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Abstract  
Anthropogenic-driven climate change is expected to expose natural communities to various 
environmental stressors, which in the ocean will be reflected as increasing temperatures, ocean 
acidification, and altered patterns of extreme weather events. As the ocean functions as a CO2 
sink, oceanic pCO2 is expected to increase, causing a decrease in pH levels as emissions 
continue to rise, leading to ocean acidification. By utilizing a natural CO2 seep system gradient 
in a shallow marine community of the coast in Dominica as an analogue for future oceanic 
conditions, the community composition was compared over a four-point time series between 
2017 to 2019. During the experiment, the study area experienced a hurricane event, thus 
allowing investigations of marine community response and recovery following the hurricane 
event. The community was measured by estimating species coverage from photo-quadrants 
gathered in transects extending in cardinal directions out from the pCO2 seep site. Results show 
that along a natural pCO2-gradient the community experiences a simplification of species 
composition as proximity to the CO2 seep increases. Moreover, the synergistic effects of both 
the hurricane impact along with naturally higher pCO2 levels caused a decrease in diversity 
and an increase of evenness following the hurricane impact, with recovery commencing at a 
slower pace against the backdrop of high pCO2 conditions. Notably, the results of this study 
suggest that hurricane events lead to decreases in diversity, although against a backdrop of 
ocean acidification, some diversity may already be lost. Therefore, hurricane impacts may 
show less of an effect on the community composition and diversity of future marine 
communities due to the overall simplification that has already occurred. The results of this 
study highlight the challenges marine communities will face as a result of exposure to several 
environmental stressors, and illustrate the need for more research investigating the combined 
effect of multiple climatic stressors on marine communities.  
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1 Introduction 
 
1.1 General Introduction  
 
1.1.1 Climate change  
The new Summary for Policy makers from the International Panel on Climate Change (IPCC) 
confirms that currently observed climate change is driven by anthropogenic greenhouse gas 
(GHG) emissions (IPCC 2021). Such changes include increasing temperatures on land and in 
the ocean, sea level rise, reduced sea-ice extent, reduced snow cover, and changes to 
precipitation levels and extreme weather patterns. Already the impacts of anthropogenic GHG 
emissions have been observed in all inhabited regions (IPCC, 2021), and with every additional 
increase in temperature, the projected changes in extreme events, such hurricanes, 
precipitation, heatwaves and drought, are predicted to increase in frequency and intensity 
(IPCC, 2021).  
 
1.1.2 Ocean acidification 
Especially in the ocean anthropogenic climate forcing entails consequences for several of the 
physical oceanic properties, including sea level rise, ocean acidification, and changes to wind 
and oceanic current patterns (Doney et al. 2012). Changes of the physical properties of the 
ocean will have cascading effects for marine communities, from acclimatization and adaptation 
of single organisms physiology and behaviour, to community-structure changes, as well as 
distribution shifts and altered spatial ranges (Hoffmann and Parsons 1991; Hall-Spencer et al. 
2008; Doney et al. 2012; Poloczanska et al. 2013). Because of the great volume of seawater, 
the ocean acts as a buffer for atmospheric CO2 to such a great capacity that the ocean has now 
absorbed more than half of all anthropogenic CO2 from the atmosphere (Sabine et al. 2004). 
Consequences of this CO2 uptake will be reflected in the oceanic carbonate chemistry, seeing 
decreasing pH levels as well as decreasing carbonate-ion concentrations, a process known as 
ocean acidification (OA) (Caldeira and Wickett 2003, 2005). The process of OA is shown in 
Equation 1, where CO2 is taken up by the ocean, and forms carbonic acid (H2CO3) through 
reactions with water (H2O). The H2CO3 molecule loses a hydrogen ion (H+), leaving a 
bicarbonate ion (𝐻𝐶𝑂!"). Again, a H+ ion is lost from the 𝐻𝐶𝑂!", leaving one carbonate ion 
(𝐶𝑂!#") and one H+ ion:  
 

𝐸𝑞. 1:			𝐶𝑂#(%&') 	⇌ 	 𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂	 ⇌ 	𝐻2𝐶𝑂3 	⇌ 	𝐻+ + 𝐻𝐶𝑂3− 	⇌ 	2𝐻+ + 𝐶𝑂32− 
 
As oceanic uptake of CO2 continues, the availability of carbonate ions will decrease due to the 
buffering capabilities of seawater, where an increase in hydrogen ion availability will drive the 
chemical composition towards the stable state of bicarbonate. Simultaneously, the increase in 
hydrogen ions will cause a decrease in pH levels (Hönisch et al. 2012a). With the current GHG 
emissions, anthropogenic actions could result in pH decline from 8.2 at pre-industrial levels to 
7.8 in worst-case scenarios (IPCC 2013). Already, a decrease of about 0.11 units has been 
observed from 1770 to 2000 (Hoegh-Guldberg et al., 2007; Jiang et al., 2019). Some estimates 
predict an increase of 150% in hydrogen ions, and a decrease in carbonate availability of 50% 
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(Doney et al. 2009). Carbonate ion concentrations have now decreased to ~210 µmol kg−1, 
lower than they have been in the past 420 000 years (Hoegh-Guldberg et al., 2007).  
 
1.1.3 Coral reefs and ocean acidification  
Decreasing pH and changes to saturation levels of carbonate ions greatly impact calcifying 
organisms such as corals, molluscs, echinoderms and coralline algae that rely on constant 
saturation levels of carbonate ions to grow and maintain their skeleton (Andersson et al., 2008; 
Anthony et al., 2008; Cohen & Holcomb, 2009; Erez et al., 2011; Hoegh-Guldberg et al., 2007). 
OA poses a direct threat to for these species, and entails not only impacts on  skeletal growth 
and maintenance (Barkley et al. 2015), but may also impact recruitment rates (Albright and 
Langdon 2011), cause tissue necrosis (Langdon et al. 2018), impact feeding rates (Towle et al. 
2015), compromise the immune responses, and impact necessary sensory organs (Ashur et al. 
2017). Furthermore, OA will also impact non-calcareous species, affecting muscle mass and 
growth in invertebrates (e.g. Keppel et al. 2012) and fish (Baumann et al. 2011). Evidence from 
both field studies and laboratory studies suggests that the main issues for calcification rates of 
calcifying organisms is not the overall saturation state of the ocean, but rather changes in the 
proton gradient between the seawater and the calcifying fluid (Cyronak et al. 2016). While 
evidence suggests that both calcifying corals and coccolithophores do have the ability to 
control the carbonate chemistry (Mackinder et al. 2010; McCulloch et al. 2012a), implications 
occur with increasing H+ concentrations. To maintain favorable intracellular CaCO3 (calcium 
carbonate) saturation for calcification rates, the corals must remove increasing amounts of H+ 
ions (Allemand et al. 2011). Consequently, it becomes harder for the coral to maintain high 
saturation of CaCO3 in the calcifying fluid, as the electrochemical gradient between the coral 
tissue as the intracellular fluids decreases (Cyronak et al. 2016). Thus, the increased uptake of 
atmospheric CO2 leads to an energetic issue for calcifying organisms, as they must continually 
actively or passively transport more and more H+ ions. Moreover, the decreasing pH levels and 
aragonite saturations may lead to dissolution or erosion of calcium carbonate structures 
(Guinotte & Fabry, 2008; Hoegh-Guldberg et al., 2007; Rodolfo-Metalpa et al., 2011).  

Although coral reefs only cover about 0.1% of the ocean floor, coral reef ecosystems hosts up 
to one third of all marine species at some stage in their life cycle (Reaka-Kudla 1997; Reaka-
Kulda 2005; Plaisance et al. 2011). Consequently, coral reefs are some of the most biodiverse 
marine ecosystems (Roberts et al. 2002), and some of the most ecologically important in 
relation to the services they provide (Hoegh-Guldberg, 2011). Yet, coral reefs are some of the 
most vulnerable ecosystems on the planet, facing not only challenges of global climate change 
such as increasing temperatures and ocean acidification (IPCC 2014), but are also subjected to 
threats on a local scale (Burke et al. 2011). Such local threats include overfishing, agricultural 
run-off, development of coastal areas that is inconsiderate of the presence of coastal 
ecosystems, and physical damage caused by human interactions, which were considered the 
most hazardous events for coral reef ecosystems prior to the 1980s (Glynn 1991). While many 
of these local hazards remain a challenge for coral reefs, certainly ocean acidification will be 
one of the greatest threats for coral reefs in the oncoming century (Hoegh-Guldberg et al. 2017). 
Indeed, should anthropogenic GHG emissions proceed to exceed 500 ppm, calcifying coral 
reefs will become non-functional, as the carbonate-ion concentration will be too low for coral 
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species to continue to maintain and grow their skeleton (Hoegh-Guldberg et al., 2007). Future 
projected changes in carbonate chemistry renders most corals in undersaturated seawater by 
the end of the century (Zheng and Cao 2014).  

Although impactful, OA may not be the only factor leading to the demise of corals and other 
calcifying organisms. Marine communities will also be greatly impacted by increasing 
temperatures (Selig et al. 2012), which may increase to such an extent that the maximum 
temperature threshold for many species may be surpassed (Pörtner and Farrell 2008). Indeed, 
as oceanic temperatures have increased since the 1980s, damage such as bleaching events to 
coral reefs has become more frequent (Williams et al. 1990). In the 1980s and 1990s the coral 
reefs of the Caribbean region endured an extended period of bleaching, both as a result of 
increasing temperatures, as well as a decrease in the ubiquitous sea urchin Diadema antillarum 
(Hughes et al. 1985). As extreme heatwaves are expected to occur more intensely and more 
frequently (IPCC, 2021), thermal stress poses are serious threat to coral reefs. Similarly to OA, 
temperature is also expected to impact the growth rate (Cantin et al. 2010), as well as disease 
prevalence (Bruno et al. 2007) and more frequent coral belaching (Glynn, 1993). Several 
environmental stressors, including OA and temperature, as well as deoxygenation and extreme 
climatic events, pose great threats to biodiversity on their own (Ho, 2020). However, the 
combined effect of all these climate stressors is likely to cause great ramifications for marine 
communities.   

1.1.4 Hurricanes 
Extreme weather is a collective term inclusive of wide range of unexpected, unseasoned or 
unusually severe climatic events, often referring to events such as heatwaves, coldwaves, 
droughts, extreme precipitation, flooding and storms (e.g. tropical cyclones, hurricanes) 
(Stephenson 2008). Compared to other climate drivers, changes of extreme weather patterns in 
relation to anthropogenic activities has received less attention, much because demonstrating 
attributions of anthropogenic actions to changing patterns of extreme weather events can be 
challenging (Trenberth et al. 2015). However, evidence from the past decades demonstrates a 
change in extreme weather patterns with regards to intensity, frequency and duration in 
response to anthropogenic greenhouse gas (GHG) emissions (IPCC 2014; National Academies 
of Sciences Engineering and Medicine 2016).  
 
The north-western region of the Atlantic ocean is a region accustomed to hurricane activity 
(Goldenberg et al. 2001). Current studies forecast a decrease in hurricane frequency 
simultaneous with an increase in intensity, with more category 4 and category 5 storms in this 
region (Bender et al. 2010). At the same time, a weakening in vertical wind shear patterns in 
this region is predicted to occur (Ting et al. 2019). This deterioration of wind shear patterns 
allows for an increased intensification of hurricanes approaching the north eastern Atlantic 
coastline (Ting et al. 2019). This trend concurs with consistent research of pattern changes of 
tropical cyclones, which may transpire as a global decrease in frequency by 6-34%, but overall 
an increase of 2-11% in intensity (Knutson et al. 2010). Moreover, correlations between sea 
surface temperature and tropical cyclone activity in the Atlantic ocean has been observed 
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(Goldenberg et al. 2001; Emanuel 2007), suggesting that temperature increases may impact 
hurricane frequency and intensification.  
 
1.1.5 Hurricane impact on coral reefs  
Ecosystem disturbance caused by hurricanes has been recognized for a long time, with changes 
to extreme weather patterns serving as a strong stressor for marine communities (Sainsbury et 
al. 2018). Repercussions of extreme weather events such as hurricanes on marine communities 
may cause changes in biodiversity patterns (Wernberg et al. 2013), leading to extensive 
changes to ecosystem structure and functioning (Cardoso et al. 2008; Graham et al. 2014). 
Some of the most vulnerable species to hurricane impacts are coral reefs (Gardner et al. 2005). 
Hurricane event can have immediate effects on corals through physical damage caused by wave 
surges and strong undercurrents, reduction in water quality (Edmunds 2019), terrestrial runoff 
leading to algae blooms that cause deoxygenation (Nelson and Altieri 2019), increased 
turbidity and lowered salinity caused by increased precipitation. Some of these effects may be 
particularly damaging to the symbiotic algae, the zooxanthella, of the corals (LaJeunesse et al. 
2018; Pengsakun et al. 2019) and to the calcification rate of the corals  (Manzello et al. 2013; 
Wijgerde et al. 2014). Against a general trend of decline in coral coverage (Perry et al. 2013), 
a hurricane impact may lead to an accelerated rate of decline in coverage (Hughes and Connell 
1999). Indeed, in the first year following a hurricane event, coral reefs in the Caribbean region 
can experience a decline in coral coverage of about 17% (Gardner et al. 2005). Contrastingly, 
hurricanes may cause an initial increase in coral coverage due to the reattachment of broken 
corals which then grow for some time, until also they resume the general trend of cover decline 
(Highsmith et al. 1980; Lirman 2000). Notably, damage caused by a hurricane impact is 
variable, and depends on both the strength of the hurricane, as well as the reef archeology 
(Harmelin-Vivien 1994). The degree of physical damage also depends on the size and structure 
of the coral, with boulder and encrusting growth forms doing better in storm events compared 
with plate and corymblike coral structure (Mah and Stearn 1986; Madin et al. 2014). Moreover, 
resistance against hurricane impact is higher for communities composed of a higher diversity 
and richness (Bellwood and Hughes 2001; Newman et al. 2015).   
 
 
1.2 Specific Introduction   
 
1.2.1 CO2 seep systems  
Investigating effects of climate change, especially OA, on marine species is a challenging task, 
and has previously been based on laboratory experiments. While such studies provide some 
insight into the challenges marine species face in relation to climate change, these studies do 
not accomplish to provide the complexities of marine community responses (Riebesell and 
Gattuso 2014). Indeed, gaps of knowledge exists relating to moving from single species to 
community or ecosystem responses (Riebesell and Gattuso 2014). To provide more insight into 
both individual species responses to OA, as well as community responses, natural CO2 seep 
systems have been utilized in recent years to investigate the impact of OA. These seep systems, 
also known as CO2 seeps, cause a continuous release of CO2 which alters the local carbonate 
chemistry of the seawater (Kerrison et al. 2011; Lin et al. 2019). As the CO2 seeps out from 
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the CO2 seeps, it mixes with seawater, causing an increase in oceanic partial pressure of CO2 
(pCO2) (µtam). As the ocean accumulates more, the predicted pCO2 levers are predicted to 
increase from the current 400µtam to 850µtam (IPCC, 2014). Therefore, shallow CO2 seeps 
may be used as natural analogous for ocean acidification. Already such studies have transpired 
at several locations around the world, including the Mediterranean (Beaubien et al. 2008; Hall-
Spencer et al. 2008; Calosi et al. 2013b; Collard et al. 2016; Brown et al. 2017), the central 
Indo-Pacific region (Fabricius et al. 2011; Lamare et al. 2016; Kenkel et al. 2018), the 
temperate Pacific ocean (Agostini et al. 2015; Lin et al. 2019), the North East Atlantic ocean 
(Hernández et al. 2016) and the Caribbean (Enochs et al. 2020). Community level changes 
have been observed in such studies, with reductions in calcareous species, shifting to 
communities of species that do not build calcified skeletons, such as algae (Hall-Spencer et al., 
2008), and the overall community becoming more homogenous over time (Brown et al, 2017). 
On an individual level, the energy requirements might shift as a result of living in a more 
stressful environment of decreased pH (Harvey et al. 2016). However, great variations in ability 
to adapt have been observed for closely related species of sea urchins, causing a distribution 
gradient of species of sea urchins based on differences on physiology (Calosi et al. 2013a). 
Population-level changes have also been observed, with changes in demography and variation 
in reproductive success (Harvey et al., 2016). Studies such as these ones provide evidence for 
how community structure will respond to the climatic driver OA.  
 
1.2.2 Study Area: Dominica  
One such area where shallow CO2 seeps are present is Dominica (officially the Commonwealth 
of Dominica), a young volcanic island of the Lesser Antilles in the Caribbean Sea, 
characterized by mountains with a steep rock face and dense vegetation (Figure 1). Being 
situated on the volcanic arc of the Lesser Antilles, Dominica has an active volcanic nature 
which still forms the island, and this is reflected in the topography of the island and the coastal 
line (Slinger-Friedman 2017). Dominica has a diverse ecology, where the marine habitats are 
made up of mainly seagrass beds, but also sandy and rocky substrate, and coral reefs and coral 
assemblages (Steiner & Willette, 2010). These marine habitats are defined by narrow and steep 
shelfs that provide restrictions for the euphotic zone which impacts the species reliant on 
photosynthesis to grow (Steiner, 2015). Due to a lack of energy-dissipating structures present 
along the coast, the marine communities present here withhold little protection from extreme 
weather events, such as hurricanes (Steiner 2003). Several shallow-water CO2 seeps are present 
in Dominica, such as a seep site located in Champagne Bay (Figure 1). The CO2 seeps locally 
decrease the pH due to the release of CO2. The presence of these seep systems make Dominica 
an interesting location to investigate the impact of ocean acidification on species composition 
in a lowered pH-environment (Kerrison et al. 2011). Furthermore, being situated in the tropical 
region of the western Atlantic ocean, Dominica frequently endure storm events, most recently 
the Tropical Storm Erika in 2015, and Hurricane Maria in 2017. Intensification and increased 
frequency of extreme weather has been observed in the most recent storm events of Dominica 
(Thomas and Benjamin 2018). Such intensification was observed in Hurricane Maria, which 
hit Dominica at as category 5 (cat-5) hurricane on the 18th of September, 2017, a wind speed 
that had reached 258 km/h (Brown and Blake 2017). Therefore, Dominica also provides a 
unique opportunity to study the impact of storm events on marine coastal communities.  
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Figure 1: Map of the Dominica. The island is situated in between the Caribbean Sea in the west, and the Atlantic Ocean in 
the east. Champagne Bay, located in the south-western part of the island, is indicated with an arrow. Map from McCarthy et 
al., 2005.  

1.2.3 Study Community  
With a coral reef cover of 49 km2 (Jackson et al. 2014), Dominica is an island with a moderately 
high coral coverage. In particular Champagne Bay, the site of this survey, is an area with a high 
coral coverage compared to other bays along the west coast (Steiner et al. 2007), where the 
coral reefs are considered to be in ‘Fair’ condition despite being subjected to overfishing 
(Kramer et al. 2016). Prevalent corals found in the Champagne area include the fringing 
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colonies of Madracis mirabilis, domes of Siderastrea siderea, Siderastrea radians and Porites 
asteroides, the fire coral Millepora sp., species of the genus Orbicella and brain corals of the 
Diploria genus (Steiner et al. 2007; Steiner 2015b). In general, the Caribbean region is 
enduring a decline in coral coverage and for reef building corals (Perry et al. 2013). The 
mustard hill coral, P. asteroides, is a common coral across the Caribbean region, but research 
suggests that OA may have an impact on life history traits (Albright and Langdon 2011), while 
the massive startlet coral, S. sidera, has demonstrated a high tolerance for stress (Davies et al. 
2016). Both P. asteroides and S. radians have been reported to continue to recruit in areas of 
the Caribbean that are exposed to environmental stressors which could be related to climate 
change (Otaño-Cruz et al. 2019). Comparativley, the mountainous star coral, Orbicella 
faveloata, has been observed to be sensitive to higher levels of pCO2 (Langdon et al. 2018). 
The response to climate change of corals in the Caribbean region could be a more 
homogenization, with decreased biodiversity, while other species thrive. Another cnidarian 
common to the west coast of Dominica is the sun anemone Stichodactyla helianthus (Steiner 
et al. 2007), which is ubiquitous to the eastern and southern Caribbean (Santhanam 2020). 
Compared with research from CO2 seep systems on neighboring islands to Dominica, both 
scleractinian (reef building corals) and soft corals show reliance towards low pH values and 
high pCO2 levels (Enochs et al. 2020).  
 
Concurrent with decades of decline for reef-building corals, sponges have advanced to become 
the most dominant benthic animal on most reefs (Zea 1993; Colvard and Edmunds 2010; 
McMurray et al. 2010; Villamizar et al. 2014). The majority of sponges inhabiting the marine 
environments of Dominica are of the class Demospingiae (Clermont 2008), with erect and 
encrusting sponges making up an equal amount of coverage in Champagne Bay (Steiner et al. 
2007). Compared with corals, some sponges are predicted to do well with declining levels of 
pH (Duckworth et al. 2012). While the majority of sponges in Dominica tend to inhabit depths 
of 6-18m (Clermont 2008), Champagne has a prevalent sponge community in more shallow 
depths of 0-5m as well. Present species include tube sponges such as Aplysina fitularis and 
Verongula rigida, encrusting sponges such as Ircinia felix and Svenzea zeai, sponges with rope 
forms of Amphimedon compressa and Iotrochota birotulata, and barrel sponges of 
Xestospongia muta and Verongula sp. (Clermont 2008). Further North in the Caribbean Sea X. 
muta has been reported to increase in numbers (McMurray et al. 2010). Some species of boring 
sponges have also been observed (Steiner et al. 2007; Clermont 2008).  
 
Dominica is also home to the long spined urchin Diadema antillarum (Steiner and Williams 
2006), which acts a keystone species at Caribbean coral reefs through grazing of macroalgae 
(Carpenter 1981). Indeed, the substratum in Champagne Bay may be covered by algae, mainly 
brown turf algae and Dictyota sp. (Steiner et al. 2007). Furthermore, several sessile 
macroinvertebrate species also inhabit Champagne Bay. The area has a high abundance of 
sessile, tube dwelling annelids of the family serpulidae, including Bispira sp. and Sabellastarte 
magnifica (Steiner et al. 2007). The serpulidae build calcite and/or argonite calcium carbonate 
tubes (Bornhold and Milliman 1973). Similarly to corals, these serpulidae are susceptible to 
decreases in pH levels in the ocean (Brown et al. 2017). These tubes are built inside crevices 
of substratum, preferably P. asteroides or Orbicella annularis in Champagne Bay (Steiner et 
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al. 2007). Importantly, on Caribbean reefs a decline in macroinvertebrate diversity has been 
related to loss of coral cover and coral 3D structure (Idjadi and Edmunds 2006; Perry et al. 
2013).  
 
1.3 Aims and Hypotheses 
 
Investigating the impact of multiple environmental stressors remains a gap for predicting future 
persistence of marine community composition during climate change (Riebesell and Gattuso 
2014). Other studies of CO2 seep systems are limited to one environmental driver, namely OA. 
However, by investigating a community along natural CO2 gradient in an area that is frequently 
exposed to storm events provides the unique opportunity to investigate community responses 
to these two climate stressors simultaneously. This study aims to investigate how a shallow, 
tropical marine community experiences the combined stress of a hurricane impact as well as 
ocean acidification. By using a four-point time series between 2017 to 2019 of data from a CO2 
seep system, the seep provides a natural analogue to analyse the community change in response 
to predicted OA through a photo-quadrant transect analysis. Furthermore, the time series allows 
for determining ramificaitons of Hurricane Maria, as well as the community recovery following 
the storm event, while simultaneously being exposed to pCO2 levels similar to those predicted 
for the end of the century. This combination of stressors can give a further understanding of 
how such ecosystems might endure the predicted impacts resulting from anthropogenic climate 
forcing.  
 
The hypotheses of this thesis are: 
  

1. An observed community shift along the pCO2 gradient.  
Based on previous studies utilizing CO2 seeps as natural gradients of OA, observations of a 
community shift away from calcifying organism towards macroalgae have been reported (Hall-
Spencer et al. 2008). Although some species display persistence in the face of OA, this study 
expect to observe that prevalence of calcifying organisms decrease with proximity to the CO2 
seep as pCO2 levels increase.  
 

2. The hurricane impact will cause a decrease in diversity.   
Physical damage following a hurricane event is to be expected, as hurricanes are strong drivers 
of physical disruption for marine communities (Harmelin-Vivien 1994). Both corals and 
sponges will lose coverage area, making the environment more homogenous.    
 

3. The combined effect of ocean acidification and hurricanes will lead to decreased 
diversity and more evenness.  

Environmental drivers often have synergistic effects, and the changes to one environmental 
driver can decrease organisms sensitivity to other drivers (Pörtner and Farrell 2008). Therefore, 
the impact of these two environmental drivers might have a strong impact on the community 
composition. The immediate impact of the hurricane will cause physical disruption, leading to 
decreased diversity across the transects. Not all species will be impacted evenly, as some 
species may be better equipped at enduring combination of these two stressors.  
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4. Recovery of species will be slower against a backdrop of increased pCO2 levels.  

Following the time series, a recovery of species is expected to occur. Conceivably, recovery 
will occur at a faster the further away from the seep site, as the species in this part of the 
community will be subjected to less environmental impact of pCO2. Further impacts of the 
hurricane could cause less pCO2 tolerant species to have a slow recovery. Such species may 
also be outcompeted for space by more tolerant species, thereby rendering the space occupied, 
restricting recolonization of areas that are left bare after the hurricane impact by less stress 
tolerant species. 
 
The experimental design of this study provides a unique opportunity to gain further insights 
into how species endure the combined effect of both ocean acidification and a hurricane impact. 
Gaining more knowledge into how marine communities respond to multiple climatic stressors 
remains crucial in the endeavor of prevailing healthy marine communities in the future.  
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2 Methods  
 
2.1 Site Characterization: Champagne Bay  
The survey area of this study is known as Champagne Bay, and is situated on the southwestern 
coast of Dominica (Figure 2). The CO2 seeps of Champagne Bay are a part of the Plat Pays 
volcanic complex which confers volcanic activity both on land and in the shallow marine coast 
(Lindsay et al. 2003). The complex is located in southern part of the island, and is one of seven 
active volcanic centres in Dominica (Joseph et al. 2019). In these marine seep systems CO2 
seeps out as a continuous stream of bubbles at 1-4m of depth at six locations of focused venting 
in Champagne Bay, extending to an area about 40m out from shore (Mccarthy et al. 2005). The 
CO2 seep chosen for this survey (Point zero = Geographical location: 15.244765, -61.373428) 
is located at the end of Champagne Beach, in the southern part of Champagne Bay. The seep 
site is situated about 18m out from land, with a depth of 3m. Transects were laid from point 
zero extending 30m out from the CO2 seep following the cardinal directions North East (NE), 
North (N), North West (NW), West (W), South West (SW) and South (S) (Figure 2). In survey 
time points 2017 and 2019 transects and accompanying environmental data for NE were not 
obtained. Transects were not investigated for the cardinal directions heading South East and 
East, as these transects contain metal contamination (based on previous, unpublished data from 
the same project). Depth ranged between 2 to 4.5 meters across the transects.  
 

 
Figure 2: Illustration map of survey area. Seep site located in the southern part of Champagne Bay, indicated with transects 
extending from point zero in cardinal directions, as indicated by letters NE (North East), N (North), NW (North West), W 
(West), SW (South West) and S (South). 
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The gas composition of the seep site at point zero consists mainly of CO2 which contributes to 
about 84% of the gasses in the seep (Table 1), thus making it a high-CO2 seep. All other gases 
contribute minimally, with nitrogen (N2) being the second-most contributing gas with about 
10% (McCarthy et al., 2005). Hydrogen sulphide (H2S) has minimal contribution to the seeping 
gasses (McCarthy et al., 2005), and become non-detectable along the transects extending in all 
cardinal directions (Pers. comm. Samuel J. S. Rastrick at the Institute of Marine Research 
(IMR)).  
 
Table 1: Proportions of gas composition at the CO2 seep site in Champagne Bay used as site zero in this survey (McCarthy 
et al., 2005).  

Gas  Proportion (%) 
Carbon dioxide (CO2) ~ 84 
Nitrogen (N2) ~ 10 
Hydrogen sulphide (H2S) ~ 4 
Methane (CH4), hydrogen chloride (HCl), oxygen (O2) 
and Argon (Ar) 

~ 2 (minor concentrations) 

  
 
2.2 Photo-quadrant survey  
 
2.2.1 Collection of environmental data (pH and temperature logging)  
Temperature, salinity and pH levels were obtained by a handheld multimeter (labquest 2, 
vernier). Measurements were taken every other meter along the transects concurrent with the 
photo-quadrant transects. In March 2018, pH measurements were only sampled every five 
meters. Total alkalinity (TA) was measured every week during survey times by titration (after 
Fitzer et al. 2012). TA measurements were collected at the point zero of the seep site and at a 
reference site about 100m north of the seep site. Levels of pCO2 were calculated using the free-
access carbonate system calculations software CO2SYS (Lewis and Wallace 1998) with 
formulations from Dickson and Millero (1987), which are applicable over a wide range of 
salinities.  
 
2.2.2 Field work: Benthic habitat mapping 
Photo-quadrat surveys were performed between 2017 and 2019 at four different time points; 
June/July of 2017, March of 2018, June/July of 2018, and June/July of 2019. Survey material 
was collected by researchers and research assistants affiliated with Operation Wallacea. Photo-
quadrats were obtained by filming a continuous video using a GoPro camera (GoPro Hero4 
Black) fitted with underwater housing. The camera was fixed to two rods that extended 2 
meters above a 1x1 meter quadrat. The camera was angled 90 degrees onto the quadrant to 
allow for analysis of benthic coverage to be recorded. The quadrat was moved at 1 meter 
intervals 30 times successively along the transect, with care taken to avoid overlap between 
successive quadrats.   
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2.2.3 Image analysis 
Prior to performing analyses of species coverage from the material gathered in the transects, a 
10x10 grid was added digitally to the 1m2, dividing the quadrat frame in each image into 100 
smaller squares. Each square in the grid represented 1% of the total grid, and species 
presence within each square were assigned values of 0%, 0.5% or 1%. Accordingly, species 
coverage was determined down to 0.5% precision. Species coverage between 0.5% and 1.0% 
was rounded up based on if the species covered more than or less than 0.75% of the square. 
Therefore, any species or substrate type present within a quadrat would obtain at least 0.5% 
coverage, even though it might have covered less than half of the square. Coverage within 
each quadrat was exactly 100%. For sessile macroinvertebrates, such as sea urchins, 
anemones and annelid worms, individual count data was also registered, in addition to 
species coverage. Species identification, coverage percentages and macroinvertebrate counts 
was controlled twice for each transect.  
 
Additionally, transect images were used to describe the bottom substrate in the transects. 
Bottom substrate was divided into five classes (Table 2) based on the European standard for 
mapping bottom substrate (EN 16260 2012). The five classes present at the study location 
include bedrock, bedrock covered with thin layer of sediment, very coarse sediment, coarse 
sediment, and dead coral. Sediment type was recorded in three different categories ‘Hard’, 
‘Soft’ or ‘Mixed’, with primary, secondary and tertiary substrate class indicated for each 
quadrant.  
 
Table 2: Substrate categories with description. 

Type of Substarte Description 
Bedrock Exposed bedrock and large boulders, >63cm 
Bedrock with thin layer of sediment 

 

Very coarse sediment 63-630mm 
Coarse sediment Sand and gravel, 0.0063-6.3cm 
Dead coral 

 

  
 
2.3 Statistical Analysis  
All statistical analyses were conducted using statistical programming language ‘R’ (version 
4.1.0) () in ‘RStudio’ (version 1.4.1717) (R Core Team 2021). All plots were made using the 
package ‘ggplot2’ (Wickham 2016).  
 
2.3.2 Analysis of the study environment  
Linear interpolations were conducted for all the environmental variables to allow for statistical 
analysis of the species data. The environmental variables from summer of 2017, summer of 
2018 and summer of 2019 all had measurements sampled every other meter. In March of 2018 
environmental parameters were only sampled every five meters. All environmental variables 
were interpolated in ‘R’. Additionally, a linear model was fitted to determine if total alkalinity 
(TA) was significantly different between the seep site and a reference site 100m away from the 
seep site. Model selection was conducted by using Akaike Information Criterium (AIC) 
(Akaike 1998), AIC weights (Wagenmakers and Farrell 2004) and adjusted R-squared values 
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(Appendix 2). Akaike Information Criterium (AICc) is a measure of goodness of fit for models, 
where a lower number suggests a better fit model. Probability of having a true model is given 
with the AIC weight. AIC weights were compared using the ‘MuMIn’ package (Bartoń 2020). 
The adjusted R-squared value describes the variance of the independent variables fitted, where 
a higher number indicates a better fitted model. The selected model interface formula was:  
 

1)	𝑇𝐴	𝑚𝑜𝑑𝑒𝑙 < −		𝑙𝑚(𝑇𝑜𝑡𝑎𝑙	𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦	~	𝑠𝑖𝑡𝑒 + 	𝑠𝑢𝑟𝑣𝑒𝑦	𝑡𝑖𝑚𝑒	𝑝𝑜𝑖𝑛𝑡) 
 
with raw TA data as a response variable to independent variables of site and year. An analysis 
of variance (ANOVA) was performed to determine differences between groups. A post hoc 
Tukey test was carried out using the package ‘emmeans’ (Lenth 2021) in ‘R’.  
 
2.3.3 Species richness, diversity indices and evenness across the gradient 
Species coverage data was transformed to species richness in the ‘vegan’ package (Oksanen et 
al., 2020) in ‘R’. Species richness, coral richness and sponge richness was calculated for all 
transects across all survey time points. Diversity indices of Hill-Shannon (Hill 1973), also 
known as the exponential of Shannon’s entropy, and Hill-Simpson (Hill 1973), also known as 
the inverse of Simpson’s concentration index, were calculated for species data across all survey 
time points. Pielou’s evenness (Pielou 1966) was also calculated. Calculations of diversity and 
evenness were carried out in ‘R’ using the ‘vegan’ package, based on calculations shown in 
Table 3. Hill diversity metrics are becoming the preferred metrics to apply, as they represent 
simple calculations that are logically reasonable (Roswell et al., 2021).  
 
Table 3: Equations for Shannon diversity, Simpson diversity and Pielou’s evenness, where where 𝑝! is the proportion of 
species i and S is the number of species so that ∑ 𝑝𝑖 = 1𝑆

𝑖=1 , and b is the base of the logarithm (Oksanen 2020).   

Index:  Calculation:  
Hill-Shannon 
(exp(H´)) 

𝑒𝑥𝑝	(𝐻´) 	= 	 𝑒!∑ #& $%(#&)'
&() 	 

Hill-Simpson  
(D) 𝐷	 =

1
∑ (𝑝())*
(+,

	 

Pielou’s Evenness 
(J) 

	𝐽	 = 	𝐻/	𝑙𝑜𝑔(𝑆) 
 

 
Models were fitted to test if the species richness, diversity or evenness was impacted by both 
the pCO2 levels and the hurricane event. The impact of the hurricane was tested by fitting 
survey time point as an explanatory variable. Response variables of the models included the 
community data from all years measured as total species richness, coral richness, sponge 
richness, Hill-Shannon diversity index, Hill-Simpson diversity index and Pielou’s evenness. 
As well as survey time point (year) serving as explanatory variable, pCO2 and substrate 
category was also included in the model as explanatory variables. Temperature and salinity 
were considered constants due to marginal variability. The observed variability would have 
little to no biological impact but could lead to overfitted models and uncertainty. Distance from 
the seep site was not included as an independent variable, as the objective of the study was to 
determine the impact of pCO2 levels on communities, not distance from vents. All other 
environmental variables were found to be correlated with pCO2, and were therefore excluded 
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from the model (Appendix 3). For species richness, coral richness and sponge richness three 
separate generalized linear models (GLM) were fitted, as GLMs enable the use of linear models 
in cases where the response variable has non-normal distribution (McCullagh and Nelder 
1989). In this case, the models were fitted with quasi-Poisson distribution to account for 
overdispersion in the data. The fitted model was:  
 
2)		𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠-./ < −		𝑔𝑙𝑚(𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠	~	𝑠𝑢𝑟𝑣𝑒𝑦	𝑡𝑖𝑚𝑒	𝑝𝑜𝑖𝑛𝑡 + 𝑝𝐶𝑂) + 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦,	 

                                                 𝑓𝑎𝑚𝑖𝑙𝑦 = 𝑞𝑢𝑎𝑠𝑖𝑝𝑜𝑖𝑠𝑠𝑜𝑛) 
 
with total richness, coral richness or sponge richness serving as response variable, and survey 
time point, pCO2 level (µtam) and substrate category (hard, soft and mixed) as response 
variables. Post hoc Tukey tests were carried out using the package ‘emmeans’ (Lenth 2021) in 
‘R’. 
 
Diversity and evenness indices were fitted with linear models (LM), where Hill-Shannon 
diversity, Hill-Simpson diversity or Pielou’s evenness served as response variables in three 
separate models. The model interface of these LMs were:  
 
									3)	𝑆𝑝𝑒𝑖𝑐𝑒𝑠	𝑖𝑛𝑑𝑖𝑐𝑒𝑠-./ < −		𝑙𝑚(𝑠𝑝𝑒𝑐𝑖𝑒𝑠	𝑖𝑛𝑑𝑖𝑐𝑒𝑠	~	𝑠𝑢𝑟𝑣𝑒𝑦	𝑡𝑖𝑚𝑒	𝑝𝑜𝑖𝑛𝑡 + 𝑝𝐶𝑂) +
																																																																							𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 
 
with the explanatory variables of survey time point, pCO2 and substrate category. An ANOVA 
was performed to test if there were significant differences between the variables. Post hoc 
Tukey tests were carried out using the package ‘emmeans’ (Lenth 2021) in ‘R’.  
 
2.3.4 Multivariate Analysis  
Benthic community composition in relation to the pCO2 gradient was assessed using a 
constrained direct gradient multivariate analysis conducted in ‘R’ using the ‘vegan’ package. 
These analyses methods entail ordering community composition along axes according to their 
similarity, or dissimilarity (Gauch 1982). Sites with similar species composition are positioned 
close together, while sites that are dissimilar are positioned further apart. Similarly, species 
that are governed by similar environmental conditions, are also positioned close. In direct 
gradient analyses the species composition is directly related to the constraining variables, 
which are the environmental parameters. The species composition matrix is fitted through 
regression against the environmental variables, and thus such methods can be described as a 
set of multiple linear regressions. One such method of direct gradient analysis is canonical 
correspondence analysis (CCA) (ter Braak 1986). CCA models assume unimodality of the data, 
which is common in ecological data, and this method is therefore the most widely applied 
multivariate direct gradient analysis to apply. Another direct gradient analysis is a redundancy 
analysis (RDA) (Rao 1964), which is a method assumes a linear relationship between response 
variables.  
 
Common practice when conducting statistical analyses, including multivariate analyses, is to 
transform data to reduce the impact of outliers, particularly for species data where rare species 
may imply stronger significance of relationships (Legendre and Gallagher 2001). Similarly, 
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dominant species may also impact the statistical analysis. Therefore, applying a transformation 
on the species data may reduce such issues. As the species data was recorded in percentages, 
an Arcsine transformation (Sokal and Rohlf 1995) was conducted before the multivariate 
analyses were preformed. Also known as the arcsine square root transformation, this 
transformation was calculated as arcsine of the square root of the proportion of species 
coverage divided by 100. This type of transformation is common for proportional data, and 
was therefore chosen as species composition was recorded in percentage coverage.  
 
To determine if a linear (RDA) or a non-linear (CCA) method should be applied to the data, a 
Detrended Correspondence Analysis (DCA) (Hill and Gauch 1980)was conducted for the 
species data using the ´vegan´ package. DCA removes the curvature (arch effect) observed in 
the data through detrending, thus removing all systematic dependence between axes. The DCA 
returns a list of axis lengths, which can be used to determine the ordination method. If axes 
lengths of the DCA are of values less than 2, a linear approach is suitable, while values above 
2 warrants the application of a non-linear method (Lepš and Šmilauer 2003). Based on the 
results of the DCA, an RDA was chosen as the best choice for the analysis. As with other linear 
regression methods, RDAs are subjected to issues with correlated variables. Therefore, 
reducing the number of variables as much as possible is desirable (Oksanen 2015) to achieve 
parsimony. A correlation plot was made (Appendix 3) to determine correlation between 
explanatory variables. As pCO2 was the desired explanatory variable to investigate in this 
survey, it was selected in favour of all correlated variables, including distance from the CO2 
seep and pH levels. Additionally, temperature, salinity and total alkalinity did not vary across 
the gradient, and were therefore also excluded as explanatory variables. Henceforth, to test the 
similarity of site, representing species composition in each quadrat of each survey time point, 
the fitted model interface was: 
 
4)	𝑅𝐷𝐴0122_-./ 	< −			𝑟𝑑𝑎(𝑠𝑝𝑒𝑐𝑖𝑒𝑠	~		𝑠𝑢𝑟𝑣𝑒𝑦	𝑡𝑖𝑚𝑒	𝑝𝑜𝑖𝑛𝑡 + 	𝑝𝐶𝑂) + 	𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 

 
with species as response variable, and survey time point, pCO2 and substrate category (‘hard’ 
or ‘mixed’) as explanatory variables. Permutational multivariate analysis of variance 
(PERMANOVA) were performed to determine the partitioning of variation across a 
multivariate data. Additionally, separate multivariate analyses were made for each survey time 
point to investigate the impact of pCO2 levels and substrate type on species. A DCA was 
conducted on the species matrices, and RDA was chosen as the most suitable model. These 
models all had the same interface, which was:  
 

5)	𝑅𝐷𝐴45#67685_-./ 	< −			𝑟𝑑𝑎(𝑠𝑝𝑒𝑐𝑖𝑒𝑠	~		𝑝𝐶𝑂) + 	𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 
 
with arcsine transformed species data as response variable, and pCO2 and substrate category 
(‘hard’ or ‘mixed’) as explanatory variables. PERMANOVAs were performed. Biplots were 
made for all of the separate ordination models.  
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Owing to the high dominance of brown turf algae in the dataset, the ordination plots of the 
species made for the separate years did not show much variation in between species responses 
to the explanatory variable. Because of this, brown turf algae was removed from the species 
matrix to reduce the overpowering weight of the high coverage brown turf algae governed. To 
make up for the huge gaps in the dataset created by removing the brown turf algae, the species 
data was standardized by dividing by the margin total. After that the species matrices for the 
separate years were arcsine transformed, before a DCA was performed to determine the most 
suitable constrained multivariate analysis to be applied. Removal of the dominant weight of 
brown turf algae in the data altered data to be non-linear (unimodal), and a CCA was deemed 
the most suitable analysis. Again, separate models for each survey time point were made with 
same model interface as for the RDAs:  
 

6)	𝐶𝐶𝐴45#67685_-./ 	< −			𝑐𝑐𝑎(𝑠𝑝𝑒𝑐𝑖𝑒𝑠	~		𝑝𝐶𝑂) + 	𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 
 
with species data as response variable, and pCO2 and substrate category as response variables. 
PERMANOVAs were conducted afterwards. A full model including survey time point as an 
explanatory variable was also made for species data without the brown turf algae using the 
same steps as described above. This CCA has a model interface of:  
 

7)	𝐶𝐶𝐴0122_-./ 	< −			𝑐𝑐𝑎(𝑠𝑝𝑒𝑐𝑖𝑒𝑠	~		𝑠𝑢𝑟𝑣𝑒𝑦	𝑡𝑖𝑚𝑒	𝑝𝑜𝑖𝑛𝑡 + 	𝑝𝐶𝑂) + 	𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 
 
with arcsine transformed species data from all survey time points as response variable to the 
explanatory variables of survey time point, pCO2 and substrate category. PERMANOVAs were 
conducted. Biplots were made for all of the separate ordination models.  
 
The ́ vegan´ package was used to test  goodness of fit of the RDAs and the CCAs. The goodness 
of fit of the models were tested by investigating the variance inflation of the constraining 
variables, as well as comparing the adjusted r-squared values and the r-square values. A Monte-
Carlo permutation tests were carried out to investigate the robustness of the models. All biplots 
were made using the ‘ggvegan’ package (Simpson, 2019).  
 
2.3.5 Hurricane impact on sessile macroinvertebrates 
To test the hurricane impact on count numbers of sessile macroinvertebrates a multivariate 
analysis was conducted as described in the paragraph above. The DCA revealed that a CCA 
was the most suitable model for the macroinvertebrate count data. The model interface was:  
 

8)	𝑀𝑎𝑐𝑟𝑜𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒-./ < −		𝑐𝑐𝑎(𝑚𝑎𝑐𝑟𝑜	𝑐𝑜𝑢𝑛𝑡	𝑑𝑎𝑡𝑎	~	𝑠𝑢𝑟𝑣𝑒𝑦	𝑡𝑖𝑚𝑒	𝑝𝑜𝑖𝑛𝑡 + 
																																																	𝑝𝐶𝑂2 + 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 

 
with macroinvertebrate count data as response variable, and survey time point, pCO2 
measurements and substrate category serving as response variables. The goodness of fit of the 
model was tested by the same method as described above, and the robustness was tested with 
a Monte-Carlo permutation test. PERMANOVAs were performed to determine the partitioning 
of variation across a multivariate data.  
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3 Results 
 
3.1 Environmental parameters  
The linear interpolated pCO2 measurements were plotted for all transect directions across all 
survey time points to display the pCO2 environment in all years (Figure 3). The gradient ranged 
from above 1000µtam to bellow 500µtam across most transects for all survey time points. 
Additionally, the raw pCO2 data was also plotted, which show the same trend (Appendix 4). 

 
Figure 3: pCO2 gradient from all survey time points. pCO2 (µtam) was measured for every cardinal direction, as displayed 
by labels NE for North East, S for South, SW for South West, W for West, NW for North West and N for North. This was 
plotted for every survey time point, as  indicated by the panes on top of the graphs, with 2017 for the summer of 2017, 2018-
m for March of 2018, 2018 for the summer of 2018 and 2019 for the summer of 2019.   

The CO2 seep site was not found to impact TA, as values did not vary significantly between 
reference site and seep site within survey time points (ANOVA: F4,48 =14.13,  p-value: 1.087e-
07, Appendix 5), with a narrow range detected at the seep site and the reference site (Table 4). 
A post hoc Tukey test revealed that the summer of 2018 was significantly different from all 
other survey time points, while all other survey time points did now show any statistical 
difference between them (Appendix 6). Additionally, temperature and salinity showed little 
variation across the range or between survey time points (Table 4).  
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Table 4: Temperature, salinity and total alkalinity. Ranges of maximum and minimum temperature (Co) and salinity (ppt) 
are given for each survey time points. Mean total alkalinity (µmol/kg) is given for the CO2 seep site, and at a reference site 
100m away for each of the survey time points. 

Survey time 
point  

Temperature  
(Co) 

Salinity  
 

Total Alkalinity 
(µmol/kg) 

 Mean Max Min Max Seep 
(mean) 

Reference 
(mean) 

2017 29.45 30.3 29.4 30.8 2361.3 2387.9 
2018 (March) 28.0 30.3 29.5 31.9 2385.4 2389.7 
2018 28.1 31.0 27.9 30.3 2242.7 2248.6 
2019 29.3 30.2 29.0 30.0 2352.1 2360.8 

 
3.2 Benthic community cover  
Photo-quadrats from 44 transects were analyzed from across the time series, of which 10 were 
collected from 2017, 12 collected from March of 2018, 12 were collected from the summer of 
2018, and 10 were collected from 2019. 2017 and 2019 had one less transect, as the transect 
heading North East was not recorded in either of these years. For all survey time points 
transects were recorded twice, allowing two replicates of all cardinal directions. This includes 
transects heading in the cardinal directions of North, North West, West, South West and South. 
Importantly, in the summer of 2018 the transect heading North East is missing quadrat 6-8 for 
both replicates. Additionally, the transect heading South is missing quadrat 7 for both 
replicates. In 2019 the transect heading South was shorter compared with all other transects, 
ending at 24 quadrats for both replicates.  
 
A total of 48 species were observed across all survey time points (Table 5). Of these, 19 species 
were corals, whereof 16 were scleractinian corals, two corals were soft corals, and one species 
was a hydrocoral (not a true coral). Furthermore, 16 sponge species were found, and 4 
macroalgae species. Additionally, calcifying algae was detected. A total of seven 
macroinvertebrate species were recorded, of which two were cnidarians, one echinoderm, and 
four species of polychaeta. Two of the polychaeta worms were from the family Sabellidae 
(Sabellastarte spp. and Bispira spp.).  
 
Table 5: Surveyed species. Scientific name and common name of all species found in the survey, with maximum pCO2 levels, 
minimum pH levels and minimum distance from the CO2 seep site. Red colour: species that will not survive above 850µatm 
and below levels of 8.0 pH. Orange: species present between 7.8 and 8.0 pH levels. Green: Species present above 850µatm 
and below 7.8 pH levels. 

Scientific Name Common Name Maximum 
pCO2 levels 
(µatm) 

Minimum 
pH levels 

Minimum 
distance to 
seep 

HARD CORALS – Scleractinia  
Agaricia spp.  Lettuce coral (???)  506 8.14 23 
Colpophyllia natans 
   (Houttuyn, 1772) 

Boulder brain coral  926 7.91 3 

Dichocoenia stokesii  
   (Milne-Edwards & Haime, 1849) 

Elliptical star coral  600 8.08 15 

Diploria sp.  
   (Milne-Edwards & Haime, 1848) 

Grooved brain 
coral 

1160 7.82 1 

Madracis mirabilis 
   sensu Wells, 1973 

Yellow finger coral 614 8.07 23 
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   (Duchassaing & Michelotti,  1860)  
Montastraea cavernosa 
   (Linnaeus, 1767) 

Great star coral 920 7.91 3 

Orbicella annularis 
   (Ellis & Solander, 1786) 

Boulder star coral  695 8.02 9 

Orbicella faveolata 
   (Ellis & Solander, 1786) 

Mountainous star 
coral 

821 7.96 4 

Porites astreoides 
   (Lamarck, 1816) 

Mustard hill coral  1160 7.82 1 

Porites colonensis 
   (Zlatarski, 1990) 

Honeycomb plate 
coral 

623 8.06 25 

Porites divaricata 
   (Le Sueur, 1820) 

Thin finger coral 757 7.99 2 

Porites porites 
   (Pallas, 1766) 

Finger coral 687 8.03 7 

Siderastrea siderea 
   (Ellis & Solander, 1786) 

Massive starlet 
coral 

1255 7.79 1 

Siderastrea radians 
   (Pallas, 1766) 

Lesser starlet coral 885 7.93 2 

Solenastrea bournoni 
   (Milne-Edwards & Haime, 1849) 

Smooth star coral 686 8.03 4 

Stephanocoenia intersepta 
   (Esper, 1795) 

Blushing star coral 687 8.03 4 

CORALS – Anthoathecata (hydrocoral) 
Millepora spp.  
   (Linnaeus, 1758) 

Fire coral 1635 7.69 1 

CORALS – Alcyonacea     
Gorgonia spp. 
   (Linnaeus, 1758) 

Common sea fans 446 8.18 19 

Pseudopterogorgia spp 
   (Kükenthal, 1919) 

Sea plume 543 8.11 13 

SPONGES – Demospongia / 
PORIFERA 

    

Agelas spp 
   (Duchassaing & Michelotti, 1864) 

 708 8.01 5 

Amphimedon compressa 
   (Duchassaing & Michelotti, 1864) 

Erect rope sponge 745 8.01 4 

Aplysina cauliformis 
   (Carter, 1882) 

Row pore rope 
sponge 

580 8.09 26 

Aplysina fistularis 
   (Pallas, 1766) 

Yellow tube sponge 985 7.89 1 

Chondrilla nucula 
   (Schmidt, 1862) 

Chicken-liver 
sponge 

772 7.98 5 

Cliona spp 
   (Grant, 1826) 

Boring sponge 690 8.02 5 

Halisarca caerulea 
   (Vacelet & Donadey, 1987) 

Star encrusting 
sponge 

588 8.08 15 

Iotrochota birotulata 
   (Higgin, 1877) 

Green finger 
sponge 

719 8.01 11 

Ircinia felix 
   (Duchassaing & Michelotti, 1864) 

Stinker sponge 1047 7.87 2 

Ircinia spp 
   (Nardo, 1833) 

 937 7.91 3 

Oceanapia bartschi 
   (de Laubenfels, 1934) 

Rough tube sponge 695 8.02 10 
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Siphonodictyon spp 
   (Bergquist, 1965) 

Variable boring 
sponge 

598 8.07 6 

Svenzea zeai 
   (Alvarez, van Soest & Rützler, 
1998) 

Sven Zea’s sponge 639 8.05 16 

Verongula rigida 
   (Esper, 1794) 

Pitted sponge 1356 7.76 1 

Verongula spp.  
   (Verrill, 1907) 

Netted barrel 
sponge 

687 8.03 12 

Xestospongia muta 
   (Schmidt, 1870) 

Giant barrel sponge 549 8.11 14 

MACROALGAE     
Dictyota spp.  
   (Lamouroux, 1809) 

 1635 7.69 1 

 Brown turf algae 
 

1635 7.69 1 

 Calcifying algae 
 

1635 7.69 1 

 Green turf algae  
 

1096 7.86 1 

 Unidentified green 
algae 

981 7.92 1 

   CNIDARIAN     
Stichodactyla helianthus  
   (Ellis, 1768) 

Sun anemone 640 8.05 15 

Condylactis gigantea 
   (Weinland, 1860) 

Condy anemone 532 8.11 15 

   ECHINODERMATA     
Diadema antillarum 
   (Philippi, 1845) 

Long-spined sea 
urchin 

572 8.09 19 

   POLYCHAETA     
Loimia medusa 
   (Willey, 1905) 

Medusa worm 1635 7.69 1 

Hermodice spp. 
   (Kinberg, 1857) 

Fireworm 1101 7.84 1 

Sabellastarte spp.  
   (Krøyer, 1856) 

Giant feather duster 
worm 

945 7.91 1 

Bispira spp. 
   (Krøyer, 1856) 

Social fether duster 686 8.03 12 

 
Mean benthic coverage across all transects from survey time points was plotted against distance 
from the CO2 seep site (Figure 4). Brown turf algae makes up most of the coverage across all 
survey time points. In the survey time points after the hurricane impact, the brown turf algae 
makes up an even larger part of the mean coverage across the transects. Brown turf algae had 
the highest coverage in March of 2018, when mean coverage across all quadrats 80% (±7.39). 
Comparatively, mean brown turf algae coverage was 65.7% (±15.5) before the hurricane 
impact, and 77.2% (±9.36) and 76.6% (±8.27) in the summer of 2018 and 2019 respectively. 
In the summer of 2017, more of the coverage is made up of different species compared with 
the time points after the hurricane impact. Calcifying algae makes up more of the mean 
coverage in 2017 compared with the following survey time points. More bare rock is present 
following the hurricane impact in March of 2018 and summer of 2018 compared with before 
the hurricane impact in the summer of 2017.  
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Figure 4: Mean benthic coverage across all survey time points. Benthic coverage is shown in different colours, and includes 
all types of benthic coverage found along the transects, also substratum such as sand, rock and dead coral. Mean benthic 
coverage in 2017 (A), before the Hurricane Maria hit the survey area. Mean benthic coverage in March of 2018 (B) shows 
the coverage in the survey area six months after the hurricane impact. Mean benthic coverage in the summer of 2018 (C) 
shows the coverage about 10 months after the hurricane. Mean benthic coverage in 2019 (D) shows the coverage almost two 
years after the hurricane impact.  

3.2.1 Coral coverage 
Mean coral coverage per quadrat was larger in 2017, being 7.16% (±3.62) before the hurricane 
impact in 2017, but reduced to 2.23% (±1.44) and 2.76% (±1.24) in March of 2018 and the 
summer of 2018 respectively. In 2019, the coral coverage increased to 3.66% (±3.03).  
Mean coral coverage across all transects from all survey time points was divided into groups 
of six consecutive quadrats to display coral coverage change across the transects (Figure 5).  

 
Figure 5: Mean coral coverage across transects from all survey time points. Coral coverage from each survey time point 
was divided into five groups of quadrats, with each group being made up of 6 quadrats. Groups are displayed in colours. 
Median coral coverage is displayed by the horizontal line in each individual box, while the whiskers (vertical lines) display 
maximum and minimum values of coral cover. Outliers are represented by black dots.  
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3.2.2 Sponge coverage 
Before the hurricane impact, in 2017, the mean sponge coverage per quadrat was 4.14% 
(±3.11). The sponge coverage was drastically reduced in the year after the hurricane impact, 
with mean sponge coverage per quadrat only being 0.73% (±0.5) in March of 2018, and 0.82% 
(±0.62) in the summer of 2018. By 2019, mean sponge coverage had increased to 1.48% 
(±0.79). Mean sponge coverage across transects from all survey time points was divided into 
groups of six consecutive quadrats to display sponge coverage change across the transects 
(Figure 6). Across all transects the sponge coverage was reduced in the survey time points after 
2017 following the hurricane impact.  

 
Figure 6: Mean sponge coverage across transects from all survey time points. Mean sponge coverage from each survey time 
point was divided into five groups of quadrats, with each group being made up of 6 quadrats. Groups are displayed in 
colours. Median sponge coverage is displayed by the horizontal line in each individual box, while the whiskers (vertical 
lines) display maximum and minimum values of mean sponge cover. Outliers are represented by black dots. 

 
 
3.3 Richness, Diversity and Evenness  
 
3.3.1 Richness  
Species richness was found to be significantly different for pCO2 values and survey time points, 
but not for substrate category (quasi-Poisson GLM with logit link function: ‘Survey time pont’ 
F = 171.0484, p < 2e-16, ‘pCO2’ F = 84.3990, p<2e-16, ‘Substrate category’ F = 1.9141, p = 
0.1479, Appendix 7). A post hoc Tukey test revealed that all survey time points had statistically 
significant species richness numbers, apart from March of 2018 and the summer of 2018 
(Appendix 8). Coral richness showed the same trend as overall species richness did, with 
survey time point and year being significantly different, but not substrate category (quasi-
Poisson GLM with logit link function: ‘Survey time pont’ F = 79.3845, p < 2.2e-16, ‘pCO2’ F 
= 26.3753, p = 3.254e-07, ‘Substrate category’ F = 0.4275, p = 0.6522, Appendix 9). Coral 
richness before the hurricane impact, in 2017, was found to be significantly different from all 
other survey time points after the hurricane impact in the post hoc Tukey test (Appendix 10). 
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Also sponge richness was significantly different across survey time point and pCO2 value, but 
not for substrate category (quasi-Poisson GLM with logit link function: ‘Survey time pont’ F 
= 78.3277, p <2e-16, ‘pCO2’ F = 92.2186, p <2e-16, ‘Substrate category’ F =  0.0228, p = 
0.9775, Appendix 11). A post hoc tueky test showed that sponge richness was significantly 
different between all survey time points (Appendix 12).  
 
3.3.2 Diversity  
Diversity metrics of Hill-Shannon and Hill-Simpson indices were calculated. Hill-Shannon 
diversity was found to be significantly different in response to the explanatory variables of 
survey time point, pCO2 measurements and substrate category (ANOVA: F6,1259 = 88.09 p-
value < 2.2e-16, Appendix 13). A post-hoc Tukey test revealed that the survey time point 
before the hurricane in 2017 was significantly different from all other years, while the other 
survey time points did not show any statistical significant difference between them (Appendix 
14). Hill-Shannon diversity was higher in quadrats further away from the seep site, and Hill-
Shannon diversity showed a larger range in 2017 and 2019 compared with March of 2018 and 
summer of 2018 (Figure 7). For the fitted explanatory variables Hill-Simpson diversity was 
also found to be statistically different (ANOVA: F6,1259: 69.97, p-value < 2.2e-16, Appendix 
15). The post-hoc Tukey test revealed the same trend for Hill-Simpson diversity as for Hill-
Shannon, with the diversity of 2017 being different from all other survey time points, while no 
statistical difference was observed between the other survey time points (Appendix 16).  

 
Figure 7: Hill-Shannon diversity across transects from all survey time points. Hill-Shannon diversity was plotted for all 
cardinal directions as displayed by labels NE for North East, S for South, SW for South West, W for West, NW for North 
West and N for North. The diversity metric was plotted for every survey time point, as indicated by the panes on top of the 
graphs, with 2017 for the summer of 2017, 2018-m for March of 2018, 2018 for the summer of 2018 and 2019 for the 
summer of 2019.   
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3.3.2 Evenness 
Pielou’s evenness was found to statistically different for the explanatory variables (ANOVA: 
F6, 1258 = 81.88, p-value: < 2.2e-16, Appendix 17). The post hoc tueky test revealed that all 
years were statistically different from one another, apart from the summer of 2018 and the 
summer of 2019 (LMpost-hoc: p = 0.5743, Appendix 18). 2017 shows little evenness, while 
March of 2018 shows the most evenness across the transects (Figure 8).  

 
Figure 8: Pielou’s eveness across transects from all survey time points. Pielou’s evenness diversity was plotted for all 
cardinal directions as displayed by labels NE for North East, S for South, SW for South West, W for West, NW for North 
West and N for North. The evenness metric was plotted for every survey time point, as indicated by the panes on top of the 
graphs, with 2017 for the summer of 2017, 2018-m for March of 2018, 2018 for the summer of 2018 and 2019 for the 
summer of 2019.   

 
3.4 Species composition  
In all multivariate ordination plots the species names were shortened to reduce clustering on 
the plots (Appendix 19). The separate RDA models made for each survey time point were 
highly weighted by brown turf algae across all survey time points, while all other species 
showed high similarity for the fitted environmental variables (2017: Appendix 20; March of 
2018: Appendix 21; summer of 2018: Appendix 22; 2019: Appendix 23). In these RDAs the 
model the variance explained by the constrained axes was larger in survey time points after the 
hurricane impact, compared with the summer of 2017 before the hurricane impact (Appendix 
24). pCO2 shows a strong, significant gradient in all survey time points (Appendix 25). In both 
the fitted CCA and RDA models, the eigenvalue for the constrained axes indicated that little 
variance was explained by the fitted model compared with the unconstrained variables (RDA 
eigenvalues: Appendix 27; CCA eigenvalues: Appendix 28).   
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3.4.1 Species composition in 2017  
The CCA model for all species except brown turf algae in the summer of 2017 showed two 
gradients in the community structure, where 2.3% of inertia (Chi-square) could be explained 
by the explanatory variables in the model (Appendix 28). Of this variance, 1.42% of the 
variance could be explained by the first canonical axis (CCA1), while 0.88% could be 
explained by the second canonical axis (CCA2). The fitted CCA model was revealed to be 
robust (p = 0.001) with the Monte-Carlo permutation test. The correlation between the 
community composition and the fitted canonical axes were found to be statistically significant 
for the pCO2 gradient (PERMANOVA: p < 0.05), but not for substrate category 
(PERMANOVA: p = 0.068) (Appendix 29). The strength and direction of the relationship 
between the species and the explanatory variables are illustrated in the CCA biplot (Figure 9). 
The opposing positioning to the pCO2 gradient of S. helianthus, Gorgonia spp. 
Pseudopterogorgia spp., M. mirabilis, and X. muta in the biplot reflects a strong negative 
relationship with the variable. Oceanapia bartschi shows a stong relationship with ‘Hard’ 
substrate, while S. bournoni, X. muta and A. cauliformis show a strong relationship with 
‘Mixed’ substrate. Hermodice spp. and P. divaricata shows some relationship along the pCO2 
gradient. Species that cluster in the middle of the canonical space do not show any particular 
relationship with any of the explanatory variables included in the model.  

 
Figure 9: Canonical Correspondence Analysis (CCA) for all species except brown turf algae in the summer of 2017. A biplot 
was made to display the species responses to the response to environmental variables. Factor level variable substrate 
category (indicated by labels ‘Hard’ or ‘Mixed’) are indicated by red crosses. pCO2 measurements are represented by the 
blue arrow, with arrow length and direction corresponds with the variance which can be explained by that explanatory 
variable. The direction of the arrows indicates an increasing magnitude of the variable.   
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3.4.2 Species composition in March of 2018 
The CCA model for all species except brown turf algae in March of 2018 showed two gradients 
in the community structure, where 2.1% of inertia (Chi-square) could be explained by the 
explanatory variables in the model (Appendix 28). Of this variance, 1.58% of the variance 
could be explained by the first canonical axis (CCA1), while 0.49% could be explained by the 
second canonical axis (CCA2). The fitted CCA model was revealed to be robust (p = 0.002) 
with a Monte-Carlo permutation test. The correlation between the community composition and 
the fitted canonical axes were not statistically significant for the pCO2 gradient 
(PERMANOVA: p = 0.097), but were significant for substrate category (PERMANOVA: p < 
0.05) (Appendix 29). The strength and direction of the relationship between the species and 
the explanatory variables are illustrated in the CCA biplot (Figure 10). In March of 2018 
several species show a strong relationship with ‘Mixed’ substrate, including S. bournoni, S. 
radians and O. bartschi. Substrate category ‘Hard’ show a strong relationship with I. 
birotulata. While Diploria sp., shows some positive relationship with the pCO2 gradient, P. 
porites and Siphonodictyon spp. show a strongly negative relationship towards pCO2. 

 
Figure 10: Canonical Correspondence Analysis (CCA) for all species except brown turf algae in March of 2018. A biplot 
was made to display the species responses to the response to environmental variables. Factor level variable substrate 
category (indicated by labels ‘Hard’ or ‘Mixed’) are indicated by red crosses. pCO2 measurements are represented by the 
blue arrow, with arrow length and direction corresponds with the variance which can be explained by that explanatory 
variable. The direction of the arrows indicates an increasing magnitude of the variable.   
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3.4.3 Species composition in 2018  
The CCA model for all species except brown turf algae in the summer of 2018 showed two 
gradients in the community structure, where 2.7% of inertia (Chi-square) could be explained 
by the explanatory variables in the model (Appendix 28). Of this variance, 2.16% of the 
variance could be explained by the first canonical axis (CCA1), while 0.54% could be 
explained by the second canonical axis (CCA2). The fitted CCA model was revealed to be 
robust (p = 0.001) with the Monte-Carlo permutation test. The correlation between the 
community composition and the fitted canonical axes were found not statistically significant 
for the pCO2 gradient (PERMANOVA: p = 0.154), but was statistically significant for substrate 
category (PERMANOVA: p < 0.5) (Appendix 29). The strength and direction of the 
relationship between the species from the different years and the explanatory variables are 
illustrated in the CCA biplot (Figure 11). A positive relationship is observed between V. rigida 
and pCO2. Siphonodictyon spp. and Sabellastarte spp. are found close together on the left side 
of the canonical space, showing similar responses to the fitted explanatory variables. Similarly, 
C. nucula and A. compressa are also found together in the canonical space.  

 
Figure 11: Canonical Correspondence Analysis (CCA) for all species except brown turf algae in the summer of 2018. A 
biplot was made to display the species responses to the response to environmental variables. Factor level variable substrate 
category (indicated by labels ‘Hard’ or ‘Mixed’) are indicated by red crosses. pCO2 measurements are represented by the 
blue arrow, with arrow length and direction corresponds with the variance which can be explained by that explanatory 
variable. The direction of the arrows indicates an increasing magnitude of the variable.   

3.4.4 Species composition in 2019 
The CCA model for all species except brown turf algae in the summer of 2019 showed two 
gradients in the community structure, where 2.42% of inertia (Chi-square) could be explained 
by the explanatory variables in the model (Appendix 28). Of this variance, 1.5% of the variance 
could be explained by the first canonical axis (CCA1), while 0.93% could be explained by the 
second canonical axis (CCA2). The fitted CCA model was revealed to be robust (p = 0.001) 
with the Monte-Carlo permutation test. The correlation between the community composition 
and the fitted canonical axes were found to be statistically significant for the pCO2 gradient 
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(PERMANOVA: p < 0.05), and also for substrate category (PERMANOVA: p < 0.5) 
(Appendix 29). The strength and direction of the relationship between the species and the 
explanatory variables are illustrated in the CCA biplot (Figure 12). In 2019 two of the 
polychaeta species Hermodice spp. and Sabellastarte spp., as well as Millepora spp. show a 
strong positive relationship with the pCO2 gradient. The unidentified green algae shows a 
strong positioning to the far left side in the canonical space. Surrounding the ‘Mixed’ substrate 
are two clusters consisting of Gorgonia spp., P. porites, and M. cavernosa on the one side, and 
S. bournoni, Agelas spp., O. annularis, and O. bartschi.  
 

 
Figure 12: Canonical Correspondence Analysis (CCA) for all species except brown turf algae in the summer of 2019. A 
biplot was made to display the species responses to the response to environmental variables. Factor level variable substrate 
category (indicated by labels ‘Hard’ or ‘Mixed’) are indicated by red crosses. pCO2 measurements are represented by the 
blue arrow, with arrow length and direction corresponds with the variance which can be explained by that explanatory 
variable. The direction of the arrows indicates an increasing magnitude of the variable.   

3.5 Impact of hurricane on site similarity  
The RDA across all years revealed 5 gradients in the community structure, where a total 
variance (inertia) of 19% could be explained by the explanatory variables in the model 
(Appendix 24). Of this variance, 13.99 % of the variance could be explained by the first 
canonical axis (RDA1), while 3.83% could be explained by the second canonical axis (RDA2). 
The fitted RDA model was revealed to be robust (p < 0.001) with the Monte-Carlo permutation 
test. The correlation between the community composition and the fitted canonical axes were 
found to be statistically significant (Appendix 25). The strength and direction of the 
relationship between the sites from the different years and the explanatory variables are 
illustrated in the RDA biplot (Figure 13). The pCO2 gradient shows a strong gradient, with 
sites from the survey time points following the hurricane impact showing a shift closer towards 
pCO2.  
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Figure 13: Redundancy analysis (RDA) for sites across all survey time points. A biplot was made to display the similarities 
of sites in response to explanatory variables. Centroids, coordinates for factor level variables, are indicated with red 
crosses. Factor level variables include survey time point (indicated by labels ‘2017’, ‘2018m’, ‘2018’ and ‘2019’) and 
substrate category (indicated by labels ‘Hard’ or ‘Mixed’). pCO2 measurements are represented by the blue arrow, with 
arrow length and direction corresponds with the variance which can be explained by that explanatory variable. The 
direction of the arrows indicates an increasing magnitude of the variable. Sites, represented as coordinates of the sites in the 
space of explanatory variables, with sites in from different survey time points being displayed in different colours.   

More similarity between sites was observed when brown turf algae was removed from the 
multivariate analysis. The CCA across all years where brown turf algae was removed from the 
species matrix revealed 5 gradients in the community structure, where a total variance (inertia) 
of 3.5% could be explained by the explanatory variables in the model (Appendix 28). Of this 
variance, 1.78% of the variance could be explained by the first canonical axis (CCA1), while 
0.79% could be explained by the second canonical axis (RDA2). The fitted CCA model was 
revealed to be robust (p < 0.001) with the Monte-Carlo permutation test. The correlation 
between the community composition and the fitted canonical axes were found to be statistically 
significant (Appendix 29). The strength and direction of the relationship between the sites from 
the different years and the explanatory variables are illustrated in the RDA biplot (Figure 14). 
pCO2 showed a small impact on site composition. Sites from 2019 and 2017 show similar 
patterns, with more spread of sites in the canonical space, while sites from March and summer 
of 2018 show little variation between them.  
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Figure 14: Canonical correspondence analysis (CCA) for sites across all survey time points. A biplot was made to display 
the similarities of sites when brown turf algae was removed in response to explanatory variables. Centroids, coordinates for 
factor level variables, are indicated with red crosses. Factor level variables include survey time point (indicated by labels 
‘2017’, ‘2018m’, ‘2018’ and ‘2019’) and substrate category (indicated by labels ‘Hard’ or ‘Mixed’). pCO2 measurements 
are represented by the blue arrow, with arrow length and direction corresponds with the variance which can be explained 
by that explanatory variable. The direction of the arrows indicates an increasing magnitude of the variable. Sites, 
represented as coordinates of the sites in the space of explanatory variables, with sites in from different survey time points 
being displayed in different colours.   

3.6 Hurricane Impact on Sessile Macroinvertebrates 
The CCA model for macroinvertebrate count numbers showed six gradients in the community 
structure, whereof 11.5% of inertia (Chi-square) could be explained by the explanatory 
variables in the model (Appendix 28). Of this inertia, 6.22% of the inertia could be explained 
by the first canonical axis (CCA1), while 3.93% could be explained by the second canonical 
axis (CCA2). The fitted CCA model was revealed to be robust (p = 0.001) with the Monte-
Carlo permutation test. The correlation between the community composition and the fitted 
canonical axes were found to be statistically significant for survey time point (PERMANOVA: 
p < 0.05), for the pCO2 gradient (PERMANOVA: p < 0.05), and also for substrate category 
(PERMANOVA: p < 0.5) (Appendix 29). The strength and direction of the relationship 
between the species and the explanatory variables are illustrated in the CCA biplot (Figure 15). 
The biplot shows that several species are found at a higher frequency in 2017 before the 
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hurricane impact, including C. gigantea, D. antillarum, Sabellastarte spp. and Bispira spp. One 
polychaeta, Hermodice spp., was found to be more related to March of 2018, while the sun 
anemone, Stichodactyla helianthus, was found not to be related with 2019.  
 

 
Figure 15: Canonical Correspondence Analysis (CCA) for macroinvertebrate count numbers. A biplot was made to display 
the species responses to the response to environmental variables. Factor level variables include survey time point (indicated 
by labels ‘2017’, ‘2018m’, ‘2018’ and ‘2019’) and substrate category (indicated by labels ‘Hard’ or ‘Mixed’). pCO2 
measurements are represented by the blue arrow, with arrow length and direction corresponds with the variance which can 
be explained by that explanatory variable. The direction of the arrows indicates an increasing magnitude of the variable. 
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4 Discussion 
 
4.1 Community response to Ocean Acidification  
Community composition will be altered in response to the climatic driver of ocean 
acidification. Never before has the ocean endured such rapid and great changes to its carbonate 
system as observed in current day (Hönisch et al. 2012b). The amplitude of the global 
biogeochemical cycle of CO2 is increasing in response to climatic changes (McNeil and Sasse 
2016). This augmentation to the carbon cycle is predicted to cause CO2 exposure above 
physiologically detrimental levels for marine animals in the Atlantic, Pacific and Southern 
Ocean (McNeil & Sasse, 2016). Based on similar research (e.g. Hall-Spencer et al., 2008; 
Sunday et al., 2017), this study expected an observable community shift away from calcifying 
species towards macroalgae as pCO2 levels increased with proximity to the seep system. This 
type of community shift was observed across all the transects and all survey time points. 
Corresponding with observations from similar research (Hall-Spencer et al., 2008), macroalgae 
make up most of the benthic coverage in the quadrats with the highest pCO2 levels. As the 
pCO2 levels decrease towards current-day oceanic levels, the diversity along the transects 
increase (Hill-Shannon: p < 0.05, Hill-Simpson: p < 0.05), and the evenness of the transects 
decrease (Pielou’s evenness: p < 0.05). Furthermore, more calcifying organism were present 
in quadrants with lower pCO2 measurements, indicating that the calcifying organisms are 
affected by pCO2 levels. To date, several studies have investigated the community change that 
occurs along a pCO2 gradient, with focus on coral species (Fabricius et al. 2011; Crook et al. 
2011; Inoue et al. 2013). All studies found that there will be a community shift towards less 
Scleractinian corals (reef building corals) being present, lowered recruitment (Fabricius et al., 
2011), and a decrease in diversity nearer the seep site, relating to lowered pH levels and 
increasing pCO2 levels (Brown et al. 2017).  
 
However, several corals and sponges in this survey were found in proximity with the seep site 
(Table 5), thereby suggesting a tolerance for higher levels of pCO2 of these species. Both corals 
and sponges have a lower mean coverage near the seep site observed near the seep site (Figure 
5, Figure 6), but also individual organisms exhibited a smaller coverage area in the quadrats 
nearest to the CO2 seep. For example, a coral of the genus Diploria was observed in the quadrat 
nearest the seep site. At this closeness to the seep site, the Diploria coral only covered about 
1% of the quadrat. Comparatively, a colony of Diploria sp. recorded in quadrat 19 (i.e., 19m 
away from the seep) showed a coverage of about 30% of the quadrat. Other species that 
displayed similar patterns include the corals P. asteroides, Millepora sp., S. siderea and S. 
radians, and the sponges V. rigida, A. fistularis, Iricinia spp. and I. felix. The Porites genus 
appear to be a genus of corals that are relatively tolerant to living in high pCO2 environments 
(Fabricius et al. 2011). Abundance of Porites asteroides is currently increasing in the 
Caribbean (Green et al. 2008), prompting the suggestion that this species may become 
prominent in future reef assemblages. Importantly, some species have demonstrated an 
increase in calcification rates at low energetic cost in response to temperature increases, and 
may therefore be able to counteract OA to some degree (McCulloch et al. 2012a). Mitigation 
through increased calcification rates has been observed in corals of the genus Porites, however, 
this increase does not sustain with the additional stress of increasing seawater temperatures 
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(Cole et al. 2018). Simultaneously, OA can impact several life history traits of P. asteroides, 
which further impacts the recruitment rates (Albright and Langdon 2011). Mitigation through 
increased calcification is also observed for some deep-sea and cold-water corals, which are 
already living in an environment that has a decreased saturation of carbonate ions (McCulloch 
et al. 2012b). Furthermore, some corals found in more temperate regions have found solutions 
to deal with OA, such as increased feeding rates observed in the threatened Acropora 
cervicornis  (Towle et al. 2015). Other scleractinian corals, including M. faveolata and P. 
asteroides, can obtain fatty acids from their symbiotic zooxanthella, thus serving as a 
significant source of fatty acids for corals (Teece et al. 2011). Indeed, organismal modification 
of local carbonate chemistry may enable some calcifying species to successfully grown and 
maintain calcified structure in the face of OA (Roleda et al. 2012).  
 
Considering that sponges have become some of the most abundant taxa on Caribbean coral 
reefs (Rüstler, 2004), it is noteworthy that only a few species appear to do well in the survey 
area of this study. These include A. fistularis, Iricinia sp., I. felix and V. rigida. Interestingly, a 
study preformed in vitro of the sponges A. cauliformis, A. fistularis and I. birotulata found that 
these species showed little impact from predicted changes in seawater temperature and pH 
changes (Duckworth et al. 2012). However, in this study neither A. cauliformis or I. birotulata 
are found at pH levels below 8.09 or 8.01 respectively. This could suggest that there are other 
drivers present in the natural system that were not investigated in the lab which may act limiting 
on the sponges in the seep system community. With the predicted decreases in pH in the worst-
case scenario from the IPCC (2021), these sponges will not sustain as the ocean becomes more 
acidified. Another sponge which may not do well in future oceans is Cliona sp., a boring 
sponges that prefer to settle in carbonate rich environments (Rosell and Uriz 1992), and have 
been shown to have reduced attachment rates at pH levels of 7.8 (Duckworth et al. 2012). 
Indeed, in this study the sponge is not found at pH levels below 8.02, suggesting that this 
sponge may not be present in future shallow marine communities if the pH levels decrease to 
the projected 8.0 (IPCC, 2014). Increased levels of pCO2 can have a great impact on settlement 
rates of a wide range of benthic organisms (Cigliano et al. 2010). Moreover, species such as 
Clinoa sp. that prefer to settle in carbonate rich environments may struggle in the future, as the 
carbonate habitat-building species may cease to sustain in response to the cumulative forces of 
climate change. In addition to Cliona spp., also the serpulidae which prefer to settle in crevices 
of corals (Steiner et al. 2007), may struggle.  
 
Macroalgae, tend to do well in along naturally acidified gradients, probably due to the increase 
of CO2 released from CO2 seeps. Moreover, turf algae presence reduces the photochemical 
efficiency of neighbouring corals, thereby lowering the overall fitness of the corals (Vermeij 
et al. 2010). Indeed, turf algae can decrease the density of the symbiont zooxanthella and tissue 
thickness of corals (Quan-Young and Espinoza-Avalos 2006). This gives turf algae an 
advantage, and may explain some of the extreme dominance observed of brown turf algae. 
Comparatively, calcifying algae showed a coverage gradient that decreased towards the seep 
site in the community present before the hurricane impact. This observation coincides with 
observations from seep sites in the Mediterranean and in Japan (Peña et al. 2021), where 
calcifying algae lost both coverage and diversity with increasing proximity to the CO2 seeps. 
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Other species that show strong aversions to the CO2 seep are Bispira, Aplysina cauliformis, M. 
mirabilis, Gorgonia sp. and Pseudopterogonia sp., which are all found in quadrats that are 
more distant from the CO2 seep, indicating that the environmental conditions near the seep are 
unfavorable for these species. Notably, a shift towards more soft coals in response to 
periodically high levels of pCO2 has been observed in Japan, suggesting that soft corals can 
tolerate acidified environments over shorter periods (Inoue et al. 2013).  
 
4.2 Community response to Hurricane Impact  
The hurricane impact on the community composition was measured by comparing species 
coverage across time series from before and after Hurricane Maria. A loss of diversity, coral 
and sponge coverage area and an increase in evenness was observed after the hurricane impact. 
This corresponds with other research which concludes that extreme weather events can be a 
driver of biodiversity patterns in marine ecosystems (Wernberg et al. 2016), with frequency 
and intensity having a strong impact on future species distribution and ecosystem structure 
(Wernberg et al. 2013). Reduction in coral cover at the Great Barrier Reef has also been 
connected with extreme weather events, including storm events (De’ath et al. 2012). The 
majority of the damage from Hurricane Maria is likely a result of the physical damaged caused 
by the storm event itself, as well as strong wave surges in the time period around the storm 
event. Notably, these results oppose research conducted at St. Thomas of the Virgin Islands, 
where Hurricane Irma and Hurricane Maria did not have a significant impact on coral coverage 
(Gochfeld et al. 2020).  
 
In response to Hurricane Maria, several species notably reduced in coverage area or were 
completely removed from the area long the survey quadrats. Simultaneously, brown turf algae 
coverage expanded to about 80% mean coverage per quadrat in March of 2018, 6 months after 
the hurricane impact. Due to high dominance of brown turf algae, the RDA model fitted for all 
the survey time points (Figure 13) mainly demonstrates site differentiation of brown turf algae 
coverage of each survey time point. Before the hurricane impact, in 2017, the sites, or rather 
the species composition in each quadrat, showed a larger dissimilarity reflected in more 
distance between sites in 2017. After the hurricane impact, the sites in March of 2018 and the 
summer of 2018 show a larger similarity, indicating that the species composition, or rather the 
brown turf algae coverage, within these sites is more similar. Comparatively, by 2019 the sites 
show a slight skew towards the sites of 2017, which could suggest a return towards site 
composition present before the hurricane impact. Undoubtedly brown turf algae drives the 
main site differentiation observed, as in the CCA model fitted when brown turf algae was 
removed, the site compositions of the survey time points show more similarity between them. 
Increasing abundance of macroalgae following hurricane impacts has been observed across the 
Caribbean region for decades (Edmunds 2019). Notably, near the seep site, the brown turf algae 
remains the dominant group across the survey period.  
 
Several diversity metrics were investigated in this study. Species richness, or number of 
species, can be an important diversity metric for structural complexity of ecosystems (Sunday 
et al., 2017). In this survey species richness, coral species and sponge richness was investigated 
across all survey time points and against pCO2 measurements. Species richness was found to 
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be significantly different across all survey time points and for the pCO2 gradient (p < 0.05). 
The same trend was found for coral richness and sponge richness, with mean coral coverage 
and sponge coverage being reduced following the hurricane impact (Figure 5 and 6). 
Additionally, Hill-Shannon and Hill-Simpson diversity metrics were investigated. The Hill-
Shannon diversity, also known as Hill number 1, has been identified as a diversity metric that 
can serve as a good choice when investigating gradients in biodiversity (Roswell et al., 2021), 
and is based on the weighted geometric means of the proportional abundances. In this survey, 
the Hill-Shannon diversity was found to be statistically different between all survey time 
points, with Hill-Shannon numbers being higher in 2017 before the hurricane compared with 
after the hurricane impact. All other survey time points were not found to be different from 
each other. The same statistical outcome was found for Hill-Simpson diversity, with larger 
Hill-Simpson and Hill-Shannon numbers found in 2017 compared with all other years. Thus, 
the diversity present before the hurricane impact was larger than then diversity present 
following the hurricane impact. In contrast, Pielou’s evenness was found to be statistically 
different between all survey time points, apart from the summer of 2018 and 2019 (Appendix 
18), indicating that evenness of species coverage did not change significantly between these 
two survey time points. This could suggest that little recovery occurred between the summer 
of 2018 and 2019. 2017 was the time point with the most diversity, followed by 2019, while 
March of 2018 and summer of 2018 showed low diversity and high evenness. This gives 
evidence to an observed simplification effect caused by the hurricane. Before the hurricane hit, 
the 2017 site composition showed more dispersion (more dissimilarities), but following 
Hurricane Maria, the sites show more similarity and less spread. Notably, the sites in 2019 
show more less similarity between sites compared with March 2018 and summer 2018.  Several 
diversity indices were used in this study to emphasize the observed trends. Indeed, the inclusion 
of several indices can be more powerful (Roswell et al. 2021).   
 
Based on previous research, the growth form of an organism could affect the impact the 
hurricane event imposes. For corals, boulder type corals and encrusting growth forms tend to 
do better, compared with species that have more of an erect growth form (Mah and Stearn 
1986; Madin et al. 2014). Many corals showed reduced coverage area in the year following the 
hurricane impact. However, the encrusting base of the corals P. asteroides and Millepora sp. 
allowed for some resilience to the hurricane impact, although erect features were lost. 
Comparatively, encrusting sponges may see an increase in coverage area, while erect sponges 
experience a decrease (Gochfeld et al. 2020). Interesting that calcifying algae shows a strong 
decrease in coverage between years, despite the benefit of having an encrusting nature which 
could be more resistant to hurricane impacts. This could suggest that the decline in calcifying 
algae is related to other aspects of the hurricane impact, such as increased turbidity or terrestrial 
run-off. Moreover, benthic substrate, including sand and rock, makes up a larger proportion of 
the coverage in the two time points following the hurricane. In March of 2018 both sand and 
rock are prevalent. However, in the summer of 2018 the rock coverage is reduced again, 
suggesting a recolonization of the substratum.  
 



 

 42 

4.3 The combined effect of Hurricanes and Ocean Acidification, and the future for 
Dominican reefs 
 
4.3.1 Community response of two stressors 
The combined effect of OA and the hurricane impact was assumed to lead to a decrease in 
diversity and an increase in evenness across the transects, not just in the quadrats near the seeps 
where diversity is already low due to high pCO2 levels. The synergistic effect of OA and 
hurricanes are observed to cause a simplification of the marine community in this study. 
Interestingly, as the community composition near the CO2 seep site is already more 
homogenous, the effect of the hurricane was less impactful on the community composition 
around the seep site. Therefore, should the pCO2 levels decrease from the average levels of 400 
μatm to the predicted ~850 μatm in the future (IPCC, 2014), hurricane impacts may appear to 
impact the community composition less. As this plausible scenario may occur on top of an 
already overall simplification caused by OA, disruption by hurricane events may seem less 
impactful. Simplification following hurricanes may be a general response in marine 
environments, as a response to storm events has already been established in kelp forests, 
reflected in loss of diversity and decreases in higher trophic levels (Byrnes et al. 2011). 
Simplification as a response to OA has been observed in other research (Agostini et al. 2021). 
Therefore, the combined effect of the hurricane and OA may cause overall simplification to be 
maintained for longer periods than observed in this study, where recovery effects are observed 
after almost two years. This study finds that the species that are the most restricted in expanding 
their coverage towards the seep site are also the species that are the most impacted by the storm 
event. As other species lose their coverage proportions, brown turf algae sees and immediate 
increase in coverage area.  
 
The canonical axes created in the CCA models indicated that the fitted variables explain very 
little of the positioning of the species in the canonical space. Canonical axes of low values are 
common in ecological studies applying multivariate statistics. Although little variance (inertia) 
could be explained by the axes, all of the fitted multivariate models were found to be significant 
for survey time point, indicating that the species composition was significantly different across 
all survey time points. Investigations of the CCA biplots, in the multivariate analyses where 
the brown turf algae was removed, do not reveal any recurring clusters of species across the 
survey time points. Yet some species do show the same patterns of positioning in each survey 
time point. Even after the hurricane impact, P. asteroides, Millpora sp., Diploria sp., V. rigida, 
S. siderea and S. radians are more often could in the middle of the biplot, indicating that their 
position in relation to the fitted environmental variables in the community is somewhat 
consistent through the survey time period. Comparatively, C. nucula, A. compressa and 
Gorgonia sp. are often found in the peripheral parts of the biplots, suggesting they show a 
stronger relationship with the fitted variables. Notably, less species are present in the survey 
time points after the hurricane compared with before.  
 
4.3.2 Recovery  
Recovery of coral and sponge species was assumed to occur at a slower pace close to the seeps 
to the backdrop of pCO2. Indeed, habitat recovery rate following a disturbance event can occur 
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at a slower rate owing to the adverse biological impacts of OA (Gaylord et al., 2015). 
Moreover, there is little evidence to suggest a full recovery of reef communities until about 8 
years after the initial impact (Gardner et al. 2005), with damage to corals increasing with 
intensity and frequency of impacts (Gardner et al., 2005). Although some uncertainty remains 
regarding increase or decreasing frequencies of hurricane impacts, the evidence does suggest 
that the intensities of hurricanes will increase (Bender et al. 2010). Thus, the impact of 
hurricane event may cause increasingly more damage on coral reefs, which will require 
increasingly more time to recover. In this survey coral and sponge cover showed a faster 
recovery of coverage area at distances further from the CO2 seep (Figure 5, Figure 6). This 
suggests that the recovery rate of corals and sponges is impacted by the pCO2 levels of the 
surrounding waters. Additionally, interspecific responses to pCO2 may cause successional 
delays in acidified environments (Brown et al., 2017).  
 
Brown turf algae appears not to have been greatly impacted by the hurricane, and an increase 
in coverage percentage may actually indicate that the algae benefits from the demise of other 
species in the face of OA and hurricanes. This concurs with other research, funding that turf 
algae in general tends to grow quickly and does well under stressful conditions (Airoldi 1998). 
Similarly, fast recovery of other photosynthesizing species has also been observed in the 
invasive seagrass Halophila stipulacea, which saw a rapid recovery and expansion of coverage 
in Puerto Rico after Hurricane Maria (Hernández-Delgado et al. 2020). Conversely, the brown 
macroalgae Dictyota sp., a common species on tropical and subtropical reefs 
worldwide (Clerck et al. 2006; Bogaert et al. 2020), does not show similar trends of rapid 
expansion. Rather, almost a year after the hurricane impact, in the summer of 2018, the 
Dictyota sp. gains more coverage area. However, the following year, 2019, this coverage area 
is again reduced, while other species gain coverage area again. This indicates that the Dictyota 
sp. does not compete well against the brown turf algae. As successional changes begin to revert 
the community back towards previous diversity levels, the Dictyota sp. subsides as other 
species regain coverage.  
 
Another reason as to why brown turf algae may have expanded its coverage to such great 
extents may be due the reduction in Diadema antillarum sea urchin. Based on the CCA from 
the macroinvertebrate count numbers, D. antillarum was found to be more abundant in 2017 
before the hurricane impact, compared with the following survey time points. Acting as a key 
species grazing on algae, clearing space for other species to settle, D. antillarum is an important 
species on Caribbean reefs (Carpenter 1981). The adverse effects, including physical damage 
and demise, as a result of hurricane events can greatly reduce numbers of sessile 
macroinvertebrates, although D. antillarum abundances have shown some resilience in 
response to disturbance event such as hurricanes (Mumby et al. 2006). However, in this study 
there appears to be less D. antillarum present following Hurricane Maria, which is similar to 
trends observed in the Florida Keys after Hurricane Irma hit at the same time as Hurricane 
Maria (Simmons et al. 2021). The decline of D. antillarum in the survey site led to decreased 
restriction of brown turf algae by urchin grazing. Moreover, the distribution of keystone 
species, such as D. antillarum can have an impact of how the seep system community is 
composed. In this study the urchin is only found at a distance from the CO2 seep in the parts of 
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the transects that display higher pH and lower pCO2 measurements. Consequently, as turf algae 
is naturally suppressed through grazing mechanisms at coral reefs (Hughes et al. 2007), if D. 
antillarum is not present in closer proximity to the CO2 seep system, clearing space for corals 
and other species through grazing will not occur close to the seep. A similar trend of urchin 
absence near a seep system in Italy has also been observed, where an urchin species is thought 
to be restricted from gracing near the seeps through the physiological limitation of the need to 
maintain acid-based homeostasis (Calosi et al. 2013a; Small et al. 2016). Low pH has been 
shown to cause high levels of carbonic acid in body fluids and tissues (Przeslawski et al. 2008; 
Fabry et al. 2008). Based on the separate CCA ordination plots from the different survey time 
points, D. antillarum shows slight aversion from the pCO2 gradient, which coincides with 
observation that the urchin is only found at a distance of 19m or more from the CO2 seep site.  
 
The almost complete appropriation of coverage is observed by the brown turf algae reduces the 
chances for other species already present in the area to resettle or gain coverage again, while 
also reducing the chances of new species to settle in the area. Interestingly, in 2007 a survey 
investigating the abundance of species along the western coast of Dominica did not find any 
Gorgonia sp. present in Champagne Bay (Steiner et al. 2007), However, in this study several 
individuals of Gorgonia sp. were recorded along the southern-going transect. Settlement of 
new species may not occur if the coverage is completely dominated by a few species. 
Furthermore, if future circulation patterns change dramatically, such settlements of new species 
may not be as easily facilitated, as oceanic circulations drive larvae propagation (Harley et al. 
2006). The condy anemony, Condylactylis gigantea, was only present in 2017, and had prior 
to that not been observed in the project study area (Pers. comm. Helen Rastrick at IMR, 2021), 
but following the hurricane impact, the species was not observed again in any of the survey 
transects.  
 
The sponge Aplysina fistularis was observed regularly across all of the survey time points in 
most of the transects. It was recorded in close proximity to the CO2 seep, as well as towards 
the end of the transects. Reduction of coverage area and of 3D structure was observed for the 
species following the hurricane event, however, commencement of recovery occurred in the 
summer of 2018 and 2019. Thus, A. fistularis appears to be somewhat species tolerant to both 
OA and storm events. This may owe to the fact that A. fistularis is a sponge that utilizes silica 
for their spicules. Siliceous sponges thought to be more resilient to OA (Bell et al. 2013; 
Vicente et al. 2016). In Papua New Guinea siliceous spicules did not reduce along the pH 
gradient (Fabricius et al. 2011).  
 
4.3.3 Future community composition in marine costal environments of Dominica 
Ocean acidification and other climatic drivers will change the community composition of 
shallow marine communities of Dominica. Research conducted of marine communities near 
other CO2 seep sites suggests that encrusting-type corals may do better in the future (Fabricius 
et al. 2011). In Champagne Bay the encrusting corals of Porites asteroids and the firecoral 
Millepora sp. do well, also after the hurricane impact. One reason for this may be due to the 
fact that encrusting corals have thicker tissue (Loya et al. 2001). Notably, a reduction of 3D 
structure was observed due to physical damage caused by Hurricane Maria, although such 
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observations were non-quantifiable with the survey technique of this study. Another coral 
which may play a more important part in future reef architecture are the coral of genus 
Montastraea, such as Montastraea cavernosa in Champagne Bay, which is becoming an 
increasingly more dominant species at reefs cross the Caribbean region (Perry et al. 2013). The 
shift towards Montastraea corals can be advantageous for the complexity of coral reefs, as the 
genus tends to facilitate reef complexity (Alvarez-Filip et al. 2011). Note that the species 
Orbicella faveloata and Orbicella annularis previously belonged to the genus Montastraea 
(Budd et al. 2012), and can  therefore be considered of equal importance for reef structure. 
Orbicella faveloata has been found to have an increased bleaching resistance, relating to the 
species of the symbiotic algae (Manzello et al. 2019), may therefore have a better change at 
persisting in the face of OA. Additionally, as mentioned above, both the genus Montastraea 
and Porites have been found to be more resistant to OA through fatty acid accretion from their 
zooxanthella (Teece et al. 2011). Indeed, also at vent systems of neighboring islands were O. 
faveloata, M. cavernosa and P. asteroides found in areas that experience periods of increased 
acidification (Enochs et al. 2020). Therefore, corals of these two genera may become vital 
species in future reefs in Dominica. Interestingly, the sea fans of the Gorgonia sp. survived the 
hurricane without major losses, despite having a structure that would suggest otherwise. Phase 
shifts away from scleractinian corals that build 3D environments towards a community 
consisting of more soft corals and macroalgae has become more commonplace, particularly in 
the Caribbean region (Roff and Mumby 2012). However, although the Gorgonia sp. did well 
in response to the hurricane impact, the species does not appear to do well with OA.  
 
Furthermore, sponges have been predicted to become more prevalent in future marine coastal 
communities (Bell et al. 2018), and do play important ecological roles (Diaz and Rützler 2001). 
However, although sponges may thrive as coral reefs deteriorate, also they will eventually be 
impacted by the same issues that corals face (Rützler 2004). Of the four sponge species that do 
well in this study, A. fistularis is likely to become the most prominent species in future 
community compositions of Dominica based on the tolerance to OA, as well as the rate of 
recovery observed in this study. However, most of the coverage could end up being covered 
by brown turf algae in response to increasing pCO2 measurements. The appropriation of 
coverage area by brown turf algae functions as a simplification mechanism also for the 
macroalgal composition in the community (Harvey et al. 2021). High dominance of brown turf 
algae in high pCO2 environments lead to decreased biomass, diversity and complexity of the 
community, with a lack of other macroalgal species, thus leading to an overall simplification 
occurring also within macroalgal assemblages (Harvey et al. 2021).   
 
Dominica will likely endure a simplification of their marine coastal communities, as diversity 
will decrease in response to climatic stressors. Issues arise with simplification of marine 
ecosystems. Biodiversity is often measured in species richness in ecological studies, and often 
relates to the quality and stability of the ecosystem or community being described (Worm et 
al. 2006). Reduced richness leads to overall reduction in ecosystem functioning (Törnroos et 
al. 2015, Worm et al. 2006). Thus, the marine communities may no longer serve the same 
benefits should they endure severe simplification. Moreover, it is not only OA and hurricanes 
that will impact the marine life in the future. Increasing atmospheric CO2 is also associated 
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with increasing temperatures, as well as decreases in dissolved oxygen concentrations (Gruber 
2011). Marine communities across the globe will all be impacted by these three factors of OA, 
warming and decreasing dissolved oxygen, with regional differences (Gruber 2011). 
Furthermore, OA and ocean warming can be viewed as irreversible events, as it may take 
centuries to recover back to current-day levels (Gruber 2011), by which time it may be too late 
for several of the prevalent species in present oceans. Certainly, it can be speculated that coral 
reefs may not persist in future oceans, as corals may be rendered non-functional by 2050 should 
global atmospheric CO2 emissions exceed 480ppm (Hoegh-Guldberg et al. 2007).  
 
As stated in De’ath et al. (2012) regional policies cannot protect coral reefs from the global 
impact of anthropogenic driven climate change. Protection of coral reefs should be focused 
onto reefs of high complexity, as these tend to support more species diversity (Alvarez-Filip et 
al. 2011). Such reefs may be recognized by key species, such as the common Montastraea 
(Alvarez-Filip et al., 2011). Ecosystem-based approaches to protection may serve as the best 
strategy to sustain marine ecosystems (Keller et al. 2009). Additionally, restoring keystone 
species that serve important ecological roles on coral reefs, such as D. antillarum, can be an 
efficient and cost-effective strategy to implement (Precht and Precht 2015). Moreover, 
management such as implementation of non-dive zones and no-take zones, does in general 
allow for more healthy reefs (Graham et al. 2020). Establishing management practices of reefs 
can help mitigate some of the climate change challenges, such as food security. Notably, 
densities of reef fish, and consequently the associated fisheries, were strongly impacted by the 
tropical storm Erica in 2015 and Hurricane Maria in 2017 (Pinnegar et al. 2019). Additionally, 
prospects of acclimatization or adaptation should be considered for species persistence in the 
face of climate change. However, if such adaptations occur rapidly enough to allow for 
maintenance of ecosystem function and services remains unclear (Sunday et al. 2014). In light 
of the findings of this study, the additive impact of changes in two environmental drivers may 
cause such stress, that such adaptation may not take place as species will struggle to just stay 
alive.  
 
4.4 Experimental design and future directions  
 
4.4.1 Photo-quadrant methodology 
In this study a time series of photo-quadrant were analysed to determine the impact of two 
environmental stressors on benthic community coverage. This method is widespread in the 
field of ecology. Application of photo-quadrant has been used to determine coral coverage, and 
can also be used to investigate recruitment, growth and mortality (Jokiel et al., 2015).  
A known concern associated with photo-quadrat analyses is addressing cryptic or rare species. 
To combat this, is has been found that when combining photo-quadrat analyses with field 
observations of more rare or uncommon species, issues with identification may be avoided 
(Preskitt, Vroom & Smith, 2004). However, this requires the employment of skilled researchers 
with knowledge of rare or cryptic species specific to the region. This requires that research 
projects are funded properly to allow for the engagement of experts, which is often uncommon. 
Therefore, as species identification in this study is based on photo-quadrats of medium 
resolution, some erroneous identification issues could be present in the dataset. Another issue 
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with photo-quadrat surveys is the time it takes to process the material. Despite being a relatively 
inexpensive method that requires little equipment and is easy to conduct in the field, photo-
quadrat surveys are time consuming in work, as the videos/photos obtained from the survey 
must be analysed. In some cases, as with this study, the grid must be added manually, which is 
also a very time consuming work. However, in recent years more photographic analysis 
software has been developed to make photo-quadrat grid analyses more effortless to conduct, 
such as the software photoQuad (see Trygonis & Sini, 2012). Additionally, some software may 
also help with issues of identification, for example by offering colour-correcting features. 
Application of such software may allow for faster data analysis, while also reducing the chance 
of erroneous species identifications.  
 
Determining 3D loss of species that act as structural habitat builders was not in the scope of 
this study. Although analysis of 3D structure loss could have provided further insight into how 
the hurricane impacted the species across the time series, this would have required additional 
equipment as well as time to obtain such data. Standard photo quadrants are recorded at a 90o 
angle down towards the substrate. To be able to determine 3D structures of species, the camera 
is typically angled at 45o towards the substrate. Other methods include utilizing artificial 
intelligence (AI) systems, which can provide a cost-effective approach with about 97% 
identification certainty (González-Rivero et al. 2020). The inclusion of such technology could 
have allowed for assessment of how different growth forms of species may be impacted by 
extreme weather events or physical consequences of OA, such as bioerosion. Moreover, 
application of 3D approaches could have allowed for further understanding of the synergistic 
impacts of how these two environmental drivers act.  
 
4.4.2 Using CO2 seeps as natural analogues of ocean acidification 
CO2 seep systems are not perfect analogues. Some CO2 seeps are subjected to variability to 
variability of pH and pCO2 levels (Kerrison et al., 2011). In some areas variability of pH is 
related great fluxes of acidification rates relating to tidal changes near the CO2 seep systems, 
resulting in extended periods of high acidification as observed in Enochs et al. (2020) and Inoue 
et al. (2013). Moreover, some sites near CO2 seeps have been found to show similar diel 
variation in pH as is common in ambient coastal waters (Kerrison et al., 2011). Diel variation 
of current-day pH levels has been observed to impact coral growth (Enochs et al. 2018). 
Notably, in this study the ranges of temperature, salinity and total alkalinity did not show any 
variability between measurements gathered in March of 2018 compared with environmental 
variables from the other survey time pints. In general, CO2 seep systems are viewed as suitable 
for studies wanting to engage natural laboratories for investigating OA (Kerrison et al. 2011), 
but variability of pH and pCO2 measurements should be considered for choice of study area, 
as well as diel variation in other variables. In this study, the survey location was chosen 
specifically due to the little variation of other environmental parameters.  
 
4.4.3 Data Analysis 
Notably, the models used in this survey are at risk of being too liberal. Spatial autocorrelation 
is the assumption that closeness in spatial scales will cause more similarities of measured units, 
while distance between measured units will cause these units to diverge more. In this survey, 
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the experimental design is compromised by the use of transects extending in many directions 
from point zero. Consequently, the measured quadrats that are closer to the CO2 seep are also 
closer together, compared with the transects that are measured at the end of the transects. In 
other words, following autocorrelation theory, all quadrats at 1m away from the seep will be 
more similar to one another, as the distance between these quadrats is much smaller. 
Opposingly, all quadrats at 30m away from the seep will be further away from each other and 
will therefore be more dissimilar from one another. Signs of autocorrelation was observed for 
the LMs and the GLMs. For example, underdispersion was detected during explorative 
analyses of the data. This was attempted to be corrected for by including a quasi-Poisson 
distribution term in the model. For the multivariate analyses, testing for spatial autocorrelation 
is not achievable by any feasible methods, and was therefore excluded from the analysis. 
Because of this, the statistical results from this study should be treated with caution.  
 
In the fitted multivariate models that used species coverage data, the species data was arcsine 
transformed. Although it has been suggested to discontinue the use of arcsine transformations 
(Warton & Hui, 2011), the application of arcsine-based transformation may be more 
appropriate when the data is analysed in a multivariate analysis. The advantage when using 
arcsine-based transformations, is that it stabilizes variance and does not require continuous 
correction for zero counts (Lin & Xu, 2020). Comparatively, a log transformation, which is 
preferred for linear regressions, where values of negative infinity will occur when a species is 
not present (0% coverage), and positive infinity will arise when a sample consist of only one 
species (100% coverage). Therefore, applying an arcsine transformation was deemed suitable 
for the purposes of this study.  
 
Because the macroinvertebrate count data only consisted of seven species, one multivariate 
model was selected to view the impact of the explanatory variables, as opposed to fitting seven 
separate GLMs with quasi-Poisson distribution. Conversely, to view the community change 
occurring in each survey time point, separate multivariate analyses were made for each survey 
time point to display the community composition. Another way the multivariate analyses could 
have been conducted would have been to separate out groups of species based on functional 
role or taxa. In a study preformed in the Florida Keys the response variable of the fitted CCA 
model was hard coral coverage, with macroalgae, sponge coverage and environmental drivers 
as response variables (Maliao et al. 2008). However, as this study aimed to determine the 
community response to two stressors, all species were fitted as response variables in the models 
fitted in this study. However, it is conceivable that due to the high coverage of brown turf algae 
in the study area, it is likely be a strong predictor of coral coverage.  
 
It is generally desirable to fit models with as few explanatory variables as possible, as to avoid 
overfitting of the model. At the same time, conventional model selection methods, for example 
based on AIC and AIC weights, tend to favour models that include multiple variables over 
those that include fewer variables, causing overfitted models to be selected. The models of this 
study were all fitted with few explanatory variables. Based on the correlation between variables 
that was observed, many of the environmental variables showed correlation. Because this 
survey wanted to investigate the impact of pCO2 on the species, it was chosen in favour of the 
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other correlated variables. Temperature and salinity were excluded based on biological 
reasoning. As these two variables show a very narrow range, the biological impact of these two 
variables was considered to have little influence on the species present along the transects. 
Although, it should be mentioned that temperature is predicted to increase to about 31Co, which 
is the thermal maxima for several species. Based on the reasons listed above, model selection 
was based on biological reasoning as opposed to utilizing conventional model selection 
techniques.  
 
4.4.4 Future studies 
To gain further understanding of how storms and other extreme weather events affect 
ecosystems, long-term observations and studies conducted in various types of ecosystems 
across spatial and temporal scales are required (Jentsch, Kreyling & Beierkuhnlein, 2007). 
Research investigating the impact of multiple climatic drivers are required to allow for 
implementing policies that can protect vulnerable habitats, or habitats that provide specific 
ecosystem functions and services of importance. For marine communities to persist in the 
future, knowledge of how communities and ecosystems respond to multiple environmental 
drivers must be obtained (Riebesell & Gattuso, 2014). Moreover, understanding single 
organism or collective communities capacities to adapt to these predicted changes will be key 
(Riebesell & Gattuso, 2014; Chevin, Lande & Mace, 2010). Few corals and sponges show the 
potential do adapt to predicted changes at a rate fast enough to keep up with the predicted rate 
of climate change. Additionally, although acclimatization can facilitate adaptation by allowing 
time for adaptation to take place (Chevin, Lande & Mace, 2010), but acclimatization may also 
be costly for species that are driven to their limits through acclimatization (Calosi et al. 2013b). 
 
Researching how climate change will impact communities and ecosystems across a range of 
local and regional scales can become important, as local variation and site-specific nature may 
impact modelling results if not a wide range of ecosystems are presented (Ummenhofer & 
Meehl, 2017). For example, changes in ambient pCO2 levels will not be globally uniform, and 
is dependent on the levels of future GHG emissions (IPCC, 2014; Gallego et al., 2018). 
Therefore, investigations of climatic impact should occur across all latitudes.  
 
Investigating the effects of multiple environmental drivers on marine environments remains a 
gap in investigating the impacts of future climate change (Ribersell & Gattuso, 2014), and few 
studies have investigated the long-term effects of multiple climatic drivers. Yet, research 
focusing on multiple environmental drivers can result in essential information regarding the 
future of marine communities. Few studies have investigated the long-term effects of multiple 
climatic drivers on community or ecosystem, with the exception of ocean acidification and 
temperature (e.g. Duckworth et al. 2012). Challenges of investigating community or ecosystem 
responses to multiple stressors is the accessibility to natural communities in environments that 
can be exposed to several environmental stressors. The application of CO2 seep systems in 
investigating OA is limited to one climatic driver, and therefore limited knowledge can be 
gained with regards to future oceans (Ribersell & Gattuso, 2014). However, in certain areas 
these natural gradients may be subjected to other environmental drivers also, as with the survey 
area of this study. The results of this study provides further knowledge of how the synergistic 



 

 50 

effect of a hurricane impact impacts the community structure of a naturally acidified 
environment. However, usually, gradient analyses such as the one preformed in this study are 
limited to one stressor, and only because of the sampling location was this study able to 
investigate the impact of two climatic stressors on a shallow marine community. 
 
There are several approaches to investigating the impact of multiple drivers. One such approach 
is using a collection of mosaic across multiple stressors. By applying a mosaic approach created 
by overlapping abiotic environmental gradients, several climatic drivers can be investigated 
simultaneously. As multiple climatic drivers in the ocean are predicted to change concurrent 
with one another, multiple stressor mosaics will drive environmental change (Gibson-
Reinemer & Rahel, 2015). Multivariate mosaics can occur through inconsistencies in abiotic 
and biotic drivers, causing local differences in conditions for species to perform in (Kroeker et 
al., 2016). Already mosaics investigating the impact of multiple climatic stressors have been 
conducted, finding an increase in mosaic complexity, suggesting that the mosaic composure of 
future marine environments can act as both barriers and facilitators of species distribution in 
the future (Laughlan & Nagelkerken, 2019). Other studies have demonstrated the need for 
knowledge of how interactions of environmental mosaics can drive intraspecies differences 
(Kroeker et al., 2016).  
 
Additionally, with advances in technology, new methods may be developed and become more 
available for common use in research. Environmental DNA (eDNA) is a technique that can be 
applied both for research purposes as well as for conservation (Thomsen & Willerslev, 2015) 
and management use (Gilbey et al., 2020). eDNA is a method that samples the DNA present 
in the water column. The use of eDNA has been proposed to facilitate reconstruction of marine 
food webs in response to increasing changes in climatic drivers (D’Alessandro & Mariani, 
2021), and for conducting biodiversity surveys (Shaw, Weyrich & Cooper, 2015). The use of 
eDNA can reveal biodiversity changes relating seasons, and may also be useful in detecting 
biodiversity presence before and after extreme weather events occur (Berry et al., 2019).  
 
4.5 Concluding remarks  
The goal of this study was to investigate the combined impact of two environmental stressors 
related to anthropogenic driven climate change, namely ocean acidification and impact by 
storms on a Caribbean coral reef community. The results indicate that overall, a simplification 
is observed in response to ocean acidification, comparative to results found in seeps systems 
in Japan (Agostini et al., 2021). A community shift in favour of macroalgae was observed as 
proximity with the CO2 seep system increases. The hurricane event caused a decrease in 
diversity, with less species being present in the transects, although this effect was mainly 
observed in the latter part of the transects. The synergistic effect of the hurricane and OA led 
to a simplification effect. However, the species composition near the seep site endures less of 
a simplification compared to the species composition further away from the CO2 seep due to 
the creation of a more homogenous environment caused by OA. This might indicate that the 
impact of storm events, such as Hurricane Maria, may have less of an effect in the future when 
simplification has already occurred consequential to ocean acidification. In other words, the 
species that show less impact by ocean acidification are the same species that are not gravely 
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affected by the hurricane impact. Both sponge and coral coverage showed a slower recovery 
rate near the seep site, suggesting that recovery is limited by the low pH and high pCO2 

measurements surrounding the CO2 seep. The findings of this study concur with other research 
of community shifts in response to natural pCO2 gradients. Furthermore, the study illustrates 
the need for more research investigating the combined effect of multiple climatic stressors on 
marine communities, which is an issue that has been addressed by others  
 
4.5.1 Global perspective  
Although this study was conducted in a tropical region, the results of this study demonstrate 
the same trends as observed in other studies (Hall-Spencer et al. 2008; Fabricus et al. 2011; 
Sunday et al., 2017), indicating that community shifts away from calcifying species and 
towards macroalgae can be applied to an extensive range of ecosystems. As of yet, studies of 
natural analogues in the Arctic region have not yet been investigated, although there is a 
potential for commencing such reseach (Rastrick et al. 2018). Gaining knowledge of how 
marine communities of the Artic respond to climate change is integral for understanding how 
these ecosystems and communities will respond to climate change. The Arctic region is 
predicted to experience a higher frequency of storms, as well as a strong impact of OA (IPCC, 
2014; IPCC, 2021). Cold water corals are also important species contributing to habitat 
formation, and are through to be at risk of OA (Roberts et al. 2006), although the calcification 
rate might not be impacted by predicted pCO2 levels (Maier et al. 2013). Additionally, 
temperate water corals already have a lower metabolic rate and growth rate (Holcomb, 
McCorkle & Cohen, 2009; Rodolfo-Metalpa et al., 2010) (Holcomb et al. 2010; Rodolfo-
Metalpa et al. 2011), and may therefore not experience the impacts fluctuations in oceanic 
chemistry as strongly as tropical corals (Jokiel 2011). However, considering that the impacts 
of OA will be most dominant in the higher latitudes (Gruber 2011; IPCC 2014), and the 
combined effect of changing patterns of other climatic stressors, also these corals cannot be 
expected to do well. Moreover, extreme weather events such as coastal storms do not only 
impact the shallow marine communities, but are also found to have an impact in deep-sea 
ecosystems (Sanchez-Vidal et al. 2012). Such storm events may cause sequestration due to 
transportation of organic carbon from shallow waters to the deep sea, leading to abrasion or 
burying of benthic species (Sanchez-Vidal et al., 2012).  
 
Research into responses of communities along natural pCO2 gradients can also be viewed in 
light of carbon capture and storage projects. Currently, the impacts of climate change as a result 
of persistent anthropogenic release of GHG are predicted to be large (IPCC, 2021). To 
minimize the consequences of anthropogenic forcing, carbon capture and storage is now posed 
as a mitigating solution to reduce the effects of climate change (IPCC, 2021). However, the 
long-term biological consequences of carbon storage are not yet known. One of the most 
hazardous consequence of carbon storage could be leakage from the storage areas (e.g. 
Goulding et al. 2017). Should the deep-sea community respond similarly to the community 
observed in this study, a simplification could occur in response to leakage events. Importantly, 
deep-sea ecosystem functioning and services, as well as the community dynamics remain 
somewhat unexplored, with little knowledge of responses to climate change.  
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Appendix  
 
Appendix 1: Figure of Ocean Acidification  

 
Figure 16: The Process of Ocean Acidfication. Adapted from Hoegh-Guldberg et al., 2007 

Appendix 2: Model Selection for Total Alkalinity   
Table 6: Results of model selection for Total Alkalinity. A linear model was selected by comparing the two independent 
variables with and without an interaction term. Model in bold text signifies the selected model. Akaike Information 
Criterium (AICc) is a measure of goodness of fit for models, where a lower number suggests a better fit model. Probability 
of having a true model is given with the AIC weight. The adjusted R-squared value describes the variance of the independent 
variables fitted, where a higher number indicates a better fitted model. 

Response 
variable  

Model 
(Independent variables) 

AIC AIC weights Adjusted R-squared  
 

Total 
alkalinity  

Site * year 598.6424 0.079  0.4802 
Site + year 593.7436 0.921 0.5024 
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Appendix 3: Correlation plot for Environmental Variables  
 

 
Figure 17: Correlation plot for environmental variables. Positive correlations are displayed in blue colours, while negative 
correlations are displayed in red. Colour intensity indicates the strength of the correlation. Each environmental variable is 
plotted against each other. The environmental variables include pH level, temperature, salinity, total carbon (TC), surface 
ocean partial pressure of CO2 (pCO2), bicarbonate, carbonate trioxide (c_trioxide), calcium carbonate saturation 
(omega_ca), aragonite saturation (omega_ar) and substrate category (Sub_type; Hard or Mixed). The correlation plot was 
plotted using the ‘corrplot’ package (Wei & Simko 2021) in the statistical programming language ‘R’.  
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Appendix 4: Raw pCO2 gradient 

 
Figure 18: Raw pCO2 gradient from all survey time points. pCO2 (µtam) was measured for every cardinal direction, as 
displayed by labels NE for North East, S for South, SW for South West, W for West, NW for North West and N for North. 
This was plotted for every survey time point, as  indicated by the panes on top of the graphs, with 2017 for the summer of 
2017, 2018-m for March of 2018, 2018 for the summer of 2018 and 2019 for the summer of 2019.   

 
Appendix 5: Coefficients table for Total Alkalinity   
Table 7: Coefficients table for linear model for total alkalinity. Treatment contrasts of estimated regression parameters, 
standard errors, t-value and P-values for the linear model.  

 Estimate Standard Error (SE) t-value p-value 

(Intercept)     2372.475 19.683 120.535 < 2e-16 
siteseep -22.425   17.018 -1.318 0.194 
year2018 -120.059   21.922 -5.477 1.56e-06 
year2018m 21.895 26.380 0.830 0.411 
year2019 -8.137 28.063 -0.290 0.773 
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Appendix 6: Post Hoc Tukey test for the Linear Model for Total Alkalinity  
Table 8: Post-hoc Tukey test for linear model of Total alkalinity. All survey time points are pairwise compared with one 
another, as indicated by the ‘contrast’ column. The estimate, standard error, degrees of freedom, t-ratio and p-values are 
reported for each of the pairwise comparisons. Results are averaged by site (reference site or seep site).  

Contrast Estimate Standard 
Error (SE) 

Degrees of 
Freedom (df) 

t-ratio p-value 

2017 – 2018        120.06 21.9    48 5.477   <.0001 
2017 – (2018-m)    -21.90 26.4 48 -0.830   0.8400 
2017 – 2019          8.14 28.1   48 0.290   0.9914 
2018 – (2018-m)   -141.95 23.3   48 -6.093   <.0001 
2018 – 2019       -111.92 25.3 48   -4.431   0.0003 
(2018-m) – 2019     30.03 29.2   48 1.028   0.7339 
      

 
 
Appendix 7: Coefficients table for Species Richness  
Table 9: Coefficients table from species richness model. Treatment contrasts of estimated regression parameters, standard 
errors, z-values and P-values for the quasi-Poisson GLM.  

 Estimate Standard Error (SE) z-ratio p-value 

(Intercept)     2.482 0.04643 53.464 < 0.05 
March, 2018 -0.5411 0.02771 -19.529 < 0.05 
2018 -0.5548 0.02785 -19.918 < 0.05 
2019 -0.3341 0.02810 -11.890 < 0.05 
pCO2 -0.0005688 0.00006898 -8.246 < 0.05 
Substrate: Mixed  0.04052 0.02121 1.911 0.0564 
Substrate: Soft -0.02448 0.09903 -0.247 0.8048 
     
 

 
Appendix 8: Post Hoc Tukey test for Species Richness GLM 
Table 10: Post-hoc Tukey test for the generalized linear model for species richness. All survey time points are pairwise 
compared with one another, as indicated by the ‘contrast’ column. The estimate, standard error, degrees of freedom, z-ratio 
and p-values are reported for each of the pairwise comparisons. Results are averaged by levels of substrate category 
(‘hard’, ‘mixed’ or ‘soft’).  

Contrast Estimate Standard 
Error (SE) 

Degrees of 
Freedom (df) 

z-ratio p-value 

2017 - 2018        0.5548 0.0279 Inf 19.918 <.0001 
2017 - (2018-m)    0.5411 0.0277 Inf 19.529 <.0001 
2017 - 2019          0.3341 0.0281  Inf 11.890 <.0001 
2018 - (2018-m)   -0.0137 0.0305 Inf -0.448 0.9700 
2018 - 2019       -0.2207 0.0298 Inf  -7.414 <.0001 
(2018-m) - 2019     -0.2070 0.0307 Inf -6.738 <.0001 
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Appendix 9: Coefficients table for Coral Richness  
Table 11: Coefficients table from coral richness model. Treatment contrasts of estimated regression parameters, standard 
errors, z-values and P-values for the quasi-Poisson GLM. 

 Estimate Standard Error (SE) z-ratio p-value 

(Intercept)     1.4875089 0.1001818 14.848 < 0.05 
March, 2018   -0.7864316 0.0587076 -13.396 < 0.05 
2018 -0.7329013 0.0576697 -12.709 < 0.05 
2019 -0.5973962 0.0599964 -9.957 < 0.05 
pCO2 -0.0007696 0.0001526 -5.043 < 0.05 
Substrate: Mixed  -0.0415384 0.0449888 -0.923 0.356 
Substrate: Soft -0.0129902 0.2042630   -0.064 0.949 
     

 
 
 
Appendix 10: Post Hoc Tukey test for Coral Richness GLM 
Table 12: Post-hoc Tukey test for the generalized linear model for coral richness. All survey time points are pairwise 
compared with one another, as indicated by the ‘contrast’ column. The estimate, standard error, degrees of freedom, z-ratio 
and p-values are reported for each of the pairwise comparisons. Results are averaged by levels of substrate category 
(‘hard’, ‘mixed’ or ‘soft’).  

Contrast Estimate Standard 
Error (SE) 

Degrees of 
Freedom (df) 

z-ratio p-value 

2017 - 2018        0.7329 0.0577 Inf 12.709 <.0001 
2017 - (2018-m)    0.7864 0.0587 Inf 13.396 <.0001 
2017 - 2019          0.5974 0.0600 Inf 9.957 <.0001 
2018 - (2018-m)   0.0535 0.0663 Inf 0.807 0.8511 
2018 - 2019       -0.1355 0.0651 Inf  -2.083 0.1587 
(2018-m) - 2019     -0.1890 0.0684 Inf -2.765 0.0291 
      
 
 
 

     

Appendix 11: Coefficients table for Sponge Richness  
Table 13: Coefficients table from sponge richness model. Treatment contrasts of estimated regression parameters, standard 
errors, z-values and P-values for the quasi-Poisson GLM. 

 Estimate Standard Error (SE) z-ratio p-value 

(Intercept)  2.0715275 0.1792281 11.558 < 0.05 
March, 2018   -1.0511354 0.0928491 -11.321 < 0.05 
2018 -1.4953014 0.1043586 -14.328 < 0.05 
2019 -0.7744472 0.0915655 -8.458 < 0.05 
pCO2 -0.0024712 0.0002897 -8.531 < 0.05 
Substrate: Mixed  0.0125419 0.0696545 0.180 0.857   
Substrate: Soft -0.0311263 0.3207686 -0.097   0.923 

 
 
 
 



 

 71 

Appendix 12: Post Hoc Tukey test for Sponge Richness GLM 
Table 14: Post-hoc Tukey test for the generalized linear model for sponge richness. All survey time points are pairwise 
compared with one another, as indicated by the ‘contrast’ column. The estimate, standard error, degrees of freedom, z-ratio 
and p-values are reported for each of the pairwise comparisons. Results are averaged by levels of substrate category 
(‘hard’, ‘mixed’ or ‘soft’). 

Contrast Estimate Standard 
Error (SE) 

Degrees of 
Freedom (df) 

z-ratio p-value 

2017 - 2018        1.495 0.1044 Inf 14.328 <.0001 
2017 - (2018-m)    1.051 0.0928 Inf 11.321 <.0001 
2017 - 2019          0.774 0.0916 Inf 8.458 <.0001 
2018 - (2018-m)   -0.444 0.1186 Inf -3.745  0.0010 
2018 - 2019       -0.721 0.1120 Inf  -6.436   <.0001 
(2018-m) - 2019     -0.277 0.1070 Inf -2.587 0.0477 
      
 
 
 

     

Appendix 13: Coefficient table for Hill-Shannon Diversity LM 
Table 15: Coefficients table for linear model of Hill-Shannon diversity. Treatment contrasts of estimated regression 
parameters, standard errors, t-values and P-values for the fitted linear model. 

 Estimate Standard Error (SE) t-ratio p-value 

(Intercept)  3.2793235 0.0990570 33.105 < 0.05 
March, 2018   -1.2722606 0.0632806 -20.105 < 0.05 
2018 -1.0761012 0.0639514 -16.827 < 0.05 
2019 -0.9194729 0.0675661 -13.608 < 0.05 
pCO2 -0.0010000 0.0001381 -7.239 < 0.05 
Substrate: Mixed  0.1151428 0.0478168 2.408 < 0.05  
Substrate: Soft -0.3292637 0.2159516 -1.525 0.1276 
     

 
 
Appendix 14: Post Hoc Tukey test for Hill-Shannon Diversity LM 
Table 16: Post-hoc Tukey test for linear model of Hill-Shannon diversity. All survey time points are pairwise compared with 
one another, as indicated by the ‘contrast’ column. The estimate, standard error, degrees of freedom, t-ratio and p-values 
are reported for each of the pairwise comparisons. Results are averaged over the levels of Substrate categories (‘Hard’, 
‘Mixed’ and ‘Soft’). 

Contrast Estimate Standard 
Error (SE) 

Degrees of 
Freedom (df) 

t-ratio p-value 

2017 - 2018        1.076 0.0640  1259 16.827 <.0001 
2017 - (2018-m)    1.272 0.0633 1259 20.105 <.0001 
2017 - 2019          0.919 0.0676 1259 13.608 <.0001 
2018 - (2018-m)   0.196 0.0620   1259 3.165 0.0086 
2018 - 2019       -0.157 0.0646 1259 -2.426 0.0728 
(2018-m) - 2019     -0.353 0.0656 1259 -5.381 <.0001 
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Appendix 15: Coefficient table for Hill-Simpson Diversity LM 
Table 17: Coefficients table for linear model of Hill-Simpson diversity. Treatment contrasts of estimated regression 
parameters, standard errors, t-values and P-values for the fitted linear model.  

 Estimate Standard Error (SE) t-ratio p-value 

(Intercept)  2.231 0.06205 35.951 < 0.05 
March, 2018   -0.7162 0.03964 -18.067 < 0.05 
2018 -0.5843 0.04006 -14.586 < 0.05 
2019 -0.5372 0.04232 -12.693 < 0.05 
pCO2 -0.0005627 0.00008653 -6.503 < 0.05 
Substrate: Mixed  0.05106 0.02995 1.705 0.0885 
Substrate: Soft -0.2116 0.1353 -1.564 0.1180 
     
 
 
 

    

Appendix 16: Post Hoc Tukey test for Hill-Simpson Diversity LM 
Table 18: Post-hoc Tukey test for linear model of Hill-Simpson diversity. All survey time points are pairwise compared with 
one another, as indicated by the ‘contrast’ column. The estimate, standard error, degrees of freedom, t-ratio and p-values 
are reported for each of the pairwise comparisons. Results are averaged over the levels of Substrate categories (‘Hard’, 
‘Mixed’ and ‘Soft’). 

Contrast Estimate Standard 
Error (SE) 

Degrees of 
Freedom (df) 

t-ratio p-value 

2017 - 2018        0.5843 0.0401 1259 14.586 <.0001 
2017 - (2018-m)    0.7162 0.0396 1259 18.067 <.0001 
2017 - 2019          0.5372 0.0423 1259 12.693 <.0001 
2018 - (2018-m)   0.1318 0.0388 1259 3.397 0.0039 
2018 - 2019       -0.0471 0.0405 1259 -1.164 0.6498 
(2018-m) - 2019     -0.1789 0.0411 1259 -4.357   0.0001 
      
 
 
 

     

Appendix 17: Coefficient table for Pielou’s Evenness Diversity LM 
Table 19: Coefficients table for linear model of Hill-Simpson diversity. Treatment contrasts of estimated regression 
parameters, standard errors, t-values and P-values for the fitted linear model. 

 Estimate Standard Error (SE) t-ratio p-value 

(Intercept)  0.5153 0.01632 31.576 < 0.05 
March, 2018   -0.1862 0.01043 -17.860 < 0.05 
2018 -0.1059 0.01053 -10.057 < 0.05 
2019 -0.1195 0.01112 -10.745 < 0.05 
pCO2 -0.0002152 0.00002276 -9.455 < 0.05 
Substrate: Mixed  0.03708 0.007881 4.705 < 0.05 
Substrate: Soft -0.05649 0.03556 -1.589 0.112 
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Appendix 18: Post Hoc Tukey test for Pielou’s Evenness LM 
Table 20: Post-hoc Tukey test for linear model of Pielou’s Evenness. All survey time points are pairwise compared with one 
another, as indicated by the ‘contrast’ column. The estimate, standard error, degrees of freedom, t-ratio and p-values are 
reported for each of the pairwise comparisons. Results are averaged over the levels of Substrate categories (‘Hard’, ‘Mixed’ 
and ‘Soft’).  

Contrast Estimate Standard 
Error (SE) 

Degrees of 
Freedom (df) 

t-ratio p-value 

2017 - 2018        0.1059 0.0105 1258 10.057 <.0001 
2017 - (2018-m)    0.1862 0.0104 1258 17.860 <.0001 
2017 - 2019          0.1195 0.0111 1258 10.745 <.0001 
2018 - (2018-m)   0.0803 0.0102 1258 7.866 <.0001 
2018 - 2019       0.0136 0.0106 1258 1.282 0.5743 
(2018-m) - 2019     -0.0667 0.0108 1258 -6.172 <.0001 
      

 
Appendix 19: Species codes for ordination plots 
Table 21: Species codes for ordination plots. Species were given shorter codes to make it easier to interpret ordination plots. 

Scientific Name Species Code 

HARD CORALS - Scleractinia 
Colpophyllia natans Col.nat  
Diploria sp.  Dip.spp. 
Madracis mirabilis Mad.mir 
Montastraea cavernosa Mon.cav 
Orbicella annularis Orb.ann 
Orbicella faveolata Orb.fav 
Porites astreoides Por.ast 
Porites divaricata Por.div 
Porites porites Por.por 
Siderastrea siderea Sid.sid 
Siderastrea radians Sid.rad 
Solenastrea bournoni Sol.bou. 
Stephanocoenia intersepta Ste.int 
CORALS – Anthoathecata (hydrocoral) 
Millepora spp.  Mil.spp. 
CORALS - Alcyonacea  
Gorgonia spp. Gor.spp. 
Pseudopterogorgia spp. Pse.spp. 
SPONGES – Demospongia / PORIFERA  
Agelas spp. Age.spp. 
Amphimedon compressa Amp.com. 
Aplysina cauliformis Apl.cau. 
Aplysina fistularis Apl.fis 
Chondrilla nucula Cho.nuc. 
Cliona spp. Cli.spp. 
Iotrochota birotulata Iot.bir 
Ircinia felix Iri.fel 
Ircinia spp. Iri.spp. 
Oceanapia bartschi Oce.bar. 
Siphonodictyon spp. Sip.spp. 
Svenzea spp. Sve.spp. 
Verongula rigida Ver.rig. 
Verongula spp.  Ver.spp. 
Xestospongia muta Xes.mut. 
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MACROALGAE  
Dictyota spp.  Dic.spp. 
Brown turf algae brown.alg 
Calcifying algae calc.alg 
Green turf algae  green.turf 
Unidentified green algae green.alg 
   CNIDARIAN  
Stichodactyla helianthus  Sti.hel. 
   ECHINODERMATA  
Diadema antillarum Did.ant. 
   POLYCHAETA  
Loimia medusa Loi.med. 
Hermodice spp. Her.spp. 
Sabellastarte spp.  Sab.spp. 
Bispira spp. Bis.spp. 
  

 
 
 
 
Appendix 20: RDA of species in 2017, including brown turf algae 

 
Figure 19: Redundancy analysis (RDA) for all species in the summer of 2017. A biplot was made to display the species 
responses to the response to environmental variables. Factor level variable substrate category (indicated by labels ‘Hard’ 
or ‘Mixed’) are indicated by red crosses. pCO2 measurements are represented by the blue arrow, with arrow length and 
direction corresponds with the variance which can be explained by that explanatory variable. The direction of the arrows 
indicates an increasing magnitude of the variable.   
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Appendix 21: RDA of species in March of 2018, including brown turf algae 

 
Figure 20: Redundancy analysis (RDA) for all species in March of 2018. A biplot was made to display the species responses 
to the response to environmental variables. Factor level variable substrate category (indicated by labels ‘Hard’ or ‘Mixed’) 
are indicated by red crosses. pCO2 measurements are represented by the blue arrow, with arrow length and direction 
corresponds with the variance which can be explained by that explanatory variable. The direction of the arrows indicates an 
increasing magnitude of the variable.   
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Appendix 22: RDA of species in summer of 2018, including brown turf algae 

 
Figure 21: Redundancy analysis (RDA) for all species in the summer of 2018. A biplot was made to display the species 
response to the environmental variables. Factor level variable substrate category (indicated by labels ‘Hard’ or ‘Mixed’) 
are indicated by red crosses. pCO2 measurements are represented by the blue arrow, with arrow length and direction 
corresponds with the variance which can be explained by that explanatory variable. The direction of the arrows indicates an 
increasing magnitude of the variable.   

 

 
Appendix 23: RDA of species in 2019, including brown turf algae 

 
Figure 22: Redundancy analysis (RDA) for all species in the summer of 2018. A biplot was made to display the species 
response to the environmental variables. Factor level variable substrate category (indicated by labels ‘Hard’ or ‘Mixed’) 
are indicated by red crosses. pCO2 measurements are represented by the blue arrow, with arrow length and direction 
corresponds with the variance which can be explained by that explanatory variable. The direction of the arrows indicates an 
increasing magnitude of the variable.   
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Appendix 24: Table of Partitioning of Variance in RDA models 
Table 22: Partitioning of variance from all RDA models. Constrained variance includes the variance explained by the 
predictor variables in the model. Unconstrained variance includes all of the variance that could not be explained by these 
variables. Total variance is the sum of all the variance. The proportions of each of these variance categories is given in the 
“Proportion” column. 

 Partitioning of variance: 
Year:  Inertia (variance) Proportion 
2017 Total 0.21613 1.00000 

Constrained 0.01759  0.08140 
Unconstrained 0.19854 0.91860 

2018, March Total 0.09029 1.0000 
Constrained 0.01459 0.16160 
Unconstrained 0.07570 0.83840 

2018 Total 0.08500 1.00000 
Constrained 0.01692 0.19902 
Unconstrained 0.06808 0.80098 

2019 Total 0.09691 1.00000 
Constrained 0.01286 0.13268 
Unconstrained 0.08405 0.86732 

All survey time points Total 0.13666 1.00000 
 Constrained 0.02638 0.19305 
 Unconstrained 0.11028 0.80695 

 
Appendix 25: Table of Summary Output from RDA 
 

Table 23: Summary outcome of all Redundancy Analyses (RDAs). Predictor variables included in the five fitted models are 
shown with degreed of freedom (Df), variance, a pseudo-F statistic and a p-value.  

Model:  Predictor variable Df Variance Pseudo-F p 
RDA for 2017     

pCO2 1 0.014870 11.609 0.001 
Substrate category 1 0.001775 1.386 0.194 
Residual 155 0.198537   

RDA for 2018, March     
pCO2 1 0.002093 4.508 0.009 
Substrate category 1 0.010825 23.309 0.001 
Residual 163 0.075700   

RDA for 2018     
pCO2 1 0.003408 8.359 0.001 
Substrate category 1 0.009900 24.283 0.001 
Residual 167 0.068085   

RDA for 2019     
pCO2 1 0.007853 12.894 0.001 
Substrate category 1 0.001805 2.964 0.014 
Residual 138 0.084052   

RDA for all years 
Survey time point 3 0.015804 29.665 0.001 
pCO2 1 0.003721 20.952 0.001 
Substrate category 1 0.005029 28.319 0.001 
Residual 621 0.110281   
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Appendix 26: Eigenvalues of constrained axes for CCAs without brown turf algae 
 

Table 24: Eigenvalues for constrained and unconstrained axes for canonical correspondence analysis (CCA) without brown 
turf algae. Number of axes are listed for both constrained and unconstrained axes. Eigenvalues of the two constrained axes 
with the largest values and the three unconstrained axes with the largest eigenvalues. 

Model:  Eigenvalues for constrained axes Eigenvalues for unconstrained axes 
 Number 

of axes 
CCA1 CCA2 Number 

of axes 
CA1 CA2 CA3 

2017  2 0.06367 0.03917 40 0.4372 0.3256 0.2617 
2018, 
March 

2 0.08524 0.02651 31 0.3821 0.3441 0.3380 

2018 2 0.08071 0.02008 26 0.3405 0.3092 0.2721 
2019 2 0.05608 0.03467 31 0.3130 0.2869 0.2646 
All years 5 0.10267 0.04572 40 0.3708 0.2789 0.2680 
Macro 6 0.22306 0.14094 6 0.8308 0.6552 0.5808 
        
        

Appendix 27: Eigenvalues of constrained axes for RDAs with brown turf algae 
Table 25: Eigenvalues for constrained and unconstrained axes for redundancy analysis (RDA) with brown turf algae. 
Number of axes are listed for both constrained and unconstrained axes. Eigenvalues of the two constrained axes with the 
largest values and the three unconstrained axes with the largest eigenvalues. 

Model:  Eigenvalues for constrained axes Eigenvalues for unconstrained axes 
 Number 

of axes 
RDA1 RDA2 Number 

of axes 
PC1 PC2 PC3 

2017  2 0.01602 0.00158 44 0.09480 0.01634 0.01182 
2018, 
March 

2 0.01417 0.00042 34 0.03995 0.00646 0.00500 

2018 2 0.01563 0.00128 28 0.02375 0.01203 0.00704 
2019 2 0.01128 0.00158 34 0.02838 0.01161 0.00843 
All years 5 0.01912 0.00523 44 0.04619 0.01115 0.00751 
        

 
Appendix 28: Table of Partitioning of Variance in CCA models 
Table 26: Partitioning of variance from all CCA models. Constrained variance includes the variance explained by the 
predictor variables in the model. Unconstrained variance includes all of the variance that could not be explained by these 
variables. Inertia is a scales Chi-squared value. The proportions of each of these inertia categories is given in the 
“Proportion” column.  

 Partitioning of variance: 
Year:  Inertia  

(scaled Chi-square) 
Proportion 

2017 Total 4.4691 1.0000 
Constrained 0.1028 0.0230 
Unconstrained 4.3662 0.9770 

2018, March Total 5.4073 1.0000 
Constrained 0.1118 0.0207 
Unconstrained 5.2955 0.9793 

2018 Total 3.7325 1.0000 
Constrained 0.1008 0.0270 
Unconstrained 3.6317 0.9730 

2019 Total 3.7451 1.0000 
Constrained 0.0908 0.0242 
Unconstrained 3.6544 0.9758 
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All survey time points Total 5.7801 1.0000 
 Constrained 0.2025 0.0350 
 Unconstrained 5.5777 0.9650 
Macro count model Total 3.5859 1.0000 
 Constrained 0.4123 0.1150 
 Unconstrained 3.1735 0.8850 
    

 
Appendix 29: Table of Summary Output from CCAs 
Table 27: Summary outcome of all Canonical Correspondence Analysis (CCAs). Predictor variables included in the five 
fitted models are shown with degreed of freedom (Df), Chi-square value, a pseudo-F statistic and a p-value.  

Model:  Predictor variable Df Chi-square Pseudo-F p 
CCA for 2017     

pCO2 1 0.0637 2.2603 0.002 
Substrate category 1 0.0397 1.4087 0.068 
Residual 155 4.3662   

CCA for 2018, March     
pCO2 1 0.0456 1.3964 0.097 
Substrate category 1 0.0555 1.6968 0.004 
Residual 162 5.2955   

CCA for 2018     
pCO2 1 0.0300 1.3813 0.142 
Substrate category 1 0.0792 3.6402 0.001 
Residual 167 3.6317   

CCA for 2019     
pCO2 1 0.0501 1.8935 0.015 
Substrate category 1 0.0503 1.8976 0.003 
Residual 138 3.6544   

CCA for all years 
Survey time point 3 0.1554 5.7597 0.001 
pCO2 1 0.0236 2.6256 0.001 
Substrate category 1 0.0266 2.9592 0.001 
Residual 620 5.5776   

Macro count model 
Survey time point 3 0.3314 21.2322 0.001 
pCO2 1 0.0195 3.7545 0.009 
Substrate category 1 0.0537 5.1563 0.010 
Residual 610 3.1735   

 
 
 
 


