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A B S T R A C T   

In sequential field development planning, past decisions not only directly affect the maximum achievable ex
pected NPV but also influence the future information that can be used to reduce geological uncertainty. To act 
optimally, when choosing actions, we must also take into account the opportunities to improve the optimal 
strategy by reducing future uncertainty. In most applications, however, the effect of future information on the 
optimal decisions is ignored because it would be computationally intractable to update the reservoir model and 
re-optimize to account for all possible outcomes of future observations. To efficiently make optimal decisions 
while considering future possibilities for learning through actions, we developed a flexible workflow built on the 
key-feature-based value of information (VOI) analysis, which is obtained by identifying key reservoir features for 
optimization problems and key observations for improving future decisions. Instead of considering future in
formation from all remaining actions, we only consider the important information from key actions to reduce the 
uncertainty with the largest influence on the optimal strategy – that which would be most helpful in improving 
future decisions. The efficiency of the method results from the focus on the use of key observations to reduce key 
uncertainty, rather than using all observations to reduce all uncertainties. 

In this work, we built supervised-learning algorithms to identify the optimal combination of observations for 
reducing key uncertainty and simultaneously to estimate the information’s reliability. This allows automatic 
detection of key observations and direct computation of the posterior probability distribution of key uncertainty 
based on Bayes’ rule, avoiding the need for full history matching to re-estimate the uncertainty. Moreover, the 
entire key observation space is divided into a limited number of disjointed subspaces, such that observations 
located in the same subspace have almost the same prediction precision for key uncertainty reduction. It is then 
only necessary to update the reservoir model for each subspace instead of for all distinct sets of observations. Our 
methods are illustrated by the application of the drilling-order problem in a synthetic field model, for which the 
drilling sequence of wells is an important contributor to the reservoir’s profitability and for which the optimal 
solution changes significantly with key reservoir features. Results show that using such a simplified VOI analysis 
based on key actions and key observations can efficiently improve the expected outcome of an optimal strategy 
with very little performance loss. Although the key actions provide important information for key uncertainty 
reduction, taking key action rather than the initial optimal decision for the current uncertainty state is not always 
worthwhile even if the information is obtained without explicit cost. Since there may be an indirect cost of 
information caused by taking an action that appears to be sub-optimal based on past information, it is necessary 
to consider both the possibility of key uncertainty reduction and the possibility of high expected NPV to 
determine whether it is worth taking the action to improve future decisions.   

1. Introduction 

Almost all published reservoir management or field development 
optimization studies have as a goal, the generation of a sequence of 
actions that is optimal for the current level of knowledge. There is an 
implicit assumption that the sequence that is delivered should be 

adhered to, whatever the results of the drilling or the control settings. 
These strategies, would in fact be optimal if there was no opportunity to 
later make revisions. In reality, one would, of course, modify the drilling 
schedule or the operation of wells as soon as one obtained new infor
mation that revealed a different picture of the reservoir. 

How should we account for the possibility of learning from actions 
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when optimizing field development for expected net present value 
(NPV)? To account for future learning requires computation of the value 
of information (VOI), as it may be advantageous to “pay” for information 
by making a decision that appears to be sub-optimal for the current 
assessment of uncertainty in reservoir characterization. If the value of 
the information obtained by taking an action is greater than the loss of 
expected NPV, then it is beneficial to take the action. 

Unfortunately, while the need to account for the sequential nature of 
the field development problem is well known, it has generally been 
ignored in reservoir optimization (Jansen et al., 2005; Sarma et al., 
2006; Wang et al., 2009; Chen et al., 2009). The key challenge is that in 
order to rigorously compute the value of information one must consider 
all possible values of data that might be obtained from an action then 
solve a history matching problem with uncertainty assessment for each 
possible outcome of the data (Barros et al., 2015a, 2016, 2020; Hong 
et al., 2018). Then optimization must be performed to determine what 
action should be taken and a value assigned to all possible outcomes. 
Although several approaches have been proposed to estimate the value 
of information (Godaet al., 2017; Chen et al., 2017; Eidsvik et al., 2017; 
He et al., 2018; Barros et al., 2020) for problems in which production 
flow data must be assimilated, the cost of the combined history matching 
and optimization is prohibitive for realistic problems. Hence most ap
plications that have considered future learning have had very few de
cision options (for example drill or not to drill a well) or to problems in 
which the data assimilation is extremely easy and there are few possible 
data. Even in those cases however the optimization applications or the 
data simulation were relatively simple (Cunningham and Begg, 2008; 
Barros et al., 2015b; Hong et al., 2018). 

The problem of robust optimization, taking into account the possi
bility of uncertainty reduction through the acquisition of data, is closely 
related to the concept of value of information (Schlaifer, 1959; Grayson, 
1960; Bratvold et al., 2009). The application to closed-loop reservoir 
management (CLRM) is of particular interest. Barros et al. (2016) 
compute the value of information obtained from an optimal CLRM 
strategy with traditional production observations. The information is 
then used to re-estimate uncertainty and re-optimize the controls. They 
showed that it was possible to compute the value of CLRM in a rigorous, 
but highly expensive, way, but they did not use the value of information 
to modify the optimal controls. In an application to the optimization of 
drilling order, Hanea et al. (2019) also investigated the value of infor
mation but, like Barros et al. (2016), did not use the value of information 
to improve the expected outcome of optimization. Torrado et al. (2017) 
applied partially observable Monte-Carlo planning algorithm to opti
mize the drilling schedule considering future uncertainty reduction 
based on observations through an entire drilling sequence. Their 
approach is similar to VOI analysis while potentially evaluating only the 
strategies with high expected values, and the posterior probabilities of 
uncertainty are estimated by sampling deterministic realizations at 
given previous observations instead of through a history matching 
process. Even so, in the case with only two possible observations from 
each well, many expensive simulations were still needed to compute the 
optimal solution, since drilling sequences with all distinct sequential 
observations had to be evaluated and the number of possible combina
tions was large. A more general application, in which the value of future 
information was used to optimize bottom-hole pressure controls on wells 
in a single inverted 5-spot pattern, has been described by Barros et al. 
(2020). The procedure was shown to increase the expected value of the 
field although, as in other applications, the computational cost appears 
to make the method impractical without substantial modification. 

In this paper, we consider a realistic problem in which there are 
many possible decisions at each step, and many possible data, which are 
determined by the decisions, and but we make the computation 
manageable by identifying key information that would help in making 
optimal decisions and key actions that would result in obtaining that 
information. Through VOI analysis, we aim to obtain a more robust 
decision considering the opportunities to improve optimal strategy 

resulting from future uncertainty reduction. Not all decision alterna
tives, however, may be able to provide information for making better 
future decisions. Instead of considering the effects of future information 
from all possible decisions, an efficient and effective way to account for 
the possibility of future learning is only taking into account the impor
tant information from key actions for characterizing key reservoir fea
tures for optimization problems. In this way, a standard VOI analysis 
with extensive form can be simplified with very little performance loss 
based on key uncertainty with the largest influence on optimal strategy 
and key observations for improving future decisions. Moreover, the 
entire key observation space can be divided into a limited number of 
disjoint subspaces, i.e., observations located in the same subspace have 
almost the same prediction precision for key uncertainty reduction. In 
that case, it is only necessary to update the reservoir model for each 
observation subspace instead of for all distinct sets of observations. 
Using such a simplified key-feature-based VOI analysis, it is possible to 
make optimal decisions efficiently considering future learning possibil
ities. The performance of this approach is illustrated by the application 
of the drilling-order problem in a synthetic field model. When evaluating 
the optimal sequence, we neglect the possibility of learning at later times 
because that information at late time will generally have smaller effect 
on the optimization of the first few steps in the sequence. 

By identifying key uncertainty for the optimization problems, we can 
identify key actions that would provide the most valuable future infor
mation for improving optimal decisions. To efficiently identify key ob
servations, we build supervised-learning algorithms that are able to 
capture the mapping between observations and key reservoir features to 
automatically detect the optimal combination of observations and 
simultaneously evaluate the information’s reliability for each observa
tion subspace. This allows the direct computation of posterior proba
bility of key uncertainty using Bayes’ rule, avoiding the need for full 
history matching to re-estimate the uncertainty. Note that here we are 
dealing with information content of hypothetical data – data that might 
be obtained after drilling a well. The actual data that is obtained will be 
different because the rates schedule will be different, and the wells may 
be controlled by tubing head pressure (THP) instead of bottom-hole 
pressure (BHP), etc. When the actual data are obtained, it is feasible 
to perform an actual history match and update the model, because only 
one set of data needs to be history matched in that case. 

Hong et al. (2018) carefully articulated the concept of VOI from the 
perspective of decision analysis, and demonstrated the value of 
obtaining saturation information in a 2D waterflooded reservoir for 
design of a polymer flood. They conclude, however, that VOI analysis 
plays no role for water, oil, and gas production rate data and well BHP 
data “because the data have already been or will definitely be gathered.” 
In contrast, our interest is in focused on the value of information that can 
be obtained from production data, as the actions that we take in the field 
control the type of information that is obtained and the timing of the 
acquisition. Although the information obtained from production data 
may be obtained without explicit cost, it may have a hidden cost if 
obtaining it requires one to operate a field sub-optimally for the current 
uncertainty. An obvious case is the running of a pressure shut-in test to 
obtain an estimate of reservoir pressure or wellbore skin. If the well is 
already equipped with a downhole gauge, the cost of the information is 
largely due to deferred production and the information content from the 
data is not due only to the fact that pressures are recorded, but also to the 
fact that the control setting has been altered. In our drilling sequence 
problem, the timing of information acquisition is at the control of the 
operator and the “cost” is the loss of expected NPV incurred by drilling 
the wells in a sub-optimal sequence. To determine whether it is worth 
taking key action earlier in sequence to obtain the information for 
improving future decisions, we must evaluate the net expected value of 
information with this indirect cost that is associated with changing 
optimal decisions for current uncertainty state to key action. 

This paper is organized as follows. Section 2 introduces the robust 
decision-making problem under uncertainty and the technologies we use 
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for solving this problem, including key-feature-based VOI analysis for 
considering future learning possibilities, the supervised-learning algo
rithm for identifying key observations, the learned heuristic search 
method for optimizing sequence of discrete actions (Wang and Oliver, 
2019) and bias-correction methods for estimating the expected NPV 
(Wang and Oliver, 2020). Section 3 presents the numerical results of the 
drilling-order problem in a synthetic model. In this section, we investi
gate the effects of various geological features on the optimal drilling 
sequence, the reliability of the key observations identified using super
vised learning models with regard to key uncertainty reduction, and VOI 
analysis performances through key actions with different initial proba
bilities of key uncertainty. Finally, the conclusions of this study are 
provided in Section 4. 

2. Methodology 

2.1. Robust decision making under uncertainty 

The general purpose of robust field development optimization is to 
identify an optimal strategy that maximizes the expectation of an 
objective function (e.g., expected NPV) in an uncertain reservoir model. 
Geological uncertainty frequently results in large uncertainty in reser
voir performance, but that uncertainty can be reduced using observa
tions obtained from past decisions through history matching or data 
assimilation. In traditional CLRM, the model is updated and uncertainty 
is re-estimated based on past observations before making the next de
cision and the optimal decision for each decision stage is obtained by 
performing a re-optimization in the currently updated reservoir model. 
In other words, the optimal decision is typically determined by maxi
mizing the expected NPV over the current assessment of uncertainty. The 
decision we make at the current time will also influence the possibility of 
obtaining information that might reduce the reservoir uncertainty and 
improve the optimized strategy. Therefore, the true optimal action for 
each decision step depends on both the past decisions and the conse
quences on future uncertainty reduction. In this section, we use the 
drilling-order problem (i.e., maximize the expected NPV by optimizing 
the drilling sequence of wells) as an example to demonstrate the optimal 
decisions obtained with different concerns. 

Suppose that we need to optimize the drilling schedule of Nw wells 
and each drilled well results in observations that can be used to re- 
estimate uncertainty before choosing the next well to be drilled. 
Hence, after drilling each new well, the reservoir model is updated based 
on previously obtained observations, before optimizing the next deci
sion. Fig. 1 shows an example path generated by an ordered sequence of 
Nw drilling actions with sequential observations from all wells. The set of 
actions a1, a2,…, aNw represents the sequence of Nw wells drilled at time 
t0, t1,…, tNw − 1. The sequence o1, o2,…, oNw denotes the observations ob
tained from the drilling of each well. We have assumed that these ob
servations are immediately available for updating the reservoir model. 
The state s0, s1,…, sNw denotes the specific environments at each deci
sion step constrained to the past decisions and corresponding observa
tions. Uncertainty at each environment state sj is re-estimated based on 

the observations o1, o2,…, oj from the previously j drilled wells. The 
expected NPV is the cumulative reward consisting of the sum of rewards 
R1,R2,⋯,RNw over the time periods Δt1, Δt2, ⋯, ΔtNw . As illustrated in 
Fig. 1, the previous and the current decisions affect both the possibility 
of the future choices of actions and the possibility of future observations. 
Therefore, the robust optimal decision at each decision step should be 
determined by considering the possibility of achieving high expected 
NPV, and the opportunity to improve the optimal strategy based on the 
future uncertainty state, namely, the future learning possibilities. 

2.1.1. Optimization ignoring future learning possibilities 
In most applications of CLRM optimization, to reduce the complexity 

of the sequential decision problem under uncertainty, the effect of future 
uncertainty reduction on the optimal strategy is ignored when making 
decisions. In other words, the optimal action for each decision step is 
computed by performing a re-optimization in the updated reservoir 
model based on the current assessment of uncertainty, without consid
ering the consequence of this decision on the future uncertainty state (e. 
g., Jansen et al., 2005). In that case, after completing the drilling of j 
wells, the next best action a∗

j+1 is drilling the well that leads to the 
maximum expected NPV of complete drilling sequences over the current 
uncertainty state uj based on the observations in history hj, i.e., 

a∗
j+1 = arg max

aj+1∈Aj+1(hj)

EV∗
(
hj, aj+1, uj

)
, (1)  

where hj is an observable history consisting of a sequence of selected ac
tions (i.e., j drilled wells) and observation pairs, hj = (a1, o1, …, aj, oj), 
where observation oj obtained from each past action aj might be a single 
datum (e.g., types of facies) or a collection of data (e.g., production data of 
various types over a time interval); Aj+1(hj) is the current action space at a 
given history hj, which consists of the (Nw − j) remaining wells; uj is the 
current assessment of uncertainty based on the past observations from j 
drilled wells in history hj; EV∗(hj, aj+1, uj) is the maximum expected NPV 
for complete drilling sequences over the uncertainty state uj constrained to 
history hj followed by taking aj+1 as the next decision. Note that in this 
approach any possible future information from the remaining Nw − j ac
tions is not considered, including the observation oj+1 from the current 
decision alternatives, aj+1. Thus, the EV∗ in Eq. (1) is evaluated over the 
uncertainty state uj instead of uj+1. To compute the optimal decision a∗

j+1, 
learned heuristic search (Wang and Oliver, 2019) is an efficient approach, 
which allows for optimizing either only the first few decisions or a com
plete strategy. The key advantage of this approach is that an approxima
tion of the maximum expected value EV∗ constrained to the past decisions 
can be accurately estimated without finding the entire optimal strategy. 

2.1.2. Fully structured robust decision making 
As discussed in the previous section, when selecting an action that 

will increase the expected NPV, we should also take into account the 
possibility of future uncertainty reduction, rather than basing our de
cision solely on the maximization of expected NPV over current uncer
tainty. The optimal choice of the next well after sequentially drilling j 
wells should therefore be based on the expected value over all possible 
observations from all remaining wells (assuming no explicit cost for 
collecting information from each drilled well), 

a∗fs

j+1 = arg max
aj+1∈Aj+1(hj)

∑

o∈Oaj+1

p
(
o
⃒
⃒hj, aj+1

)
Q∗

Nw − (j+1)

(
hj+1

)
, (2)  

where Oaj+1 is the observation space obtained from aj+1; p(o
⃒
⃒hj, aj+1) are 

the marginal probabilities of distinct observations; and Q∗
Nw − j(hj+1) is the 

optimal expected value considering all possible future observations 
constrained to history hj+1 including the observation from aj+1. The 
optimal expected value can be calculated in a backward induction 
procedure, i.e., Fig. 1. Example of an observation-based dynamic drilling-sequence planning 

with Nw wells. 
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where Q∗
0(hNw ) is the expected NPV over the final uncertainty state 

updated using all sequential observations from a complete drilling 
sequence in history hNw . Using backward induction to solve the opti
mization problem in Eq. (2) is also known as the standard VOI decision 
analysis process with extensive form (Neumann and Morgenstern, 1944; 
Raiffa and Schlaifer, 1961). This approach is a fully structured decision 
tree that considers all possible combinations of the sequences of 
remaining actions with distinct sequential observations (Hong et al., 
2018). 

As a simple illustration, suppose that Nw -2 wells have been drilled 
sequentially resulting in history hNw − 2 and the optimal next well is 
chosen from the two remaining wells Wa, Wb. Each well can provide two 
possible distinct observations of1 , of2 about the type of facies. Fig. 2 
shows a simple example of determining the optimal next well from Wa 
and Wb through the backward induction procedure. In this case, deter
mining the optimal action considering the future information from the 
two remaining wells, requires consideration of 8 possible combinations 
of sequences with distinct observations. Because the number of options 
is small, the optimal action a∗fs

j+1 based on the expected values over all 
possible future observations (Eqs. (2) and (3)), is easily determined to 
drill Wa as the next well. However, as this optimization requires infor
mation about the expected NPV from all possible combinations of se
quences with observations and about the marginal probabilities of all 
possible observations from remaining actions, the size of the decision 
tree is exponential in the number of distinct states related to both the 
action space and the observation space obtained from each action. 
Consequently, if there were 8 possible remaining wells while each well 
provides only two distinct observations, then there would be 8!× 28 ≈

1 × 107 possible combinations of drilling sequences with distinct 
sequential observations. The use of such a fully structured decision tree 
will be computationally intractable even before taking into account the 
cost of updating the reservoir model. 

Although it is possible to approximately solve Eq. (2) by formulating 
the problem as a partially observable Markov decision process (POMDP) 
(Åström, 1965; Sondik, 1971), the cost of solving a POMDP can be 
prohibitive for reservoir applications (Torrado et al., 2017), since the 
evaluations of the expected values require many expensive simulations 
and the number of the states that need to be evaluated in a POMDP can 
be large, especially when many various combinations are likely to 
generate high expected values. Hence, computing the optimal decision 
a∗fs

j+1 that considers all possible future observations is only applicable to 
reservoir simulation-based problems with small numbers of distinct 
actions and distinct observations in practice. 

2.1.3. Accounting for future learning through the current decision 
Instead of using a fully structured decision tree, a more feasible way 

to obtain an optimal decision that considers the future learning possi
bilities is to take into account the effects of future observations resulting 
from only the current decision step, 

a∗fl

j+1 = arg max
aj+1∈Aj+1(hj)

∑

o∈Oaj+1

p
(
o
⃒
⃒hj, aj+1

)
EV∗

(
hj, aj+1, uo

j+1

)
, (4)  

where EV∗(hj, aj+1, uo
j+1) is the maximum achievable expected NPV con

strained to the previous actions in history hj and the current decision 
alternative aj+1. This expectation is evaluated over the uncertainty state 
uo

j+1 updated based on the future possible observation o from aj+1. Note that 
EV∗(hj, aj+1, uo

j+1) is different from the expected value Q∗
Nw − (j+1)(hj+1) in Eq. 

(2) which accounted for future information from all remaining decisions. 
In the terminology of VOI, a∗fl

j+1 (Eq. (4)) is the optimal decision based 
on the expected value with additional information (EVWI) through one 
decision point (Hong et al., 2018), 

a∗fl

j+1 = arg max
aj+1∈Aj+1(hj)

EVWIaj+1 ,EVWIaj+1 =
∑

o∈Oaj+1

p
(
o
⃒
⃒hj, aj+1

)
EV∗

(
hj, aj+1, uo

j+1

)
,

(5)  

while a∗
j+1 (Eq. (1)), that ignores the effects of all possible future ob

servations, is the optimal decision determined by the expected value 
without additional information (EVWOI), 

a∗
j+1 = arg max

aj+1∈Aj+1(hj)

EVWOIaj+1 ,EVWOIaj+1 = EV∗
(
hj, aj+1, uj

)
. (6) 

We assume that there is no cost for acquiring information from 
aj+1 ∈ Aj+1(hj). Because a∗fl

j+1 is obtained considering the possibility of 

future learning before committing to a decision, a∗fl

j+1 generally is a more 
robust decision than a∗

j+1, which ignores the effect of all future information. 
Figs. 3 and 4 show the VOI decision trees from the example of two 

remaining wells with and without considering the effect of future obser
vations from current decision alternatives. As illustrated in Fig. 4, the 
optimal choice for the next well that ignores the future learning possibil
ities is Wb, which is obtained by maximizing the expected NPV over the 
current assessment of uncertainty (Eq. (6)). When the effect of future 
possible observations is considered (Fig. 3), the optimal next well is Wa, 
which has a higher EVWI and is a more robust decision. For a large problem 
with many decision alternatives, although the optimal decision a∗fl

j+1 that is 

obtained from a simplified VOI decision tree might not be identical to a∗fs

j+1 

that is obtained from a standard VOI analysis with extensive form, the cost 

of computing a∗fl

j+1 is much lower than that in a∗fs

j+1. In general, the 

Fig. 2. A fully structured decision tree for determining the order of two 
remaining wells in consideration of all possible future observations. 

Fig. 3. VOI analysis considering the future information obtained from current 
decision alternatives. 

Q∗
Nw − (j+k)

(
hj+k

)
=max

∑

aj+k+1∈Aj+k+1(hj+k)
o∈Oaj+k+1

p
(
o
⃒
⃒hj+k, aj+k+1

)
Q∗

Nw − (j+k+1)

(
hj+k+1

)
, for k = 1, 2,…,Nw − (j+ 1), (3)   
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information obtained from the later decision stages has a smaller impact on 
improving the optimal strategy. We expect that simplifying the VOI anal
ysis by only considering the information from the current decision step 
would not incur much performance loss, i.e., a∗fl

j+1 is expected to be an 

approximation solution close to the optimal decision a∗fs

j+1. In this work, we 

focus on how to efficiently improve the optimal decision a∗
j+1 to a∗fl

j+1. 

Although a∗fl

j+1 does not require a fully structured decision tree, 
directly solving Eq. (5) is still prohibitive in most reservoir applications 
for which the costs of history matching and optimization are large. If 
there are Nd decision alternatives and No distinct observations from each 
decision, it would be necessary to update the reservoir model and 
perform the optimization Nd × No times to obtain the optimal decision 
a∗fl

j+1. Hence, it is desirable to make the computation manageable and 

design a more practical way to compute the optimal decision a∗fl

j+1 in 
consideration of the possibilities of future learning. 

In general, we might expect that gained information will reduce the 
uncertainty, thereby leading to better future decisions. Some decisions, 
however, may result in little information or information that is irrele
vant to the optimization of the objective. In that case, accounting for the 
possibility of future uncertainty reduction will only increase the cost of 
making decisions, while the optimal decision may not be changed (i.e., 
the optimal strategies for maximizing the expected NPV over uncer
tainty state uo

j+1 and uj are the same). Hence, because the computational 
cost of considering many possible observations is high, it is more 
important to account for the future information that is most likely to 
improve decisions than to consider as much information as possible from 
remaining actions. In this work, we use a simplified VOI decision anal
ysis to efficiently account for the possibility of future learning when 
choosing actions, in which only the key information that would have a 
large influence on the optimal decisions is taken into account. 

2.2. Planning for future learning 

2.2.1. Learning through key action 
Due to limited observations of the reservoir, the properties of the 

subsurface (e.g., porosity, permeability, fluid contact locations, fault 

transmissibilities) may be highly uncertain. Uncertainty in some prop
erties may have little effect on the optimal decisions and information on 
those nonessential properties would not be beneficial for optimally 
managing the reservoir, even if the uncertainties could be reduced 
significantly. Hence, when evaluating the desirability of performing an 
action to learn about the reservoir, we can focus our attention on 
obtaining information from a few key actions that can be used to reduce 
key uncertainty that have large impact on optimal decisions. Then, the 
optimal decision can be made based on the trade-off between the key 
action that would provide the most important information to reduce key 
uncertainty and the action that would achieve the maximum expected 
value over current uncertainties. 

Fig. 5 shows a feasible workflow that efficiently accounts for the pos
sibility of future learning of key information through key actions that 
would be most helpful for improving future decisions. By identifying key 
uncertainty for the optimization problem, we can identify the key 
information-gathering action that would provide the most important ob
servations for reducing key uncertainty, potentially leading to better 
future decisions. The key action could provide a large number of obser
vations from various available information sources. To avoid the cost of 
formal history matching, we select observations for which the connection 
to uncertainty reduction in key reservoir features is straightforward. In this 
work, we build supervised-learning models to identify the optimal com
bination of observations for key uncertainty reduction and simultaneously 
evaluate the reliability of information. Then, the probability of key un
certainty with the given observations can be computed directly using 
Bayes’ rule instead of using data assimilation algorithms, which typically 
require many expensive simulations to obtain estimates of the posterior 
probability distribution. Hence, the workflow is applicable for reducing 
key uncertainty for optimization problem without the requirement of an 
expensive history matching process to update the reservoir model. 

Although information obtained from a key action is most likely to 
improve future decisions, taking a key action to acquire important future 
observations is not necessarily worthwhile, even if these observations 
may be obtained without an explicit cost. In some cases, the optimal 
strategy obtained without acquiring future information (i.e., the optimal 
strategy for current assessment of uncertainty) may have a higher ex
pected value than that of the optimal strategy considering the possibility 
of future learning through key action (i.e., the optimal strategy with 
additional information from key action). The cause of this situation is 
that there is a hidden cost when taking the key action would lead to a 
sub-optimal solution, so that value gained by using additional infor
mation from key action may not be able to compensate for this hidden 
cost. To determine whether it is worth taking the key action, we need to 
assess an implicit net expected value of information associated with a 
change in decisions (i.e., change action obtained from the optimal 
strategy for the current assessment of uncertainties to key action), which 
is the difference between the expected value with future information 
from key action and the expected value without any future information. 

Fig. 4. A simple example of the decision tree ignoring the future learning 
possibilities. 

Fig. 5. Decision making while considering future learning through key action and key information.  

L. Wang and D.S. Oliver                                                                                                                                                                                                                      



Journal of Petroleum Science and Engineering 205 (2021) 108770

6

2.2.2. Value-of-information analysis through key action 
Instead of computing the actual EVWIaj+1 for all possible decision 

alternatives aj+1 ∈ Aj+1(hj) (Eq. (5)) to obtain an optimal decision that 
considers future learning possibilities, we simplify the VOI decision tree 
to only two decision alternatives, i.e., a∗

j+1 and akey
j+1, by considering only 

future information from the key action (Fig. 6). a∗
j+1 is the decision ob

tained from the optimal strategy for the current assessment of un
certainties (Eq. (1)), while akey

j+1 is the key action that would provide 
important information for improving future decisions. In other words, 
akey

j+1 is the decision alternative from the current action space Aj+1(hj) that 
is expected to result in a high net EVOI associated with changing deci
sion a∗

j+1 to akey
j+1 defined as 

EVOIa∗j+1→akey
j+1

=EVWIakey
j+1

− EV∗
(

hj, a∗
j+1, uj

)
, (7)  

where EV∗(hj, a∗
j+1, uj) is the expected value from the optimal strategy for 

current uncertainty without any future information (Eq. (1) and Eq. (6)) 
and EVWIakey

j+1 
is the expected value with additional information from 

akey
j+1, which could be computed in the following way, 

EVWIakey
j+1

=
∑

o∈O
akey
j+1

p
(

o
⃒
⃒hj, akey

j+1

)
× EV∗

(
hj, akey

j+1, u
o
j+1

)
, (8)  

where p(o
⃒
⃒
⃒hj, akey

j+1) is the marginal probability of a specific observation; 

Oakey
j+1 

is set of all possible distinct observations from akey
j+1; EV∗(hj, akey

j+1,

soi
j+1) is the expected value from the optimal strategy for uncertainty state 

uo
j+1 updated with observations from akey

j+1. 

As shown in Eq. (7), performing the VOI analysis through akey
j+1 is similar 

to a simplified VOI analysis with the decision alternative aj+1 ∈Aj+1(hj) that 
has a high EVWIaj+1 . If akey

j+1 has the maximum EVOIa∗
j+1→akey

j+1
, akey

j+1 would be 

identical to the optimal decision a∗fl

j+1 from Eq. (5). In that case, simplifying 

the VOI decision tree to akey
j+1 would not incur performance loss compared to 

directly solving Eq. (5). The main advantage of using EVOIa∗j+1→akey
j+1 

instead 

of EVWIaj+1 is that akey
j+1 with a high EVOIa∗j+1→akey

j+1 
can be identified without 

comparing the actual EVOIa∗
j+1→akey

j+1 
of all possible decisions. 

The EVOIa∗j+1→akey
j+1 

from changing decision a∗
j+1 to akey

j+1 (Eq. (7)) can be 

rewritten as  

where the first group of terms is the standard definition of EVOI for akey
j+1, 

i.e., it is the difference in the expected values with and without addi
tional information from akey

j+1, 

EVOIakey
j+1

=EVWIakey
j+1

− EVWOIakey
j+1

= EVWIakey
j+1

− EV∗
(

hj, akey
j+1, uj

)
. (10) 

The second group of terms in Eq. (9) is the expected cost of infor
mation (ECOI), or the hidden cost, caused by a sub-optimal solution 
constrained to akey

j+1 chosen as the next decision using the current 
assessment of uncertainty, 

ECOIa∗j+1→akey
j+1

=EV∗
(

hj, a∗
j+1, uj

)
− EV∗

(
hj, akey

j+1, uj

)
. (11) 

Thus, EVOIa∗j+1→akey
j+1 

actually is an implicit net EVOIakey
j+1 

accounting for 

the hidden cost ECOIa∗j+1→akey
j+1

, 

EVOIa∗j+1→akey
j+1

=EVOIakey
j+1

− ECOIa∗j+1→akey
j+1
. (12) 

If akey
j+1 is identical to a∗

j+1, there is no hidden cost, i.e., ECOIakey
j+1→akey

j+1
=

0. In general, however, akey
j+1 will not be the same as the optimal decision 

a∗
j+1 for the current uncertainty state, especially when the decision space 

is large. 
According to Eq. (12), akey

j+1 is the decision alternative that is expected 
to result a large EVOIakey

j+1 
but a small ECOIa∗

j+1→akey
j+1

. The standard EVOIakey
j+1 

(Eq. (10)) depends on whether akey
j+1 is able to provide useful information 

for making better future decisions, i.e., important information for key 
uncertainty reduction. The hidden cost ECOIa∗j+1→akey

j+1 
depends on whether 

the optimal strategies constrained to akey
j+1 can achieve a high expected 

NPV over current uncertainty state, which is possible to be evaluated 
when computing the optimal decision a∗

j+1 that ignores the effects of 
future possible observations. Therefore, by considering the possibility of 
obtaining valuable information for reducing key uncertainty and the 
possibility of achieving a high expected NPV for current assessment of 
uncertainty, we can identity the akey

j+1 that is likely to result in a high 
EVOIa∗j+1→akey

j+1
; that is the decision alternative aj+1 ∈ Aj+1(hj) with a high 

EVWIaj+1 . 

To judge whether it is preferable to take action akey
j+1 over a∗

j+1, we 
need to assess EVOIa∗

j+1→akey
j+1 

before committing to a decision, noting that 

EVOIa∗j+1→akey
j+1 

may be negative value to the hidden cost. If 

EVOIa∗j+1→akey
j+1

> 0, the value gained by using the information from akey
j+1 

can compensate for the hidden cost caused by a sub-optimal solution, i. 
e., EVOIakey

j+1
> ECOIa∗j+1→akey

j+1
. It is then worth taking akey

j+1 to acquire the 

information that will help in improving future decisions. 
The simplified VOI analysis based on EVOIa∗j+1→akey

j+1 
does not take in 

account the future learning possibilities through a∗
j+1 (Fig. 6). In some 

cases, a∗
j+1 may also be able to provide important future information for 

reducing key uncertainty. To obtain a more robust decision, we can take 
into account the possibilities of future learning through both akey

j+1 and 
a∗

j+1, 
Fig. 6. Simplified VOI decision tree with future information only from 
key action. 

EVOIa∗j+1→akey
j+1

=
(

EVWIakey
j+1

− EV∗
(

hj, akey
j+1, uj

))
−
(

EV∗
(

hj, a∗
j+1, uj

)
− EV∗

(
hj, akey

j+1, uj

))
, (9)   
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â∗fl

j+1 = arg max
a∈
[

a∗j+1 ,a
key
j+1

]EVWIa = arg max
a∈
[

a∗j+1 ,a
key
j+1

]

∑

o∈Oa

p
(
o
⃒
⃒hj, a

)
× EV∗

(
hj, a, uo

j+1

)
.

(13) 

However, this approach will increase the computational cost of 
making a decision since the evaluation of EVWI for each action is based 
on the maximum expected values, EV∗(hj, a, uo

j+1), corresponding to 
various observations. This requires re-optimization multiple times to 
obtain all expected values. Consequently, directly solving Eq. (7) or Eq. 
(13) is likely to be impractical when all distinct observations are 
accounted for, although the number of decision alternatives in VOI 
analysis is reduced by identifying akey

j+1. To the computation of EVWI 
manageable, we will present a methodology in the following section for 
efficiently estimating EVWI by using key observations to reduce key 
uncertainty, rather than using all observations to reduce all 
uncertainties. 

2.2.3. Key observation selection 
In ensemble-based methods, a set of Ne model realizations is used to 

represent the uncertainties in reservoir properties. To reduce the effects 
of sampling error, Ne is typically chosen to be on the order of 100. Each 
model realization is capable of generating a specific set of simulated 
observations obtained by taking action akey

j+1, e.g., production data over a 
certain period, in which case there would be Ne distinct sets of obser
vations – one set from each ensemble member. If each set of observations 
is used in the estimation of EVWIakey , the computational cost will be high 
since both history matching and optimization have to be performed Ne 
times to obtain the maximum expected values from all posterior en
sembles. Hence, it is generally infeasible to consider all Ne distinct re
alizations of future outcomes in standard VOI analysis with history 
matching for making a decision, especially when the observation space 
or decision space is large. Moreover, when all observations obtained 
from akey

j+1 are used to simultaneously re-estimate uncertainty, the largest 
decrease in uncertainty may be in properties that are irrelevant to cur
rent decisions. All data will, of course, be used to update model uncer
tainty after an action has been taken. 

As mentioned previously, the additional value with information is 
achieved by the reduction in uncertainty of model parameters that will 
affect the optimal decisions, rather than all reductions in uncertainties in 
model parameters. Instead of using all observations to reduce all un
certainties, we can approximately compute EVWIakey by reducing key 
uncertainties of the optimization problem based on key observations 
that are most helpful in exploring key reservoir properties. Such an 
approximation of EVWIakey

j+1 
can be used to indicate the importance of 

akey
j+1. Because VOI analysis is performed by ranking the importance of 

decision alternatives based on the expected values and EVWIakey
j+1 

deals 

with the information content of hypothetical data, we expect (without 
proof) that using the EWVIakey

j+1 
computed based on key information 

would not incur performance loss in VOI analysis and the optimization 
framework. When the actual observations are obtained from an action 
that has been executed, an actual history match will be performed with 
all observations to update various uncertainties in reservoir properties. 

Performing the action akey
j+1 can provide a large number of observa

tions, but the reduction in key uncertainties from some observations 
may be very small. Accounting for all information in the VOI, including 
those nonessential observations, will increase the computational effort 
associated with updating the reservoir model. Hence, we would like to 
use a reduced set of important observations to update key uncertainties, 
i.e., key information is defined to be a subset of observations that are 
most helpful in reducing key uncertainties. Instead of updating key 
uncertainties for each possible outcome of key observations obtained 
from an individual realization, we divide the entire observation space Rn

b 
associated with the best subset, B, into a limited number of disjoint 

subspaces (e.g., Rn
b = Ωb

1 ∪ Ωb
2 and Ωb

1 ∩ Ωb
2 = ∅). Suppose that obser

vations located in the same subspace have almost the same prediction 
precision to reduce key uncertainties, then the posterior probability 
distributions of key uncertainties conditioned on observations in the 
same subspace would be similar. In that case, there is no need to 
compute Ne posterior ensembles considering all distinct sets of obser
vations from individual realizations. EVWIakey

j+1 
could be efficiently eval

uated by performing the optimization process only in a few posterior 
ensembles associated with the observation subspaces Ωb

k, 

EVWIakey
j+1

=
∑NΩb

k=1
p
(

ob ∈Ωb
k

⃒
⃒
⃒hj, akey

j+1

)
× EV∗

(
hj, akey

j+1, u
Ωb

k
j+1

)
, (14)  

where NΩb is the number of observation subspaces, which is much 

smaller than the ensemble size (NΩb ≤ Ne); u
Ωb

k
j+1 is the updated uncer

tainty state for observed values ob ∈ Ωb
k. Fig. 7 shows an example of VOI 

analysis considering only the important future observations through key 
action for key uncertainty reduction, while the entire key observation 
space is divided into four disjoint subspaces. We refer to such a simpli
fied VOI decision tree as key-feature-based VOI analysis. It is performed 
only through the key action and the key information that have been 
identified for exploring reservoir features with large influences on the 
optimal decisions. 

To ensure the usefulness of key observations and their subspaces in 
reducing key uncertainties, the entire key observation space is divided 
such that each subspace Ωb

k will have high a probability P(Ωb
k
⃒
⃒Θm

k ) for 
indicating a specific key uncertainties subregion Θm

k , while the proba
bility P(Ωb

k
⃒
⃒Θm

i ) for key uncertainties located in other subregions Θm
i is 

low. Suppose that distribution of key uncertainties is divided into NΩb 

disjoint subregions Θm = [Θm
1 ,Θ

m
2 ,…,Θm

NΩb
]. The best observation space 

division Ωb = [Ωb
1,Ω

b
2,…,Ωb

NΩb
] can then be described as 

Ωb = arg max
Ωb

∑NΩb

k=1

[

P
(
Ωb

k

⃒
⃒Θm

k

)
−
∑NΩb i = 1

i ∕= k P
(
Ωb

k

⃒
⃒Θm

i

)
]

. (15) 

For key uncertainties with categorical variables, each category can 
be set as one specific subregion Ωm

i . For continuous variables, instead of 
randomly dividing the distribution of key uncertainties into a limited 
number of subregions, the division of Θm can be optimized based on the 
performance of the corresponding Ωb, 

Θm = arg max
Θm

∑NΩb

k = 1P
(
Ωb

k

⃒
⃒Θm

k

)
, (16)  

which is a simplification of Eq. (15) since 
∑NΩb

k=1P(Ωb
k
⃒
⃒Θm

i ) = 1 for a 
specific key uncertainties subregion Θm

i . 
Based on the prior probability P(Θm

i ) of each subregion Θm
i and the 

information’s reliability P(Ωb
k
⃒
⃒Θm

i ), the posterior probability P(Θm
i
⃒
⃒Ωb

k)

can be computed using Bayes’ rule, 

Fig. 7. Key-feature-based VOI analysis obtained by identifying key un
certainties for optimization problems and key observations for reducing key 
uncertainty. 
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P
(
Θm

i

⃒
⃒Ωb

k

)
=

P
(
Ωb

k

⃒
⃒Θm

i

)
× P

(
Θm

i

)

∑NΩb
i=1 P(Ωb

k |Θ
m
i ) × P(Θm

i )
, (17)  

where 
∑NΩb

i=1 P(Ωb
k
⃒
⃒Θm

i ) × P(Θm
i ) is the marginal probability of observing 

ob ∈ Ωb
k in the prior ensemble. 

Approximations applied to solve Eq. (15) would affect the perfor
mance of key uncertainty reduction. To ensure the effectiveness of using 
Ωb to reduce key uncertainties, an appropriate approach that can 
effectively identify the observation subspaces Ωb with high in
formation’s reliability 

∑NΩb
k=1P(Ωb

k
⃒
⃒Θm

k ) is required. In this work, we apply 
multiple supervised-learning algorithms to identify the optimal obser
vation subset and the corresponding best space division Ωb. Meanwhile, 
the reliability of information P(Ωb

k
⃒
⃒Θm

k ) for each subspace can also be 
estimated when evaluating the learning algorithm’s performance with 
the optimal observation subset. Then, the posterior probability of key 
uncertainties can be computed using Bayes’ theorem (Eq. (17)). 
Consequently, there is no need to use data assimilation algorithms that 
update every model parameter for VOI analysis in our workflow. 
Building supervised-learning models to identify key observations re
quires a dataset (also called the original dataset) that includes all 
possible observations and the corresponding distribution of key un
certainties. This dataset can be obtained by collecting relevant infor
mation from a number of individual realizations applied with key action. 

Fig. 8 shows the process of selecting key observations from the 
original dataset by using filter and wrapper methods with an inductive 
learning model that is able to capture the mapping between the inputs (i. 
e., observations from key action) and the outputs (i.e., key uncertainty). 
The original dataset may contain hundreds to thousands of observations, 
which are known as features in learning models. Note that in supervised- 
learning algorithms, the observations acquired from key action are input 
variables and are called “features”, while the values of key reservoir 
properties are output variables. A large number of features would make 
the model more complex and may lead to overfitting due to the curse of 
dimensionality. To avoid these issues, we first apply filter methods 
(Lazar et al., 2012) to quickly remove redundant and irrelevant features 
by ranking the features using some relevance measure, regardless of 
learning algorithms, obtaining a subset of features. The selected feature 
subset after filtering is generally not the optimal feature subset for key 
uncertainty reduction. Thus, a wrapper method (Kohavi and John, 
1997) involved in supervised-learning models is used to select the best 
combination of features that gives the optimal results for learning al
gorithms, i.e., a feature subset that leads to high prediction accuracy. To 
avoid overfitting in learning models, we split the original dataset into 
separate training and test subsets and use resampling methods (e.g., 
cross-validation) to evaluate learning models’ performance with limited 
data samples. The prediction accuracy (i.e., reliability of information) is 
estimated from the test error associated with specific learning models. 

Suppose that Nsl individual realizations are applied to generate the 
dataset for building supervised-learning models. The cost of updating 
the key uncertainty for all observation subspaces will be Nsl simulations. 
Using multiple supervised-learning algorithms will not increase the 
simulation cost since the learning models are built using the same 
samples. If Nopt simulations are required for a single robust optimization, 
it will require Nsl + Nopt × (Nb

Ω +1) simulations to perform the VOI 
analysis through key action (Eq. (7)) and key information (Eq. (14)), 
which is much lower than the cost of solving Eq. (4) with an exhaustive 
history matching and optimization procedure that requires Nd × Ne ×

(Nhm + Nopt), where Nd is the number of decision alternatives and Nhm is 
the cost of history matching. Even accounting for future learning pos
sibilities through all Nd decision alternatives, performing VOI analysis 
through key information still requires many fewer simulations than 
directly solving Eq. (4). In that case, the cost of VOI analysis through key 
information is N′

sl + Ns × Nb
Ω × Nopt, in which N′

sl simulations are per
formed to investigate the reliability of information from all Nd possible 
decision alternatives, and Ns is the number of decisions that are iden
tified with reliable information for key uncertainty reduction and small 
hidden cost caused by sub-optimal solutions, which is generally smaller 
than Nd. 

In this paper, the performance of key-feature-based VOI analysis 
(Fig. 7) applied with supervised-learning algorithms (Fig. 8) is illus
trated by an application of the drilling-order problem in a synthetic 
model (REEK field). The key uncertainty that has the largest influence on 
the optimal drilling sequence is whether one fault is completely sealing 
or not, for which the output variable in learning models is a category. In 
that case, there is no need to optimize the division of key uncertainty 
since each subregion Θm

i corresponds to a specific category. We first use 
the Minimum Redundancy Maximum Relevance (mRMR) method (Peng 
et al., 2005; Estevez et al., 2009; Ramírez-Gallego et al., 2017) to 
eliminate some less important features, then further reduce the number 
of features by using the area under the receiver operating characteristic 
(ROC) curve (Hanley and McNeil, 1982), which measures the classifi
cation performance at various thresholds. These two steps are inde
pendent of any learning algorithms. To obtain the optimal combination 
of observations, we investigate four different classification models (i.e., 
k-Nearest Neighbor, Logistic Regression, Support Vector Machine, and 
Random Forest). We then use the best-performing learning algorithm to 
identify the best observation subset and evaluate each subspace’s pre
diction accuracy based on the test dataset. 

2.3. Robust optimization of well drilling schedule 

In order to perform the optimization efficiently, we require two 
additional technologies to deal with the search for an optimal sequential 
solution, and to deal with uncertainty in the reservoir characteristics. 
Learned heuristic search is an effective and efficient search method for 
solving the optimization problems with discrete actions (Wang and 
Oliver, 2019). This approach allows for optimizing only the first few 
actions by limiting the search depth so that the optimal well for each 
decision step could be obtained at a reduced cost without finding the 
entire optimal drilling sequence (Wang and Oliver, 2020). The key point 
of this method is that an accurate approximation of the maximum 
achievable expected NPV constrained to previous wells, i.e., EV∗(hj, aj+1,

uj) in Eq. (1), can be evaluated by first using a crude heuristic function to 
estimate the maximized value. The accuracy of the heuristic is then 
improved by learning the errors of the initial approximate values ob
tained from previous decision steps. In this way the search direction can 
be guided toward the optimal solution quickly and effectively. In this 
paper, we apply two different online-learning techniques (i.e., 
single-step adjustment and multiple-time-periods learning) to improve 
the initial imprecise heuristic values, which can be inexpensively ob
tained by assuming that all remaining wells are drilled simultaneously at 
the next step and then put on production immediately after completing Fig. 8. Key feature selection process based on filter and wrapper methods.  

L. Wang and D.S. Oliver                                                                                                                                                                                                                      



Journal of Petroleum Science and Engineering 205 (2021) 108770

9

the drilling of wells. 
The second technology is the application of bias-correction methods 

to the estimate of NPV obtained from the mean reservoir model to 
efficiently compute a good approximation of the expected NPV over an 
ensemble of reservoir model realizations (Wang and Oliver, 2020). 
Although the mean model m generally provides a poor estimate of the 
expected value when the objective function J(x,m) at control x is 
nonlinear in the uncertain model parameter m, this approximation can 
be significantly improved by estimating a multiplicative bias correction 
factor α(x). The estimation only requires information from individual 
simulations with distinct controls and model realizations, i.e., 

E[J(x,m)] ≈ α̂(x)J(x,m), α̂(x) = G(β1, β2,⋯, βn, x), (18)  

where α̂(x) is the estimate of bias correction factor between the 
ensemble average value and the value obtained from the mean model, i. 

e., α̂(x) ≈
∑Ne

j=1
J(x,mi)

NeJ(x,m)
. G is an estimating function for α(x) based on a set of 

observations β obtained by applying n randomly sampled controls to 
individual realizations and the mean reservoir model, where βj is the 
partial correction factor at a random control xj of a random individual 

realization mj, i.e., βj =
J(xj ,mj)

J(xj ,m)
. When estimating α(x), high weights 

would be assigned to the observed values of β from similar controls 
because they are expected to provide more useful information. Using 
such a bias-correction method, robust optimization requires additional 
simulations only from the mean model during the optimization process, 
in which case the robust optimal solution could be obtained at a much 
lower cost compared to using the ensemble average of simulation results 
to estimate the expected value. 

There are three different ways to estimate α(x): distance-based 
localization, regularized localization, and optimal weights based on 
the covariance of correction factors. In this work, we estimate the ex
pected NPV by applying distance-based localization to correct the bias in 
J(x,m) since the other two methods require additional information such 
as the variance of the bias correction factor, which is generally un
known. To efficiently identify similar drilling sequences, a well-position 
based distance metric is used to measure the similarity of drilling se
quences in terms of the bias correction factor. 

3. Results and discussion 

3.1. Reservoir model 

REEK Field is a three-phase black-oil reservoir model with specified 
locations for eight vertical wells (five producers and three injectors) that 
need to be drilled sequentially (Fig. 9). It consists of 40× 64× 14 grid 
cells, of which 34,770 are active. The maximum rates of production and 
injection wells are 6000 m3/day and 10,000 m3/day, respectively. The 

minimum BHP of the producers is 250 bar, while the BHP of the injectors 
cannot exceed 320 bar. The porosity field, permeability field, and fault 
transmissibility multipliers are all uncertain. Recent studies have used 
this model for optimizing the drilling order of wells, in which the control 
variables are discrete (Wang and Oliver, 2019, 2020; Hanea et al., 2019; 
Leeuwenburgh et al., 2016). However, these studies do not consider the 
possibilities of future learning through action in the optimization pro
cess, i.e., the optimal well for each decision step is based on the current 
assessment of uncertainty (Eq. (1)). To obtain a more robust optimal 
solution, we will apply a simplified VOI decision analysis based on key 
reservoir features and key observations (Fig. 7). This method will enable 
us to make the optimal decision more efficiently while considering the 
future reduction of key uncertainty in the drilling-order problem. 

In the original REEK model, the drilling schedule of wells is an 
important contributor to the reservoir profitability, i.e., the expected 
NPV of the optimized drilling sequence could be as much as 25% higher 
than random drilling schedules. However, the deterministic optimal 
drilling sequence does not change significantly with the geological un
certainty (Wang and Oliver, 2020). To increase the effect of geological 
properties on the drilling-order problem, we modified the original REEK 
Field by extending fault F5 (Fig. 10) so that the reservoir model could be 
separated into two compartments, and we assume this extended fault F5 
would either be non-sealing or sealing in individual model realizations. 
When fault F5 is completely sealing, the injector WI_1 will be totally 
isolated from all the other wells, and there is no benefit from drilling 
WI_1. In that case, the optimal drilling sequence of the remaining wells 
may change significantly. Table 1 shows the economic parameters used 
for computing NPV (10 years), the reservoir properties, and control 
variables in this modified REEK Field. In this work, we have used the 
same values for economic parameters as in Hanea et al. (2019), which 
investigated the impact of history matching well data on creating value 
after re-optimizing the drilling schedule of wells in the REEK model. 
Although the oil price has consequently been set to a low value, it does 
not affect the conclusions from our experiment results. 

To obtain useful information for improving optimal decisions, we 
first identify the key uncertainty of the drilling-order problem in this 
modified REEK Field, i.e., illustrating whether a non-sealing/sealing 
fault F5 has the largest influence on the optimal drilling sequence. 
Then, we identify the key action that would provide the most important 
observations for reducing the key uncertainty. To compute a robust, 
optimal, and complete solution, we could apply the workflow that ac
counts for future learning possibilities through key actions (Fig. 5) at 
each decision step before drilling a new well. Since information obtained 
at the early stage is most effective for improving the future decisions and 
thereby increasing the expected NPV after re-estimating the geological 
uncertainty (Hanea et al., 2019), we simplify the drilling-order problem 
in our application and neglect the possibilities of future learning at later 
stages when evaluating the optimal complete drilling sequence, i.e., only 

Fig. 9. Well and fault locations in the REEK Field and initial oil saturation in one realization.  
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identify the key action for the first decision step and update the reservoir 
model based on the key observations from that action before drilling the 
second well. In this paper, we did not reduce the key uncertainty 
through a history matching process, although that would naturally occur 
after production data is obtained. Instead, we updated the reservoir 
model directly using Bayes’ rule because the reliability of information 
collected for the reduction of key uncertainties can be evaluated 
simultaneously when identifying the best observation subset using a 
supervised learning model. Because the VOI assessment depends both on 
the accuracy of information and the prior probabilities, we will study the 
performances of VOI analysis through key action for the drilling-order 
problem with different initial probabilities of key uncertainty. 

3.2. Key uncertainty for drilling-order problem 

To identify the key uncertainty of the drilling-order problem, we 
performed a simple Monte Carlo experiment in which all variables were 
perturbed simultaneously, and then optimized for each realization for 
studying the sensitivity of the optimal solution to different geological 
features. In this work, we use the Manhattan distance, i.e., the sum of the 
absolute differences between positions of wells in the drilling sequence, 
to measure the similarity between optimal drilling sequences (Wang and 
Oliver, 2020). Fig. 11a compares the distributions of Manhattan distance 
between deterministic optimal drilling sequences of individual re
alizations in two cases, one in which fault F5 is always non-sealing 
(histogram in yellow) and another in which fault F5 alternates be
tween being non-sealing and sealing (histogram in blue). To obtain 
reliable results, we repeated the experiment 100 times for each case. The 
optimal drilling sequence clearly varies more significantly when fault F5 
is changed from non-sealing to sealing. For the individual realizations 
with various porosity fields, permeability fields, and fault trans
missibility multipliers while fault F5 is always non-sealing, the average 
Manhattan distance between the deterministic solutions was substan
tially smaller than when F5 is not always non-sealing, and the optimal 
well order for some positions in the drilling sequence were almost in
dependent of the geological uncertainty. In this modified REEK model, it 
seems that whether fault F5 is completely sealing or not has a relatively 
larger influence than other geological features on the optimal drilling 
sequence. 

In some cases, optimal solutions with a large Manhattan distance 
might have similar economic values, for example, if only the optimal 
wells for the later decision stages are changed or their positions are 
swapped. Hence, we also investigated the variability in NPV obtained in 
a fixed reference model applied with different deterministic optimal 
solutions to further illustrate the importance of the sealing properties of 
fault F5 as a key feature for the drilling-order problem (Fig. 11b). The 
results show that the NPV changes by less than 2% in most cases when 
various deterministic drilling sequence solutions for a non-sealing fault 
F5 are applied to a fixed reference model (histogram in green), even if 
the deterministic optimized drilling sequence might vary with a Man
hattan distance larger than 22 in several cases. In cases with solutions 
obtained respectively from individual realizations with a non-sealing (i. 
e., reference model) and a sealing fault F5 (histogram in red), the rela
tive change in NPV could be as much as 10% in the reference model. 
Thus, in terms of either a change in optimal decisions or a potential 
improvement in NPV, we observed that the key uncertainty for the 
drilling-order problem in this modified REEK field is whether F5 is 
completely sealing or not. To improve future decisions by using addi
tional information, the acquired information should be able to provide 
useful observations for exploring this key reservoir feature. 

3.3. Identifying key action and collecting information 

In this paper, to reduce key uncertainties in the drilling-order 
problem, we use information from production and pressure data that 
can be obtained from standard oil-field monitoring. In the modified 

REEK Field (Fig. 10), Producers OP_3, OP_4, OP_5 and WI_1 are located 
near fault F5. We expect that, compared to the other wells, observations 
from these wells may be potentially more useful for predicting whether 
fault F5 is completely sealing or not. In this case, although OP_5 is close 
to fault F5, an examination of the information from OP_5 showed that it 
was less reliable as a source of information than what could be obtained 
from OP_3 or OP_4. When WI_1 or OP_5 is drilled as the first well, the 
hidden cost of information caused by sub-optimal solutions (i.e., it can 
be estimated when computing the optimal solution over the current 
uncertainty state) is larger than that from OP_3 and OP_4. Therefore, 
based on the possibility of obtaining valuable information for key un
certainty reduction and the possibility of achieving high expected NPV, 
only OP_3 and OP_4 are considered as possible key actions for the first 
decision step. 

Fig. 12 shows the oil production rate and BHP in the first 6 months (i. 
e., the assumed drilling period for each well) obtained from 100 indi
vidual realizations with a non-sealing and sealing fault F5, where OP_3 
and OP_4 are drilled as the first well, respectively. In almost all cases, 
production is first constrained to a maximum rate of 6000 m3/day and 
then decreased to hold the producer at a minimum BHP of 250 bar. 
When fault F5 is sealing, the production rate (red curves in Fig. 12a and 
c) decreases more rapidly than when the fault F5 is non-sealing while 
maintaining the pressure at 250 bar, and the pressure (magenta curves 
in Fig. 12b and d) drops faster while maintaining a production rate of 
6000 m3/day. It seems that both OP_3 and OP_4 can potentially provide 
useful information for reducing the uncertainty about whether fault F5 
is non-sealing or sealing, which would influence the rates of decline in 
both production and pressure. 

Fig. 13 shows the derivative of production rate when the producer is 
held at the minimum BHP of 250 bar and the pressure derivative when 
the producer is controlled by the maximum rate 6000 m3/day. Note that 
in Figs. 13a and c the derivative of the production rate is shown with 
time starting from the first day when BHP = 250 bar, while the x-axis in 
Figs. 13b and d for the pressure derivative displays the time starting 
from the first day of production. Here we use the normalized logarithmic 

derivative of pressure to compute the pressure derivative, i.e., t dp
dt

− b0
, where 

− b0 is the initial value of logarithmic pressure derivative at the begin
ning of production. Compared to the results obtained from the produc
tion rate and pressure (Fig. 12), it seems that the separation between 
model realizations with a non-sealing and sealing fault F5 is better when 
using the derivative information, especially with regard to observations 
of the pressure derivative when OP_3 is drilled as the first well 
(Fig. 13b). Note that computation of the normalized pressure derivative 
requires evaluation of 4 pressure values, so it may not be surprising that 
it is more informative for identifying potential barriers than a pressure 
measurement. Although we may intuitively find a good observation (e. 
g., pressure derivative at day 10) for predicting whether F5 is non- 
sealing or sealing in this example, that might not be the case in other 

Fig. 10. Modified REEK model with extended fault F5 near Injector WI_1.  

L. Wang and D.S. Oliver                                                                                                                                                                                                                      



Journal of Petroleum Science and Engineering 205 (2021) 108770

11

situations. The information obtained from a key action could contain 
hundreds or thousands of observations. Manual identification of the 
important observations from such a large dataset is laborious and time- 
consuming. Moreover, to obtain highly reliable information for key 
uncertainty reduction, we usually need to combine multiple observa
tions. Therefore, it is necessary to apply a practical method for the 
automatic defection of key observations. 

In this work, we build supervise-learning models that are able to 
capture the mapping between the inputs (observations) and the outputs 
(non-sealing/sealing fault F5) to select the best observation subset with 
high prediction accuracy. Because the best subset might contain obser
vations from different sources, we consider all information related to 
production rate, pressure, and their derivatives in the process of iden
tifying key observations. In our application, it takes only a few minutes 
to identify the optimal combination of observations from the original 
information dataset with more than 700 observations using supervised- 
learning algorithms. 

3.4. Selecting the best observation subset 

In the six-month period after drilling the first well a large amount of 
production and pressure data are recorded. Some of the data are 
apparently unaffected by whether fault F5 is non-sealing or sealing (e.g., 
BHP of OP_3 is 250 bar in the last 2 months production before drilling 
the next well). To identify the important observations from such a large 
original dataset, we first use the mRMR feature selection method to 
remove irrelevant and redundant observations and obtain a small 
observation subset that may provide useful information. This is followed 
by a ROC curve analysis to further reduce the size of the subset, leaving 
only the observations with relatively good classification performance. In 
this way, the dimension of the observation dataset can be reduced 
quickly without incurring the loss of important information. Finally, a 
supervised-learning model can be applied with a small observation 
subset (i.e., few input variables) containing most of the useful infor
mation needed to efficiently identify the optimal combination of ob
servations with highly reliable information for key uncertainty 
reduction. Although we did not consider the effect of observation error 
in the following analysis, the only change required in methodology 

Fig. 11. Variability in the optimal drilling sequences and variability in the NPV in the reference model with different optimized drilling sequences.  

Fig. 12. Oil production rate and pressure in first 6 months obtained from individual realizations with non-sealing or sealing fault F5 when OP_3 and OP_4 are drilled 
as the first well respectively. 
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would be to add random noise to the modeled observations. 
Fig. 14a and b shows the ROC curves of 20 best observations ob

tained from the production/pressure data when OP_3 and OP_4 are 
drilled as the first well, respectively. In these figures the true positive 
rate (TPR, y-axis) is plotted against the false positive rate (FPR, x-axis) at 
various thresholds. The TPR represents the proportion of positive sam
ples (i.e., individual realizations with a non-sealing fault F5) that are 
correctly identified, while the FPR is the proportion of negatives samples 
(i.e., individual realizations with a sealing fault F5) that are incorrectly 
identified as positive cases. The classification performance of a single 
observation is quantified by using the area under the ROC curve (AUC), 
which measures the entire two-dimensional area underneath the ROC 
curve from (0,0) to (1,1). A large AUC score indicates that the single 
observation has a good ability to distinguish between different classes. 
All of the 20 best observations are from r′ or p′ , and this shows that 
information obtained from pressure and rate derivatives (Fig. 13) pro
vides more useful observations for predicting whether or not fault F5 is 
sealing than directly using production rates or pressure (Fig. 12). Of the 
20 top-ranked observations, most are associated with the pressure 

derivative, however, observations from the production rate derivative 
have higher AUC scores. In this case, it seems that p′ provides more 
observations with useful information, while observations from r′ provide 
better predictive performance in distinguishing between realizations 
with a non-sealing or sealing fault F5. If we use only the pressure data for 
reducing key uncertainty, the drilling of OP_3 as the first well would 
yield more important observations than the drilling of OP_4; seven ob
servations of p′ from OP_3 have AUC scores larger than 0.8, while only 
one observation of p′ with an AUC ¿ 0.8 emerges from OP_4. If only 
considering the information from rate data, drilling OP_4 as the first well 
would provide more key observations with higher AUC scores than those 
from OP_3. 

Fig. 15 shows the distributions of observed values obtained from 
individual realizations at the best single observation r′b and p′b (largest 
AUC score) identified from the derivatives of production rate and 
pressure, respectively. The red vertical lines represent the best cutting 
point that maximizes the difference between the TPR and FPR. The 
probabilities of the individual realizations with observed values located 
in each region determined by the optimal threshold are summarized in 

Fig. 13. Derivative of production rate and pressure derivative obtained from individual realizations with non-sealing or sealing fault F5 when OP_3 and OP_4 are 
drilled as the first well respectively. 

Fig. 14. Comparison of the receiver operating characteristic (ROC) plots for the 20 top-ranked observations when OP_3 and OP_4 are drilled as the first well 
respectively. 
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Table 2. When OP_4 is drilled as the first well, the prediction accuracy 
reaches as high as 90% based on r′b, but the accuracy rate based on p′ is 
less than 75%. When OP_3 is drilled as the first well, r′b also provides 
information with a higher reliability than that of p′b, but using p′b to 
identify the models with a non-sealing fault F5 would be more effective, 
i.e., 94 of 100 individual realizations with a non-sealing F5 have 
p′b < δp′b . In this example, although it is possible to reduce key uncer
tainty using only a single observation, this might not always be the case 
in other problems. In most applications, it is generally necessary to use 
multiple observations to obtain reliable information and thereby reduce 
key uncertainty. A quick, simple way is the direct use of a combination 
of the observations with high AUC scores. However, when the classifi
cation performances of these observations are similar, the prediction 
accuracy will most likely not improve. 

By using supervised-learning algorithms, we can efficiently identify 
the optimal observation subset with high prediction accuracy. We 
should expect that a good observation subset consists of observations 
with useful information (e.g., AUC ¿ 0.5). Based on the 20 top-ranked 
observations identified through the ROC curve analysis, we apply 
supervised-learning algorithms to identify the best combination of ob
servations for predicting whether F5 is non-sealing or sealing. To avoid 
overfitting of the learning models, the original observation dataset ob
tained from 200 samples (100 individual realizations with non-sealing 
and sealing fault F5 respectively) is split into a training set (80%) and 
a test set (20%). The learning model is built based on the training set 
while the performance of the model is evaluated in the test set. To ac
quire a more statistically reliable estimate of performance, we use k-fold 
cross-validation resampling method to evaluate the learning model on 
the limited dataset. 

Fig. 16 shows the performances of four classification models applied 
to predict whether or not fault F5 is sealing using optimized observation 
subsets with different size based on the information from OP_3. The 
performance score on the y-axis represents the prediction accuracy 

Fig. 15. Distributions of the observed values of r′b and p′b obtained from individual model realizations with non-sealing or sealing fault F5.  

Table 1 
Economic parameters for NPV and reservoir properties in modified REEK model.  

Field REEK model 

Start time December 1, 1999 
Time period of NPV (years) 10 
Discount factor 0.08 
Produced-oil price (USD/m3) 60 
Water-separation cost (USD/m3) 5 
Water-injection cost (USD/m3) 1 
Drilling cost of each well (USD) 1 million 
Number of grid blocks 40 × 64 × 14 (34,770 active cells)  
Number of faults 6 (fault F5 is extended) 
Number of wells (all vertical wells) 8 (5 producers and 3 injectors) 
Drilling period of wells (months) 6 
Maximum production rate (m3/day) 6000 
Minimum BHP of producers (bars) 250 
Maximum injection rate (m3/day) 10000 
Maximum BHP of injectors (bars) 320 
Number of geological realizations 100 
Permeability (md) 0 to 3500 (average 733) 
Porosity 0 to 0.45 (average 0.159) 
Fault transmissibility multiplier of other faults 0 to 1 (average 0.105) 
Fault transmissibility multiplier of fault F5 0 (sealing) or ¿ 0 (non-sealing)  

Table 2 
Probabilities of the individual realizations with the observed values located in 
each region determined by the optimal threshold of the best single observation 
r′b or.p′b  

Best single observation Information from OP_3 Information from OP_4 

P(r′b < δr′ b
⃒
⃒F5non− sealing) 0.89 0.90 

P(r′b ≥ δr′ b
⃒
⃒F5sealing) 0.80 0.87 

P(p′b < δp′ b
⃒
⃒F5non− sealing) 0.94 0.76 

P(p′b ≥ δp′ b
⃒
⃒F5sealing) 0.74 0.72  
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measured in the test set. The light blue area indicates the standard de
viation of prediction accuracy estimated through 5-fold cross validation. 
Results show that the Random Forest model (Fig. 16d), which is an 
ensemble machine learning algorithm based on bootstrap aggregation 
(bagging), performed better than the other three supervised-learning 
algorithms (i.e., k-Nearest Neighbors, Logistic Regression, Support 
Vector Machine). Compared with the case involving only one single 
observation, prediction accuracy improves using an optimized combi
nation of two or three observations. However, when using more than 
three observations, the performance of the learning model does not 
improve with the addition of new observations; rather, as the number of 
input variables increases, the model becomes more complex, making it 
more prone to overfitting the training set. In this case, we can use only 
three key observations to predict whether or not F5 is sealing with high 
accuracy. When OP_4 is drilled as the first well, we observe similar 
properties in the process of identifying the optimal observations subset: 
the Random Forest algorithm extracts an observation subset with rela
tively higher prediction accuracy than the subsets produced by the other 
algorithms and an optimal number of approximately three observations. 

Table 3 shows the optimal observation subset with three key obser
vations identified using the Random Forest model, as well as the prob
abilities of individual realizations with observed values located in the 
two best disjoint subspaces Ωb

1, Ωb
2 for predicting whether fault F5 is non- 

sealing and sealing, respectively. We note that, although the best single 
observation r′b and p′b have good classification performances (Fig. 15), 
the optimal combination of observations does not necessarily include r′b 
or p′b. The optimal observation subset from OP_3 has one observation of 

pressure derivative p′ obtained at day 19, and this is only the 18th-best 
single observation with AUC = 0.636 (Fig. 14a). However, after addi
tional two observations from r′ are combined, the accuracy rate for 
identifying models with non-sealing and sealing fault could reach 92% 
and 94%, respectively. When OP_4 is drilled as the first well, the optimal 
observation subset consists of three observations from r′ , whereas the 
best single observation r′b at day 25 with AUC = 0.951 is not in the 
optimal subset. However, the prediction accuracy is increased to 95% 
when fault F5 is non-sealing. The above results show that drilling either 
OP_3 or OP_4 at the first decision step will result in obtaining highly 
reliable information for reducing key uncertainty in the drilling-order 
problem (i.e., whether F5 is completely sealing or not). By using a 
supervised-learning algorithm, we efficiently identified key observa
tions from both OP_3 and OP_4 as well as the best division of space for 
prediction purposes, and we also simultaneously estimated the reli
ability of information (i.e., prediction accuracy) in each subspace 
(Table 3). This allows the direct computation of the posterior probability 
of key uncertainty using Bayes’ theorem, thereby avoiding the need for 
history matching to re-estimate uncertainty. 

3.5. Assessing value of information through key action 

By identifying the key reservoir feature that has the largest influence 
on the optimal drilling sequence, we obtained two possible key actions 
at the first step (i.e., OP_3 and OP_4) that are more likely to provide 
useful information for reducing the key uncertainty in the drilling-order 
problem: whether fault F5 is sealing or not. Key observations obtained 
from both OP_3 and OP_4 are demonstrated to have high predictive 
accuracy for indicating if fault F5 is sealing or non-sealing. Although 
reducing key uncertainty would potentially lead to better future de
cisions, taking a key action to acquire the useful information for key 
uncertainty reduction is not always worthwhile, since there may be a 
high hidden cost of obtaining information caused by the sub-optimality 
of the solution which uses the key action. To judge whether taking the 
key action increases the maximum expected NPV in current uncertainty 
state, we must evaluate the EVOI associated with this hidden cost (Eq. 
(7)). To compute the expected value of information, we need to obtain 
the expected NPV from the initial optimal solution obtained utilizing the 

Fig. 16. Performances of four supervised-learning models for predicting whether F5 is sealing or not using the optimal observation subset based on information 
from OP_3. 

Table 3 
Best observation subset and the reliability of the information in each observation 
subspace obtained from Random Forest model.  

Nb
f = 3  Information from OP_3 Information from OP_4 

Optimal observation 
subset 

ob = (r′day2, r′day25,

p′day19)

ob = (r′day19 , r′day32 ,

r′day48)

P(ob ∈ Ωb
1
⃒
⃒F5non− sealing) 0.916 0.945 

P(ob ∈ Ωb
2
⃒
⃒F5sealing) 0.941 0.878  
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prior probability of key uncertainty and the optimal solutions (i.e., 
constrained to the selected key action) in the posterior probability, and 
the marginal probabilities of observations. All of these values are related 
to the prior probability. Hence, instead of evaluating the EVOI only in 
one specific prior probability, we investigate the performances of the 
VOI analysis through key action with different prior probabilities of key 
uncertainty. 

Fig. 17 shows effects of using the best observation subset ob from 
OP_3 or OP_4 to evaluate the posterior probabilities of a non-sealing and 
sealing fault F5 with different initial probabilities, i.e., Punseal = (0.9,
0.7, 0.5, 0.3, 0.1). The black values on the tops of bars represent the 
marginal probabilities of observations located in the best two disjoint 
subspaces Ωb

1 and Ωb
2, i.e., P(ob ∈ Ωb

1) and P(ob ∈ Ωb
2), irrespective of the 

reservoir features. Since the prediction accuracy for observations 
located in the same subspace is almost the same, we only need to 
compute the posterior probabilities at ob ∈ Ωb

1 and ob ∈ Ωb
2 (marked with 

different colors in the bars) considering all possible observations asso
ciated with ob. Note that the values in blue indicate the posterior 
probabilities P(F5unseal

⃒
⃒ob ∈ Ωb

1) while the values in red represent 
P(F5seal

⃒
⃒ob ∈ Ωb

2). Overall, using key observations from both OP_3 and 
OP_4 can significantly reduce the uncertainty about whether fault F5 is 
completely sealing or not, but the posterior probabilities are strongly 
influenced by the prior probabilities. The posterior probabilities with 
observations ob ∈ Ωb

1 and ob ∈ Ωb
2 change considerably especially when 

0.3 < PF5unseal < 0.7. When PF5unseal = 0.5, the posterior probabilities 
P(F5unseal

⃒
⃒ob ∈ Ωb

1) and P(F5seal
⃒
⃒ob ∈ Ωb

2) based on the key observations 
obtained from OP_3 could reach 0.94 and 0.92, respectively. When 
PF5unseal ¿ 0.9 or ¡ 0.1, ob ∈ Ωb

1 and ob ∈ Ωb
2 are almost perfect observations 

for indicating a non-sealing and sealing fault F5, respectively. At a fixed 
prior probability, both marginal probabilities of observations and pos
terior probability distributions change slightly when key observations 
respectively from OP_3 and OP_4 are used, although the reliability of 
information is different (Table 3). In this case, drilling either OP_3 or 
OP_4 as the first well can result in obtaining information with similar 

effectiveness in terms of the reduction of key uncertainty for the drilling- 
order problem, i.e., whether F5 is sealing or not. 

The purpose of collecting information for key uncertainty reduction 
is to obtain a better optimal drilling order solution with higher expected 
value. To study whether key observations identified from OP_3 and OP_4 
are useful in increasing expected profitability, we computed the EVOI 
(Eq. (10)) to evaluate their potential for increasing the expected NPV 
from improved optimal solutions. Fig. 18a compares the EVOIOP3 and 
EVOIOP4 obtained from the difference between the expected values of 
optimal drilling sequences with and without use of additional informa
tion (i.e., key observations) to reduce the uncertainty about whether F5 
is sealing or not. Results show that both EVOIOP3 and EVOIOP4 are pos
itive when 0 < PF5unseal < 1. This indicates that the optimal drilling 
sequence of the remaining wells is improved after reducing the key 
uncertainty in the drilling-order problem. Also, the key observations 
from either OP_3 or OP_4 are always helpful in making better future 
decisions with different prior probabilities. When the initial probability 
of a non-sealing fault F5 is near 0.7, both EVOIOP3 and EVOIOP4 reach 
their maximum values. Although the effects of using information from 
OP_3 and OP_4 to reduce key uncertainty are similar (Fig. 17), EVOIOP3 

is always higher than EVOIOP4 , i.e., more additional value can be created 
with the information from OP_3. If we only consider the EVOI for 
choosing a key action, it seems that OP_3 should be preferred to OP_4. 
However, there might be a large hidden cost of information caused by a 
sub-optimal solution when OP_3 or OP_4 is drilled as the first well. 
Hence, we should evaluate the net EVOI with this hidden cost to 
determine whether it is worth drilling OP_3 or OP_4 first to obtain in
formation for improving future decisions, rather than taking the optimal 
decision for achieving the maximum expected NPV over the current 
uncertainty state. 

Fig. 18b shows the net EVOI including the hidden cost of information 
when OP_3 or OP_4 is drilled as key action for first decision step. Note 
that there is no need to compute the EVOI (Eq. (10)) and the cost of 
information ECOI (Eq. (11)) separately for obtaining the net EVOI 
through a key action. This net EVOI can be computed based on the 

Fig. 17. Posterior probabilities and marginal probabilities of observations obtained from different prior probability distributions of key uncertainty.  

Fig. 18. Comparison of standard EVOI and EVOI with the hidden cost of obtaining information from OP_3 or OP_4.  
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EVOIa∗i →akey
j+1 

obtained from changing the initial optimal decision a∗
i for 

current uncertainty state to key action akey
j+1 (Eq. (7)). Although 

EVOIOP3 > EVOIOP4 , the hidden cost of obtaining information from OP_3 
is much larger than the cost from OP_4 especially when there is a high 
probability that fault F5 is sealing. When the initial probability of a non- 
sealing fault F5 is less than 0.7, the EVOIa∗

i →OP3 is negative, which means 
that the additional value created by using the information from OP_3 to 
improve the optimal drilling sequence of the remaining wells is not 
enough to compensate for the hidden cost of obtaining information 
using a sub-optimal drilling sequence when OP_3 drilled as the first well, 
i.e., EVOIOP3 < ECOIa∗i →OP3 . In that case, there is no benefit to drilling 
OP_3 first even if it can provide highly reliable information for reducing 
key uncertainty for the drilling-order problem, and OP_3 is preferred to 
a∗

i only when PF5unseal ≥ 0.7. However, EVOIa∗
i →OP4 is always positive and 

larger than EVOIa∗i →OP3 unless the prior probability of non-sealing fault 
F5 is extremely high. After consideration of the hidden cost of infor
mation, when PF5unseal < 0.94, OP_4 will be a better choice of key action 
than OP_3 while OP_3 will be preferred to OP_4 if PF5unseal ≥ 0.94. In this 
case, performing the key-feature based VOI analysis (Fig. 7), which 
considers only the future learning possibility through OP_3 or OP_4 that 
has a higher EVOIa∗i →akey

j+1
, leads to the same optimal decision with 

consideration of the future information from all possible decision al
ternatives, which illustrates that by taking into account future infor
mation from key action, we are able to make optimal decisions which 
account for the possibilities of further learning without sacrificing the 
quality of solution. 

Instead of computing all EVOIa∗i →akey
j+1 

to identify the preferred akey
j+1, we 

can study the initial optimal drilling sequence to quickly obtain a good 
akey

j+1 with a potentially higher EVOIa∗
i →akey

j+1
. Since the hidden cost of in

formation is caused by a sub-optimal solution and the wells that have 
important contributions to increase the expected NPV are generally 
preferable for drilling at an early stage, we expect that the cost 
ECOIa∗i →akey

j+1 
from akey

j+1 that is drilled at a later stage along the initial 

optimal complete drilling sequence will be potentially larger than the 
hidden cost of obtaining information from akey

j+1 drilled at an early stage. 

When there are several possible akey
j+1 with similar reliability of infor

mation, we can choose the one that is supposed to be drilled earlier for 
maximizing the expected NPV in the current uncertainty state to avoid a 
high hidden cost of information. In this work, we used learned heuristic 
search with mean model bias-correction methods to efficiently obtain 
robust optimal drilling sequence under uncertainty. During the search 
process, the maximum expected NPV constrained to different selected 
wells is estimated without finding the actual optimal solution. Hence, 
we could also obtain an approximation of ECOIa∗

i →akey
j+1 

when computing 

the initial optimal decision a∗ and without incurring additional costs. 
For the drilling-order problem, we observe that the optimal drilling 

sequence always starts with OP_4 when PF5unseal < 0.94, and then changes 
to OP_3 drilled as the first well when PF5unseal ≥ 0.94, which indicates that 
one of the possible key actions (e.g., OP_3 or OP_4) has no hidden cost of 
information caused by a sub-optimal solution since it is identical to the 
initial optimal decision a∗, i.e., ECOIa∗→a∗ = 0. When a∗ is also able to 
provide useful information for key uncertainty reduction, we can 
consider the future information from both a∗ and akey

j+1 that is identified 
from the other decision alternatives to make a more robust decision in 
consideration of future learning possibilities (Eq. (13)). In this example, 
the optimal decision obtained after taking into account the future in
formation from both OP_3 and OP_4 is still the initial optimal decision a∗

since taking a∗ is able to both generate highly reliable information for 
key uncertainty reduction (i.e., valuable information for improving 
future decisions) and maximize the expected NPV for the current 

assessment of uncertainty (i.e., no hidden cost of information), although 
this might not always be the case in other problems. Note that here, we 
only investigated the future learning possibilities at the first decision 
step. After drilling a new well, the reservoir model will be updated 
through history matching based on the actual data. The key-feature- 
based VOI analysis (Fig. 7) could then be performed again to deter
mine the next optimal well. At the second and later decision stages, 
however, information from the remaining actions will generally have a 
smaller potential for improving the optimal strategy, and there may be 
no clear key uncertainties for the optimization problem. In that case, 
there would be no need to consider the effect of future information when 
making the optimal decision, and one could simply use a standard robust 
optimization method (Wang and Oliver, 2020). 

4. Conclusion 

In this paper, we proposed a flexible workflow built on a key-feature- 
based value of information analysis to make optimal decisions efficiently 
while accounting for the possibilities for future learning through actions. 
Taking into account the effects of future information before committing 
to a decision allows improvement of the optimal strategy. However, it is 
infeasible and unnecessary to account for all possible future observa
tions from remaining actions (i.e., a standard VOI analysis with exten
sive form). In our approach, the VOI analysis is only performed on a 
small number of key actions that will provide key information for 
reducing the most important uncertainties in the optimization problem. 
i.e., information that will be for making better future decisions. Then, 
the optimal decision is made based on the trade-off between the key 
actions and the initial optimal decision obtained without considering 
any future information. The simplified VOI analysis based only on key 
actions and key information might not result in the same optimal solu
tion as the complete VOI analysis, but it offers a practical way to obtain a 
near-optimal decision that accounts for the possibilities of future 
learning (i.e., the opportunities to improve optimal strategy resulting 
from future uncertainty reduction). The key actions can be identified by 
considering the possibility of obtaining valuable information for 
reducing key uncertainties and the possibility of achieving high ex
pected NPVs for the current uncertainty state, so that there is no need to 
compare the actual expected values of all possible decisions. The focus 
on the use of key information to reduce key uncertainties avoids the 
need for full history matching to re-estimate all uncertainties in the 
optimization. Instead of considering all distinct sets of observations 
obtained from all ensemble members when updating the reservoir 
model, we divide the entire key observation space into a limited number 
of disjointed subspaces, i.e., each subspace will have high information 
reliability for indicating a specific key uncertainties subregion, and 
observations located in the same subspace have similar prediction pre
cision for key uncertainty reduction. Consequently, we only have to re- 
estimate key uncertainties for each observation subspace and perform 
the optimization process in a few posterior ensembles for computing the 
expected value with information. The following conclusions can be 
drawn from the present study:  

• Although many uncertainties arise in reservoir characterization, 
some of them have little influence on the optimal decisions, even if 
they might be reduced significantly by assimilation of acquired ob
servations. By identifying key uncertainties for the optimization 
problems, we can identify key actions that would provide the most 
useful information for improving future decisions. 

• When all observations are used to simultaneously re-estimate un
certainty, the largest decrease in uncertainty may be in properties 
that are irrelevant to current decisions, and the reduction in key 
uncertainties from some observations might be very small. However, 
the computational penalty of including those nonessential observa
tions in updating the reservoir model can be large. Thus, instead of 
only reducing the decision space by identifying key actions, we also 
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need to identify the most important observations for reducing key 
uncertainties to make the computation manageable.  

• Performing a key action to acquire information for reducing key 
uncertainty is not necessarily worthwhile, even if there is no explicit 
cost in obtaining the information and future decisions could be 
improved. When taking key action to obtain information leads to a 
sub-optimal solution, there is a hidden cost in obtaining the infor
mation. Instead of using the additional value that could be created 
with information to judge whether it is worth taking action, the 
criteria should be the net expected value of information, including 
the hidden cost associated with changing the optimal decision for the 
current uncertainty state to the key action.  

• The initial action in the optimal sequence of actions based on current 
information might, in some cases, be a possible key action. To obtain 
a robust decision, it may be necessary to consider the possibility of 
future learning through both the initial optimal decision and alter
native key actions identified from the remaining decision 
alternatives.  

• The expected value of information attributed to key actions will 
depend on the prior probability distribution of key uncertainties. 
Hence, changing the prior probabilities will not only affect the 
standard (naïve) computation of the optimal solution, but will also 
affect the optimal decision obtained from VOI analysis. 

Although the methodology is illustrated by the application of 
drilling-order problems, it can be extended to general sequential 
decision-making problems under uncertainty while considering the ef
fect of future information. The key point is to effectively identify key 
actions and key observations that are associated with the key reservoir 
features for optimization problems. In our example application, key 
uncertainties are identified by studying the sensitivity of deterministic 
optimization solutions to different individual uncertainties. Key actions 
are identified by evaluating the reliability of information for reducing 
key uncertainties and the hidden cost of obtaining information from key 
actions. For large problems, it may be necessary to explore more 
generalized and efficient approaches for identifying key uncertainties 
and key actions. To efficiently identify key observations, we built 
supervised-learning algorithms that can automatically detect the 

optimal combination of observations as well as the best division of space 
for reducing key uncertainty. At the same time, we estimate the pre
diction accuracy (i.e., the information’s reliability) for observations 
located in each subspace. This allows directly computing the posterior 
probability of key uncertainty based on Bayes’ theorem, avoiding the 
necessity of expensive data assimilation algorithms to update the entire 
reservoir model. Using learning algorithms to identify the important 
observations is applicable for optimization problems with multiple key 
uncertainties that are continuous or categorical variables. For contin
uous variables, the distribution of key uncertainties could be divided 
into a set of optimized subregions based on the performance of the 
observation subspaces in reducing key uncertainties. Our simplified VOI 
analysis considers the future information only resulting from the current 
decision step. If the key information can only be obtained by taking at 
least two actions (i.e., individual decision alternatives are shown to be 
unreliable as a source of information for reducing key uncertainty), we 
could extend the VOI analysis by considering the possibility of future 
learning through the following two decision steps, i.e., a combination of 
information from two actions. The simultaneous consideration of in
formation from two actions would increase the complexity of VOI 
analysis, computational cost of expected value with information, and the 
hidden cost of obtaining key information caused by sub-optimal solu
tion, which will be constrained to more past decisions. 
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Nomenclature 

α bias correction factor 
m expected value of model parameter 
β partial correction factor 
ECOIa∗→akey hidden cost of information caused by sub-optimal solutions constrained to decision akey 

EVOI expected value of information 
EVOIa∗→akey expected value of information changing decision a∗ to akey 

EVWI expected value with information 
EVWOI expected value without information 
Ωb key observation subspace 
Θm subregion of key uncertainty 
A decision space 
a decision alternative 
a∗ optimal decision over the current assessment of uncertainty 
a∗fl optimal decision considering future information from current decision stage 
a∗fs optimal decision considering future information from all remaining decision stages 
akey decision alternative providing important information for key uncertainty reduction 
EV∗ maximum expected value over current uncertainty state 
h history of past decisions and observations 
J objective function 
m model parameter 
NΩb Number of observation subspaces 
Ne Ensemble size 
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O observation space 
o observation obtained from specific decision 
ob best observation subset for key uncertainty reduction 
P(Ωb⃒⃒Θm) probability of observing ob ∈ Ωb at key uncertainty subregion Θm 

P(Θm⃒⃒Ωb) posterior probability of key uncertainty subregion Θm with observation ob ∈ Ωb 

P(Θm) prior probability of key uncertainty subregion Θm 

P(o|h,a) probability of observing o from decision a following history h 
Q∗ maximum expected value over all possible future observations from all remaining actions 
u uncertainty state 
x control variable  

Subscripts 
i key uncertainty subregion index 
j decision stage index/model realization index (depending on context) 
k key observation subspace index  

Superscripts 
b best observation subset 
m model parameter 
o observation 
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