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Abstract
Neuroticism is associated with poor health, cardiovascular disease (CVD) risk factors and coronary artery disease (CAD). The
conditional/conjunctional false discovery rate method (cond/conjFDR) was applied to genome wide association study
(GWAS) summary statistics on neuroticism (n= 432,109), CAD (n= 184,305) and 12 CVD risk factors (n= 188,577–339,224)
to investigate genetic overlap between neuroticism and CAD and CVD risk factors. CondFDR analyses identified 729
genomic loci associated with neuroticism after conditioning on CAD and CVD risk factors. The conjFDR analyses revealed
345 loci jointly associated with neuroticism and CAD (n= 30), body mass index (BMI) (n= 96) or another CVD risk factor
(n= 1–60). Several loci were jointly associated with neuroticism and multiple CVD risk factors. Seventeen of the shared loci
with CAD and 61 of the shared loci with BMI are novel for neuroticism. 21 of 30 (70%) neuroticism risk alleles were
associated with higher CAD risk. Functional analyses of the genes mapped to the shared loci implicated cell division,
nuclear receptor, elastic fiber formation as well as starch and sucrose metabolism pathways. Our results indicate polygenic
overlap between neuroticism and CAD and CVD risk factors, suggesting that genetic factors may partly cause the
comorbidity. This gives new insight into the shared molecular genetic basis of these conditions.

Introduction
Neuroticism is a personality trait that involves the

tendency to experience negative emotions1, and is asso-
ciated with psychiatric illnesses such as depression and
anxiety disorders2. There is growing evidence that neu-
roticism is also associated with cardiovascular disease
(CVD), and CVD risk factors such as high body mass
index (BMI)3, type 2 diabetes (T2D) and hypertension4.
Further, some prospective clinical and epidemiological
studies indicate that neuroticism increases the risk of
coronary artery disease (CAD) and mortality compared to
the general population5,6. However, the findings are

inconsistent and the association is not clearly estab-
lished6–9.
The mechanisms underlying the associations between

neuroticism and CVD risk factors and CAD are not
known. Neuroticism may contribute to CAD through
behavioral mechanisms such as poor health-related
behaviors (smoking, sedentary life style, and unhealthy
diet) and low adherence to medication and rehabilita-
tion10,11. Different biological pathways have also been
proposed to explain the higher incidence of CAD in
people with neuroticism; dysregulation of the
hypothalamic-pituitary-adrenal axis results in increased
cortisol levels due to stress, leading to higher daytime
cortisol levels which in turn elevates blood pressure,
autonomic dysregulation, subclinical inflammation and
oxidative stress, while also reducing the number of stem
cells11. Further, it has been hypothesized that the asso-
ciation between neuroticism and CAD, and its related risk
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factors is partly caused by genetic pleiotropy between
neuroticism and CAD, hypertension, and higher BMI6–9.
Twin and adoption studies suggest that heritability

accounts for between a third and a half of individual
differences in neuroticism12. In adolescence and early
adulthood, 50–60% of the variance in neuroticism scores
is estimated to be attributable to genetic factors13. A
recent GWAS meta-analysis of neuroticism, with a total
number of 449,484 participants, identified 136 indepen-
dent genome-wide significant loci implicating 599
genes14, and underscored the polygenic architecture of
this trait.
CAD is also highly heritable, with estimates of 40–50%

from family studies15. Twin studies found the heritability
of CAD to be 55% after controlling for smoking and
BMI16. GWAS have identified 161 loci associated with
CAD17. Recent studies, applying Linkage disequilibrium
score regression (LDSR), have shown significant positive
genetic correlations between neuroticism and CVD risk
factors and polygene risk score (PRS) analyses provide
further evidence of genetic overlap18. Gale et al. showed
that PRS for CAD and cigarette smoking, a known CVD
risk factor, were positively associated with neuroticism,
while PRS for BMI was associated in a negative direction1.
However, studies based on PRS and LDSR are not able to
identify specific genetic loci involved.
Recently developed methodologies are able to identify

overlapping genetic loci between two traits beyond
genetic correlation19. We here apply the conditional false
discovery rate (condFDR) analytical approach to a large
neuroticism GWAS, to evaluate the polygenic overlap
with CAD and 12 CVD risk factors. Further, a large part of
the polygenic architecture of neuroticism remains unex-
plained. Thus, we also leveraged the genetic overlap
between neuroticism, CAD, and CVD risk factors to boost
the power to discover genetic variants associated with
neuroticism conditioned on the genetic effects in asso-
ciated traits20–22.
We analyzed summary statistics from GWAS of neu-

roticism (n= 432,109)14, CAD20, and 12 CVD risk factors;
BMI22, WHR21, high density lipoprotein (HDL)23, low
density lipoprotein (LDL)23, triglycerides (TG)23, total
cholesterol (TC)23, T2D24, c-reactive protein (CRP)25,
systolic blood pressure (SBP)26, diastolic blood pressure
(DBP)26, pulse pressure (PP)26, and cigarettes smoked
per day (CIGPRDAY)27.

Materials and methods
Participants
In the present study, GWAS summary statistics data on

neuroticism were available for 432,109 individuals
(372,903 individuals from the UK Biobank28 and 59,206
individuals from 23andMe, Inc29.) who completed a

questionnaire on neuroticism and provided DNA for
genome-wide genotyping14. We meta-analysed the two
GWAS summary statistics using METAL30.
Between 2006 and 2010, 502,655 community-dwelling

people aged between 37 and 73 years and living in the
United Kingdom were recruited to the UK Biobank study
and completed the baseline survey (http://www.
ukbiobank.ac.uk)28. They underwent assessments of cog-
nitive and physical functions, mood and personality. They
provided blood, urine, and saliva samples for future ana-
lysis, completed questionnaires about their social back-
grounds and lifestyle and agreed that their information
could be used in research.
The 23andMe sample was based on self-reported

information from more than 1,000,000 individuals (90%
participating in research), through a direct-to-consumer
online genetic-testing service since 200629. Participants
provided informed consent and participated in the
research online, under a protocol approved by the exter-
nal AAHRPP-accredited IRB, Ethical & Independent
Review Services (E&I Review).

Neuroticism assessment
UK Biobank participants completed the Neuroticism

scale of the Eysenck Personality Questionnaire-Revised
(EPQ-R) Short Form (12 item)31. This scale has been
validated in older people against two of the most used
measures of neuroticism, taken from the International
Personality Item Pool (IPIP) and correlated −0.84 with
the IPIP-Emotional Stability scale and 0.85 with the NEO-
Five Factor Inventory (NEO-FFI)32.

GWAS summary statistics for CAD and CVD Risk factors
We obtained GWAS summary statistics for CAD (n=

184,305)20 and the related risk factors for CVD including
BMI22, WHR21, HDL23, LDL23, TG23, TC23, T2D24,
CRP25, SBP26, DBP26, PP26, and CIGPRDAY27 (n=
188,577–339,224 depending on the CVD risk factor).
More information on the characteristics of the study
samples and inclusion criteria for the different GWAS is
given in Supplementary Table 15, and the original pub-
lications were also the extensive quality control proce-
dures are described in detail14,20–24,26,27. GWAS
participants were predominantly of European ancestry,
except for SBP, DBP, and PP. There was no sample
overlap between participants in the neuroticism sample
and those in the CAD or CVD risk factor samples.

Ethics
All GWAS used in the present study were approved by

the local ethics committees, and all the participants gave
their informed consent14,20–24,26,27. UK Biobank received
ethical approval from the Research Ethics Committee
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(REC reference 11/NW/0382). The current protocol was
assessed by Regional Committees for Medical Research
Ethics - South East Norway, and no additional institu-
tional review board approval was necessary because no
individual data were used. For more details, see Supple-
mentary Methods and the original publications.

Statistical analyses
To estimate SNP-based genetic correlations between

neuroticism, CAD, and CVD risk factors, we used linkage
disequilibrium (LD) score regression33. The analysis was
performed using the Python-based package available at
(https://github.com/bulik/ldsc), with the procedure descri-
bed in the documentation for the package (https://github.
com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation).
We constructed conditional quantile–quantile (Q–Q)

plots to visualize cross-trait enrichment34. The conditional
Q–Q plots compare the association with one trait (e.g.,
neuroticism) within SNPs strata determined by significant
association with a secondary trait (e.g., CAD). Cross-trait
enrichment exists if the proportion of SNPs associated with
a phenotype increases as a function of the strength of the
association with a secondary phenotype, and is shown by a
successively leftward deflection from the null line on the
conditional Q–Q plot. This can be directly interpreted in
terms of the true discovery rate (1-FDR)35–37.
To improve the discovery of genetic variants associated

with neuroticism, CAD and CVD risk factors we used a
condFDR statistical framework38. This statistical method
is an extension of the standard FDR, and uses genetic
association summary statistics from the primary trait of
interest (neuroticism) together with those of a conditional
trait (e.g., CAD). CondFDR re-ranks the test-statistics of a
primary phenotype based on a conditional variable, here
the strength of the association with CAD and CVD risk
factors. By leveraging the condFDR we increased power
and incorporated useful information from a second trait
into the analysis, identifying the SNPs more likely to
replicate. Altering the roles of primary and secondary
phenotypes gives the inverse condFDR value. P-values
were corrected for inflation using a genomic inflation
control procedure35.
We also applied the conjFDR method35, an extension of

the condFDR, to detect loci showing strong evidence of
association with both neuroticism and the given second-
ary trait. The conjFDR method is defined by the max-
imum of the two condFDR values for a specific SNP, and
estimates the posterior probability for a SNP being null
for either trait or both at the same time, given that the
P values for both phenotypes are equal to, or smaller, than
the P-values for each trait individually.
We applied a condFDR level of 0.01 and a conjFDR of

0.05 per pairwise comparison. Manhattan plots were
constructed based on the ranking of the conjFDR to show

the shared genetic risk loci. All SNPs without pruning are
shown, and the independent significant lead SNPs are
encircled in black. SNPs in the major extended histo-
compatibility complex and 8p23.1 region were excluded.
For more details, see the original35 and subsequent pub-
lications39–41.

Genomic loci definition
We used FUMA to define the independent genomic

loci42. SNPs with condFDR < 0.01 and conjFDR < 0.05
were identified as independent significant SNPs, and
independent from each other at r2 < 0.6. Lead SNPs were
selected in approximate linkage equilibrium with each
other at r2 < 0.1. To identify distinct genomic loci, all
physically overlapping lead SNPs were merged (LD blocks
<250 kb apart). The borders of the genomic loci were
determined by identifying all SNPs in linkage dis-
equilibrium (LD) (r2 ≧ 0.6) with one of the independent
significant SNPs in the locus. The part of the gene con-
taining all of these candidate SNPs was evaluated as a
single independent genomic locus. However, due to the
inability to identify the causal variants from GWAS,
we cannot rule out that different tag SNPs can represent
the same causal locus. The 1000 Genomes Project refer-
ence panel43 was used to calculate the LD information.
The directional effects of the loci shared between neu-
roticism and cardiovascular traits were assessed by com-
paring their z-scores and odds ratios.

Functional annotation
We annotated all lead SNPs in condFDR < 0.01, conjFDR <

0.05, and all candidate SNPs in the genomic loci with a
conjFDR value < 0.1 having an LD r2 ≧ 0.6 with one of the
independent significant SNPs by using FUMA42. We applied
another tool to predict the deleteriousness of SNPs on the
proteins structure and function; Combined Annotation
Dependent Depletion (CADD)44. Further, we leveraged Reg-
ulomeDB45, a method to predict regulatory functions, and
then chromatin states, which predict transcription/regulatory
effects of chromatin states at the SNP locus46,47. We identi-
fied loci overlapping with previously reported GWAS asso-
ciations in the NHGRI-EBI catalog48. We also used FUMA42

for gene-set enrichment for the genes nearest the identified
shared loci represented by Gene Ontology (GO)49. The
genotype expression (GTEx) resource50 was applied to
evaluate expression quantitative trait locus (eQTL) func-
tionality of likely regulatory lead SNPs. We corrected all
analyses for multiple comparisons.

Results
Genetic correlations
Using genome-wide LD score regression analyses, we

found non-significant negative genetic correlation (rg)
between neuroticism and BMI (rg=−0.0174 (SE 0.0213),

Torgersen et al. Translational Psychiatry          (2021) 11:368 Page 3 of 13

https://github.com/bulik/ldsc
https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation
https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation


P= 0.413) and HDL (rg=−0.0216 (SE 0.0244),
P= 0.3765) and positive genetic correlation with neuro-
ticism that was nominally significant for CAD (rg =
0.0919 (SE 0.0289), P= 0.0015), TG (rg= 0.0367 (SE
0.0182), P= 0.0432), WHR (rg = 0.065 (SE 0.0269), P=
0.0159), and non-significant for DBP (rg = 0.0333 (SE
0.0272), P= 0.2209), SBP (rg = 0.0426 (SE 0.025), P=
0.0893), CRP (rg= 0.0313 (SE 0.0273), P= 0.2526),
CIGPRDAY (rg = 0.0445 (SE 0.0572), P= 0.4371), T2D
(rg= 0.0377 (SE 0.0337), P= 0.2638), LDL (rg= 0.0308
(SE 0.026), P= 0.2351), and TC (rg = 0.0333 (SE 0.0256),
P= 0.1936) (Suppl. Fig. 1).

Polygenic overlap
To visually determine the presence of polygenic

enrichment across traits, which is a measure of polygenic
overlap, we generated conditional Q–Q plots for neuro-
ticism conditioned on CAD and CVD risk factors,
excluding CIGPRDAY. Leftward deflection from the null-
line in the conditional Q–Q plots reflects polygenic
enrichment. The strongest enrichment was observed for
neuroticism after conditioning on CAD or BMI, and vice
versa (Figs. 1 and 2). There were weaker signs of enrich-
ment in the other traits (Suppl. Figs. 2–21).

Shared genetic loci
CondFDR
When combining the condFDR analyses for neuroticism

and all of the secondary traits, we identify 729 unique
SNPs associated with neuroticism conditional on a sec-
ondary trait (condFDR < 0.01). A large number of neu-
roticism SNPs were associated with multiple secondary
traits, illustrated by a total of n= 1682 significant asso-
ciations. We identified 154 loci associated with neuroti-
cism conditional on CAD, 140 on BMI, 154 on DBP, 170

on SBP, 102 on WHR and 98 on HDL (Suppl. Tables 2–7).
The reverse condFDR analyses identified 122, 344, 140,
264, 102, and 193 loci associated with CAD, BMI, DBP,
SBP, WHR, and HDL, respectively, conditional on neu-
roticism. (Suppl. Tables 2–7). We also identified neuro-
ticism loci conditional on TC, TG, T2D, LDL, CRP, PP,
and visa-versa (Suppl. Tables 8–13).

ConjFDR
To identify the genetic loci jointly associated with both

neuroticism and CVD risk factors and CAD, we used the
conjFDR method. We identified a total of 345 unique
SNPs with significant (conjFDR < 0.05) effects in both
traits. A total of 30 distinct genomic loci were jointly
associated with neuroticism and CAD (Fig. 3 and Suppl.
Table 2). Seventeen of these loci were not identified in the
original neuroticism GWAS14 and ten were not reported
in the original CAD GWAS20. Five of the loci are novel in
both phenotypes. Ninety-six distinct genomic loci were
associated with both neuroticism and BMI (Fig. 4 and
Suppl. Table 3); 61 of these loci were not identified in the
original neuroticism GWAS14 and 17 are novel for BMI.
Thirteen were novel in both traits. Moreover, 46 loci were
jointly identified between neuroticism and DBP (Suppl.
Fig. 22 and Suppl. Table 4). Twenty-nine of these were
not previously identified for neuroticism, and 19 were not
identified previously for DBP. Seventeen loci are novel for
both phenotypes. Sixty loci were jointly associated with
neuroticism and SBP (Suppl. Fig. 23 and Suppl. Table 5).
Of these loci, 40 were not previously reported for neu-
roticism. Nine were not previously reported for SBP, and
nine are novel for both neuroticism and SBP. We also
identified 22 distinct loci shared between neuroticism and
WHR (Suppl. Fig. 24 and Suppl. Table 6). Thirteen of
these were not identified in the original neuroticism

Fig. 1 Polygenic overlap between neuroticism (NEUR) conditioned on CAD (NEUR∣CAD) and CAD conditioned on NEUR (CAD∣NEUR).
Conditional q–q plots of nominal versus empirical –log 10p values (corrected for inflation) in primary trait (NEUR or CAD) below the standard GWAS
threshold of P < 5 × 10–8 as a function of significance of association with secondary trait (CAD or NEUR) at the level of P < 0.1, P < 0.01, and P < 0.001,
respectively. The blue line indicates all SNPs. The dashed line indicate the null hypothesis.
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GWAS14 and 15 had not been identified in the original
WHR GWAS21, yielding a total number of eight novel
neuroticism risk loci among the shared loci. In addition,
29 distinct genomic loci were associated with both neu-
roticism and HDL (Suppl. Fig. 25 and Suppl. Table 7); 15
of these loci were not identified in the original neuroti-
cism GWAS14, 20 of the 29 loci were novel for HDL, and
11 were novel in both traits.
One locus was shared between neuroticism, CAD, BMI,

WHR, and HDL (Table 1 and Suppl. Table 14). The nearest
gene for this locus is the pseudogene RPS3A49. Several loci
were shared between neuroticism and more than one
secondary phenotype (Table 1 and Suppl. Table 14).

We also identified loci jointly associated (conjFDR < 0.05)
with neuroticism and TC (n= 17), TG (n= 16), T2D (n=
15), CRP (n= 10), LDL (n= 10), PP (n= 36), and
CIGPRDAY (n= 1), respectively (Suppl. Figs. 26–232,
Suppl. Tables 8–13, and 15). We visualized the distribution
of the shared variants by conjFDR Manhattan plots, where
all SNPs without pruning are shown, and the independent
significant lead SNPs are encircled in black (Figs. 3 and 4
and Suppl. Figs. 22–32).

Effect directions
Of the top lead SNPs (conjFDR < 0.05) shared between

neuroticism and CAD, 21 (70%) had the same direction of

Fig. 2 Polygenic overlap between neuroticism (NEUR) conditioned on BMI (NEUR∣BMI) and BMI conditioned on NEUR (BMI∣NEUR).
Conditional q–q plots of nominal versus empirical –log 10p values (corrected for inflation) in primary trait (NEUR or BMI) below the standard GWAS
threshold of p < 5 × 10–8 as a function of significance of association with secondary trait (BMI or NEUR) at the level of p < 0.1, p < 0.01, and p < 0.001,
respectively. The blue line indicates all SNPs. The dashed line indicate the null hypothesis.

Fig. 3 Common genetic variants jointly associated with neuroticism (n= 432,109) and CAD (n= 184,305) at conjunctional false discovery
rate (conjFDR) < 0.05. Manhattan plot showing the –log10 transformed conjFDR values for each SNP on the y axis and the chromosomal positions
along the x axis. The dotted horizontal line represents the threshold for significant shared associations (conjFDR < 0.05, i.e., −log10(conjFDR) > 2.0).
Independent lead SNPs are encircled in black. The significant shared signal in the major histocompatibility complex region (chr6:25119106–
33854733) is represented by one independent lead SNP. Further details are available in Supplementary Table 2.

Torgersen et al. Translational Psychiatry          (2021) 11:368 Page 5 of 13



effect, 18 (81.8%) for WHR, 36 (60%) for SBP, and 28
(60%) for DBP, which implies that the genetic variants
increase risk for both neuroticism and CAD, WHR, SBP,
and DBP, respectively. For neuroticism and HDL, 16
(55%) of the identified loci had opposite effect directions,
as could be expected because higher HDL is associated
with lower risk for CAD51. However, for neuroticism and
BMI, 56 (58%) of the top lead SNPs also showed the
opposite effect direction, suggesting mixed effect direc-
tions, with a tendency for neuroticism risk to be some-
what associated with reduced BMI. For the other CVD
risk factors, there was a mixed patterns of effect direc-
tions. The effect directions are similar to the polygenic
effect directions from the genetic correlation analyses
(Suppl. Fig. 1).

Functional analyses
Functional annotations of all SNPs having a conjFDR <

0.05 for neuroticism versus CAD and CVD risk factors are
shown in Supplementary Tables 1–13. The shared loci
implicated genes associated with pathways of cell division
and proteasome degradation for CAD, starch, and sucrose
metabolism for BMI and HDL, and nuclear receptor
transcription for HDL, among others. Finding of invol-
vement of the nuclear receptor transcription pathway is in
line with recent evidence, that activation of the nuclear
receptor FXR in vivo increases hepatic levels of miR-144
and lowers hepatic ABCA1 and plasma HDL levels52. For
SBP and PP the shared loci implicated genes associated
with elastic fiber formation pathways, and for DBP the

shared loci implicated genes associated with the Notch
signaling pathway, among others.

Discussion
The present results demonstrated extensive overlapping

polygenic architecture between neuroticism and CVD risk
factors and CAD beyond genetic correlation. We identi-
fied 345 unique genetic loci underlying the shared genetic
architecture, and increased the number of loci associated
with neuroticism to n= 729, due to the boost in power
from combined analysis of GWAS from two phenotypes
using the cond/conjFDR method. This provides new
knowledge about the molecular genetic mechanisms
shared between cardiovascular risk and neuroticism.
We identified 345 genetic variants jointly associated

with neuroticism and CVD risk factors as well as CAD; 30
for CAD, 96 for BMI, 46 for DBP, 60 for SBP, 22 for
WHR, and 29 for HDL, as well as between 9–36 for each
of PP, T2D, TG, TC, LDL, CRP, and one for CIGPRDAY.
These low number of shared loci between neuroticism
and smoking compared to BMI and blood pressure is
probably due to the lower polygenicity of smoking.
Although the initial GWASs had reasonably same statis-
tical power, the number of significant loci were much
lower in the original smoking GWAS (n= 3)27, compared
to the original BMI GWAS (n= 423)22, and blood pres-
sure GWAS (n= 505)26.
While some tag SNPs may represent the same causal

locus, 10, 17, 19, 9, 15, and 29 were novel for CAD, BMI,
DBP, SBP, WHR, HDL, respectively. The effect direction

Fig. 4 Common genetic variants jointly associated with neuroticism (n= 432,109) and BMI (n= 184,305) at conjunctional false discovery
rate (conjFDR) < 0.05. Manhattan plot showing the –log10 transformed conjFDR values for each SNP on the y axis and the chromosomal positions
along the x axis. The dotted horizontal line represents the threshold for significant shared associations (conjFDR < 0.05, i.e., −log10(conjFDR) > 2.0).
Independent lead SNPs are encircled in black. The significant shared signal in the major histocompatibility complex region (chr6:25119106–
33854733) is represented by one independent lead SNP. Further details are available in Supplementary Table 3.
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Table 1 Loci shared between neuroticism and more than one secondary phenotype.

Phenotype CHR LEAD SNP MinBP MaxBP

BMI, TG, WHR, SBP AND PP 1 rs1460940 72628347 72959392

SBP, DBP, BMI AND PP 2 rs736699 26911509 26932796

SBP AND PP 2 rs343968 44905806 45004016

SBP, BMI AND PP 2 rs848286 58007905 58674393

CAD, BMI AND PP 2 rs72932707 203639395 204196618

HDL AND DBP 2 rs6738482 61242410 61837947

WHR AND DBP 2 rs17741344 148457576 148853296

TC AND LDL 3 rs9853387 135798730 136503896

CAD, BMI, HDL, LDL, TC AND PP 3 rs6788993 52277445 52838402

SBP, BMI AND PP 3 rs12637791 85403892 85784084

TC, DBP AND SBP 3 rs1989839 50184538 50420554

CAD, DBP AND SBP 4 rs4691707 156420605 156443314

SBP AND PP 4 rs16854051 41879969 42161491

BMI, DBP AND SBP 4 rs11722027 144028173 144215346

CAD, T2D AND DBP 4 rs17516389 118976252 119264162

BMI AND PP 5 rs4269288 122650049 122803786

T2D, DBP, SBP AND PP 6 rs10948071 43260660 43397259

WHR, TG, LDL, CRP AND PP 6 rs2856674 25450026 32963948

HDL, CRP, LDL, TC, TG AND SBP 6 rs2269426 31578772 32189481

CAD, WHR, CRP AND SBP 6 rs1490384 126659043 127080700

CAD, HDL, LDL, WHR, BMI, CRP AND DBP 6 rs1077393 30997692 32189481

T2D AND DBP 6 rs2396004 43262303 43364494

CAD, WHR, CRP, T2D AND DBP 6 rs6925689 126623947 127080700

TC AND LDL 7 rs6948810 21474610 21555536

SBP AND PP 7 rs17165701 12212919 12286050

CAD AND SBP 7 rs58673065 1843200 2110850

CAD AND SBP 7 rs6460902 12200060 12285140

DBP, HDL, BMI, LDL AND PP 8 rs7813434 116464988 116632819

CRP, DBP, SBP AND PP 8 rs2736313 8088230 12199830

WHR AND PP 9 rs11791636 23805555 23827667

SBP AND PP 9 rs10821154 96155812 96381916

SBP AND PP 9 rs4838254 127766897 128399285

SBP, CAD, BMI AND PP 10 rs11000925 75867193 76421529

T2D, DBP AND SBP 10 rs10906382 13479684 13611368

CAD, BMI, DBP, SBP AND PP 10 rs77335224 104487871 105059896

BMI, LDL AND TC 11 rs866901 77909014 78135704

HDL OG TG 11 rs10832027 13354509 13370535

SBP, BMI AND PP 11 rs3180446 45203212 45345244

SBP, CAD, BMI, LDL,TC AND PP 11 rs2450122 77909014 78135704
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Table 1 continued

Phenotype CHR LEAD SNP MinBP MaxBP

HDL AND SBP 11 rs1988724 9958403 10370675

BMI AND SBP 11 rs11038371 45258966 45345244

BMI, T2D, CRP, TC, TG, HDL, LDL, PP, DBP, AND SBP 11 rs7107356 47175327 49128599

CAD, BMI, LDL, TC AND SBP 11 rs990706 77909014 78271614

SBP AND PP 12 rs79601649 49737114 50160662

HDL OG TC 14 rs12588415 75120628 75378185

TC, SBP AND PP 14 rs1866628 75057809 75113506

HDL,TC AND DBP 14 rs8004084 75144618 75377692

BMI AND PP 15 rs4886937 78076272 78152626

CAD, SBP, DBP AND PP 15 rs17514846 91412850 91429042

BMI AND SBP 15 rs7176782 69415482 69569464

CAD AND SBP 15 rs17514846 91412850 91429042

TC AND LDL 16 rs1002252 71278016 71376751

BMI, TG AND DBP 16 rs1549299 30916129 31155458

TC AND LDL 17 rs12309 38122708 38219005

TC AND LDL 17 rs1230065 43461460 43534322

SBP AND PP 17 rs2165846 44941366 44947821

CAD AND DBP 17 rs55938136 43798360 43798360

CAD, BMI, WHR, HDL 18 rs17700144 57728947 57987859

HDL OG TG 19 rs10409835 32830261 32994338

BMI AND WHR 19 rs9636202 18449238 18474892

Z in NEUR Nearest gene

4.35461662317 RPL31P12

4.18963785615 KCNK3

−3.89234482431 CAMKMT

5.45230886725 FANCL

4.13516480072 ICA1L

4.45360597614 USP34

5.54325499552 ACVR2A

−4.98578731358 PCCB

4.29741691262 SMIM4:PBRM1

−5.00576709809 CADM2

−5.10311943356 ZMYND10-AS1:ZMYND10

−4.35330561706 MTND1P22

−5.43567296604 BEND4

3.94478982621 RP11–284M14.1

−4.33016153627 PRSS12

−4.89325849576 CEP120
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Table 1 continued

Z in NEUR Nearest gene

−4.08127148845 ZNF318

5.47679437498 MTCO3P1

7.85464688518 TNXB:ATF6B

−5.2537909447 MIR588

−5.66008277462 BAG6

3.72892286408 ZNF318

4.68322226982 RNU6–200P

5.17023483889 SP4

−6.05105534044 TMEM106B

4.4437848434 MAD1L1

5.92306285077 TMEM106B

4.17514218028 TRPS1

−5.84975419193 LINC00529

−4.68062619372 ELAVL2

5.23143409848 FAM120A

−4.98786564489 HSPA5

−4.11173316994 ADK

−4.36400954759 BEND7

−5.23859919803 C10orf32-ASMT:AS3MT

−4.31225213337 GAB2

−5.43398246143 ARNTL

−4.74001727338 SYT13

4.27353276097 GAB2

4.6699316277 SBF2

4.02407371564 SYT13

−7.04747006968 AGBL2

−4.17713795565 RP11–452H21.4

4.76020126525 SPATS2

6.86308309352 YLPM1

4.64137402432 LTBP2

−6.54353852104 YLPM1

5.66999702405 LINGO1

−4.43830518151 FURIN

−3.94284707938 GLCE

−4.43830518151 FURIN

−5.2061488614 HYDIN

4.47612498022 PRSS36

−4.91571280463 MED24

−6.04762128386 ARHGAP27
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was mostly positively concordant for neuroticism and
CAD, WHR, SBP, and DBP, whereas it was mostly
negatively concordant for neuroticism and BMI and HDL.
This is in line with PRS and genetic correlation between
neuroticism and CAD and CVD risk factors in earlier
studies1,18 However, the genetic correlations are weak,
and significant only for CAD, WHR, and TG. This sug-
gests that there is an overall increased genetic risk for
CAD associated with neuroticism at the group level. Yet,
the conjFDR analysis reveals multiple shared loci with
both same and opposite effect directions, indicating a
more complex genetic relationship underlying these
phenotypes than what is captured by the genetic corre-
lations; some individuals may have genetic variants that
increase risk to both neuroticism and CVD, while others
have the opposite direction, and some a mix of both
directions53. Thus, this seems to indicate the presence of
subgroups of neuroticism with specific increased vulner-
ability to certain CVD risk factors.
Interestingly, there was an negative genetic association

between BMI and neuroticism, which implicates that
most gene loci associated with lower BMI are associated
with higher scores on neuroticism. This seems to be
opposite of findings with regards to neuroticism and CAD
and WHR. A possible explanation is that WHR is a better
marker of central obesity, total fat, or fat distribution than
BMI54 and thus better correlated with CAD outcome.
There is also some evidence indicating that activation of
the sympathetic nervous system and release of neu-
roendocrine hormones, cytokines and inflammatory
markers from adipocytes among patients with central
obesity may be linked to neuroticism55. In our study, we
also found some loci shared between neuroticism and
other CVD risk factors, including lipids (HDL, LDL, TC,
and TG), blood pressure (PP), T2D and CRP, also here
suggesting a mixed genetic pattern of effects. As far as we
are aware, only one study has tested for shared genes
between HDL, LDL, and neuroticism and they did not
find significant associations18. No significant associations
have previously been found between PGR for SBP, DBP,

and T2D and neuroticism1. In the same study, higher PGR
for smoking was associated with higher levels of neuro-
ticism1. However, we did not find an association between
neuroticism and CIGPRDAY in the present study. To the
best of our knowledge, we are the first to investigate
genetic overlap between TC, TG, CRP, and neuroticism.
The large shared polygenic signal between neuroticism

and CAD, BMI, WHR, and HDL may suggest underlying
metabolic mechanisms for both CAD development and
neuroticism. The involvement of the starch and sucrose
metabolism pathway in BMI and HDL may support this.
Yet, only 70% of the associated genetic variants showed
concordant effects on neuroticism and CAD risk, sug-
gesting a more complex genetic interplay. For HDL, our
analyses also revealed loci mapped to genes encoding for
nuclear receptor transcription. Finding of involvement of
the nuclear receptor transcription pathway is in line with
recent evidence, that activation of the nuclear receptor
FXR in vivo increases hepatic levels of miR-144 lower
hepatic ABCA1 and plasma HDL levels52. For CAD, gene
set analyses revealed involvement of the cell division
pathway. Recent advances in research to prevent rest-
enosis in CAD patients focus on antiproliferative strate-
gies that target the cell cycle51. Further, gene set analyses
implicated involvement in the proteasome degradation
pathway for CAD. Exciting progress in elucidating the
pathophysiological significance of protein degradation
and protein quality control in heart diseases has occurred
in the past several years56. Alterations in cardiac protea-
somal degradation are linked with most heart diseases,
including CAD57. Rapidly mounting evidence suggests
that the proteasome may be a therapeutic target for heart
disease58. For SBP and PP the shared loci with neuroti-
cism implicated genes associated with pathways of elastic
fiber formation. Elastic fibers might be key elements in the
pathophysiology of hypertensive vascular remodeling.
They are composed of elastin and multiple other het-
erogeneous components and they are mainly responsible
for extensibility and resilience of tissues. In the circulatory
system, the proper assembly and functioning of elastic

Table 1 continued

Z in NEUR Nearest gene

4.77322394436 WNT9B

−11.5419461181 CRHR1:RP11–105N13.4

−5.50787070534 RPS3AP49

−5.29319139928 AC007773.2

−3.89258923647 PGPEP1

BP base position, CHR chromosome, NEUR neuroticism, CAD coronary artery disease, BMI body mass index, WHR waist-hip-ration, HDL high density lipoprotein (HDL),
LDL low density lipoprotein, TG triglycerides, TC total cholesterol, T2D, CRP c-reactive protein, SBP systolic blood pressure, DBP diastolic blood pressure, PP pulse-
pressure, CIGPRDAY cigarettes smoked per day.

Torgersen et al. Translational Psychiatry          (2021) 11:368 Page 10 of 13



fibers is absolutely crucial for maintaining a smooth and
uninterrupted delivery of blood from the heart to organs
and tissues59. It is well-established that structural and
mechanical abnormalities leading to large artery stiffening
and resistance artery narrowing are two of the main fea-
tures associated with essential hypertension, which, in the
end, is deleterious for cardiovascular function60. The
question has been whether structural alterations in
the arterial wall in hypertension are a consequence of
disease or early cellular alterations, determined genetically
or by environmental factors59. Here we provide evidence
suggesting the involvement of genetic factors. In line with
this, genetic defects of elastic fiber components have
previously been associated with abnormal vessel structure
and hypertension61,62.
The shared loci between DBP and neuroticism impli-

cated genes involved in the Notch signaling pathway.
Recently, the hypothesis that Notch signaling controls the
expression of soluble guanylyl cyclase, the major nitric
oxide receptor in the vascular wall in vascular smooth
muscle, was addressed. Reduction of nitric oxide
-dependent vasodilatation in hypertension is due in part
to a reduction of the protein level of soluble guanylyl
cyclase63. However, the above discussed possible common
pathophysiological mechanisms for neuroticism and CAD
are somewhat speculative, and experimental studies are
needed to better understand mechanisms related to the
shared genetic loci identified in the current study.
In the original neuroticism GWAS a total of 136

genome-wide loci were reported14. By conditioning the
original neuroticism GWAS (n= 432,109 participants)
on the CAD and CVD risk factors GWAS
(n= 184,305–339,224 participants), we identified 729
unique loci associated with neuroticism. Thus, over 500
of these loci were not reported in the original neuroti-
cism GWAS. This provides new information about the
molecular factors underlying this core human mental
trait, which is associated with several psychiatric diag-
nostic categories2,64. Further, these findings illustrate
how the combined analyses of two GWAS can boost the
power to identify loci if there is shared polygenic
architecture19. The current findings further establish
neuroticism as a polygenic trait, with potential for
revealing more of the underlying genetic loci if larger
samples are investigated65.
Despite the finding that high neuroticism predicts poor

outcome on CAD5,6, it is not established practice to
screen for neuroticism in patients with CAD or CVD risk
factors. When genetic tests become more affordable,
testing for genetic CAD risk may be cost effective, and
implemented as a part of risk assessment in routine
clinical practice. This will give patients the possibility to
reduce their risk profile through lifestyle changes such as
diet and exercise, and allow for closer follow-up from

their physician many years in advance of developing CAD,
which may have great impact on prognosis.
Strengths of the present study include that we com-

bined samples from UK Biobank and 23andMe to obtain a
large sample size, and that we used an established method,
which provides increased power to detect novel genetic
loci19. There are certain limitations to the present results;
as our analyses were restricted to people with European
ancestry the results need to be replicated in those with
different genetic background to be generalized to different
populations. Further, many variables are self-reported and
measured at only one occasion. Also, due to the inability
to identify the causal variants from GWAS, we cannot
rule out that different tag SNPs can represent the same
causal locus.
In conclusion, the present study shows substantial

polygenic overlap between neuroticism, CAD and CVD
risk factors, most strongly with BMI, DBP, SBP, WHR,
and HDL, and identified 345 genetic loci underlying the
shared genetic architecture.
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