Mostar index and edge Mostar index of polymers

Nima Ghanbari ${ }^{1}$ (D) Saeid Alikhani ${ }^{2}$

Received: 27 August 2021 / Revised: 17 September 2021 / Accepted: 20 September 2021
© The Author(s) 2021

Abstract

Let $G=(V, E)$ be a graph and $e=u v \in E$. Define $n_{u}(e, G)$ be the number of vertices of G closer to u than to v. The number $n_{v}(e, G)$ can be defined in an analogous way. The Mostar index of G is a new graph invariant defined as $M o(G)=\sum_{u v \in E(G)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right|$. The edge version of Mostar index is defined as $M o_{e}(G)=\sum_{e=u v \in E(G)} \mid m_{u}(e \mid G)-$ $m_{v}(G \mid e) \mid$, where $m_{u}(e \mid G)$ and $m_{v}(e \mid G)$ are the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u, respectively. Let G be a connected graph constructed from pairwise disjoint connected graphs G_{1}, \ldots, G_{k} by selecting a vertex of G_{1}, a vertex of G_{2}, and identifying these two vertices. Then continue in this manner inductively. We say that G is a polymer graph, obtained by point-attaching from monomer units G_{1}, \ldots, G_{k}. In this paper, we consider some particular cases of these graphs that are of importance in chemistry and study their Mostar and edge Mostar indices.

Keywords Mostar index • Edge Mostar index • Polymer • Chain
Mathematics Subject Classification 05C09•05C92

1 Introduction

A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds of a molecule. Let $G=(V, E)$ be a finite, connected, simple graph. A topological index of G is a real number related to G. It does not depend on the labeling or pictorial representation of a graph. The Wiener index $W(G)$ is the first distance-based topological index defined as $W(G)=\sum_{\{u, v\} \subseteq G} d(u, v)=\frac{1}{2} \sum_{u, v \in V(G)} d(u, v)$ with the

[^0]summation runs over all pairs of vertices of G Wiener (1947). The topological indices and graph invariants based on distances between vertices of a graph are widely used for characterizing molecular graphs, establishing relationships between structure and properties of molecules, predicting biological activity of chemical compounds, and making their chemical applications. The Wiener index is one of the most used topological indices with high correlation with many physical and chemical indices of molecular compounds Wiener (1947). In a recent paper, Doslić et al. (2018) introduced a newbond-additive structural invariant as a quantitative refinement of the distance nonbalancedness and also a measure of peripherality in graphs. They used the name Mostar index for this invariant which is defined as $\operatorname{Mo}(G)=\sum_{u v \in E(G)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right|$, where $n_{u}(u v, G)$ is the number of vertices of G closer to u than to v, and similarly, $n_{v}(u v, G)$ is the number of vertices closer to v than to u. They determined the extremal values of this invariant and characterized extremal trees and unicyclic graphs with respect to the Mostar index. Akhter in [1] computed the Mostar index of corona product, Cartesian product, join, lexicographic product, Indu-Bala product and subdivision vertex-edge join of graphs and applied results to find the Mostar index of various classes of chemical graphs and nanostructures. The Mostar index of bicyclic graphs was studied by Tepeh (2019). A cacti graph is a graph in which any block is either a cut edge or a cycle, or equivalently, a graph in which any two cycles have at most one common vertex. Hayat and Zhou (2019) gave an upper bound for the Mostar index of cacti of order n with k cycles, and also they characterized those cacti that achieve the bound.

The edge version of Mostar index has considered in Arockiaraj et al. (2019), Liu et al. (2020) and is defined as $M o_{e}(G)=\sum_{e=u v \in E(G)}\left|m_{u}(e \mid G)-m_{v}(G \mid e)\right|$, where $m_{u}(e \mid G)$ and $m_{v}(e \mid G)$ are the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u, respectively. Liu et al. (2020) determined the extremal values of edge Mostar index of some graphs such as trees and unicyclic graphs.

For every edge $u v \in E(G)$, since u is closer to u than v and v is closer to v than u, and they do not effect on the results by the definition of Mostar index, we do not consider them in our counting.

In this paper, we consider the Mostar index and the edge Mostar index of polymer graphs. Such graphs can be decomposed into subgraphs that we call monomer units. Blocks of graphs are particular examples of monomer units, but a monomer unit may consist of several blocks. For convenience, the definition of these kind of graphs will be given in the next section. In Sect. 2, the Mostar index of some graphs are computed from their monomer units. In Sect. 3, we obtain the Mostar index and the edge Mostar index of families of graphs that are of importance in chemistry.

2 Mostar index and edge Mostar index of polymers

Let G be a connected graph constructed from pairwise disjoint connected graphs G_{1}, \ldots, G_{k} as follows. Select a vertex of G_{1}, a vertex of G_{2}, and identify these two vertices. Then continue in this manner inductively. Note that the graph G constructed in this way has a tree-like structure, the G_{i} 's being its building stones (see Fig. 1). Usually say that G is a polymer graph, obtained by point-attaching from G_{1}, \ldots, G_{k} and that G_{i} 's are the monomer units of G. A particular case of this construction is the decomposition of a connected graph into blocks (see Alikhani and Ghanbari 2021; Emeric and Klavžar 2013).

Fig. 1 A polymer graph with monomer units G_{1}, \ldots, G_{k}

The following theorem is easy result which obtain by the definition of Mostar index, edge Mostar index and point-attaching graph.

Theorem 2.1 If G is a polymer graph with the monomer units G_{1}, \ldots, G_{k}, then $\operatorname{Mo}(G)>$ $\sum_{i=1}^{n} \operatorname{Mo}\left(G_{i}\right)$, and $\operatorname{Mo}_{e}(G)>\sum_{i=1}^{n} \operatorname{Mo}_{e}\left(G_{i}\right)$.

We consider some particular cases of point-attaching graphs and study their Mostar and edge Mostar index. As an example of point-attaching graph, consider the graph K_{m} and m copies of K_{n}. By definition, the graph $Q(m, n)$ is obtained by identifying each vertex of K_{m} with a vertex of a unique K_{n}. The graph $Q(5,4)$ is shown in Fig. 2.

Theorem 2.2 For the graph $Q(m, n)$ (see Fig. 2), we have
(i) $\operatorname{Mo}(Q(m, n))=m n(m-1)(n-1)$.
(ii) $M o_{e}(Q(m, n))=\frac{m(n-1)(m-1)}{2}\left(n^{2}-n+m\right)$.

Proof (i) First, consider the edge $u_{i} u_{j}$ in K_{m}. There are $n-1$ vertices which are closer to u_{i} than u_{j}, and there are $n-1$ vertices closer to u_{j} than u_{i}. So $\mid n_{u_{i}}\left(u_{i} u_{j}, Q(m, n)\right)-$ $n_{u_{j}}\left(u_{j} u_{i}, Q(m, n)\right) \mid=0$. Now consider the edge $v w$ in the i th K_{n}. There is no vertices which are closer to v than w, and visa versa. So $\left|n_{v}(v w, Q(m, n))-n_{w}(v w, Q(m, n))\right|=$ 0 . Finally, consider the edge $u_{i} v$ in the i th K_{n}. There are $n(m-1)$ vertices which are closer to u_{i} than v, and there is no vertices closer to v than u_{i}. So $\mid n_{u_{i}}\left(u_{i} v, Q(m, n)\right)-$ $n_{v}\left(u_{i} v, Q(m, n)\right) \mid=n(m-1)$. Since there are $m(n-1)$ edges like $u_{i} v$ in $Q(m, n)$; therefore, we have the result.
(ii) First consider the edge $u_{i} u_{j}$ in K_{m}. There are $\frac{n(n-1)}{2}$ edges which are closer to u_{i} than u_{j}, and there are $\frac{n(n-1)}{2}$ edges closer to u_{j} than u_{i}. So $\mid m_{u_{i}}\left(u_{i} u_{j}, Q(m, n)\right)-$ $m_{u_{j}}\left(u_{j} u_{i}, Q(m, n)\right) \mid=0$. Now consider the edge $v w$ in the i th K_{n}. There is no edges which are closer to v than w, and visa versa. So $\mid m_{v}(v w, Q(m, n))-$ $m_{w}(v w, Q(m, n)) \mid=0$. Finally, consider the edge $u_{i} v$ in the i th K_{n}. There are $\frac{n(n-1)(m-1)}{2}+\frac{m(m-1)}{2}$ edges which are closer to u_{i} than v, and there is no edges closer to v than u_{i}. So $\left|m_{u_{i}}\left(u_{i} v, Q(m, n)\right)-m_{v}\left(u_{i} v, Q(m, n)\right)\right|=\frac{(m-1)}{2}\left(n^{2}-n+m\right)$. Since there are $m(n-1)$ edges like $u_{i} v$ in $Q(m, n)$, so we have the result.

Fig. 2 The graph $Q(m, n)$ and $Q(5,4)$, respectively

Fig. 3 Link of n graphs $G_{1}, G_{2}, \ldots, G_{n}$

2.1 Upper bounds for the Mostar (edge Mostar) index of polymers

In this subsection, we consider some special polymer graphs and present upper bounds for the Mostar index and edge Mostar index of them. The following theorem is about the link of graphs.

Theorem 2.3 Let G be a polymer graph with composed of monomers $\left\{G_{i}\right\}_{i=1}^{k}$ with respect to the vertices $\left\{x_{i}, y_{i}\right\}_{i=1}^{k}$. Let G be the link of graphs (see Fig. 3). Then
(i)

$$
\begin{aligned}
& M o(G) \leq \sum_{i=1}^{n} M o\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|V(G)|-\left|V\left(G_{i}\right)\right|\right) \\
& \quad+\sum_{i=1}^{n-1}\left|\sum_{t=1}^{i}\right| V\left(G_{t}\right)\left|-\sum_{t=i+1}^{n}\right| V\left(G_{t}\right)| | .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& M o_{e}(G) \leq \sum_{i=1}^{n} M o_{e}\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|E(G)|-\left|E\left(G_{i}\right)\right|\right) \\
& \quad+\sum_{i=1}^{n-1}\left|\sum_{t=1}^{i}\right| E\left(G_{t}\right)\left|-\sum_{t=i+1}^{n}\right| E\left(G_{t}\right)| |
\end{aligned}
$$

Proof (i) Consider the graph G_{i} (Fig. 3) and let $n_{u}^{\prime}\left(u v, G_{i}\right)$ be the number of vertices of G_{i} closer to u than v in G_{i}. By the definition of Mostar index, we have

$$
\begin{aligned}
\operatorname{Mo}(G) & =\sum_{u v \in E(G)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right| \\
& =\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right)}\left|n_{u}\left(u v, G_{i}\right)-n_{v}\left(u v, G_{i}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{n-1} \sum_{y_{i} x_{i+1} \in E(G)}\left|n_{y_{i}}\left(y_{i} x_{i+1}, G\right)-n_{x_{i+1}}\left(y_{i} x_{i+1}, G\right)\right| \\
& =\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)}\left|n_{u}\left(u v, G_{i}\right)-n_{v}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(v, y_{i}\right)<d\left(u, y_{i}\right)}\left|n_{u}\left(u v, G_{i}\right)-n_{v}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)=d\left(v, y_{i}\right)}\left|n_{u}\left(u v, G_{i}\right)-n_{v}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)=d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)}\left|n_{u}\left(u v, G_{i}\right)-n_{v}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)=d\left(v, x_{i}\right), d\left(u, y_{i}\right)=d\left(v, y_{i}\right)}\left|n_{u}\left(u v, G_{i}\right)-n_{v}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n-1} \sum_{y_{i} x_{i+1} \in E(G)}\left|n_{y_{i}}\left(y_{i} x_{i+1}, G\right)-n_{x_{i+1}}\left(y_{i} x_{i+1}, G\right)\right| \\
& =\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)} \\
& \left|n_{u}^{\prime}\left(u v, G_{i}\right)+\left|V(G)-V\left(G_{i}\right)\right|-n_{v}^{\prime}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(v, y_{i}\right)<d\left(u, y_{i}\right)} \\
& \left|n_{u}^{\prime}\left(u v, G_{i}\right)+\sum_{t=1}^{i}\right| V\left(G_{t}\right)\left|-n_{v}^{\prime}\left(u v, G_{i}\right)-\sum_{t=i+1}^{n}\right| V\left(G_{t}\right)|\mid \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)=d\left(v, y_{i}\right)} \\
& n_{u}^{\prime}\left(u v, G_{i}\right)+\sum_{t=1}^{i}\left|V\left(G_{t}\right)\right|-n_{v}^{\prime}\left(u v, G_{i}\right) \mid \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)=d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)} \\
& \left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)-\sum_{t=i+1}^{n}\right| V\left(G_{t}\right)|\mid \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)=d\left(v, x_{i}\right), d\left(u, y_{i}\right)=d\left(v, y_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{n-1}\left|\sum_{t=1}^{i}\right| V\left(G_{t}\right)\left|-\sum_{t=i+1}^{n}\right| V\left(G_{t}\right)| | \\
& \leq \sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)}\left|V(G)-V\left(G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(v, y_{i}\right)<d\left(u, y_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)}\left|V(G)-V\left(G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)=d\left(v, y_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)}\left|V(G)-V\left(G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)=d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right), d\left(u, y_{i}\right)<d\left(v, y_{i}\right)}\left|V(G)-V\left(G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)=d\left(v, x_{i}\right), d\left(u, y_{i}\right)=d\left(v, y_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n-1}\left|\sum_{t=1}^{i}\right| V\left(G_{t}\right)\left|-\sum_{t=i+1}^{n}\right| V\left(G_{t}\right)| | \\
& =\sum_{i=1}^{n} M o\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|V(G)|-\left|V\left(G_{i}\right)\right|\right) \\
& +\sum_{i=1}^{n-1}\left|\sum_{t=1}^{i}\right| V\left(G_{t}\right)\left|-\sum_{t=i+1}^{n}\right| V\left(G_{t}\right) \mid .
\end{aligned}
$$

Therefore, we have the result.
(ii) The proof is similar to Part (i).

By the same argument similar to the proof of Theorem 2.3, we have
Theorem 2.4 Let $G_{1}, G_{2}, \ldots, G_{n}$ be a finite sequence of pairwise disjoint connected graphs and let $x_{i}, y_{i} \in V\left(G_{i}\right)$. Let $C\left(G_{1}, \ldots, G_{n}\right)$ be the chain of graphs $\left\{G_{i}\right\}_{i=1}^{n}$ with respect to the vertices $\left\{x_{i}, y_{i}\right\}_{i=1}^{k}$ which obtained by identifying the vertex y_{i} with the vertex x_{i+1} for $i=1,2, \ldots, n-1$ (Fig. 4). Then
(i) $\operatorname{Mo}\left(C\left(G_{1}, \ldots, G_{n}\right)\right) \leq \sum_{i=1}^{n} \operatorname{Mo}\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|V(G)|-\left|V\left(G_{i}\right)\right|\right)$.
(2) Springer $\mathcal{E} / \mathcal{M}$

Fig. 4 Chain of n graphs $G_{1}, G_{2}, \ldots, G_{n}$
Fig. 5 Bouquet of n graphs
$G_{1}, G_{2}, \ldots, G_{n}$ and
$x_{1}=x_{2}=\ldots=x_{n}=x$

(ii) $M o_{e}\left(C\left(G_{1}, \ldots, G_{n}\right)\right) \leq \sum_{i=1}^{n} M o_{e}\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|E(G)|-\left|E\left(G_{i}\right)\right|\right)$.

With similar argument to the proof of Theorem 2.3, we have
Theorem 2.5 Let $G_{1}, G_{2}, \ldots, G_{n}$ be a finite sequence of pairwise disjoint connected graphs and let $x_{i} \in V\left(G_{i}\right)$. Let $B\left(G_{1}, \ldots, G_{n}\right)$ be the bouquet of graphs $\left\{G_{i}\right\}_{i=1}^{n}$ with respect to the vertices $\left\{x_{i}\right\}_{i=1}^{n}$ and obtained by identifying the vertex x_{i} of the graph G_{i} with x (see Fig. 5). Then
(i)

$$
\operatorname{Mo}\left(B\left(G_{1}, \ldots, G_{n}\right)\right) \leq \sum_{i=1}^{n} \operatorname{Mo}\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|V(G)|-\left|V\left(G_{i}\right)\right|\right) .
$$

(ii)

$$
M o_{e}\left(B\left(G_{1}, \ldots, G_{n}\right)\right) \leq \sum_{i=1}^{n} M o_{e}\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|E(G)|-\left|E\left(G_{i}\right)\right|\right) .
$$

Theorem 2.6 Let $G_{1}, G_{2}, \ldots, G_{n}$ be a finite sequence of pairwise disjoint connected graphs and let $x_{i} \in V\left(G_{i}\right)$. Let G be the circuit of graphs $\left\{G_{i}\right\}_{i=1}^{n}$ with respect to the vertices $\left\{x_{i}\right\}_{i=1}^{n}$ and obtained by identifying the vertex x_{i} of the graph G_{i} with the ith vertex of the cycle graph C_{n} (Fig. 6). Then

$$
\begin{aligned}
M o(G) \leq & \sum_{i=1}^{n} M o\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|V(G)|-\left|V\left(G_{i}\right)\right|\right) \\
& + \begin{cases}n \sum_{i=1}^{t}| | V\left(G_{i}\right)\left|-\left|V\left(G_{t+i}\right)\right|\right| & \text { if } n=2 t, \\
(n-1)|V(G)| & \text { if } n=2 t-1 .\end{cases}
\end{aligned}
$$

Proof First consider the edge $x_{1} x_{n}$. There are two cases, n is even or odd. If $n=2 t$ for some $t \in \mathbb{N}$, then, the vertices in the graphs $G_{1}, G_{2}, G_{3}, \ldots, G_{t}$ are closer to x_{1} than x_{n}, and the rest are closer to x_{n} than x_{1}. So

$$
\begin{aligned}
\left|n_{x_{1}}\left(x_{1} x_{n}, G\right)-n_{x_{n}}\left(x_{1} x_{n}, G\right)\right| & =\left|\sum_{i=1}^{t}\right| V\left(G_{i}\right)\left|-\sum_{i=1}^{t}\right| V\left(G_{t+i}\right)| | \\
& \leq \sum_{i=1}^{t}| | V\left(G_{i}\right)\left|-\left|V\left(G_{t+i}\right)\right| .\right.
\end{aligned}
$$

It is easy to check that the same happens for $x_{i} x_{i+1}$ for all $1 \leq i \leq n-1$.
If $n=2 t-1$ for some $t \in \mathbb{N}$, then, the vertices in the graphs $G_{1}, G_{2}, G_{3}, \ldots, G_{t-1}$ are closer to x_{1} than x_{n}, and the vertices in the graphs $G_{t+1}, G_{t+2}, G_{t+3}, \ldots, G_{n}$ are closer to x_{n} than x_{1}. The vertices in the graph G_{t} have the same distance to x_{1} and x_{n}. So

$$
\begin{aligned}
\left|n_{x_{1}}\left(x_{1} x_{n}, G\right)-n_{x_{n}}\left(x_{1} x_{n}, G\right)\right|= & \left|\sum_{i=1}^{t-1}\right| V\left(G_{i}\right)\left|-\sum_{i=1}^{t-1}\right| V\left(G_{t+i}\right)|\mid \\
\leq & \left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|+\cdots+\left|V\left(G_{t-1}\right)\right| \\
& +\left|V\left(G_{t+1}\right)\right|+\left|V\left(G_{t+2}\right)\right|+\cdots+\left|V\left(G_{n}\right)\right| \\
& =|V(G)|-\left|V\left(G_{t}\right)\right| .
\end{aligned}
$$

It is easy to check that $\left|n_{x_{1}}\left(x_{1} x_{2}, G\right)-n_{x_{2}}\left(x_{1} x_{2}, G\right)\right| \leq|V(G)|-\left|V\left(G_{t+1}\right)\right|$, and this continues. Now we consider the edge $u v \in G_{i}$. There are two cases, first u is closer to x_{i} than v, and second they have the same distance to x_{i}. Let $n_{u}^{\prime}\left(u v, G_{i}\right)$ be the number of vertices of G_{i} closer to u than v in G_{i}. Then by the definition of Mostar index, we have

$$
\begin{aligned}
M o(G)= & \sum_{u v \in E(G)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right| \\
= & \sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right)}\left|n_{u}\left(u v, G_{i}\right)-n_{v}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n-1} \sum_{x_{i} x_{i+1} \in E(G)}\left|n_{x_{i}}\left(x_{i} x_{i+1}, G\right)-n_{x_{i+1}}\left(x_{i} x_{i+1}, G\right)\right| \\
& +\left|n_{x_{1}}\left(x_{1} x_{n}, G\right)-n_{x_{n}}\left(x_{1} x_{n}, G\right)\right| \\
= & \sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right)}\left|n_{u}\left(u v, G_{i}\right)-n_{v}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)=d\left(v, x_{i}\right)}\left|n_{u}\left(u v, G_{i}\right)-n_{v}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n-1} \sum_{x_{i} x_{i+1} \in E(G)}\left|n_{x_{i}}\left(x_{i} x_{i+1}, G\right)-n_{x_{i+1}}\left(x_{i} x_{i+1}, G\right)\right| \\
& +\left|n_{x_{1}}\left(x_{1} x_{n}, G\right)-n_{x_{n}}\left(x_{1} x_{n}, G\right)\right| \\
= & \sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)+\left|V(G)-V\left(G_{i}\right)\right|-n_{v}^{\prime}\left(u v, G_{i}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)=d\left(v, x_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n-1} \sum_{x_{i} x_{i+1} \in E(G)}\left|n_{x_{i}}\left(x_{i} x_{i+1}, G\right)-n_{x_{i+1}}\left(x_{i} x_{i+1}, G\right)\right| \\
& +\left|n_{x_{1}}\left(x_{1} x_{n}, G\right)-n_{x_{n}}\left(x_{1} x_{n}, G\right)\right| \\
& \leq \sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)<d\left(v, x_{i}\right)}\left|V(G)-V\left(G_{i}\right)\right| \\
& +\sum_{i=1}^{n} \sum_{u v \in E\left(G_{i}\right), d\left(u, x_{i}\right)=d\left(v, x_{i}\right)}\left|n_{u}^{\prime}\left(u v, G_{i}\right)-n_{v}^{\prime}\left(u v, G_{i}\right)\right| \\
& +\sum_{i=1}^{n}\left|V(G)-V\left(G_{i}\right)\right| \\
& + \begin{cases}n \sum_{i=1}^{t}| | V\left(G_{i}\right)\left|-\left|V\left(G_{t+i}\right)\right|\right| & \text { if } n=2 t, \\
(n-1)|V(G)| & \text { if } n=2 t-1, \\
& \text { if } n=2 t-1 .\end{cases} \\
& =\sum_{i=1}^{n} M o\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|V(G)|-\left|V\left(G_{i}\right)\right|\right) \\
& + \begin{cases}n \sum_{i=1}^{t}| | V\left(G_{i}\right)\left|-\left|V\left(G_{t+i}\right)\right|\right| & \text { if } n=2 t, \\
(n-1)|V(G)| & \end{cases}
\end{aligned}
$$

Therefore, we have the result.
Similarly, we have the following result for the edge Mostar index of circuit of graphs:
Theorem 2.7 Let $G_{1}, G_{2}, \ldots, G_{n}$ be a finite sequence of pairwise disjoint connected graphs and let $x_{i} \in V\left(G_{i}\right)$. Let G be the circuit of graphs $\left\{G_{i}\right\}_{i=1}^{n}$ with respect to the vertices $\left\{x_{i}\right\}_{i=1}^{n}$ and obtained by identifying the vertex x_{i} of the graph G_{i} with the ith vertex of the cycle graph C_{n} (Fig. 6). Then

$$
\begin{aligned}
M o_{e}(G) \leq & \sum_{i=1}^{n} M o_{e}\left(G_{i}\right)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|\left(|E(G)|-\left|E\left(G_{i}\right)\right|\right) \\
& + \begin{cases}n \sum_{i=1}^{t}| | E\left(G_{i}\right)\left|-\left|E\left(G_{t+i}\right)\right|\right| & \text { if } n=2 t \\
(n-1)|E(G)| & \text { if } n=2 t-1 .\end{cases}
\end{aligned}
$$

Fig. 6 Circuit of n graphs $G_{1}, G_{2}, \ldots, G_{n}$

2.2 Lower bounds for the Mostar (edge Mostar) index of polymers

In this subsection, we consider some special polymer graphs and present lower bounds for the Mostar index and the edge Mostar index of them.

Theorem 2.8 Let G be a link of two graphs G_{1} and G_{2} with respect to the vertices x, y. Then
(i) $M O(G)>M O\left(G_{1}\right)+M O\left(G_{2}\right)+\left|\left|V\left(G_{1}\right)\right|-\left|V\left(G_{2}\right)\right|\right|$.
(ii) $M O_{e}(G)>M O_{e}\left(G_{1}\right)+M O_{e}\left(G_{2}\right)+\left|\left|E\left(G_{1}\right)\right|-\left|E\left(G_{2}\right)\right|\right|$.

Proof (i) Let $n_{u}^{\prime}\left(u v, G_{i}\right)$ be the number of vertices of G_{i} closer to u than v in G_{i} for $i=1,2$. By the definition of Mostar index, we have

$$
\begin{aligned}
M o(G)= & \sum_{u v \in E(G)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right| \\
= & \sum_{u v \in E\left(G_{1}\right)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right| \\
& +\sum_{u v \in E\left(G_{2}\right)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right| \\
& +\left|n_{x}(x y, G)-n_{y}(x y, G)\right| \\
= & \sum_{u v \in E\left(G_{1}\right), d(u, x)<d(v, x)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right| \\
& +\sum_{u v \in E\left(G_{1}\right), d(u, x)=d(v, x)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right| \\
& +\sum_{u v \in E\left(G_{2}\right), d(u, x)<d(v, x)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right| \\
& +\sum_{u v \in E\left(G_{2}\right), d(u, x)=d(v, x)}\left|n_{u}(u v, G)-n_{v}(u v, G)\right| \\
& +\left|n_{x}(x y, G)-n_{y}(x y, G)\right|
\end{aligned}
$$

(ii) The proof is similar to the proof of Part (i).

As an immediate result of Theorem 2.8, we have
Theorem 2.9 Let G be a polymer graph with composed of monomers $\left\{G_{i}\right\}_{i=1}^{k}$ with respect to the vertices $\left\{x_{i}, y_{i}\right\}_{i=1}^{k}$. Let G be the link of graphs (see Fig. 3). Then
(i)

$$
M o(G)>\sum_{i=1}^{n} M o\left(G_{i}\right)+\sum_{t=1}^{n-1}| | V(G)-\bigcup_{i=1}^{t} V\left(G_{i}\right)\left|-\left|V\left(G_{t}\right)\right|\right| .
$$

(ii)

$$
M o_{e}(G)>\sum_{i=1}^{n} M o_{e}\left(G_{i}\right)+\sum_{t=1}^{n-1}| | E(G)-\bigcup_{i=1}^{t} E\left(G_{i}\right)\left|-\left|E\left(G_{t}\right)\right|\right| .
$$

3 Chemical applications

In this section, we obtain the Mostar index and the edge-Mostar index of families of graphs that are of importance in chemistry.

Fig. 7 Chain triangular cactus $T_{2 k}$

Theorem 3.1 Let T_{n} be the chain triangular graph of order n. Then for every $n \geq 2$, and $k \geq 1$, we have
(i)

$$
M o\left(T_{n}\right)= \begin{cases}12 k^{2}-4 k & \text { ifn }=2 k \\ 12 k^{2}+8 k & \text { if } n=2 k+1\end{cases}
$$

(ii)

$$
M o_{e}\left(T_{n}\right)= \begin{cases}18 k^{2}-6 k & \text { if } n=2 k \\ 18 k^{2}+12 k & \text { if } n=2 k+1 .\end{cases}
$$

Proof (i) We consider the following cases:
Case 1. Suppose that n is even, and $n=2 k$ for some $k \in \mathbb{N}$. Consider the $T_{2 k}$ as shown in Fig. 7. One can easily check that whatever happens to computation of Mostar index related to the edge $u_{i} v_{i}$ in the (i) th triangle in $T_{2 k}$, is the same as computation of Mostar index related to the edge $u_{2 k-i+1} v_{2 k-i+1}$ in the $(2 k-i+1)$ th triangle. The same goes for $w_{i} v_{i}$ and $w_{2 k-i+1} v_{2 k-i+1}$, and also for $w_{i} u_{i}$ and $w_{2 k-i+1} u_{2 k-i+1}$. So for computing Mostar index, it suffices to compute the $\left|n_{u}\left(u v, T_{2 k}\right)-n_{v}\left(u v, T_{2 k}\right)\right|$ for every $u v \in E\left(T_{2 k}\right)$ in the first k triangles and then multiple that by 2 . So from now, we only consider the first k triangles.
Consider the blue edge $u_{i} v_{i}$ in the (i) th triangle. There are $2(i-1)$ vertices which are closer to v_{i} than u_{i}, but there are no vertices closer to u_{i} than v_{i}. So, $\mid n_{u_{i}}\left(u_{i} v_{i}, T_{2 k}\right)-$ $n_{v_{i}}\left(u_{i} v_{i}, T_{2 k}\right) \mid=2(i-1)$.
Now consider the green edge $u_{i} w_{i}$ in the (i)th triangle. There are $2(2 k-i)$ vertices which are closer to w_{i} than u_{i}, but there are no vertices closer to u_{i} than w_{i}. So, $\left|n_{u_{i}}\left(u_{i} w_{i}, T_{2 k}\right)-n_{w_{i}}\left(u_{i} w_{i}, T_{2 k}\right)\right|=2(2 k-i)$.
Finally, consider the red edge $v_{i} w_{i}$ in the (i) th triangle. There are $2(2 k-i)$ vertices which are closer to w_{i} than v_{i}, and there are $2(i-1)$ vertices closer to v_{i} than w_{i}. So, $\left|n_{v_{i}}\left(v_{i} w_{i}, T_{2 k}\right)-n_{w_{i}}\left(v_{i} w_{i}, T_{2 k}\right)\right|=2(2 k-2 i+1)$.
Since we have k edges like blue one, k edges like green one and k edges like red one, then by our argument, we have

$$
\begin{aligned}
\operatorname{Mo}\left(T_{2 k}\right) & =2\left(\sum_{i=1}^{k} 2(i-1)+\sum_{i=1}^{k} 2(2 k-i)+\sum_{i=1}^{k} 2(2 k-2 i+1)\right) \\
& =12 k^{2}-4 k .
\end{aligned}
$$

Case 2. Suppose that n is odd and $n=2 k+1$ for some $k \in \mathbb{N}$. Now consider the $T_{2 k+1}$ as shown in Fig. 8. One can easily check that whatever happens to computation of Mostar index related to the edge $u_{i} v_{i}$ in the (i)th triangle in $T_{2 k+1}$, is the same

Fig. 8 Chain triangular cactus $T_{2 k+1}$
as computation of Mostar index related to the edge $u_{2 k-i+2} v_{2 k-i+2}$ in the $(2 k-$ $i+2$)th triangle. The same goes for $w_{i} v_{i}$ and $w_{2 k-i+2} v_{2 k-i+2}$, and also for $w_{i} u_{i}$ and $w_{2 k-i+2} u_{2 k-i+2}$. So for computing Mostar index, it suffices to compute the $\left|n_{u}\left(u v, T_{2 k+1}\right)-n_{v}\left(u v, T_{2 k+1}\right)\right|$ for every $u v \in E\left(T_{2 k+1}\right)$ in the first k triangles and then multiple that by 2 and add it to $\sum_{u v \in A}\left|n_{u}\left(u v, T_{2 k+1}\right)-n_{v}\left(u v, T_{2 k+1}\right)\right|$, where $A=\{a b, b c, a c\}$. So from now, we only consider the first k triangles and the middle one.
Consider the blue edge $u_{i} v_{i}$ in the (i) th triangle. There are $2(i-1)$ vertices which are closer to v_{i} than u_{i}, but there are no vertices closer to u_{i} than v_{i}. So, $\left|n_{u_{i}}\left(u_{i} v_{i}, T_{2 k+1}\right)-n_{v_{i}}\left(u_{i} v_{i}, T_{2 k+1}\right)\right|=2(i-1)$.
Now consider the green edge $u_{i} w_{i}$ in the (i) th triangle. There are $4 k-2 i+2$ vertices which are closer to w_{i} than u_{i}, but there are no vertices closer to u_{i} than w_{i}. So, $\left|n_{u_{i}}\left(u_{i} w_{i}, T_{2 k+1}\right)-n_{w_{i}}\left(u_{i} w_{i}, T_{2 k+1}\right)\right|=2(2 k-i+1)$.
Now consider the red edge $v_{i} w_{i}$ in the (i) th triangle. There are $2(2 k-i+1)$ vertices which are closer to w_{i} than v_{i}, and there are $2(i-1)$ vertices closer to v_{i} than w_{i}. So, $\left|n_{v_{i}}\left(v_{i} w_{i}, T_{2 k+1}\right)-n_{w_{i}}\left(v_{i} w_{i}, T_{2 k+1}\right)\right|=4(k-i+1)$.
Finally, consider the middle triangle. For the edge $a b$, there are $2 k$ vertices which are closer to b than a, but there are no vertices closer to a than b. Also for the edge $a c$, there are $2 k$ vertices which are closer to c than a, but there are no vertices closer to a than c and for the edge $b c$, there are $2 k$ vertices which are closer to b than c, and there are $2 k$ vertices closer to c than b. Hence, $\sum_{u v \in A}\left|n_{u}\left(u v, T_{2 k+1}\right)-n_{v}\left(u v, T_{2 k+1}\right)\right|=4 k$, where $A=\{a b, b c, a c\}$.
Since we have k edges like blue one, k edges like green one and k edges like red one, then by our argument, we have

$$
\begin{aligned}
\operatorname{Mo}\left(T_{2 k+1}\right) & =2\left(\sum_{i=1}^{k} 2(i-1)+\sum_{i=1}^{k} 2(2 k-i+1)+\sum_{i=1}^{k} 4(k-i+1)\right)+4 k \\
& =12 k^{2}+8 k
\end{aligned}
$$

Therefore, we have the result.
(ii) The proof is similar to proof of Part (i).

Theorem 3.2 Let Q_{n} be the para-chain square cactus graph of order n. Then for every $n \geq 1$, and $k \geq 1$, we have
(i)

$$
M o\left(Q_{n}\right)= \begin{cases}24 k^{2} & \text { ifn }=2 k \\ 24 k^{2}+24 k & \text { if } n=2 k+1\end{cases}
$$

Fig. 9 Para-chain square cactus $Q_{2 k}$
(ii)

$$
M_{e}\left(Q_{n}\right)= \begin{cases}32 k^{2} & \text { if } n=2 k \\ 32 k^{2}+32 k & \text { if } n=2 k+1\end{cases}
$$

Proof (i) We consider the following cases:
Case 1. Suppose that n is even and $n=2 k$ for some $k \in \mathbb{N}$. Now consider the $Q_{2 k}$ as shown in Fig. 9. One can easily check that whatever happens to computation of Mostar index related to the edge $u_{i} v_{i}$ in the (i) th rhombus in $Q_{2 k}$, is the same as computation of Mostar index related to the edge $u_{2 k-i+1} v_{2 k-i+1}$ in the $(2 k-i+1)$ th rhombus. The same goes for $w_{i} v_{i}$ and $w_{2 k-i+1} v_{2 k-i+1}$, for $w_{i} x_{i}$ and $w_{2 k-i+1} x_{2 k-i+1}$, and also for $x_{i} u_{i}$ and $x_{2 k-i+1} u_{2 k-i+1}$. So for computing Mostar index, it suffices to compute the $\left|n_{u}\left(u v, Q_{2 k}\right)-n_{v}\left(u v, Q_{2 k}\right)\right|$ for every $u v \in E\left(Q_{2 k}\right)$ in the first k rhombus and then multiple that by 2 . So from now, we only consider the first k rhombus.
Consider the red edge $u_{i} v_{i}$ in the (i)th rhombus. There are $3 k+3(k-i)+1$ vertices which are closer to v_{i} than u_{i}, and there are $3 i-2$ vertices closer to u_{i} than v_{i}. So, $\left|n_{u_{i}}\left(u_{i} v_{i}, Q_{2 k}\right)-n_{v_{i}}\left(u_{i} v_{i}, Q_{2 k}\right)\right|=6 k-6 i+3$.
One can easily check that the edges $w_{i} v_{i}, w_{i} x_{i}$ and $x_{i} u_{i}$ have the same attitude as $u_{i} v_{i}$. Since we have k edges like blue one, k edges like green one, k edges like yellow one and k edges like red one, then by our argument, we have

$$
M o\left(Q_{2 k}\right)=2\left(4 \sum_{i=1}^{k} 3(2 k-2 i+1)\right)=24 k^{2}
$$

Case 2. Suppose that n is odd and $n=2 k+1$ for some $k \in \mathbb{N}$. Now consider the $Q_{2 k+1}$ as shown in Figure 10. One can easily check that whatever happens to computation of Mostar index related to the edge $u_{i} v_{i}$ in the (i)th rhombus in $Q_{2 k+1}$, is the same as computation of Mostar index related to the edge $u_{2 k-i+2} v_{2 k-i+2}$ in the $(2 k-i+2)$ th rhombus. The same goes for $w_{i} v_{i}$ and $w_{2 k-i+2} v_{2 k-i+2}$, for $w_{i} x_{i}$ and $w_{2 k-i+2} x_{2 k-i+2}$, and also for $x_{i} u_{i}$ and $x_{2 k-i+2} u_{2 k-i+2}$. So for computing Mostar index, it suffices to compute the $\left|n_{u}\left(u v, Q_{2 k+1}\right)-n_{v}\left(u v, Q_{2 k+1}\right)\right|$ for every $u v \in E\left(Q_{2 k+1}\right)$ in the first k rhombus and then multiple that by 2 and add it to $\sum_{u v \in A} \mid n_{u}\left(u v, Q_{2 k+1}\right)-$ $n_{v}\left(u v, Q_{2 k+1}\right) \mid$, where $A=\{a b, b c, c d, d a\}$. So from now, we only consider the first $k+1$ rhombus.
Consider the red edge $u_{i} v_{i}$ in the (i) th rhombus. There are $3(k+1)+3(k-i)+1$ vertices which are closer to v_{i} than u_{i}, and there are $3 i-2$ vertices closer to u_{i} than v_{i}. So, $\left|n_{u_{i}}\left(u_{i} v_{i}, Q_{2 k+1}\right)-n_{v_{i}}\left(u_{i} v_{i}, Q_{2 k+1}\right)\right|=6 k-6 i+6$.

Fig. 10 Para-chain square cactus $Q_{2 k+1}$

Fig. 11 Para-chain square cactus $O_{2 k}$

One can easily check that the edges $w_{i} v_{i}, w_{i} x_{i}$ and $x_{i} u_{i}$ have the same attitude as $u_{i} v_{i}$.
Now consider the middle rhombus. For the edge $a b$, there are $3 k+1$ vertices which are closer to b than a, and there are $3 k+1$ vertices closer to a than b. the edges $b c, c d$ and $d a$ have the same attitude as $a b$. Hence, $\sum_{u v \in A}\left|n_{u}\left(u v, Q_{2 k+1}\right)-n_{v}\left(u v, Q_{2 k+1}\right)\right|=$ 0 , where $A=\{a b, b c, c d, d a\}$.
Since we have k edges like blue one, k edges like green one, k edges like yellow one and k edges like red one, then by our argument, we have

$$
M o\left(Q_{2 k+1}\right)=2\left(4 \sum_{i=1}^{k} 6(k-i+1)\right)=24 k^{2}+24 k
$$

Therefore, we have the result.
(ii) The proof is similar to the proof of Part (i).

Theorem 3.3 Let O_{n} be the para-chain square cactus graph of order n. Then for every $n \geq 1$, and $k \geq 1$, we have
(i)

$$
\operatorname{Mo}\left(O_{n}\right)= \begin{cases}36 k^{2}-12 k & \text { ifn }=2 k, \\ 36 k^{2}+24 k & \text { if } n=2 k+1 .\end{cases}
$$

(ii)

$$
M o_{e}\left(O_{n}\right)= \begin{cases}48 k^{2}-16 k & \text { if } n=2 k, \\ 48 k^{2}+32 k & \text { ifn } n=2 k+1 .\end{cases}
$$

Proof (i) We consider the following cases:

Case 1. Suppose that n is even and $n=2 k$ for some $k \in \mathbb{N}$. Now consider the $O_{2 k}$ as shown in Figure 11. One can easily check that whatever happens to computation of Mostar index related to the edge $u_{i} v_{i}$ in the (i) th square in $O_{2 k}$, is the same as computation of Mostar index related to the edge $u_{2 k-i+1} v_{2 k-i+1}$ in the $(2 k-i+1)$ th square. The same goes for $w_{i} v_{i}$ and $w_{2 k-i+1} v_{2 k-i+1}$, for $w_{i} x_{i}$ and $w_{2 k-i+1} x_{2 k-i+1}$, and also for $x_{i} u_{i}$ and $x_{2 k-i+1} u_{2 k-i+1}$. So for computing Mostar index, it suffices to compute the $\left|n_{u}\left(u v, O_{2 k}\right)-n_{v}\left(u v, O_{2 k}\right)\right|$ for every $u v \in E\left(O_{2 k}\right)$ in the first k squares and then multiple that by 2 . So from now, we only consider the first k squares.
Consider the yellow edge $u_{i} v_{i}$ in the (i)th square. There are $3(2 k)-2$ vertices which are closer to v_{i} than u_{i}, and there is only 1 vertex closer to u_{i} than v_{i} which is x_{i}. So, $\left|n_{u_{i}}\left(u_{i} v_{i}, O_{2 k}\right)-n_{v_{i}}\left(u_{i} v_{i}, O_{2 k}\right)\right|=6 k-3$. By the same argument, the same happens to the edge $x_{i} w_{i}$.
Now consider the blue edge $u_{i} x_{i}$ in the (i) th square. There are $3 i-2$ vertices which are closer to x_{i} than u_{i}, and there are $3 k+3(k-i)+1$ vertices closer to u_{i} than x_{i}. So, $\left|n_{u_{i}}\left(u_{i} x_{i}, O_{2 k}\right)-n_{x_{i}}\left(u_{i} x_{i}, O_{2 k}\right)\right|=6 k-6 i+3$. By the same argument, the same happens to the edge $v_{i} w_{i}$.
Since we have k edges like blue one, k edges like green one, k edges like yellow one and k edges like red one, then by our argument, we have

$$
\operatorname{Mo}\left(O_{2 k}\right)=2\left(2 \sum_{i=1}^{k} 3(2 k-2 i+1)+2 \sum_{i=1}^{k} 3(2 k-1)\right)=36 k^{2}-12 k
$$

Case 2. Suppose that n is odd and $n=2 k+1$ for some $k \in \mathbb{N}$. Now consider the $O_{2 k+1}$ as shown in Figure 12. One can easily check that whatever happens to computation of Mostar index related to the edge $u_{i} v_{i}$ in the (i) th square in $O_{2 k+1}$, is the same as computation of Mostar index related to the edge $u_{2 k-i+2} v_{2 k-i+2}$ in the $(2 k-i+2)$ th square. The same goes for $w_{i} v_{i}$ and $w_{2 k-i+2} v_{2 k-i+2}$, for $w_{i} x_{i}$ and $w_{2 k-i+2} x_{2 k-i+2}$, and also for $x_{i} u_{i}$ and $x_{2 k-i+2} u_{2 k-i+2}$. So for computing Mostar index, it suffices to compute the $\left|n_{u}\left(u v, O_{2 k+1}\right)-n_{v}\left(u v, O_{2 k+1}\right)\right|$ for every $u v \in E\left(O_{2 k+1}\right)$ in the first k squares and then multiple that by 2 and add it to $\sum_{u v \in A} \mid n_{u}\left(u v, O_{2 k+1}\right)-$ $n_{v}\left(u v, O_{2 k+1}\right) \mid$, where $A=\{a b, b c, c d, d a\}$. So from now, we only consider the first $k+1$ squares.
Consider the yellow edge $u_{i} v_{i}$ in the (i) th square. There are $3(2 k+1)-2$ vertices which are closer to v_{i} than u_{i}, and there is only 1 vertex closer to u_{i} than v_{i} which is x_{i}. So, $\left|n_{u_{i}}\left(u_{i} v_{i}, O_{2 k}\right)-n_{v_{i}}\left(u_{i} v_{i}, O_{2 k}\right)\right|=6 k$. By the same argument, the same happens to the edge $x_{i} w_{i}$.
Now consider the blue edge $u_{i} x_{i}$ in the (i) th square. There are $3 i-2$ vertices which are closer to x_{i} than u_{i}, and there are $3(k+1)+3(k-i)+1$ vertices closer to u_{i} than x_{i}. So, $\left|n_{u_{i}}\left(u_{i} x_{i}, O_{2 k}\right)-n_{x_{i}}\left(u_{i} x_{i}, O_{2 k}\right)\right|=6 k-6 i+6$. By the same argument, the same happens to the edge $v_{i} w_{i}$.
Now consider the middle square. For the edge $a b$, there are $3 k+1$ vertices which are closer to b than a, and there are $3 k+1$ vertices closer to a than b. the edge $c d$ has the same attitude as $a b$. But for the edge $a d$, there are $3(2 k+1)-2$ vertices which are closer to d than a, and there is only 1 vertex closer to a than d which is b, and the edge $b c$ has the same attitude as $a d$. Hence, $\sum_{u v \in A}\left|n_{u}\left(u v, O_{2 k+1}\right)-n_{v}\left(u v, O_{2 k+1}\right)\right|=$ $12 k$, where $A=\{a b, b c, c d, d a\}$.

(1) (2)
(i)
(k) $(\mathrm{k}+1)(\mathrm{k}+2)$
(2k-i+2)
(2k) $\quad(2 \mathrm{k}+1)$
Fig. 12 Para-chain square cactus $O_{2 k+1}$
Fig. 13 Ortho-chain graph O_{n}^{h}

Since we have k edges like blue one, k edges like green one, k edges like yellow one and k edges like red one, then by our argument, we have

$$
\left.M o\left(O_{2 k+1}\right)=2\left(2 \sum_{i=1}^{k} 6(k-i+1)+2 \sum_{i=1}^{k} 6 k\right)\right)+12 k=36 k^{2}+24 k
$$

Therefore, we have the result.
(ii) The proof is similar to the proof of Part (i).

By the same argument as the proof of Theorem 3.3, we have
Theorem 3.4 Let O_{n}^{h} be the ortho-chain graph of order n (See Fig. 13). Then for every $n \geq 1$, and $k \geq 1$, we have
(i)

$$
\operatorname{Mo}\left(O_{n}^{h}\right)= \begin{cases}100 k^{2}-40 k & \text { ifn }=2 k \\ 100 k^{2}+60 k & \text { if } n=2 k+1\end{cases}
$$

(ii)

$$
M o_{e}\left(O_{n}^{h}\right)= \begin{cases}72 k^{2} & \text { ifn }=2 k \\ 72 k^{2}+72 k & \text { if } n=2 k+1\end{cases}
$$

By the same argument as the proof of Theorem 3.2, we have
Theorem 3.5 Let L_{n} be the para-chain hexagonal graph of order n (See Fig. 14). Then for every $n \geq 1$, and $k \geq 1$, we have
(i)

$$
M o\left(L_{n}\right)= \begin{cases}60 k^{2} & \text { ifn }=2 k \\ 60 k^{2}+60 k & \text { if } n=2 k+1\end{cases}
$$

Fig. 14 Para-chain hexagonal graph L_{n}
Fig. 15 Meta-chain hexagonal graph M_{n}

(ii)

$$
M o_{e}\left(L_{n}\right)= \begin{cases}72 k^{2} & \text { if } n=2 k, \\ 72 k^{2}+72 k & \text { if } n=2 k+1 .\end{cases}
$$

By the same argument as the proof of Theorem 3.3, we have
Theorem 3.6 Let M_{n} be the meta-chain hexagonal of order n (See Fig. 15). Then for every $n \geq 1$, and $k \geq 1$, we have
(i)

$$
\operatorname{Mo}\left(M_{n}\right)= \begin{cases}80 k^{2}-20 k & \text { ifn }=2 k, \\ 80 k^{2}+60 k & \text { if } n=2 k+1 .\end{cases}
$$

(ii)

$$
M o_{e}\left(M_{n}\right)= \begin{cases}72 k^{2} & \text { if } n=2 k, \\ 72 k^{2}+72 k & \text { if } n=2 k+1 .\end{cases}
$$

We intend to derive the Mostar index and edge Mostar index of the triangulane T_{k} defined pictorially in Khalifeh et al. (2008). We define T_{k} recursively in a manner that will be useful in our approach. First, we define recursively an auxiliary family of triangulanes $G_{k}(k \geq 1)$. Let G_{1} be a triangle and denote one of its vertices by y_{1}. We define $G_{k}(k \geq 2)$ as the circuit of the graphs G_{k-1}, G_{k-1}, and K_{1} and denote by y_{k} the vertex where K_{1} has been placed The graphs G_{1}, G_{2} and G_{3} are shown in Fig. 16.

Theorem 3.7 For the graph T_{n} (see T_{3} in Fig. 17), we have

$$
\operatorname{Mo}\left(T_{n}\right)=6\left(2^{n+2}-2^{n}\right)+\sum_{i=2}^{n} 3\left(2^{i}\right)\left(\left(2^{n+2}+\sum_{t=0}^{i-2} 2^{n-t}\right)-2^{n-i+1}\right) .
$$

Proof Consider the graph T_{n} in Fig. 18. First we consider the edge $x_{0} x_{1}$. There are 2(2 $\left.2^{n+1}-1\right)$ vertices which are closer to x_{o} than x_{1}, and there are $2^{n}-2$ vertices closer to x_{1} than x_{o}. So, $\left|n_{x_{o}}\left(x_{0} x_{1}, T_{n}\right)-n_{x_{1}}\left(x_{0} x_{1}, T_{n}\right)\right|=2^{n+2}-2^{n}$. The edge $a x_{0}$ has the same attitude as the blue

G_{1}

G_{2}

G_{3}

Fig. 16 Graphs G_{1}, G_{2} and G_{3}
Fig. 17 Graph T_{3}

Fig. 18 Graph T_{n}
edge $x_{0} x_{1}$. In total there are 6 edges with this value related to Mostar index. The number of vertices closer to vertex a is the same as the number of vertices closer to vertex x_{1}, and in total, we have 3 edges like this one.

Now consider the edge $x_{1} x_{2}$. There are $2\left(2^{n+1}-1\right)+2^{n}$ vertices which are closer to x_{1} than x_{2}, and there are $2^{n-1}-2$ vertices closer to x_{2} than x_{1}. So, $\left|n_{x_{o}}\left(x_{0} x_{1}, T_{n}\right)-n_{x_{1}}\left(x_{0} x_{1}, T_{n}\right)\right|=$
$2^{n+2}+2^{n+1}-2^{n-1}$. The edge $b x_{1}$ has the same attitude as the red edge $x_{1} x_{2}$. In total there are 12 edges with this value related to Mostar index. The number of vertices closer to vertex b is the same as the number of vertices closer to vertex x_{2}, and in total, we have 6 edges like this one.

By continuing this process in the i th level, we have

$$
\left|n_{x_{i-1}}\left(x_{i-1} x_{i}, T_{n}\right)-n_{x_{i}}\left(x_{i-1} x_{i}, T_{n}\right)\right|=\left(2^{n+2}+\sum_{t=0}^{i-2} 2^{n-t}\right)-2^{n-i+1}
$$

We have $3\left(2^{i}\right)$ edges like this one. The number of vertices closer to vertex x_{i} is the same as the number of vertices closer to its neighbour in horizontal edge with one endpoint x_{i}, and in total, we have $3\left(2^{i-1}\right)$ edges like this one.

Finally, the number of vertices closer to vertex x_{0} is the same as the number of vertices closer to vertex u, the number of vertices closer to vertex x_{0} is the same as the number of vertices closer to vertex v, and the number of vertices closer to vertex v is the same as the number of vertices closer to vertex u.

So by the definition of the Mostar index and our argument, we have

$$
M o\left(T_{n}\right)=6\left(2^{n+2}-2^{n}\right)+\sum_{i=2}^{n} 3\left(2^{i}\right)\left(\left(2^{n+2}+\sum_{t=0}^{i-2} 2^{n-t}\right)-2^{n-i+1}\right)
$$

and, therefore, we have the result.

Acknowledgements The authors would like to express their gratitude to the referee for her/his careful reading and helpful comments. The first author would like to thank the Research Council of Norway and Department of Informatics, University of Bergen for their support.

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akhter SH, Iqbal Z, Aslam A, Gao W (2021) Computation of Mostar index for some graph operations. Int J Quant Chem. https://doi.org/10.1002/qua. 26674
Alikhani S, Ghanbari N (2021) Sombor index of polymers. MATCH Commun Math Comput Chem 86(3):715728
Arockiaraj M, Clement J, Tratnik N (2019) Mostar indices of carbon nanostructures and circumscribed donut benzenoid systems. Int J Quant Chem 119:26043
Doslić T, Martinjak I, S̆krekovski R, Tipurić Spužević S, Zubac I (2018) Mostar index. J Math Chem 56:29953013
Emeric D, Klavžar S (2013) Computing Hosoya polynomials of graphs from primary subgraphs. MATCH Commun Math Comput Chem 70:627-644
Harary F, Uhlenbeck B (1953) On the number of Husimi trees, I. Proc Nat Acad Sci 39:315-322
Hayata F, Zhou B (2019) On cacti with large Mostar index. Filomat 33(15):4865-4873
Khalifeh MH, Yousefi-Azari H, Ashrafi AR (2008) Computing Wiener and Kirchhoff indices of a triangulane. Indian J Chem 47A:1503-1507

Liu H, Song L, Xiao Q, Tang Z (2020) On edge Mostar index of graphs. Iranian J Math Chem 11(2):95-106 Sadeghieh A, Ghanbari N, Alikhani S (2018) Computation of Gutman index of some cactus chains. Elect J Graph Theory Appl 6(1):138-151
Tepeh A (2019) Extremal bicyclic graphs with respect to Mostar index. Appl Math Comput 355:319-324
Wiener H (1947) Structural determination of the Paraffin Boiling Points. J Am Chem Soc 69:17-20

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Communicated by Leonardo de Lima.

 Nima Ghanbari
 Nima.ghanbari@uib.no
 Saeid Alikhani
 alikhani@yazd.ac.ir
 1 Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
 2 Department of Mathematics, Yazd University, 89195-741 Yazd, Iran

