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1  | INTRODUC TION

Chronic kidney disease (CKD) is a major public health problem, with 
increasing incidence worldwide.1 In 2017, the worldwide prevalence 
of CKD was 9.1% accounting for around 697.5  million cases, and 
1.2 million patients died from CKD. Furthermore, between 1990 and 
2017, the global all-age mortality rate from CKD increased by 41.5% 

and is expected to continue rising as a result of increased prevalence 
of cardiovascular diseases and diabetes mellitus, and to increased 
longevity.1

Chronic kidney disease includes a group of diseases character-
ized by progressive loss of renal function accompanied by increased 
tissue fibrosis. In general, all progressive forms of CKD show similar 
fibrosis manifestations suggesting a common pathogenic pathway.2 
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Abstract
Renal fibrosis is a progressive histological manifestation leading to chronic kidney 
disease (CKD) and associated with mitochondrial dysfunction. In previous work, we 
showed that Bemcentinib, an Axl receptor tyrosine kinase inhibitor, reduced fibrosis 
development. In this study, to investigate its effects on mitochondrial dysfunction 
in renal fibrosis, we analysed genome-wide transcriptomics data from a unilateral 
ureter obstruction (UUO) murine model in the presence or absence of bemcentinib 
(n = 6 per group) and SHAM-operated (n = 4) mice. Kidney ligation resulted in dysreg-
ulation of mitochondria-related pathways, with a significant reduction in the expres-
sion of oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), citric acid 
cycle (TCA), response to reactive oxygen species and amino acid metabolism-related 
genes. Bemcentinib treatment increased the expression of these genes. In contrast, 
AKT/PI3K signalling pathway genes were up-regulated upon UUO, but bemcentinib 
largely inhibited their expression. At the functional level, ligation reduced mitochon-
drial biomass, which was increased upon bemcentinib treatment. Serum metabo-
lomics analysis also showed a normalizing amino acid profile in UUO, compared with 
SHAM-operated mice following bemcentinib treatment. Our data suggest that mito-
chondria and mitochondria-related pathways are dramatically affected by UUO sur-
gery and treatment with Axl-inhibitor bemcentinib partially reverses these effects.
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However, although innovative potential therapeutic approaches for 
CKD have been proposed, over the last 20 years, no new drug has 
been approved to specifically prevent CKD or to improve kidney 
function.3,4 Furthermore, since available information guiding kidney 
patients’ care is limited, new approaches are necessary.5 An import-
ant barrier to the development of new therapeutic approaches is 
represented by the limited understanding of molecular mechanisms 
underlying CKD, and the lack of therapeutic targets.

As highly metabolically active organ, kidney function is tightly 
dependent on mitochondria performance. Mitochondria are not 
only the cell powerhouse but also coordinate cellular adaptation to 
stressors, and regulate cell death, oxidative stress and cellular me-
tabolism.6,7 Therefore, mitochondrial damage and dysfunction have 
been associated to the pathophysiology of a broad spectrum of renal 
diseases, including kidney fibrosis development,8-10 CKD11,12 and di-
abetic kidney disease.13

Axl, a member of the TAM family of receptor tyrosine kinases, is 
widely expressed in normal cells and tissues. Because of its function 
as a regulator of different physiological processes including cell sur-
vival, proliferation, migration and differentiation, Axl has been pro-
posed as a promising treatment target for different malignancies.14,15

A previous study from our group demonstrated the effective-
ness of the Axl inhibitor bemcentinib in alleviating fibrosis devel-
opment in a murine unilateral ureteral obstruction (UUO) model.16 
This model is widely used to elucidate the pathogenesis of obstruc-
tive  nephropathy and the mechanisms responsible for progressive 
renal fibrosis, and as a model to investigate fibrosis attenuating 
treatments.17 Furthermore, since it reflects the progression of acute 
kidney injury (AKI) to CDK, UUO provides an important model to 
study mitochondrial dysfunction in kidney diseases.18

Based on this background, in this study, we addressed the ef-
fects of-Axl-inhibitor bemcentinib on mitochondrial dysfunction in-
duced by UUO, by investigating renal cell transcriptome and amino 
acid metabolism.

2  | MATERIAL AND METHODS

2.1 | Animals and sample collection

Animal handling and sample collection were previously described in 
full detail.16 Briefly, eight- to nine-week-old male C57Bl/6JOlaHSD 
mice were acquired from Envigo (Horst, the Netherlands) and 
kept and managed in the local animal facility at the Department 
of Biomedicine, University of Bergen, Norway. All surgeries were 
performed under general anaesthesia with isoflurane gas. Left ure-
ter was identified through a subcostal incision and ligated with a 
silk ligature. Animals were divided into three groups: UUO model 
treated with bemcentinib diluted in vehicle (0.5% hydroxypropyl-
methylcellulose in 0.1% tween 80) (n = 6) or only with vehicle (n = 6) 
and SHAM-operated (n = 4).

The drug was administered twice daily by oral gavage at a dose 
of 50  mg/kg (10  ml/kg), from one day before surgery to 14  days 

post-surgery. Mice were sacrificed fifteen days post-surgery and 
blood was collected by retro-orbital method or cardiac puncture. 
Kidneys were also harvested, cut into transverse slices, fixed in 
formaldehyde and embedded in paraffin according to standard pro-
cedures. RNA was extracted from frozen murine kidney poles and 
sequenced on the Illumina HiSeq4000 platform. The mRNA se-
quencing data were processed in the RStudio environment, where 
reads were aligned and counted. Log 2 CPM data were obtained and 
fold changes were calculated.

2.2 | Total gene expression analysis

An over-representation analysis (ORA) was performed on the differ-
ential expression dataset using the ClusterProfiler package and the 
Reactome pathway repository,19 based on significantly expressed 
genes (FC ± 1.15, q < 0.05). A principal component analysis (PCA) was 
performed on the normalized log2 CPM expression data to evaluate 
the variability in the transcriptomics dataset. A loading plot from the 
first two (n = 2) principal components (PCs) was generated to eluci-
date which genes contributed most to the variance observed in PC 1 
and PC2 and was visualized using the ggplot package.20 Differential 
expression for genes involved in selected pathways was visualized 
using Gene Ontology (GO)21 and the ggplot2 package. All analyses 
were performed using the R programming language. Sequencing 
data were published in a previous study from our group16 and are 
available in the repository Gene Expression Omnibus https://www.
ncbi.nlm.nih.gov/geo/query/​acc.cgi?acc=GSE12​3674.

2.3 | Mitochondrial gene expression analysis

Normalized log2 CPM expression data were filtered based on the 
public gene database Mouse MitoCarta 2.0 (www.broad​insti​tute.
org/pubs/MitoC​arta), and PCA was performed on selected genes 
with statistically significant differential expression values (FC ± 1.5, 
q-value < 0.05) to evaluate data variability. Loadings from the first 
n (n = 2) principal components (PCs) were extracted and variance 
was visualized using the ggplot package.20 Genes in each PC were 
ranked based on their loadings, and the 40 genes with the highest 
loading score in each PC were selected for hierarchical clustering 
using Euclidean distance and Ward2-linkage, and visualized with 
ComplexHeatmap package.22

2.4 | Mitochondrial DNA extraction and qPCR 
quantitation

Murine kidney tissue from FFPE blocks was cut into three 10-μm 
sections and DNA was isolated using the QIAamp DNA FFPE Tissue 
Kit (Qiagen, catalogue number: 56 404). DNA quality and quantity 
were determined using the NanoDrop™ One/OneC Microvolume 
UV-Vis Spectrophotometer (ThermoFischer Scientific, catalogue 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123674
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123674
http://www.broadinstitute.org/pubs/MitoCarta
http://www.broadinstitute.org/pubs/MitoCarta
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number: ND-ONE-W). All kits and equipment were used according 
to manufacturer's instructions. DNA was stored at 4℃. NADH de-
hydrogenase subunit 1 (MT-ND1, Mm04225274_s1) and Ribosomal 
Protein Lateral Stalk Subunit P0 (Rplp0, Mm00725448_s1) TaqMan 
probes (ThermoFisher Scientific, catalogue number: 4 331 182) and 
LightCycler II 480 Master Mix (Roche Diagnostics GmbH) were used 
for quantitative PCR analysis. Cp values were acquired and analysed 
with a LightCycler II 480 thermocycler (Roche Diagnostics GmbH). 
Relative mitochondrial DNA abundance was calculated using the 
DeltaDeltaCt method, and Rplp0 as an endogenous reference for 
genomic DNA. Mean DeltaCt for all the SHAM samples was used 
as a calibrator.

2.5 | Immunohistochemistry

Three-micron-thick formalin-fixed paraffin-embedded sections 
from ligated and non-ligated murine kidneys were deparaffi-
nated in xylene and rehydrated in descending concentrations of 
ethanol. Epitope retrieval was performed in target retrieval buffer 
(pH6,  Dako) using a microwave oven, and endogenous peroxidase 
activity was quenched, by 10 minutes incubation with peroxidase-
blocking solution (Dako). Unspecific binding sites blocking was 
achieved by incubating sections with 10% normal goat serum 
in PBS (Dako) for 30  minutes. Sections were then incubated for 
60  minutes with rabbit polyclonal anti-TOMM20 (catalogue num-
ber ab186735, Abcam) or anti-SDHB primary antibodies (catalogue 
number HPA002868, Sigma-Aldrich) at a 1:500 dilution in antibody 
diluent with background reducing agent (Dako). Primary antibodies 
were labelled using polymer-Horseradish peroxidase-conjugated 
anti-rabbit immunoglobulins (Envision+® system, Dako). Signal 
was visualized using 3,3′-diaminobenzidine (DAB,  Dako) and sec-
tions were counterstained using haematoxylin (Dako), dehydrated 
and cover-slipped using a non-aqueous mounting medium. All rea-
gents and kits were used according to manufacturer´s instructions. 
All immunohistochemical reactions were performed on the auto-
immunostainer intelpthFLX (BioCare) at room temperature. Digital 
20X slides were created by scanning sections with ScanScope(TM) 
in the Department of Pathology at Haukeland University Hospital in 
Bergen, Norway. Digital slides were viewed in ImageScope (Aperio), 
and positive pixels were quantified using the colour deconvolution 
algorithm version 9.1 (Aperio, CA, USA) after adjusting the default 
parameters to each staining. Total percentage (%) of positive pixels 
was used as visualization parameter and statistics was performed by 
Graphpad Prism 8.

2.6 | Western Blot

Protein extraction from mouse kidney tissues was achieved by using 
RIPA buffer (Sigma-Aldrich, catalogue no. R0278) with the addition of 
complete protease inhibitor (Roche, catalogue no. 4693116001) and 
phosphatase inhibitor cocktail (Sigma-Aldrich, catalogue no. P5726). 

Protein concentration was determined using Pierce BCA Protein 
Assay Kit (Thermo Scientific, catalogue no. 23225). Proteins were 
separated in Bolt 4-12% Bis-Tris Plus electrophoresis gels and trans-
ferred to nitrocellulose membranes using iBlot 2 System. Membranes 
were blocked with 5% BSA in PBS containing 0.1% Tween-20 and 
then incubated overnight with rabbit polyclonal Anti-TOMM20 an-
tibody (Abcam, ab186735) 1:2000 dilution and mouse-monoclonal 
Anti-SDHB antibody (Abcam, ab14714) 4µg/mL. SeeBlue Plus2 Pre-
stained Protein Standard (Invitrogen, LC5925) was used to visualize 
protein molecular weight. The blots were washed three times with a 
wash buffer (PBS, 0.1% Tween-20) and then incubated for 1 hour ei-
ther with goat anti-rabbit (Abcam, ab205718) or goat antimouse sec-
ondary (ab205719) HRP-linked antibodies. The blots were washed 
again and developed using Pierce ECL Plus Western blotting sub-
strate (Thermo Fisher). Chemo-luminescence signals were assessed 
using ChemiDoc Imaging System (Bio-rad). Densitometry analysis 
was performed using the ImageJ software.

2.7 | Serum amino acids profile

Blood samples were collected in Microvette 500Z-gel tubes (Sarsted, 
Germany, catalogue no. 201344) and centrifuged at 10000 g for 
10 minutes to separate plasma, which was stored at −80℃. Briefly, 
plasma proteins were precipitated by adding 5-Sulfosalicylic acid di-
hydrate (Sigma-Aldrich) containing the internal standard norleucine 
(Sigma-Aldrich) (1:4; V:V) to plasma (140-160μL). Solutions were cen-
trifuged for 10 minutes at 14000 g and supernatants were diluted 1:1 
with lithium citrate buffer A-1 (Sykam GmbH catalogue no. S000015). 
Qualitative and quantitative determinations of plasma free amino 
acids were performed by reverse-phase high-performance liquid chro-
matography with post-column derivatization of amino acids with nin-
hydrin, by using a Sykam Automatic Amino Acid Analyzer S433 (Sykam 
GmbH, Germany, catalogue no. 1120001).23

Resulting data were exported as a table with molar concentration 
for each respective metabolite, and analysis was performed with the 
RStudio Environment [R Core Team (2019); RStudio Team (2015)]. 
Metabolites with more than 10% missing values were removed. 
Remaining metabolites were imputed using the minimum method. 
For multivariate analysis, data were autoscaled, and PCA and load-
ings were visualized using the ggplot package.20 Fold changes were 
calculated and a Welch test was applied to the log-transformed data-
set to calculate statistical differences between sample groups for 
each metabolite.

2.8 | Statistics

Data are presented in dot plots (median/interquartile ranges) for 
the number of samples. Mann-Whitney U test was used to assess 
statistical significance. Data were analysed and figures produced 
by Graphpad Prism 8. P-values lower than .05 were considered 
significant.
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3  | RESULTS

3.1 | Genome-wide transcriptome analysis of UUO-
murine model treated with Bemcentinib

To investigate the effect of bemcentinib in the UUO model, we ana-
lysed the transcriptome of ligated and non-ligated kidneys treated 
with or without bemcentinib. The expression of 11 239 genes was 
significantly different in ligated and non-ligated kidneys, being 5809 
up-regulated and 5430 down-regulated in ligated organs. Moreover, 
5652 genes were differentially expressed in bemcentinib-treated li-
gated (Bem-L) compared to vehicle-treated ligated (Veh-L) kidneys, 
being 3103 up-regulated and 2549 down-regulated. Only 37 genes 
were differentially expressed in non-ligated kidneys treated with or 
without bemcentinib (Table 1).

To obtain a general overview, we performed a PCA, which re-
vealed that the majority of the variance (66.5%) in the dataset could 
be attributed to ligation (PC1), whereas bemcentinib treatment ex-
plained 8.9% of the variance (PC2), consistent with a clear difference 
between ligated and non-ligated and treated or untreated kidneys 
(Figure  1A). The loadings from principal component 1 and 2 were 
visualized with an overlay of mitochondrial-related genes from 
MitoCarta v2, to evaluate how changes in their expression affected 
the variance observed in the PCA. This analysis revealed that mi-
tochondrial genes strongly contribute to the differences observed 
between ligated and non-ligated kidneys on PC1, and that a majority 
of them had a positive weight (>0.075) towards non-ligated kidneys. 
Interestingly, some loadings associated with mitochondrial-related 
genes appeared to strongly contribute to the variance observed 
between bemcentinib-treated and vehicle-treated mice on PC2. 
Most of the  weight  (>0.1)  from mitochondrial-related loadings  in 
PC2 pushed towards bemcentinib-treated kidneys (Figure 1B).

For a more detailed interpretation of transcriptomic data, we 
performed  a  pathway  over-representation analysis (PORA) based 
on  the Reactome Pathway Database. This analysis  revealed  that path-
ways related to tyrosine-kinase signalling  and transcription regulation 
(eg transcriptional regulation by RUNX2 and RUNX3 and regulation of 
RAS by GAPs) were significantly (q < 0.05, P < .05) enriched in ligated, 
compared to non-ligated kidneys. Bemcentinib treatment mainly affected 
gene expression in pathways related to mitochondria, including oxidative 
stress (eg detoxification of reactive oxygen species, glutathione synthesis 
and recycling), oxidative phosphorylation (OXPHOS) (eg respiratory elec-
tron transport), amino acid metabolism (eg metabolism of amino acids and 
derivatives), citric acid cycle (TCA) and fatty acid metabolism (Figure 1C).

We then focused on genetic pathways affected by both liga-
tion and bemcentinib treatment. Expression of genes related to 
pathways important for correct mitochondrial function, including 
citric acid cycle (TCA; GO:0006099), oxidative phosphorylation 
(OXPHOS; GO:0022900), response to ROS (GO:0034614), fatty acid 
oxidation (FAO; GO:0019395), urate acid metabolism (GO:0046415) 
and mitochondria-related pathways such as glutathione metabolism 
(GO:006749), glycolysis (GO:0061621) and amino acid metabolism 
(GO:0006520), was, in general, reduced after ligation, but bem-
centinib treatment increased it.

In sharp contrast, AKT/PI3K signalling pathway genes were gen-
erally up-regulated upon ligation, but bemcentinib largely reverted 
this transcription pattern (Figure 2A).

Since Axl is a tyrosine kinase signal transductor, we analysed 
differential expression of genes from MAPK-related signalling 
cascades and pathways acquired from the KEGG database. This 
analysis revealed that a majority of genes in these pathways were 
also up-regulated upon ligation, and bemcentinib treatment re-
sulted in a considerable reversal of their transcription pattern 
(Figure 2B).

3.2 | Effect of ligation and bemcentinib treatment in 
mitochondrial-related gene expression

To further investigate how ligation and treatment with bemcen-
tinib affected transcription of mitochondrial-related genes, we 
performed several multivariate analyses on a data subset filtered 
through MitoCarta v2 public database.

A PCA on significant features revealed that the majority of vari-
ance (90.7%) in the dataset may be attributed to ligation, as shown 
in principal component 1 (PC1). The effect of bemcentinib, as ex-
plained by PC2, consisted in a 3.0% difference between the two 
treatment groups (Figure 3A).

We also performed hierarchical clustering on the top 50 genes 
with the highest loading in both PC1 and PC2 to investigate which 
genes most contributed to the variance seen in the PCA, and how 
ligation and treatment affected their expression. Top-ranked genes 
in PC1 mostly showed a clear pattern of down-regulation upon li-
gation, whereas bemcentinib treatment appeared to mildly reverse 
these effects (Figure  3B). However, in PC2, we observed a more 
diverse transcription pattern, identifying four distinct gene clus-
ters where bemcentinib partially reversed the effects of ligation 
(Figure 3C).

GeNe expression
Bem-L vs 
Bem-UL

Bem-L vs 
Veh-L

Bem-UL vs 
Veh-UL

Veh-L vs 
Veh-UL

Up-regulated 5462 3103 27 5809

No change 3894 8886 14 501 3299

Down-regulated 5182 2549 10 5430

TA B L E  1   Gene expression comparison. 
Significant up- and down-regulated genes
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3.3 | Determination of mitochondrial biomass and 
dysfunction

Three approaches, two based on proteins and the other on DNA 
quantification, were used to determine if changes in mitochondrial 
gene expression could be associated with mitochondrial biomass al-
terations and dysfunction.

At the protein level, we determined two mitochondrial proteins: 
SDHB, located on the inner membrane of the mitochondria and par-
ticipating in Citric Acid Cycle and electron respiratory chain, and 
TOMM20, a translocase located in the mitochondrial outer mem-
brane by immunohistochemistry and western blot. Anti-SDHB stain-
ing in ligated vehicle-treated kidneys displayed a clearly weaker signal 
than in non-ligated kidneys, and the same pattern was observed for 
anti-TOMM20 (Figure 4A, B). Most importantly, bemcentinib treat-
ment partially reverted these effects. Comparative positive pixels 

(%) quantification (Figure 4C, D) confirmed this data. However, the 
effect of Bemcentinib was not significant when measured by west-
ern blot (Figure 4F), probably because of the lower method sensitiv-
ity and because total protein was extracted including fibrotic tissue, 
that was removed from the immunohistochemistry quantification. 
Notably, with both techniques, SDHB/TOMM20 ratio was signifi-
cantly lower in ligated kidneys and bemcentinib treatment also re-
verted this effect (Figure 4E and G).

At the genomic level, we quantified mitochondrial gene MT-ND1, 
using nuclear gene Rplp0 as endogenous reference, to compare mi-
tochondrial biomass within the samples.

This analysis revealed that ligated kidneys had significantly 
lower levels of mtDNA relative to nuclear DNA, as indicated by 
MT-ND1 quantification, compared to non-ligated kidneys, irrespec-
tive of treatment. However, bemcentinib-treated ligated kidneys 
had significantly more mtDNA compared to vehicle-treated ligated 

F I G U R E  1   Multivariate analysis 
of transcriptomics data. A, Principal 
component analysis (PCA) performed 
on the transcriptomics dataset. Ligation 
is the major contributing factor (PC1: 
66.5%) in separating samples, followed 
by treatment with bemcentinib (PC2: 
8.9%). B, Loading plot with an overlay 
of mitochondrial-related genes shows 
that changes in mitochondrial gene 
expression contribute to the variance 
observed in the PCA 3 Pathway 
enrichment shows the top 30 enriched 
terms from the Reactome Pathway 
Database. Larger nodes represent larger 
enrichment. Red refers to significant 
in Bem-L compared to Veh-L and blue 
between L vs NL
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F I G U R E  2   Univariate analysis of transcriptomics data. A, Differential expression of genes using GO-terms. Data are consistent with a 
significant down-regulation of the expression of genes involved in mitochondrial-related processes after ligation and a significant reversal 
of these effects upon bemcentinib treatment, whereas PI3K/AKT signalling genes were up-regulated after ligation but this effect was 
reversed by treatment with bemcentinib. B, Differential expression of genes related to MAPK signalling pathway using the KEGG database. 
Veh-L vs NL genes are displayed at the top, whereas Bem-L vs Veh-L at the bottom. Up-regulated genes (FC > 1.15, adj P value < 0.05) are 
shown in red, down-regulated (FC < −1.15, adj P value < .05) in blue and non-significantly affected in grey
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organs (relative levels to SHAM ± SD; Bem-L: 0.639 ± 0.345; Veh-L: 
0.360  ±  0.126; P  =  .045). There was no significant difference be-
tween non-ligated kidneys with or without bemcentinib treatment 
(Figure 4H).

3.4 | Metabolomic profiles in bemcentinib and 
vehicle-treated kidneys

Considering the key role of mitochondria in amino acid metabolism, 
to complement our transcriptomics study, we performed a serum 
amino-acid profile analysis in SHAM- and UUO-operated animals 
with or without bemcentinib treatment. A PCA revealed that the ma-
jority of the variance could be attributed to within-sample variation 

(PC1; 40.6% of explained variance), whereas the effect of ligation 
and bemcentinib treatment contributed to a clear separation be-
tween groups in PC2 (21.2%) (Figure 5A).

PC1 and PC2 loading visualization revealed that the majority of 
unmodified amino acids were driving the biological variation within 
samples seen in PC1, whereas the majority of the weight in PC2 was 
caused by modified amino acids (Figure 5B). Compared to SHAM-
operated animals, UUO-operated animals were associated with an 
increase of TCA-related amino acids glutamic acid and aspartic acid 
and a decrease in glycolysis and glutathione biosynthesis-related 
amino acid cysteine. This effect was at least in part reversed by 
bemcentinib treatment. Fold change and significance of all the me-
tabolites analysed in bemcentinib vs vehicle-treated, bemcentinib vs 
SHAM and vehicle vs SHAM treatment are shown in Figure 5C.

F I G U R E  3   Multivariate analysis of mitochondria-related genes. A, PCA based on the expression of significant genes (q < 0.05) filtered 
from MitoCarta v2. Database shows groups of samples clustering upon ligation and treatment. The variance seen in PC1 reflects ligation 
whereas PC2 represents the effect of bemcentinib treatment. B, Hierarchical clustering of top 50 loadings from PC1. C, Hierarchical 
clustering of top 50 loadings from PC2
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4  | DISCUSSION

In a previous study from our group, we found that tyrosine kinase 
receptor AXL is involved in the progression of renal fibrosis in a UUO 
murine model and that AXL inhibitor bemcentinib attenuates disease 
development.16 Mitochondrial dysfunction and oxidative stress have 
been demonstrated to play a role in the pathogenesis of renal fi-
brosis in both, humans and animal models.24,25 In this study, we in-
vestigated the effects of Axl-inhibitor bemcentinib on mitochondrial 
dysfunction associated with renal fibrosis.

The main function of mitochondria is to produce energy through 
respiration and molecular catalysis, thereby playing a central role 
in cell metabolism. Targeting defective mitochondria-related path-
ways has also been proposed as a potential treatment of a variety 
of diseases, including different types of fibrosis,26,27 diabetic kidney 
disease and CKD.28 Here, using RNA sequencing data from a murine 
UUO model,29,30 we identified a pattern of dysregulated genes sug-
gesting an impaired mitochondrial bioenergetics in ligated kidneys 
following 14  days post-surgery, compared to non-ligated kidneys. 
In general, mitochondria-related genes were significantly down-
regulated in ligated compared to non-ligated kidneys. However, this 
pattern was at least partially reverted in bemcentinib-, compared 
to vehicle-treated animals, thus indicating that bemcentinib has a 
potential beneficial effect on mitochondrial dysfunction occurring 
during renal fibrosis. Interestingly, unlike in ligated kidneys where 

bemcentinib had a clear effect, in non-ligated kidneys, bemcentinib 
had little to no effect at the transcriptome level.

Mitochondrial homeostasis is tightly regulated and the disrup-
tion of the dynamic processes of mitochondrial biogenesis, fission/
fusion and mitophagy impacts on renal injury and recovery.31 To 
compare mitochondrial biomass and dysfunction in our model, we 
used two methods. Firstly, we quantified mtDNA. Moreover, since 
mitochondria are dynamic organelles with a variable number of cir-
cular mtDNAs, we also analysed them at the protein level using 
two mitochondrial biomarkers, TOMM20 and SDHB. TOMM20 is 
a translocase located in the mitochondrial outer membrane that 
has an essential role in the specificity of mitochondrial protein im-
port,32 whereas SDHB is part of the complex II of the respiratory 
chain located on the inner membrane of the mitochondrion linking 
citric acid cycle and oxidative phosphorylation, two critically im-
portant pathways in energy conversion. By using either approach, 
we found that mitochondria biomass was significantly decreased 
in ligated compared to non-ligated kidneys, but bemcentinib sig-
nificantly increased mitochondria biomass compared to vehicle-
treated animals.

A common by-product of mitochondrial OXPHOS is represented 
by ROS, which are efficiently removed by different scavenging sys-
tems such as glutathione oxidation-reduction cycle and superox-
ide dismutases (SODs). Increased ROS induces oxidative stress,33 
associated with CKD and fibrosis progression.11,34 We observed a 

F I G U R E  4   Visualization and 
quantification of TOMM20 and SDHB 
staining. Immunohistochemical analysis 
of sections from ligated and non-ligated 
kidneys with or without bemcentinib 
treatment from male C57BI/6 mice after 
14 d of ureteral obstruction for (A) SDHB 
and (B) TOMM20 protein expression. 
Quantitative analysis of positive pixels 
(%) with fibrotic tissue subtracted 
from quantification is provided for (C) 
TOMM20, (D) SDHB, (E) SDHB/TOMM20 
ratio (paired samples). F, Western blot 
analysis of SDHB and TOMM20. G, 
Western blot protein quantification 
SDHB/TOMM20 ratio (paired samples). 
H, mtDNA quantification. All data were 
analysed by Mann-Whitney U test
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down-regulation of antioxidant genes upon ligation, but a positive 
effect of bemcentinib, that increased the expression of these genes.

Mitochondria play key roles in amino-acid metabolism and are in-
volved in both catabolic and anabolic processes.7 In particular, renal 
mitochondria critically contribute to nitrogen and amino-acid ho-
meostasis, and ammonia disposal, by renal deamidation of glutamine 
to glutamate (GLU).35 Furthermore, other studies in a UUO model 
in rats have revealed changes at the metabolomic profile levels in 
serum, tissue and urine.36-39 To determine if bemcentinib had an 
effect in the metabolomic profile, we measured serum amino acids 
and other small metabolite levels comparing UUO with or without 
treatment and SHAM-operated mice. Although some GLU derived 
from renal deamidation returns to the systemic circulation, previ-
ous studies suggest that the majority of GLU is converted to alanine 
(ALA) or further metabolized to alpha-ketoglutarate (a-KG), entering 
TCA cycle.40 In our study, bemcentinib treatment decreased GLU 
levels, whereas glutamine and ALA were not significantly affected. 
Furthermore, aspartate, which is synthesized through the transami-
nation of TCA intermediate oxaloacetate, was also reduced in plasma 

upon treatment with bemcentinib. These results are in agreement 
with findings from similar metabolomics studies in UUO model and 
CKD patients, where increased GLU and ASP levels were observed 
in renal disease.41,42 Also, serum levels of phosphoethanolamine (P-
ETA), involved in phospholipids metabolism, inhibiting mitochondrial 
respiration 43 and disrupting mitochondrial membrane potential,44 
were decreased by bemcentinib treatment. In contrast, we did not 
observe any differences in levels of urea between the bemcentinib- 
and vehicle-treated mice, suggesting an adaptation of hepatic pro-
duction to compensate for the reduced renal capacity to dispose of 
urea through GLU-GLN metabolism.

It should be noted that although it is widely used as a renal fi-
brosis model, UUO requires aggressive surgery that leads to a rapid 
interstitial inflammation at difference with the slow progression ob-
served in humans.17,45 Nevertheless, this model has proven useful 
both for the identification of biomarkers and for the development of 
new treatments.46-48 Furthermore, our study documents that bem-
centinib was able to improve mitochondrial function at the molecular 
level despite the intrusiveness of the experimental method.

F I G U R E  5   Multivariate analysis of serum amino acids and related metabolites. A, PCA shows groups of samples clustering according 
to ligation and treatment. The variance seen in PC2 reflects ligation and how treatment with bemcentinib appears to reverse the effects 
of ligation whereas PC1 represents differences between samples. B, Loading plot from PC2 shows how serum levels of modified amino 
acids separate different treatment groups whereas PC1 mainly consists of essential amino acids. C, Fold changes and statistics of serum 
metabolites
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In conclusion, our data indicate that mitochondria and 
mitochondrial-related pathways are dramatically affected by UUO 
surgery. Bemcentinib partially reverses the effects of UUO, without 
affecting non-ligated kidneys or SHAM-operated mice, and thereby 
qualifies as a promising treatment in kidney disease.
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