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Abstract Priest argued in his paper Fusion and Confusion
(Priest, 2015a) for a new concept of logical consequence
over the relevant logic B, one where premises my be “con-
fused” together. This paper develops Priest’s idea. Whereas
Priest uses a substructural proof calculus, this paper pro-
vides a Hilbert proof calculus for it. Using this it is shown
that Priest’s consequence relation is weaker than the stan-
dard Hilbert consequence relation for B, but strictly stronger
than Anderson and Belnap’s original relevant notion of con-
sequence. Unlike the latter, however, Priest’s consequence
relation does not satisfy a variant of the variable sharing
property. This paper shows that how it can be modified so
as to do so. Priest’s consequence relation turns out to be sur-
prisingly weak in some respects. The prospects of strength-
ening it is raised and discussed in a broader philosophical
context.

Keywords Consequence relations · Entailment · Relevant
logic · Substructural logic · Validity
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1 Introduction

One of the key features of the standard account of logi-
cal consequence relation is that logical axioms, and logical
truths more generally, follow from any set of assumptions.
Anderson and Belnap initiated the relevant research program
in the late fifties believing this to not be a true feature of log-
ical consequence, or entailment as they preferred to call it:
“the defect lies in the definition, which fails to take seriously
the word ‘from’ in ‘proof from hypothesis.’ ” (Anderson and
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Belnap, 1975, p. 18). As a replacement-concept, Anderson
and Belnap put forth their own notion of entailment. Their
suggestion for how to fix the “Official definition of a deduc-
tion” was to restrict the use of the rules in such a way as to
make sure that at least some of the premises must be used in
deriving the conclusion. They state in the first volume of En-
tailment: The Logic of Relevance and Necessity the so-called
Entailment theorem as follows: “If there is a proof in E that
A1, . . . ,An entail(s) B, then (A1& . . .&An)→ B is provable in
E” (Anderson and Belnap, 1975, p. 278). The entail(s) on
the left-hand side denote a use-restricted notion of Hilbert
derivability, and so the theorem is a type of syntactic com-
pleteness theorem. The soundness-version of the theorem is
quite easily shown to hold as well, and so their concept of
entailment provides a notion of following from which can be
expressed as certain logical truths. Since their notion of en-
tailment interprets premises aggregation using extensional
conjunction,1 and so as to distinguish it from other notions
of entailment, I’ll refer Anderson and Belnap’s notion as C-
entailment, mnemonic for conjunctive entailment.

One of the key features of C-entailment is that it gives
the so-called variable sharing property its true meaning: that
property is simply that if A→ B is a logical theorem in the
Hilbertian sense of this, then A and B share a propositional
variable. The property was set forth as a formal criteria to
guarantee “the demand for relevance as between antecedent
and consequent of an entailment” (Belnap, 1960, p. 144) and
is as such a meaning-requirement upon entailment. Ander-
son and Belnap’s preferred reading of the connective → of
their favorite logic E was in fact as an entailment condi-
tional: A→ B is to be read that A entails that B (cf. Anderson
and Belnap, 1975, A5). It is the belief that → is an object-
language conditional which expresses entailment which mo-

1Anderson and Belnap used ‘&’ for extensional conjunction; I’ll
use ‘∧’.

https://doi.org/10.1007/s11245-021-09758-x


2 Tore Fjetland Øgaard

tivates the variable sharing property. The Entailment theo-
rem, then, shows that one reasonable view of what→ in fact
expresses is that it expresses C-entailment.

Anderson and Belnap’s specification of C-entailment only
applies to logics with no more primitive rules than adjunc-
tion and modus ponens. The concept, along with the corre-
sponding Entailment theorem, however, was generalized in
Øgaard (2021a) so as to also apply to weak relevant log-
ics such as B. B is a contractionless logic, and so (A∧ (A→
B))→ B is not a logical theorem of it. Using C-entailment to
explicate what logical consequence amounts to, then, has the
definitive downside in the case of such logics since it fails
to make modus ponens into a valid rule. For contractionless
logics, then, it would seem that the choice is between giving
up modus ponens and giving up relevance.

Priest has recently argued for a novel notion of logi-
cal consequence over the logic B. Priest’s notion of conse-
quence, however, is like the standard account in that logical
theorems end up being consequences of any set of assump-
tions. Thus also Priest’s consequence relation fails to be a
properly relevant one. Despite this it is highly interesting—
both in its own right, but also from a relevant perspective
as it can easily be made into a relevant consequence re-
lation. Priest allows premises not only to be conjunctively
combined into antecedents for→, but allows premises to be
“confused” together. A confusion is intuitively any way of
compiling premises using either extensional or intensional
conjunction. The word confusion is a concatination of the
three first letters of conjunction and the three first letters
of fusion. Fusion is the name of the intensional conjunc-
tion connective ◦. However, confusions can also weaken in
the Ackermann constant t. It, we shall see, is the source of
Priest’s notion of entailment—P-entailment—not standing
up to Anderson and Belnap’s requirement for relevance. It
is shown, however, that if only confusions are purified so as
not to allow t to be weakened in, then the resultant notion of
P-entailment will satisfy Anderson and Belnap’s meaning-
requirement for relevance; both in the case of B, but also in
general for any logic—with or without contraction—as long
as it satisfies the standard variable sharing property. I argue
that not only is the more stern notion of entailment moti-
vated from relevance considerations, but also from Priest’s
other theoretical commitments. In particular, the most plau-
sible account of how to formulate naïve set theory using
Priest’s proof system render the theory trivial also in the case
of Priest’s weak logic B. Doing away with t, it is noted, may
be sufficient to thwart this.

Priest makes use of Restall (2000)’s substructural proof
theory. To display its true colors, however, I will show that
P-entailment is equivalent to CF-entailment, mnemonic for
confused entailment, which is, like C-entailment, specified
using a standard Hilbert calculus for B. Having the three
consequences expressed as variants over the same calculus

makes it easier to show that they are in fact different, but
also to show how different in character they really are. It
will emerge that in the case of B, CF-entailment is strictly
stronger than C-entailment and strictly weaker than standard
Hilbert derivability. One of the striking finds is that Hypo-
thetical Syllogism fails to be a valid CF-entailment, and so
this notion of logical consequence fails to make B’s → a
transitive conditional. This, however, seems to be an unin-
tended consequence as Priest nowhere else argues for the
invalidity of this rule. Different ways of dealing with this
will be discussed in the context of both Priest’s philosophi-
cal interpretation of the Routley-Meyer semantics, but also
his naïve theory of validity which is the true topic of Priest
(2015a). Note, therefore, that Priest makes use of two dif-
ferent consequence relations: what I’ve called P-entailment
is the one that pertains to “what it is to be provable from
some information, such as that provided by the axioms of
an axiom system” (Priest, 2015a, p. 59). This is not, how-
ever, the true relation of entailment or validity.2 As we shall
see, however, the two concepts of logical consequence are
interestingly connected.

This paper focuses on developing Priest’s idea. This is
done by stating the theory in more familiar terms and by
comparing it to other proposals, but also by way of pointing
out some of its more surprising features. Priest, nor anyone
else for that matter, has to my knowledge not discussed P-
entailment in any great detail—neither technically nor philo-
sophically. The current paper should not be read as arguing
against Priest’s proposal in any way, but rather as develop-
ing it and setting forth some challenges to be addressed in
future work.

The plan for the paper is as follows: Section 2 defines
the standard notion of Hilbert-derivability and Anderson and
Belnap’s notion of entailment. The axioms and rules of B
are presented and the concept of variable sharing for con-
sequence relations is defined. Section 3 explains enough of
Restall’s substructural proof theory without going into de-
tail before section 4 digs into Priest’s new notion of logical
consequence, P-entailment. Section 5 compares Priest’s no-
tion of logical consequence to that of Anderson and Belnap’s
as well as to Hilbert-derivability and Section 6 discusses
the fact that → fails to be a transitive conditional over P-
entailment. Section 7 shows how to make P-entailment rele-
vant before section 8 summarizes.

2 Hilbert proofs, logical theorems and C-entailments

In this section I will show how the standard Hilbert conse-
quence relation for the relevant logic B is defined as well
as how to define the concept of conjunctive entailment, C-

2These latter two terms are used interchangably in Priest (2015a).
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entailment for short, for it. I will then state a version of An-
derson and Belnap’s “Entailment Theorem” for B.

Definition 1 (Parenthesis conventions) ∨, ∧ and ◦ are to
bind tighter than→, and so I’ll usually drop parenthesis en-
closing conjunctions and disjunctions.

Definition 2 (H-entailment) A Hilbert proof of a formula
A from a set of formulas Γ in the logic L is defined to be
a finite list A1, . . . ,An such that An = A and every Ai≤n is
either a member of Γ, a logical axiom of L, or there is a set
∆ ⊆ {A j | j < i} such that ∆ ⊩ Ai is an instance of a rule of
L. The existential claim that there is such a proof is written
Γ ⊢hL A and expressed as “Γ H-entails A in the logic L” or
“there exists a Hilbert-derivation of A from Γ in the logic
L”. If ∅ ⊢hL A, then A is said to be a logical theorem of L.

Definition 3 The following list of axioms and rules defines
the logic B:

(A1) A→ A
(A2) A→ A∨B and B→ A∨B
(A3) A∧B→ A and A∧B→ B
(A4) A∧ (B∨C)→ (A∧B)∨ (A∧C)
(A5) (A→ B)∧ (A→C)→ (A→ B∧C)
(A6) (A→C)∧ (B→C)→ (A∨B→C)
(A7) ∼∼A→ A
(A8) ⊥→ A
(A9) A→ (B→ A◦B)

(A10) t
(R1) {A,A→ B} ⊩ B
(R2) {A,B} ⊩ A∧B
(R3) {A→ B} ⊩ (C→ A)→ (C→ B)
(R4) {A→ B} ⊩ (B→C)→ (A→C)
(R5) {A→∼B} ⊩ B→∼A
(R6) {A→ (B→C)} ⊩ A◦B→C
(R7) {A} ⊩ t→ A

Definition 4 B◦ is identified as the t-free version of B, that
is, B without (A10) and (R7).

The following variant of Anderson and Belnap’s defini-
tion of what a proof that A1, . . . ,An entail(s) B is to mean
was first given in Øgaard (2021a):

Definition 5 (C-entailment) A proof that the set of for-
mulas Γ C-entails A in the logic L is a Hilbert-proof A1, . . . ,An
of A from Γ such that it is possible to mark the Ai’s with #
according to the following rules:

1. If Ai ∈ Γ, then Ai is marked.
2. R1 is not used on premises A j and A j→ Ai where A j→

Ai is marked.
3. If Ai is obtained from A j and A j→ Ai using R1, then Ai

is marked if A j is marked.

4. R2 is only used on premises which are either both marked
or both unmarked.

5. If Ai is obtained from A j and Ak using R2 and both of A j
and Ak are marked, then Ai is marked.

6. Any rule different from R1&R2 is only used on unmarked
formulas.

7. No other formulas are marked.
8. As a consequence of (1–7), An is marked.

The existential claim that there is such a proof is written
Γ ⊢cL A and expressed as “Γ C-entails A in the logic L”, or
“there exists a proof that Γ C-entails A in the logic L”.

Theorem 1 For L ∈ {B,B◦}, Γ ⊢cL B if and only if for some
conjunction A := A1∧ . . .∧An, where {A1, . . . ,An} ⊆ Γ, ∅ ⊢hL
A→ B.

Proof See Øgaard (2021a).

In Øgaard (2019, sect. 5) it was shown that Anderson
and Belnap’s original C-entailment theorem extends to clas-
sical logic. This, then, is also the case for the concept of
C-entailment as defined here. Even though the C-entailment
theorem holds for a wide class of logics—relevant and ir-
relevant alike—one should not conclude that it is without
interest from a relevant standpoint: The effect it has in com-
bination with the variable sharing property is to transfer the
latter property from being a property pertaining to formu-
las—a logic L has the variable sharing property just in case
A and B share a propositional variable if ∅ ⊢hL A→ B—to
one which pertains to the consequence relation itself. The
following definition and corollary makes this precise:

Definition 6 A consequence relation ⊢ satisfies the conse-
quential variable sharing property (CVSP) just in case for
any antecedent aggregate of truth-constant-free formulas X
and any truth-constant-free formula A, if X ⊢ A, then A shares
a propositional variable with a formula occurring in X.3

Corollary 1
– ⊢hL does not satisfy (CVSP) for any logic L extending B◦.
– ⊢cB and ⊢cB◦ satisfy (CVSP).

Proof In the first case we have that {A} ⊢hB◦ B→ B. In the lat-
ter case, this follows from the fact that both B◦ and B satisfy
the variable sharing property (cf. Belnap, 1960) together
with Thm. 1.

One notable feature of C-entailment is that it yields no
logical theorems: for any logic L we have that {A |∅ ⊢cL A} =
∅. The simple reason for this is that the #-rules demands that
the last formula in a ⊢cL-proof must be #-marked. However,
#-marks can only be introduced by formulas in the premise
set, and so if there are no such formulas, there will simply
be no #-marks to pass along to the conclusion.

3See Øgaard (2021c) for a discussion on how to extend the variable
sharing property to formulas with truth-constants.
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3 C-entailments in substructural proof theory

We have seen that Anderson and Belnap argued for a notion
of logical consequence different from the standard Hilber-
tian one. Their notion of C-entailment is, however, not rad-
ically different from the Hilbertian notion. Relevant logics
are sometimes claimed to be substructural in that the rules of
premise combination lack some of the structural properties.
Note, however, that C-entailment is a fully structural conse-
quence relation. In more Tarski-familiar vocabulary we have
that ⊢cB satisfies the following closure conditions:4

Theorem 2 ⊢cB and ⊢cB◦ are reflexive, transitive and mono-
tone.

Reflexivity: Γ ⊢cL A for all A ∈ Γ

Transitivity (cut):
Γ ⊢cL A ∆ ⊢cL B for all B ∈ Γ

∆ ⊢cL A

Monotonicity (weakening):
Γ ⊢cL C
Γ∪∆ ⊢cL C

Proof That ⊢cB is reflexive and monotone is obvious. That it
is transitive is seen by noting that if Γ ⊢cB A, then by Thm. 1
∅ ⊢hB

∧
Γ† → A for some finite set Γ† ⊆ Γ. If furthermore

∆ ⊢cB B for all B ∈ Γ, we obtain using Thm. 1 together with
the fact that if ∅ ⊢hB C1→ D1 and ∅ ⊢hB C2→ D2, then ∅ ⊢hB
(C1 ∧C2) → (D1 ∧D2), that ∅ ⊢hB

∧
∆† →

∧
Γ† for some

finite set ∆† ⊆ ∆. Using the rule (R4) it then follows that
∅ ⊢hB

∧
∆†→ A, and and so Thm. 1 finally yields that ∆ ⊢cB A.

The case for B◦ is identical.

Giving proofs using ⊢cL is a rather baroque matter. Note,
then, that these consequence relations can quite easily be de-
fined using a substructural proof calculus such as the sequent-
style natural deduction calculus found in Restall (2000). It
would take this paper too far afield to go further into the
details of Restall’s proof calculus. What I will comment on,
and which will be of great use in the next section, however, is
Restall’s soundness and completeness result (Restall, 2000,
thm. 4.3) which states in effect that the sequent X � A is
provable in any of Restall’s systems if and only if τ(X)→ A
is a logical theorem of the corresponding Hilbert calculus.5

‘�’ is here the sequent symbol.6 τ is a translation from an-
tecedent structures X to formulas. Such structures—Priest
calls them bunches—can be compiled from formulas using
premise combinators, or punctuation marks as Restall calls
them, which represents t, ∧ and ◦: ‘1’ is a null-ary premise

4The same holds for any logic for which the C-entailment theorem
applies to. This is a very large class; see Øgaard (2021a, § 3) for details.

5See Øgaard (2021b) for more on this result.
6Since this paper is primarily on Priest’s new notion of logical con-

sequence, I will follow him and write sequent where Restall uses con-
secution. Furthermore, Restall uses ‘⊢’ as the sequent symbol, whereas
Priest uses ‘�’.

combinator which stands for ‘t’, and ‘⊕’ and ‘⊗’ are binary
premise combinator which stand for, respectively, ‘∧’ and
‘◦’.7 In particular, then, τ(A1⊕ . . .⊕An) = (A1∧ . . .∧An), and
so Restall’s theorem yields that the sequent A1⊕ . . .⊕An �B
is provable in any of his systems if and only if

∧
i≤n Ai→ B

is a logical theorem of the corresponding Hilbert system. In
the case of B, then, we get as a corollary that {A1, . . . ,An} C-
entails B just in case the sequent A1⊕ . . .⊕An�B is provable
in Restall’s system corresponding to B.8

Without loss of generality we can simply demand that
the bunch X always be a formula, and so instead of letting
A⊕ B be a bunch made up of two formulas combined us-
ing the extensional premise combinator ‘⊕’, and A⊗ B be
a bunch made up of two formulas combined using the in-
tensional premise combinator ‘⊗’, we simply combine sen-
tences using ∧ and ◦, the extensional and intensional con-
junctions. The null-ary ‘1’ is simply to be replaced by ‘t’.9

4 Confused entailment and P-entailment

Graham Priest has made substantial contributions both the
philosophy of, and the technical advancement of relevant
logics over a number of years. His approach, however, has
been to view relevant logics as sub-classical logics formu-
lated in fully structural proof calculi in which every prim-
itive rule of inference is treated on par with any other.10

7Again, I follow Priest’s notation; Restall uses ‘0´’to stand for t,
the comma to stand for extensional conjunction and the semicolon to
stand for intensional conjunction.

8Note that every structural rule is assumed for ⊕, and so we may
ignore order in structure such as A1 ⊕ . . .⊕ An. There is another de-
tail, however, that needs to be commented upon a bit more carefully,
namely the behaviour of the Church constant ⊥. ⊥ is intuitively the
conjunction of every proposition. In Routley-Meyer semantics,⊥ is de-
manded to fail at every evaluation point. A consequence of this is that
C → (⊥ → ⊥) is valid in the semantics. This is a theorem of DW—
B with (R5) replaced by its axiomatic version—but not of B as here
defined. In other semantics, such as the algebraic semantics of Meyer
and Routley (1972), however, C→ (⊥→⊥) can be made to fail. Since
also Priest (2015a)’s rule for ⊥ only yields (A8), I’ve chosen to stick
to the more common way of adding ⊥ in the case of B. Note, then,

that Restall’s rule for ⊥,
X�⊥

(⊥E)
Y(X)�A

, does yield C→ (⊥→ ⊥).

However, by replacing the rule with
X�⊥

(⊥E)
X�A —or equivalently

as the axiom ⊥� A which is Priest (2015a)’s rule for ⊥—will allow
Restall’s soundness and completeness result to hold true with regards
to how B is defined here. For more on this, see Øgaard (2021b)

Note that adding C → (⊥ → ⊥) is not without its consequences: it
was shown in Øgaard (2016, thm. 10) that if added to BXd—B as here
defined where it includes both ◦ and t, but with excluded middle and
the meta-rule of reasoning by cases added—then the naïve theory of
truth is trivialized. Whether or not it trivializes without the added ⊥
axiom is currently unknown.

9See Restall (2000, lem. 4.17) for a proof to the effect that there is
no loss in generality involved in thus restricting our attention to formu-
las.

10See, for instance Priest (2006, ch. 18.3 & 19.8) and Priest (2008,
ch. 10).
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The exception, however, is found in the more recent arti-
cle Fusion and Confusion. In it, Priest makes use of Re-
stall’s substructural proof calculus for the positive fragment
of the logic B. His definition of logical consequence, when
this is understood to be derivability from “information, such
as that provided by the axioms of an axiom system” (Priest,
2015a, p. 59) is not C-entailment, however. The purpose of
this section is to show just how to understand Priest’s notion
of logical consequence. To do so, we need the notion of a
confusion:11

Definition 7 (Confusion)C(Σ)—the set of confusions over
a set of formulas Σ—is inductively defined as follows:

– Σ ⊆ C(Σ)
– t ∈ C(Σ)
– for any D1 ∈ C(Σ) and D2 ∈ C(Σ),

– D1∧D2 ∈ C(Σ)
– D1 ◦D2 ∈ C(Σ)

We can now simplify Priest’s definition that “A follows
from Σ iff for some X ∈ B(Σ)12, X �A is provable” (Priest,
2015a, p. 59) into the following definition:

Definition 8 (P-entailment) A set of formulas Σ P-entails
A in the logic B just in case there is a confusion C of Σ
such that C � A is a provable sequent in Restall’s system
corresponding to B.13

Since A is a logical theorem of B if and only if t�A is a
provable sequent in Restall’s system for B, the familiar no-
tion of a logical theorem remains intact: any logical theorem
is P-entailed by any set of assumptions whatsoever. This is
not the case for C-entailment, as we have seen, for which
nothing follows from the empty set if premises. We have al-
ready seen that C-entailment satisfies the relevance property
(CVSP). P-entailment does not:

Theorem 3 P-entailment does not satisfy (CVSP).

Proof {A} P-entails B→ B for every formula A and B since
t� B→ B is a provable sequent in Restall’s proof calculus
for B and t is a confusion of {A}.

Thus P-entailment is alike the Hilbertian consequence
relation for B in that the consequential variable sharing prop-
erty fails for it. For certain rather strong logics—logics like
RW—it can be shown that P-entailment reduces to the cor-
responding Hilbert consequence relation.14 As we shall see,

11The notion of a confusion was, to my knowledge, first introduced
in Restall (2000) (def. 4.26). Restall allows ⊤ to be a member of C(Σ),
but since this is inconsequential and Priest does not, I’ve chosen to go
with the stricter notion.

12B(Σ) is the set of bunches corresponding to the set of confusions
over the set of formulas Σ.

13Again I will have to refer the reader to Restall’s book for details.
14This follows using Restall’s deduction theorem for RW (Restall,

2000, p. 87).

however, this is not so in the case with B. To understand
just how P-entailment for B differs from both Anderson and
Belnap’s C-entailment as well as Priest’s previous standard
Hilbertian understanding of logical consequence, I will pro-
vide a Hilbert-style proof calculus for the notion that I’ve
called CF-entailment—short for confused entailment—which,
as we shall see, turns out to be equivalent to P-entailment.

Definition 9 Γ CF-entails A in the logic L if and only if
there is a Hilbert-proof of A from Γ in which any rule dif-
ferent from (R1) and (R2) are only used as admissible rules,
i.e. just in case there is a Hilbert proof A1, . . . ,An of A from
Γ which can be #-marked according to the following rules:

1. If Ai ∈ Γ, then Ai is marked.
2. If Ai is obtained using either (R1) or (R2), then Ai is

marked if either of the premises are marked.
3. Rules different from (R1)&(R2) are only used on un-

marked formulas.
4. No other formulas are marked.

The existential claim that there is such a proof is written
Γ ⊢

c f
L A and expressed as “there exists a proof that Γ CF-

entails A in the logic L”.

Notice here that unlike C-entailment, a CF-proof of A does
not require that A be marked as a consequence of the mark-
ing rules. CF-entailment, then, distinguishes between what
Smiley (1963) calls “rules of proof” and “rules of infer-
ence”, where modus ponens and adjunction are in the case
at hand the only two rules of inference, whereas (R1)–(R7)
are all rules of proof.15

The next task is to prove a “confused” entailment theo-
rem for ⊢c f

B —Thm. 4 below. From it it will then follow that
CF-entailment and P-entailment are extensionally identical.
To prove the CF-entailment theorem, however, we first need
to prove some lemmas.

Lemma 1

∅ ⊢
c f
B = ∅ ⊢

h
B

Proof (b) Any ⊢c f -proof is evidently also a ⊢h-proof, so we
need only show that if ∅ ⊢hB A then ∅ ⊢c f

B A. Let A1, . . . ,An
be a ⊢h-proof of A from ∅. Looking over the #-rules for
CF-entailment it is evident that neither of the Ai’s can be
marked. But then every application of every rule used in the
⊢h-proof of A from ∅ is permissible by the standard set by
⊢c f -proofs. Hence A1, . . . ,An is also a ⊢c f -proof.

Lemma 2 If Γ ⊢c f
B B and ∆ ⊢c f

B A for every A ∈ Γ, then ∆ ⊢c f
B

B.

15See Humberstone (2010) for a nice discussion of Smiley’s dis-
tinction.
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Proof I’ll give a general description of why the lemma holds;
details are left for the reader. In the case of Hilbert proofs,
this is a simple matter of cutting and pasting proofs. The
general recipe is to take a proof B1, . . .Bn of B from Γ and
replace every Bi occuring in Γ with a proof of Bi from ∆.

In the case of CF-proofs, however, we have to make sure
that the #-rules are obeyed. Note, then, that since any Bi ∈ Γ

must be #-marked, any such Bi can only figure as a premise
of either modus ponens (R1) or adjunction (R2). It can hap-
pen that Bi in a proof C1, . . . ,Cim of Bi from ∆ is not #-
marked, however.16 Since Bi is only needed as a premise for
(R1) or (R2) in the proof of B, however, a Bi unmarked by #
will do just as nicely. The R1-conclusion or R2-conclusion of
CF-proofs is marked if either the of the premises are marked.
Thus replacing the marked Bi by a proof of Bi where, then,
Bi need not be marked, may result in further formulas not
being marked. Neither this, however, has any effect as the
#-rules only restrict certain rules to only apply to unmarked
premises.17

Lemma 3 Σ ⊢c f
B C for every C ∈ C(Σ).

Proof Use (A9), (A10), (R1) and (R2).

Lemma 4 If for some confusion C of A, Γ ⊢c f
B C→ B, then

Γ∪{A} ⊢c f
B B.

Proof If Γ ⊢c f
L C → B, then since by Lem. 3 {A} ⊢c f

B C for
every C ∈ C({A}), it follows that Γ∪{A} ⊢c f

B B.

Lemma 5 If Γ∪{A} ⊢c f
B B, then for some confusion C of A,

Γ ⊢hB C→ B.

Proof Assume that A1, . . . ,An is a cf-proof of B from Γ∪{A}.
The proof is an inductive proof to the effect that Γ ⊢hL Ci→ Ai
for every i ≤ n, where the Ci’s are all confusions of {A}. If Ai
is A, let Ci be A. If Ai is either t, a member of Γ, or an
axiom, or obtained from any A j for j < i using one of the
restricted rules, let Ci be t. In all of these cases it is clear
that Γ ⊢hL Ci→ Ai.

Now for the inductive part. Assume for inductive hypoth-
esis (IH) that Γ ⊢hL Ci→ Ai and Γ ⊢hL C j→ A j. There are two
cases to consider.

(1) Assume that A j is Ai → Ak and Ak is obtained from
Ai and A j using (R1). Then from Γ ⊢hL Ci → Ai we can de-
rive Γ ⊢hL (Ai→ Ak)→ (Ci→ Ak) using (R4). Since we have
assumed that Γ ⊢hL C j→ (Ai→ Ak), it follows by transitivity
that Γ ⊢hL C j → (Ci → Ak) , and so that Γ ⊢hL C j ◦Ci → Ak
using (R◦1).

(2) If Ak is obtained from Ai and A j using (R2), then A j is
the formula Ai∧A j. Using (A3) and (A5) one easily obtains
Γ ⊢hL Ci∧C j→ Ai∧A j from (IH).

16For instance, let Bi be a logical axiom, Γ = {Bi}, and ∆ = ∅.
17I would like to thank the reviewer for insisting that a proof beyond

a general remark on cutting and pasting proofs was needed and for in
essense suggesting the proof given here.

Theorem 4 (CF-entailment theorem) Γ ⊢c f
B B if and only

if ∅ ⊢hB C→ B for some C ∈ C(Γ).

Proof (⇐) If ∅ ⊢hB C→ B for some C ∈ C(Γ), then by Lem. 1
we get that ∅ ⊢c f

B C→ B. Lem. 4 then yields that Γ ⊢c f
B B.

(⇒) Assume that Γ ⊢c f
B B. Since proofs are finite we get

that Γ′ ⊢c f
L B for some finite set Γ′ ⊆ Γ. Let A =d f

∧
Γ′. Then

Γ′ ⊢
c f
L A, and since {A} ⊢c f

L D for every D ∈ Γ′, it follows
by Lem. 2 that {A} ⊢c f

L B. By Lem. 5 ∅ ⊢hL C → B for some
confusion C of {A}. The result now follows since C is also a
confusion of Γ.

We are now in a position to state the main theorem:

Theorem 5 P-entailment for B is extensionally identical to
CF-entailment.

Proof Using Restall’s soundness and completeness theorem
get that Γ P-entails A if and only if ∅ ⊢hB C → A for some
confusion C ∈ C(Γ). Using Thm. 4 it then follows that Γ P-
entails A if and only if Γ CF-entails A.

The above theorem easily extends to stronger logics than
B . It does not, however, extend to logics without the Acker-
mann constant as the next theorem shows:

Theorem 6 P-entailment and CF-entailment are not exten-
sionally identical in the case of B◦.

Proof Using Restall’s soundness and completeness theorem
get that {A} P-entails B in B◦ if and only if ∅ ⊢hB◦ C→ B for
some t-free confusion C ∈ C{A}.

Let A be the propositional variable p and B be q→ q
so that A and B share no propositional variable. Since B◦

satisfies the variable sharing property it follows that ∅ ⊬hB◦
C→ B for every t-free confusion C ∈ C{A} and thus that {A}
does not P-entail B. However, p#,q→ q is a CF-proof of B
from A and thus B is CF-entailed by {A} in B◦.

Corollary 2 CF-entailment for B does not satisfy (CFSP).

Proof This follows from Thm. 3 together with Thm. 5.

Since C-entailment for B does satisfy the consequen-
tial variable sharing property and CF-entailment does not,
the latter notion of logical consequence does not hold up to
the standard argued to be correct by Anderson and Belnap.
Just how different, then, is CF-entailment from the standard
Hilbertian notion of entailment, and just how different is it
really from C-entailment? This is the question investigated
in the next section.
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5 Comparing C-, CF-, and H-entailment for B

We have now seen how to define three different consequence
relations using the same set of axioms and rules, namely H-,
CF- and C-entailment. In this section I will show that they
are interestingly related. I will only focus on the case of B.
In this case it turns out that CF-entailment is strictly stronger
than C-entailment, but strictly weaker than H-entailment.
CF-entailment turns out to be a rather weak consequence re-
lation. The next section will discuss the prospects of strength-
ening it within the confinement of some of Priest’s other the-
oretical commitments.

Notice that CF-entailment allows both the rules (R1) and
(R2) to be applied unrestrictedly in any deductive situation.
This is good as Priest is keen to emphasize that especially
modus ponens is “one of the rules of inference” (Priest, 2015a,
p. 59). As shown in Thm. 7 below, this is not the case with
C-entailment in the case of B. We have already seen that CF-
entailment differs from C-entailment in that the latter does,
but the former does not satisfy the consequential variable
sharing property. To realize just how different CF-entailment
and C-entailment are, however, note that these consequence
relations differ radically in terms of whether they allow modus
ponens and adjunction as rules applicable to any deductive
situation:

Theorem 7

(1) {(A→ A)→ B} ⊢c f
B B {(A→ A)→ B} ⊬cB B

(2) {A,A→ B} ⊢c f
B B {A,A→ B} ⊬cB B

(3) {A} ⊢c f
B A∧ (B→ B) {A} ⊬cB A∧ (B→ B)

Proof (1) The B-logically true → sentence corresponding
to the CF-entailment is

t∧ ((A→ A)→ B)→ (t∧ ((A→ A)→ B)→ B).

An easy CF-proof is simply ((A→ A)→ B)#,A→ A,B#. With
regards to C-entailment: It is well known that ((A→ A)→
B) → B is not a theorem of B, and so Thm. 1 yields that
{(A→ A)→ B} ⊬cB B.

(2) Since ∅ ⊢hB A∧ (A→ B)→ (A∧ (A→ B)→ B) it is
easy to obtain a proof that {A,A→ B} ⊢c f

B B. It is, again, well
known that A∧ (A→ B)→ B is not a theorem of B, and so
Thm. 1 yields that {A,A→ B} ⊬cB B.

(3) A#,B→ B, (A∧ (B→ B))# is a CF-proof to the ef-
fect that {A} ⊢c f

B A∧ (B→ B) and A∧ t→ A∧ (B→ B) is
a B-logically true → sentence corresponding to it. It fol-
lows from Thm. 1, however, that {A} ⊬cB A∧ (B→ B) since
∅ ⊬hB A→ A∧ (B→ B).

CF-entailment, unlike C-entailment, is alike Hilbert deriv-
ability in treating adjunction and modus ponens as applica-
ble to any deductive situation. Beyond this, however, it is
quite different: The following theorem shows that all of the

JtK = 3
JAK = 4
JBK = 1
JCK = 2
JDK = 3

5

4

OO

3

OO

2

OO

1

OO

0

OO

→ 0 1 2 3 4 5 ∼
0 3 3 3 3 5 5 5
1 0 3 3 3 5 5 4
2 0 1 3 3 4 5 3
3 0 0 2 3 4 5 2
4 0 0 1 2 4 5 1
5 0 0 0 0 0 5 0

◦ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 1 2 2 5
2 0 1 2 2 3 5
3 0 1 2 3 4 5
4 4 4 4 4 4 5
5 4 4 5 5 5 5

Fig. 1 A model for B

rules (R3)–(R7) fail as CF-entailments, and so these rules
are not applicable in every deductive situation. In addition,
also modus tollens fails, as does the Substitution of Coim-
plicants rule—to infer D with every A1 replaced by A2 from
premises A1 ↔ A2 together with D. Lastly, and even more
shockingly, CF-entailment fails to treat → as a transitive
conditional.

Theorem 8

(1) {C→ B} ⊬c f
B (A→C)→ (A→ B)

(2) {C→ B} ⊬c f
B (B→ A)→ (C→ A)

(3) {A→∼C} ⊬c f
B C→∼A

(4) {A→ (B→C)} ⊬c f
B A◦B→C

(5) {B} ⊬c f
B t→ B

(6) {A→∼C,C} ⊬c f
B ∼A

(7) {A1↔ A2,D} ⊬
c f
B D(A1/A2)

(8) {A→ D,D→C} ⊬c f
B A→C

Proof By using Thm. 4 this will follow if we can show the
following:

(1) ∀E ∈ C({C→ B}) : ∅ ⊬hB E→ ((A→C)→ (A→ B))
(2) ∀E ∈ C({C→ B}) : ∅ ⊬hB E→ ((B→ A)→ (C→ A))
(3) ∀E ∈ C({A→∼C}) : ∅ ⊬hB E→ (C→∼A)
(4) ∀E ∈ C({A→ (B→C)}) : ∅ ⊬hB E→ (A◦B→C)
(5) ∀E ∈ C({B}) : ∅ ⊬hB E→ (t→ B)
(6) ∀E ∈ C({A→∼C,C}) : ∅ ⊬hB E→∼A
(7) ∀E ∈ C({D↔ A,D→C}) : ∅ ⊬hB E→ (D→C)(D/A)
(8) ∀E ∈ C({A→ D,D→C}) : ∅ ⊬hB E→ (A→C)

The model in Fig. 1 consists of a displayed partial or-
dering over which conjunction and disjunction are to be in-
terpreted as, respectively, infimum and supremum. The ma-
trices show how→, ∼ and ◦ are to be interpreted. t is inter-
preted as the least designated element, and so every element
above it in the displayed ordering are designated elements.
A formula is validated by a model if it is evaluated to one
of the designated elements, and a rule is said to hold in the
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model just in case any instance of the rule is designatedness-
preserving.18

1. J(A→ C)→ (A→ B)K = 0, but JEK ∈ {1,2,3} for every
confusion E ∈ C({C→ B}) and so every such implication
E→ ((A→C)→ (A→ B)) is evaluated to 0.

2. Same as (1)
3. JC → ∼AK = 1, but JEK ∈ {2,3} for every E ∈ C({A →
∼C}) and so every such implication E → (C → ∼A) is
evaluated to 1.

4. JA ◦ B→ CK = 1, but JEK ∈ {2,3} for every E ∈ C({A→
(B→ C)}) and so every such implication E→ (A ◦ B→
C) is evaluated to either 1 or 0.

5. Jt→ BK = 0, but JEK ∈ {1,2,3} for every E ∈ C({C}) and
so every such implication E→ (t→ B) is evaluated to 0.

6. Similar as (3).
7. (D→ C)(D/A) is simply the formula A→ C, and JA→

CK = 1. Since JD ↔ AK = 2 and JD → CK = 2, JEK ∈
{2,3} for every E ∈ C({D↔ A,D→C}). Thus every such
implication E→ (D→C)(D/A) is evaluated to either 1 or
0.

8. JA→CK= 1, but JEK ∈ {2,3} for every E ∈C({A→D,D→
C}) and so every such implication E→ (A→C) is eval-
uated to either 1 or 0.

All of (1)–(8) in Thm. 8 hold in the case of ⊢hB, and so
CF-entailment is a much weaker concept of logical conse-
quence than H-entailment. It seems, then, that if CF-entailment
is the concept that explicates what is derivable from “infor-
mation [. . . ] provided by the axioms of an axiom system”,
then very little seems indeed to follow that involves the in-
tensional {t,∼,◦,→}-part of the language. The following two
corollaries specifies just how CF-entailment compares to C-
entailment and standard Hilbert consequence.

Corollary 3

⊢cB ⊊ ⊢
c f
B ⊊ ⊢

h
B

Proof That the subset-relation holds follows simply by not-
ing that any ⊢c-proof is a ⊢c f -proof which in turn is a ⊢h-
proof. That the subset-relations are proper follows from Thm. 7
and Thm. 8.

C-entailment is a weaker notion of logical consequence
than CF-entailment. There is, however, a precise condition
under which the distinction between the two notions col-
lapses, namely if we can unrestrictedly use logical axioms,
which in the presence of t, simplifies to having t as a premise.

Lemma 6 If {t} ⊆ Σ, then Σ ⊢cB C for every C ∈ C(Σ).

18The model was found with the help of MaGIC—an acronym
for Matrix Generator for Implication Connectives—which is an open
source computer program created by John K. Slaney (Slaney (1995)).

Proof Use (A9), (R1) and (R2); details left for the reader.

Corollary 4

Γ∪{t} ⊢cB A⇐⇒ Γ ⊢c f
B A

Proof Assume first that Γ∪ {t} ⊢cB A. Since proofs are finite
it follows that Γ†∪{t} ⊢cB A for some finite set Γ† ⊆ Γ. From
Thm. 1 (and some fiddling) it then follows that ∅ ⊢hB

∧
Γ†∧

t→ A, and then from Lem. 1 that ∅ ⊢c f
B
∧
Γ†∧ t→ A. Since

Γ†∧ t is a confusion of Γ it follows from Thm. 4 that Γ ⊢c f
B A.

Assume that Γ ⊢c f
B A. From Thm. 4 it follows that ∅ ⊢hB

C→ A for some confusion C ∈ C(Γ). From Thm. 1 it follows
that {C} ⊢cB A, and from Lem. 6 that Γ∪{t} ⊢cB C. Since ⊢cB is
transitive (Thm. 2) it then follows that Γ∪{t} ⊢cB A.

6 The prospects of a stronger confused entailment

We have seen that CF-entailment is a very weak notion of
logical consequence. Now Priest is no stranger to weak rel-
evant logics. However, in most of Priest’s writings wherein
an intensional implication operator such as → is utilized,
Priest utilizes consequence relations at least as strong as ⊢hB.
The notable exception is Priest (2016) where Priest makes
use of the relevant logic N4 with a standard Hilbertian con-
sequence relation defined over it.19 Neither of the pre- and
suffixing rules (R3) and (R4), nor contraposition or modus
tollens hold for ⊢hN4

. Neither does Substitution of Coimpli-
cants hold for ⊢hN4

.20 However, transitivity of → is a valid
rule of inference for both ⊢hN4

and ⊢hB, but as we have seen,
not for CF-entailment.

Faced with this, Priest could either strengthen CF-entailment
somehow, to supply an interpretation under which the failure
of the transitivity of → under CF-entailment is acceptable,
or simply to abandon CF-entailment altogether. Let’s briefly
look into these options in turn. The most obvious way of
strengthening CF-entailment so as to validate transitivity for
→ is by way of adding axioms to B. One way to do so would
be to add the axiom called Conjunctive Syllogism:

(ConSyll) (A→ B)∧ (B→C)→ (A→C).

ConSyll, however, suffices for trivializing naïve truth the-
ory in the presence of ◦, and so would not suite Priest’s
other ambitions.21 Another natural suggestion would be to

19See Priest (2008, ch. 9) for a tableaux system and semantics for
N4.

20To see why, note that both A∧B↔ B∧A and (A∧B→ A)→ (A∧
B→ A) are logical theorems of N4, but that (A∧B→ A)→ (B∧A→ A)
is not since → formulas can be given arbitrary truth-values at “non-
normal worlds”.

21The result is due to Dunn and Slaney and can be found in Routley
et al. (1982, pp. 366f).
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strengthen the pre- and suffixing rules of B to their axiomatic
version, namely

(A→ B)→ ((C→ A)→ (C→ B))
(A→ B)→ ((B→C)→ (A→C)).

However, these axioms are interderivable with the axioms

(A◦B)◦C→ (A◦ (B◦C))
(A◦B)◦C→ (B◦ (A◦C))

and Priest explicitly states that fusion is not associative given
his functional interpretation of the Routley-Meyer seman-
tics (Priest, 2015a, p. 60).22 There are, however, alternatives.
One such is to weaken the mentioned transitivity axioms to
their t-enthymematic versions. In the case of ConSyll this
yields (A→ B)∧ (B→ C)∧ t→ (A→ C) which like Con-
Syll also trivializes naïve truth theory in the presence of ◦.23

The t-enthymematic versions of the pre- and suffixng ax-
ioms, that is

(A→ B)∧ t→ ((C→ A)→ (C→ B))
(A→ B)∧ t→ ((B→C)→ (A→C)),

however, seem more promising. These can be added to B
without making fusion associative. It can also be added to
the ◦-free fragment of BX—B with excluded middle added—
without trivializing the naïve theory of truth and even the
naïve theory of sets.24 The same goes for modus tollens and
contraposition more generally which can be obtained as true
CF-entailments by simply opting for the axiomatic version
of the contraposition rule (R5).25 Even the t rule (R7) can be
strengthened to the axiom A∧ t→ (t→ A) and would if thus
strengthened yield a corresponding true CF-entailment with-
out trivializing the two mentioned naïve theories.26 Thus all
the primitive rules of B can strengthened so as to yield cor-
responding CF-entailments. However, whether or not naïve

22See Beall et al. (2012) and Priest (2015b) for more on this inter-
pretation of the semantics.

23The proof is almost identical to the mentioned proof by Dunn and
Slaney, but uses the Curry-sentence λ↔ (T ⟨λ⟩◦(T ⟨λ⟩∧t)→⊥) instead
of λ↔ (T ⟨λ⟩ ◦T ⟨λ⟩ → ⊥) .

24I should emphasize that (Priest, 2015a) only considers the positive
fragment of B, and so the status of excluded middle is not touched in
the paper currently under consideration.

25B with (R5) replaced by (A→∼B)→ (B→∼A) is called DW.
26Brady showed in Brady (1989) that naïve set theory, and therefore

also naïve truth theory, is non-trivial in a certain logic extending the ◦-
and t-free fragment of DW augmented by both ConSyll and excluded
middle. That the construction also allows for the Ackermann constant
was to my knowledge first noted in Beall (2009, pp. 121ff). That it can
be strengthened to the mentioned axiomatic version is first noted here.
So is the fact that Brady’s construction validates the t-enthymematic
versions of the pre- and suffixing axiom. The proofs are rather straight-
forward, and so I leave them to the interested reader. Brady’s construc-
tion in Brady (2006, § 6.3) on the other hand, validates even the pre-
and suffixing axioms, although does not allow for the Ackermann con-
stant, not even in rule form.

truth theory is non-trivial over BX with ◦ is currently un-
known.27 Naïve set theory, it turns out, is trivial even over
B.28

Even though strengthening CF-entailment seem possible
without thereby trivializing the naïve theory truth, it remains
to be investigated whether or not these strengthenings are
acceptable by the light of Priest’s functional interpretation
of the Routley-Meyer semantics. This, however, is an issue
that is beyond the scope of the current paper.

The other option was to find an interpretation under which
the failure of the transitivity of→ over CF-entailment is ac-
ceptable. Even though I will not provide such an interpreta-
tion here, it seems pertinent to note at least how Priest in-
tends→ to be read. Priest does point out that

one of the motivating thoughts of early relevant logic
was exactly to have a connective in the language
which expressed entailment. Thus, validity is expressed
by the logical truth of the conditional, as a matter of
definition. And an inference from A to B is valid iff
A suffices logically for B [. . . ] (Priest, 2015a, p. 60)

Validity, then, is not an account of sound inference, accord-
ing to Priest; modus ponens, for instance, is not a valid rule
of inference seeing as A ∧ (A → B) → B is not logically
true. It is, however, “one of the rules of inference” (Priest,
2015a, p. 59), meaning that the antecedent CF-entails the
conclusion. Let’s call such a rule acceptable. Thus some
rules are acceptable even though they are not valid, although
all valid rules are acceptable. CF-entailment takes premises
to be sets of formulas and is a fully structural consequence
relation, whereas validity takes premises to be structured
into bunches and is a substructural consequence relation.
There is an easy way of translating away this substructural
feature, however, seeing as any inference with X as its premise
bunch and A as its conclusion is valid if and only if X � A
is provable (Priest, 2015a, p. 59). Using Restall’s soundness
and completeness result, then, it follows that the inference
from X to A is valid if and only if ∅ ⊢hB τ(X) → A if and
only if (Thm. 1) A is C-entailed by τ(X). The notion of va-
lidity, then, is at heart Anderson and Belnap’s notion of C-
entailment. The twist is simply that the notion of premises
are different: Anderson and Belnap adhered to the standard
set-based notion of premises, whereas Priest accepts a more
fine-grained one.

Note, then, that even if an interpretation is given un-
der which it is acceptable that → is not transitive over CF-
entailment, it is still a fact that validity is transitive: if both A
suffices logically for B and B for C, then A suffices logically

27B is a sublogic of infinitely-valued Łukasiewics logic and so the
naïve theory of truth is non-trivial over B. See Hájek et al. (2000) for
details on this. Note, however, that the theory has no ω-model over this
logic. Whether or not this extends to B is currently unknown.

28I’ll come back to this fact in the next section.
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for C. Since, however, there is no confusion E ∈ C({A →
D,D→ C}) such that the fact that A suffices logically for
C is validly inferable from E, there is no way of expressing
this within the object language. Thus any such interpretation
will also have to admit that there are fact about validity that
are not inexpressible even within the theory of naïve validity
which is the context in which Priest’s proposal is situated.

The last mentioned option was that of abandoning CF-
entailment. This might seem radical, but it need not be, al-
though it does have a definitive downside. Note that CF-
entailment is appealed to so as to explain why certain rules
may be used, even though they fail to ensure valid inference.
Instead of using CF-entailment for this, one could use the
standard notion of H-entailment and thus allow every rule to
be on par with regards to logical consequence for axiomatic
theories. The question, then, is whether doing so would, to
paraphrase Priest (2015a, p. 60), replace a piece of the jig-
saw with one not as nicely fitting.

Note first of all that CF-entailment simply is H-entailment
for stronger relevant logics—logics like RW and R which
only have modus ponens and adjunction as primitive rules.
CF-entailment and H-entailment come apart, however, not
only for B , but for a range of weaker relevant logics which
have more primitive rules than only these two. We have seen
that Priest distinguishes between valid rules of inference and
acceptable rules—rules such as modus ponens which aren’t
unrestrictedly valid. Priest’s notion of what I’ve called an
acceptable rule, however, is definable using the concept of
validity together with that of a confusion. Opting for H-
entailment as an account of acceptable rules, however, would
for logics such as B amount to having rules acceptable for
reasons unexplainable using the notion of validity. As such
it would be to replace a nicely fitting piece with a piece from
another jigsaw.

Going forward, then, I would suggest focusing on a stan-
dard Hilbert calculus instead of Restall’s consecution calcu-
lus in investigating the notion of CF-entailment, and specif-
ically then to focus on Smiley’s distinction between rules of
inference and rules of proof. If modus ponens and adjunc-
tion are the only rules of inference, then some explanation
as to why axiomatic theories are not closed under rules such
as (R3) and (R4)—the pre- and suffixing rules—are in or-
der. If, on the other hand, rules such as (R3) and (R4) are
instead to be viewed as rules of inference, then an account
explaining their relation to validity would be welcomed: are
axiomatic theories closeable under such rules by mere brute
fact, or is there always a confusion of the premises which
validly entails the conclusion. If the latter: is there a uni-
fied account such that for any instance of the rule, a specific
confusion of the premises validly entails the conclusion in
the same manner as modus ponens is valid in that the infer-
ence from (A∧ (A→ B))◦ (A∧ (A→ B)) to B is always valid
(cf. Thm. 7(2)).

Even though, in the case of B, CF-entailment improves
upon C-entailment in validating modus ponens, the draw-
back from a relevant perspective is that C-entailment sat-
isfies the consequential variable sharing property, whereas
CF-entailment does not. This, as we shall see, may be reme-
died by replacing B by its t-free sibling B◦. The next section
proves this and argues that doing so is also motivated given
some of Priest’s other theoretical commitments.

7 Relevant Confused Entailment

We have seen that Priest’s concept of logical consequence
is quite different from that of Anderson and Belnap. Even
though the variable sharing property was formulated so as to
apply to logically true→-statements, it is the relation of en-
tailment itself that Anderson and Belnap sought to free from
paradoxes. Thus it is important to note that their concept of
conjunctive entailment—C-entailment—itself satisfies vari-
able sharing. Priest’s P-entailment is too much alike Hilbert-
entailment to do so. As we have seen, however, Anderson
and Belnap’s notion of entailment is closely related to that of
Priest. It turns out that it is quite easy to make P-entailment
relevant—for it to satisfy the consequential variable sharing
property, that is—while still allowing modus ponens to be
an unrestricted rule of inference, something we have seen is
not the case for Anderson and Belnap’s C-entailment in the
case of B. The trick is simply to prune away t.

Although Priest does subscribe to variable sharing as a
correct principle, it is quite possible that he would rest con-
tent with the property pertaining to the relation of validity
itself, and not also to that of CF-entailment. As we shall see,
however, variable sharing extends to CF-entailment given
one of Priest’s other theoretical commitments, viz. uphold-
ing the naïve theory of sets as a non-trivial theory. The stricter
notion of CF-entailment, then, seems to be a better fit for
Priest.

There are two sensible ways of pruning away the Ack-
ermann constant. The first is to retain B, but to update the
definition of P-entailment:

Definition 10 (Pure Confusion)PC(Σ)—the set of pure con-
fusions over a set of formulas Σ—is inductively defined as
follows:

– Σ ⊆ PC(Σ)
– for any D1 ∈ PC(Σ) and D2 ∈ PC(Σ),

– D1∧D2 ∈ PC(Σ)
– D1 ◦D2 ∈ PC(Σ)

Definition 11 (PP-entailment) A set of formulas Σ PP-entails
A in the logic B just in case there is a pure confusion C of
Σ such that C �A is a provable sequent in Restall’s system
corresponding to B.
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Notice first of all that PP-entailment is alike C-entailment
in not having any logical theorems—there simply is no t-
free confusion of the empty set of formulas. PP-entailment
is also alike C-entailment with regards to the consequential
variable sharing property:

Theorem 9 PP-entailment for B satisfies (CVSP).

Proof Let Σ ∪ {A} be t-free. Using Restall’s soundness and
completeness result described in section. 3, one can then
prove that Σ PP-entails A if and only if ∅ ⊢hB C→ A for some
t-free confusion C of Σ. Thus it follows from the fact that
B satisfies the variable sharing property that PP-entailment
for B satisfies the consequential variable sharing property.

We saw in Thm. 7 that modus ponens holds for CF-
entailment, and therefore, given Thm. 5 that it also holds
for P-entailment. Note, then, that modus ponens also holds
for PP-entailment since (A∧ (A→ B))◦ (A∧ (A→ B)�B is
a provable sequent in Restall’s system for B. PP-entailment,
however, is unlike P-entailment (but alike C-entailment) in
that {A} does not PP-entail A∧ (B→ B) and neither does
{(A→ A)→ B} PP-entail B.29 Like P-entailment, however,
PP-entailment is a very weak consequence relations: neither
it suffices for making→ a transitive conditional in the sense
that {A→ B,B→C} does not PP-entail A→C (cf. Thm. 8).
Whether or not this is in the end acceptable, or whether it
can be improved upon somehow, remains to be investigated.

t is often introduced to increase expressivity: Ackermann
(1956), for instance, introduced what amounts to ∼t in order
to define modal operators, and Anderson and Belnap used
propositional quantifiers to in effect define a constant akin
to t in order to define intuitionistic implication within E.30

Priest appeals in for instance Priest (2006, sect. 18.3) to t
in order to define restricted quantification and subset-hood
in naïve set theory. One can, however, desire too much of a
good thing. As we have seen, t is the culprit which makes
P-entailment irrelevant. It is also a key component in the
triviality proof for naïve set theory shown forth in Øgaard
(2016, appendix A) using Restall’s proof system for B. The
proof relies heavily on the presence of both ◦ and t. As al-
ready mentioned, however: naïve set theory is non-trivial in
B without ◦. The other option, then, an option which seems
to be a better fit with some of Priest’s other theoretical com-
mitments, is to keep the definition of PP-entailment, but to
abandon t completely and thus to replace B by its t-free ver-
sion B◦.31

29That this is so is easily verified using Slaney’s MaGIC—use B
augmented with the axiom A↔ A◦A. I leave the details as an exercise
for the reader.

30See Anderson and Belnap (1961, § IV) as well as Anderson et al.
(1992, §§ 35–36).

31I should emphasize, however, that whether or not naïve set theory
is trivial in B◦ is as of yet unknown. Note that Priest (2015a) is primar-
ily a discussion of the theory of naïve validity which Priest discusses in

8 Conclusion

The standard concept of logical consequence has it that log-
ical truths follow from any set of assumptions regardless
of whether the premises assumed are relevant to the conse-
quence or not. Anderson and Belnap sought to replace this
notion with one for which this is not the case. They believed
that for a set of premises to entail something, that something
has to be meaning-related to the premises. This meaning-
relatedness was formalized as the variable sharing property.
Even though the property was from its conception stated as
one concerning logically true →-statements, its true intent
is to sort consequence relations into those upholding the
strictures of relevance and those, like the standard Hilber-
tian one, that do not.

Anderson and Belnap’s own concept of entailment was
formalized as C-entailment, that {A1, . . . ,An} entails B just
in case in case A1 ∧ . . .∧An→ B is a logical truth. This is a
decent notion of entailment for some logics, but for contrac-
tionless logics for which (A∧ (A→ B))→ B is not a logical
truth, it yields that modus ponens fails to be a valid rule of
inference. Priest accepted this consequence in Fusion and
Confusion, but defined a new notion of logical consequence
which is to explain why certain such rules may be relied
upon regardless. Whereas C-entailment takes premises to be
merely conjuncted together, the new notion allows premises
to be “confused” together—joined together using both ex-
tensional and intensional conjunction. Since, however, also
the Ackermann constant can be weakened in, Priest’s no-
tion of logical consequence turns out to be an irrelevant
one. This, it was shown, can be easily remedied by sim-
ply pruning away the Ackermann constant. Priest’s notion
of entailment is a highly novel one and this paper is the first
in depth investigation into it. Priest’s starting point is the
positive fragment of the weak relevant logic B. It has been
shown that Priest’s notion of consequence—P-entailment—
is strictly stronger than Anderson and Belnap’s C-entailment,
but strictly weaker than Hilbert-derivability. It was shown
that although it does validate modus ponens, it fails to vali-
date a large number of other logical laws; most disturbingly
the rule called Hypothetical Syllogism, that A→ C follows

the context of the naïve theory of truth. Note, then, that these theories
are regarded as extending the logic, not as axiomatic theories. For in-
stance, Priest notion of naïve truth theory is that it augments the proof
system by in effect adding as logically true, every sequent A� T ⟨A⟩
and T ⟨A⟩� A. In terms of CF-entailment, this translates to allowing
A↔ T ⟨A⟩ as well as any instance of the self-reference schema as a log-
ical axiom, and so every rule may be applied to it unrestrictedly. Note,
then, that the mentioned triviality proof for naïve set theory over B
relies on an unrestricted rule of extensionality—that is a primitive rule
∀x(x ∈ a↔ x ∈ b) ⊩ ∀y(a ∈ y↔ b ∈ y) on par with, say modus ponens—
as well as the abstraction schema on par with the logical axioms. The
requirements of the triviality proof, then, are on line with Priest’s view
of the naïve theories of truth and validity. See Øgaard (2021b) for more
on ways of augmenting Restall’s consecution calculus.
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from A→ B together with B→C. Opting for a stronger logic
would solve this, although whether or not this can be done
within the confinement of Priest’s other theoretical commit-
ments is then where the challenge lies. Some of the prob-
lems facing Priest’s account have been raised in this paper,
although they remain to be properly investigated.
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