2571 (0.2287 ± 0.2892)

Ap-1 WT 0.0163 (0.0140 ± 0.0189) 1.0 0.9815
R261Q 0.0163 (0.0149 ± 0.0179)

aFold change in Pah-R261Q mice relative to WT mice.
bTwo-tailed p values for differences between both mice groups, obtained from the Mann Whitney U test.
Genes upregulated or downregulated in Pah-R261Q (n= 5 mice) compared to WT (n= 6 mice) (p < 0.05) are highlighted in bold text.
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for BH4 responsiveness in mice, including the increase of
total PAH enzyme activity by PAH variant stabilization through
protection against oxidative damage and proteolytic degradation,
thus prolonging the half-life of PAH as seen in vitro19.

The large variability and spectrum of metabolic phenotypes
presented by homozygous PAH-R261Q patients15–17 are thus far
not observed in the mouse model. Pah-R261Q mice, in fact,
present low variation in the basal concentration of blood L-Phe
and other parameters measured in this work. The proteostasis
network that maintains the synthesis, folding, localization, and
degradation of proteins, and counteracts the effect of aggregates,
involves a large number of protein components that are regulated
at the cellular, tissue, and organismal level53. This complex pro-
teostasis network provides additional polymorphic modifier var-
iants that contribute to the broader phenotypic spectrum in
patients with unstable PAH variants, but not necessarily in the
mouse model where a uniform genetic background has been
achieved by careful backcrossing.

In PKU, the neurological defects include monoamine neuro-
transmitter deficiencies, which are fully manifested in the classical
PKU (Enu2) mouse that is almost devoid of PAH activity26. The
Enu1/2 mouse, which presents 2.5% of regular PAH activity and
blood L-Phe levels just slightly higher (~150 µmol/L) than in Pah-
R261Q, also shows a decrease in brain serotonin and 5HIAA58.
However, the remaining 16% PAH activity in Pah-R261Q mice
appears high enough to result in apparently normal L-Phe cata-
bolism and monoamine neurotransmitter synthesis, as well as in
absence of detectable neurological deficiencies. Nevertheless,
despite their mild HPA, Pah-R261Q mice manifested several
biomarkers and indicators of adiposity and altered lipid meta-
bolism, and oxidative stress. These traits have been previously
observed in patients and animal models of PKU where they have
been related to neurotoxic HPA levels and (micro)nutritional
deficiencies of the L-Phe-free diet59,60, factors that are absent in
this case. Further evidence suggests that the increased weight in
Pah-R261Q males is not a direct consequence of elevated L-Phe
levels; the classical PKU model Enu2 is underweight, despite its
tenfold higher blood L-Phe levels than in Pah-R261Q26. The
molecular basis behind the observed mild overweight and oxi-
dative stress in Pah-R261Q mice appears to be related to a toxic
aggregation of mutant PAH and contributes to the identification
of a gain-of-function contribution to the HPA/PKU pathology.

The misfolding defect of the p.R261Q-PAH protein variant is
manifested both in biochemical characterizations as a reduced
conformational stability and accelerated degradation18,19,23 and
in computational predictions by FoldX15. The Arg to Gln residue
change is expected to disrupt the interdimer interactions in p.
R261Q-PAH (Supplementary Fig. 1), and the area around the
mutation would then become available for unspecific intersubunit
interactions. Among the few HPA/PKU-associated PAH variants
with a high predicted propensity for β-cross amyloid-like aggre-
gation by in silico TANGO calculations47, p.R261Q-PAH is the
variant with the highest allele frequency among patients.

The Pah-R261Q mice presented a reduction in steady-state
hepatic PAH levels and PAH-specific activity, as well as increased
ubiquitination of the protein in the liver. The current under-
standing of the loss-of-function of misfolding PAH variants is an
accelerated degradation carried out preferentially by the
ubiquitination-dependent proteasome system (UPS), as recently
proven for a large number of PAH variants in cellular studies61.
Our results with Pah-R261Q show that selective autophagy may
be involved in the degradation of a PAH variant, as strongly
indicated by the colocalization of markers of autophagy Ser403-
phosphorylated p62 and LC3 with mutant PAH. In the case of the
lightly aggregating Enu1 variant p.V106A-PAH there is no
colocalization of these markers with PAH, and the aggregates

seem to enter the nucleus where they may also be degraded by the
nuclear UPS. There is an intricate cross-talk between the UPS and
autophagy62,63, and it is thus likely that PAH amyloid-like
aggregates in Pah-R261Q that are not effectively processed by the
UPS can be co-aggregated with phosphorylated p62 for autop-
hagic processing51,64.

Although insoluble deposits may protect from oxidative stress65,
amyloid-like aggregation-prone conformers—e.g., resulting from
mutations—perturb cellular homeostasis and induce oxidative
stress, increasing the production of reactive oxygen species (ROS)
at the cellular and tissue levels53. Toxic aggregation in the cyto-
plasm overwhelms the protein quality control system, resulting in
increased ROS, further exacerbation of protein aggregation53, and
activation of p62/SQTM1 by phosphorylation51. Together, our
results point to an oxidative and cellular stress condition in Pah-
R261Q mice associated with a toxic aggregation of the PAH var-
iant. The reduction of BH4 levels manifested in the liver of Pah-
R261Q has also been observed in other disorders associated with
oxidative stress2. In hepatocytes, BH4 also acts as the cofactor of
alkylglycerol monooxygenase2, an enzyme involved in the degra-
dation of ether lipids. Alteration of BH4 synthesis mainly affects
the entire cellular lipidome66, providing a link between oxidative
stress and alterations of lipid metabolism, the two main comor-
bidities postulated from the metabolic characterization of Pah-
R261Q mice (Table 1). As part of the physiological and metabolic
characterization of Pah-R261Q, we noted three related findings:
slightly increased body weight of males (26.8 ± 0.4 vs. 25.1 ± 0.3 g
(WT)), lower RER in the resting period, and higher serum levels of
some metabolites that have been associated with adiposity and
altered lipid metabolism, namely trimethyllysine, leucine, and
isoleucine31. Although no gender-associated changes were found
for any parameter or metabolite measured in this work for Pah-
R261Q compared to WT, including RER and relevant metabolites,
a priori indicates a similar propensity for altered metabolism in
both genders, only males were heavier than theirWT counterparts.
A male-specific body weight increase due to altered lipid meta-
bolism and adiposity has been detected in other mice and human
studies, which has been associated with a different genetic archi-
tecture and potential sex chromosome effects on metabolism
(reviewed in ref. 67).

A recent study has also reported the reduction of soluble BH4

in the liver lysates of Enu1 and Enu1/2 mice and the decrease has
been linked to the entrapment of the cofactor in aggregates of the
p.V106A-PAH variant45, resulting in a secondary BH4-deficiency.
Here, we measured total BH4 in non-centrifuged homogenates,
showing a net reduction in Pah-R261Q mice, which is also sup-
ported by the upregulation of Gchfr-mRNA (Table 2). Further-
more, no decrease of hepatic BH4 was measured by the same
method in liver Enu1/2mice43, supporting that the BH4 reduction
in Pah-R261Q is PAH mutation-specific and associated with the
formation of large amyloid-like aggregates and oxidative stress.

Oxidative stress in Pah-R261Q mice elicits the activation of the
antioxidant response, as seen by increased serum levels of β-
hydroxybutyrate33, as well as an increase in total antioxidant
capacity measured by the Trolox assay. Likewise, the reduction of
quinolinic acid could also be linked to an increased synthesis of
NAD+, which polymerizes to poly ADP-ribose for the protection
of DNA in case of oxidative stress36,37. Conversely, increased β-
oxidation (demonstrated by lower RER and elevated β-hydro-
xybutyrate) and the concomitant increase in anaplerosis, sup-
ported by the observed reduction in α-ketoglutaric acid and other
anaplerotic amino acids and metabolites (Table 1) has also been
shown to cause an increase in oxidative stress and
inflammation38. Another sign of oxidative stress in Pah-R261Q is
the upregulation of Dnajc12, the specific co-chaperone of the
aromatic amino acid hydroxylases, which was not altered in
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Enu142. Interestingly, overexpression of Dnajc12 has been asso-
ciated with oxidative stress68,69. On the other hand, the down-
regulation of both the transcription factor Hsf1 and the
chaperone Hsp70 appears somehow counterintuitive in this
context since Hsf1 in mammals is the primary regulator of the
heat shock response, which is activated by cellular stress and
elicits transcriptional upregulation of major HSPs, notably
Hsp7070. In contrast, downregulation of Hsf1 and consequent
reduction in expression of HSF1 target genes is observed in
neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and
Huntington’s diseases, characterized by toxic amyloid deposits71,
and a similar downregulation of Hsf1 and Hsp70 is also observed
in this case.

In conclusion, the observation of amyloid-like PAH aggregates
in the liver of the Pah-R261Q mouse introduces the concept of
toxic gain-of-function for specific PKU-associated mutations.
Overall, our results suggest that the lipid profile alterations and
oxidative stress found in these mice are linked to intracellular
toxic aggregation of the p.R261Q-PAH variant rather than to
the severity of the HPA and/or the diet. The Pah-R261Q mouse
model thus represents a unique research tool to support the
evaluation and discovery of additional biomarkers in PKU and to
investigate mutation-specific comorbidities, of benefit to the large
number of PKU patients harboring the R261Q mutation. Inter-
estingly, recent studies aiming to assess the prevalence of
comorbid associations among large groups of adult PKU patients
are starting to reveal several conditions in addition to the known
neuropsychiatric disorders, including overweight and renal and
cardiovascular dysfunctions5,6,72. A proper patient stratification
that takes into account the predisposition of the coded PAH
variants to amyloid-like aggregation is expected to result in a
better association of the comorbidities and improved patient-
tailored treatment, encouraging follow-up investigations of the
PAH aggregates. Lastly, this mouse model might contribute to
investigations on pharmacological chaperone-based therapies
targeting unstable PAH variants.

Methods
Materials. All chemicals in this section were acquired from Sigma-Aldrich unless
otherwise indicated. Animals evenly matched for sex were distributed in each
group for the different experiments presented. Recombinant human WT-PAH and
p.R261Q-PAH proteins were expressed and purified using the pMAL expression
vectors18,19 coding for the fusion protein maltose-binding protein (MBP)-(pep)xa-
PAH), where (pep)xa is the cleavage site for the restriction protease Factor Xa. The
fusion proteins were expressed in Escherichia coli TB1 cells at 28 °C for 16–18 h
with 1 mM IPTG and purified by affinity chromatography with amylose resin
(New England Biolabs) with elution with 10 mM maltose. The fusion proteins were
cleaved for 3 h with Factor Xa (New England Biolabs) at a protease:PAH ratio of
1:300. The tetrameric purified WT-PAH and p.R261Q-PAH proteins were isolated
by size exclusion chromatography on a Superdex HiLoad 16/600 200 column
(GE Healthcare) in 20 mM Hepes pH 7, 200 mM NaCl.

Generation of Pah-R261Q knock-in mouse. The constitutive knock-in mouse
model was generated by Taconic Biosciences GmbH (Köln, Germany) via CRISPR/
Cas9-mediated gene editing. The guide RNA target sequence+ protospacer adja-
cent motif (PAM) sequence 5′-AGTGGAAG_ACTCGGAAGGCC_AGG-3′ (non-
seed sequence_seed sequence_PAM) was designed and guide RNA was prepared as
a hybrid of CRISPR-RNA (crRNA; 6 ng/µl) (Dharmacon, Lafayette, USA) and
trans-activating crRNA (tracrRNA; 10.5 ng/µl) (Dharmacon, Lafayette, USA). The
guide RNA was co-injected into C57BL/6N zygotes - essentially as described20—
along with Cas9 protein (55 ng/µl; New England Biolabs, Ipswich, USA) and
homology-directed repair (HDR) oligonucleotide (5′-GCTTAGATCCATGCCTAA
TGTACTGTGTGCAGTGGAAGACTTGGAATGCCAGGCCACCCAAGAAATC
TCGAGACGACAGTAAGCCAG-3′) (100 ng/µl), from Integrated DNA Technol-
ogies, Coralville, USA. This HDR oligonucleotide harbored the point mutation
c.782 G > A (p.Arg261Gln) to be introduced in exon 7 of the Pah gene on murine
chromosome 10 (point mutation and exon annotation according to NCBI tran-
script NM_008777.3) as well as a silent mutation (c.777C > A) to create an addi-
tional restriction site (BsmI) for analytical purposes (Supplementary Fig. 2). These
CRISPR reagents were microinjected (until the pronucleus swells up, typically ~1

pl) into 304 mouse embryos resulting in a total of 51 pups born, and three animals
(5.9%) displayed positive detection of the R261Q knock-in allele.

Confirmation of the on-target mutation was completed as detailed73,74 whereas
verification of the absence of undesired potential off-target modifications was
achieved by heteroduplex mobility assays conducted on the top 16 hits originated
from BLAST analysis of the guide RNA onto M. musculus genome assembly
(GRCm38/mm10) (Supplementary Table 1).

Animal husbandry and colony expansion. The animal studies were approved by
the Norwegian Food Safety Authority and performed at the Laboratory Animal
Facility, University of Bergen, according to the guidelines and standards from the
Regulation on the use of animals in the research of this institution. Mice were
housed in a temperature-controlled (21 °C and 50% air humidity) environment
with 12 h light/dark cycles. Food (standard chow pellets) and water were available
ad libitum.

The colony was continuously backcrossed to avoid genomic drift. Every
6 months wild-type mice (C57BL/6J, males and females every second time) were
bought from an approved vendor (Charles River) and bred with heterozygous
PahR261Q/WT mice. Six to eight weeks old heterozygous PahR261Q/WT siblings from
this backcrossing and breeding were used to produce homozygous PahR261Q/R261Q

mice. The resultant PahR261Q/WT and PahWT/WT mice (siblings) from the breeding
were utilized as control counterparts. This method of breeding is recommended to
maintain the strain genetic integrity. We make sure to avoid going beyond three
generations of inbreeding (F3) before we reset the generation by using new
breeding animals from the backcrossing. The strain has been backcrossed eight
times (N8) and the latest mice that have been used in the experiments presented in
this work are from generation N8F3.

Genotyping. In order to determine the mouse genotype, ear biopsies were collected
and DNA was extracted and purified from these tissue samples using the DNeasy
Blood and Tissue kit (QIAGEN) following the manufacturer’s instructions. After
that, DNA was amplified by standard PCR (See primers in Table S4), initial
denaturation at 95 °C/5 min followed by 35 cycles of denaturation-annealing-
extension, 95 °C/30 s, 60 °C/30 s and 72 °C/1 min, with a final extension at 72 °C for
10 min) using Taq Polymerase (New England BioLabs). The PCR product was then
incubated with the endonuclease BsmI (New England BioLabs) for 15 min at 65 °C.
Finally, the digestion fragments were resolved in 2.5% agarose gel electrophoresis
(1× TAE buffer/90 min/90 v) and bands visualized in a ChemiDoc XRS (Bio-Rad
Laboratories) imaging system.

Metabolic cage. The physiological parameters: rate of O2 and CO2 consumption,
food intake and activity of Pah-R261Q and control WT mice (4–5-month old; n=
3–5 mice per group, 121 observations/animal) were directly determined using the
Oxymax-Comprehensive lab animal system (CLAMS, Columbus Instruments),
with data being recorded for 36 h after an acclimatization period of 12 h. Other
valuable calorimetric properties such as respiratory exchange rate (RER) and
energy expenditure were indirectly calculated using Lusk classical equations pro-
vided in the Oxymax processing software.

Rotarod performance test. The assessment of motor function was conducted on a
rotarod instrument (Harvard Apparatus) consisting of a 5 cm plastic grooved rod
and a platform situated approximately 25 cm below equipped with a lever to trigger
the recording for the time of fall. Pah-R261Q and control WT mice (3 months old;
n= 10–11 mice per group) were, initially, habituated to the setting and trained to
stay on the rod for 1 min at a constant speed of 5 rpm. Trained mice were then
placed again on the rod with a gradual acceleration from an initial 4 rpm to a final
40 rpm speed over a 5 min testing period. The latency of fall as well as rod revo-
lutions at fall was logged, and trials were repeated three times, separated by a
15 min break.

L-Phe challenge and BH4-responsiveness. Adult mice (3–4-month-old) were
employed in all the animal experiments of this section. For the effect of L-Phe
challenge, intraperitoneal injection of an L-Phe solution (200 µg/g body weight) to
PahR261Q/R261Q, PahR261Q/WT, and PahWT/WT mice (n= 23, 6 and 4 mice per
group, respectively) was followed by whole blood sampling from the saphenous
vein at time points: 1 day before injection (baseline level) and 35, 85, 150, and
300 min after injection. For BH4-responsiveness, a treatment solution of BH4

(Schircks Laboratories) (12.73 mM BH4, 2% ascorbic acid, and 10% DMSO; in a
dosage of 20 mg BH4/kg body weight) or placebo solution (2% ascorbic acid and
10% DMSO), were injected into Pah-R261Q mice (n= 5–6 mice per group, per
experiment) intraperitoneally twice a day41 for 4 days, before conducting the L-Phe
challenge protocol as indicated above. The obtained blood samples were collected
onto filter paper cards (PerkinElmer) according to the vendor’s guidelines wherein
L-Phe was measured by tandem mass spectrometry in, at minimum, 3 h
fasted mice.

Metabolic markers analysis. In order to obtain serum specimens, whole blood
was collected by cardiac puncture and 1 mL was transferred to a microcentrifuge
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tube. Subsequently, blood samples were left for 45 min at room temperature to
facilitate coagulation, preceding two consecutive centrifugation steps (2.100 rcf,
10 min, and 4 °C) where the respective supernatants were pipetted out to a clean
tube. The isolated serum fractions were stored at −80 °C until examination. The
extracted serum samples from Pah-R261Q and WT mice (4–5 months old; n= 19
mice per group) were subjected to an exhaustive analysis to determine the con-
centration of 72 relevant metabolic biomarkers. Analyses were performed at Bevital
(http://bevital.no/) across four different platforms supporting high-throughput
multi-analyte assays. A combination of chromatographic techniques with mass
spectrometry detection (GC–MS/MS and LC–MS/MS) was applied (See references
for individual experimental protocols in Supplementary Table 2).

Preparation of liver and brain lysates. Mice (age and numbers indicated in the
specific studies) were sacrificed in a carbon dioxide euthanize chamber. Immedi-
ately after, the brain and liver were surgically excised and snap-frozen in liquid
nitrogen, and tissue was manually ground into a fine powder and stored in aliquots
at −80 °C. Liver homogenates from the ground aliquots (~200 mg powder) were
prepared by adding 800 µL of a lysis buffer solution containing 1× PBS and pro-
tease inhibitor cocktail (Roche), a 5 mm diameter stainless steel bead (Qiagen), and
a mechanical disruption step in a Tissue Lyser II (Qiagen) instrument (2× 1 min
30 s, 20 Hz). Cellular debris was then removed through centrifugation (20.000 rcf,
20 min) to obtain a clear supernatant. The total protein concentration of the liver
lysates was determined in a Direct Detect infrared spectrometer (Millipore). For
the Trolox equivalent antioxidant capacity assay, 600 µL of identical lysis buffer, a
mechanical homogenization with a pellet pestle sitting on ice, and a modified
centrifugation step (18.000 rcf, 10 min) was preferred.

Brain extracts were prepared by powder homogenization in 10× volume of
50 mM Tris-HCl, pH 7.5, 100 mM KCl, 1 mM EDTA, 1 mM DTT, 1 μM leupeptin,
1 μM pepstatin, and 200 μM PMSF, at otherwise identical experimental conditions
as standard liver extracts (see above).

Neurotransmitters, BH4, and amino acid determination in tissues. The relative
levels of BH4 in liver and brain and of monoamine neurotransmitter metabolites in
the brain of Pah-R261Q and WT (n= 5–6 mice per group) were measured in liver
and brain lysates of 3–4-month-old mice as reported58. Briefly, tissue lysates were
oxidized for 60 min in the dark by 0.5 g/L iodine and 0.1 g/L potassium iodide in
0.1 M HCl. The oxidation was stopped by adding 2 g/L ascorbic acid and adjusting
the pH to 8.5 with NaOH before incubation with calf intestine alkaline phosphatase
(Roche Applied Science) at 37 °C for 1 h. The lysates were then adjusted to pH
2 with HCl and deproteinized (Ultrafree-MC filters, Millipore) before BH4 and
neurotransmitters were measured by HPLC75.

The relative levels of the amino acids L-Phe, L-Tyr, and L-Trp of Pah-R261Q
and WT (n= 5–6 mice per group) were measured in liver and brain lysates of 3–4-
month-old mice as reported76. Samples were prepared according to the
Phenomenex EZ:faast™ kit’s manual, with the following modifications: prior to
amino acid extraction and derivatization, 20 μL of each internal standard solution
containing 100 μmol/L Phe-d5 and 20 μmol/L Tyr-d4 (in 50 mmol/L HCl) were
added to 20 μL of sample lysate. Using the kit’s reagents, the amino acids were
derivatized with propyl chloroformate resulting in the addition of propyl formate at
the amine moiety and a propyl group at the carboxylic end of the amino acids,
respectively. The hydroxy group of Tyr was also derivatized by the addition of a
propyl formate group, and the amino acids were then measured by
LC–ESI–MSMS76.

PAH enzymatic activity assay. Liver lysates were first loaded into 0.5 mL Zeba-
Spin desalting columns (7.000 Da cutoff; ThermoFisher Scientific), previously
equilibrated with 20 mM HEPES, pH 7.0, 200 mM NaCl, and protease inhibitor
cocktail solution, and centrifuged (1.700 rcf) for 2 min. PAH activity in the
homogenates was measured at 25 °C using 5–20 µg of total protein in each assay,
with 1 mM L‐Phe in 20 mM Na–Hepes, 0.2 M NaCl, pH 7.0, containing catalase
(0.04 mg/ml). After 4 min preincubation at 25 °C, ferrous ammonium sulfate
(100 µM) was added, and the reaction triggered after 1 min by adding 200 µM BH4

and 5mM DTT (final concentrations in the assay). The reactions were allowed to
run for 2 min and stopped with 2% acetic acid in ethanol. Under these conditions,
PAH activity was linear to the amount of protein in the extracts. L‐Tyr formed was
quantified by HPLC with fluorimetric detection.

Immunoblotting. Protein immunodetection was performed by Western blot. Total
protein (2.5 µg/well) was separated using 10% polyacrylamide gel and immuno-
detected by using primary antibodies, 1:5000 for primary antibody α-PAH (1:5000;
Millipore-MAB5278), α-ubiquitin (1:500; Thermo Fisher Scientific-131600);
α-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (1:1000; Abcam-ab9485),
and 1:2500 for secondary antibodies goat anti-mouse (GAM) (Bio-Rad Labora-
tories) and goat anti-rabbit (GAR) (Bio-Rad Laboratories), conjugated to horse-
radish peroxidase. Quantification of non-ubiquitinated and mono-
ubiquitinated PAH and GAPDH proteins was performed by gel band
densitometry.

Immunofluorescence and IHC. Mice (4–5-month-old) were anesthetized with
pentobarbital (20 mg/kg, IP), and transcardially perfused with 50 ml of warm saline
(0.9%, 37 °C), followed by 50 ml of warm paraformaldehyde (4%, 37 °C) in 0.16M
phosphate buffer (PBS; pH 7.2). The hepatic tissue was dissected out and postfixed
in the same fixative for 3 h at 4 °C and subsequently stored in 20% sucrose diluted
with PBS containing 0.01% sodium azide (Sigma) and 0.02% Bacitracin (Sigma) at
4 °C overnight. Tissues were embedded with Optimal cutting temperature (OCT)
compound (Tissue Tek, Miles Laboratories, Elkhart, Ind., USA), frozen and cut in a
cryostat (Microm, Heidelberg, Germany) at 20 or 50 μm thickness, collected and
stored free-floating in PBS at 4 °C or mounted onto SuperFrost Plus microscope
slides (ThermoFisher Scientific), dried at room temperature for 30 min and stored
at −80 °C until use.

For immunofluorescence, Triton-X 100 (0.5%) was used to permeabilize the
tissues followed by blocking with 5% FBS in PBS for 1 h prior to the primary
antibody incubation. Tissues were then incubated overnight at 4 °C in a humidity
chamber with the correponding primary antibody, α-PAH (1:100; Abcam-
ab178430), α-Ubiquitin N-terminal (1:200; ABIN350072), anti-NUP98 (1:100;
Abcam-ab50610), α-phospho-p62 (S403) (1:200; MBL-D343-3), and goat anti-
LC3B (1:100; Signalway antibody-C48312), in 10% (w/v) NGS, 1× PBS, pH
7.4 solution. Then, a 30 min incubation in a humidity chamber at 37 °C was carried
out with the corresponding secondary antibody, donkey anti-rabbit IgG H&L
(1:200; Alexafluor 488, Invitrogen-A21206), donkey anti-goat IgG H&L (1:400;
Alexafluor 555, Abcam-ab150130), donkey anti-goat IgG (1:200; Cy3 conjugate,
Millipore-AP180C), goat anti-rat IgG H&L (1:100; TRITC, Jackson
immunoresearch-112-025-143), goat anti-rabbit IgG H&L (1:200; Alexafluor 647,
Invitrogen-A21245), donkey anti-rat IgG H&L (1:200; Alexafluor 488,
ThermoFisher Scientific-A21208), in the same blocking solution. A washing step of
15 min with 1× PBS, pH 7.4 was included prior to and after each incubation period.
Hoechst or DAPI, as indicated, were used to counterstain the nucleus for 30 min at
RT followed by washing in PBS and mounted with DABCO mounting media.
Images were acquired by using Leica TCS SP5 confocal microscope (Leica
Microsystem GmbH) using a pinhole airy 1 and a 63×, 1.4 numeric aperture oil
immersion objective. Acquired images were processed using the LAS AF Lite
software (Leica Microsystem). For each sample, a stack of images (n= 14) with a
step-size of either 290 or 170 nm was taken. Fluorescence intensity measurements
were performed using Fiji freeware using the stacks of confocal images. Integrated
density values of each stack were used to compare the relative fluorescence
intensity of the samples. 3D rendering of the confocal images (z-stacks) was
performed by using image analysis software Imaris (Bitplane Inc.). The nuclei
marked with Nup98 (red) and PAH (green) were reconstructed by using the
surface tool.

For immunohistochemistry (IHC), the stored free-floating sections were
employed. Sections were first rinsed in 0.3% H2O2 in PBS for 10 min at RT for
quenching endogenous peroxidase activity, and then incubated with blocking
buffer containing Blocking Serum (VECTOR Laboratories), 0.5% Triton X-100
(Sigma), and 5% bovine serum albumin (Sigma-Aldrich) in PBS for 1 h at RT.
Sections were incubated for 45 min with primary antibody α-PAH (1:800, Abcam-
ab191415) and 30 min with goat anti-rabbit IgG H+ L (1:200, HRP, BioRad-
1706515) secondary antibody, and followed by a 30-min incubation with prepared
VECTASTAIN Elite ABC (VECTOR Laboratories). The sections were immersed in
a peroxidase substrate solution (DAB, Sigma) for 7–8 min and washed with water,
mounted on Super Frost slides, and coverslipped with glycerol/PBS (9:1)
containing 0.1% para-phenylenediamine. Finally, the sections were analyzed and
images were captured using a Leica microscope equipped with a Leica camera. The
average size and size distribution of PAH-positive “particles” in the cytoplasm of
hepatic cells was quantified using ImageJ software. As the PAH staining pattern in
the light microscope (objective 100×) was evenly distributed in WT mouse liver,
the quantification was performed on liver sections of Pah-R261Q and Enu1. Ten
liver sections (30 µm thickness) were randomly selected from each animal. PAH-
positive particles were analyzed in randomly selected regions of the sections. Only
single PAH-positive particles were analyzed and at least 400 particles from each
group, from at least 10–12 hepatic cells, were counted.

Amyloid-like aggregation assay (Amytracker). Amyloid detection was carried
out by recording the fluorescence emission of amyloid ligand heptamer formyl
thiophene acetic acid (Amytracker™ 680; Ebba Biotech) at 680 nm in a 96-well
plate, black F-bottom (Griener Bio-one), for 24 h at 37 °C in a multimode
microplate reader (Tecan spark), with excitation at 540 nm. The time course of the
fluorescence intensity for purified WT-PAH and p.R261Q-PAH (20 µM subunit)
with Amytracker™ 680 (1:1000) was acquired in 20 mM HEPES, 150 mM NaCl, pH
6.0. Samples lacking protein were used as controls and normalized. Three mea-
surements were carried out for each protein.

Transmission electron microscopy (TEM). For TEM of hepatic tissue, 5-month-
old mice (WT and Pah-R261Q) were anesthetized with isoflurane and transcar-
dially perfused with 50 ml of warm saline (0.9%, 37 °C), followed by 50 ml of 2.5%
glutaraldehyde (diluted in a 0,1 M sodium cacodylate buffer) at RT. The hepatic
tissue was dissected out and postfixed in the same fixative for 24 h at 4 °C. The
tissues were then transferred to 0.1 M sodium cacodylate buffer and kept at 4 °C.
Postfixation was performed for 1 h (on ice) in 1% osmium tetroxide (EMS # 19134)
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diluted in 0.1 M sodium cacodylate buffer, followed by two washing steps. The
samples were then dehydrated using a graded ethanol series (30%, 50%, 70%, 96%,
and 3 × 100%) before transferred to a 1:1 solution of 100% ethanol:propylene oxide
(15 min). Samples were then transferred to 100% propylene oxide (15 min) before
gradually introducing agar 100 resin (AgarScientific R1031) drop by drop over the
next hours. Samples were then transferred to a small drop of 100% resin and excess
propylene oxide was allowed to evaporate (1 h). Samples were then transferred to
100% resin and placed in molds and left at RT overnight. The molds were then
placed at 60 °C for 48 h to polymerize. Ultrasections of approximately 60 nm were
placed on 100 mesh Copper grids (EMS #G100H-Cu) and stained with 2% uranyl
acetate (EMS # 22400) and lead citrate (VWR #1.07398). Grids were imaged using
a Jeol JEM-1230 transmission electron microscope at 80 kV. Different organelles
were counted in images acquired at 20.000× magnification from the cytoplasm in
hepatocytes, in liver samples of both WT and Pah-R261Q mice (40 TEM micro-
graphs for each mouse).

For protein TEM with negative staining, 5 µl samples of protein solutions
(20 µg/ml) in the indicated buffer were allowed to be absorbed (1 min) on a glow
discharged, 300 mesh (EMS # G300H-Cu), carbon-coated grid. The grids were then
stained for 1 min in 2% uranyl acetate. Grids were allowed to dry for 30 min before
imaging. The incorporation of two consecutive washing steps with double distilled
water after absorption of the protein improved the background, but we observed
loss of aggregates.

Oxidative stress assay (Trolox). The antioxidant capacity of small molecules
(such as ascorbate, glutathione, and vitamin E) in Pah-R261Q and WT liver
homogenates was determined by the Trolox equivalent antioxidant capacity assay
using the colorimetric Total Antioxidant Capacity Assay kit (Abcam). Samples
were diluted 1:1 with the included reagent Protein Mask to avoid the potential
contribution of other biological species. Otherwise, the standard protocol indicated
in the product manual was followed. Results were obtained by interpolation to a
Trolox (reference antioxidant) standard curve and expressed as Trolox equivalent
antioxidant capacity.

Gene (mRNA) expression. Total RNA was extracted from powdered livers of
Pah-R261Q and WT mice (3-months-old; n= 5–6 per group) with the QIAmp
RNA Blood Mini Kit (QIAGEN) and translated into cDNA using the Reverse
Transcription System (Promega). Quantitative PCR was performed in standard
triplicate assays for each mouse sample with 50 ng of cDNA using TaqMan
technology, an ABI Prism 7700 sequence detector, and the TaqMan Universal PCR
Master Mix from ABI. Detailed information about the specific transcript detection
cannot be given, as we used ABI TaqMan Gene Expression Assays, which are under
a proprietary license, and the exact primer and probe sequence are not disclosed.
The ABI assay numbers for the indicated murine mRNA and NCBI nucleotide
sequence numbers are summarized in Supplementary Table 4. Murine Gapdh-
mRNA was included as a control for normalization and the analyses of the relative
gene expression were performed based on the 2−ΔΔCt method77.

Software. The computer algorithm TANGO47 was used for the prediction of
aggregating regions in the relevant mutants and WT PAH sequences. Calculations
were performed online (http://tango.crg.es/) with default parameters. PAH parti-
cles were analyzed and measured using Fiji ImageJ.

Statistics and reproducibility. Quantitative data are presented as mean ± standard
deviation (SD). Individual values are plotted as circles in both scatter dot plots and
bar graphs, except in the inset of Fig. 1e where the circles represent the mean for
the group for each time point. Statistical significant differences were determined by
unpaired two-tailed t test for pairs of groups, except when indicated, i.e., two-tailed
Mann Whitney U tests were used for the analysis of data in Table 1 and Supple-
mentary Table 2. For comparisons of more than two groups one-way ANOVA
followed by post hoc Tukey test was used, except for data in the inset of Supple-
mentary Fig. 4 where due to unequal variance and sample size Brown–Forsythe and
Welch ANOVA test was used followed by Dunnett’s multiple comparisons test, as
indicated. Note that despite the fact that mean ± SD is presented in this figure, the
analysis is run on mean AUC ± SEM data, which is also the case for the t test
applied on the AUC data in the inset of Fig. 1d and inset of Fig. 2c. We considered
p < 0.05 as statistically significant and p values are provided with accurate numbers
down to <0.0001. Statistical analyses were performed using GraphPad Prism™

(version 8.3.0, San Diego) software and the applied analysis in each case is included
in the corresponding Table and Figure legend only for the results for which sta-
tistical significance was obtained.

For representations of quantitative data, n customarily refers to the number of
independent biological samples (mice) examined in each analysis, except when
explicitly referring to the number of independent enzyme purifications. When
required, i.e., Figure 5c and Supplementary Fig. 7, the number of sections and/or
particles analyzed is also provided in the corresponding figure legend.

The representative Western blots (Fig. 3a, b) have been repeated at least three
times in independent experiments, using different mice in each experiment (n ≥ 3
for each genotype). Densitometric results obtained with the Western blots are
represented in Fig. 3c. The agarose gel in Supplementary Fig. 2c represents the

procedure used for genotyping after breeding and similar results have been
obtained at least 20 times in independent experiments including in total n ≥ 40
mice of each genotype. Representative micrographs showing results from
immunofluorescence and IHC (Figs. 4, 5a,b and 6a,b) have been successfully
repeated with n ≥ 3 for each genotype in independent experiments. The results in
the representative micrograph from TEM with purified p.R261Q-PAH
(Supplementary Fig. 6b) have been observed with n= 3 protein preparations. For
the TEM of hepatic tissue, representative micrographs with the relevant organelles
are shown and have been observed in liver samples from n= 3 mice in each
genotypic group.

Ethical compliance. We have complied with all relevant ethical regulations for
mice breeding, testing and research. The animal experiments in this study have
received the appropriate approval from the Norwegian Food Safety Authority
(Brumunddal, Norway) (approved application 20168698) and performed at the
Laboratory Animal Facility, University of Bergen, according to the guidelines and
standards from the Regulation on the use of animals in the research of this
institution.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying Figs. 1–6, Supplementary Figs. 2c and 3–6, Tables 1 and 2 and
Supplementary Tables 2 and 3 are provided with this paper as a Source Data file. The rest
of the data that support Supplementary Figs. 7 and 8 within this paper, other findings
and the mouse and derived materials will be made available upon reasonable request to
the correspondence author. Web-links for NCBI nucleotide sequences: Pah–mRNA
NM_008777.3 https://www.ncbi.nlm.nih.gov/nuccore/NM_008777.3, Hsc70–mRNA
NM_031165.4 https://www.ncbi.nlm.nih.gov/nuccore/NM_031165.4, Gch1–mRNA
NM_008102.3 https://www.ncbi.nlm.nih.gov/nuccore/NM_008102.3, Hsf1–mRNA
NM_008296.2 https://www.ncbi.nlm.nih.gov/nuccore/NM_008296.2, stub1–mRNA
NM_019719.3 https://www.ncbi.nlm.nih.gov/nuccore/NM_019719.3, Gchfr –mRNA
NM_177157.4 https://www.ncbi.nlm.nih.gov/nuccore/NM_177157.4, Dnajc12–mRNA
NM_001253685.1 https://www.ncbi.nlm.nih.gov/nuccore/NM_001253685.1, p62-mRNA
NM_001290769.1 https://www.ncbi.nlm.nih.gov/nuccore/NM_001290769.1, Hsp70
–mRNA NM_001163434.1 https://www.ncbi.nlm.nih.gov/nuccore/NM_001163434.1,
Ap-1–mRNA NM_001243043.1 https://www.ncbi.nlm.nih.gov/nuccore/
NM_001243043.1, Gapdh-mRNA NM_008084.3 https://www.ncbi.nlm.nih.gov/nuccore/
NM_008084.3 Web-link for PAH structure in complex with BH4 PDB 6HYC (https://
www.rcsb.org/structure/6HYC) Web-link for data on C57BL/6J mouse strain (https://
www.jax.org/strain/000664). Source data are provided with this paper.
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Supplementary Table 1. Mouse genome off-target analysis. The 16 possible off-target loci selected from 

BLAST analysis of the guide RNA towards the Mus musculus GRCm38/mm10 assembly genome and assayed 

by heteroduplex mobility. No off-target interactions could be detected. 

Chromosome DNA sequence1 Mismatches Target site 

(No.) (Non-seed_Seed_PAM) (No.) (Name) 
7 AGgGGAAG_ACTCaGAAGGCC_AGG 2 Overlap exon Shisa7 

Overlap exon C920025E04Rik 
17 AGcGGgAG_ACTCGGAAaGCC_AGG 3 Overlap exon Ptk7 
15 tGTaGAAG_ACTCGGAAGtCC_CGG 3 Overlap intron Nell2 
3 tGTGcAgG_ACTgGGAAGGCC_AAG 4 Overlap exon RP24-275F18.4 
5 taTcGAAG_ACTCGGAAGGaC_AGG 4 Overlap exon Pcolce 
5 ttTGGAgG_ACTCGGAgGGCC_CGG 4 Overlap exon Cyth3 

11 AGgGagAG_ACTgGGAAGGCC_TGG 4 Boundary exon Flt4 
10 tGTctAAG_ACTCaGAAGGCC_AGG 4 Overlap intron Stat6 
11 tcTaGAAG_cCTCGGAAGGCC_AAG 4 Overlap intron Ntn1 
11 AtTccAAG_ACTCGGAAGGCt-GAG 4 Overlap intron Fat2 
14 cacGGAAG_ACTCGGAAGGCt-GAG 4 Overlap intron Arhgap22 
16 ccTcGAAG_ACTCGGAAGaCC-TGG 4 Overlap intron Lpp 
6 AGTcGgAa_ACTCGGAAGaCC-AGG 4 Overlap intron Plxna4 
6 AGTGGcgc_ACTCGGAAGGCa-GAG 4 Overlap intron Raf1 
8 gGTGGcAa_ACTCGGAAGtCC-AAG 4 Overlap intron Gm20388 

1The DNA sequence is divided, for clarity purposes, in the non-seed region, seed region, and 
protospacer adjacent motif (PAM), with lowercases indicating the mismatched nucleotides. 



Supplementary Table 2. Complete list of metabolites analyzed in isolated serum 
samples. The serum levels of 72 metabolites were analyzed by chromatographic 
separation and mass spectrometry detection. 

 
Metabolite 

  
Pah-WT 

  
Pah-R261Q 

  
p-value1 

  
Method 

(Name)  (µM)  (µM)     

Total Homocysteine  5.23 (2.41)  6.23 (2.37)  0.284   
Methylmalonic acid  0.701 (0.095)  0.585 (0.118)  0.060   

Total cysteine  241 (48)  267 (35)  0.708   
Methionine  61.8 (9.9)  57.8 (11.4)  0.172   

Serine  144 (28)  136 (21)  0.123   

Glycine  318 (55)  293 (45)  0.354   
Cystathionine  1.04 (0.57)  1.10 (0.31)  0.686   
Kynurenine  0.740 (0.234)  0.573 (0.264)  0.080   
Sarcosine  1.29 (0.59)  0.958 (0.414)  0.234   
Histidine  70.0 (10.5)  71.1 (11.5)  0.686   

Tryptophan  103 (24)  82.9 (30.9)  0.013   
Ornithine  61.2 (16.3)  58.9 (12.3)  0.624   

Aspartic acid  27.4 (14.4)  22.7 (11.0)  0.043   
Glutamic acid  39.5 (20.7)  29.4 10.2)  0.008   

Lysine  306 (46)  279 (45)  0.470   
Alanine  444 (71)  362 (80)  0.010   

Phenylalanine  71.9 (10.3)  113 (22)  0.0000004   
Isoleucine  87.5 (12.8)  101 (24)  0.091   
Leucine  143 (23)  164 (42)  0.075   
Proline  90.2 (25.4)  73.0 (17.2)  0.085   
Valine  220 (28)  233 (38)  0.563   

Asparagine  49.0 (13.0)  47.9 (8.8)  0.103   

Glutamine  687 (76)  622 (112)  0.043    GC-MS/MSa 

Threonine  145 (29)  140 (30)  0.123 
Tyrosine  81.3 (25.3)  77.9 (14.0)  0.050   

α-Ketoglutaric acid  38.6 (15.2)  26.3 (10.8)  0.003   
3-Hydroxyisobutyrate  22.8 (10.6)  22.1 (10.0)  0.773   

2-Hydroxybutyrate  18.3 (6.4)  14.1 (6.4)  0.529   
β-Hydroxybutyrate  150 (99)  282 (133)  0.029   

Acetoacetate  20.6 (21.7)  28.9 (15.9)  0.579   
Choline  25.7 (9.3)  30.1 (7.4)  0.236   
Betaine  67.3 (39.9)  69.2 (16.8)  0.808   

Dimethylglycine  9.70 (4.32)  10.6 (2.2)  0.715   
Creatinine  8.95 (2.29)  9.24 (2.35)  0.648   

Methionine sulfoxide  2.34 (1.29)  1.92 (1.20)  0.191   
Arginine  115 (17)  112 (19)  0.574   

Asymm.dimethylarginine  0.759 (0.244)  0.872 (0.218)  0.855   
Symm.dimethylariginine  0.296 (0.075)  0.360 (0.087)  0.202  LC-MS/MSb 

Homoarginine  0.927 (0.207)  0.783 (0.277)  0.403 
Trimethyllysine  0.803 (0.165)  0.976 (0.213)  0.050 

Trimethylamineoxide  3.57 (6.31)  2.86 (6.02)  0.599   
Creatine  154 (40)  127 (30)  0.026   



1-Methylhistidine 2.90 (0.43) 2.70 (0.66) 0.976 
3-Methylhistidine 4.04 (1.50) 5.03 (2.12) 0.354 

 
5-Methyltetrahydrofolate 131 (23) 119 (33) 0.406  
5-Formyltetrahydrofolate n.d. n.d. ----  

Folic acid 1.39 (1.24) 1.32 (0.93) 0.908  
4-α-Hydroxy-5-methyl-THF 6.05 (1.53) 5.53 (2.65) 0.684 LC-MS/MSc 
p-Aminobenzoylglutamate 35.1 (17.3) 32.5 (16.4) 0.853  

Acetoamidobenzoylglutamate 7.43 (2.96) 6.73 (3.00) 0.853  
Pyridoxal 5’-phosphate 0.232 (0.096) 0.276 (0.050) 0.351  

Pyridoxal 0.223 (0.085) 0.217 (0.102) 0.958  
4-Pyridoxic acid 0.034 (0.09) 0.036 (0.021) 0.681  

Pyridoxine n.d. n.d. ----  
Thiamine 0.331 (0.028) 0.273 (0.058) 0.112  

Thiamine monophosphate 0.372 (0.100) 0.425 (0.082) 0.758  
Riboflavin 0.066 (0.007) 0.066 (0.013) 0.918  

Flavin mononucleotide 0.037 (0.004) 0.032 (0.002) 0.252  
Neopterin 0.002 (0.001) 0.002 (0.001) 0.138  
Cotinine n.d. n.d. ----  

Trans-3’-hydroxycotinine n.d. n.d. ----  
3-Hydroxykynurenine 0.056 (0.019) 0.063 (0.017) 0.408 LC-MS/MSd 

Kynurenic acid 0.050 (0.021) 0.058 (0.013) 0.351 
Xanthurenic acid 0.030 (0.024) 0.047 (0.019) 0.606  

Anthranilic acid 0.030 (0.005) 0.029 (0.006) 0.837  
3-Hydroxyanthranilic acid 0.012 (0.007) 0.012 (0.004) 0.606  

Picolinic acid 0.108 (0.056) 0.146 (0.058) 0.791  
Quinolinic acid 0.178 (0.090) 0.130 (0.041) 0.023  
Nicotinic acid n.d. n.d. ----  
Nicotinamide 4.74 (0.74) 4.29 (1.11) 0.351  

N1-methylnicotinamide 0.314 (0.066) 0.251 (0.140) 0.596  
Trigonelline 2.21 (1.09) 1.49 (1.28) 0.351  

Concentrations are expressed as arithmetic mean ± SD; n = 19 WT and 19 Pah-R261Q mice. n.d., 
non- detectable (below detection limit). 
1Two-tailed p-values for differences between serum concentration in Pah-WT and Pah-R261Q from 
Mann Whitney U test. The highlighted metabolites in bold text show p ≤0.5. 
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Supplementary Table 3. Aromatic amino acid levels in brain 
 

 
Amino acid 

 
Pah- 

 
n1 

 
Brain 

   (nmol/mg protein) 
L-Phe WT 6 0.38 ± 0.04 

 R261Q 5 0.42 ± 0.12 
L-Tyr WT 6 0.29 ± 0.10 

 R261Q 5 0.31 ± 0.09 
 L-Trp WT 6 0.13 ± 0.02 

 R261Q 5 0.13 ± 0.02 
1n, number of mice analysed in each group (3-month-old). 



Supplementary Table 4. List of probes and primers used in the study 

Quantitative RT-PCR probes 

Name Assay ID chromosome location Nucleotide sequence 
accession code 

mouse phenylalanine 
hydroxylase (PAH) Mm00500918_m1 

Chr.10: 87521795 - 
87584137 on Build 

GRCm38 
NM_008777.3 

mouse Hsc70 (Hspa8) Mm01731394_gH 
Chr.9: 40801273 - 
40805199 on Build 

GRCm38 
NM_031165.4 

mouse GTP 
cyclohydrolase 1 (Gch1) Mm01322973_m1 

Chr.14: 47153895 - 
47189402 on Build 

GRCm38 
NM_008102.3 

mouse heat shock factor 1 
(Hsf1) Mm01201402_m1 

Chr.15: 76477395 - 
76500978 on Build 

GRCm38 
NM_008296.2 

mouse STIP1 homology 
and U-box containing 
protein 1 (Stub1) 

Mm00490634_m1 
Chr.17: 25830636 - 
25833361 on Build 

GRCm38 
NM_019719.3 

mouse GTP 
cyclohydrolase I feedback 
regulator (Gchfr) 

Mm00622819_m1 
Chr.2: 119167788 - 
119172389 on Build 

GRCm38 
NM_177157.4 

Mouse DNAJC12 Mm00497038_m1 
Chr.10: 63382443 - 
63408840 on Build 

GRCm38 
NM_001253685.1 

mouse sequestosome 1 
(p62) Mm00448091_m1 

Chr.11: 50200152 - 
50210820 on Build 

GRCm38 
NM_001290769.1 

mouse HSP70 (Hspa5) Mm00517691_m1 
Chr.2: 34772090 - 
34776529 on Build 

GRCm38 
NM_001163434.1 

mouse adaptor protein 
complex AP-1, beta 1 
subunit (Ap1b1) 

Mm01187764_m1 Chr.11: 4947521 - 5042794 
on build GRCm38 NM_001243043.1 

mouse glyceraldehyde-3- 
phosphate dehydrogenase 
(GAPDH) 

Mm99999915_g1 
Chr.6: 125161338 - 
125166511 on build 

GRCm38 
NM_008084.3 

Primers for genotyping 

Name Primer sequence 

PAH genotype forward primer 5’-ATGCAGGATATCTAAGGTGCC-3’ 

PAH genotype reverse primer 5’-GAGATGCTGAGATCACTTGGC-3’ 
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T238,A

Q304,A

Supplementary Fig. 1. Sequence comparison and structural representation of PAH. a) Sequence alignment of 
human (P000439) and mouse (P16331) PAH. Identical residues (red background), conservative mutations (yellow 
background) and non-conservative mutations (white background) are highlighted. Prepared with ESPript (http://
espript.ibcp.fr) with secondary structural motifs on top extracted from tetrameric human PAH (PDB 6HYC). 
Motifs predicted by TANGO (http://tango.crg.es/) to have high propensity to aggregate in a β-cross manner in the 
WT sequence are pointed by blue boxes, and motifs appearing in specific PKU mutant sequences are shown as 
broad green arrows, or as a black arrow for the R261Q mutation studied here. b) Structural location of 
Arg261 in PAH subunits A (R261,A) and B (R261,B) (PDB 6HYC); each subunit is shown in a 
different color. c) Interactions of R261,A intra-subunit (with T238,A and Q304,A) and inter-subunit 
within one dimer (with Y417,B). The highlighted residues are shown in ball and stick representation.

R261,B

R261,A

R261Q

E390G

P211LN167Y

E78V



Supplementary Fig. 2. Generation and genotyping of the novel Pah-R261Q mouse model. a) Graphic 
schematic illustration of the CRISPR/Cas9 targeting strategy. The guide RNA target sequence (in red) and 
“PAM” (in blue) interact, complementarily, with the region of interest in exon 7 of Pah gene on murine 
chromosome 10 (NM_008777.3). The two introduced point mutations c.777C>A and c.782G>A (p.Arg261Gln) 
provided a successful Cas9 endonuclease action and homology-directed repair (HDR) integration, and are 
highlighted in ochre and green background, respectively. b) Confirmation of the germline-transmitted Pah 
mutation by evaluation of sequence chromatogram. c) Representative example of an agarose gel from a 
genotyping experiment. The encountered genotypes were PahWT/WT (2 bands), PahR261Q/R261Q (3 bands) and 
PahR261Q/WT (4 bands); molecular weights provided in main text. M, DNA ladder; negative ctrl., ddH20 sample. 
For c) Source data are provided as a Source Data file

Supplementary Fig. S2 



Supplementary Fig. 3. Time course of the volume of O2 consumed and CO2 produced and rotarod 
performance test. Volume of O2 consumed (a) and CO2 produced (b), measured in the metabolic cage. Averaged 
recordings with n = 3  WT and 5 Pah-R261Q mice in independent experiments, with one mouse per cage and 121 
observations/animal. The 12 h acclimatization period was not included in the recordings. c) Motor function 
assessment by rotarod test. The bars express mean ± SD (n= 11 WT and 10 Pah-R261Q mice, analyzed 
independently). The circles represent individual values for each mouse. In all panels, the data for WT are 
depicted in purple and Pah-R261Q in ochre. Source data are provided as a Source Data file.

Supplementary Fig. S3 



Supplementary Fig. 4. Effect of Phe challenge on blood L-Phe concentration in mice with 
different genotypes. At time 0, an L-Phe challenge (200 µg/g body weight) was provided by i.p. to 
WT (purple), PahR261Q/WT (green) and PahR261Q/R261Q (ochre) mice. The results represent the mean ± 
SD (n, number of animals, was 4 PahWT/WT, 6 PahR261Q/WT and 23 PahR261/R261Q mice). Inset, area 
under the curve (AUC) for the time dependence of L-Phe concentration between 0 and 300 min 
for the three genotypic groups. Data are presented as mean AUC ± SD. The circles represent the 
individual values for each mouse. Statistical significance between the groups was analyzed by 
Brown-Forsythe and Welch ANOVA test followed by Dunnett`s multiple comparison test, 
providing p <0.0001 (****) for both PahR261/R261Q vs. PahWT/WT and PahR261/R261Q vs. PahR261/WT. 
Source data are provided as a Source Data file.

Supplementary Fig. S4 



Supplementary Fig. S5

Pre‐absorptionPAH

a b

Supplementary Fig. 5. PAH immunostaining in liver of WT mice; specificity of the PAH antibody.
a) Immunofluorescence staining reveals PAH immunoreactivity in the liver of WT mice. b)
Disappearance of PAH staining in the WT liver after an antibody pre-absorption treatment with purified
recombinant PAH. Scale bars are 10 µm. These are representative images based on experiments
performed with two liver lysates, prepared from a different WT mouse each (n = 2), with three replicates
for each preparation. Source data are provided as a Source Data file.



Supplementary Fig. S6

b

Scale bar 100 nm

Supplementary Fig. 6. Amyloid-like aggregation of the p.R261Q-PAH protein. a) Amytracker™680 assay 
with recombinant purified proteins WT-PAH (purple) and p.R261Q-PAH (ochre), with 1 mg/ml of each 
protein in 20 mM Na-Hepes, 200 mM NaCl, pH 7 and incubation at 37 oC. The results represent the mean and 
SD (gray lines) at each time point for n =3 (independent protein samples). b) Transmission electron 
microscopy (TEM) with negative staining for p.R261Q-PAH, after 5 h incubation at 37 oC and buffer 
exchange to 20 mM Na-phosphate, pH 7. The protein was applied to the grid at 0.02 mg/ml; at time 0, no 
particles > 20 nm in diameter are observed. Representative TEM micrograph from n =3 (independent protein 
samples). Tetrameric PAH has a diameter of 10 nm (PDB 6HYC). Source data are provided as a Source Data 
file.
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Supplementary Fig. S7

Supplementary Fig. 7. Transmission electron microscopy (TEM) of liver tissue. a) Representative micrographs 
showing normal cellular and organelle morphology in Pah-R261Q mice. Nu, nucleus; M, mitochondria; lys, lysosome; 
autoph, autophagosome; peroxi, peroxisomes; rer, rough endoplasmic reticulum. b) TEM micrographs showing two 
double-membrane autophagosomes and one autolysosome, representative of n= 3 biological replicates per mice group. 
c) Quantification of different organelles in images acquired in hepatocytes from both WT (purple) and Pah-R261Q
(ochre) mice. 40 TEM images at 20.000 magnification were analyzed for each mice. The results represent the mean ±
SD. Statistical significance between both groups was calculated using two-tailed unpaired t-test; p = 0.0402 for
lysosomes (*) and p = 0.0151 (*) for autophagosomes + autolysosomes.

WT



Supplementary Fig. 8. Measurement of oxidative stress in liver lysates of mice models 
with different genotype. Total antioxidant capacity using the Trolox (6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid) assay in liver lysates of WT (purple), PahR261Q/WT

(blue) and PahR261Q/R261Q (ochre). Two independent lysates per mouse and n = 3 (biological 
replicates) per mice group were analyzed. Data are presented as means, and circles representing 
individual values, for each lysate. Statistical significance between the groups was calculated by 
one-way ANOVA followed by post hoc Tukey test, providing p = 0.029 (*) for Pah-R261Q vs. 
WT (*) and p = 0.006 (**) for Pah-R261Q vs. Enu1.

Supplementary Fig. S8
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Phosphorylation at serine 31 targets tyrosine hydroxylase to vesicles for 
transport along microtubules. 

Ana Jorge-Finnigan, Rune Kleppe, Kunwar Jung-KC, Ming Ying, Michael Marie, Ivan Rios-
Mondragon, Michael F. Salvatore, Jaakko Saraste, and Aurora Martinez 

J Biol Chem. 292(34): 14092–14107 doi: 10.1074/jbc.M116.762344 (2017) 

Abstract 

Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyrosine into L-DOPA, which is the rate-

limiting step in the synthesis of catecholamines, such as dopamine, in dopaminergic neurons. Low 

dopamine levels and death of the dopaminergic neurons are hallmarks of Parkinson's disease (PD), 

where α-synuclein is also a key player. TH is highly regulated, notably by phosphorylation of several 

Ser/Thr residues in the N-terminal tail. However, the functional role of TH phosphorylation at the Ser-

31 site (THSer(P)-31) remains unclear. Here, we report that THSer(P)-31 co-distributes with the Golgi 

complex and synaptic-like vesicles in rat and human dopaminergic cells. We also found that the TH 

microsomal fraction content decreases after inhibition of cyclin-dependent kinase 5 (Cdk5) and ERK1/2. 

The cellular distribution of an overexpressed phospho-null mutant, TH1-S31A, was restricted to the 

soma of neuroblastoma cells, with decreased association with the microsomal fraction, whereas a 

phospho-mimic mutant, TH1-S31E, was distributed throughout the soma and neurites. TH1-S31E 

associated with vesicular monoamine transporter 2 (VMAT2) and α-synuclein in neuroblastoma cells, 

and endogenous THSer(P)-31 was detected in VMAT2– and α-synuclein–immunoprecipitated mouse 

brain samples. Microtubule disruption or co-transfection with α-synuclein A53T, a PD-associated 

mutation, caused TH1-S31E accumulation in the cell soma. Our results indicate that Ser-31 

phosphorylation may regulate TH subcellular localization by enabling its transport along microtubules, 

notably toward the projection terminals. These findings disclose a new mechanism of TH regulation by 

phosphorylation and reveal its interaction with key players in PD, opening up new research avenues for 

better understanding dopamine synthesis in physiological and pathological states. 
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Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyro-
sine into L-DOPA,which is the rate-limiting step in the synthesis
of catecholamines, such as dopamine, in dopaminergergic neu-
rons. Low dopamine levels and death of the dopaminergic neu-
rons are hallmarks of Parkinson’s disease (PD), where �-sy-
nuclein is also a key player. TH is highly regulated, notably by
phosphorylation of several Ser/Thr residues in the N-terminal
tail. However, the functional role of TH phosphorylation at the
Ser-31 site (THSer(P)-31) remains unclear. Here, we report
that THSer(P)-31 co-distributes with the Golgi complex and
synaptic-like vesicles in rat and human dopaminergic cells.
We also found that the TH microsomal fraction content
decreases after inhibition of cyclin-dependent kinase 5
(Cdk5) and ERK1/2. The cellular distribution of an overex-
pressed phospho-null mutant, TH1-S31A, was restricted to the
soma of neuroblastoma cells, with decreased association with
the microsomal fraction, whereas a phospho-mimic mutant,
TH1-S31E, was distributed throughout the soma and neurites.
TH1-S31E associated with vesicular monoamine transporter
2 (VMAT2) and�-synuclein in neuroblastoma cells, and endog-
enous THSer(P)-31 was detected in VMAT2– and�-synuclein–
immunoprecipitatedmouse brain samples.Microtubule disrup-
tion or co-transfection with �-synuclein A53T, a PD-associated
mutation, caused TH1-S31E accumulation in the cell soma.Our
results indicate that Ser-31 phosphorylation may regulate TH
subcellular localization by enabling its transport alongmicrotu-
bules, notably toward the projection terminals. These findings
disclose a newmechanism of TH regulation by phosphorylation
and reveal its interactionwith key players inPD, openingupnew
research avenues for better understanding dopamine synthesis
in physiological and pathological states.

Catecholamine neurotransmission disturbances are hall-
marks of neurodegenerative and neuropsychiatric diseases,

such as Parkinson’s disease (PD),2 Alzheimer’s disease, L-
DOPA-responsive dystonia, or tyrosine hydroxylase deficiency
(1–4). Catecholamines are stored in vesicles that originate at
the Golgi complex (GC) and are transported through the clas-
sical secretory pathway (5). GC fragmentation, loss of vesicle
integrity, and dysfunctional vesicular transport have emerged
as pathomechanisms involved in neurodegenerative disorders,
notably PD (6–8). A key enzyme in the synthesis of cate-
cholamine neurotransmitters is tyrosine hydroxylase (TH),
which catalyzes the hydroxylation of L-tyrosine into L-DOPA
(L-3,4-dihydroxyphenylalanine), the rate-limiting step in the
synthesis of dopamine (DA). DA is then pumped and loaded
into vesicles by the vesicular monoamine transporter 2
(VMAT2) (9). The TH gene encodes one protein isoform in
lower mammals, but alternative splicing gives four in humans
(TH1–TH4) (10, 11). Rat TH is homologous to the TH1 human
isoform, the most abundant isoform in humans together with
TH2.
TH activity is controlled by catecholamine feedback inhi-

bition and phosphorylation of its N-terminal residues 8, 19,
31, and 40 (THSer(P)-8, THSer(P)-19, THSer(P)-31, and
THSer(P)-40) by different kinases (12, 13). THSer(P)-19
induces the high-affinity binding to 14-3-3 proteins, which
increases TH activity and stability (14). Ser-19 increases the
phosphorylation at Ser-40 in a hierarchical manner, leading
to increased activity (13). On the other hand, binding of
14-3-3 to THSer(P)-19 decreases Ser-40 phosphorylation
(15). THSer(P)-40 releases TH from catecholamine feedback
inhibition, increasing the activity 20-fold (16). The functional
implications of THSer(P)-8 are currently lacking, and a
comprehensive understanding of the physiological role of
THSer(P)-31 also remains unclear. Cdk5 and ERK1/2 phos-
phorylate TH (human isoforms 1, 3, and 4 and rodent TH) at
Ser-31 (17–19), which increases TH activity about 2-fold in
vitro (20) and in situ (21). In 2006, Lehman et al. (22)
reported that for human TH1, phosphorylation at Ser-31
also produced a 9-fold increase in the rate of phosphoryla-
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growth factor; �-syn, �-synuclein; R/S, roscovitine and SL327; sytI, synap-
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tion at Ser-40. THSer(P)-31 is abundant at the axonal termi-
nals of dopaminergic neurons (23), and it has been reported
to increase about 3-fold in NGF-stimulated PC12 cells,
whereas THSer(P)-40 is unaffected by NGF (24). Moreover,
THSer(P)-31 increases TH stability in cells (25), and it may
increase TH activity regardless of THSer(P)-40 under depo-
larizing conditions (16, 21). In the terminal fields of the cen-
tral nervous system, there is a greater DA and L-DOPA con-
tent, coinciding with greater THSer(P)-31 compared with
somatodendritic compartments, whereas no consistent dif-
ferences in THSer(P)-40 have been reported (23, 26). Under
experimental PD conditions, THSer(P)-31 stoichiometry is
decreased in the striatum but increased in the substantia
nigra; this pattern is also shown by DA per remaining TH;
however, total amounts of TH and of THSer(P)-40 decreased
in both brain areas (27). Therefore, THSer(P)-31 may affect
TH activity within the range of phosphorylation stoichiom-
etries normally seen in the central nervous system and be
independent of Ser-40 phosphorylation differences. Despite
the body of results, the physiological role of Ser-31 phosphor-
ylation is still not fully understood. TH is characterized as a
largely soluble and cytoplasmic tetrameric protein; however,
its physiological association with membranes (28) has
recently been proven to involve binding to partners, such as
VMAT2 (9) and Hsc70 (29). However, the mechanism
whereby TH is targeted to the synaptic vesicles still remains
elusive. In this work, we investigated the functional role of
Ser-31 phosphorylation, and our results indicate the associ-
ation of THSer(P)-31 with the GC and the vesicular trans-
port pathway, through VMAT2 and �-synuclein (�-syn).
�-Syn is a synaptic vesicle associated-protein and a culprit in
the development of PD (30). TH and �-syn are known to
interact (31), but the association of both proteins at synaptic
vesicles and coordinated microtubular transport is pre-
sented here for the first time. Furthermore, our results posi-
tion THSer(P)-31 at sites and processes disturbed in PD and
other neurodegenerative disorders, such as loss of vesicle
integrity, defective vesicle trafficking, and GC fragmenta-
tion, and may contribute to explain the early loss of striatal
TH and DA that characterize PD (32).

Results

THSer(P)-31 localizes to the Golgi complex and synaptic-like
vesicles

The cellular distribution of the different phosphorylated
forms of TH at Ser-19, Ser-31, and Ser-40 was investigated by
immunofluorescence using specific antibodies. These antibod-
ies have been used in previous studies (26, 27, 33). Western
blots of HEK293 cell extracts expressing either recombinant
human V5-TH1-WT or the corresponding phospho-null
(Ser3Ala) andphospho-mimicking (Ser3Glu)mutations for
Ser(P)-19, Ser(P)-31, and Ser(P)-40, show low reactivity for the
corresponding Ser3 Ala protein for the three antibodies (Fig.
1, A–C). THSer(P)-31 and THSer(P)-40 antibodies react both
with the WT form (Fig. 1, B and C), phosphorylated at the
corresponding site, and also with the phospho-mimicking
mutants, whereas the THSer(P)-19 antibody only reacts with

Ser-19–phosphorylated WT (Fig. 1A). In undifferentiated
PC12Adh (fromATCC) cells permeabilizedwith TritonX-100,
THSer(P)-19 showed a nuclear distribution, and THSer(P)-31
as well as THSer(P)-40 showed a cytosolic distribution (data
not shown), consistent with recent results (34).
To preserve TH interaction with partner proteins, we used

saponin, a mild permeabilization agent, which allowed us to
visualize THSer(P)-31 as punctate structures enriched in the
perinuclear region, notably observed in the immense majority
of PC12* cells (Fig. 1D). PC12* is an in-house clone derived
from Ref. 35, which was chosen for its elevated responsiveness
toNGF, leading to neurite abundance and stability (35), and has
been used previously in signaling studies (36). Specific pharma-
cological inhibition of Cdk5 and ERK1/2 by roscovitine and
SL327 (R/S) treatment (37, 38) abolished the THSer(P)-31 sig-
nal both in Western blotting and immunofluorescence (Fig.
1D), indicating that the perinuclear signal is specific. This dis-
tribution was clearly distinct from total TH, THSer(P)-19, and
THSer(P)-40 (Fig. 1E, top panels), and these signals were not
affected by the R/S inhibition of Cdk5 and ERK1/2 (Fig. 1E,
bottom panels). Moreover, in 45% of PC12Adh cells (n � 130)
and 35% of iCell DopaNeurons (human dopaminergic pluripo-
tent cells) (n � 50), the perinuclear enrichment was also
observed (Fig. 1, F and G). Because stimulation with NGF
increases THSer(P)-31 (24), we investigated its effect on
THSer(P)-31 distribution. Interestingly, NGF treatment led to
a punctate THSer(P)-31 signal throughout the cell soma and
neurites of PC12* (Fig. 1H), similar to the distribution of
THSer(P)-31 in PC12Adh and iCell DopaNeurons (Fig. 1, F and
G). It is well established that PC12 can give rise to specific phe-
notypes as described previously in depth (39–41) and illus-
trated here when profiling different proteins of the dopamine
pathway in the presence or absence of NGF stimulation by
Western blotting (Fig. 1I), where we observe that THSer(P)-31
content increases in PC12Adh by 10% after NGF treatment,
whereas it increases by 2-fold in PC12*, in agreement with pre-
vious studies (24).
THSer(P)-31 signal in PC12* resembled aGC pattern, and its

co-detection with the GC marker GM130 showed co-distribu-
tion in PC12Adh, iCell DopaNeurons, and PC12* cells (Fig. 2,
A–C). Moreover, disassembly of the GC with brefeldin A abol-
ished the THSer(P)-31 signal (Fig. 2C). To further investigate
the punctate signal, we co-detected THSer(P)-31 and synaptic-
like vesicle marker synaptotagmin I (sytI), which showed a cer-
tain signal overlapping in NGF-stimulated and unstimulated
PC12Adh (Fig. 2D). Similarly, THSer(P)-31 in iCell Dopa-
Neurons also co-distributed with sytI (Fig. 2E). Notably, fluo-
rescence signals of immunolabeled VMAT2 and THSer(P)-31
highly overlapped in iCell DopaNeurons (Fig. 2E). Our results
thus indicate that THSer(P)-31 associates with synaptic-like
vesicles in rat PC12Adh cells and in a human dopaminergic
neuronal model.

Phosphorylation of TH at Ser-31 is necessary for its association
with vesicles

To determine whether the association of TH to vesicles is
dependent on phosphorylation at Ser-31, we treated cell cul-
tures with Cdk5 and ERK1/2 kinase inhibitors (combined ros-
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covitine and SL327 treatment) and isolated the microsomal
fractions (enriched in endoplasmic reticulum, GC, endosomes,
and vesicles among othermembranous cellular structures).We
compared total TH levels of treated versus untreated cells to
determine whether inhibition of phosphorylation at Ser-31
caused a decrease in the amount of total TH present in the
microsomal fraction.Our results show that the treatment led to
a large decrease of total TH in the microsomal fractions of
PC12* (Fig. 3A), suggesting that phosphorylation at Ser-31 is
needed for TH to associate with vesicles. Actually, a strong
decrease of the signal from THSer(P)-31 was also observed in
the microsomal fraction (Fig. 3A) in agreement with Ref. 25
and confirming that the treatment led to the inhibition of
phosphorylation at Ser-31.
However, to rule out the possibility that the decreased

observed was due an impairment of vesicle biogenesis caused
by the kinase inhibition, we tested the effect of the treatment
on different microsomal markers. Specifically, we treated
PC12Adh cells with or without roscovitine and SL327 and

detected GC marker (GM130), endoplasmic reticulum marker
(SPC25), endosome markers (clathrin and transferrin recep-
tor), and dopamine-containing vesicle marker (VMAT2). The
treatment did not lead to decreases in the signal of any of these
markers (Fig. 3B).
To further confirm the role of THSer(P)-31 in this vesicle

association, we performed Western blotting of cell fraction of
neuroblastoma cells expressing V5-TH1-S31A and V5-TH1-
S31E, which showed that V5-TH1-S31A was decreased in the
microsomal fraction by 20%when comparedwith thewild type,
whereas V5-TH1-S31E was increased by 20% (Fig. 3C). To
rule out possible artifacts, we also treated V5-TH1-S31E–
transfected cells with the kinase inhibitors, and then we com-
pared the amounts of V5-TH1-S31E in the microsomal frac-
tions, without finding significant differences (Fig. 3D). These
results reinforce the specificity of the Ser-31 phosphorylation
for TH vesicle association. However, compared with the large
effect of the chemical inhibition of Ser-31 phosphorylation (Fig.
3A), the effect of the phospho-null mutation was less pro-

Figure 1. Distribution of TH phosphorylated forms. A–C, HEK293 cells were transfected with the WT or the phospho-null V5-TH1-S19A, V5-TH1-S31A, and
V5-TH1-S40Aor thephospho-mimickingV5-TH1-S19E, V5-TH1-S31E, andV5-TH1-S40E constructs. Phosphorylationat Ser-19, Ser-31, or Ser-40wasdetectedby
Western blotting, loading equal amounts of total protein. Total TH (THt), V5 (transfection control), andGAPDH (loading control) detectionwas also carried out.
D, immunofluorescence (top panels) of THSer(P)-31 in PC12* cells treated or not with R/S to inhibit Ser-31 phosphorylation and corresponding Western blot
analysis (bottom panel), where total TH and GAPDHwere also detected as controls. Arrows, perinuclear signal. E, immunofluorescence of total TH, THSer(P)-19,
and THSer(P)-40 in PC12* cells treated or not with R/S. F, cellular distribution of THSer(P)-31 in PC12Adh. Arrows, perinuclear signal. G, cellular distribution of
THSer(P)-31 in human pluripotent induced dopaminergic neurons (iCell DopaNeurons). Arrows, perinuclear signal. H, THSer(P)-31 distribution in PC12*
stimulated with 50 ng/ml 2.5S NGF for 48 h. Insets, enlarged numbered areas. In all images, 10-�m scale bars are shown, and all nuclei are stained with DAPI
(blue). I, whole-lysate Western blot of PC12* and PC12Adh cell lines stimulated or not with NGF and detection of dopamine-related marker proteins such as
DOPA �-hydroxylase (DBH), chromogranin A (ChrA), total TH, THSer(P)-31, and vesicular monoamine transporter 2 (VMAT2). Equal amounts of protein were
loaded as shown in the total protein loading represented in the right panel.
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Figure 2. Endogenous THSer(P)-31 co-distributionwith Golgi complex and vesiclemarkers. A, co-detection of THSer(P)-31 (green) with the Golgi marker
GM130 (red) in PC12Adh (maximumprojection of the confocal stack is shown) and 3D rendering of each signal and the corresponding co-localization channel
in yellow. Arrows, perinuclear signal. B, co-detection of THSer(P)-31 (green) with the Golgi marker GM130 (red) in DopaNeurons treated or not with R/S. Arrows,
perinuclear signal. C, GC disruption in PC12* by 30min 5�g/ml brefeldin A (BFA) incubation and subsequent reassembly by drugwashout. Untreated samples
are presented as control.D, THSer(P)-31 (green) co-detection with synaptotagmin I (sytI; red) in PC12Adh cells without (top) and with (bottom) NGF treatment.
E, THSer(P)-31 co-detection of sytI (top) and VMAT2 (vesicular monoamine transporter 2; bottom) in iCell DopaNeurons. ForD and E, pixel height in the surface
plot represents the pixel intensity in the confocal plane. In all images, nuclei are stained with DAPI, and 10-�m scale bars are shown.
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nounced. This may be explained by hetero-oligomerization of
recombinant and endogenousmonomers, as has been shown in
other cases (42, 43), which would lead to a vesicular interaction
of oligomers formed of phospho-null and THSer(P)-31 sub-
units. The phospho-variant data are consistent with the results
from the chemical inhibition of Cdk5 and ERK1/2 and rule out
the possibility that the observed effect would be due to either
nonspecific effects of Cdk5 and ERK1/2 on other proteins
directly or indirectly involved in THSer(P)-31 association with
vesicles. Again, these results show that TH needs to be phos-
phorylated at Ser-31 to bind to vesicles.

THSer(P)-31 associates with VMAT2 and�-syn

Because TH is able to interact with negatively chargedmem-
branes (44), we investigated whether phosphorylation at Ser-31
enhances this association. To study the binding of TH tomem-
branes, we used chromaffin vesicle membranes that had been
previously trypsinized to remove any proteins that could be
potential partners. Surface plasmon resonance studies using
purified recombinant, non-phosphorylated human TH1 showed
a certain degree of interaction with membranes (Fig. 4A), as

expected (44). However, TH1 phosphorylated at Ser-31 in vitro
showed no difference in the interaction with trypsinized chro-
maffin-vesiclemembranes when compared with the non-phos-
phorylated TH1 (Fig. 4A). It is thus unlikely that the THSer(P)-
31-driven interaction involves a direct binding of the enzyme
with the vesicularmembrane, and the enzymemay rather inter-
act with vesicular membrane proteins. Indeed, Torres and co-
workers (9) have reported that THcan interactwith the integral
vesicularmembrane protein VMAT2, and our immunofluores-
cence images of THSer(P)-31 and VMAT2 in iCell Dopa-
Neurons showed co-distribution (Fig. 2E). To further investi-
gate in situ whether THSer(P)-31 binds to vesicle proteins, we
performed a proximity ligation assay (PLA), which is able to
detect even weak and transient protein–protein interactions
(45) with anti-V5 and either anti-VMAT2 or anti-�-syn in neu-
roblastoma cells expressing the phospho-variants (and GFP as
transfection control). Appropriate PLA-positive and -negative
controls were performed in all experiments (data not shown).
PLA signals for the pair V5-TH1-S31E/VMAT2 were clearly
obtained. However, for the pair V5-TH1-S31A/VMAT2, they
were nearly imperceptible (Fig. 4B). Similarly, V5-TH1-S31A/

Figure 3. Requirement of TH phosphorylation at Ser-31 for interactionwith vesicles. A, relative amount of total TH and THSer(P)-31 in PC12*microsomal
fractionation analyzed by Western blotting after inhibition of Ser-31 phosphorylation with 50 �M roscovitine and 50 �M SL327 (R/S). Bars, average relative
amount of TH or THSer(P)-31 compared with the untreated samples (t test was used for statistical sample comparison; ***, p � 0.001; data are represented as
mean � S.D. (error bars); n � 3). Representative blots are shown. B, relative amounts of markers to determine the vesicle biogenesis status in microsomal
fraction treatedor notwithR/S. Themarkers analyzedwereGM130 forGC, clathrin, and transferrin receptor (TfR) for endosomes; VMAT2 for dopamine-vesicles;
and SPC25 (signal peptidase complex 25) for endoplasmic reticulum. Equal amounts of treated and untreated samples were loaded, as shown in the total
protein loading (right). C, relative amount of recombinant V5-TH1-WT, V5-TH1-S31A, or V5-TH1-S31E overexpressed inmicrosomal fractions of neuroblastoma
cells.Microsomal fractionswere analyzedbyWesternblottingusing theV5 tag for detection, andmutant THswere comparedwithWT (representativeblots are
shown). Bars, relative amount of the WT construct compared with the mutant proteins (t test was used for statistical sample comparison; *, p � 0.05; data are
represented asmean� S.D.; n� 3).D, relative amount of recombinant V5-TH1-S31E overexpressed inmicrosomal fractions of neuroblastoma cells treated or
not with R/S. Microsomal fractions were analyzed by Western blotting using the V5 tag for detection, and treated samples were compared with controls
(representative blots are shown). Bars, relative amount of the control samples compared with the treated samples (t test was used for statistical sample
comparison, although no significant differences were found; data are represented as mean � S.D; n � 3).
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�-syn signals were significantly decreased compared with the
V5-TH1-S31E/�-syn pair (19 � 20 versus 47 � 24; n � 15; p �
0.05) (Fig. 4C).
PLA results were confirmed by immunoprecipitation of

THSer(P)-31, VMAT2, and �-syn from whole-brain extracts
from mice, followed by immunoblotting against THSer(P)-31,
total TH, andVMAT2 (Fig. 4D). Immunoblotting against�-syn
did not render conclusive results, but taken together with the
positive results obtained using PLA, our data suggest that
the THSer(P)-31–�-syn association is weak and/or transient

because PLA allows the detection of this type of interaction, as
reported previously (45). Appropriate negative controls using
only beads or the different IgG were performed in parallel (Fig.
4D). Our data show the presence of THSer(P)-31 in both sam-
ples, indicating that THSer(P)-31 associates with VMAT2 and
�-syn.

THSer(P)-31 is transported along themicrotubules

Association of THSer(P)-31 with VMAT2 and �-syn may
drive the anterograde transport of TH from GC to neurite ter-

Figure4. THSer(P)-31 interactswithVMAT2and�-synuclein.A, surfaceplasmon resonanceof TH (12.5�M;black trace) andTHSer(P)-31 (12.5�M;blue trace)
binding to trypsinized chromaffin vesicle membranes (trCVM). Inset, concentration dependence of the response of TH (E) and THSer(P)-31 (●) binding to
trCGM. B and C, PLA (signals shown in red) between V5 and either VMAT2 or �-syn antibodies in neuroblastoma cells expressing either V5-TH1-S31A or
V5-TH1-S31E. Maximal projections of the whole-cell height are shown. Cells were co-transfected with GFP as a transfection control (green), and nuclei were
stainedwithDAPI (blue). Scale bars, 10�m.D, immunoprecipitation of THSer(P)-31, VMAT2, and�-syn fromwhole-mousebrain lysate and immunoblot against
THSer(P)-31, VMAT2, and total TH are shown. All proteins were also detected in lysates incubated with only beads (right lane) or the different IgGs shown.
THSer(P)-31 was detected in the input, as expected.
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minals. Therefore, we sought to investigate the localization and
redistribution of exogenous TH phospho-mutants upon dis-
ruption of the microtubule network. First, detection of the V5
tag of recombinant V5-TH1-S31A and V5-TH1-S31E mutants
showed that V5-TH1-S31A accumulates mainly in the soma of
the neuroblastoma cells, whereas V5-TH1-S31E is distributed
throughout the soma and neurites (Fig. 5A). The depolymeri-
zation of the microtubule network of neuroblastoma cells by
nocodazole led to a decreased of V5-TH1-S31E signal in neu-
rites compared with control samples (Fig. 5B), and drug wash-
out recovered the V5-TH1-S31E signal in neurites. However,
V5-TH1-S31A localization did not change upon microtubule
disassembly (Fig. 5C). To further investigate THSer(P)-31
transport inDopaNeuron cells, we first inhibitedTHphosphor-
ylation at Ser-31 using Cdk5 inhibitors (R/S) to create an initial
stage with the lowest phosphorylation levels possible, and then
we depolymerized the microtubules with nocodazole. After-
ward, we performed a drug washout to allow the phosphoryla-
tion of TH at Ser-31 and reassembly of the microtubule net-
work. All samples were stained for THSer(P)-31 and tubulin to
monitor the treatment and were treated in parallel, with data
acquisition and image processing performed under the same
conditions. As expected, R/S and nocodazole treatment (0 min
of washout) showed a disruptedmicrotubule pattern compared
with the controls, as well as a significantly decreased
THSer(P)-31 signal both for the somas (34.99 � 11.7 versus
22.81 � 7.1; p � 0.001; n � 50) and for the neurites (18.85 �
4.57 versus 8.22� 2.9; p� 0.001;n� 50) (Fig. 5,D andE). At the
initial time points of the drugwashout (5 and 15min), increased
THSer(P)-31 fluorescence was measured in the soma and, to a
lesser extent in the neurites, the recovery rate of the signal being
2.2-fold faster in the somas than in the neurites. At the 15–30-
min time lapse, an inversion of this trend was measured. At the
final 30-min time point, fluorescence signals in somas and neu-
rites were comparable with the controls with no statistical dif-
ferences (somas: 32.95� 17.76 versus 34.99� 11.7; p� 0.4; n�
50; neurites: 15.60 � 12.49 versus 18.86 � 4.57; p � 0.07; n �
50). Therefore, our data show that THSer(P)-31 signal in-
creases first in the somas and then gradually in the distal parts
of the neurites. Thus, our results show that THSer(P)-31 traf-
ficking depends onmicrotubule integrity for its transport to the
neurite extensions in a human dopaminergic cell line.
The A53T mutation of �-syn (�-syn-A53T) is associated

with autosomal dominant forms of PD (30), and it has been
shown to hinder axonal transport in rat neurons and in neuro-

blastoma cells by fragmenting the GC and aggregating micro-
tubuli (47, 48). Therefore, we studied whether overexpression
of His-�-syn-A53T resulted in impaired distribution of
V5-TH1-S31E. We co-transfected neuroblastoma cells with
V5-TH1-S31E and one of the following plasmids: GFP, His-�-
syn-WT, or His-�-syn-A53T, all of which are under the same
promotor, CMV. To avoid comparing samples transfected only
with one plasmidwith samples transfectedwith two constructs,
we used the V5-TH1-S31E/GFP co-transfection as our control
and reference. We stained the cell membranes with WGA to
identify the neurites of the cells. Cells transfected with
V5-TH1-S31E/GFP showed the V5 signal along the whole neu-
rite, including the more distal parts (Fig. 6A). However, cells
transfected with V5-TH1-S31E and His-�-syn-WT, and espe-
cially His-�-syn-A53T, showed intense V5 signal in the cell
soma but weaker signal at the distal ends of the neurites (Fig.
6A). We then quantified the intensity of the signal along the
neurite length from cells transfected with V5-TH1-S31E/GFP,
V5-TH1-S31E/His-�-syn-WT, or V5-TH1-S31E/His-�-syn-
A53T, and we integrated the area below the plot profile. Com-
paring the most distal 20 �m of the neurites, we found that the
signal was significantly reduced in V5-TH1-S31E/His-�-
syn-WT (p � 0.05) and especially in V5-TH1-S31E/His-�-syn-
A53T (p � 0.0001) samples (Fig. 6B). Signal intensity in arbi-
trary units was as follows: TH1-S31E/GFP � 17.4 � 8.1 (n �
24); V5-TH1-S31E/His-�-syn-WT � 12.2 � 6.7 (n � 16);
V5-TH1-S31E/His-�-syn-A53T � 6.9 � 4.2 (n � 22). Our
results indicate that overexpression of wild-type and especially
mutant �-syn can affect the axonal transport of TH.

Influence of phosphorylation at Ser-31 on Ser-19 and Ser-40
sites

To better understand the previously reported multisite and
hierarchical phosphorylation events in TH (13, 16, 20, 22), we
studiedwhether phosphorylation at Ser-31 canmodulate phos-
phorylation at Ser-19 and Ser-40, which are regulated by differ-
ent signaling pathways. PLAs allow the detection of two
epitopes that are in close vicinity (�100 nm (49)) and therefore
were used to detect the co-existence of phosphorylation at two
different sites. Anti-V5 together with anti-THSer(P)-19 or
anti-THSer(P)-40 antibodies in neuroblastoma cells expressing
V5-TH1-S31A developed significantly more PLA signals for
both Ser-19 and Ser-40 phosphorylation compared with cells
expressing V5-TH1-S31E (708� 442 versus 302� 102, n� 12,
p � 0.05 for THSer(P)-19; 1036 � 449 versus 56 � 65, n � 10,

Figure 5. Transport of THSer(P)-31 to neurite extensions. A, distribution of V5-TH1-S31A– and V5-TH1-S31E–expressing neuroblastoma detected by V5
staining (red). Cellular membranes were stained using WGA (green). Confocal planes are presented as well as the maximum intensity projection (max.
projection) of the V5 signal stack of confocal planes. Nuclei were stained with DAPI (blue). Arrows, presence (white) or absence (yellow) of V5 signal in neurites
of V5-positive cells (intense red signal in the soma). B and C, detection of V5 tag in neuroblastoma cells expressing V5-TH1-S31E (B) or V5-TH1-S31A (C) after
microtubule depolymerization by a cold shock and nocodazole treatment, followed by 30 min of drug washout. Control cells were processed in parallel but
were not subjected to nocodazole. All samples were stained for V5 (red), tubulin (cyan), and WGA to mark the cells membranes (green) and DAPI to stain the
nucleus. Maximum intensity projection of the stack of confocal planes (max. proj.) is presented. Arrows, presence (white) or absence (yellow) of V5 signal in
neurites of V5-positive cells (intense red signal in the soma). D, immunofluorescence of iCell DopaNeurons detecting THSer(P)-31 (green) and tubulin (red) in
samples treated first with roscovitine/SL327 for inhibition of phosphorylation of TH at Ser-31 and then subjected to a cold shock nocodazole treatment (R/S�
Nocod) for microtubule disassembly before allowing drug washout. Blue and white arrows, control levels of THSer(P)-31 fluorescence in somas and neurites,
respectively. Gray and yellow arrows, low levels/absence of THSer(P)-31 fluorescence in somas and neurites, respectively. Intermediate fluorescence levels are
indicated with the corresponding striped arrows. In all cases, maximal projections comprehending the whole cell height are shown. E, quantification of the
THSer(P)-31 signal of DopaNeuron somas or neurites in control (untreated) samples as well as in samples treated with the R/S�Nocod and subjected to drug
washout. Data are shown as average � S.D. (error bars) (in all cases n � 50), and the changes in fluorescence per time (arbitrary units (AU)/min) are indicated
below each pair of time points. ***, p � 0.001. For all confocal images, 10-�m scale bars are shown.
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p � 0.005 for THSer(P)-40) (Fig. 7, A and B). The difference in
co-distribution of Ser-19 and Ser-40 phosphorylation between
V5-TH1-S31E– and V5-TH1-S31A–transfected cells was cor-
roborated by Western blot analyses (Fig. 7C). Cells expressing
V5-TH1-S31A treated or not with R/S did not show significant
differences in levels of phosphorylation (Fig. 7D), further sup-
porting our conclusions.
Taken together, our data demonstrate that phosphorylation

at Ser-31 regulates TH association with vesicles and thus its
transport to neurite terminals through interaction with
VMAT2 and �-syn.

Discussion

TH has been described essentially as a cytosolic protein, but
its membrane-associated form has recently been attracting
interest (9, 29), although the regulation of the binding mecha-
nismsremains largelyunknown.HereweshowthatSer-31phos-
phorylation of TH regulates its association with the GC and
synaptic-like vesicles. Our data also indicate that TH1Ser(P)-31
interacts, directly or indirectly, with VMAT2 and �-syn in stri-
atal brain isolates and in cellularmodels. However, we observed
little co-localization of TH1-S31A with �-syn and VMAT2,
whereas this was prominent for the TH1-S31E mutant. It has
been reported previously that �-syn interacts with, and nega-
tively regulates, TH through activation of PP2A phosphatase,
which dephosphorylates THSer(P)-40 and inactivates TH (50).
In addition, it has also been shown that VMAT1/2 can be inhib-
ited by �-syn (51). However, this work assigns to Ser-31 phos-
phorylation the role of controlling the association ofTH to both
�-syn andVMAT2. Interestingly, phosphorylation also appears
to regulate the vesicular interaction of synthesizing enzymes for
other neurotransmitters, such as acetylcholine and GABA.
Thus, the synthesizing enzymes choline acetyltransferase and
glutamate decarboxylase 65 have been found to bind to their
corresponding vesicular transporter (vesicular acetylcholine
transporter and vesicular GABA transporter) (52, 53), and this
association seems to be phosphorylation-dependent for both
glutamate decarboxylase 65 (53) and choline acetyltransferase
(54). Our results thus contribute to the identification of the
dopaminergic system and TH to comply with a growing class of
neurotransmitter-synthesizing enzymes that couple to their
transporter in a phosphorylation-dependent manner. This
association may ensure an efficient packaging of the neu-
rotransmitters into the synaptic vesicle and a proper trafficking
and subcellular localization of neurotransmitter synthesis.
Based on the previous reports showing an inhibitory effect of

�-syn on TH activity (50, 55), the engagement of �-syn in a
vesicular complex might ensure that TH is transported most
probably in an inhibited state to its destination (see below). It
would also be likely that this functional transport complex
contains additional regulatory or stabilizing proteins, such as
Hsc70, which also has been described to interact with both
VMAT2 and TH (29, 56). The DOPA decarboxylase enzyme
that catalyzes the next step in DA synthesis after TH also inter-
acts with TH, Hsc70, and VMAT2 (9, 29).
The GC enrichment of TH that we observed indicates that it

associates with VMAT2 and �-syn during the vesicle forma-
tion, because VMAT2 is an integral protein that is sorted into
the vesicles in the GC (57) and �-syn has been localized at the
GC and dopamine-containing vesicles (58, 59), reinforcing the
early stage association of these proteins. Furthermore, our data
suggest that in vivoTH phosphorylated at Ser-31may be trans-
ported from the GC in the cell soma to the terminals by the
anterograde axonal transport. Early reports already proved
fast axonal transport for TH, consistent with its association
with vesicles (60–62), and additional transport of TH
mRNA has more recently been described (61). Moreover,
recent results from our laboratory using a knock-in mouse
bearing a destabilizing TH mutation have shown the impor-

Figure 6. Effect of overexpression of �-synuclein on V5-TH1-S31E in
neuroblastomaneurites. A, immunofluorescence of neuroblastoma cells
co-transfected with V5-TH1-S31E (red) and one of the plasmids GFP, His-
�-syn WT, or His-�-syn-A53T (green) and membranes stained with WGA
(cyan). B, quantification of the signal of neurites from cells co-transfected
with V5-TH1-S31E/GFP V5-TH1-S31E/His-�-syn-WT or V5-TH1-S31E/His-�-
syn-A53T. Data are shown as average � S.D. (error bars) and are expressed
in arbitrary units (AU) (left). Representative plot profiles are shown (right).
For all confocal images, 10-�m scale bars are shown. *, p � 0.05 and ****,
p � 0.0001.

TH Ser-31 phosphorylation targets TH to vesicles
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tance of axonal transport of TH for proper distribution of
TH in striatal terminals (63).
Effects of multisite phosphorylation events have been

reported for TH, and phosphorylation at Ser-31 has been
reported to stimulate the in vitro phosphorylation of adjacent

Ser-40 sites (22). Moreover, upon stimulation of bovine chro-
maffin cells, increased Ser-40 phosphorylation was observed
when co-stimulating the Ser-31–targeting ERK1/2 pathways
(22), but this stimulatory effect was not observed in the pres-
ence of dopamine (22). No studies have so far looked into these

Figure 7. Effect of THSer(P)-31on thephosphorylationof THSer(P)-19 andTHSer(P)-40.A and B, PLAs (signals shown in red) betweenV5 and THSer(P)-19 (A) or
THSer(P)-40 (B) antibodies in neuroblastoma cells expressing either V5-TH1-S31A and V5-TH1-S31E. Cells were co-transfected with soluble GFP (green) as a positive
transfection control, and nuclei were stained with DAPI (blue). Scale bars, 10 �m. C, THSer(P)-19 or THSer(P)-40 detection usingWestern blotting of whole lysates of
neuroblastoma cells expressing V5-TH1-S31A or V5-TH1-S31E. Bars, relative amount of TH (t test was used for statistical sample comparison; *, p� 0.05; **, p� 0.01;
data are represented asmean� S.D. (error bars); n� 3). RepresentativeWestern blots are shown.D, THSer(P)-19 or THSer(P)-40 detection usingWestern blotting of
whole lysates of neuroblastoma cells expressing V5-TH1-S31A treated or notwith R/S. Bars, relative amount of TH (data represented asmean� S.D.; n� 3).

TH Ser-31 phosphorylation targets TH to vesicles

J. Biol. Chem. (2017) 292(34) 14092–14107 14101

 at U
N

IV
E

R
SIT

E
T

SB
IB

L
IO

 I B
E

R
G

E
N

 on June 2, 2020
http://w

w
w

.jbc.org/
D

ow
nloaded from

 



hierarchical effects on phosphorylation in the brain, but our
results in neuroblastoma cells suggest that localization and
interaction partners of TH play a role in the phosphorylation of
the different sites. Interestingly, less Ser-19 and Ser-40 phos-
phorylation was observed for the phospho-mimicking TH1-
S31E mutant, suggesting that conformational constraints and
its interaction with partners, such as �-syn or VMAT2, may
affect itsavailability forphosphorylation. Inaddition,phosphor-
ylation at Ser-31 stabilizes the enzyme, and, in addition, the
decreased phosphorylation at Ser-40would allowmore binding
of inhibitory catecholamines (16), whichwould further stabilize
THSer(P)-31 (25, 64). This inhibition seems to be congruent
with TH being in a stable, and probably in a non-catalytic state
during its transport from the cell soma to the terminals (65).
Last, further maturation of the vesicles might be accompanied
by TH reactivation and increased L-DOPA synthesis upon its
proper localization, probably through dephosphorylation,
release from the vesicles, or interaction within different
protein–protein complexes than during transport.
Synaptic vesicles are transported along the cytoskeleton to

the neurites, and disruption of the cytoskeleton network is
thus expected to cause the accumulation of the recombinant
TH in the cells’ soma, as observed here (Fig. 5B). Our results
also explain previous observations showing that mice bear-
ing a Cdk5 knock-out mutation show decreased striatal
THSer(P)-31 (25). Furthermore, it has been described that the
highest stoichiometry of THSer(P)-31 was found in the termi-
nals of the nigrostriatal andmesoaccumbens pathways (23) and
that Ser-31 phosphorylationwas decreased in conjunctionwith
TH loss following the 6-hydroxydopamine lesion of the nigros-
triatal pathway in rats (27), also in agreement with our obser-
vation that overexpression of the PD mutant A53T �-syn
decreased the amount of the V5-TH1-S31E protein in the distal
regions of the neurites (Fig. 6E). Increasingly, Cdk5 and ERK1/2
have been recognized as crucial for many processes in neuro-
degeneration (66, 67). We therefore cannot rule out effects of
these kinases on other important players in axonal transport,
which could be expected to have consequences for specific
transport of TH beyond Ser-31 phosphorylation.
In conclusion, our results identify a novel role for TH phos-

phorylation at Ser-31, controlling TH co-distribution with syn-
aptic vesicles through association with VMAT2 and�-syn. Our
results also point to the role of Ser-31 phosphorylation of TH
on the transport of this enzyme from the cell soma to the ter-
minals using the microtubule network. In addition, the distri-
bution of THSer(P)-31 is affected when the PD mutant �-syn
A53T is present. Thus, TH spatial control by Ser-31 phosphor-
ylation implies that TH localization and DA synthesis would be
directly affected by disturbances such as the loss of vesicle
integrity, the defective vesicle trafficking, and the GC fragmen-
tation described in PD (8, 68–70). Indeed, axonal transport
defects correlate with decreased putamen TH levels in early PD
patients, whereas in late-stage patients, TH is decreased in both
putamen and substantia nigra (7, 71). Our work also points
toward the potential of therapeutic avenues aimed at reverting
neuronal mislocalization and transport alterations associated
with PD (7, 65, 71–73).

Experimental procedures

All reagents were supplied by Sigma except when indicated.
Constructs for transient expression inmammalian cell culture

WT human TH1 coding sequence was inserted into the
pcDNA6.2/nTC-Tag-DEST vector. Mutations V5-TH1-S19A,
V5-TH1-S19E, V5-TH1-S31A, V5-TH1-S31E, V5-TH1-S40A,
and V5-TH1-S40E were introduced using QuikChange
Mutagenesis II (Stratagene) and primers specified in Table 1.
Mutations were verified by sequencing. Soluble enhanced
green fluorescent protein (GFP) was purchased fromClontech.
pHM6-�-synuclein-A53Tmutant was a gift fromDavid Rubin-
sztein (Addgene plasmids 40824 and 40825) and described pre-
viously (74).

Cell culture

Rat pheochromocytoma PC12Adh cells (ATCC-CRL-1721.1)
(�8 passages) were grown in RPMI 1640 medium with 10%
horse serum (PAALaboratoriesGmbH), 5% fetal bovine serum,
2 mM glutamine, 100 units/ml penicillin, and 100 �g/ml strep-
tomycin. Adherent PC12 derived from Ref. 35 underwent
short-term repeat profiling and presented genetic drift, so it has
been denoted PC12* to distinguish it the from PC12Adh strain
provided by ATCC (PC12Adh). Culture conditions for both
strains were identical. When specified, cells were treated for
48 h with 50 ng/ml 2.5S NGF (Life Technologies, Inc.) in
OptiMEM I (Life Technologies), leading to well-developed
neurites in PC12*; however, PC12Adh cells do not develop sig-
nificant projections uponNGF stimulation according to ATCC
(strain specifications). Human neuroblastoma SH-SY5Y and
HEK293 cells were grown in DMEM with 10% fetal bovine
serum, 2mM glutamine, 100 units/ml penicillin, and 100 �g/ml
streptomycin. Cells were profiled by short tandem repeat.
Commercial midbrain dopaminergic neurons generated from
human induced pluripotent stem iCell DopaNeuron cells (Cel-
lular Dynamics) were grown following themanufacturer’s indi-
cations and were analyzed 7–10 days postseeding. For immu-
nofluorescence, PC12* or SH-SY5Y cells were grown for
48 h on poly-L-lysine or PureCol (Inamed Biomaterials)
and laminin/collagen–coated coverslips, respectively. iCell
DopaNeurons were grown on coverslips coated with polyor-
nithine and laminin. For the coating of the coverslips, a final
concentration of 0.1 mg/ml poly-L-lysine, 1.5 mg/ml laminin
plus 1.5 mg/ml collagen or a 10 �g/ml polyornithine plus 20
�g/ml laminin solution was placed on the coverslips and
incubated for 30 min at 37 °C and washed with PBS before
seeding the cells.

Table 1
Sequence of primers used for site-directed mutagenesis

Primer Forward strand sequence 5�–3�

TH1-S19A CTTCCGCAGGGCCGTGGCGGAGCTGGACGCCAAGC
TH1-S19E CGCAGGGCCGTGGAGGAGCTGGACGCCAAG
TH1-S31A GGCCATCATGGCCCCGCGGTTC
TH1-S31E CAGAGGCCATCATGGAGCCGCGGTTCATTG
TH1-S40A CATTGGGCGCAGGCAGGCGCTCATCGAGGACGCCCG
TH1-S40E GGGCGCAGGCAGGAACTCATCGAGGAC

TH Ser-31 phosphorylation targets TH to vesicles
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Transient transfection of neuroblastoma SH-SY5Y for TH
overexpression

ForWestern blotting, SH-SY5YorHEK293 cells were seeded
on (1 � 106 cells/p60 plate) and grown overnight before trans-
fecting with 5 �g of DNA and Lipofectamine LTX with Plus
reagent (Life Technologies), following the manufacturer’s
instructions. Cells were collected 48 h post-transfection. For
imaging experiments, 20,000 SH-SY5Y cells seeded on cover-
slips were transfected with 0.5 �g of DNA and Lipofectamine
LTX with Plus reagent. 48 h post-transfection, cells were sub-
jected to the indicated treatments and fixed with 4% parafor-
maldehyde. In the case of co-transfections, a 1:1 ratio of both
co-transfected plasmids were used except for PLA assays where
the ratio of interest/control plasmid was 3:1.

Inhibition of THSer(P)-31 phosphorylation

Cells were incubated 7 h with roscovitine (50 �M) and SL327
(50 �M) before being collected and frozen or subjected to drug
washout by incubating with fresh medium. In the case of trans-
fected cells treated with the inhibitors, and to ensure equal
expression of the constructs in treated and untreated samples,
24 h post-transfection, cells were split into two p35 plates and
were left to grow an additional day before the treatment.

GC andmicrotubule disassembly

GC was disrupted by incubating PC12* cells for 30 min with
5 �g/ml brefeldin A (Epicenter Technologies). Microtubule
disassembly was achieved by a 1-min 4 °C cold shock followed
by 30-min 33 �M nocodazole incubation at 37 °C. Cells were
fixed in cold methanol. In all cases, drug washout was per-
formed by replacement of drug-containing medium with fresh
media for 30 min.

Immunostaining and proximity ligation assays

Samples were fixed with 4% paraformaldehyde for 30 min at
room temperature, unless otherwise indicated, and permeabi-
lized and blocked with 0.3% saponin and 5% FBS in PBS for 30
min at room temperature. When stated, a 5-min 0.1% Triton

X-100 permeabilization step was performed before blocking.
Samples were incubated with specified primary and secondary
antibodies in Tables 2 and 3 and, when indicated, stained with
1:200 Oregon Green or tetramethylrhodamine-labeled wheat
germ agglutinin (Life Technologies) before being mounted
using ProLong Gold with DAPI (Molecular Probes). PLAs were
performed using Duolink� in situ according to the manufactu-
rer’s instructions and the primary antibody conditions stated
above.

Confocal laser-scanningmicroscopy imaging

Confocal imagingwas performed on a LeicamicroscopeTCS
SP5 in the resonant scannermode (LeicaMicrosystemsGmbH)
using a pinhole airy 1 and a �63, 1.4 numeric aperture oil
immersion objective. For each sample, a stack of images
encompassing the complete height of the cell was taken, with a
130-nm step size and using the LasAF software from Leica.
Each confocal plane was 512 � 512 pixels with a line average of
20. Stack images were processed in batch using FIJI freeware
(75) and/or Photoshop Adobe with minimum adjustments of
brightness and background. Single-plane surface plots and sig-
nal quantification were prepared using FIJI (75). 3D rendering
of Z-stackswas performedusing Imaris (Bitplane Inc.), building
a co-localization channel between the green and red channels
and representing all three using the surface tool. Imaris was
employed to quantify the PLA signals by building a co-localiza-
tion channel between the green (GFP) and red (PLA) signals to
eliminate nonspecific PLA signals and set the sphere a radius of
300 nm/signal. The surpass function “spot” tool used to detect
the PLA signals, and the same segmentation thresholdwas used
for all images. The numbers of spots obtained were compared
using a t test analysis.
For the image analysis of DopaNeuron cells, maximal projec-

tions of Z-stacks of the whole cells’ height were obtained. Ran-
domly selected cell somas and neurite sections (50–90 �m)
located �135 �m away from their soma were manually traced
on the tubulin channel using LasAF Lite software (Leica), and
the mean intensity of the traced area was recorded for the

Table 2
Primary antibodies used in Western blotting and immunofluorescence

Target protein Host Supplier
Western blot

dilution
Immunofluorescence

dilution

TH (total) Rabbit Thermo Scientific 1:1000 1:100
THSer(P)-19 Rabbit Phosphosolutions 1:1000 1:50
THSer(P)-31 Rabbit Phosphosolutions 1:1000 1:50
THSer(P)-31 Rabbit Ref. 26 1:300 1:50
THSer(P)-40 Rabbit Phosphosolutions 1:1000 1:50
GM130 Mouse BD Transduction Laboratories 1:1000 1:100
His Mouse GenScript NAa 1:100
Synaptotagmin I Mouse Abcam 1:1000 1:100
GAPDH Rabbit Abcam 1:1000 NA
V5 Rabbit Sigma 1:2000 1:100
V5 Mouse Life Technologies 1:5000 1:100
VMAT2 Rabbit Millipore 1:1000 1:100
VMAT2 Goat Santa Cruz Biotechnology 1:1000 1:100
�-Synuclein 3H9 Mouse Abcam 1:1000 1:100
Tubulin Mouse Sigma NA 1:1000
Clathrin Mouse Thermo Scientific 1:1000 NA
Transferrin receptor Mouse Invitrogen 1:1000 NA
SPC25 Rabbit Gift from Stephen High 1:1000 NA
DOPA-�-hydroxylase Sheep Abcam 1:1000 NA
Chromogranin A Rabbit Novus Biologicals 1:1000 NA

a NA, not applicable.

TH Ser-31 phosphorylation targets TH to vesicles
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THSer(P)-31 channel. Average and S.D. values were obtained
for each sample set, and p values were calculated using a t test
analysis. For the image analysis of the neuroblastoma neurites
transfected with V5-TH1 and His-�-syn, maximal projections
of Z-stacks of the first micron of the sample were obtained,
neurites of a length of approximately 65–95 and 1–2 �m were
selected and manually traced on the WGA channel with a
4-pixel-wide line using FIJI, and the intensity profile was
recorded for the V5 channel. Using Excel, neurite signal inten-
sity was normalized to the cell soma intensity to minimize vari-
ations due to expression levels. The area below the curve cor-
responding to the most distal 20 �m of the neurite was
integrated, average and S.D. values were obtained for each co-
transfection set, and p values were calculated using a t test
analysis.

Cellular fractionations and chromaffin vesiclemembranes

Subcellular fractionationwas performed according to Ref. 76
with the only modification that for SH-SY5Y the last centrifu-
gation step to sediment themicrosome fraction was carried out
for 90 min. Chromaffin vesicle membranes (CVMs) were puri-
fied from bovine adrenal medulla as described (46). The CVMs
were treated with trypsin (bovine pancreas; Sigma-Aldrich) (1
mg of CVM protein, 1.5 mg of trypsin) for 2 h at 30 °C. The
reaction was stopped by adding soybean trypsin inhibitor at a
1:2 ratio (mg of trypsin/mg of inhibitor).

Western blot analysis

Proteins were separated on SDS-PAGE 10% TGXTM gels
(Bio-Rad) and transferred onto nitrocellulose or PVDF mem-
branes using the TransBlot Turbo system (Bio-Rad). Mem-
branes were incubated with the primary and secondary
antibodies specified in Tables 2 and 3, developed by chemi-
luminescence, and visualized with a ChemiDoc instrument,
and band intensities were quantified by Image Lab software
(Bio-Rad). For data analysis, the intensity of target proteins was
standardized with the loading control. In the case of each
recombinant TH1, the microsomal fraction was normalized
against its corresponding whole lysate tominimize the effect of
stability and transfection efficiency differences. Treated sam-
ples were referenced to untreated, which were given the arbi-
trary value of 1. The sample size in all cases was n � 3, and
Microsoft Excel was used for statistical calculations. Two-way
comparison was performed using the t test. Statistical signifi-
cance was set at p � 0.05.

Preparation ofmouse brain lysates and immunoprecipitation

Mouse whole brain was homogenized with a Tissue Lyser II
(Qiagen) in IP buffer (20mMHepes, pH7.4, 125mMNaCl, 1mM

EDTA, 2 mM PMSF), containing protease and phosphatase
inhibitors (Roche Applied Science). Extract was clarified by
centrifugation at 16,000� g for 20min at 4 °C. The supernatant
was collected, and Triton X-100 was added to a final concen-
tration of 1%. This sample was centrifuged at 4 °C at 20,000 � g
for 15 min after rotation for 1 h at 4 °C. The soluble extract
was incubated with antibodies against THSer(P)-31 (rabbit;
described previously (26), VMAT2 (C-20) (goat; Millipore),
�-synuclein (3H9) (mouse; Abcam), control IgGs (Millipore
Merck), or no antibody (only beads) with rotation overnight at
4 °C. ProteinA/GPLUS-agarose beads (SantaCruz Biotechnol-
ogy, Inc.) were added to samples and rotated for 1 h at 4 °C
before samples were pelleted, washed, and incubated at 37 °C
for 30 min in 40 �l of sample buffer. Samples were analyzed
by SDS-PAGE and immunoblotting with anti-THSer(P)-31,
VMAT2 (rabbit; Millipore), and anti-TH (rabbit; Thermo Sci-
entific) antibodies as primary antibodies and anti-rabbit IgG
light chain (HRP) (Abcam) antibodies as secondary antibodies,
respectively.

TH purification and phosphorylation

Human TH1 was expressed in Escherichia coli (BL21 Codon
Plus (DE3), Stratagene) as a His-ZZ-TH1 fusion protein (15)
and purified using Talon resin (New England Biolabs) accord-
ing to the manufacturer’s recommendations. The fusion tag
was removed by proteolytic cleavage using tobacco etch virus
(1:25 (mg) tobacco etch virus/TH) in 15mMHepes, pH 7.4, 150
mMNaCl (HBS) for 4 h on ice before centrifugation (13,000� g,
10 min) and gel filtration (Superdex 200 HR10/30, GE Health-
care). TH1 (50 �M) was phosphorylated for 45 min at 25 °C in
HBS buffer using 500 �M ATP, 5 mM MgCl2, and 12.5 units/ml
active p35/CDK5 (Millipore; 14-477) to a stoichiometry of 0.5
mol of phosphate/mol of TH subunits as determined by incor-
poration of 32P using [�-32P]ATP.

Surface plasmon resonance

The Biacore 3000 system was used with L1 sensor chips and
HBS-N buffer (GE Healthcare; BR-1003-69). The L1 surface
was loaded with CVM (150 �g of protein/ml, 4–6 min, 3–10
�l/min) according to the manufacturer’s recommendation by
ensuring surface saturation and minimal binding of BSA. 20
mM CHAPS was used to regenerate the surface. Binding of TH

Table 3
Secondary antibodies used in Western blotting and immunofluorescence

Target protein Host Supplier Conjugation
Western blot

dilution
Immunofluorescence

dilution

IgG Rabbit (H�L) Goat Invitrogen Alexa Fluor 488 NAa 1:200
IgG Mouse (H�L) Goat Invitrogen Alexa Fluor 555 NA 1:200
IgG Rabbit (H�L) Goat Invitrogen Alexa Fluor 594 NA 1:200
IgG Rabbit (H�L) Goat Invitrogen Alexa Fluor 647 NA 1:200
IgG Mouse Goat Santa Cruz Biotechnology HRP 1:1000 NA
IgG Goat Donkey Santa Cruz Biotechnology HRP 1:1000 NA
IgG Rabbit Goat Santa Cruz Biotechnology HRP 1:1000 NA
IgG Sheep Donkey Santa Cruz Biotechnology HRP 1:1000 NA

a NA, not applicable.

TH Ser-31 phosphorylation targets TH to vesicles
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was monitored using different flow rates (5–30 �l/min) and
different concentrations of TH (0.1–25 �M).
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Alitalo, K., Kreuger, J., and Claesson-Welsh, L. (2010) VEGF receptor 2/-3
heterodimers detected in situ by proximity ligation on angiogenic sprouts.
EMBO J. 29, 1377–1388

46. Terland, O., and Flatmark, T. (1980) Oxidoreductase activities of chro-
maffin granule ghosts isolated from the bovine adrenal medulla. Biochim.
Biophys. Acta 597, 318–330

47. Lee, H. J., Khoshaghideh, F., Lee, S., and Lee, S. J. (2006) Impairment of
microtubule-dependent trafficking by overexpression of�-synuclein. Eur.
J. Neurosci. 24, 3153–3162

48. Koch, J. C., Bitow, F., Haack, J., d’Hedouville, Z., Zhang, J. N., Tönges, L.,
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