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Abstract

Detecting modifications in DNA has been a long-standing challenge in understanding the

workings of the genome, particularly with regards to regulatory function. The currently

most widely used sequencing technology, NGS, offers protocols to tackle these challenges but

these are modification specific and involve convoluting preparation steps. As an alternative,

nanopore sequencing offers the direct observation of such modifications. Though inosine

has been demonstrated to be distinguishable from adenine in poly(A) RNA using nanopore

sequencing, no framework has been proposed for the general detection of inosine presence

in nanopore sequence data. In this thesis, I propose a test-based approach to use out-of-

the-box classifiers to distinguish between sequences containing inosine and sequences that

don’t based on features present in nanopore sequencing data. The proposed model achieves

a high accuracy on this classification task, providing avenues for further development of a

self-contained inosine detector, as well as further exploration of the same approach to other

modifications.



Acknowledgements

I would like to extend my sincerest gratitude to the supervisor for my master work, Eivind

Valen, for introducing this project to me as well as for availability and feedback over the

course of the project. Furthermore, I’m greatly appreciative for all the technical assistance

and teachings I have recieved from Adnan Niazi, from the small beginnings of the project

right up until the project’s deadline. During my work on this project, I have greatly en-

joyed and benefitted from being a part of the Valen group, a stimulating and constructive

environment. For that, I would like to thank all the members of the group.

Thomas Stauland

12 August, 2021



ii



Contents

1 Introduction 1

1.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Nanopore sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Basecalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Fast5 file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Modification detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Inosine detection and the current state of the art . . . . . . . . . . . . . . . 15

3 Experiments 17

4 Experiment 1 19

4.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 DNA constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Single-base context construct . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Homopolymer context construct . . . . . . . . . . . . . . . . . . . . . 20

4.3 Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Initial pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Demultiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Producing consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Processed current signal analysis . . . . . . . . . . . . . . . . . . . . . . . . 25

4.8 Raw current signal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.9 Training a classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



4.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.10.1 Producing consensus results . . . . . . . . . . . . . . . . . . . . . . . 28

4.10.2 Processed current signal results . . . . . . . . . . . . . . . . . . . . . 32

4.10.3 Raw current signal results . . . . . . . . . . . . . . . . . . . . . . . . 33

4.10.4 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Experiment 2 39

5.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 DNA constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Basecalling and quality check . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Initial pre-processing: preparing comparable files . . . . . . . . . . . . . . . . 43

5.7 Comparison and various preparative steps . . . . . . . . . . . . . . . . . . . 44

5.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Experiment 3 51

6.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 DNA constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Basecalling, alignment, and further pre-processing . . . . . . . . . . . . . . . 52

6.4 Filtering and further processing . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Position-by-position comparison . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.6 Construct classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.7.1 Position-by-position comparison results . . . . . . . . . . . . . . . . . 55

6.7.2 Construct classification results . . . . . . . . . . . . . . . . . . . . . . 62

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Discussion 67

7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 70

iv



A 79

A.1 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Data availibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

v



List of Figures

2.1 Illustration of nanopore sequencing. . . . . . . . . . . . . . . . . . . . . 6

2.2 Side-by-side view of the structure of a basecalled and raw .fast5 file. 9

2.3 Two separate alignments viewed in IGV. . . . . . . . . . . . . . . . . . 11

2.4 The chemical structure of the four canonical nucleosides and inosine. 13

4.1 Single-base context construct. . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Homopolymer context construct. . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Pipeline for processing ALKBH3 and GFP reads. . . . . . . . . . . . 23

4.4 5’-end of consensus for demultiplexed single-base context reads. . . 29

4.5 3’-end of consensus for demultiplexed single-base context reads. . . 30

4.6 3’-end of consensus for homopolymer context reads. . . . . . . . . . . 31

4.7 3’-end of second consensus for homopolymer context reads. . . . . . 32

4.8 Violin plot showing distributions of the current signals obtained for

each of the five homopolymers. . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Five constructs with three variable sites embedded in an invariant

3’-segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Procedure of generating alignments for pairwise comparison. . . . . 42

5.3 Pairwise comparison of construct I and construct A. . . . . . . . . . 46

5.4 Pairwise comparison of construct I and construct C. . . . . . . . . . 46

5.5 Construct I aligned with different references. . . . . . . . . . . . . . . 49

6.1 Average current per position for three segments for all five constructs. 57

6.2 Standard deviation of mean current per position of the first segment. 58

6.3 Mean dwell time per position for the first segment for all five con-

structs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Basecall quality score per position for the first and second segment

for all constructs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



6.5 Base count per position for all three segments of construct I. . . . . 61

vii



List of Tables

4.1 Models used to classify homopolymers and their performances. . . 35

4.2 Confusion matrix for five-way classification with GBM. . . . . . . . 35

6.1 Confusion matrix for two-way classification after training and test-

ing on the same segment. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Confusion matrix for five-way classification after training and test-

ing on the same segment. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Confusion matrix for two-way classification after training on the

first segment and testing on the second segment. . . . . . . . . . . . . 63

6.4 Confusion matrix for five-way classification after training on the

first segment and testing on the second segment. . . . . . . . . . . . . 63

6.5 Confusion matrix for two-way classification after normalizing data,

training on the first segment, and testing on the second segment. . 64

6.6 Confusion matrix for five-way classification after normalizing data,

training on the first segment, and testing on the second segment. . 64

viii



Chapter 1

Introduction

Biology is the study of life and living organisms. The information required to sustain life in

an organism is stored in its genetic material. Genetic material takes the form of sequences

of DNA and RNA, and is present in large quantities in all living organisms. Processing and

extracting information from large datasets of biological relevance is the focus of bioinfor-

matics. One particular focus of bioinformatics is sequencing and the subsequent analysis of

biological sequences.

Analysis of biological sequences involves identifying the building blocks of various types of

genetic material — be that DNA, RNA, or peptides. The process of identifying the contents

of biological sequences is referred to as sequencing. This obtained sequence can then be

analysed further to infer the behavioral or functional information carried by it.

One challenge within the domain of sequence analysis that has been the subject of ex-

tensive study, is the identification of modified nucleotides. These nucleotides have been

chemically altered to make them different from the four standard (or canonical) bases — A,

T, C, and G — of which DNA is composed. Such modifications can be indicative of func-

tional relevance, or otherwise be of interest as markers in an experimental or clinical setting.

In DNA, more than 17 such base modifications are known to exist [1]. Specialized sequencing

techniques and analysis methods are needed to detect these modifications. This work uses

a novel single-molecule sequencing technology developed by Oxford Nanopore Technologies

(ONT) to identify modifications occurring within a DNA sequence. Specifically, the modifi-

cation we aim to identify is the occurrence of a non-canonical base — inosine. In this thesis,
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I will detail the various approaches towards this end and reflect on the respective levels of

success, or lack thereof.

In the following sections, I will motivate the rationale for the project and the biological

relevance of modification detection before describing the technological framework used to

produce data for analysis. In the ”Experiment” chapters, I will then move on to describing

the specific analyses carried out in this study and their results. Finally, I will offer concluding

remarks and reflect on the experimental designs, the findings resulting from these and the

potential avenues for further development.

1.1 Rationale

Before the advent of nanopore sequencing, base modification detection was done with short-

read next-generation sequencing (NGS) approaches such as Illumina sequencing. However,

Illumina sequencing cannot detect modifications directly. This is because Illumina sequenc-

ing requires PCR amplification of the original material which cannot conserve modifications

present in the sequence. Furthermore, the synthesis step of sequencing-by-synthesis used

in Illumina sequencing, generally does not allow for the selective addition of modified nu-

cleotides where modification is present in the template.

To address these challenges with NGS, cumbersome workarounds were developed. For

example, in bisulfite sequencing for detecting 5-methylcytosine (5mC) the DNA is treated

with sodium bisulfite in such a way that modified cytosines remain intact in the sample, while

unmodified cytosines are converted to uracil. When the sample is amplified and sequenced

one can discriminate between modified and unmodified cytosines since all remaining cytosines

in the template represent modified cytosines. However, in the scope of general modification

detection, the primary shortcoming of this approach is evident as it is limited to detection

of cytosine methylation. Though certainly useful — as 5-methylcytosine (5-mC) is one of

the most commonly occurring and widely studied DNA base modifications — this method’s

specificity becomes a hurdle when considering base modifications in general.

In this respect, nanopore sequencing offers a great advantage. As the sequencing protocol

does not rely on amplification and sequencing-by-synthesis, the molecule provided as input

is directly sequenced. We therefore say that nanopore has the ability to sequence native
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molecules. The output of a nanopore sequencer is in the form of a series of measured

current signals and the relative changes in this current as a DNA molecule translocates

through the pore. These changes directly respond to the DNA as the current impedance is

dependent on the mass of nucleotides passing through the pore. Modifications present in the

sequence therefore directly influence data produced from a sequencing run. In analyzing data,

modifications can then potentially be detected provided their impedance to the electrical

current is sufficiently distinct from that of non-modified bases. The underlying rationale

for this thesis follows directly from the direct native molecule sequencing feature offered by

nanopore sequencing.

1.2 Objective

Based on the nanopore sequencing of canonical bases and the modified inosine base incorpo-

rated into synthetic DNA sequences, the aim of this work is to develop a method that can

distinguish a sequence containing inosine from a sequence which does not.

Numerous studies have demonstrated the potential for using nanopore sequencing for

detecting nucleotide modifications [2, 3]. We set out to further realize the modification-

detection capabilities of this continually developing sequencing technology.

Specifically we want to investigate:

1. Is there a quantifiable difference between inosine (I) and the canonical bases (A, T, C,

G) in the measurements resulting from sequencing with nanopore.

2. If there is such a difference, can distributions describing the distinct profiles of these

five nucleotides (i.e., A, T, C, G, and I) be used to train an inosine-specific modification

classifier. Such a classifier should be able to identify sequences in which an inosine is

incorporated.
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Chapter 2

Background

2.1 Nanopore sequencing

Nanopore sequencing is a novel technique enabling the direct sequencing of a native RNA

or DNA molecule. In sequencing a native molecule using nanopore, a series of signal data is

produced. Signal data is a direct representation of the sequence of the given molecule. This

differs from previous generations of sequencing technology which rely on clonal amplification

of a sequence of interest; in other words, an indirect representation of sequence data. In

addition, the length of reads is extended from what was possible in previous generations.

Through Illumina sequencing, which is the most widely used NGS technology, reads were 150

to 300 base pairs long. Nanopore sequencing can yield reads ranging from 500 bp to 2.3 Mb

[4]. The actual resulting read length is highly dependent on sample and library preparation,

but generally, the increased length means that nanopore sequencing gains an advantage when

it comes to handling repeat regions. Based on these improvements, we say that nanopore

sequencing belongs to the third generation of sequencing technology. While nanopore can

process both DNA and RNA sequences, in this thesis we will be working exclusively with

DNA sequences.
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Figure 2.1: Illustration of nanopore sequencing. The double stranded DNA is un-
winded by the enzyme sitting on top of the nanopore itself, and a single strand (the blue
strand) passes through the nanopore. The lightning represents the current which also passes
through the pore. As the current and the single strand of DNA passes through the pore
simultaneously, the strand obstructs the current. This causes a change in the intensity of
the current measured flowing through the pore, or a perturbation.

Credit: Illustration made with BioRender https://biorender.com/

To sequence DNA through a nanopore, special adapters are first ligated to the DNA to

be sequenced. These adapters carry a motor protein that helps feed the molecule through

the nanopore at a controlled speed. Next, the DNA with ligated adapters is fed into a flow

cell that contains protein nanopores suspended in a lipid membrane across which a potential

difference is applied. There is an ionic buffer on both sides of the membrane. The applied

potential difference causes the ions to flow from one side to the other, resulting in a current.

If anything blocks the pore, the current is perturbed; the larger the blockage, the larger the

perturbation in the pore current, and vice versa (2.1). In this way, anything that passes

through the pore creates a signature pattern in the current that can later be used to decode

its identity.

6
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2.1.1 Basecalling

As the DNA propagates through the nanopore, the current at any given time is impeded by

the presence of five nucleotides (5-mer) occupying the pore; a given nucleotide is always read

in the context of its surrounding nucleotides. So if we consider a construct containing only

canonical bases, then 45 or 1024 unique combinations of nucleotides exist which can occupy

the pore at any given time. Basecalling involves using the knowledge about the characteristic

current signatures of these 1024 5-mers to predict which nucleotide sequence went through

the pore. This is the working principle behind the use of nanopores for decoding DNA

sequences [5].

Another metric we consider is the impact of the presence of a given nucleotide on the

speed of a molecule traveling through the pore. We refer to the translocation rate as dwell

time — the time a nucleotide spends in the nanopore. Because of the stochastic nature

of motor protein and sequencing chemistry, DNA molecules have a varying translocation

rate, and so this measure can sometimes be inconsistent. Nevertheless, it can be used —

in addition to the current intensity — for deducing the bases in a k-mer. Trends in dwell

time have also been proposed as an indicator for detecting sequence modifications such as

2’-O methylation [2]. Furthermore, this feature has been used to identify pseudouridine in

RNA [6]. Together, the current intensity and the dwell time can serve as features with which

the base identity can be inferred. Furthermore, information about one given nucleotide is

gathered at all five possible positions it can occupy within the pore. The variance of this

current signal over time is called the squiggle. These squiggles are stored as an array of

numbers in FAST5 files. The task of identifying bases, or translating the squiggle into a

sequence of bases, is referred to as basecalling. Tools that carry out basecalling are called

basecallers. The basecaller used throughout my experiments is the ONT-provided tool for

basecalling called Guppy.

Carrying out the procedure of basecalling is resource intensive and must meet several ana-

lytical challenges. The first challenge is to establish a correspondence between the continuous

flow of current signal measurements and the discrete nucleotide sequence going through the

pore. Generally, the approach to this is a procedure of segmentation. Old basecallers such

as Albacore, used to provide a segmentation from raw current into what we call events prior

to basecalling. This entailed looking for considerable changes in the current levels and using

these to detect the eventuality of a new base entering the pore, and segment accordingly.
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However, newer basecallers such as Guppy, have moved to a Connectionist Temporal Clas-

sification approach. This approach lets us classify a variable number of bases for a given

window of signal measurements.

A consequence arising from the problem of segmenting current signals into events is also

at the core of one of nanopore’s shortcomings. This refers to basecalling of sequences that

consist of a single nucleotide repeat — or homopolymers. In terms of events, homopolymers

are described by a series of identical events following one another in succession. Since

segmentation is based on changes to the current, these signals cannot be segmented in the

same way. Moreover, the speed at which the construct is translocated through the nanopore is

not constant, so this cannot be used to infer the number of events accurately. A common issue

we can observe in basecalled nanopore data is therefore that such homopolymer segments

exhibiting variable lengths from one read to another.

Another challenge of basecalling, is the task of actually labelling events with a sequence

of bases. Various probabilistic frameworks can be used to tackle this problem, but Recurrent

Neural Networks (RNNs) have been the most common approach. The model is trained on

observed measurements of all possible k-mers. New observations that are being basecalled are

then fed through the network and labelled according to the output. Finally, the basecalled

sequence is produced by the merging of all labelled events. In the case of Guppy, we can

view the results of this procedure in a .fastq or a .fast5 file.

2.2 Fast5 file format

The standard format for storing biological sequences that have been sequenced with a quality

score is the FASTQ format. It is an uncomplicated format that describes a sequence in four

lines: the first line is an identifier, the second line is the sequence itself, the third is a

separator, and the fourth is the basecall quality. FAST5 format, on the other hand, is more

complex. It is a type of hierarchical data format (HDF5), which is a flexible format for

storing a set of associated data objects. A .fast5 file comes in two variations: a raw file and

a basecalled file.

Whereas accessing information in a FASTQ format boils down to parsing lines of text,

the FAST5 format consists of data objects contained within a set of folders. To navigate this
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FAST5 format practically, some additional software or packages are required. With the help

of these, the hierarchical structure of the file can then be navigated by directly querying the

folders and the specific bits of information contained within.

In addition to metadata relating to the sequencing process, the raw file consists of a

single dataset — the raw current signal measurements. After basecalling the raw file, an-

other “Analyses” folder is attached to each file. This contains information pertaining to the

segmentation of the signal, as well the sequence itself. There is also additional information

of the squiggle and the transitions between events within this folder (2.2).

Figure 2.2: Side-by-side view of the structure of a basecalled and raw .fast5
file. The right side shows the basecalled file with an additional Analyses folder. Inside it,
the BaseCalled template folder holds information relating to the sequence of bases, how it
corresponds to transitions of events, and the series of current signal measurements. On the
left side, we see the raw file.
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2.3 Alignments

Following basecalling, the next analytical step is commonly to produce alignments. This

is the process of matching the basecalled sequence to a known reference. For all synthetic

constructs we sequence in this study, we always have a reference dictating what we expect

the sequenced output to be. The alignment used in all analyses carried out here were done

with minimap2 [7].

Minimap2 uses a seed-chain-align method. It indexes the reference using minimizers — a

set of representative substrings which are stored in a hash table and can be used for efficient

string matching and extension. These minimizers are used as queries to anchor the sequence

to the reference [8]. Sets of collinear anchors are then identified, and a dynamic programming

approach is taken to extend the ends of chains to fill in the gaps between them. This produces

a sequence based alignment, giving an indication of what the high-level information of the

sequence looks like. Alignments can then be viewed in IGV as shown below (2.3).

If needed, we can also produce an alignment including the low-level information like

raw current signal measurements. For this, we use Nanopolish’s eventalign function [9].

Instead of aligning the sequence itself, eventalign aligns the events of the basecalled data

to a reference. This is useful when subsequent analyses require insight into the raw data

underlying the sequence itself. It is often used in investigating the deviations from model

values in current signal measurements arising due to sequence modifications.
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Figure 2.3: Two separate alignments viewed in IGV. The red bar toward the top
shows us where in the reference we are located. Grey vertical bars on top of both tracks
indicate read coverage. Hovering over these will give base counts at each position. Colored
vertical bars, which can be seen above the lower construct, indicate that there is no over-
whelming consensus for base identity at the given positions. The horizontal bars represent
individual reads. When processing reads, aligners consider both the given reference and
the reverse complement of the provided reference unless a single direction is specified. If
a read aligns best with the given reference, it is labelled as a forward direction alignment.
Conversely, if the read aligns to the reverse complement it is labelled as a reverse direction
alignment. The direction of the read is indicated by a bit flag variable in the aligned output.
In the figure above, blue horizontal bars indicate reverse alignment, and red indicate forward
alignment. At the very bottom the reference sequence can be seen with small letters.

2.4 Modifications

Modified DNA nucleotides are nucleotides that are somehow chemically and structurally

different from the canonical bases (A, T, C, and G). A rich variety of modifications exist,

along with a variety of reasons why we may be interested in them. Some modifications are

potential biomarkers of disease, while others can be utilized as targets for the treatment of

disease. Others yet, serve important regulatory functions in the transcription process.
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DNA modifications are an important topic of inquiry in the field of epigenetics that fo-

cuses on modes of inheritance that change the expressed genetic material. The methylation

status of regions of DNA impacts its organization and accessibility. As a result, methylation

is a well-studied phenomenon in epigenetics with a relatively greater amount of attention

devoted specifically to 5-mC and 6-mA. DNA modifications are still continually being inves-

tigated for their potential epigenetic function.

Furthermore, modifications can be used as experimental markers. One such modification,

which will be the focus of this thesis, is inosine (I), which results from the deamination of de-

oxyadenosine to hypoxanthine [10]. Hypoxanthine without the ribose ring is, in other words,

inosine’s nucleobase. Chemically, this transformation occurs by the loss of an exocyclic

amino group (2.4). While inosine may function as an analog to guanine and preferentially

base pairs with cytosine, it can also base-pair with all other canonical bases. Inosines occur

naturally in DNA at a relatively low rate but can lead to altered recognition sites and affect

DNA expression. They have also been found at tissue-specific levels to occur in mRNA and

have therefore been hypothesized to play an important role in regulating gene expression

[11]. In fact, A � I editing events is the most common nucleotide modification event in the

mammalian transcriptome. Most of these events are found in non-coding regions and suggest

a regulatory function [12]. These modifications are driven by the ADAR (adenine deaminases

acting on RNA) family of proteins [13]. Evidence points to these modifications influencing

the sequence of synapses, and thus tuning nervous system function [14, 15]. ADAR-driven

modifications have also proven essential in embryonic development [16, 17] and plays a role

in differentiation decisions [18]. In addition, inosines have been hypothesized as a potential

marker specific to, for example, cardiac ischemia [19].
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Figure 2.4: The chemical structure of the four canonical nucleosides and inosine.
Structurally, we see that hypoxanthine, the nucleobase of inosine, is most similar to adenine.
Nevertheless, the replication machinery treats inosine as if it were a guanine.

More relevant to the motivations of this thesis is inosine’s ability to pair with all four

canonical bases which makes it particularly useful for analysis of locations of DNA break-

age. Substituting guanosine with inosine has been used to probe nucleotide properties and

interpretation of binding studies [20]. One can envision an experimental design in which
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DNA breaks are introduced at specific locations of interest or relevant functionality. These

breaks can then be repaired by the introduction of inosine. In this way, a common marker

for these breakage events is used for repair. By proxy, inosine becomes the marker for the

underlying biological relevance informing the breakage. However, enabling the detection of

this specific modification, and in fact any kind of modification, is inextricably dependent on

the sequencing method.

2.5 Modification detection

As previously mentioned, detecting modifications using the sequencing-by-synthesis ap-

proach of short-read sequencing methods have inherent limitations. Their reliance on

amplification makes it difficult to conserve modification-related information. In contrast,

nanopore sequencing allows for the direct observation of modifications as they pass through

the nanopore. The main advantage of this technique is that it enables us to detect multi-

ple types of modifications without specified preparation protcols. These modifications need

only be sufficiently structurally distinct from the canonical bases to enable their detection in

nanopore sequence data. If this is the case, the modified nucleotide impedes the pore current

differently than its unmodified counterpart, as well as all other bases that could potentially

occupy a position in the sequence. By this direct observation, potentially complicating and

confounding steps are eliminated from the procedure. In addition, specific preparation pro-

tocols for conserving the information held by the modification are circumvented. As a result,

the experiment becomes faster to carry out and less convoluted in design.

As early as 2013, nanopore sequencing was shown capable of detecting cytosine methy-

lation modifications [21]. However, there are still several factors that complicate the task of

detecting modifications with nanopore sequencing. Importantly, as nanopore sequencing is

still an emerging technology it is continuously being developed; there are basecalling error

rates that are significantly higher than sequencing from earlier generations. Another con-

sequence of the novelty of the technology is that the output data format is more limited

in terms of applicable analysis pipelines and intermediate processing steps. The need for

such steps becomes apparent as the analysis proceeds and thus scripts for carrying out these

steps must be made on the fly. Finally, looking at the problem from a strictly numerical

perspective, it is apparent that the task of classifying bases becomes more complex, even
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if we only consider a single modification. This is because instead of 1024 possible unique

k-mers, we now have 55 or 3125 possible k-mers — more than three times as many possibil-

ities compared to the canonical basecalling task. Further complications arise from the fact

that the signal shift caused by the inclusion of a modified base in a given k-mer can be quite

subtle [22]. As a result, the distribution of signals produced by a modifed k-mer can overlap

with those produced by a corresponding unmodified k-mer.

2.6 Inosine detection and the current state of the art

Protocols analogous to the previously described bisulfite sequencing have been proposed for

detecting inosine in RNA within an NGS framework [23]. One such approach, namely iSeq,

works by treating the RNA with glyoxal. This leads to guanosines forming stable glyoxal

conjugates. When the RNA is then treated with RNAse T1, which normally cleaves the

strand after guanosines and inosines, guanosines are no longer recognized by the RNAse and

the RNA is cleaved into segments with 3’ inosines.

In a subsequent study, it was also pointed out that inosine can be detected in RNA from

appearing in the sequencing profile as an A� G mutation [24]. Using a reverse transcription

based sequencing technique such as Illumina, one would expect to identify an adenine by the

presence of its complementary thymine in the reverse transcript. However, if the adenine has

undergone A� I editing, the nucleotide would be treated as a G. This would be reflected by

the inclusion of a C in the reverse transcript. Thus, this mutation signature could directly

indicate the presence of an inosine. On its own, this discrepancy could easily be confused

with single nucleotide polymorphisms or sequencing errors [25]. This can be alleviated by

including a step of inosine cyanoethylation and increasing the depth of sequencing. This

attaches acrylonitrile to the inosine, and as the reverse transcriptase reaches the inosine the

procedure of reverse transcription is arrested resulting in a truncated RNA [26].

Both of these approaches are limited by the aforementioned challenges of detecting mod-

ifications using NGS sequencing. These are namely the modification-specific treatments and

the indirectness of detection. The direct detection of modifications by nanopore sequencing

eliminates the cost and potential error introduced by these shortcomings.
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When it comes to detecting modifications in nanopore data, there have generally been

two ways of approaching the challenge. One approach is to train a machine learning model

on a specific set of modifications. The tool DeepSignal uses this approach to recognize 5-

mC, 6-hmC, and 6-mA in synthetic samples [27]. While several studies have applied neural

networks to this task, simpler machine learning algorithms have also been shown to be up to

the task [28]. Another approach is to compare a sequence known to contain one or several

modifications against a control sample which does not contain any modifications. This test-

based method is used, for example, by the now archaic tool nanoraw, as well as by Nanopolish

[29] and NanoMod [30]. Common to both approaches is that they compare current signals.

However, new developments within testing-based detection presents the possibility of

de novo detection of any modification, that is without any a priori knowledge of the type

of modification to detect. This potential was presented with nanoraw, which led to its

successor Tombo. Tombo is a toolbox for modification detection, now owned and maintained

by ONT. In addition to high-accuracy detection of specific bases, it provides a more error-

prone functionality for de novo modification detection. In practice this is done by going over

each position in a set of reads and comparing current signals against expected canonical

signal levels. It also offers a function called level sample compare which compares between

a modified sample and a control sample. This latter method has been used to detect inosine

in nanopore sequenced data by introducing a chemical probe at the inosine modifications

[31].

In the context of this study, the most pertinent advantage presented by nanopore is the

direct observation of modifications. Consequently, the initially evident line of inquiry would

then focus on nanopore’s direct observation of inosine, and so indirectly on inosine’s chemical

structure. Prior studies have demonstrated the possibility of detecting DNA modifications

in nanopore-sequenced data. Furthermore, one study in particular has shown the difference

between inosine and adenine to be detectable within poly(A) RNA from analyzing and

comparing current signal distributions [32]. The approach in our study is similar, but the

task of detection will be more complicated as we will try to distinguish also from the other

canonical bases. To address this, we will take advantage of other features from sequenced

data which may aid in the classification.
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Chapter 3

Experiments

To detect inosine with nanopore sequencing, three different nanopore sequencing experiments

were performed during the course of this thesis. Observation from each experiment motivated

the design of the subsequent experiment.

For each of these experiments, I will firstly describe the constructs designed and the

rationale behind the contents of the constructs. Secondly, I will describe details regarding

the analytical pipelines that we have used and the toolkits utilized in the process. Thirdly

and finally, I will present the results of our analyses and provide a discussion surrounding

the insights revealed by these analyses.

Each of the three experiments will be described in a separate chapter.

The first of the three is motivated by quantifying the difference in current signature

between the canonical nucleotides and inosine. Here, we will investigate the potential for

delineating between the “pure” signal of each of the five nucleotides by analyzing sequences

of several instances of a single nucleotide. We will then look at the contribution of the

nucleotides singularly incorporated in a more natural sequence context.

In the second experiment, we try to use an existing toolkit — Nanocompore — to identify

constructs with incorporated inosines by comparing these modified samples against control

samples, constructs where canonical nucleotides are present at the modified locations [33].

Finally, in the third experiment, we design our own machine learning framework for

classifying the distinct modified and control samples used in experiment two. We will isolate

a set of features from raw nanopore data, and train our classifiers on these data to identify

the presence of inosine.
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Chapter 4

Experiment 1

4.1 Rationale

Our aim with this first experiment was to explore if there is any detectable difference in the

current signal level and dwell time between inosine and the canonical bases. Towards this

end, we designed and sequenced two different DNA constructs as described below.

4.2 DNA constructs

4.2.1 Single-base context construct

As inosine can exist in nature sandwiched between different canonical bases, and because

the nanopore current signature for a given base depends not only on the base itself but also

on the two bases flanking both sides (the so called 5-mer context), we incorporated single

inosine bases in three different flanking contexts in the construct used for this experiment.

We will refer to this as the single-base context construct (4.1).

Five different constructs were designed containing either A, T, C, G, or I in three differ-

ent contexts, also referred to as variable positions (see figure 5). A barcode at the 5’-end
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was incorporated to help distinguish these five flavours during analysis. Separating the three

variable sites are spacer sequences, and upstream of the first variable position is a GFP se-

quence. By aligning first to the GFP region we can identify the single-base context construct

reads. Next, by looking at the barcode region preceding the GFP region, we can identify

which of the five varieties the sequence belongs to, and thus, which nucleotide is present at

the three variable positions towards the 3’-end of the sequence. In making these constructs

a mapping was established between the barcode and the base present at the variable sites.

However, between the production of the constructs and the analysis presented here, this

mapping was lost.

In the reference used to produce alignments for this construct, the variable sites are

represented by N. We do this because we can’t use I in reference sequences.

Figure 4.1: Single-base context construct. The construct in 5’ to 3’ direction consists
of a 37-nt spacer, a 15-nt barcode, a GFP segment, a 16-base spacer, a single-nucleotide
variable site, a 13-nt spacer, another single-nucleotide variable site, a 14-nt spacer, a third
variable site, and finally a 22-nt spacer.

4.2.2 Homopolymer context construct

Because inosines can theoretically also occur as a stretch of two or more bases, we also

wanted to investigate how homopolymer stretches of inosines differ from homopolymers of
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A, T, C, and G in terms of current signal level and dwell time. Furthermore, this will allow

us to get a representation of the pure signal contributed by inosine. And what that looks

like versus the pure signal from the canonical bases.

To explore this we designed the homopolymer context construct (4.2) in which each

of the canonical bases and inosine were incorporated in homopolymer segments. We incorpo-

rated inosine as a 10-nt homopolymer; thymine, adenine, and guanine as 9-nt homopolymers;

and cytosine as an 8-nt homopolymer. Between the five homopolymers are spacer regions

which simplifies separating data from each of the five homopolymer stretches. Preceding the

inosine homopolymer, is a 29 base spacer sequence along with the sequence of the ALKBH3

gene.

Figure 4.2: Homopolymer context construct. The construct in 5’ to 3’ direction on
the forward strand consists of a plasmid backbone segment, an ALKBH3 segment, a 29-nt
spacer, a 10-nt inosine homopolymer, a 15-nt spacer, a 9-nt T homopolymer, a 9-nt spacer,
a 9-nt A homopolymer, a 10-nt spacer, a 9-nt G homopolymer, a 9-nt spacer, an 8-nt C
homopolymer, and finally a 21-nt spacer.

Since we sequenced the single-base context construct and the homopolymer context to-

gether, reads from the two constructs were pooled together and had to be separated. By

aligning to a reference containing ALKBH3 we can therefore identify the homopolymer con-

text construct.

As mentioned, a reference cannot contain I, therefore we again represent the inosine

homopolymer by a series of ten N’s. We also systematically substitute each of the canonical

bases in the reference at the inosine homopolymer and perform alignments to see how this

affects the aligned data.
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4.3 Sequencing

The two constructs used for analysis in this experiment were pooled together and sequenced

on a single MinION using SQK-LSK108 kit. Pooling was done so that both samples could

be sequenced in the same run on the same device so as to avoid any run-specific biases.

Sequencing produced 1153078 reads over the course of 1 hour and 45 minutes.

4.4 Initial pre-processing

Initially, we basecalled sequenced data using ONT’s own basecaller — Guppy. Next, we

did a quality control of the data in order to verify that the reads have an acceptable read

quality and expected read length distribution using NanoPlot [34]. Next, we separated the

two construct variants by aligning the data to both complete construct references using

minimap2 (4.3). This allows us to check for each read whether it contains one of the two

genes, and then subset the file containing all reads into two separate files depending on

which of the two gene sequences (ALKBH3 or GFP) is present. Furthermore, we subsetted

these files again with the intention of sorting reads based on direction as well as removing

unmapped reads. We do this by filtering on the bit flag variables produced by alignment.

Here, we use sequence alignment toolkit samtools [35]. After these subsetting steps we are

left with four files to use for further analysis.
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Figure 4.3: Pipeline for processing ALKBH3 and GFP reads. We quality controlled
sequences before aligning to the genetic references. After separating, we filtered reads by
mapping and direction, and sorted the reads. We demultiplexed the GFP -aligned reads by
barcode, and directly viewed the ALKBH3 -aligned reads.

The separation with regards to direction of the reads is important since only the forward

reads of the homopolymer context construct contain inosine (4.2). When quantifying ino-

sine’s characteristic current signature, the reverse strand does not contain relevant data. On

the contrary, we are able to use the complementary regions for the canonical-base homopoly-

mers for signal analysis. This is because the complementary regions here are homopolymers

consisting of the complementary base to the canonical base in question.

4.5 Demultiplexing

The GFP -aligned single-base context reads also require further pre-processing as we must

establish a mapping between the barcode sequence and the base present at the three variable

sites towards the 3’-end of the construct. In the process of establishing this mapping we will

sort reads by which barcode is present in the read. This process is called demultiplexing.

Due to high error rates in nanopore sequence data, demultiplexing reads based on barcodes

is challenging [36]. In fact, even with dedicated software for demultiplexing, as many as 20%
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of barcoded reads can remain unassigned to any barcode and are therefore useless [37]. In

our case, we are not concerned so much with the percentage of reads we are able to assign

to the various barcodes, but when considering nanopore sequence data any demultiplexing

procedure must incorporate some level of leniency when matching a basecalled sequence to

the barcode sequences.

In order to demultiplex the reads first we convert the sequence alignment files — con-

taining forward- and reverse-aligned sequences — into FASTQ format. This allows us to

directly access the sequence information.

Next, we locate the barcode sequence. To do this, we first do a pairwise alignment of

the 5’-end of the GFP sequence with the read sequence to home in to the 5’-end of GFP

sequence in the read. If we find that this segment is present in the sequence, then 15 bases

immediately upstream of this segment should correspond to the barcode. Therefore, in this

restricted region of the sequence upstream of the GFP 5’-end, we then search for all five

barcodes to see which of the five barcodes matches best by doing a pairwise alignment with

each of the five barcodes. The barcode with the highest alignment score above a threshold

was considered to be present in the read. This procedure leads to five .fastq files, each of

which is a subset of the input .fastq file. In each of these .fastq files the barcode segments

are judged to be the same, and, by the same logic, the three variable sites toward the 3’-end

of the sequences will be the same for all sequences in any one of the five files. In this way,

the five different flavours of reads were demultiplexed and their identity decoded despite the

loss of true mapping information between barcode and what each barcode encoded for.

4.6 Producing consensus

The final step of pre-processing here is then to complete the mapping between the barcodes

and the 3’-end variable sites. In order to do this we create a consensus for each of the

five separate .fastq files. We produce this consensus by aligning to the GFP reference.

This reference has an ambiguous sequence (N) in the barcode segment. After making this

alignment, we firstly expect to be able to observe an agreement across the demultiplexed

reads with regards to the barcode segment. Secondly, we expect to see that the consensus

sequence has a clear majority base count of one nucleotide at the three variable positions
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toward the 3’-end. For each of the five sets of reads resulting from demultiplexing, the

majority base should be the same across the three variable sites. Furthermore, we anticipate

that the basecall made for inosine will reveal something about how the inosine bases are

interpreted by a normal basecaller.

We also produce alignments for the ALKBH3 -aligned reads to investigate if the inosine

homopolymer segment coincides with our expectations. This will also give some idea re-

garding how inosine is interpreted by a standard basecaller. After doing so, we move on to

isolating and analyzing data from each of the five homopolymers present in this construct.

Expanding on how inosine is interpreted by regular processing framework, this will allow us

to quantify inosine’s underlying characteristic current signature. We will then compare this

current signature against those belonging to the four canonical bases.

4.7 Processed current signal analysis

In the analytical portion of this experiment, we focus on extracting and compiling data which

will allow us to quantifiably differentiate between I-nucleotides and the canonical nucleotides.

For this step, we used reads generated from the homopolymer context construct. We

initially focus on the homopolymers since these segments are long enough to span the entire

nanopore (i.e. they have a length greater than 5-nt). This means that we can obtain current

measurements resulting from only one type of nucleotide occupying the pore. Thus, we can

quantify the “pure” current perturbation exerted by each of the five types of nucleotides

analyzed here. We isolate current measurements and dwell-times of each of the five different

homopolymer segments, and then do a comparison of the five.

In order to extract low-level signal information we use eventalign. From the resulting

output we are then able to see which measurements contribute to the basecalled k-mer at

all positions in the reference.

Nanopolish provides a pipeline for running eventalign. Firstly, reads are indexed with

Nanopolish and aligned to the reference using minimap2. To produce the eventalign output,

we provide as input our reads, a sorted and filtered alignment file, and a reference. This gives

us a tab-separated values (.tsv) file as output. Since we are unsure if Nanopolish accepts

references containing N, we perform the procedure with several different references: one
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containing N at the inosine homopolymer, one containing A at the inosine homopolymer,

and a third reference with C in the same location etc. Within the output file, the sequence

of the reference is divided into 6-mers. For each of the 6-mers present, we have access to

several descriptive statistics such as:

1. The index position of the 6-mer relative to the reference

2. The sequence of nucleotides in the 6-mer

3. The read id

4. Statistics describing current signal mean and standard deviation

5. Length of the event, or the event’s dwell time

6. Corresponding statistics for the model 6-mer which was used to inform the basecalling

of the event

7. All the individual sample measurements that were used to calculate the statistics of

the event

We are interested only in the signal from the five homopolymer segments for this analysis.

Therefore, we eliminate superfluous data by defining five intervals of index thresholds and

discarding all data that falls outside these thresholds. This way we retain only data describing

the exact segments we are interested in. We then compile and calculate descriptive statistics

for all events of each interval. For each read containing the interval of interest, we calculate

the following statistics: mean current signal, the average standard deviation, and dwell time.

By further aggregating and calculating descriptive statistics from this output, we obtain

metrics for each of the intervals. This can be seen as quantifying the contribution to the

current signal perturbation of the single nucleotide the respective homopolymers consist of.

We will then compare these statistics for all five nucleotides to see the differences in their

effect on the nanopore current. To investigate the validity of this analysis, we also carry

the analysis out on data that have been aligned to references with different bases present at

the inosine homopolymer. To indicate a robust analysis, we would expect the measurements

contributing to the statistics reported for the inosine homopolymer to be similar for all

alignments.
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4.8 Raw current signal analysis

Thus far, we have only analyzed data at the sequence level that have already been aligned.

Now, we analyse the raw data. By this we mean data that has not undergone processing as a

result of the eventalign procedure. However, extracting this data and ensuring it corresponds

to the relevant events involves several more steps than described in the previous analysis.

We iterate through all .fast5 files, reading and extracting information from each. This

renders data contained in each .fast5 file easily navigable. Here, the most interesting points

of data are raw signal data, read id, and basecalled sequence. A useful structure we refer to

as the event data table enables an association between specific segments of the sequence

with intervals in the array of raw signal data. After finding a segment of interest in the

sequence, the table allows us to extract the raw signal measurements corresponding to this

segment. Importantly, we must also extract read-specific metadata pertaining to the sam-

pling procedure. These are: block stride, digitisation, range, and offset; all are parameters

to be used in the normalization of raw data.

Locating the five homopolymer segments and using corresponding raw data measurements

as descriptive statistics gives us an idea of how each of the five homopolymer segments are

processed by the nanopore. As nanopore sequencing is known to struggle with the length

of homopolymers, we must expect these segments to appear in an inconsistent manner in

the FASTQ sequence. Therefore, we locate them by proxy of flanking segments. We also

subject the reverse complementary reads to the same analysis. In order to limit the influence

of surrounding bases not belonging to the homopolymer, we excise the 25% first and last

signal measurements. We then use the compiled measurements to calculate statistics on the

normalized raw signal.

To address complications that arose with our prepared construct (see chapter 4.10.1),

we generated an additional dataset from the same construct that we ran through the same

analytical pipeline. In the results this is referred to as the second set of homopolymer context

reads.
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4.9 Training a classifier

After compiling these descriptive data points of raw read information, we use them to train

a set of classifiers for distinguishing the five different homopolymers. In this preliminary

classification we use the variables extracted, current signal mean and standard deviation,

as the features to train on. The classification task is then to predict the base of which a

homopolymer consists based on these input features. We trained several different learning

models, while modifying the hyperparameters for some. For these purposes we use out-

of-the-box keras models simply to survey their respective performances given the acquired

features [38]. The machine learning algorithms we used were SVM, Decision Tree, kNN,

Random Forest, and GBM.

4.10 Results

4.10.1 Producing consensus results

When producing consensus reads for each of the five files resulting from the demultiplexing,

the results were not quite as expected. We observed an agreement for the barcode segment

indicating that the demultiplexing itself was successful (4.4), but there was no consistent

majority consensus for the three variable sites toward the 3’-end (4.5). Finding no viable

explanation for this observation, we discarded the single-base context construct dataset as

flawed.
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Figure 4.4: 5’-end of consensus for demultiplexed single-base context reads. Here
we show the alignment view for reads in which the second barcode was detected. The colored
vertical bars denote the barcode segment. Because alignment score threshold allows for a
mismatch or two in individual reads, there are reads containing unexpected bases at each
of the positions as indicated by the colored bars. Nevertheless, each position shows a clear
majority base. Therefore, we would expect the three downstream variable sites to show a
similar agreement.
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Figure 4.5: 3’-end of consensus for demultiplexed single-base context reads. Here
we show the alignment view for the variable sites from the same set of reads as seen in figure
4.4. The three vertical colored bars indicate the three variable sites. We see there is no
pronounced majority base at any of the three positions. The proportion of base frequencies
is about equal for all four canonical nucleotides.

Next we produced consensus for the homopolymer context construct and observed that

this matched our expectations to a greater degree. However, instead of a consensus for all

positions within the I homopolymer region we observed a consensus sequence of GGAG-

GAGAGG. This corresponds to the reverse complement of the CCTCCTCTCC segment

incorporated in the reverse read at this location (4.6). This was caused by a ligation error

in preparing the construct that produced the first set of reads. The segment from the start

of the inosine homopolymer to the 3’-end of the forward strand was unsuccessfully incorpo-

rated, and as a result the forward strand was fixed by extending from the breakage point. In

this situation, the forward strand only contains the reverse complement of the reverse strand

which would explain why we see the reverse complement pattern where we would expect to

see a pattern indicating the presence of our inosine homopolymer.
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Figure 4.6: 3’-end of consensus for homopolymer context reads. The inosine ho-
mopolymer is indicated by the stretch of colored vertical bars. This stretch indicates a
consensus of GGAGGAGAGG, the reverse of what is present on the reverse complement of
the strand containing the inosine homopolymer.

In response to this unexpected observation, we generated a second set of homopolymer

context reads. We prepared and sequenced another oligo following the same design as pre-

viously. When producing an alignment for this newly sequenced construct we saw no such

reverse complementary pattern at the inosine homopolymer. Rather, we could see that all

positions in the homopolymer construct exhibited some level of uncertainty. For all posi-

tions, the base counts were relatively similar, with either guanine or adenine being the most

frequently observed base (4.7). This aligns with what we would expect to see in a construct

containing an inosine homopolymer.
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Figure 4.7: 3’-end of second consensus for homopolymer context reads. Here we
view alignments produced for the forward ALKBH3 reads. The colored vertical bars again
indicate the segment corresponding to the inosine homopolymer. We see that the bars are
predominantly green and yellow, respectively indicating a majority base count of adenine
and guanine.

4.10.2 Processed current signal results

After locating the signal-intervals that correspond to the five different homopolymers and

calculating descriptive statistics, we obtained the following results. Notably, these results

were produced by using a reference containing N in the I homopolymer in the eventalign

step. We obtained a mean current signal value of 86.83 pA and mean dwell time of 0.00381

for the I homopolymer. For T homopolymer, mean current signal value was 90.51 pA and

dwell time was 0.00808. The A homopolymer had a mean current signal of 87.52 pA and a

dwell time of 0.00817. The G homopolymer had a mean current signal of 74.20 pA and a

dwell time of 0.00970. Finally, for the C homopolymer, we observed a mean current signal

of 98.85 pA and a dwell time of 0.00466.

After gathering the same statistics for the output produced with A in the reference in the

I homopolymer, we see virtually no change in any of the homopolymer mean current signal
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values or dwell times. This is to be expected for the canonical base homopolymers, but it is

more surprising with regards to the I homopolymer. In this case, the I homopolymer reports

a mean current signal value of 86.83 pA and a mean dwell time of 0.00379.

Substituting the series of A-s representing the I homopolymer with all C-s in the reference,

we redo the analysis once more. While the current signal means and dwell times for the

canonical bases remains unchanged, the same does not hold true for the I homopolymer. In

this case we obtain a mean current signal of 99.71 pA and a dwell time of 0.00306 for the I

homopolymer.

4.10.3 Raw current signal results

After obtaining the raw signal measurements corresponding to the homopolymers in the

first set of reads produced from the homopolymer context construct we analyzed this data.

When we observed that the results did not align with our expectations, and considered

this in conjunction with the unexpected alignment observations (4.6), we realized that an

experimental failure had occurred.

Having observed a pattern for the inosine homopolymer more in line with our expectations

in the second set of homopolymer context reads, we also analyze these further. We obtained

the following statistics: I homopolymer mean current signal was 71.79 pA (n = 688970)

with a standard deviation of 8.75, T homopolymer mean current signal was 81.54 pA (n =

754234) with a standard deviation of 8.69, G homopolymer mean current signal was 66.16

pA (n = 249554) with a standard deviation of 8.32, C homopolymer mean current signal

was 91.94 pA (n = 179336) with a standard deviation of 9.78, and for the A homopolymer

the mean current signal was 76.16 (n = 512014) with a standard deviation of 8.96 (4.8).
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Figure 4.8: Violin plot showing distributions of the current signals obtained
for each of the five homopolymers. We overlay the boxplots, which represent ONT
provided expected current signal means for the four canonical bases. From these we can see a
systematic bias that is consistent for all four: current signal measurements are shifted slightly
lower. We attribute this to a difference in the voltage applied across the membrane between
our sequencing runs and those that produced the nanopore reference data. Difference in
voltage can cause systematic shifts like those exhibited here.

4.10.4 Classification results

Performance of the various classifiers were relatively similar, though GBM and SVM consis-

tently outperformed the others in terms of accuracy (4.1). Hyperparameter tuning, which

was carried out for SVM and kNN, had little impact on the accuracy of the former and

a slight effect on that of the latter. For the various classifiers trained, accuracy generally

plateaued right below 49%. We also generated confusion matrices to identify which bases

most frequently were incorrectly classified (4.2). Based on the performance of the various
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accuracy MCC
SVM 47.74% 0.35
Decision Tree 44.95% 0.31
kNN 43.88% 0.30
Random Forest 45.91% 0.34
GBM 48.30% 0.35

Table 4.1: Models used to classify homopolymers and their performances. SVM
was evaluated with various kernels, regularization parameters, kernel coefficients and decision
function shapes. The model represented above uses an RBF kernel with a coefficient of 10,
a regularization parameter of 100, and an one-vs-one decision function. KNN was evaluated
with various values for n. The chosen model here had n = 9.

Predicted class

True class

I T G C A
I 418 167 117 88 209
T 44 503 5 254 194
G 191 73 520 10 56
C 0 193 1 399 47
A 181 296 28 166 327

Table 4.2: Confusion matrix for five-way classification with GBM. The accuracy
for this classification was 48.30%, and the MCC was 0.35. We see inosine most commonly
misclassified as adenine.

classifiers used, we use as an example the confusion matrix resulting from the best perform-

ing classifier: GBM. Unsurprisingly, signal means from the inosine homopolymer were found

to be confused most frequently with those of the guanine and adenine homopolymers.

4.11 Discussion

In observing the statistics produced from analyzing the processed current signals from the

homopolymer context construct, we see that the statistics for the canonical bases coincide

with expected values. However, the minimal difference between the I homopolymer and the

A homopolymer is a disconcerting finding. To be sure of the validity of our results we ran

the pipeline again, with N substituted for A at the I homopolymer in the reference. This

produced almost identical results as the previous run of the analysis. The current signal

means for the inosine homopolymer deviated by 0.02 pA, and dwell time by 0.00002 units.
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From this we can draw one of two conclusions. Either Nanopolish’s eventalign function

does not handle the usage of N in the reference, or the difference between the I and A

homopolymers is in fact minimal. To verify which of these scenarios is the case we repeat

the analysis pipeline once more with another of the canonical bases (C) substituted for the

I homopolymer in the reference.

When considering the statistics obtained from the data produced with C in the reference

at the inosine homopolymer, we note that the mean current signal observed for the I ho-

mopolymer differs considerably from that which we observed with A and N in the reference.

Furthermore, it is much closer to the measurements observed for the C homopolymer. This

would indicate that of the two previously considered scenarios the former is the case. When

using N in the reference in the eventalign procedure we cannot reliably consider statistics

obtained for the I homopolymer. Meanwhile, when using a substitute base in the reference

at the I homopolymer, some a bias is clearly introduced into data.

We also look at the individual sample measurements used to calculate the mean current

signal for the relevant events. Both the number of signal samples and their values were differ-

ent for the same events in identical reads aligned with different references. The problematic

effect is reflected in the statistics reported for the inosine homopolymer, which tend to be

skewed significantly toward signal values which would be expected for the base used as a

substitute for inosine in the reference. The difference in signal samples indicates that reads

processed with eventalign in the manner described previously cannot reliably be analyzed

for our purposes.

In the results from the raw current analysis of the second homopolymer dataset, we

observe a shift compared to the ONT provided values which are expected for the canonical

homopolymers. This shift is consistently proportional for all four canonical homopolymers.

We see that inosine’s average signal is most similar to that of guanine and adenine. This

is expected as inosine is structurally most similar to these nucleotides. In addition, viewing

the consensus results for the second homopolymer dataset also indicates that a basecaller

interprets inosine most frequently as adenine or guanine. Regardless, it is promising to find

each of the five homopolymers exhibiting evenly spaced current signal means (4.8). This

is what we try to demonstrate in training a classifier on obtained data and subsequently

evaluating it.

Given the current signal measurement distributions, and their overlaps (4.8) it is also

perhaps not very surprising that the classifiers were unable to sufficiently distinguish between
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these five classes. The conclusion, based on the insight from this classification task, is that

either a different approach must be taken or more features are required. Specifically, if it

was possible to extract dwell time while we extracted signals to be used for classification this

might have provided further discriminative information for our classifiers. However, since

25% of the first and last signal measurements were excised arbitrarily, there was no way to

extract the dwell time for only the retained signal measurement. Going forward we keep

these insights in mind, but move on to a scenario that more closely resembles a real-life

application. This is a scenario in which one has to distinguish between one construct that

has inosine in it and another which does not contain inosine.
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Chapter 5

Experiment 2

5.1 Rationale

The approach of the second experiment was further geared towards identifying the difference

in characteristic nucleotide signature explored in Experiment 1 and distinguishing based on

these. Here, however, we take a test-based approach by doing pairwise comparisons between

sequences where inosine and the canonical bases have been incorporated at three locations

within the same contexts. The basis for this experiment is a more realistic use-case scenario.

In this scenario one sample, containing inosine, is considered the modified sample while the

others serve as control samples. We aim to observe the differences between the modified

sample and all four control samples reflected in data. Based on these differences, we wish

to draw conclusions with regards to the realizability of an accurate classification in this

comparative setting.

5.2 DNA constructs

The idea of five different construct variants is also the basis for the third and final dataset

presented here. In this case, the five different variants were all of different length, but with

an invariant segment of 69 nucleotides at the 3’-end of the construct. The five constructs also
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differ at three specific sites within this invariant segment (5.1). Upstream of the invariant

segment is a stretch of varying length that is unique to the five different constructs. These

can be used to identify which of the five constructs a given read belongs to. The idea behind

this data is that we can do a pairwise comparison between the invariant segments across

the different constructs. By comparing the three variable positions we can assess whether

it is possible to tell a construct containing inosine at these three positions from a construct

containing one of the canonical bases here. These constructs will be referred to by the base

occupying the three variable sites, i.e. the construct containing inosine will be referred to as

construct I.

Figure 5.1: Five constructs with three variable sites embedded in an invariant
3’-segment. The figure shows the five varieties of the construct analyzed in experiments 2
and 3. Toward the 5’-end is a segment of variable length and content indicated by colored
horizontal bars of varying lengths. The rest of the construct is identical with the exception
of the three variable sites accentuated by the rectangles.

5.3 Sequencing

The construct was pooled with another construct used for a different analysis and sequenced

on a single MinION using SQK-LSK109 kit. The sequencing produced 3104181 reads over

the course of 5 hours.

5.4 Basecalling and quality check

The sequenced files are, as in the previous experiment, first basecalled using ONT’s Guppy.

Again, the results of said basecalling procedure are investigated with NanoPlot, and found

to generally hold a consistently acceptable quality. As a result, no reads are filtered from

the batch of basecalled reads.
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5.5 Alignments

Producing alignments presents the first considerable challenge of this analysis. We want to

identify and separate the five distinct constructs from one another, but we need to make sure

construct I is handled in a way that does not complicate downstream steps. The challenge

is: what base should be present in the reference at the three variable positions when producing

alignments for construct I? In later steps of the analysis, we use Nanopolish again which,

as we have preiously demonstrated, can not reliably handle ambiguous nucleotides (N) in

reference. The way we address the problem of reference is to produce four alignments, one

for each of the canonical bases to be substituted at the inosine position. Data resulting

from these four different alignments will then be used for four separate comparisons. When

comparing construct I with construct A for example, we would use data from construct I

that had been aligned with A present at the three variable sites. This is a way of simulating

a natural scenario where we have a known reference and relative to the known reference

we check for modifications. In terms of handling the challenge introduced by the aligner

trying to find the best fit for the data versus the reference, this will allow for the most

robust analysis when the comparison stage is reached. All in all, we set out to produce 9

alignments; one for each construct with the exception of construct I for which we create five

(5.2).
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Figure 5.2: Procedure of generating alignments for pairwise comparison. We
first identify the five unique constructs through an initial alignment. Then we produce five
different alignments for construct I with different bases present at the three inosine positions.
Four of these are intended to be compared against specific constructs. We also align with
N in reference to check if this might work despite our previous experience with ambiguous
positions in reference with Nanopolish.

Another set of alignments were produced to format data for the five different constructs as

similarly as possible. These are alignments where only the invariant 69-nt segment towards

the 3’-end was used as a reference. This differs from the previous set of alignments which used

the whole constructs as reference. With the exception of the three variable positions within

this segment, the reference is now identical for all constructs. We must still find a way to

separate the five constructs from one another. To enable this distinction the input for these

alignments are the outputs of the initial alignments which separated reads based on which

construct they belonged to. One potentially useful consequence of this alignment is the fact

that all read information is relative to references that are the same length. This may make

the task of doing position-by-position comparisons between constructs less complicated.

The alignments are again made with minimap2, and further indexed, filtered, and sorted

with samtools.
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5.6 Initial pre-processing: preparing comparable files

To reiterate, the goal of this analysis is a position-by-position current signal and dwell time

comparison between two constructs. Comparing two constructs, we expect the current signal

and dwell time of the two to be identical at all positions with the exception of the three

variable sites.

The first step in enabling this comparison is to format the read information so it can be

interrogated on a position-by-position basis. Again, we use Nanopolish’ eventalign function

to output a .tsv file which describes every event of every read. The software we use for the

actual comparison, Nanocompore, requires some further processing.

We have to collapse the eventalign output by k-mer. This is done with a tool called

NanopolishComp which has an eventalign collapse command. As the name of the tool indi-

cates, it collapses an eventalign file. In some cases, nanopore may interpret a single k-mer

as several different events. Eventalign collapse takes the information regarding such a k-mer

and creates a single representative event. Each k-mer in the reference then occurs once in

each read of the collapsed eventalign file. The collapsed events are consolidated into one

composite of the events corresponding to this k-mer from a single read. In addition to the

current signal mean for the events, the output of eventalign collapse also contains dwell time

for each k-mer in the reference.

The central assumption made by Nanocompore for a position-by-position comparison

of two constructs, is that the two constructs are identical with the exception of potential

modifications. In other words, a single reference is used for both constructs. Here however,

we are working with constructs which, in their entirety, are variable in length and content. We

must therefore prepare data in such a way that Nanocompore understands that we are only

interested in the identical segments common to all five constructs. Namely, the 69 invariant

nucleotides towards the 3’end of the construct. Having created collapsed eventalign files for

the all five constructs in their entirety, we are not able to make comparisons of these files

directly since the commonalities between them are not apparent. A number of approaches

were taken to address this issue.

The first approach was to prune all excess information. By excess information, we mean

all information describing events prior to the invariant 69 nt segment toward the 3’-end. We
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use the reference index numbers to only retain events occurring in the invariant segment.

Though we are able to eliminate excess information, the eventalign collapse procedure also

outputs a corresponding .tsv.idx file required by Nanocompore. This file cannot be modified

to reflect the modifications made by the pruning script. And so, downstream analysis carried

out on the collapsed and pruned eventalign triggers errors.

To circumvent the issue introduced by the .tsv.idx file, we opted for a simple workaround.

This is to swap the steps of pruning and collapsing. Instead of pruning the collapsed even-

talign file, we would now be pruning the original eventalign file. The subsequent collapsing

step should then produce a .tsv.idx file which corresponds to all the information held in the

collapsed eventalign file. We make slight modifications to the procedure, but the idea of

execution is identical: to simply excise the irrelevant information contained in each read.

This enables the comparisons of sequences perceived as identical.

5.7 Comparison and various preparative steps

Comparisons in this experiment were carried out in a pairwise manner. Construct I was

compared with each of the other constructs. This resulted in a total of four comparisons.

We carried out the actual sample comparisons with the tool Nanocompore, which has a

function called SampComp. This is a tool specifically developed for the comparisons of two

RNA constructs, one being the control containing no modifications and the other containing

modifications. After contacting one of the developers of this tool, Tommaso Leonardi, we

were informed that a workflow with Nanocompore on DNA data should be feasible and

similar to a standard protocol on RNA data.

The output of running Nanocompore is three files: A results file that holds the statistical

results carried out for each event in the two constructs; a shift stats file that contains basic

descriptive statistics for both constructs per position; and a database wrapper object that

contains the underlying data from which the statistical results are calculated.

A recurring issue in running the comparison for our eventalign files was that the Samp-

Comp output files were filled with exclamation marks. This appeared to be an error-response

put in place to notify of mismatches between reference and construct positions. We employed
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multiple pruning strategies to ensure that the reference used for comparison was common

for both constructs, and that these were the same references used to align to the constructs

that were to be compared. Even after ensuring this to be the case, the exclamation marks

persisted.

We noticed that after tweaking the SampComp scripts slightly, though the exclamation

marks were still present in the results output, data present in the shift stats output looked

like the sort of output we were expecting. After cleaning up the results output and removing

the exclamation, we were left with a file that could be used for plotting these results.

We produced line graphs describing the change in current for all constructs. The plot

was made with bokeh, using a template plot-maker script provided in the Nanocompore

documentation. Only case-specific modifications were made to this script. Using bokeh

allowed for an interactive plot where the currents of all constructs could be selectively viewed.

5.8 Results

When viewing the plot of all comparisons made to visualize the results of the position-by-

position current comparison, we expected to see a difference between the inosine construct

and the construct that it was being compared to at the inosine positions. Furthermore, since

the constructs were identical with the exception of the three variable sites, we expected to

see no difference in current signal mean at all positions except these variable sites.

Selecting a view corresponding to the pairwise comparisons, for example, viewing con-

struct I aligned with A in the reference along with construct A, we saw no such difference.

The two constructs look identical for all positions (5.3). This is the case for all other pairwise

comparisons made here (5.4).
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Figure 5.3: Pairwise comparison of construct I and construct A. The plot shows
the graphs of mean current levels resulting for construct I (aligned with A present in the
reference at the inosine positions) and construct A. The two lines are so similar that they
overlap each other and hence only a single line can be seen in the plot. The bolded vertical
grey lines indicate the three variable positions.

Figure 5.4: Pairwise comparison of construct I and construct C. Here construct I
has been aligned with C present in the reference at the three inosine positions to prepare
for comparison with construct C. Again, we see there is no detectable difference in current
signal between the two constructs, which are known to be distinct at the three positions
indicated by the vertical bolded grey lines.
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5.9 Discussion

While proposing the design of this experiment, we had expected to enable the comparison

between two DNA constructs known to be different from one another at exactly three lo-

cations. While we were able to make these comparisons, the resulting comparisons showed

no difference when looking at an inosine-containing construct versus a construct with one of

the canonical bases present at the same position. Comparing the signal difference at one of

these variable sites versus one of the invariant sites does not disclose a tendency toward a

larger current measurement difference at the variable site relative to the rest of the construct.

Since we know that the two constructs contain different nucleotides at the variable location,

this is highly unexpected.

It is challenging to pinpoint exactly why this appears to be the case. Possibly, there could

be an undisclosed error in the Nanocompore framework that does not handle DNA data in

the same way as it does RNA data. However, also curious to note are some potentially

complicating observations that were apparent when the second round of alignments were

carried out to prepare construct I for comparison and these were made in IGV. As an

illustrating example, when aligning to the construct I the resulting alignment file should

have only data describing the inosine construct. Since inosine is an ambiguously interpreted

base the three variable sites should reflect this in the base identity frequency. In other words,

when looking at the most frequently observed base at each of these three sites, we expect to

see some disagreement. Specifically, we would expect the frequencies for observed adenine

and guanine to be higher relative to cytosine and thymine. This is because we have observed

inosine to be more structurally similar to the purines.

What we actually observed at these sites did not match these expectations (5.3). We

could illustrate with an example of the inosine construct aligned to a reference with adenine

present at the variable sites. Bear in mind that this construct is then being prepared to be

compared to a construct that in fact has adenine present at these three sites. When looking

at the base frequency at each of the three variable sites there is no apparent disagreement or

ambiguity with regards to base identity. The most ambiguity observed is for the second of

the three variable sites, where 88% of reads are reported to contain adenine at this position.

Meanwhile, over 95% observed adenines are reported for the first and the third variable sites.

This could also be a factor of the two rounds of alignments, first to the whole construct and
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then to only the invariant segment which is used for comparison. When viewing the alignment

produced by using the whole construct as a reference, a certain level of ambiguity, ranging

from 79% - 84% majority base, is present for all three sites.

Regardless, the conclusion we can draw is that the base present in the reference influ-

ences the signal through the alignment process leading to bias later in the analyses. We can

see this by viewing the alignments produced for the inosine construct with another of the

canonical bases present at the variable sites. The base frequency statistics for these align-

ments consistently report a majority of reads containing the base substituted for inosine in

the reference (5.5).
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Figure 5.5: Construct I aligned with different references. In the top half of this
figure view an alignment of construct I with C in the reference (A). The construct is known
to contain three inosines, but has been aligned with a reference containing cytosine at those
positions. By looking at the base counts, we can tell one inosine position as indicated by the
colored vertical bar. This position is also indicated by a black arrow. Here 79% of the bases
are cytosines. At both of the other inosine positions 90% of the bases are cytosines, and so
these do not have the same vertical colored bar due to overwhelming reference agreement.
Notably, our analyses have indicated that cytosine’s signature current signal is the one out
of all four canonical bases that is the least similar to inosine. Below, we view an alignment
of the same construct with a reference containing A (B). Here all three inosine positions
have 88% adenine bases or more. This illustrates the problem that arises with accounting
for the presence of inosine in a reference. The aligner finds the best fit between the given
reads and the reference. Thus, the aligned reads will appear to be closer to the reference.
When we compare construct I aligned with A in the reference to construct A, the two will
appear indistinguishable since both alignments are reported to contain adenine at the three
variable positions.

Since a surprisingly low level of ambiguity is present with regards to the three variable

sites in construct I after two alignments, this could cause the Nanocompore comparison to be
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unable to distinguish between the variable positions in the modified and control constructs.

The goal of the subsequent experiment will then be to circumvent this alignment step, to

avoid introducing changes into data as a result of processing.
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Chapter 6

Experiment 3

6.1 Rationale

In experiment 2, we found that we were unable to detect a difference in current signal

when comparing construct I with any of the other constructs. From our analyses, it seems

that substituting one of the canonical bases in the reference which we align construct I to

introduces a bias in the data after alignment. This bias makes the current signal values for

the two constructs we wish to compare too similar, and thus we are unable to distinguish

between the two. In this experiment, we address this and avoid this bias by analyzing data

belonging to construct I that has been aligned to a reference that instead contains N at the

three inosine positions.

The approach in the third experiment can be conceived of as a hybrid of the two prior

experiments. As we did in the first experiment, we focus on the raw current signal. And

similarly to the second experiment, we are looking at data on a position-by-position basis.

The central idea is to focus on the three variable positions and the surrounding nucleotides.

Specifically, we limit the scope of our focus to the four bases immediately upstream and

downstream of a central variable position. We do this since these are all the positions at

which the central variable nucleotide has a direct influence on the measurements made by

the nanopore. From raw basecalled data we then extract descriptive statistics, then move

on to compare the five constructs against one another. Finally, we train a machine learning
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model to differentiate and correctly classify a 9-base segment based on construct. If this

classification is successful, we can then infer the identity of the central variable position

based solely on data gathered from these nine positions.

The bulk part of the processing prior to analysis is directed at identifying the set of reads

that contain an alignment for all the three variable sites and the surrounding positions. In

each read we check for alignments at each of the three variable sites. Data describing one

of the variable sites and its immediate context is only used if a given read contains data

corresponding to each of the nine positions in a segment of interest.

6.2 DNA constructs

The DNA constructs used for this experiment are the same ones that were used for the second

experiment. Thus, we have five constructs with a variable segment followed by an invariant

segment of 69 bases. Again, there are 3 variable positions within the invariant segment.

Where we in the second experiment focused on the entirety of the invariant segment, here

we further limit our focus to only the three variable sites within this segment along with the

four nucleotides on either side of each of the variable sites.

6.3 Basecalling, alignment, and further pre-processing

We use the construct-specific alignments produced in the previous experiment to identify

the five different constructs. For construct I, we use alignments specific to this construct

but this time containing N in the reference at the three inosine positions to avoid any bias

introduced in alignment. The alignments are used to inform a subsequent filtering step

aimed to identify reads containing data which we are interested in using for comparison.

After generating a subset of raw reads, only retaining those reads we have found to contain

the relevant information, do we basecall this subset of reads for further analysis. However, the

steps pertaining to basecalling and aligning proceed identically to prior descriptions. Since

we are using the same data as in the previous experiment, no further quality controlling

steps are taken.
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We then prepare for downstream position-by-position analysis by converting alignment

files (.bam) to .tsv files using sam2tsv [39]. In preparation for using the sam2tsv java archive

based tool, we must also create a sequence dictionary which is required by sam2tsv. To do

this we use another java archive based tool, picard [40]. The result of these steps is five

separate files which correspond to each of the five constructs.

6.4 Filtering and further processing

Each of the resulting files from the previous step contains a magnitude of information, most

of which is not relevant to the analysis we are carrying out. The first step in condensing

data to contain only the relevant information is to identify which reads contain information

for the three variable sites and their surrounding context. In order to not exclude valuable

data, we consider each of the three variable sites and their respective surrounding bases

individually.

For these purposes, we check for alignments at sequence indices relative to the reference

specified to correspond to the segments that we are interested in. We determine for each

read that is processed, whether it contains a complete alignment (i.e. a sequence match for

all positions) to one of the three 9-nt segments of interest. If this is the case, the read ID of

the read is appended to a list of IDs that are known to contain at least one segment we are

interested in. The procedure is carried out once per construct for each of the three potential

segments of interest.

Two sanity checks are then applied to the input. These respectively ensure that each

segment is represented by exactly 9 reads with “M” as the CIGAR value and that no read

appears twice in the output. Once the output is verified to contain the information we are

interested in, another script writes all read IDs to a separate list. For each construct we then

have three such lists corresponding to the three variable sites with their contexts.

In order to access raw data describing these reads, we subset the bulk .fast5 directory.

Using ont-fast5-api, we create another directory containing only the reads as indicated by

the list of read IDs. At this stage, we basecall only the subset of .fast5 files obtained in this

step.
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Next, we traverse the bulky format of the .fast5 files to extract the salient points of in-

formation. We use the importable get fast5 file from the ont fast5 api for the traversal, and

to localize regions of interest we use a pairwise alignment method provided by Biopython

[41]. In the process, we also use Nanopolish’s pA normalization step to enable comparisons

with similarly processed data. The points of information we gather here are: read id, base

present in read, mean current signal, current signal standard deviation, dwell time, and base-

call quality score. The specific raw signal measurements are again extracted by navigating

something resembling the event data table discussed in Experiment 1.

6.5 Position-by-position comparison

When examining the differences between the same 9-nt segment across five constructs, we

look at the differences present in the data individually at each position. The output we pro-

duced in the previous step contains data from all nine positions in bulk. To make subsequent

analysis easier, we separate data from each of the nine positions in each of the three segments

of interest into separate files. We compare constructs based on mean current signal, current

signal standard deviation, dwell time, and basecall quality, then produce plots to visualize

these comparisons. Furthermore, we look at the base count for each position of the three

segments in construct I.

6.6 Construct classification

Following the visualization of data by position, we prepare the data for classification. For all

nine positions in each of the three segments we include the following features: mean current

signal, current standard deviation, base identity, dwell time, and basecall quality. A single

column in the table indicates the construct a single row belongs to. We train a random

forest classifier on this table providing all features as predictors, and the construct label as

the target variable. We also test our classifier with a subset of these features, to evaluate

the relative importance and information gain of the different features. This will tell us how

well we are able to discriminate all five constructs from one another. We refer to this as the

five-way classification task. For a more coarse classification on whether the construct is an
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inosine-containing construct or not, we add another label indicating whether a construct is

construct I or any of the other constructs. We train another model on this classification as

well. This we will refer to as the two-way classification task.

To robustly evaluate our classifier, we trained the classifier on the first segment and

evaluated the performance of the model on the second segment. This will assess whether the

model is able to recognize a pattern which is not merely specific to a single context. Since

we are using features from all nine nucleotides in the segment, this is particularly important.

We wish to minimimze the possibility of the classification task being too greatly influenced

by learning features from the surrounding bases rather than the central variable position we

wish to classify. To do this, we perform another round of classifications where the values

for current measurements and dwell times have been normalized by the expected value for

these variables. This is done by using 10% of gathered data to estimate a mean for both

these values for each position in each segment. The mean is then subtracted from the values

recorded for the other 90% of data. Data from construct I was overrepresented in terms of

total samples available. Due to this class imbalance, we used the built in balance classes

function of the H2O Distributed Random Forest model [42]. This upsamples the under-

represented classes.

6.7 Results

6.7.1 Position-by-position comparison results

In comparing the average pA normalized current signal from the first 9-nt segment of all five

constructs, we observed that the signal measurements for the two nucleotides on the ends

of either side of the 9-nt long segment almost did not differ at all. However, on the third

nucleotide of the segment, we start to see the contours of diverging signal measurements.

Continuing the trend, the difference of the five constructs is greater at the fourth nucleotide

and even more so at the fifth and sixth nucleotides. On the seventh nucleotide the signal

averages start to converge again, and on the last two nucleotides the signals are almost

identical again (6.1).

The second and third segments exhibited the same trend with slight variation. In the sec-

ond segment, though there is certainly a converging tendency also in the seventh nucleotide
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position (T), a greater level of variance persists between the five constructs (6.1). While in

the third segment the plot visualizing these differences looks slightly different. This is due to

a change in the reference sequence where it seems two nucleotides have switched positions.

We observe an apparent shift in data describing constructs I and A, relative to the other

three (6.1).
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Figure 6.1: Average current per position for three segments for all five con-
structs. The general trend of these plots is most clearly illustrated by the comparisons of
the first and the second segment (A and B). Here we can see very little difference in mean
current for the first and the last bases in the segments. As we move toward the central
variable position, the differences between the constructs increase, with the most pronounced
difference being at the central base or one of its neighbors. In the plot made for the third
segment, we also see the same trend (C). However, the curves for construct I and construct
A seem to have been offset by a single base relative to the other three constructs. We also
see almost identical curves for these two constructs.
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Comparisons of standard deviation in the signals also agree with the results of comparing

signal averages. We see a definite agreement across all constructs in the first two nucleotides,

a tendency towards greater difference on the third nucleotide, followed by three nucleotides

of a pronounced difference in standard deviations. At the seventh nucleotide, we again see

a tendency towards greater similarity across constructs, and then less difference at the last

two positions of the 9-nt segment (6.2). Though the general trend is the same for all three

segments, we disregard the third segment as it was affected by the reference shift.

Figure 6.2: Standard deviation of mean current per position of the first segment.
Here we also see a clear tendency of a greater level of variance at and around the central
variable position.

Mean dwell time comparisons show the same trend, but to a lesser extent. Here, the

biggest differences are limited to the central variable nucleotide with slight difference in its

immediate neighbor nucleotides on either side (6.3). While differences in dwell time standard

deviations are present across all positions with the exception of the first and last positions

in the segment.
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Figure 6.3: Mean dwell time per position for the first segment for all five con-
structs. We see a similar trend to previous plots of increased variance toward the variable
base.

For basecall quality, we again observe a trend congruent with the mean current signal

comparisons. More similarity is present at the two first and last nucleotides, with a more

pronounced difference being apparent in all five central positions of the segment. In the first

segment construct I has a worse score than all other constructs for almost all bases (6.4).

We do not observe the same quality scores for this construct in the second segment (6.4).
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Figure 6.4: Basecall quality score per position for the first and second segment
for all constructs. In the first segment, we can see that construct I has a lower average
mean bascall quality for almost every position (A). However, in the second segment this
trend cannot be seen (B). Similar for both plots is the relatively greater degree of agreement
toward the start and the end of the segments. It isn’t as clearly pronounced as in current
comparisons but still present. It is particularly clear toward the end of the second segment.

The base identity for all positions except the central variable nucleotide are in agreement

with the base indicated by the reference. In the first segment of construct I, the central

inosine was in the majority of reads basecalled as G, but also often as C (6.5). Looking at

the base count for the second segment, inosine was identified as each of the four canonical

bases by even proportions (6.5). In the third segment, the central inosine was basecalled as

adenine in the majority of reads (6.5). It should be noted that there is a small frequency

of mismatches in the four positions before and after the central variable nucleotide. This is

60



an almost insignificant fraction, but it is slightly larger for the four bases after the variable

position.

Figure 6.5: Base count per position for all three segments of construct I. In the
first segment we observe that the central inosine is most frequently basecalled as guanine,
but also quite frequently as cytosine (A). However, in the second segment inosine is almost
evenly basecalled as all four canonical bases (B). Here we also see a slightly greater fraction of
misclassifications occurring after the variable base. This tendency is even more pronounced
in the third segment (C). In this case, the inosine was most frequently basecalled as adenine.
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6.7.2 Construct classification results

6.7.2.1 Training and testing on the same segment

We trained the first random forest classifier on the first segment, using all five extracted

features. The model was specified to generate 20 trees, with a max depth of 7. After

training on 80% of the data, we then validated on 20% of the data from the same segment.

Evaluating the classification of inosine presence, we were able to correctly classify 62367 out of

68304 samples (6.1). This is a success-rate of 91.31%. The Matthews Correlation Coefficient

(MCC) for this classification was 0.83. We also performed a five-way classification with this

training and testing approach. Using the same model specifications, in this case we were

able to classify the correct construct for 125798 out of 170551 samples (6.2). This yields a

success-rate of 73.76% and an MCC of 0.67.

Predicted class

True class
False True

False 32057 2140
True 3797 30310

Table 6.1: Confusion matrix for two-way classification after training and testing
on the same segment. The rows indicate the true class of a sample, while the columns
indicate the predicted class. This classification achieved an accuracy of 91.31% and a MCC
of 0.83.

Predicted class

True class

construct I construct A construct T construct C construct G
construct I 32402 0 0 1680 26
construct A 823 33286 0 0 2
construct T 60 0 34015 0 0
construct C 9097 0 0 25017 0
construct G 33065 0 0 0 1078

Table 6.2: Confusion matrix for five-way classification after training and testing
on the same segment. This classification achieved an accuracy of 73.76% and an MCC of
0.67.
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6.7.2.2 Training and testing on different segments

When evaluating the performance of the same model trained on data from the first segment,

but tested on data from the second segment, we also started by evaluating the performance

on the two-way classification task. Here, we use the average current signal, dwell time, and

basecall quality score for each of the 9 positions as features for classification. We were able

to correctly classify 62332 out of 68183 samples, yielding an accuracy of 91.42% and MCC

of 0.83 (6.3). Meanwhile, on the five-way classification task we were able to correctly classify

140625 out of 170405, giving an accuracy of 82.52% and MCC of 0.78 (6.4).

Predicted class

True class
False True

False 32384 1691
True 4160 29948

Table 6.3: Confusion matrix for two-way classification after training on the first
segment and testing on the second segment. This classification achieved an accuracy
of 91.42% and an MCC of 0.83.

Predicted class

True class

construct I construct A construct T construct C construct G
construct I 31633 0 4 2215 256
construct A 1131 32974 5 1 1
construct T 203 0 33838 7 0
construct C 1275 0 0 32783 0
construct G 24680 1 0 1 9397

Table 6.4: Confusion matrix for five-way classification after training on the first
segment and testing on the second segment. This classification achieved an accuracy
of 82.52% and an MCC of 0.78.

6.7.2.3 Training and testing on different segments with normalized data

We also applied this same training and testing framework of training on the first segment

and testing on the second segment to normalized data. Also here, are we using three fea-

tures: average current signal, dwell time, and basecall quality. The former two have been

normalized. Starting with a focus on the two-way classification, we are able to classify 61315
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out of 61414 samples correctly (6.5). This gives an accuracy of 99.84% and an MCC of 0.99.

For the five-way classification, we were able to classify 143532 out of 153628 correctly, an

accuracy of 93.42% and MCC of 0.92 (6.6).

Predicted class

True class
False True

False 30640 46
True 53 30675

Table 6.5: Confusion matrix for two-way classification after normalizing data,
training on the first segment, and testing on the second segment. This classification
achieved an accuracy of 99.84% and an MCC of 0.99.

Predicted class

True class

construct I construct A construct T construct C construct G
construct I 30719 0 1 5 4
construct A 1221 26637 964 734 1185
construct T 1235 70 27728 1325 351
construct C 996 16 217 29384 106
construct G 1425 2 42 197 29064

Table 6.6: Confusion matrix for five-way classification after normalizing data,
training on the first segment, and testing on the second segment. This classification
achieved an accuracy of 93.42% and an MCC of 0.92.

6.8 Discussion

We observe a definite trend of increasing variation seen at the central variable position

and the surrounding nucleotides. This is exhibited across the comparisons for almost all

values for the three segments, and suggests that the different constructs exhibit considerable

variation that can be helpful in classifying the constructs. While this difference is consistent

for all comparisons, the tendency of this difference is not consistent across the segments.

That is, we don’t see the influence of inosine having a similar impact on the measurements

across different contexts. This may not be particularly surprising when it comes to the mean

current signal since the kmers influenced by the variable base differ, but it is somewhat more

surprising when it comes to basecall quality. We would expect construct I to on average
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have a lower basecall quality, since it contains a base that doesn’t conform to the nucleotides

expected by the basecallers. This is the case for the first and the third segments, where

we see a considerably lower basecall quality for the bases around the variable nucleotide.

In the second segment we don’t see this tendency, with both construct G and construct T

exhibiting lower basecall quality for the same positions.

Nevertheless, when it comes to classification we need to ensure that we aren’t introducing

sequence-dependent bias of the contextual underlying data distributions. This is the reason

for training on one segment and evaluating on another, since these differ in their surround-

ing context; it is also the reason for normalizing data which can remove the influence of the

surrounding context. After doing both of these we are left with a classifier that is equipped

to differentiate between all five constructs. If we examine the confusion matrix (6.3), the

major difficulty for the five-way classification prior to normalization is the correct classifi-

cation of construct G. A large portion of these samples are classified as construct I. Given

the observations with regards to nanopore’s processing of inosine in contrast to the canon-

ical bases, this supports the finding that inosine has a profile most similar to adenine and

guanine. After normalizing, the model gets a considerable boost in performance for both

classification tasks. But for the five-way classification the errors are more evenly spread

across all constructs (6.4). In fact, after normalizing it seems that construct A presents the

most confusing samples for our classifier.

However, we are more interested in the confusion with regards to adenine in a two-

way classification. This is because in a natural setting inosines occur in DNA through the

deamination of adenine. As indicated by the confusion matrix from the 5-way classification,

there is little confusion in the classification of construct I. There is still some confusion in

the classification of construct A, where a considerable portion of samples are classified as

construct I. This is likely due to the over-representation of construct I in the data.

Looking at the confusion matrix for the 2-way classification however, we see there are

very few misclassified samples (6.5). This tells us that when the objective is to detect the

presence of inosine, this framework for classification is sufficiently discriminating.
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Chapter 7

Discussion

7.1 Discussion

In this thesis, we have introduced the experimental relevance of detecting Inosine in DNA

sequence data. We have generally discussed methods for detecting modifications, the advan-

tages nanopore sequencing offers in this task over previous generations of sequencing, and

the current state of the modification detection enterprise. This formulated the motivating

impetus of the study. We then proposed proceedings for realizing the potential application

of nanopore sequencing in detecting inosine and introduced briefly the technical aspects of

the data we would be working with.

We then presented a framework for identifying the presence of inosine within a specific

window of DNA sequence data. Following our proposal, we have surveyed the profile of

inosine as it is processed by nanopore. We attempted to run pairwise comparisons for our

constructs using Nanocompore on DNA data. Not being able to distinguish constructs using

this approach, we do position-by-position comparisons of constructs to see the difference in

signal measurements and other sequence data without the influence of other analytical tools.

Observing this difference, we define a random forest classifier which successfully distinguishes

between constructs containing inosines and those that don’t. Though not fully integrated

into a pipeline, the potential for applying a machine learning classifier to the task of inosine

detection is demonstrated. While detection of other modifications by similar approaches
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have been demonstrated previously, this is the first work addressing the detection of inosine

in DNA. Specifically, the proposed framework shows utility in a natural setting. This is a

scenario in which adenine has been modified to an inosine — a classification task which our

model performs well on.

One limitation of the current framework is that it has only been tested in a setting where

the relevant sites for modification are known. In future work, an aim would be to further

develop the approach to become a self-contained pipeline. Given raw data from a sequence

containing either adenine or inosine and a known reference, the model, having been trained

on normalized data containing both of these bases, could then classify whether inosine is

present in a construct or not. Potential modifications could be localized by surveying the

construct at relevant positions and using a sliding window approach to evaluate the signal

data from the local region. Continuing the development of this tool we would then focus

efforts on developing this functionality.

Further, it would be interesting to generalize the classification framework and see its

performance on other modifications. Several modifications are known to exhibit a similar

variance as we have observed for Inosine, where measurements show deviation from model

values at and around a modified base. We would be able to use the same framework to detect

such modifications. This could be an avenue to pursue in an effort to extend this framework

towards a more general modification detection tool for nanopore data.

In developing a general modification detection tool, we would also need to put more focus

on the performance of the framework relative to other existing frameworks. This would

involve benchmarking accuracy and efficiency against other established tools for detection

modification.

7.2 Conclusion

In this thesis, we set out to classify the presence of inosine in a given sequence. Firstly, we

looked at the possibility of distinguishing the pure signal of inosine from that of the four

canonical DNA nucleotides. Furthermore, we attempted to train a classifier to distinguish

between the pure signals of these five nucleotides based only on current signal mean and stan-

dard deviation. We moved on to use the sample comparison functionality of Nanocompore,

68



a tool designed for RNA modification detection, to distinguish between one modified and

four non-modified DNA sequences. Finally, we isolated the relevant data from our modified

and non-modified DNA constructs. We used these to train a classifier on distinguishing the

five constructs. In addition, we trained another classifier to address a two-class problem of

distinguishing modified and non-modified sequences.

In the initial phase of this work, we present a description of inosine’s characteristic

current signal profile. We also demonstrate that the pure signal signature of inosine is

indeed sufficiently distinct from that of the four canonical DNA nucleotides. However, it

is not so distinct that one can readily distinguish an inosine homopolymer from the four

canonical homopolymers based only on current signal mean and standard deviation values.

Despite prolonged efforts, we were not able to demonstrate modification detection in

DNA sequence data with Nanocompore. Where we expected to be able to see a consider-

able difference in current signal measurements when comparing modified and non-modified

samples, no such difference could be observed.

In the final phase of the project, we construct our own framework for sample comparison

and are then able to observe the difference we expected when comparing modified and non-

modified samples. Based on these observations we construct a classifier which with high

accuracy distinguishes constructs containing inosine and those that do not. We demonstrate,

as the first work to do so, the successful classification of inosine presence in nanopore sequence

data from DNA.

Further work is required to integrate our proposed approach into a stand-alone toolkit for

inosine detection. In doing so, there are several interesting avenues for expanding function-

ality that can be explored. Such avenues could include generalizing our approach to other

modifications or trying to detect modifications without training for one particular modifi-

cation. This would require generating new datasets and further refinement of the overall

approach. Thus, we would continue to expand upon the promising results presented in this

work.

69



70



Bibliography

[1] Raiber Eun-Ang, Robyn Hardisty, van Delft Pieter, and Balasubramanian Shankar.

Mapping and elucidating the function of modified bases in DNA. Nature Re-

views. Chemistry, 1(9), September 2017. doi: http://dx.doi.org.pva.uib.no/10.1038/

s41570-017-0069. URL http://www.proquest.com/docview/2389664451/abstract/

136BB822819A4F34PQ/1. Place: London, United States Publisher: Nature Publishing

Group.

[2] William Stephenson, Roham Razaghi, Steven Busan, Kevin M. Weeks, Winston Timp,

and Peter Smibert. Direct detection of RNA modifications and structure using

single molecule nanopore sequencing. bioRxiv, page 2020.05.31.126763, June 2020.

doi: 10.1101/2020.05.31.126763. URL https://www.biorxiv.org/content/10.1101/

2020.05.31.126763v1. Publisher: Cold Spring Harbor Laboratory Section: New Re-

sults.

[3] Qian Liu, Li Fang, Guoliang Yu, Depeng Wang, Chuan-Le Xiao, and Kai Wang. Detec-

tion of DNA base modifications by deep recurrent neural network on Oxford Nanopore

sequencing data. Nature Communications, 10(1):2449, June 2019. ISSN 2041-1723. doi:

10.1038/s41467-019-10168-2. URL https://www.nature.com/articles/s41467-019-

10168-2. Number: 1 Publisher: Nature Publishing Group.

[4] Shanika L. Amarasinghe, Shian Su, Xueyi Dong, Luke Zappia, Matthew E. Ritchie,

and Quentin Gouil. Opportunities and challenges in long-read sequencing data analysis.

Genome Biology, 21(1):30, February 2020. ISSN 1474-760X. doi: 10.1186/s13059-020-

1935-5. URL https://doi.org/10.1186/s13059-020-1935-5.

[5] Miten Jain, Hugh E. Olsen, Benedict Paten, and Mark Akeson. The Oxford Nanopore

MinION: delivery of nanopore sequencing to the genomics community. Genome Biology,

71

http://www.proquest.com/docview/2389664451/abstract/136BB822819A4F34PQ/1
http://www.proquest.com/docview/2389664451/abstract/136BB822819A4F34PQ/1
https://www.biorxiv.org/content/10.1101/2020.05.31.126763v1
https://www.biorxiv.org/content/10.1101/2020.05.31.126763v1
https://www.nature.com/articles/s41467-019-10168-2
https://www.nature.com/articles/s41467-019-10168-2
https://doi.org/10.1186/s13059-020-1935-5


17(1):239, November 2016. ISSN 1474-760X. doi: 10.1186/s13059-016-1103-0. URL

https://doi.org/10.1186/s13059-016-1103-0.

[6] Aaron M. Fleming, Nicole J. Mathewson, and Cynthia J. Burrows.

Nanopore dwell time analysis permits sequencing and conformational as-

signment of pseudouridine in SARS-CoV-2. bioRxiv, 2021. doi: 10.1101/

2021.05.10.443494. URL https://www.biorxiv.org/content/early/2021/05/

10/2021.05.10.443494. Publisher: Cold Spring Harbor Laboratory eprint:

https://www.biorxiv.org/content/early/2021/05/10/2021.05.10.443494.full.pdf.

[7] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34

(18):3094–3100, September 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty191.

URL https://doi.org/10.1093/bioinformatics/bty191.

[8] Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, and James A. Yorke.

Reducing storage requirements for biological sequence comparison. Bioinformatics, 20

(18):3363–3369, December 2004. ISSN 1367-4803. doi: 10.1093/bioinformatics/bth408.

URL https://doi.org/10.1093/bioinformatics/bth408.

[9] Nicholas J. Loman, Joshua Quick, and Jared T. Simpson. A complete bacterial

genome assembled de novo using only nanopore sequencing data. Nature Meth-

ods, 12(8):733–735, August 2015. ISSN 1548-7105. doi: 10.1038/nmeth.3444. URL

https://www.nature.com/articles/nmeth.3444. Number: 8 Publisher: Nature Pub-

lishing Group.

[10] Ingrun Alseth, Bjørn Dalhus, and Magnar Bjør̊as. Inosine in DNA and RNA. Current

Opinion in Genetics & Development, 26:116–123, June 2014. ISSN 0959-437X. doi:

10.1016/j.gde.2014.07.008. URL https://www.sciencedirect.com/science/article/

pii/S0959437X14000811.

[11] M S Paul and B L Bass. Inosine exists in mRNA at tissue-specific levels and is most

abundant in brain mRNA. The EMBO Journal, 17(4):1120–1127, February 1998. ISSN

0261-4189. doi: 10.1093/emboj/17.4.1120. URL https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC1170460/.

[12] John S. Mattick, Paulo P. Amaral, Marcel E. Dinger, Tim R. Mercer,

and Mark F. Mehler. RNA regulation of epigenetic processes. BioEs-

says, 31(1):51–59, 2009. ISSN 1521-1878. doi: 10.1002/bies.080099. URL

72

https://doi.org/10.1186/s13059-016-1103-0
https://www.biorxiv.org/content/early/2021/05/10/2021.05.10.443494
https://www.biorxiv.org/content/early/2021/05/10/2021.05.10.443494
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bth408
https://www.nature.com/articles/nmeth.3444
https://www.sciencedirect.com/science/article/pii/S0959437X14000811
https://www.sciencedirect.com/science/article/pii/S0959437X14000811
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170460/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170460/


https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.080099. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/bies.080099.

[13] Brenda L. Bass. RNA Editing by Adenosine Deaminases That Act on RNA.

Annual review of biochemistry, 71:817–846, 2002. ISSN 0066-4154. doi:

10.1146/annurev.biochem.71.110601.135501. URL https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC1823043/.
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Appendix A

A.1 Source code

The code used to produce the data presented here can be found at this Github repo

(https://github.com/Stautis/detecting-inosine-master-thesis).

A.2 Data availibility

Data used for analysis can be made available upon request.
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