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Abstract
Let G = (V , E) be a graph and e = uv ∈ E . Define nu(e,G) be the number of vertices of G
closer to u than to v. The number nv(e,G) can be defined in an analogous way. The Mostar
index ofG is a new graph invariant defined asMo(G) = ∑

uv∈E(G) |nu(uv,G)−nv(uv,G)|.
The edge version of Mostar index is defined as Moe(G) = ∑

e=uv∈E(G) |mu(e|G) −
mv(G|e)|, where mu(e|G) and mv(e|G) are the number of edges of G lying closer to vertex
u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u,
respectively. LetG be a connected graph constructed from pairwise disjoint connected graphs
G1, . . . ,Gk by selecting a vertex of G1, a vertex of G2, and identifying these two vertices.
Then continue in this manner inductively. We say that G is a polymer graph, obtained by
point-attaching from monomer units G1, . . . ,Gk . In this paper, we consider some particular
cases of these graphs that are of importance in chemistry and study their Mostar and edge
Mostar indices.

Keywords Mostar index · Edge Mostar index · Polymer · Chain

Mathematics Subject Classification 05C09 · 05C92

1 Introduction

A molecular graph is a simple graph such that its vertices correspond to the atoms and the
edges to the bonds of a molecule. Let G = (V , E) be a finite, connected, simple graph.
A topological index of G is a real number related to G. It does not depend on the labeling
or pictorial representation of a graph. The Wiener index W (G) is the first distance-based
topological index defined as W (G) = ∑

{u,v}⊆G d(u, v) = 1
2

∑
u,v∈V (G) d(u, v) with the
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summation runs over all pairs of vertices of G Wiener (1947). The topological indices and
graph invariants based on distances between vertices of a graph are widely used for char-
acterizing molecular graphs, establishing relationships between structure and properties of
molecules, predicting biological activity of chemical compounds, and making their chemical
applications. The Wiener index is one of the most used topological indices with high cor-
relation with many physical and chemical indices of molecular compounds Wiener (1947).
In a recent paper, Doslić et al. (2018) introduced a newbond-additive structural invariant
as a quantitative refinement of the distance nonbalancedness and also a measure of periph-
erality in graphs. They used the name Mostar index for this invariant which is defined as
Mo(G) = ∑

uv∈E(G) |nu(uv,G) − nv(uv,G)|, where nu(uv,G) is the number of vertices
of G closer to u than to v, and similarly, nv(uv,G) is the number of vertices closer to v than
to u. They determined the extremal values of this invariant and characterized extremal trees
and unicyclic graphs with respect to the Mostar index. Akhter in [1] computed the Mostar
index of corona product, Cartesian product, join, lexicographic product, Indu-Bala product
and subdivision vertex-edge join of graphs and applied results to find the Mostar index of
various classes of chemical graphs and nanostructures. The Mostar index of bicyclic graphs
was studied by Tepeh (2019). A cacti graph is a graph in which any block is either a cut edge
or a cycle, or equivalently, a graph in which any two cycles have at most one common vertex.
Hayat and Zhou (2019) gave an upper bound for the Mostar index of cacti of order n with k
cycles, and also they characterized those cacti that achieve the bound.

The edge version of Mostar index has considered in Arockiaraj et al. (2019), Liu et al.
(2020) and is defined as Moe(G) = ∑

e=uv∈E(G) |mu(e|G) − mv(G|e)|, where mu(e|G)

and mv(e|G) are the number of edges of G lying closer to vertex u than to vertex v and
the number of edges of G lying closer to vertex v than to vertex u, respectively. Liu et al.
(2020) determined the extremal values of edge Mostar index of some graphs such as trees
and unicyclic graphs.

For every edge uv ∈ E(G), since u is closer to u than v and v is closer to v than u, and
they do not effect on the results by the definition of Mostar index, we do not consider them
in our counting.

In this paper, we consider the Mostar index and the edge Mostar index of polymer graphs.
Such graphs can be decomposed into subgraphs that we call monomer units. Blocks of graphs
are particular examples of monomer units, but a monomer unit may consist of several blocks.
For convenience, the definition of these kind of graphs will be given in the next section. In
Sect. 2, the Mostar index of some graphs are computed from their monomer units. In Sect.
3, we obtain the Mostar index and the edge Mostar index of families of graphs that are of
importance in chemistry.

2 Mostar index and edgeMostar index of polymers

LetG be a connected graph constructed from pairwise disjoint connected graphsG1, . . . ,Gk

as follows. Select a vertex of G1, a vertex of G2, and identify these two vertices. Then
continue in this manner inductively. Note that the graph G constructed in this way has a
tree-like structure, the Gi ’s being its building stones (see Fig. 1). Usually say that G is a
polymer graph, obtained by point-attaching from G1, . . . ,Gk and that Gi ’s are the monomer
units of G. A particular case of this construction is the decomposition of a connected graph
into blocks (see Alikhani and Ghanbari 2021; Emeric and Klavžar 2013).
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Gi

Gj

Fig. 1 A polymer graph with monomer units G1, . . . ,Gk

The following theorem is easy result which obtain by the definition of Mostar index, edge
Mostar index and point-attaching graph.

Theorem 2.1 If G is a polymer graph with the monomer units G1, . . . ,Gk, then Mo(G) >∑n
i=1 Mo(Gi ), and Moe(G) >

∑n
i=1 Moe(Gi ).

We consider some particular cases of point-attaching graphs and study their Mostar and
edge Mostar index. As an example of point-attaching graph, consider the graph Km and m
copies of Kn . By definition, the graph Q(m, n) is obtained by identifying each vertex of Km

with a vertex of a unique Kn . The graph Q(5, 4) is shown in Fig. 2.

Theorem 2.2 For the graph Q(m, n) (see Fig. 2), we have

(i) Mo(Q(m, n)) = mn(m − 1)(n − 1).
(ii) Moe(Q(m, n)) = m(n−1)(m−1)

2 (n2 − n + m).

Proof (i) First, consider the edge uiu j in Km . There are n − 1 vertices which are closer to
ui than u j , and there are n − 1 vertices closer to u j than ui . So |nui (uiu j , Q(m, n)) −
nu j (u jui , Q(m, n))| = 0. Now consider the edge vw in the i th Kn . There is no vertices
which are closer to v thanw, and visa versa. So |nv(vw, Q(m, n))−nw(vw, Q(m, n))| =
0. Finally, consider the edge uiv in the i th Kn . There are n(m − 1) vertices which are
closer to ui than v, and there is no vertices closer to v than ui . So |nui (uiv, Q(m, n)) −
nv(uiv, Q(m, n))| = n(m − 1). Since there are m(n − 1) edges like uiv in Q(m, n);
therefore, we have the result.

(ii) First consider the edge uiu j in Km . There are n(n−1)
2 edges which are closer to ui

than u j , and there are n(n−1)
2 edges closer to u j than ui . So |mui (uiu j , Q(m, n)) −

mu j (u jui , Q(m, n))| = 0. Now consider the edge vw in the i th Kn . There is
no edges which are closer to v than w, and visa versa. So |mv(vw, Q(m, n)) −
mw(vw, Q(m, n))| = 0. Finally, consider the edge uiv in the i th Kn . There are
n(n−1)(m−1)

2 + m(m−1)
2 edges which are closer to ui than v, and there is no edges closer

to v than ui . So |mui (uiv, Q(m, n))−mv(uiv, Q(m, n))| = (m−1)
2 (n2 − n +m). Since

there are m(n − 1) edges like uiv in Q(m, n), so we have the result.
��
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Fig. 2 The graph Q(m, n) and Q(5, 4), respectively

x1 x2 x3y1 y2 y3
G1 G2 G3

xn ynyn−1
Gn−1

xn−1
Gn

Fig. 3 Link of n graphs G1,G2, . . . ,Gn

2.1 Upper bounds for theMostar (edgeMostar) index of polymers

In this subsection, we consider some special polymer graphs and present upper bounds for
the Mostar index and edge Mostar index of them. The following theorem is about the link of
graphs.

Theorem 2.3 Let G be a polymer graph with composed of monomers {Gi }ki=1 with respect
to the vertices {xi , yi }ki=1. Let G be the link of graphs (see Fig. 3). Then

(i)

Mo(G) ≤
n∑

i=1

Mo(Gi ) +
n∑

i=1

|E(Gi )|(|V (G)| − |V (Gi )|)

+
n−1∑

i=1

∣
∣
∣

i∑

t=1

|V (Gt )| −
n∑

t=i+1

|V (Gt )|
∣
∣
∣.

(ii)

Moe(G) ≤
n∑

i=1

Moe(Gi ) +
n∑

i=1

|E(Gi )|(|E(G)| − |E(Gi )|)

+
n−1∑

i=1

∣
∣
∣

i∑

t=1

|E(Gt )| −
n∑

t=i+1

|E(Gt )|
∣
∣
∣.

Proof (i) Consider the graph Gi (Fig. 3) and let n′
u(uv,Gi ) be the number of vertices of Gi

closer to u than v in Gi . By the definition of Mostar index, we have

Mo(G) =
∑

uv∈E(G)

|nu(uv,G) − nv(uv,G)|

=
n∑

i=1

∑

uv∈E(Gi )

|nu(uv,Gi ) − nv(uv,Gi )|
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+
n−1∑

i=1

∑

yi xi+1∈E(G)

|nyi (yi xi+1,G) − nxi+1(yi xi+1,G)|

=
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )<d(v,yi )

|nu(uv,Gi ) − nv(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(v,yi )<d(u,yi )

|nu(uv,Gi ) − nv(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )=d(v,yi )

|nu(uv,Gi ) − nv(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi ),d(u,yi )<d(v,yi )

|nu(uv,Gi ) − nv(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi ),d(u,yi )=d(v,yi )

|nu(uv,Gi ) − nv(uv,Gi )|

+
n−1∑

i=1

∑

yi xi+1∈E(G)

|nyi (yi xi+1,G) − nxi+1(yi xi+1,G)|

=
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )<d(v,yi )
∣
∣
∣n′

u(uv,Gi ) + |V (G) − V (Gi )| − n′
v(uv,Gi )

∣
∣
∣

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(v,yi )<d(u,yi )

∣
∣
∣n′

u(uv,Gi ) +
i∑

t=1

|V (Gt )| − n′
v(uv,Gi ) −

n∑

t=i+1

|V (Gt )|
∣
∣
∣

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )=d(v,yi )

∣
∣
∣

n′
u(uv,Gi ) +

i∑

t=1

|V (Gt )| − n′
v(uv,Gi )

∣
∣
∣

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi ),d(u,yi )<d(v,yi )

∣
∣
∣n′

u(uv,Gi ) − n′
v(uv,Gi ) −

n∑

t=i+1

|V (Gt )|
∣
∣
∣

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi ),d(u,yi )=d(v,yi )

|n′
u(uv,Gi ) − n′

v(uv,Gi )|

123



  260 Page 6 of 21 N. Ghanbari, S. Alikhani

+
n−1∑

i=1

∣
∣
∣

i∑

t=1

|V (Gt )| −
n∑

t=i+1

|V (Gt )|
∣
∣
∣

≤
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )<d(v,yi )

|n′
u(uv,Gi ) − n′

v(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )<d(v,yi )

|V (G) − V (Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(v,yi )<d(u,yi )

|n′
u(uv,Gi ) − n′

v(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )<d(v,yi )

|V (G) − V (Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )=d(v,yi )

|n′
u(uv,Gi ) − n′

v(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )<d(v,yi )

|V (G) − V (Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi ),d(u,yi )<d(v,yi )

|n′
u(uv,Gi ) − n′

v(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi ),d(u,yi )<d(v,yi )

|V (G) − V (Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi ),d(u,yi )=d(v,yi )

|n′
u(uv,Gi ) − n′

v(uv,Gi )|

+
n−1∑

i=1

∣
∣
∣

i∑

t=1

|V (Gt )| −
n∑

t=i+1

|V (Gt )|
∣
∣
∣

=
n∑

i=1

Mo(Gi ) +
n∑

i=1

|E(Gi )|(|V (G)| − |V (Gi )|)

+
n−1∑

i=1

∣
∣
∣

i∑

t=1

|V (Gt )| −
n∑

t=i+1

|V (Gt )|
∣
∣
∣.

Therefore, we have the result.
(ii) The proof is similar to Part (i). ��

By the same argument similar to the proof of Theorem 2.3, we have

Theorem 2.4 Let G1,G2, . . . ,Gn be a finite sequence of pairwise disjoint connected graphs
and let xi , yi ∈ V (Gi ). Let C(G1, ...,Gn) be the chain of graphs {Gi }ni=1 with respect to
the vertices {xi , yi }ki=1 which obtained by identifying the vertex yi with the vertex xi+1 for
i = 1, 2, . . . , n − 1 (Fig. 4). Then

(i) Mo(C(G1, ...,Gn)) ≤ ∑n
i=1 Mo(Gi ) + ∑n

i=1 |E(Gi )|(|V (G)| − |V (Gi )|).
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x1 x2 x3

y1 y2 y3
G1 G2 G3

xn

ynyn−1
Gn−1

xn−1
Gn

Fig. 4 Chain of n graphs G1,G2, . . . ,Gn

Fig. 5 Bouquet of n graphs
G1,G2, . . . ,Gn and
x1 = x2 = . . . = xn = x

(ii) Moe(C(G1, ...,Gn)) ≤ ∑n
i=1 Moe(Gi ) + ∑n

i=1 |E(Gi )|(|E(G)| − |E(Gi )|).
With similar argument to the proof of Theorem 2.3, we have

Theorem 2.5 Let G1,G2, . . . ,Gn be a finite sequence of pairwise disjoint connected graphs
and let xi ∈ V (Gi ). Let B(G1, ...,Gn) be the bouquet of graphs {Gi }ni=1 with respect to the
vertices {xi }ni=1 and obtained by identifying the vertex xi of the graph Gi with x (see Fig. 5).
Then

(i)

Mo(B(G1, ...,Gn)) ≤
n∑

i=1

Mo(Gi ) +
n∑

i=1

|E(Gi )|(|V (G)| − |V (Gi )|).

(ii)

Moe(B(G1, ...,Gn)) ≤
n∑

i=1

Moe(Gi ) +
n∑

i=1

|E(Gi )|(|E(G)| − |E(Gi )|).

Theorem 2.6 Let G1,G2, . . . ,Gn be a finite sequence of pairwise disjoint connected graphs
and let xi ∈ V (Gi ). Let G be the circuit of graphs {Gi }ni=1 with respect to the vertices {xi }ni=1
and obtained by identifying the vertex xi of the graph Gi with the i th vertex of the cycle graph
Cn (Fig. 6). Then

Mo(G) ≤
n∑

i=1

Mo(Gi ) +
n∑

i=1

|E(Gi )|(|V (G)| − |V (Gi )|)

+

⎧
⎪⎨

⎪⎩

n
t∑

i=1

∣
∣
∣|V (Gi )| − |V (Gt+i )|

∣
∣
∣ if n = 2t,

(n − 1)|V (G)| if n = 2t − 1.

123
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Proof First consider the edge x1xn . There are two cases, n is even or odd. If n = 2t for some
t ∈ N, then, the vertices in the graphs G1,G2,G3, . . . ,Gt are closer to x1 than xn , and the
rest are closer to xn than x1. So

|nx1(x1xn,G) − nxn (x1xn,G)| =
∣
∣
∣

t∑

i=1

|V (Gi )| −
t∑

i=1

|V (Gt+i )|
∣
∣
∣

≤
t∑

i=1

∣
∣
∣|V (Gi )| − |V (Gt+i )|

∣
∣
∣.

It is easy to check that the same happens for xi xi+1 for all 1 ≤ i ≤ n − 1.
If n = 2t − 1 for some t ∈ N, then, the vertices in the graphs G1,G2,G3, . . . ,Gt−1 are

closer to x1 than xn , and the vertices in the graphs Gt+1,Gt+2,Gt+3, . . . ,Gn are closer to
xn than x1. The vertices in the graph Gt have the same distance to x1 and xn . So

|nx1(x1xn,G) − nxn (x1xn,G)| =
∣
∣
∣

t−1∑

i=1

|V (Gi )| −
t−1∑

i=1

|V (Gt+i )|
∣
∣
∣

≤ |V (G1)| + |V (G2)| + · · · + |V (Gt−1)|
+ |V (Gt+1)| + |V (Gt+2)| + · · · + |V (Gn)|

= |V (G)| − |V (Gt )|.
It is easy to check that |nx1(x1x2,G) − nx2(x1x2,G)| ≤ |V (G)| − |V (Gt+1)|, and this
continues. Nowwe consider the edge uv ∈ Gi . There are two cases, first u is closer to xi than
v, and second they have the same distance to xi . Let n′

u(uv,Gi ) be the number of vertices
of Gi closer to u than v in Gi . Then by the definition of Mostar index, we have

Mo(G) =
∑

uv∈E(G)

|nu(uv,G) − nv(uv,G)|

=
n∑

i=1

∑

uv∈E(Gi )

|nu(uv,Gi ) − nv(uv,Gi )|

+
n−1∑

i=1

∑

xi xi+1∈E(G)

|nxi (xi xi+1,G) − nxi+1(xi xi+1,G)|

+ |nx1(x1xn,G) − nxn (x1xn,G)|

=
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi )

|nu(uv,Gi ) − nv(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi )

|nu(uv,Gi ) − nv(uv,Gi )|

+
n−1∑

i=1

∑

xi xi+1∈E(G)

|nxi (xi xi+1,G) − nxi+1(xi xi+1,G)|

+ |nx1(x1xn,G) − nxn (x1xn,G)|

=
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi )

∣
∣
∣n′

u(uv,Gi ) + |V (G) − V (Gi )| − n′
v(uv,Gi )

∣
∣
∣

123
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+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi )

|n′
u(uv,Gi ) − n′

v(uv,Gi )|

+
n−1∑

i=1

∑

xi xi+1∈E(G)

|nxi (xi xi+1,G) − nxi+1(xi xi+1,G)|

+ |nx1(x1xn,G) − nxn (x1xn,G)|

≤
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi )

|n′
u(uv,Gi ) − n′

v(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )<d(v,xi )

|V (G) − V (Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi )

|n′
u(uv,Gi ) − n′

v(uv,Gi )|

+
n∑

i=1

∑

uv∈E(Gi ),d(u,xi )=d(v,xi )

|V (G) − V (Gi )|

+

⎧
⎪⎨

⎪⎩

n
t∑

i=1

∣
∣
∣|V (Gi )| − |V (Gt+i )|

∣
∣
∣ if n = 2t,

(n − 1)|V (G)| if n = 2t − 1,

=
n∑

i=1

Mo(Gi ) +
n∑

i=1

|E(Gi )|(|V (G)| − |V (Gi )|)

+

⎧
⎪⎨

⎪⎩

n
t∑

i=1

∣
∣
∣|V (Gi )| − |V (Gt+i )|

∣
∣
∣ if n = 2t,

(n − 1)|V (G)| if n = 2t − 1.

Therefore, we have the result. ��
Similarly, we have the following result for the edge Mostar index of circuit of graphs:

Theorem 2.7 Let G1,G2, . . . ,Gn be a finite sequence of pairwise disjoint connected graphs
and let xi ∈ V (Gi ). Let G be the circuit of graphs {Gi }ni=1 with respect to the vertices {xi }ni=1
and obtained by identifying the vertex xi of the graph Gi with the i th vertex of the cycle graph
Cn (Fig. 6). Then

Moe(G) ≤
n∑

i=1

Moe(Gi ) +
n∑

i=1

|E(Gi )|(|E(G)| − |E(Gi )|)

+

⎧
⎪⎨

⎪⎩

n
t∑

i=1

∣
∣
∣|E(Gi )| − |E(Gt+i )|

∣
∣
∣ if n = 2t,

(n − 1)|E(G)| if n = 2t − 1.

123
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Fig. 6 Circuit of n graphs
G1,G2, . . . ,Gn

2.2 Lower bounds for theMostar (edgeMostar) index of polymers

In this subsection, we consider some special polymer graphs and present lower bounds for
the Mostar index and the edge Mostar index of them.

Theorem 2.8 Let G be a link of two graphs G1 and G2 with respect to the vertices x, y. Then

(i) MO(G) > MO(G1) + MO(G2) +
∣
∣
∣|V (G1)| − |V (G2)|

∣
∣
∣.

(ii) MOe(G) > MOe(G1) + MOe(G2) +
∣
∣
∣|E(G1)| − |E(G2)|

∣
∣
∣.

Proof (i) Let n′
u(uv,Gi ) be the number of vertices ofGi closer to u than v inGi for i = 1, 2.

By the definition of Mostar index, we have

Mo(G) =
∑

uv∈E(G)

|nu(uv,G) − nv(uv,G)|

=
∑

uv∈E(G1)

|nu(uv,G) − nv(uv,G)|

+
∑

uv∈E(G2)

|nu(uv,G) − nv(uv,G)|

+ |nx (xy,G) − ny(xy,G)|
=

∑

uv∈E(G1),d(u,x)<d(v,x)

|nu(uv,G) − nv(uv,G)|

+
∑

uv∈E(G1),d(u,x)=d(v,x)

|nu(uv,G) − nv(uv,G)|

+
∑

uv∈E(G2),d(u,x)<d(v,x)

|nu(uv,G) − nv(uv,G)|

+
∑

uv∈E(G2),d(u,x)=d(v,x)

|nu(uv,G) − nv(uv,G)|

+ |nx (xy,G) − ny(xy,G)|
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=
∑

uv∈E(G1),d(u,x)<d(v,x)

∣
∣
∣n′

u(uv,G1) + |V (G2)| − n′
v(uv,G − 1)

∣
∣
∣

+
∑

uv∈E(G1),d(u,x)=d(v,x)

|n′
u(uv,G1) − n′

v(uv,G1)|

+
∑

uv∈E(G2),d(u,x)<d(v,x)

∣
∣
∣n′

u(uv,G2) + |V (G1)| − n′
v(uv,G2)

∣
∣
∣

+
∑

uv∈E(G2),d(u,x)=d(v,x)

|n′
u(uv,G2) − n′

v(uv,G2)|

+
∣
∣
∣|V (G1)| − |V (G2)|

∣
∣
∣

>
∑

uv∈E(G1),d(u,x)<d(v,x)

|n′
u(uv,G1) − n′

v(uv,G1)|

+
∑

uv∈E(G1),d(u,x)=d(v,x)

|n′
u(uv,G1) − n′

v(uv,G1)|

+
∑

uv∈E(G2),d(u,x)<d(v,x)

|n′
u(uv,G2) − n′

v(uv,G2)|

+
∑

uv∈E(G2),d(u,x)=d(v,x)

|n′
u(uv,G2) − n′

v(uv,G2)|

+
∣
∣
∣|V (G1)| − |V (G2)|

∣
∣
∣

= MO(G1) + MO(G2) +
∣
∣
∣|V (G1)| − |V (G2)|

∣
∣
∣.

(ii) The proof is similar to the proof of Part (i). ��
As an immediate result of Theorem 2.8, we have

Theorem 2.9 Let G be a polymer graph with composed of monomers {Gi }ki=1 with respect
to the vertices {xi , yi }ki=1. Let G be the link of graphs (see Fig. 3). Then

(i)

Mo(G) >

n∑

i=1

Mo(Gi ) +
n−1∑

t=1

∣
∣
∣|V (G) −

t⋃

i=1

V (Gi )| − |V (Gt )|
∣
∣
∣.

(ii)

Moe(G) >

n∑

i=1

Moe(Gi ) +
n−1∑

t=1

∣
∣
∣|E(G) −

t⋃

i=1

E(Gi )| − |E(Gt )|
∣
∣
∣.

3 Chemical applications

In this section, we obtain the Mostar index and the edge-Mostar index of families of graphs
that are of importance in chemistry.
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Fig. 7 Chain triangular cactus T2k

Theorem 3.1 Let Tn be the chain triangular graph of order n. Then for every n ≥ 2, and
k ≥ 1, we have

(i)

Mo(Tn) =
{
12k2 − 4k ifn = 2k,
12k2 + 8k if n = 2k + 1.

(ii)

Moe(Tn) =
{
18k2 − 6k if n = 2k,
18k2 + 12k if n = 2k + 1.

Proof (i) We consider the following cases:

Case 1. Suppose that n is even, and n = 2k for some k ∈ N. Consider the T2k as shown in
Fig. 7. One can easily check that whatever happens to computation of Mostar index
related to the edge uivi in the (i)th triangle in T2k , is the same as computation of
Mostar index related to the edge u2k−i+1v2k−i+1 in the (2k − i + 1)th triangle. The
same goes for wivi and w2k−i+1v2k−i+1, and also for wi ui and w2k−i+1u2k−i+1. So
for computing Mostar index, it suffices to compute the |nu(uv, T2k) − nv(uv, T2k)|
for every uv ∈ E(T2k) in the first k triangles and then multiple that by 2. So from
now, we only consider the first k triangles.
Consider the blue edge uivi in the (i)th triangle. There are 2(i−1) vertices which are
closer to vi than ui , but there are no vertices closer to ui than vi . So, |nui (uivi , T2k)−
nvi (uivi , T2k)| = 2(i − 1).
Now consider the green edge uiwi in the (i)th triangle. There are 2(2k − i) vertices
which are closer to wi than ui , but there are no vertices closer to ui than wi . So,
|nui (uiwi , T2k) − nwi (uiwi , T2k)| = 2(2k − i).
Finally, consider the red edge viwi in the (i)th triangle. There are 2(2k − i) vertices
which are closer to wi than vi , and there are 2(i − 1) vertices closer to vi than wi .
So, |nvi (viwi , T2k) − nwi (viwi , T2k)| = 2(2k − 2i + 1).
Since we have k edges like blue one, k edges like green one and k edges like red one,
then by our argument, we have

Mo(T2k) = 2

(
k∑

i=1

2(i − 1) +
k∑

i=1

2(2k − i) +
k∑

i=1

2(2k − 2i + 1)

)

= 12k2 − 4k.

Case 2. Suppose that n is odd and n = 2k + 1 for some k ∈ N. Now consider the T2k+1

as shown in Fig. 8. One can easily check that whatever happens to computation
of Mostar index related to the edge uivi in the (i)th triangle in T2k+1, is the same
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Fig. 8 Chain triangular cactus T2k+1

as computation of Mostar index related to the edge u2k−i+2v2k−i+2 in the (2k −
i + 2)th triangle. The same goes for wivi and w2k−i+2v2k−i+2, and also for wi ui
and w2k−i+2u2k−i+2. So for computing Mostar index, it suffices to compute the
|nu(uv, T2k+1)− nv(uv, T2k+1)| for every uv ∈ E(T2k+1) in the first k triangles and
then multiple that by 2 and add it to

∑
uv∈A |nu(uv, T2k+1)− nv(uv, T2k+1)|, where

A = {ab, bc, ac}. So from now, we only consider the first k triangles and the middle
one.
Consider the blue edge uivi in the (i)th triangle. There are 2(i − 1) vertices
which are closer to vi than ui , but there are no vertices closer to ui than vi . So,
|nui (uivi , T2k+1) − nvi (uivi , T2k+1)| = 2(i − 1).
Now consider the green edge uiwi in the (i)th triangle. There are 4k−2i +2 vertices
which are closer to wi than ui , but there are no vertices closer to ui than wi . So,
|nui (uiwi , T2k+1) − nwi (uiwi , T2k+1)| = 2(2k − i + 1).
Now consider the red edge viwi in the (i)th triangle. There are 2(2k− i +1) vertices
which are closer to wi than vi , and there are 2(i − 1) vertices closer to vi than wi .
So, |nvi (viwi , T2k+1) − nwi (viwi , T2k+1)| = 4(k − i + 1).
Finally, consider the middle triangle. For the edge ab, there are 2k vertices which are
closer tob thana, but there are no vertices closer toa thanb. Also for the edgeac, there
are 2k vertices which are closer to c than a, but there are no vertices closer to a than
c and for the edge bc, there are 2k vertices which are closer to b than c, and there are
2k vertices closer to c than b. Hence,

∑
uv∈A |nu(uv, T2k+1)−nv(uv, T2k+1)| = 4k,

where A = {ab, bc, ac}.
Since we have k edges like blue one, k edges like green one and k edges like red one,
then by our argument, we have

Mo(T2k+1) = 2

(
k∑

i=1

2(i − 1) +
k∑

i=1

2(2k − i + 1) +
k∑

i=1

4(k − i + 1)

)

+ 4k

= 12k2 + 8k.

Therefore, we have the result.

(ii) The proof is similar to proof of Part (i). ��

Theorem 3.2 Let Qn be the para-chain square cactus graph of order n. Then for every n ≥ 1,
and k ≥ 1, we have

(i)

Mo(Qn) =
{
24k2 ifn = 2k,
24k2 + 24k if n = 2k + 1,
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Fig. 9 Para-chain square cactus Q2k

(ii)

Moe(Qn) =
{
32k2 if n = 2k,
32k2 + 32k if n = 2k + 1,

Proof (i) We consider the following cases:

Case 1. Suppose that n is even and n = 2k for some k ∈ N. Now consider the Q2k as shown
in Fig. 9. One can easily check that whatever happens to computation ofMostar index
related to the edge uivi in the (i)th rhombus in Q2k , is the same as computation of
Mostar index related to the edge u2k−i+1v2k−i+1 in the (2k − i + 1)th rhombus. The
same goes for wivi and w2k−i+1v2k−i+1, for wi xi and w2k−i+1x2k−i+1, and also for
xi ui and x2k−i+1u2k−i+1. So for computing Mostar index, it suffices to compute the
|nu(uv, Q2k)− nv(uv, Q2k)| for every uv ∈ E(Q2k) in the first k rhombus and then
multiple that by 2. So from now, we only consider the first k rhombus.
Consider the red edge uivi in the (i)th rhombus. There are 3k+3(k − i)+1 vertices
which are closer to vi than ui , and there are 3i − 2 vertices closer to ui than vi . So,
|nui (uivi , Q2k) − nvi (uivi , Q2k)| = 6k − 6i + 3.
One can easily check that the edges wivi , wi xi and xi ui have the same attitude as
uivi . Since we have k edges like blue one, k edges like green one, k edges like yellow
one and k edges like red one, then by our argument, we have

Mo(Q2k) = 2

(

4
k∑

i=1

3(2k − 2i + 1)

)

= 24k2.

Case 2. Suppose that n is odd and n = 2k + 1 for some k ∈ N. Now consider the Q2k+1 as
shown in Figure 10. One can easily check that whatever happens to computation of
Mostar index related to the edge uivi in the (i)th rhombus in Q2k+1, is the same as
computation ofMostar index related to the edge u2k−i+2v2k−i+2 in the (2k− i+2)th
rhombus.The samegoes forwivi andw2k−i+2v2k−i+2, forwi xi andw2k−i+2x2k−i+2,
and also for xi ui and x2k−i+2u2k−i+2. So for computing Mostar index, it suffices to
compute the |nu(uv, Q2k+1) − nv(uv, Q2k+1)| for every uv ∈ E(Q2k+1) in the
first k rhombus and then multiple that by 2 and add it to

∑
uv∈A |nu(uv, Q2k+1) −

nv(uv, Q2k+1)|, where A = {ab, bc, cd, da}. So from now, we only consider the
first k + 1 rhombus.
Consider the red edge uivi in the (i)th rhombus. There are 3(k + 1) + 3(k − i) + 1
vertices which are closer to vi than ui , and there are 3i − 2 vertices closer to ui than
vi . So, |nui (uivi , Q2k+1) − nvi (uivi , Q2k+1)| = 6k − 6i + 6.
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Fig. 10 Para-chain square cactus Q2k+1

Fig. 11 Para-chain square cactus O2k

One can easily check that the edges wivi , wi xi and xi ui have the same attitude as
uivi .
Nowconsider themiddle rhombus. For the edge ab, there are 3k+1 verticeswhich are
closer to b than a, and there are 3k+1 vertices closer to a than b. the edges bc, cd and
da have the same attitude as ab. Hence,

∑
uv∈A |nu(uv, Q2k+1)−nv(uv, Q2k+1)| =

0, where A = {ab, bc, cd, da}.
Since we have k edges like blue one, k edges like green one, k edges like yellow one
and k edges like red one, then by our argument, we have

Mo(Q2k+1) = 2

(

4
k∑

i=1

6(k − i + 1)

)

= 24k2 + 24k.

Therefore, we have the result.

(ii) The proof is similar to the proof of Part (i). ��

Theorem 3.3 Let On be the para-chain square cactus graph of order n. Then for every n ≥ 1,
and k ≥ 1, we have

(i)

Mo(On) =
{
36k2 − 12k ifn = 2k,
36k2 + 24k if n = 2k + 1.

(ii)

Moe(On) =
{
48k2 − 16k if n = 2k,
48k2 + 32k if n = 2k + 1.

Proof (i) We consider the following cases:
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Case 1. Suppose that n is even and n = 2k for some k ∈ N. Now consider the O2k as shown
in Figure 11. One can easily check that whatever happens to computation of Mostar
index related to the edge uivi in the (i)th square in O2k , is the same as computation
of Mostar index related to the edge u2k−i+1v2k−i+1 in the (2k − i +1)th square. The
same goes for wivi and w2k−i+1v2k−i+1, for wi xi and w2k−i+1x2k−i+1, and also for
xi ui and x2k−i+1u2k−i+1. So for computing Mostar index, it suffices to compute the
|nu(uv, O2k) − nv(uv, O2k)| for every uv ∈ E(O2k) in the first k squares and then
multiple that by 2. So from now, we only consider the first k squares.
Consider the yellow edge uivi in the (i)th square. There are 3(2k)−2 vertices which
are closer to vi than ui , and there is only 1 vertex closer to ui than vi which is xi .
So, |nui (uivi , O2k) − nvi (uivi , O2k)| = 6k − 3. By the same argument, the same
happens to the edge xiwi .
Now consider the blue edge ui xi in the (i)th square. There are 3i − 2 vertices which
are closer to xi than ui , and there are 3k + 3(k − i) + 1 vertices closer to ui than
xi . So, |nui (ui xi , O2k)− nxi (ui xi , O2k)| = 6k − 6i + 3. By the same argument, the
same happens to the edge viwi .
Since we have k edges like blue one, k edges like green one, k edges like yellow one
and k edges like red one, then by our argument, we have

Mo(O2k) = 2

(

2
k∑

i=1

3(2k − 2i + 1) + 2
k∑

i=1

3(2k − 1)

)

= 36k2 − 12k.

Case 2. Suppose that n is odd and n = 2k + 1 for some k ∈ N. Now consider the O2k+1

as shown in Figure 12. One can easily check that whatever happens to computation
of Mostar index related to the edge uivi in the (i)th square in O2k+1, is the same as
computation ofMostar index related to the edge u2k−i+2v2k−i+2 in the (2k− i+2)th
square. The same goes for wivi and w2k−i+2v2k−i+2, for wi xi and w2k−i+2x2k−i+2,
and also for xi ui and x2k−i+2u2k−i+2. So for computing Mostar index, it suffices
to compute the |nu(uv, O2k+1) − nv(uv, O2k+1)| for every uv ∈ E(O2k+1) in the
first k squares and then multiple that by 2 and add it to

∑
uv∈A |nu(uv, O2k+1) −

nv(uv, O2k+1)|, where A = {ab, bc, cd, da}. So from now, we only consider the
first k + 1 squares.
Consider the yellow edge uivi in the (i)th square. There are 3(2k + 1) − 2 vertices
which are closer to vi than ui , and there is only 1 vertex closer to ui than vi which
is xi . So, |nui (uivi , O2k) − nvi (uivi , O2k)| = 6k. By the same argument, the same
happens to the edge xiwi .
Now consider the blue edge ui xi in the (i)th square. There are 3i − 2 vertices which
are closer to xi than ui , and there are 3(k + 1) + 3(k − i) + 1 vertices closer to ui
than xi . So, |nui (ui xi , O2k)−nxi (ui xi , O2k)| = 6k−6i +6. By the same argument,
the same happens to the edge viwi .
Now consider the middle square. For the edge ab, there are 3k+1 vertices which are
closer to b than a, and there are 3k+1 vertices closer to a than b. the edge cd has the
same attitude as ab. But for the edge ad , there are 3(2k + 1) − 2 vertices which are
closer to d than a, and there is only 1 vertex closer to a than d which is b, and the edge
bc has the same attitude as ad . Hence,

∑
uv∈A |nu(uv, O2k+1) − nv(uv, O2k+1)| =

12k, where A = {ab, bc, cd, da}.
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Fig. 12 Para-chain square cactus O2k+1

Fig. 13 Ortho-chain graph Oh
n

Since we have k edges like blue one, k edges like green one, k edges like yellow one
and k edges like red one, then by our argument, we have

Mo(O2k+1) = 2

(

2
k∑

i=1

6(k − i + 1) + 2
k∑

i=1

6k)

)

+ 12k = 36k2 + 24k.

Therefore, we have the result.

(ii) The proof is similar to the proof of Part (i). ��
By the same argument as the proof of Theorem 3.3, we have

Theorem 3.4 Let Oh
n be the ortho-chain graph of order n (See Fig. 13). Then for every n ≥ 1,

and k ≥ 1, we have

(i)

Mo(Oh
n ) =

{
100k2 − 40k ifn = 2k,
100k2 + 60k if n = 2k + 1.

(ii)

Moe(O
h
n ) =

{
72k2 ifn = 2k,
72k2 + 72k if n = 2k + 1.

By the same argument as the proof of Theorem 3.2, we have

Theorem 3.5 Let Ln be the para-chain hexagonal graph of order n (See Fig. 14). Then for
every n ≥ 1, and k ≥ 1, we have

(i)

Mo(Ln) =
{
60k2 ifn = 2k,
60k2 + 60k if n = 2k + 1.
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Fig. 14 Para-chain hexagonal graph Ln

Fig. 15 Meta-chain hexagonal
graph Mn

(ii)

Moe(Ln) =
{
72k2 if n = 2k,
72k2 + 72k if n = 2k + 1.

By the same argument as the proof of Theorem 3.3, we have

Theorem 3.6 Let Mn be the meta-chain hexagonal of order n (See Fig. 15). Then for every
n ≥ 1, and k ≥ 1, we have

(i)

Mo(Mn) =
{
80k2 − 20k ifn = 2k,
80k2 + 60k if n = 2k + 1.

(ii)

Moe(Mn) =
{
72k2 if n = 2k,
72k2 + 72k if n = 2k + 1.

We intend to derive the Mostar index and edge Mostar index of the triangulane Tk defined
pictorially in Khalifeh et al. (2008). We define Tk recursively in a manner that will be useful
in our approach. First, we define recursively an auxiliary family of triangulanes Gk (k ≥ 1).
Let G1 be a triangle and denote one of its vertices by y1. We define Gk (k ≥ 2) as the circuit
of the graphs Gk−1,Gk−1, and K1 and denote by yk the vertex where K1 has been placed
The graphs G1,G2 and G3 are shown in Fig. 16.

Theorem 3.7 For the graph Tn (see T3 in Fig. 17), we have

Mo(Tn) = 6(2n+2 − 2n) +
n∑

i=2

3(2i )

(

(2n+2 +
i−2∑

t=0

2n−t ) − 2n−i+1

)

.

Proof Consider the graph Tn in Fig. 18. First we consider the edge x0x1. There are 2(2n+1−1)
vertices which are closer to xo than x1, and there are 2n − 2 vertices closer to x1 than xo. So,
|nxo(x0x1, Tn)−nx1(x0x1, Tn)| = 2n+2 −2n . The edge ax0 has the same attitude as the blue
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Fig. 16 Graphs G1, G2 and G3

Fig. 17 Graph T3

Fig. 18 Graph Tn

edge x0x1. In total there are 6 edges with this value related to Mostar index. The number of
vertices closer to vertex a is the same as the number of vertices closer to vertex x1, and in
total, we have 3 edges like this one.

Now consider the edge x1x2. There are 2(2n+1−1)+2n verticeswhich are closer to x1 than
x2, and there are 2n−1−2 vertices closer to x2 than x1. So, |nxo(x0x1, Tn)−nx1(x0x1, Tn)| =
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2n+2 + 2n+1 − 2n−1. The edge bx1 has the same attitude as the red edge x1x2. In total there
are 12 edges with this value related to Mostar index. The number of vertices closer to vertex
b is the same as the number of vertices closer to vertex x2, and in total, we have 6 edges like
this one.

By continuing this process in the i th level, we have

|nxi−1(xi−1xi , Tn) − nxi (xi−1xi , Tn)| = (2n+2 +
i−2∑

t=0

2n−t ) − 2n−i+1.

We have 3(2i ) edges like this one. The number of vertices closer to vertex xi is the same as
the number of vertices closer to its neighbour in horizontal edge with one endpoint xi , and
in total, we have 3(2i−1) edges like this one.

Finally, the number of vertices closer to vertex x0 is the same as the number of vertices
closer to vertex u, the number of vertices closer to vertex x0 is the same as the number of
vertices closer to vertex v, and the number of vertices closer to vertex v is the same as the
number of vertices closer to vertex u.

So by the definition of the Mostar index and our argument, we have

Mo(Tn) = 6(2n+2 − 2n) +
n∑

i=2

3(2i )

(

(2n+2 +
i−2∑

t=0

2n−t ) − 2n−i+1

)

,

and, therefore, we have the result. ��
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