
University of Bergen
Department of informatics

Expressing Unknown Instance
Relations in Program Synthesis
using Neurosymbolic Methods

Author: Sondre Bolland
Supervisors: Michal Walicki

October 4, 2021

Abstract

Program synthesis is the task of automatically constructing a program given a high level
specification. An instance of this is Inductive Logic Programming (ILP) were discrete methods
are used to construct a logic program which satisfies the specification. A limitation of a
traditional ILP system is its inability to handle noise, faultering at a single mislabelled data
point. A system which mediates this weakness is Differentiable Inductive Logic Programming
(δILP) [6], where instead of satisfying a strict requirement the task is to minimize a loss.

One limitation of δILP is that it does not allow for the use of negation in the construction
of its programs. Negation as failure in logic programming is a desired tool to write programs
that express unknown knowledge. By extending the system with negation we increase the
expressiveness of δILP, allowing us to construct programs that are often easier to devise, write
and analyse.

We propose such an extension: Stratified Negation as Failure in Differentiable Inductive
Logic Programming (SNAFδILP). This system is able to learn moderately complex programs
with unary and binary predicates, negation and predicate invention. The system is fairly ro-
bust to mislabelled data, in most cases satisfying the specification with up to 10 % mislabelled
data.

1

Acknowledgements

I would like to thank my supervisor Michal Walicki for outstanding guidance, and Richard
Evans at DeepMind for encouragement and ideas. This thesis would not have been possible
without the support from friends and family throughout this period.

Sondre Bolland

October 4, 2021

2

Contents

1 Introduction 5

2 Background 6
2.1 Logic Programming . 6

2.1.1 Basic Concepts . 6
2.1.2 Semantics of Definite Logic Programs . 8

2.2 Negation As Failure . 9
2.2.1 Recursion and Negation . 10

2.3 Stratified Programs . 11
2.3.1 Determining Stratification . 12
2.3.2 Semantics of Stratified Programs . 13

2.4 Inference in Logic Programming . 15
2.5 Inductive Logic Programming . 15

2.5.1 ILP as a Satisfiability Problem . 16
2.5.2 Basic Concepts . 16
2.5.3 Reducing Induction to Satisfiability . 18

2.6 Differentiable Inductive Logic Programming . 18
2.6.1 Valuations . 18
2.6.2 Induction by Gradient Descent . 19
2.6.3 Rule Weights . 20
2.6.4 Inference . 20
2.6.5 Computing the Fc functions . 21
2.6.6 Extracting our Program . 23

3 Stratified Negation as Failure 25
3.1 Stratified Negation as Failure in Inductive Logic Programming 25

3.1.1 Adding Negation As failure . 25
3.1.2 Selecting Clauses for Stratified Programs . 26
3.1.3 Non-monotonic Forward Chaining . 27

3.2 Stratified Negation as Failure in Differentiable Inductive Logic Programming 27
3.2.1 Fuzzy Negation as Failure . 28
3.2.2 Stratification of δILP . 29
3.2.3 Non-Monotonic Differentiable Inference . 32

4 Experiments 34
4.1 ILP tasks with Negation . 34

4.1.1 Learn innocent/1 . 34
4.1.2 Learn can fly/1 . 34
4.1.3 Learn even/1 . 35
4.1.4 Learn has roommate/1 . 37
4.1.5 Learn two children/1 . 38
4.1.6 Learn not grandparent/2 . 39

4.2 Failed Learning Tasks . 40
4.3 Valuation of Negation as Failure . 41
4.4 Dealing with Mislabelled Data . 42

5 Further Work 43
5.1 Learning Parameters . 43
5.2 Other learning tasks . 44

6 Conclusion 44

3

A No Loss of Generality 45
A.1 No Loss of Generality for Stratified Programs . 45

References 55

4

1 Introduction

Program Synthesis is the task of automatically constructing a program which satisfies a high level
specification. The problem, as stated by Alonzo Church [3], given a logical relation

φ(x, y)

of input x and output y, there should exist a function f which maps x to y

∃f.∀x φ(x, f(x)).

Further, Church posed that it should be possible to algorithmically construct this function.
Program synthesis has been considered the holy grail of Computer Science since the conception

of Artificial Intelligence in the 1950s. An instance of this is Inductive Logic Programming (ILP).
ILP is a collection of techniques for constructing a logic program from a set of examples. Given a
set of positive examples and a set of negative examples an ILP system constructs a logic program
which entails all positive and does not entail any of the negative. From a machine learning
perspective it can be considered as implementing a rule-based binary classifier.

ILP systems have a set of appealing features, in which neural networks faulter. First, the
constructed programs are explicit symbolic structures that can be inspected, understood and vali-
dated, while a neural network is a large tensor of floating point numbers, which is not inspectable
or human-readable. Second, ILP tends to be impressively data efficient, being able to generalize
on only a small set of examples. Neural networks are notorious in their dependency on large
data sets. Third, ILP supports transferred learning. A correctly learned program can simply be
copied and pasted into a knowledge base, leaving the system ready for more learning. With neural
networks transferred learning is possible in cases where the intended function closely relates to
what has been learned prior. Still, neural networks require some further engineering to make use
of this.

While key strengths of ILP are weaknesses in neural networks, key strengths in neural networks
are weaknesses in ILP. The main issue with ILP systems is their inability to handle noise. ILP uses
techniques that depend on a strict formal requirement. If only a single data point is mislabelled
ILP will fail to construct the intended program. Robustness to noise is a touted strength of neural
networks. Even with a sizable proportion of the data being mislabelled, neural networks are often
able to generalize.

To combine the strengths of ILP and neural networks one can reimplement ILP in a robust
connectionist framework. Such a system is proposed by [6]: Differentiable Inductive Logic
Programming (δILP). δILP is reimplementation of ILP in an end-to-end differentiable architec-
ture. It attempts to combine the advantages of ILP with the advantages of neural networks: a
data-efficient induction system that can learn explicit human-readable symbolic rules, that is ro-
bust to noise and ambiguous data, and that does not deteriorate when applied on unseen test data.
The central component of this system is a differentiable implementation of deduction through for-
ward chaining on definite clauses. Instead of satisfying a strict requirement, δILP reinterprets the
task as a binary classification problem, minimizing cross-entropy loss with regard to ground-truth
boolean labels during training.

δILP is able to learn moderately complex programs requiring recursion and predicate invention.
It is also able to perform reasonably well with up to 20 % mislabelled data.

In [6] δILP is restricted to only learning definite programs, i.e. logic programs without the use
of negation. Expressing unknown knowledge is a highly desired property of logic programming.
Normal programs, i.e. programs with the use of negation, are often easier to devise, write and
analyse, than definite programs. By use of negation negative knowledge can be expressed by what
is already known.

This paper proposes an extended δILP system which allows the construction of programs
with the use of negation, more specifically, a system which uses Negation as Failure to construct
Stratified Logic Programs. We have aptly named this system SNAFδILP for Stratified Negation

5

as Failure in Differentiable Inductive Logic Programming. [6] mentions the extension of
negation as failure as further work.

The key difference between δILP and SNAFδILP lies in the ability to construct logic programs
with negation by applying a differentiable implementation of deduction through forward chaining
using stratified fixpoint semantics instead of definite fixpoint semantics.

SNAFδILP is able to learn moderately complex programs with unary and binary predicates
using negation and predicate invention. Unlike traditional ILP systems, SNAFδILP is shown to
be moderately robust to mislabelled data, in most cases learning the intended program with up
to 10 % mislabelled training data.

The structure of this paper is as follows. Section 2 gives an overview of logic programming,
describing different types of logic programs and the semantics used to derive information from
them, as well as an overview of the existing δILP system. Section 3 describes our contribution:
the extension of δILP with stratified negation as failure. First describing the extension in a
traditional ILP system and then a continuous implementation of the same extension. In Section 4
we evaluate our system on a set of learning tasks, testing which implementation of fuzzy negation
as failure yields the best result, and how robust our system is to mislabelled data. We complete
the paper by discussing improvements, future experiments and further implementations in Section
5, and offering our conclusion in Section 6.

2 Background

2.1 Logic Programming

Logic programming is a family of languages in which the central component is an If-then rule,
known as a clause. A logic Program P is a finite set of such clauses, of which there are two
types. The ground unit clauses are the extensional components of the program. They provide us
with a set of instances of the program relations. The remaining clauses constitute the intensional
component. They are the general rules of the program. The general rules and the explicit data
are to be used in deductive retrieval of information [4].

We distinguish between types of logic programs by the construction and order of their clauses.
We will consider three types. A Definite logic program is a set of definite clauses. A definite
clause is a disjunction of literals where exactly one literal is positive (the rest negative). A
Normal logic program is a set of normal clauses (often referred to as extended definite clauses).
A normal clause is a disjunction of literals where at least one is positive (the rest negative). The
third type we will consider is Stratified logic programs. Stratified logic programs are a subset
of Normal Logic programs, with a restriction on the clause order and the use of negation. Section
2.3 discusses stratified programs in more detail.

2.1.1 Basic Concepts

Clauses in logic programming are typically written in the form

A← L1, ..., Ln n ≥ 0

read as “If L1, . . . , Lm then A”. A is a positive literal and each Li is a literal. A literal is an
atom (a “positive” literal) or of the form not B where B is an atom (not B is a “negative” literal).
An atom α is a tuple p(t1, . . . , tn) where p is a n-ary predicate and t1, . . . , tn are terms, either
variables or constants (we will not consider functions). The atom A is the head of the clause; the
literals L1, . . . , Ln are the body of the clause. An atom is ground if it contains no variables, e.g.:

parent(paul, bob)

Consider a program defining the ancestor relation and the parent relation

parent(paul, bob)

6

parent(molly, paul)

ancestor(X,Y) ← parent(X,Z), ancestor(Z,Y)

The parent relation is defined extensionaly, using only ground atoms. The ancestor relation is
defined intensionaly, using a set of non-atomic clauses (a set of one clause in this case).

Variables that appear in the head of a clause are universally quantified, while variables that
only appear in the body of the clause are existentially quantified. In classical logic the ancestor
clause would be written as

∀x∀y(∃z (parent(x,z) ∧ ancestor(z,y))) → ancestor(x,y)

The set of all ground atoms is called the Herbrand base G. A ground rule is a clause in
which all variables have been substituted by constants, e.g.:

ancestor(john,mary) ← parent(john,paul), ancestor(paul,mary)

is a ground rule generated by applying the substitution θ = {john/X,mary/Y, paul/Z}.
In first order logic an interpretation I specifies referents for the elements of our domain

(objects and relations among them). I maps constant symbols to objects in the domain, predicate
symbols to relations over objects in the domain and function symbols to functional relations
over objects in the domain. A Herbrand Interpretation is an interpretation in which every
constant is interpreted as itself. In a Herbrand interpretation predicate symbols are defined as
denoting a subset of the Herbrand base, effectively specifying which ground atoms are true in
the interpretation. All ground atoms which are not elements of the Herbrand interpretation are
interpreted as false. A model in first order logic of a sentence S is an interpretation M such that
S is true in M . A Herbrand Model is a Herbrand interpretation which is a model [10].

Consider the following program P

p(a)←

q(b)←

q(X)← p(X)

Both

I1 = {p(a), p(b), q(a)}

and

I2 = {p(a), q(a), q(b)}

are Herbrand interpretations of P , while only I2 is a Herbrand model of P . In a Herbrand Model
M only ground atoms γ which are elements of M are satisifed.

Definition 2.1 (⊧). A program P satisfies a ground atom γ if and only if a Herbrand model M
of P contains γ:

P ⊧ γ iff γ ∈M

Definition 2.2 (Supported Model). A model M of a program P is supported if and only if
∀A ∈M there is a clause in P of the form

A← L1, ..., Lm,

such that M ⊧ L1, ..., Lm.

Clauses without a body:

A←

are supported since a model M will always satisfy an empty set of sentences.

Definition 2.3 (Minimal Model). A model M of a program P is minimal if and only if it has no
proper subset that is also a model of P .

Definition 2.4 (Least Model). A least model of P is a unique minimal model of P .

7

2.1.2 Semantics of Definite Logic Programs

In logic programming we wish to determine entailment of our programs. One way of doing this
is using a bottom-up technique called forward chaining. Using the clauses of our program P
we derive the set of all consequences con(P). The set con(P) is a Herbrand model of P . To
determine whether a ground atom γ is entailed by P , P ⊧ γ, we check if γ ∈ con(P). In the case
of definite programs the set of consequences will end up being a least Herbrand model, denoted
as conD(P). We properly define this set later in this section. In the case for stratified programs
(which will be discussed in Section 2.3) the set of consequences will end up being a minimal and
supported Herbrand model, denoted as conS(P).

To illustrate why we want minimality, consider the program

p← p.

This program has two models {p} and the empty set ∅. {p} is not minimal. We rule it out since
we cannot prove p using the rules of the program [1].

Support is not important in the case of definite programs, but will be in the case of normal
programs (and stratified programs since they are a subset of normal programs). To illustrate why
we want supported models, consider the program

p← not q.

The program has minimal models {p} and {q}, but only {p} is supported. We dismiss {q} since
there is no way of proving q given this program [1].

Let us consider inference in Definite Programs (Normal and Stratified programs will be con-
sidered later).

Theorem 2.5. [10] Let P be a definite program. Then:

• The Herbrand base G is always a model of P

• If M1 is a model of P and M2 is a model of P , then M1 ∩M2 is a model of P

• P has a model

• P has a minimal Herbrand model

• P has a least Herbrand model, denoted MP

• MP = the intersection of all Herbrand models of P

If we can construct a least Herbrand model of P : MP , we can determine entailment of a ground
atom γ by checking γ ∈ MP .

We can construct MP by using the immediate consequence operator TP . TP maps Herbrand
interpretations of P to Herbrand interpretations of P :

TP ∶ I → I.

Or if you prefer, TP maps sets of ground atoms of P to sets of ground atoms of P .

Definition 2.6 (TP). Let P be a definite logic program and I a set of ground atoms of P .

TP (I) = {A ∣ A← L1, ..., Lm(m ≥ 0) is a ground instance of a clause in P and {L1, ..., Lm} ⊆
I}

Intuitively, the operation TP is the immediate consequence of one step of forward inference on
clauses in P .

8

Theorem 2.7. [10] Let P be a definite program. Then:

• TP is monotonic:

I1 ⊆ I2 implies TP (I1) ⊆ TP (I2)

• The interpretation of I is a model of P if and only if

TP (I) ⊆ I

• The interpretation I of P is supported if and only if

I ⊆ TP (I)

• A fixpoint I of TP

TP (I) = I

will be a supported model of P . A least such fixpoint will be a unique minimal supported
model of P .

Definition 2.8 (Powers of TP). Let P be a definite program. The powers of TP are defined as

T 0
P (I) = I

Tn+1
P (I) = TP (TnP (I))

TωP (I) =
ω

⋃
n=0

TnP (I)

Definition 2.9 (Least Fixpoint of Definite Program). Let P be a definite program. The least
fixpoint of P : lfp(P) is defined as the ω power of TP

lfp(P) = TωP (∅)

Theorem 2.10. [10] Let P be a definite program. Its unique minimal Herbrand Model MP is
given by

MP = lfp(P)

Definition 2.11 (conD(P)). Let P be a definite program and MP be a model of P defined by
theorem 2.10.

conD(P) =MP

2.2 Negation As Failure

A Normal Logic Program is a set of clauses which allows the use of negation in the body of
the clauses. More formally, it is a set of clauses where each has at least one positive literal. In
logic programming a common form of negation is Negation as failure (NAF) [4]. NAF is a
non-monotonic inference rule, used to derive not p (i.e. that p is assumed not to hold) from a
failure to derive p. Such an inference rule allows us to extend a logic program to include not only
information about true instances of relations, but also instances which are false, increasing the
expressive power of our language.

To assume that a relation instance is false if it is not implied, is to assume that the program
P gives complete information about the true instances of the relation. More precisely, it is the
assumption that a relation instance is true if and only if it is given explicitly (as a ground atom)
or is implied by one the general rules of the program (an intensional clause) [4].

Let us consider a program P representing knowledge about university mathematics courses

9

mathCourse(mat111)

mathCourse(mat121)

mat111 and mat121 are the only math courses available at our university. For any other course c
different from mat111 and mat121, mathCourse(c) is not provable. Since there are no instances ex-
plicitly given apart from mathCourse(mat111) and mathCourse(mat121), and there are no general
rules in our program which implies mathCourse(c), we can infer

¬ mathCourse(c)

Let us consider a second program representing father relations

father(bob, paul)

father(bob, alice)

fatherless(X) ← not father(Y,X)

The father relation father(X,Y) represents that X is the father of Y. The fatherless relation
represents that X does not have a father. fatherless is defined by a general rule where we make
use of negation as failure. not father(Y,X) is satisfied if an exhaustive effort to prove father(Y,X)
fails. If we query our program with fatherless(bob) we will search for a substitution θ such that
father(Y, bob)θ is equal to one of our ground atoms. In the case of our program this query will
fail and fatherless(bob) is inferred.

2.2.1 Recursion and Negation

Another tool to increase the expressive power of our language is recursion. Recursion in logic
programming is when a relation is defined in terms of itself. Our first example, the ancestor
relation

ancestor(X,Y) ← parent(X,Z), ancestor(Z,Y)

uses recursion as the relation being defined is found in the body of the clause. Recursion functions
as a loop over our relations. Without it we would not be able to express the ancestor relation
without explicitly stating every ancestor, increasing the size of our program drastically.

However, when both recursion and negation as failure are used we can encounter a problem.
Consider the following program P :

q(a)

q(b)

p(X)← q(X), not p(X)

We wish to know whether p(a) is entailed by our program P : P ⊧ p(a). To prove p(a) we need
to satisfy our subgoals q(a) and not p(a). q(a) is easy enough. We have the ground atom as an
extensional component of our program. To satisfy our last subgoal not p(a) we need an exhaustive
proof of p(a) to fail. There are no explicit instance relations about p, hence we perform a recursive
call of the clause p(X) ← q(X), not p(X). This will lead to an infinite loop of recursive calls on
the same clause.

We want to have the expressive power of both recursion and negation, but, as we have just
observed, they do not necessarily mix well. To avoid this problem we consider stratified logic
programs.

10

2.3 Stratified Programs

A stratified logic program is a partitioning of a normal logic program with restriction on the
order of its clauses and the use of negation [1]. The key feature of a stratified program is that it
forbids recursion inside negation, which occurred in the example in Section 2.2.1. Recursion inside
negation is again shown in the following program, where p is defined by a recursive call inside a
negation:

p← not q

q ← p

Definition 2.12 (Stratified Program). A program P is stratified when there is a partition into a
set of strata

P = P1 ∪ P2 ∪ ... ∪ Pn (Pi and Pj disjoint for all i ≠ j)

such that for every predicate p

• The definition of p (all clauses with p in the head) is contained in one of the partitions/strata
Pi

and, for each 1 ≤ i ≤ n

• If a predicate occurs positively in a clause Pi then its definition is contained within

⋃ j ≤ i Pj

• If a predicate occurs negatively in a clause Pi then its definition is contained within

⋃ j < i Pj

Note that a program is stratified if there is any such partition. Consider the program P :

p(X)← q(X), not r(X)

r(X)← s(X), not t(X)

t(a) ←

s(a) ←

s(b) ←

q(a) ←

A possible stratification of P is:

P = {p(X)← q(X), not r(X)} ∪ (P2)

{r(X)← s(X), not t(X)} ∪ (P1)

{t(a)←, s(a)←, s(b)←, q(a)←} (P0)

11

2.3.1 Determining Stratification

We can determine if a program P can be stratified by constructing the dependency graph of P
and inspect whether it contains a cycle with a negative edge.

We say that a relation p refers to the relation q if there is a clause in P with p in its head and
q in its body.

Definition 2.13 (Dependency Graph). The dependency graph of a program P is a directed graph
representing the relation refers to between the relation symbols of P . For any pair of relation
symbols p, q there is at most one edge (p, q) in the dependency graph of P . Although, there may be
that p refers to q in several clauses in P . An edge (p, q) is positive [negative] iff there is a clause
C in P in which p is the relation symbol in the head of C, and q is the relation symbol of a positive
[negative] literal in the body of C. Note that an edge may be both positive and negative.

Theorem 2.14. [1] A program P can be stratified iff in its dependency graph there are no cycles
containing a negative edge.

Consider the program P :

p(X)← q(X), not r(X)

r(X)← s(X), not t(X)

t(a) ←

s(a) ←

s(b) ←

q(a) ←

We construct the dependency graph of P . Full lines represent positive edges and dotted lines
represent negative edges. We omit ground facts since they do not have any edges and therefore
do not contribute to any possible cycles.

r(X) s(X)

q(X)

t(X) p(X)

We have seen that the program P can indeed be stratified, and observe again this fact as there
are no cycles in its dependency graph that contains a negative edge.

If we instead consider the program which we used to illustrate recursion inside negation:

p← not q

q ← p

We observe that its dependency graph does contain a cycle with a negative edge

p q

and it therefore cannot be stratified.

12

2.3.2 Semantics of Stratified Programs

As described in section 2.1.2 we can determine entailment of a ground atom γ by a program
P : P ⊧ γ, by use of forward chaining. This technique also holds for Stratified programs. The
difference is that by the introduction of negation as failure to our program P , our logic system is
no longer monotonic.

We observe that with negation we lose certain properties. A Definite program P has, among
others, the following properties:

1. TP is monotonic

2. If M1 is a model of P and M2 is a model of P , then M1 ∩M2 is a model of P

3. P has a least Herbrand model

If P is a program with negation, i.e. P is normal, we have

1. TP does not need to be monotonic

2. If M1 is a model of P and M2 is a model of P , then M1 ∩M2 is not necessarily a model of P

3. P may have no least Herbrand model

Consider the program:

A← not B

1. TP is monotonic, i.e. I1 ⊆ I2 implies TP (I1) ⊆ TP (I2). Let I1 = ∅ and I2 = {B}. Then
TP (I1) = {A} and TP (I2) = ∅. Thus I1 ⊆ I2, but not TP (I1) ⊆ TP (I2).

2. Both {A} and {B} are models of P , but their intersection is not.

3. P has two different minimal models {A} and {B}. Then P does not have a least Herbrand
model.

However, we keep the following properties:

• The interpretation of I is a model of P if and only if

TP (I) ⊆ I

• The interpretation I of P is supported if and only if

I ⊆ TP (I)

Hence, a fixpoint of TP , I = TP (I), is a supported model of P . We also want minimality, and
it is therefore natural to look for minimal fixed points of the non-monotonic operator TP [1].
The construction of such a minimal fixed point can be done using stratification. We describe the
process:

We differentiate between the immediate consequence operator for definite programs: TP , and
the non-monotonic version for stratified programs: SP .

Definition 2.15 (SP). Let P be a stratified logic program and I a set of ground atoms of P .

SP (I) = {α ∣ α ← ρ1, ..., ρp, not η1, ..., not ηn (p,n ≥ 0) is a ground instance of a clause in P
where {ρ1, ..., ρp} ⊆ I and {η1, ..., ηn} ∩ I = ∅}

13

Definition 2.16. Let I be a set of ground atoms of a stratified program P . The powers of the
operator SP are defined as:

S0
P (I) = I

S
(n+1)
P (I) = SP (SnP (I)) ∪ SnP (I)

SωP (I) =
ω

⋃
n=0

SnP (I)

Definition 2.17. Let P be a stratified program.

(MP)1 ∶= S
ω
P1

(∅)

(MP)s ∶= S
ω
Ps

((MP)s−1),

Theorem 2.18. [1] Let P be a program stratified by

P = P1 ∪ P2 ∪ ... ∪ Pn (Pi and Pj disjoint for all i ≠ j)

The interpretation MP , constructed by

(MP)1 = S
ω
P1

(∅)

(MP)2 = S
ω
P2

(M1)

...

(MP)n = S
ω
Pn

(Mn−1)

where MP = (MP)n, is a minimal and supported model of P .

MP is our final set of all consequences of P , which we denote as conS(P) for stratified programs.

Definition 2.19 (conS(P)). Let P be a stratified program and MP be a model of P defined by
theorem 2.18.

conS(P) =MP .

Let us illustrate the construction of a model MP for a logic program P using stratification.
Consider the program P :

p(X)← q(X), not r(X)

r(X)← s(X), not t(X)

t(a) ←

s(a) ←

s(b) ←

q(a) ←

A possible stratification, as we have seen, is

P = {p(X)← q(X), not r(X)} ∪ (P2)

{r(X)← s(X), not t(X)} ∪ (P1)

{t(a)←, s(a)←, s(b)←, q(a)←} (P0)

Using the immediate consequence operator we construct interpretations

(MP)1 = S
ω
P1

(∅) = {t(a), s(a), s(b), q(a)}

(MP)2 = S
ω
P2

((MP)1) = {r(b), t(a), s(a), s(b), q(a)}

(MP)3 = S
ω
P3

((MP)2) = {p(a), r(b), t(a), s(a), s(b), q(a)}

Finally, we have MP = (MP)3 which is a minimal and supported model of P .

14

2.4 Inference in Logic Programming

For both definite and stratified programs we can use forward chaining to determine entailment, by
constructing conD(P) (Definition 2.11) and conS(P) (Definition 2.19) respectively. The Inductive
Logic Programming systems we will consider in the following sections are restricted to programs
without functions. This means that the Herbrand universe is finite. As the programs are also
finite we only have finite models. This allows us to easily check whether a ground atom γ is an
element of the set of consequences, determining entailment.

Theorem 2.20. Let P be a definite program. For all ground atoms γ

P ⊧ γ iff γ ∈ conD(P)

Theorem 2.21. Let P be a stratified program. For all ground atoms γ

P ⊧ γ iff γ ∈ conS(P)

2.5 Inductive Logic Programming

Inductive Logic Programming (ILP) is a collection of techniques for constructing logic programs
from examples. Given a set of positive examples and a set of negative examples an ILP system
constructs a logic program which entails all positive examples but does not entail any of the
negative examples. ILP has several appealing features, performing an induction task, which more
standard machine learning techniques, for instance Neural Networks, lack. These features include
data efficiency, verifiability, are often human readable and support of transfer learning.

There are many different approaches to ILP. In this section we will describe the approach to
ILP given in [6]: ILP as a satisfiability problem. We will cover the broader ideas and the necessary
details for our extension of the system. For a thorough overview into the original system we refer
to [6].

An Inductive Logic Programming (ILP) system seeks to construct a logic program satisfying
a set of positive examples and not satisfy a set of negative examples. An ILP problem is a tuple
(B,P,N) of finite sets of ground atoms: background knowledge B, positive instances P of the
target predicate, and negative instances N of the target predicate.

Given an ILP problem (B,P,N), a solution is a set R of clauses, i.e a logic program R, such
that

B ∪R ⊧ γ for all γ ∈ P

B ∪R ⊭ γ for all γ ∈ N

Consider the task of learning which natural numbers are even. A minimal description of the
natural numbers is given as the background knowledge B:

B = {zero(0), succ(0,1), succ(1,2), succ(2,3)..., succ(19,20)}

The positive and negative examples of the even predicate are:

P = {even(0), even(2), even(4), even(6), ..., even(20)}

N = {even(1), even(3), even(5), even(7), ..., even(19)}

A possible solution is the program R:

even(X)← zero(X)

even(X)← even(Y), succ2(Y,X)

succ2(X,Y)← succ(X,Z), succ(Z,Y)

This solution requires both recursion and predicate invention (succ2).

15

2.5.1 ILP as a Satisfiability Problem

In [6] the induction task of ILP is transformed into a satisfiability problem. This is done by using
a top-down approach, where a set of clauses are generated from a language definition and tested
against the positive and negative examples. Each generated clause is assigned a Boolean flag
indicating whether it is on or off. Now the induction problem becomes a satisfiability problem:
choose an assignment to the Boolean flags such that the turned-on clauses together with the
background knowledge entail the positive examples and do not entail the negative examples.

2.5.2 Basic Concepts

Definition 2.22 (Language Frame). A language frame L is a tuple

(target,Pe, aritye,C)

• target is the target predicate, the intensional predicate we are trying to learn

• Pe is a set of extensional predicates

• aritye is a map Pe ∪ target→ N, specifying the arity of the predicate

• C is a set of constants

Definition 2.23 (ILP Problem). An ILP problem (for this specific top-down approach) is a tuple

(L,B,P,N)

• L is a language frame

• B is a set of background assumptions, ground atoms formed from the predicates in Pe and
the constants in C

• P is the set of positive examples, ground atoms formed from the target predicate and the
constants in C

• N is the set of negative examples, ground atoms formed from the target predicate and the
constants in C

Definition 2.24 (Rule Template). A rule template τ describes a range of clauses that can be
generated. It is a pair

(v, int)

• v ∈ N specifies the number of existentially quantified variables allowed in the clause

• int ∈ {0,1} specifies whether the atoms in the body of the clause can use intensional predicates
(int = 1) or only extensional predicates (int = 0)

In this approach to ILP each predicate is defined by at most two clauses. A rule template
generates a set of possible clauses: cl(τ), where one is selected to be one of two clauses defining
the predicate. Hence, each predicate has two rule templates. In addition, we restrict the clauses
to have at most two literals in the body. These restrictions are imposed to reduce the size of the
problem space, but is done without loss of generality (see Apendix A).

Of the clauses specified by a rule template we omit certain clauses in a pruning stage. The
clauses omitted are:

• All variables that appear in the head must appear in the body. Hence, such clauses are
omitted:

target(X)← pred(Y), pred(Z)

16

• Predicates which are specified to use intensional predicates in their definition must have at
least one atom in the body of an intensional predicate. Let target be defined with intensional
atoms in the body and succ be defined extensionally. Then the following clause is kept:

target(X,Y)← target(Z,Y), succ(X,Y)

While this clause is omitted:

target(X,Y)← succ(X,Y)

• No circular clauses:

target(X)← target(X)

However, if the variables differ then the clause is kept:

target(X)← target(Y)

• No duplicate clauses. If we have the clause:

target(X)← succ(X,Y), succ(Y,Z)

we omit its equivalent clause with the body atoms swapped:

target(X)← succ(Y,Z), succ(X,Y)

The predicates are restricted to be nullary, unary or binary. No constants are allowed in the
clauses, but a constant can be represented using a nullary predicate.

Definition 2.25 (Program Template). A program template Π describes a range of programs that
can be generated. It is a tuple

(Pa, aritya, rules, T)

• Pa is a set of auxiliary (intensional) predicates; these are the additional invented predicates
used to help define the target predicate

• aritya is a map Pa → N specifying the arity of each auxiliary predicate

• rules maps each intensional predicate p to a pair of rule templates (τ1
p , τ

2
p)

• T ∈ N specifies the max number of steps of forward chaining inference

Definition 2.26 (Language). A language is a combination of the extensional predicates of the
language frame L and the intensional predicates of the program template Π:

(Pe, Pi, arity,C)

• Pe is a set of extensional predicates

• Pi = Pa ∪ target

• arity = aritye ∪ aritya

• C is a set of constants

Let P be the complete set of predicates:

P = Pi ∪ Pe

A language determines the set of all ground atoms G:

17

G =

{p() ∣ p ∈ P,arity(p) = 0} ∪

{p(k) ∣ p ∈ P,arity(p) = 1, k ∈ C} ∪

{p(k1, k2) ∣ p ∈ P,arity(p) = 2, k1, k2 ∈ C} ∪

{⊥}

Note that G includes the falsum atom ⊥, the atom that is always false.

2.5.3 Reducing Induction to Satisfiability

Given a rule template Π, let τ ip be the i’th rule template for a predicate p. Let Ci,jp be the

j’th clause in cl(τ ip): the set of all clauses generated by τ ip. Using a set Φ of Boolean variables,

indicating which of the clauses in Ci,jp are to be used in the final program to define the predicate
p, the induction problem is turned into a satisfiability problem. Now a SAT solver can find a truth
assignment to the propositions in Φ. By extracting a subset of the clauses which Φ has set to true,
the final program is constructed [6]. This method motivates the implementation of the following
differentiable ILP system.

2.6 Differentiable Inductive Logic Programming

Differentiable Inductive Logic Programming (δILP) is a reimplementation of ILP in an end-to-end
differentiable architecture. δILP seeks to combine the advantages of ILP with the advantages of
neural network-based systems: a data-efficient induction system that can learn explicit human-
readable symbolic rules, that is robust to noisy and ambiguous data, and that does not deteriorate
when applied to unseen test data. δILP reinterprets the ILP task as a binary classification problem,
minimizing cross-entropy loss with regard to ground-truth Boolean labels during training. Instead
of mapping ground atoms to discrete values {False, True} we map them to continuous values1

[0,1]. Instead of using Boolean flags to choose a discrete subset of clauses we now use a set W of
continues weights to determine a probability distribution over clauses.

This section will summarize δILP with focus on the details necessary to implement Stratified
Negation As Failure. For a complete and more detailed explanation see [6].

2.6.1 Valuations

Given a set G of n ground atoms, a valuation is a vector [0,1]n mapping each atom γi ∈ G to a
real unit interval. Consider the following example.

Given a language frame L = (Pe, Pi, arity,C)

Pe = {r/2} Pi = {p/0, q/1} C = {a, b}

A possible valuation of the ground atoms in G of L is

⊥↦ 0.0 p()↦ 0.0 q(a)↦ 0.1 r(a, a)↦ 0.7

r(a, b)↦ 0.1 r(b, a)↦ 0.4 r(b, b)↦ 0.2

The valuation of ⊥ is always 0.0. The process determining the valuation of a given ground atom
will be explained in a later section.

1The values in [0, 1] are interpreted as probabilities rather than fuzzy “degrees of truth”.

18

2.6.2 Induction by Gradient Descent

Given the sets P and N of positive and negative instances of the target predicate we form a set
Λ of atom-label pairs:

Λ = {(γ,1) ∣ γ ∈ P} ∪ {(γ,0) ∣ γ ∈ N}.

This is our dataset for a binary classifier, pairs of input and label.
Now given an ILP problem (L,B,P,N), a program template Π and a set of clause weights

W , a differentiable model is constructed that computes the conditional probability λ of a ground
atom α:

p(λ ∣ α,W,Π,L,B).

The desired outcome is for our predicted label p(λ ∣ α,W,Π,L,B) to match the actual label λ in
the pair (α,λ) we sample from Λ. To manage this the expected negative log likelihood needs to
be minimized when sampling uniformly (α,λ) pairs from Λ:

loss = − E
(α,λ)∼Λ

[λ ⋅ log(p(λ ∣ α,W,Π,L,B)) + (1 − λ) ⋅ log(1 − p(λ ∣ α,W,Π,L,B))].

The probability of label λ is calculated given the atom α by inferring the consequences of apply-
ing rules to the background facts. In ILP, using fixpoint semantics, we applied the immediate
consequence operator until no more consequences could be derived. In δILP forward chaining can
always infer new consequences, i.e. valuations. Hence, the system is restricted to only perform a
finite number T (time steps) of forward chaining. The probability of label λ is given by:

p(λ ∣ α,W,Π,L,B) = fextract(finfer(fconvert(B), fgenerate(Π,L),W,T), α).

These functions have the following roles.

fextract ∶ [0,1]
n ×G→ [0,1]

fextract takes a valuation x and an atom γ and extracts the value of the atom:

fextract(x, γ) = x[index(γ)]

where index ∶ G→ N is a function that assigns each ground atom a unique integer index.

fconvert ∶ 2
G → [0,1]n

fconvert takes a set of atoms and converts it into a valuation mapping the elements of B to 1 and
all other elements of G to 0:

fconvert(B) = y where y[i] =

⎧⎪⎪
⎨
⎪⎪⎩

1, if γi ∈ B

0, otherwise.

fgenerate(Π,L) = {cl(τ ip) ∣ p ∈ P, i ∈ {1,2}}

fgenerate produces a set of clauses from a program template Π and a language frame L.

finfer ∶ [0,1]
n ×C ×W ×N→ [0,1]n

finfer performs T steps of forward-chaining inference using the generated clauses, amalgamating
the conclusions together using the clause weights W (described in more detail below).

19

2.6.3 Rule Weights

The weights W are a set W1, . . . ,W∣Pi∣ of matrices. One matrix for each intensional predicate
p ∈ Pi. The matrix Wp for predicate p is of shape (∣cl(τ1

p)∣, ∣cl(τ
2
p)∣). The various matrices Wp are

not necessarily the same size because the different rule templates generate a different number of
clauses defining the different intensional predicates. The weight Wp[j, k] represents how strongly
the system believes that the pair of clauses (C1,j

p ,C2,k
p) is the right way to define the intensional

predicate p. The weight matrix Wp ∈ R
∣cl(τ1

p)∣×∣cl(τ2
p)∣) is a matrix of real numbers. It is transformed

into a probability distribution W ∗
p ∈ [0,1]∣cl(τ

1
p)∣×∣cl(τ2

p)∣) using softmax:

W∗
p[j, k] =

eWp[j,k]

∑j′,k′ e
Wp[j′,k′] .

W ∗
p [j, k] represents the probability that the pair of clauses (C1,j

p ,C2,k
p) is the right way to define

the intensional predicate p.

2.6.4 Inference

Given an initial evaluation a0 of our ground atoms G

a0[x] =

⎧⎪⎪
⎨
⎪⎪⎩

1, if γx ∈ B

0, otherwise

and a set of generated clauses the consequences of our background knowledge can be inferred using
the differentiable evaluation function Fc. An evaluation is calculated and then adjusted by the
clause weights (how much the truths we calculated are believed). After T time steps of forward
chaining inference an valuation of the ground atoms are extracted and compared to our data set
(positive and negative instances provided in the problem specification). The cross entropy loss is
calculated so that the loss can be propagated backwards through the system to adjust the clause
weights.

Each clause c induces a function Fc ∶ [0,1]
n → [0,1]n. Consider the clause

p(X)← q(X).

The set G of ground atoms derived from this clause (with constants {a, b}) is

G = {p(a), p(b), q(a), q(b),⊥}.

The evaluation which Fc outputs can be seen as the (un-weighted) consequences of our clause, for
instance:

G a0 Fc(a0) a1 Fc(a1)

p(a) 0.0 0.1 0.2 0.7
p(b) 0.0 0.3 0.9 0.4
q(a) 0.1 0.0 0.7 0.0
q(b) 0.3 0.0 0.4 0.0
⊥ 0.0 0.0 0.0 0.0

The set C contains all generated clauses, where Ci,jp is the j’th clause of the i’th rule template for

the intensional predicate p. A corresponding set F is defined where F i,jp is the valuation function

corresponding to the clause Ci,jp . Another set of functions is defined; Gi,jp , that combines the

20

application of two functions F1,j
p and F2,k

p . Gi,jp is the result of applying both clauses C1,j
p and

C2,k
p and taking the element-wise max:

Gi,jp (a) = x where x[i] =max(F1,j
p (a)[i],F2,k

p (a)[i]).

Next, a time series of valuations is defined. Each such valuation at represents the conclusions
after t time-steps of inference. The initial value a0 when t = 0 is based on the initial set B ⊆ G of
background axioms:

a0[x] =

⎧⎪⎪
⎨
⎪⎪⎩

1, if γx ∈ B.

0, otherwise.

cp,j,kt is defined as

cp,j,kt = Gj,kp (at).

Intuitively, cp,j,kt is the result of applying one step of forward chaining inference to at using clauses

C1,j
p and C2,k

p . The weighted average of cp,j,kt is defined using softmax:

bpt =∑
j,k

cp,j,kt ⋅
eWp[j,k]

∑j′,k′ e
Wp[j′,k′] .

Intuitively, bpt is the result of applying possible pairs of clauses that can jointly define predicate p,
and weighting the result by the weights Wp.

From this the successor at+1 of at is defined:

at+1 = famalgamate(at, ∑
p∈Pi

bpt),

where

famalgamate(x, y) = x + y − x ⋅ y.

The successor depends on the previous valuation at and a weighted mixture of the clauses defining
the other intensional predicates.

2.6.5 Computing the Fc functions

The Fc function, in short, calculates the product (fuzzy conjunction) of each pair of ground atoms
(the body) which leads to the truth of the clause head. After finding all products which lead to
the truth of the clause head, the maximum value is selected.

Fc ∶ [0,1]
n → [0,1]n

Fc maps a vector of valuations to a vector of valuations. A function Fc is induced for every clause
c constructed by the rule templates. Each function can be computed as follows. Let Xc = {xk}

n
k=1

be a set of sets of pairs of indices of ground atoms of clause c. Each xk contains all the pairs of
atoms that justify atom γk according to the current clause:

xk = {(a, b) ∣ satisfiesc(γa, γb) ∧ headc(γa, γb) = γk}.

Here, satisfiesc(γ1, γ2) if the pair of ground atoms (γ1, γ2) satisfies the body of clause c. If
c = α ← α1, α2, then satisfiesc(γ1, γ2) is true if there is a substitution θ such that α1[θ] = γ1 and
α2[θ] = γ2.

Also, headc(γ1, γ2) is the head atom produced when applying clause c to the pair of atoms
(γ1, γ2). If c = α ← α1, α2 and α1[θ] = γ1 and α2[θ] = γ2 then

headc(γ1, γ2) = α[θ].

21

For example, let P be a program with three predicates: {p, q, r} and a set of constants {a, b}.
Then the ground atoms G are

k 0 1 2 3 4 5 6 7 8
γk ⊥ p(a,a) p(a,b) p(b,a) p(b,b) q(a,a) q(a,b) q(b,a) q(b,b)

k 9 10 11 12
γk r(a,a) r(a,b) r(b,a) r(b,b)

Suppose clause c is:

r(X,Y)← p(X,Z), q(Z,Y).

Then Xc = {xk}
n
k=1 is:

k γk xk

0 ⊥ {}
1 p(a,a) {}
2 p(a,b) {}
3 p(b,a) {}
4 p(b,b) {}

k γk xk

5 q(a,a) {}
6 q(a,b) {}
7 q(b,a) {}
8 q(b,b) {}

k γk xk

9 r(a,a) {(1,5),(2,7)}
10 r(a,b) {(1,6),(2,8)}
11 r(b,a) {(3,5),(4,7)}
12 r(b,b) {(3,6),(4,8)}

Focusing on a particular row, the reason why (2, 7) is in x9 is that γ2 = p(a, b) and γ7 = q(b, a)
(the pair of atoms (p(a, b), q(b, a))) satisfies the body of clause c when the head of the clause c is
r(a, a) (γ9).

Xc, a set of pairs, is transformed into a three dimensionel tensor: X ∈ Nn×w×2. Here, w is the
maximum number of pairs for any k in 1...n. The width w depends on the number of existensially
quantified variables v in the rule template. Each existentially quantified variable can take ∣{a, b}∣
values, so w = ∣{a, b}∣v. X is constructed from Xc, filling unused space with (0,0) pairs that point
to the pair of atoms (⊥,⊥):

X[k,m] =

⎧⎪⎪
⎨
⎪⎪⎩

xk[m], if m < ∣xk ∣

(0,0), otherwise.

This is why the falsum atom ⊥ needs to be included in G, so that the null pairs have some atom
to point to. In the running example, this yields:

k γk X[k]

0 ⊥ [(0,0),(0,0)]
1 p(a,a) [(0,0),(0,0)]
2 p(a,b) [(0,0),(0,0)]
3 p(b,a) [(0,0),(0,0)]
4 p(b,b) [(0,0),(0,0)]

k γk X[k]

5 q(a,a) [(0,0),(0,0)]
6 q(a,b) [(0,0),(0,0)]
7 q(b,a) [(0,0),(0,0)]
8 q(b,b) [(0,0),(0,0)]

k γk X[k]

9 r(a,a) [(1,5),(2,7)]
10 r(a,b) [(1,6),(2,8)]
11 r(b,a) [(3,5),(4,7)]
12 r(b,b) [(3,6),(4,8)]

Let X1,X2 ∈ Nn×w be two slices of X, taking the first and second elements of each pair:

X1 =X[∶, ∶,0] X2 =X[∶, ∶,1].

gather2 ∶ Ra ×Nb×c → Rb×c is defined as:

gather2(x, y)[i, j] = x[y[i, j]].

22

Finally, Fc(a) can be defined. Let Y1, Y2 ∈ [0,1]n×w be the result of assembling the elements
of a according to the matrix of indices in X1 and X2:

Y1 = gather2(a,X1) Y2 = gather2(a,X2).

Now let Z ∈ [0,1]n×w contain the results from element-wise multiplying the elements of Y1 and Y2:

Z = Y1 ⊙ Y2.

Here, Z[k, ∶] is the vector of fuzzy conjunctions of all the pairs of atoms that contribute to the
truth of γk, according to the current clause. Fc(a) is defined by taking the max fuzzy truth values
in Z. Let Fc(a) = a

′ where a′[k] =max(Z[k, ∶]).
The following table shows the calculation of Fc(a) for a particular valuation a, using the

running example c = r(X,Y) ← p(X,Z), q(Z,Y). Here, since there is one existentially quantified
variable Z, v = 1, and w = ∣{a, b}∣v = 2.

k γk a[k] X1[k] X2[k] Y1[k] Y2[k] Z[k] Fc(a)[k]

0 ⊥ 0.0 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
1 p(a,a) 1.0 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
2 p(a,b) 0.9 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
3 p(b,a) 0.0 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
4 p(b,b) 0.0 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
5 q(a,a) 0.1 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
6 q(a,b) 0.0 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
7 q(b,a) 0.2 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
8 q(b,b) 0.8 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
9 r(a,a) 0.0 [1 2] [5 7] [1.0 0.9] [0.1 0.2] [0.1 0.18] 0.18
10 r(a,b) 0.0 [1 2] [6 8] [1.0 0.9] [0 0.8] [0 0.72] 0.72
11 r(b,a) 0.0 [3 4] [5 7] [0 0] [0.1 0.2] [0 0] 0.00
12 r(b,b) 0.0 [3 4] [6 8] [0 0] [0 0.8] [0 0] 0.00

More simply, Fc for a single valuation for a ground atom is calculated as follows: We have our
clause

r(X,Y)← p(X,Z), q(Z,Y).

Considering the ground atom r(a, a), atoms which contribute to its truth are found. These are the
ground atom pairs p(a, a)∧ q(a, a) and p(a, b)∧ q(b, a). These ground atoms pairs are indexed by
X1[k] and X2[k]. The product of the pairs of valuations is calculated. p(a, a) has valuation 1.0
and q(a, a) has valuation 0.1. Hence, the ”truth value” of the ground atom r(a, a) as a consequence
of p(a, a) and q(a, a) is 1.0 ⋅ 0.1 = 0.1. The same is done for other pairs of ground atoms which
contribute to the truth of r(a, a) and get 0.9 ⋅ 0.2 = 0.18. Finally, the maximum is selected, as a
fuzzy conjunction, of these two calculated values as the new valuation for r(a, a): 0.18.

Fc(a)[9] = 0.18

2.6.6 Extracting our Program

Before training, rule weights are initialised randomly by sampling from a N (0,1) distribution.
Each learning task is trained for 200 - 500 steps depending on the complexity of the program, to
reduce computational cost. In training the rule weights are adjusted to minimise cross entropy
loss as described above.

For each training step a mini-batch is sampled from the positive and negative examples, instead
of using the whole dataset. Selecting a random subset of the training data gives the process a
stochastic element which helps to escape local minima.

23

For each training step we sample a mini-batch from the positive and negative examples. Note
that, instead of using the whole set of positive and negative examples each training step, we just
take a random subset. This mini-batching gives the process a stochastic element and helps to
escape local minima.

After the training steps, δILP produces a set of rule weights for each rule template. To validate
this program, we run the model on a test dataset not used in training. This is testing the system’s
ability to generalise to unseen data. We compute validation error as the sum of mean-squared
difference between the actual label λ and the predicted label λ̂:

loss =
k

∑
i=1

(λ − λ̂)2

Once δILP has finished training, we extract the rule weights, and take the soft-max. Interpreting
the soft-maxed weights as a probability distribution over clauses, we measure the “fuzziness” of
the solution by calculating the entropy of the distribution. On the discrete error-free tasks, δILP
finds solutions with zero entropy, as long as it does not get stuck in a local minimum. To extract a
logic program from the learned clause weights all clauses whose probability is over some constant
threshold are selected to define the clauses of the predicates of our program. This threshold is
arbitrarily set to 0.1.

24

3 Stratified Negation as Failure

As of now δILP is restricted to reasoning using definite clauses. Learning clauses without the
use of negation in the body limits the expressiveness of our language. Normal logic programs are
widely used because they are much easier to devise, write and analyse, than definite programs.
Normal logic programs are shorter and clearer than definite programs because negative knowledge
can be expressed through what is already known. Consider, for example, a program to compute
intersection, returning the intersection of input lists X and Y. Such a program must check whether
an element occurring in X also occurs in Y, or not. To this end, two subprograms member and
not member are needed. If negation is allowed, we just have to device a program for member, and
then set:

not member(X,Y) ← not member(X,Y)

If negation is not allowed, then the two subprograms must be treated as independent concepts,
and a program for not member must be developed as well. Since negation can make programs
sensibly shorter, this may have a positive influence on their learnability, as the difficulty of learning
a given logic program is very much related to its length [2]. Hence, we want to introduce a form
of negation. We propose Stratified Negation as Failure to fill this role.

Stratified Negation as Failure (SNAF) is the use of the negation as failure inference rule
not in Stratified programs. We will re-implement δILP in such a way that all programs constructed
are stratified and can include the use of negation as failure. First, we re-implement the ILP system
described above with SNAF. Then we ”neurolize” the process, implementing SNAF in δILP. To
distinguish between the extended system with SNAF and the system described in [6] we will refer
to the original system as δILP and the extended system as SNAFδILP: Stratified Negation as
Failure in Differentiable Inductive Logic Programming.

3.1 Stratified Negation as Failure in Inductive Logic Programming

In [6] definite programs were constructed by selecting a set of clauses which satisfy the positive
examples and does not satisfy the negative ones. Using forward chaining we determine entailment
by constructing a set of all consequences of our program.

When extending the ILP system to include negation as failure we use the same approach, but
alter it to handle the non-monotonicity of negation as failure. This is done in three main steps

1. Add negation as failure into the construction of clauses

2. Ensure a selection of clauses such that the program is stratified

3. Forward chaining is altered to handle the non-monotonicity of negation as failure

Step 1 is fairly obvious. To construct programs that contain negation as failure we need to
construct clauses that allow for the use of negation as failure.

In step 2 we want to ensure stratification. We require programs to be stratified to be able to
perform forward chaining and construct our set of consequences.

In step 3 we construct conS(P) for stratified programs, instead of conD(P) for definite pro-
grams.

Apart from the alterations in the next sections all parts of the ILP system remains the same
as described in Section 2.5.

3.1.1 Adding Negation As failure

To have our set of generated clauses include clauses with negation as failure we extend the rule
template (Definition 2.24).

25

Definition 3.1 (Rule Template with Negation as Failure). A rule template τ describes a range
of clauses that can be generated. It is a tuple

(v, int, neg)

• v ∈ N specifies the number of existentially quantified variables allowed in the clause

• int ∈ {0,1} specifies whether the atoms in the body of the clause can use intensional predicates
(int = 1) or only extensional predicates (int = 0)

• neg ∈ {0,1} specifies whether the atoms in the body of the clause can be negated (neg = 1) or
not (neg = 0)

Now the clauses of the generated program can be normal clauses, instead of just definite clauses.
We will be using this definition of the rule template τ for the rest of this paper.

To illustrate the clause generation with negation we consider an ILP task with language frame
L:

L = (target,Pe, aritye,C)

• target = q/2

• Pe = {p/2}

• C = {a, b, c, d}

The target predicate q will have two rule templates (τ1
q , τ

2
q) to generate which clauses can be in

the definition of q. Let the first rule template τ1
q be

τ1
q = (v = 0, int = 0, neg = 1)

specifying no existentially quantified variables and disallowing intensional predicates, but allowing
negative literals. The generated clauses from the rule template τ1

q will include the clause:

q(X,Y)← p(X,X), p(X,Y),

in addition to three extra clauses with all possible combinations of negation:

1. q(X,Y)← not p(X,X), p(X,Y)

2. q(X,Y)← p(X,X), not p(X,Y)

3. q(X,Y)← not p(X,X), not p(X,Y)

This increases the number of generated clauses by four times the number of clauses generated by
the original rule template, i.e. without the neg parameter. However, this number is lowered by
pruning. In addition to the pruning performed in δILP clauses which use negation are discarded
in these cases:

• The atoms of the body are equal, but only one is negated:
target(X)← pred(X), not pred(X)

• The head of the clause appears negated in the body:
target(X)← not target(X)

3.1.2 Selecting Clauses for Stratified Programs

In ILP as a satisfiability problem a subset P of all generated clauses Φ was selected to be our final
program. To ensure that our selected clauses form a stratified program we will add a restriction
to the propositions in Φ, determining which clauses can be selected for our set P ⊆ Φ.

We device an algorithm for determining if a program P can be stratified. For the clauses in P
we construct the dependency graph (Definition 2.13) and then, using a Depth First Search, search
for a negative cycle. By Theorem 2.14 we know that if such a cycle exists the program cannot be
stratified. The algorithm returns true if the program P can be stratified and returns false if the
program P cannot be stratified.

26

NoNegativeCycle
Input Graph: G

1: for v ∈ G do
2: visited← {}
3: recursionStack ← {}
4: if negativeCycleUtil(G, v, visited, recursionStack, False) then
5: return False
6: end if
7: end for
8: return True

negativeCycleUtil
Input Graph: G, Vertix: v, Set: visited, Set: recursionStack, Boolean: negativeEdge

1: if v ∈ recursionStack then
2: return negativeEdge
3: end if
4: if v ∈ visited then
5: return False
6: end if
7: visited← visited ∪ {v}
8: recursionStack ← recursionStack ∪ {v}
9: for u ∈ v.children do

10: if negativeEdge OR (v, u) is negative then
11: return negativeCycleUtil(G, v, visited, recursionStack, True)
12: else
13: return negativeCycleUtil(G, v, visited, recursionStack, False)
14: end if
15: end for
16: recursionStack ← recursionStack \ {v}
17: return False

For subsets of Φ we run the test of stratification. If it comes out true we check if this subset,
i.e. our program P , satisfy our positive examples and do not satisfy our negative examples. If the
test comes out false we select a different subset and retry the process, until either we find a subset
which satisfies our constraints or every subset of Φ has been searched.

3.1.3 Non-monotonic Forward Chaining

For stratified programs we can construct a minimal and supported Herbrand model MP of P by
theorem 2.18. This model is our set of consequences conS(P) of P . We want to construct a
program P such that our clauses and background knowledge B satisfy all positive examples P and
do not satisfy any negative examples N

B ∪ P ⊧ γ for all γ ∈ P

B ∪ P ⊭ γ for all γ ∈ N

Using Theorem 2.21 we can determine entailment of a stratified program P by construction of
conS(P). Then we simply have to check if our positive examples P are elements of this set and
that our negative examples N are not.

3.2 Stratified Negation as Failure in Differentiable Inductive Logic Pro-
gramming

After introducing stratified negation as failure to Inductive Logic Programming we wish to imple-
ment it in a differentiable manner, introducing SNAF to Differentiable Inductive Logic Program-

27

ming.
In δILP we map ground atoms to a real unit interval [0,1] instead of the discrete values

{True,False} as in the original ILP system. Consequences of our clauses is now derived using
the function Fc instead of the immediate consequence operator TP /SP

2. The clauses of our final
program are selected by retrieving the clauses whose clause weight is above a set threshold after
training.

The changes to ILP as a satisfiability problem when introducing SNAF was

1. Add negation as failure into the construction of clauses

2. Ensure a selection of clauses such that the program is stratifiable

3. Forward chaining is altered to handle the non-monotonicity of negation as failure

1 was handled by extending the rule template. 2 was handled by constructing the dependency
graph for our subset of clauses and checking for a cycle with a negative edge. 3 was handled by
constructing conS(P) instead of conD(P) as in the original system.

Step number 1 is already handled since the process of clause construction does not change from
ILP to δILP. Number 2 and 3 are the steps which we need to re-implement to fit the stratified
programs. In addition, we need to define how to valuate literals with negation as failure.

3.2.1 Fuzzy Negation as Failure

To decide a fuzzy implementation of negation as failure we will consider its meaning. Negation as
failure infers a negated literal not p by failing to prove p. In our valuations of ground atoms on
an interval [0,1] p is considered to have a probability to its truth. If p were to have the valuation

p↦ 0.6

then we consider p to have a 60 % probability of being true. Meaning that we cannot say with
certainty that p is not true. Our proof of p does not fail (in a sense), and not p cannot be inferred.
Only if we are certain of the falsity of p, i.e.

p↦ 0.0

can we infer not p.
An implementation which expresses this rationale is 3

at(not γ) =

⎧⎪⎪
⎨
⎪⎪⎩

1.0, if at(γ) = 0.0

0.0, otherwise.

This is know as weak negation [8].
A version of this, which allows us to decide at what point we consider something to be true,

is weak negation with threshold [8]. Imposing that every atom which does not have a valuation of
1.0 has its negation valuated to 0.0 is rather strict. We can instead introduce a threshold θ ∈ [0,1]
where if the valuation of γ is above θ then it is considered to be true. Conversely, if it is below θ
it is considered to be false. We introduce a threshold θ to weak negation4:

at(not γ) =

⎧⎪⎪
⎨
⎪⎪⎩

1.0, if at(γ) > θ

0.0, otherwise.

2TP for definite programs and SP for stratified programs
3Note that at is an indexed set of valuations at time step T , not a function. The equation mereley exists to

illustrate valuation of negative literals. It would be more correct to give the indexes of not γ and γ.
4See footnote 3

28

However, our system requires gradient to flow through its network, meaning that having
negated literals only take on the valuations 0.0 and 1.0 would not be beneficial. A continuous
implementation of negation, which is most widely used, is strong negation 5

at(not γ) = 1 − at(γ)

where the valuation of a negative literal is the complement of its positive form [8]. Now we allow
our system to valuate not p to any value in the range [0,1].

Each of the different NAF implementations is tested in section 4.3.

3.2.2 Stratification of δILP

In δILP, instead of using Boolean flags to choose a discrete subset of clauses, we use continuous
weights to determine a probability distribution over clauses. To extract a human-readable logic
program we just take all clauses whose probability is over some constant threshold after training.

We do not want to perform forward chaining inference, i.e. apply Fc to our clauses, if the set
of clauses does not form a stratified program. Hence, we need to enforce stratification before our
inference step. After generating our set of all possible clauses to define our intensional predicates,
we partition all clauses into a set of programs P

P = P1 ∪ P2 ∪ ... ∪ Pn

where each Pi is a set of clauses which form a stratified program. I.e. each Pi can be partitioned

Pi = Pi,1 ∪ Pi,2 ∪ ... ∪ Pi,m (Pi,j and Pi,k disjoint for all j ≠ k)

and the clauses of these partitions satisfy the conditions of a stratified program from definition 2.12.
Each Pi will contain several clauses which define the predicates of our program. The remaining
task left to the system is to do a selection out of these clauses which will be our final program.

To partition the set of all clauses into stratified programs we place all intensional predicate
into strata and, by following the definition of stratified programs (definition 2.12), we restrict how
each predicate can be defined. Consider a program which is defined by the following predicates:
target, pred1, pred2, ..., predN, as well as a set of extensional relations. By placing each predicate
in a specific stratum we can ensure stratification. Extensional predicates we always place in the
first stratum since they cannot by definition cause recursion inside negation. The target predicate
target is what we want to learn, while the auxiliary predicates pred1, pred2, ... predN will be used
as subgoals to define target. Hence, target will always be placed in the last stratum so that it can
reference the auxiliary predicates.

What remains to be placed into strata are the auxiliary predicates which the system will invent
to define the target predicate. For each auxiliary predicate the risk of recursion inside negation is
dependent on whether it is defined intensionally and if it allows the use of negation. Consider the
following arbitrary program where the target predicate allows use of negation:

someRelation(a, b)←

someRelation(b, c)←

someRelation(a, c)←

pred(X)← ...

target(X)← not pred(X), someRelation(X,X)

If pred allows intensional predicates in its body then the constructed clauses will include the
following possible definition of target and pred :

pred(X)← target(X), ...

target(X)← not pred(X), ...

5See footnote 3

29

which is not a stratified program.
We want to avoid such clause combinations, but do not want to omit these clauses entirely.

Then we run the risk of removing the correct clauses to define the target predicate. Instead, we
construct several clause sets which the system will run independently. In this case we construct
one clause set which includes:

target(X)← not pred(X)

and excludes

pred(X)← target(X).

While another clause set will contain the second and not the first. This way we ensure that all
clause combinations results in a stratified program and we do not omit any of the potentially
necessary clauses.

This is done by constructing a program for each possible strata placements. For a program
with the target predicate as well as two auxiliary intensional predicates we have the following
combinations:

30

P1,1: [Extensional predicates]

P1,2: [target, pred1, pred2]

P2,1: [Extensional predicates]

P2,2: [pred1, pred2]

P2,3: [target]

P3,1: [Extensional predicates]

P3,2: [pred1]

P3,3: [target, pred2]

P4,1: [Extensional predicates]

P4,2: [pred2]

P4,3: [target, pred1]

P5,1: [Extensional predicates]

P5,2: [pred1]

P5,3: [pred2]

P5,4: [target]

P6,1: [Extensional predicates]

P6,2: [pred2]

P6,3: [pred1]

P6,4: [target]

For instance, in P3 target can be defined by clauses with negative literals of pred1 in the body,
but can only use pred2 positively. In P4 it is the other way around.

Now every possible clause combination ensures a stratified program. In addition, we do not
omit any clauses which might be the correct way to define our predicates.

Now we can perform inference on the clauses of each Pi separately without encountering the
problem of recursion inside negation. We iteratively select a program Pi and perform the remain-
ing steps of the system: training our network until the weights of our clauses determining the
probability that the clause is the correct way to define the intensional predicate, have reached our
desired threshold. If the threshold is not reached, we select Pi+1 and repeat the process.

The cardinality of P is dependent on the number of intensional auxiliary predicates. For n
intensional auxiliary predicates:

∣P∣ = (n − 1)!

31

3.2.3 Non-Monotonic Differentiable Inference

The differentiable inference process in δILP is a reimplementation of the inference process in ILP.
To adhere to the restrictions of stratified programs we will alter the inference operations in δILP
to emulate the construction of conS(P), rather than conD(P) as in the original δILP system.
conS(P) and conD(P) are represented by a final valuation set aT ∈ [0,1]n for stratified and
definite programs respectively. The construction of aT was originally done in three steps

1. The application of Fc to the previous valuation.

2. Calculating the weighted valuation bt based on the current clause weights. Step 1 and 2
represents the application of our immediate consequence operator TP

3. Amalgamate the the previous valuations at−1 with our current weighted valuation bt. This
represents the powers of TP .

Repeat these steps T times as specified by the Program Template (Definition 2.25) and we have
our final valuation aT .

Step 1 is slightly altered by updating the valuation of the negative literals based on the valuation
of the positive literals, by use of the selected implementation of negation as failure, for each
application of Fc. Step 2 stays unchanged. For step 3 we alter the amalgamation of valuations
to fit the powers of SP , and add a fourth step to join the consequences of each stratum of our
program P .

3.2.3.1 Amalgamation of Consequences

The joining of consequences in the construction conD(P) is done by

T 0(I) = I (Definition 2.8)

T (n+1)(I) = T (Tn(I)) (Definition 2.8)

and is represented in δILP by the probabilistic sum of new and old valuations

at+1 = at + bt − at ⋅ bt.

In this, conD(P) and conS(P) differ. Hence, we need to alter the calculation of at+1. S(n+1)

differs from its monotonic counterpart T (n+1) by adding the union of Sn(I) to S(Sn(I)):

T (n+1)(I) = T (Tn(I)) (Definition 2.8)

S(n+1)(I) = S(Sn(I)) ∪ Sn(I) (Definition 2.16)

S(Sn(I)) is the consequences of the previous consequences. It is represented by the probabilistic
sum of the previous valuation and the weighted average of the next valuation. Hence, Sn(I) is
the previous valuation at

S(Sn(I))↦ at + bt − at ⋅ bt

Sn(I)↦ at

To take the union of these valuations we again take the probabilistic sum:

ct ∶= at + bt − at ⋅ bt

S(Sn(I)) ∪ Sn(I)↦ ct + at − ct ⋅ at

Another representation is:

S(Sn(I)) ∪ Sn(I)↦max(at + bt − at, at)

as union is often represented by MAX in fuzzy set theory [9]. However, this implementation would
never valuate ground atoms to a lower value than their initial valuation. This is not desired.

32

3.2.3.2 Joining Consequences of each Stratum

The joining of consequences for each stratum is done by

(MP)1 = S
ω
P1

(∅)

(MP)2 = S
ω
P2

((MP)1)

...

(MP)n = S
ω
Pn

((MP)n−1)

As described in Section 3.2.2, we have partitioned our clauses into stratified programs. When
deriving the consequences of clauses this will be done at different times. We sort the intensional
predicates by strata and perform forward chaining for each predicate in order of which stratum
they are partitioned into. Start with stratum 1 and proceed to the last. For each new stratum
our initial valuation will be the valuation calculated for the previous stratum. We denote the
valuation for stratum Pi at final time step T as aPi . Our final valuation after n strata and T time
steps of forward chaining inference for each stratum is

aP1 = (a0)T (a0 defined by B)

aP2 = (aP1)T

...

aPn = (aPn−1)T

33

4 Experiments

4.1 ILP tasks with Negation

To test SNAFδILP we run it on a set of ILP tasks which naturally would use negation.

4.1.1 Learn innocent/1

As a simple negation test the system is given the task of determining who is innocent by knowing
who is guilty. The constants is a set of people:

C = {Paul,Randy,Rachel,Bob,Alice, Stan,Kyle,Peter, Tony,Monica}.

The background knowledge is a set of facts defining who is guilty using the guilty predicate:

B = {guilty(Bob), guilty(Randy), guilty(Peter),

guilty(Alice), guilty(Monica)}.

The positive examples P are:

P = {target(Paul), target(Rachel), target(Kyle),

target(Tony), target(Stan)}.

In all these examples, target is the target predicate we are trying to learn. In this case target =
innocent. The negative examples N is the set containing all constants not found in the positive
examples P:

N = {target(Bob), target(Randy), target(Peter),

target(Alice), target(Monica)}.

One possible language template for this task is:

Pe ∶ {guilty/1}

Pi ∶ {target/1}.

One suitable program template for this task is:

τ1
target = (h = target, n∃ = 0, int = False, neg = True)

τ2
target = null.

This template specifies one clause for target. The architecture assumes that every predicate is
defined by exactly two clauses specified by two rule templates. Here, we only need one clause to
define target, so the second rule template is null. SNAFδILP can reliably solve this task. The
solution found is:

target(X)← not guilty(X).

4.1.2 Learn can fly/1

The task is to learn which animal is able to fly. An animal is considered to be able to fly if it is a
bird, but is not abnormal. Abnormal birds such as penguins cannot fly. The constants form a set
of animals (different breeds of bird, dog and cat):

C = {blue bird, penguin, ostrich, blackbird, robin, sparrow, starling, chicken, kiwi,

steamer duck, kakapo, cassowary, takahe,weka, pigeon, swan, duck, gold finch,

woodpecker, blue tit, great tit, puddle, forrest cat, pitbull, golden retriever,

perser, bengal, siamese, sphynx, ragdoll, savannah, sibirian cat, greyhound,

malteser, dobermann, rottweiler, boston terrier, scottish fold, exotic, russian blue}.

34

The background knowledge is a set of facts defining is bird and abnormal relation on animals.

B = {is bird(woodpecker), is bird(bluebird), is bird(penguin),

is bird(blue tit), is bird(great tit), is bird(ostrich),

is bird(black bird), is bird(robin), is bird(sparrow),

is bird(starling), is bird(chicken), is bird(kiwi),

is bird(steamer duck), is bird(kakapo), is bird(takahe),

is bird(weka), is bird(pigeon), is bird(swan),

is bird(duck), is bird(gold finch), is bird(bluebird)}

∪

{abnormal(penguin), abnormal(ostrich), abnormal(chicken),

abnormal(kiwi), abnormal(steamer duck), abnormal(kakapo),

abnormal(takahe), abnormal(weka)}.

The positive examples P are:

P = {target(blue bird), target(black bird), target(robin),

target(sparrow), target(starling), target(pigeon),

target(swan), target(duck), target(gold finch),

target(wood pecker), target(blue tit), target(great tit)}.

In this task target = can fly. The negative examples N are:

N = {target(penguin), target(chicken), target(kiwi),

target(steamer duck), target(takahe), target(puddle),

target(siamese), target(forrest cat), target(pitbull),

target(sphynx), target(sibirian cat), target(greyhound),

target(russian blue)}.

One possible language template for this task is:

Pe ∶ {is bird/1, abnormal/1}

Pi ∶ {target/1}.

One suitable program template for this task is:

τ1
target = (h = target, n∃ = 0, int = False, neg = True)

τ2
target = null.

This template specifies one clause for target.
SNAFδILP can reliably solve this task. The solution found is:

target(X)← not abnormal(X), is bird(X).

4.1.3 Learn even/1

The original δILP system of [6] was able to learn the even predicate over natural numbers:

target(X)← zero(X)

target(X)← target(Y), pred(Y,X)

pred(X,Y)← succ(X,Z), succ(Z,Y),

35

where target = even.
To see if our extended system with negation is still able to learn programs that do not require

negation, we ran the system with the same problem specification as before, but allowing the use
of negation.

The background knowledge is the set of basic arithmetic facts defining the zero predicate and
succ relation on numbers up to 20:

B = {zero(0), succ(0,1), succ(1,2), succ(2,3), ..., succ(19,20)}.

The positive examples P are:

P = {target(0), target(2), target(4), ..., target(20)}.

In this case, target = even. The negative examples N is the set containing all constants not found
in the positive examples P:

N = {target(1), target(3), target(5), ..., target(19)}.

The original language template for this task was:

Pe ∶ {zero/1, succ/2}

Pi ∶ {target/1, pred/2}.

Here, pred is an auxiliary binary predicate.
The program template used in the original system was:

τ1
target = (h = target, n∃ = 0, int = False)

τ2
target = (h = target, n∃ = 1, int = True)

τ1
pred = (h = pred,n∃ = 1, int = False)

τ2
pred = null.

This template specifies two clauses for target, and one clause for the auxiliary predicate pred.
In our extended system the rule template has a third parameter neg (True/False) which allows

the use of negation in our clauses. We alter the program template to include the use of negation:

τ1
target = (h = target, n∃ = 0, int = False,Neg = True)

τ2
target = (h = target, n∃ = 1, int = True,Neg = False)

τ1
pred = (h = pred,n∃ = 1, int = False,Neg = False)

τ2
pred = null.

Here δILP has to either find a way to use negation or ignore the clauses which use it. Note
that if neg is set to False the system functions the same as the original δILP system.

In some cases SNAFδILP learns the same program as provided when not using negation:

target(X)← zero(X)

target(X)← target(Y), pred(Y,X)

pred(X,Y)← succ(X,Z), succ(Z,Y).

Other times it learns:

target(X)← zero(X), not succ(X,X)

target(X)← target(Y), pred(Y,X)

pred(X,Y)← succ(X,Z), succ(Z,Y).

36

not succ(X,X) will never be true since no number is the successor of itself. The two programs
are equivalent.

SNAFδILP successfully manages to either use negation correctly, but redundantly, or ignores
it, resulting in a working program.

4.1.4 Learn has roommate/1

In this task we wish to learn who has a roommate. We consider someone to have a roommate
iff they are married, but their partner is not a researcher. Researchers are busy people, often on
expeditions to Antarctica. The constants form a set of people:

C = {Paul,Randy,Rachel,Bob,Alice, Steve,

Frank, Julia, Stan,Kyle,Peter, Tony,Monica,

Carl,Dolores, Tommy,Pedro,Will, Sophie,

Eric, Jon,Robert, Sansa,Arya, Tormund,Mance}.

The background knowledge is a set of facts defining who is married by the married relation,
and who is a researcher by the researcher predicate. married is a symmetrical relation, hence
if married(Bob, Rachel) then we also have married(Rachel, Bob). We omit these ground atoms
when writing following set, but they are there:

B = {married(Bob,Rachel),married(Randy,Alice),

married(Steve, Julia),married(Frank,Monica),

married(Stan,Dolores),married(Will, Sophie),

married(Eric,Arya)}

∪

{researcher(Robert), researcher(Eric),

researcher(Bob), researcher(Frank),

researcher(Monica), researcher(Mance),

researcher(Jon), researcher(Tormund),

researcher(Sansa)}.

The positive examples P are:

P = {target(Randy), target(Alice), target(Steve),

target(Julia), target(Dolores), target(Stan),

target(Will), target(Sophie)}.

The negative examples N is the set containing all constants not found in the positive examples P:

N = {target(Bob), target(Rachel), target(Frank),

target(Monica), target(Kyle), target(Peter),

target(Tony), target(Carl), target(Tommy),

target(Eric), target(Arya), target(Jon),

target(Robert), target(Mance), target(Tormund)}.

One possible language template for this task is:

Pe ∶ {married/2, researcher/1}

Pi ∶ {pred/2, target/1}.

Here pred is an auxiliary predicate that the program will have to invent.

37

One suitable program template for this task is:

τ1
target = (h = target, n∃ = 1, int = True,neg = False)

τ2
target = null

τ1
pred = (h = pred,n∃ = 0, int = False, neg = True)

τ2
pred = null.

This template specifies one clause for target, allowing use of one existentially quantified variable
and disallowing negation. pred is specified to be defined using one clause, with no existentially
quantified variables and negation is allowed. One solution found is:

target(X)←married(X,Y), pred(X,Y)

pred(X,Y)← not researcher(X), not researcher(Y).

Another solution found is:

target(X)← pred(X,Y), pred(Y,X)

pred(X,Y)←married(Y,X), not researcher(Y).

The significance of this result is that our extended δILP system has managed to learn a program
which uses binary predicate, in addition to predicate invention using negation. The complexity of
these programs exceed the complexity of the programs in the previous experiments in this section.

4.1.5 Learn two children/1

The task is to learn the predicate has at least two children: in a directed graph learn which node
has at least two children. As background knowledge we specify a directed graph:

f

h a b g

e c

d
using the edge relation. To distinguish between equal nodes we also have the equals relation.

B = {edge(a, b), edge(a, c), edge(b, c), edge(c, e), edge(c, d),

edge(d, e), edge(f, a), edge(f, b), edge(g, c), edge(g, e)}

∪

{equals(X,Y) ∣X = Y }.

The constants are the nodes of the graph:

C = {a, b, c, d, e, f, g, h}.

The positive examples P are:

P = {target(a), target(c), target(f), target(g)}.

38

The negative examples N is the set containing all constants not found in the positive examples P:

N = {target(b), target(d), target(e), target(h)}.

One possible language template for this task is:

Pe ∶ {edge/2, equals/2}

Pi ∶ {pred/2, target/1}.

Here pred is an auxiliary predicate that the program will have to invent.
One suitable program template for this task is:

τ1
target = (h = target, n∃ = 1, int = True,neg = False)

τ2
target = null

τ1
pred = (h = pred,n∃ = 1, int = False, neg = True)

τ2
pred = null.

This template specifies one clause for target, allowing use of one existentially quantified variable,
allowing use of intensional predicates in the body and disallowing negation. pred is specified to
be defined using one clause, with one existentially quantified variable and negation is allowed. A
valid program that SNAFδILP finds is:

target(X)← edge(X,Y), pred(X,Y)

pred(X,Y)← edge(X,Z), not equals(Y,Z).

4.1.6 Learn not grandparent/2

The task is to learn the predicate not grandparent(X,Y) which is true if X is not the grandparent
of Y. This task is an extension of a program learnt by the original system: grandparent(X,Y). We
have a set of constants representing people:

C = {a, b, c, d, e, f, g, h, i}.

As background knowledge we specify a set of mother and father relations:

B = {mother(i, a), father(a, b), father(a, c), father(b, d),

father(b, e),mother(c, f),mother(c, g),mother(f, h)}.

The negative examples are:

N = {target(i, b), target(i, c), target(a, d), target(a, e), target(a, f), target(a, g), target(c, h)}.

The positive examples is the set of pairings that do not appear in the negative examples, i.e.
all those who do not have a grandparent. This set considerably larger than the negative set:
∣N ∣ = 7, ∣P ∣ = 74. To avoid data imbalance P is reduced to the same cardinality by random
sampling.

One possible language template for this task is:

Pe ∶ {mother/2, father/2}

Pi ∶ {pred1/2, pred2/2, target/2}.

Here pred1 and pred2 are auxiliary predicates the system will have to invent.

39

One suitable program template for this task is:

τ1
target = (h = target, n∃ = 0, int = True,neg = True)

τ2
target = null

τ1
pred1 = (h = pred1, n∃ = 1, int = True,neg = False)

τ2
pred1 = null

τ1
pred2 = (h = pred2, n∃ = 0, int = False, neg = False)

τ2
pred2 = null.

A solution found is:

target(X,Y)← not pred1(X,Y)

pred1(X,Y)← pred2(X,Z), pred2(Z,Y)

pred2(X,Y)←mother(X,Y), father(X,Y).

This program has again exceeded the complexity of previously learned predicates. not grandparent
requires two invented auxiliary, binary predicates.

4.2 Failed Learning Tasks

For each learning task in section 4.1 the complexity of the program required was increased. With
the increase in complexity we see a steady drop off in the systems ability to correctly learn a
working program with respect to the examples (see section 4.3). Two programs were omitted from
section 4.1 due to SNAFδILPs inability to solve the tasks. The first task was to learn the target
predicate no negative cycles. Given a graph with positive and negative edges6 the program would
say if a given node is part of a cycle which includes a negative edge. For example:

f

a b

g

e c

h d

Dotted edges are negative and whole edges are positive.
A suitable program for the system to learn was:

target(X)← pred(X,Y)

pred(X,Y)← edge(X,Y), not negative(X,Y)

pred(X,Y)← pred(X,Z), pred(Z,Y).

This program requires predicate invention, recursion and use of negation. Unfortunately, SNAFδILP
failed this task. This failure was most likely due to getting stuck in local minima, an issue the
original δILP also had.

6The positive and negative edges are merely labels, not numeric values.

40

The other learning task omitted was greater or equal. Given a set of numbers (0-9) the task is
to correctly say whether a number is greater than another. The intention for this task was for the
system to learn less than, as described in [6] and then negate this program to get greater or equal :

target(X,Y)← not pred(X,Y)

pred(X,Y)← succ(X,Y)

pred(X,Y)← pred(X,Z), pred(Z,Y).

This task also requires predicate invention, recursion and negation, being more complex than
previously learned programs.

Again, SNAFδILP failed to learn a program that valued the examples correctly.

4.3 Valuation of Negation as Failure

In section 3.2.1 we discussed the different possible implementations of a fuzzy negation as failure.
These were weak negation7:

at(not γ) =

⎧⎪⎪
⎨
⎪⎪⎩

1.0, if at(γ) = 0.0

0.0, otherwise,

weak negation with threshold8:

at(not γ) =

⎧⎪⎪
⎨
⎪⎪⎩

1.0, if at(γ) > θ

0.0, otherwise,

and strong negation9:

at(not γ) = 1 − at(γ).

To see which implementation yielded the best result, i.e. the lowest loss, each learning task in
section 4.1 was performed with the different implementations. The threshold θ selected for weak
negation with threshold was 0.6 (chosen arbitrarily). The results are shown in the following table:

Task Strong Negation Weak Negation Weak Negation with Threshold

Innocent 100.0 0.0 96.0
Can Fly 100.0 0.0 100.0
Even 90.0 0.0 90.0
Has Roommate 50.0 0.0 80.0
Two Children 20.0 0.0 80.0
Not Grandparent 56.0 0.0 20.0

The percentage of runs that achieve less than 1e-2 mean squared test error.

As suspected weak negation performed poorly, not even managing a single learning task in any
of the runs of the system.

Also as expected strong negation performed well. This can be attributed to the fact that strong
negation is a continuous implementation which allows gradient to flow through the network.

A surprising result is how well weak negation with threshold performed, yielding a result as
good or better than strong negation in certain learning tasks.

7Note that at is an indexed set of valuations at time step T , not a function. The equation merely exists to
illustrate valuation of negative literals. It would be more correct to give the indexes of not γ and γ.

8See footnote 7
9See footnote 7

41

Concluding which implementation of negation as failure to use in SNAFδILP is not clear cut
given this experiment. Weak negation we can safely discard as an option, but which of strong
negation and weak negation with threshold to choose requires further testing. In the simpler
tasks: Innocent and Can Fly, both implementations constructed a valid program for nearly each
run of the system. Strong negation managed every time, while weak negation with threshold failed
Innocent a few times. In the intermediate tasks: Even, Has Roommate and Two Children, weak
negation with threshold outperformed strong negation by quiet a large margin. However, in the
difficult task of Not Grandparent weak negation with threshold underperformed. In the learning
tasks No Negative Cycles and Greater Or Equal from Failed Learning Tasks (Section 4.2) the
mean squared validation error reached a lower value when using strong negation than when using
weak negation with threshold. This may not bare any significance since either implementation
managed to learn the intended program for those tasks.

As stated, the threshold θ for weak negation with threshold was selected arbitrarily to 0.6.
Other values could potentially yield a better result, solidifying weak negation with threshold as
the better implementation of negation as failure in SNAFδILP. This is further discussed in Section
5.1.

4.4 Dealing with Mislabelled Data

The discrete standard ILP system finds a set R such that:

B ∪R ⊧∀γ ∈ P

B ∪R /⊧∀γ ∈ N .

This strict requirement does not allow for any mislabelled data. With only a single wrongly
labeled element this ILP system will not be able to find the intended program. Consider the task
of learning the even predicate with the following positive and negative examples:

P = {0,1,2,4,6,8,10}

N = {1,3,5,7,9,11}.

There is no program which can satisfy 1 and not satisfy 1 at the same time. If we omit 1 from
N then the program we learn will have to add clauses for such edge cases. Something that is not
feasible for greater data errors.

This is the key property of δILP: handling erroneous and noisy data, as it is minimizing a loss
rather than trying to satisfy a strict requirement. As with the δILP, SNAFδILP was tested on its
ability to correctly learn the intended logic program when given partially mislabelled data. Each
learning task described in Section 4.1 was given a parameter ρ ∈ [0,1] specifying what percentage
of the positive and negative examples were mislabelled. Given proportions ρ a random sample
of P and N were transferred to the other group, and the system tries to learn as before. The
implementation of fuzzy negation as failure for this experiment was strong negation. The results
are shown in the following table:

ρ Innocent Can Fly Even Has Roommate Two Children Not Grandparent

0.05 0.00 0,00 0,21 0,07 0,09 0,05
0.10 0.00 0.08 0,45 0,15 0,07 0,02
0.15 0.00 0.12 0,45 0,20 0,11 0,50
0.20 1.30 0.18 0,68 0,24 0,04 0,50
0.30 1.26 0.28 0,85 0,47 0,55 1,12
0.50 2.55 0.70 1,07 0,82 1,07 2,29

Average mean squared test error for each proportion of mislabelled examples.

The result shows that SNAFδILP is somewhat robust to mislabelled data. As the proportion
ρ increases the mean squared test error degrades gracefully for most tasks. Innocent and Not

42

Grandparent are the exceptions. Innocent has a very small dataset:

∣P ∣ = 5 = ∣N ∣.

This means that the proportion ρ will have a larger effect on the systems ability to learn the
correct program since the data correctly labeling the examples is so small. Not Grandparent is
the most complex program that SNAFδILP learned. The more complex the program is the more
correct data the system will require. The loss is then more prone to deteriorate when the system
is given mislabeled data for the more complex tasks.

5 Further Work

Due to computational limitations on this project there are a number of planned implementations
and experiments that was not executed.

5.1 Learning Parameters

Like δILP, SNAFδILP uses a set of parameters to solve the given learning task. These parameters
include:

• different thresholds for weak negation with threshold,

• a time step parameter T of how many steps of forward chaining to execute for each clause
per training step,

• number of training steps for the learning task,

• language and rule templates used in the problem specification.

In our implementations of fuzzy negation as failure the one that performed quiet well was
weak negation with threshold. The chosen threshold θ of 0.6 was an arbitrary choice. A further
experiment of this implementation is to test the system using a larger range of threshold values
θ ∈ [0,1]. If any of these thresholds yield an even better result we would be able to conclude that
weak negation with threshold is the better implementation of fuzzy negation as failure.

In ILP deriving the consequences of a clause c is done until no more consequences can be
inferred. In SNAFδILP (and δILP) consequences are represented as valuations. These valuations
do not have a fixed point, as in we cannot infer anymore. The inference method will keep on
calculating new valuations for as long as the inference function is called. Instead, we restrict the
inference process to perform T steps of forward chaining. In Section 4.1 SNAFδILP had T set
to 10, regardless of which learning task was being solved. Which values of T is best for specific
learning tasks, and in general, is an experiment left to future work.

As described in Section 2.6.6 each learning task was trained for 200 - 500 steps depending
on the complexity of the program to reduce computational cost. How many training steps was
executed for the given learning task was chosen based on computational capacity and whether it
seemed to have gotten stuck in a local minima. Less complex programs such as Innocent and Can
Fly needed only around 200 training steps to reach a satisfactory loss. If they did not reach a
low loss after 200 training steps we considered the system to have gotten stuck in a local minima.
However, this is not always the case. In certain cases the system simply needs more training steps
to get out of the local minima and potentially reach a global minima. Hence, all learning tasks
should be run with a large number of training steps. This was not possible due to computational
limitations.

As discussed in [6] δILP, and ILP systems in general, have a language bias. In order to have the
system find the correct clauses to define our program we reduce the problem space using a language
and program template, which specifies the possible clauses for the program. The language and
program template is hand engineered by a human with the intent of the system learning a specific

43

set of clauses. However, while a human can invent a solution to these learning tasks there are
often other solutions which we do not necessarily think of. By hand engineering a language and
program template we might be omitting clauses of a possible solution to the problem. Giving the
system a variety of language and program templates might lead to the system finding another
solution which it learns more consistently than the solution the human intended for the system to
find.

5.2 Other learning tasks

In [6] the original δILP system was given a set of benchmark learning tasks taken from four do-
mains: arithmetic, lists, group-theory, and family tree relations. Some of the arithmetic examples
appeared in the work of Cropper and Muggleton [5]. The list examples are used by Feser, Chaud-
huri, and Dillig [7]. The family tree dataset comes from Wang, Mazaitis, and Cohen [11]. When
introducing negation to this system we needed tasks in which it was natural to use negation.
No such existing benchmark tests were found, and instead a set of learning tasks were invented.
Future experiments include creating different learning tasks which would further test the systems
ability to learn. Different tasks from a selection of domains, establishing a benchmark set of tasks
for negation with varying degrees of complexity.

6 Conclusion

Our main contribution is an extension of Differentiable Inductive Logic Programming (δILP):
Stratified Negation as Failure in Differentiable Inductive Logic Programming (SNAFδILP), allow-
ing the system to solve learning tasks by constructing stratified programs with the use of negation
as failure. This systems main operation is its differentiable implementation of deduction through
forward chaining using stratified fixpoint semantics.

This system is able to learn moderately complex programs with unary and binary predicates
using negation and predicate invention. Unlike traditional ILP systems, SNAFδILP is shown to
be moderately robust to mislabelled data, in most cases learning the intended program with up to
10 % mislabelled training data. Unlike neural networks, SNAFδILP manages to solve the learning
tasks with great data efficiency. We evaluated the system on six symbolic ILP tasks, and showed
that it can consistently solve problems with moderate complexity, while also solving more complex
tasks with modest consistency.

SNAFδILP was implemented with the intent to extend the original δILP system with negation
as failure by constructing stratified programs to avoid the problem of recursion and negation.
While managing to learn programs using negation and programs using recursion, SNAFδILP
failed to learn programs using both negation and recursion. These tasks (discussed in Section 4.2)
might have had too high complexity for our system to solve, but other learning tasks where both
recursion and negation is necessary might be solvable with this system. Further experimentation
with alterations to the implementation and/or a larger set of learning tasks might show the system
to be able to utilize both recursion and negation at the same time.

44

A No Loss of Generality

In δILP and SNAFδILP the following two restrictions are set upon the construction of possible
clauses:

• each predicate is defined by at most two clauses,

• each clause has at most two literals in its body.

With these restrictions we can still create programs which are equivalent to programs that do not
have these restrictions. We consider programs to be equivalent if for every query they answer the
same.

Theorem A.1. Logic programs P1 and P2 will, for every query, have the same query answer if
they have the same Herbrand model.

Proof. Since a Herbrand model specifies which ground atoms are true and false, this directly
follows.

Definition A.2. A program P1, with language LP1 , and P2, with language LP2 , are equivalent
with respect to the language LP1 if for every query in LP1 , they answer the same.

P1 ≡ P2 if ∀γ ∈ LP1 P1?γ = P2?γ

When constructing equivalent programs that adhere to these restrictions auxiliary predicates
are introduced. These auxiliary predicates are not part of the language of the original program,
hence they will only exist as subgoals in the new definitions of the relations of our original program
and will never be queried directly. Therefore, we are content with equivalence with respect to our
original language.

A.1 No Loss of Generality for Stratified Programs

In SNAFδILP we have extended the system to construct stratified logic programs. To create
stratified programs with the two restrictions which are equivalent to programs without these
restrictions we use the following schemes.

Scheme A.3 (Each clause has at most two literals in the body). Let P1 be a stratified program
with a finite set C of constants and a clause c defining a predicate p with m > 2 literals in the body:

p(X)← ρ1(Y1), ..., ρp(Yp), not η1(Z1), ..., not ηn(Zn) (n+p = m)

where X,Y1, ..., Yp, Z1, ..., Zn are sequences of variables. These sequences can contain shared vari-
ables or no variables. A requirement of programs constructed by SNAFδILP is that all variables
appearing in the head of a clause must appear in the body of the clause, i.e.:

X ⊆ Y1 ∪ ... ∪ Yp ∪Z1 ∪ ... ∪Zn.

ρi(Yi) denotes positive literals and ηi(Yi) denote negative ones. In addition to the clause c, P1

will contain extensional or intensional definitions for each βi, and possibly other clauses for p.
As P1 is a stratified program it will be partitioned into strata. All clauses defining a predicate

must be in the same stratum. Hence, all clauses for the predicate p are in the same stratum. All
predicates used to define p, i.e. predicates in the body of the clauses of p, must be defined in the
same or an earlier stratum if it is a positive literal, or in an earlier stratum if it is a negative
literal.

From P1 we construct a stratified program P2 where each clause has at most two literals in the
body. Given the clause c we create a set R of normal clauses with each having exactly two literals

45

in the body. The clause c can be equivalently expressed by adding an auxiliary predicate qi for
every second literal in the body of c. Clause set R:

p(X)← ρ1(Y1), q1(W1)

q1(W1)← ρ2(Y2), q2(W2)

...

qp−1(Wp−1)← ρp(Z1), qp(Wp)

qp(Wp)← not η1(Z1), qp+1(Wp+1)

...

qm−2(Wm−2)← not ηn−1(Zn−1), not ηn(Zn)

W1, ...,Wn−2 are sequences of variables used in the auxiliary predicates qi, where

W1 =X ∪ Y1,

Wi =Wi−1 ∪ Yi.

We pass on all variables found in earlier clauses in the auxiliary predicates to have them denote
the same variables throughout the set of clauses, as in c.

As with P1, P2 will in addition to these clauses contain clauses for each ρi and ηi, and possibly
other clauses for p. The set C of constants remains the same in P2 as in P1.

In P2 p and all ρi and ηi is partitioned into strata exactly the same as in P1. All auxiliary
predicates qi are placed in the same stratum as p.

Scheme A.4 (Predicates are defined by at most two clauses). Let P1 be a stratified program with
a finite set C of constants and a predicate p defined by m > 2 clauses:

p(X)← β1(Y1)

p(X)← β2(Y2)

...

p(X)← βm(Ym)

where X,Y1, ..., Ym are sequences of variables. These sequences can contain shared variables or no
variables. A requirement of programs constructed by SNAFδILP is that all variables appearing in
the head of a clause must appear in the body of the clause, i.e.:

∀i ∶X ⊆ Yi

Each βi denotes a conjuction of positive literals: ρi(Yi), and negative literals: not ηi(Yi). In
addition to the clauses defining p, P1 will contain extensional or intensional definitions for the
predicates in each βi, that need not be considered.

From P1 we construct a stratified program P2 where each predicate is defined by exactly two
clauses. Given the clauses of p we create a set of auxiliary predicates which are used to define p.
For each second clause of p define a new auxiliary predicate qi expressing the clauses of p:

p(X)← β1(Y1)

p(X)← q1(X)

q1(X)← β2(Y2)

q1(X)← q2(X)

...

qn−2(X)← βm−1(Ym−1)

qn−2(X)← βm(Ym−1)

46

As before, each βi denotes a conjunction of positive literals: ρi(Yi) and negative literals: not ηi(Yi).
X is a sequence of variables that originally appear in p. Y1, ..., Ym are sequences of variables that
appear in the respective βi.

As with P1, P2 will in addition to these clauses contain clauses for each βi. The set C of
constants remains the same in P2 as in P1.

In P2 p and all βi are partitioned into strata exactly same as in P1. All auxiliary predicates qi
are placed in the same stratum as p.

These schemes preserve the expressiveness of our language, having no loss of generality when
restricting our clauses to adhere to the restrictions. This is shown in Theorem A.7 and Conjecture
A.8.

Lemma A.5. Let P1 be a stratified program and P2 be a stratified program constructed from P1

by Scheme A.3. Let β be an arbitrary ground atom in the language of P1: β ∈ LP1 . For a stratum
s:

∀i ∈ ω, ∃j ∈ N ∶ β ∈ SiP1,s
((MP1)s−1) Ô⇒ β ∈ SjP2,s

((MP2)s−1)

where (MP1)s−1 ⊆ (MP2)s−1 (these two sets are equal apart from any ground atoms derived from
clauses of auxiliary predicates introduced to P2 by Scheme A.3).

Proof. We show this claim by induction on the number of applications of the immediate conse-
quence operator SP .
Base Case (i = 1):

S1
P1,s

((MP1)s−1) =SP1,s(S
0
P1,s

((MP1)s−1)) ∪ S
0
P1,s

((MP1)s−1)) (Definition 2.16)

=SP1,s((MP1)s−1) ∪ (MP1)s−1 (Definition 2.16)

={α ∣ α ← ρ1, ..., ρp, not η1, ..., not ηn (p,n ≥ 0)

is a ground instance of a clause in P1,s

where {ρ1, ..., ρp} ⊆ (MP1)s−1 and {η1, ..., ηn} ∩ (MP1)s−1 = ∅}

∪ (MP1)s−1 (Definition 2.15)

S1
P1,s

((MP1)s−1) will then be all ground atoms derived in earlier strata and all ground atoms which
can be derived by one application of the immediate consequence operator.

If β is obtained in an earlier stratum than s+1 it trivially follows that ∃j ∶ β ∈ SjP2,s
((MP2)s−1)

(for instance j = 0).
If β is obtained by the first application of SP in stratum s + 1 then we know that there is a

clause instance:

β ← ρ1, ..., ρp, not η1, ..., not ηn

where

ρ1, ..., ρp ∈ (MP1)s−1

η1, ..., ηn /∈ (MP1)s−1.

Since (MP1)s−1 ⊆ (MP2)s−1 we know that:

ρ1, ..., ρp ∈ (MP2)s−1

η1, ..., ηn /∈ (MP2)s−1.

If there are more than two ground atoms in the clause instance from which β is obtained then

47

there will be a clause in P2 constructed by Scheme A.3:

β(X)← ρ1(Y1), q1(W1)

q1(W1)← ρ2(Y2), q2(W2)

...

qp−1(Wp−1)← ρp(Z1), qp(Wp)

qp(Wp)← not η1(Z1), qp+1(Wp+1)

...

qm−2(Wm−2)← not ηn−1(Zn−1), not ηn(Zn)

where each ρi(Yi) and ηi(Zi) can be satisfied by the corresponding ground atoms ρi and ηi. By
applying SP m − 2 times, we derive each qi and finally β. Hence,

∃j ∈ N ∶ β ∈ S1
P1,s

((MP1)s−1) Ô⇒ β ∈ SjP2,s
((MP2)s−1).

Induction Step:
Induction Hypothesis: For some l ∈ ω:

∃j ∈ N ∶ β ∈ SlP1,s
((MP1)s−1) Ô⇒ β ∈ SjP2,s

((MP2)s−1)

Show that for l + 1:

∃j ∈ N ∶ β ∈ Sl+1
P1,s

((MP1)s−1) Ô⇒ β ∈ SjP2,s
((MP2)s−1).

Let β be a ground atom obtained in SP application l + 1, i.e. β ∈ Sl+1
P1,s

((MP1)s−1) and β /∈

SlP1,s
((MP1)s−1), from a clause instance with m atoms in the body:

β ← ρ1, ..., ρp, not η1, ..., not ηn. (p + n =m)

Since β has been obtained we know that

ρ1, ..., ρp ∈ S
l
P1,s

((MP1)s−1)

η1, ..., ηn /∈ SlP1,s
((MP1)s−1).

By the induction hypothesis we know that for some j:

ρ1, ..., ρp ∈ S
j
P2,s

((MP2)s−1)

η1, ..., ηn /∈ SjP2,s
((MP2)s−1).

From the clause instance from which β is obtained there will be a set of clauses in P2 constructed
by Scheme A.3:

β(X)← ρ1(Y1), q1(W1)

q1(W1)← ρ2(Y2), q2(W2)

...

qp−1(Wp−1)← ρp(Z1), qp(Wp)

qp(Wp)← not η1(Z1), qp+1(Wp+1)

...

qm−2(Wm−2)← not ηn−1(Zn−1), not ηn(Zn)

48

where each ρi(Yi) and ηi(Zi) can be satisfied by the corresponding ground atoms ρi and ηi. As
in the base case, we apply SP m − 2 times, deriving each qi and finally β.

Hence,

∀i ∈ ω, ∃j ∈ N ∶ β ∈ SiP1,s
((MP1

)s−1) Ô⇒ β ∈ SjP2,s
((MP2)s−1).

Lemma A.6. Let P1 be a stratified program and P2 be a stratified program constructed from P1

by Scheme A.3. Let β be an arbitrary ground atom in the language of P1: β ∈ LP1 . For a stratum
s:

∀i ∈ ω, ∃j ∈ N ∶ β ∈ SiP2,s
((MP2)s−1) Ô⇒ β ∈ SjP1,s

((MP1)s−1)

where (MP1)s−1 ⊆ (MP2)s−1 (these two sets are equal apart from any ground atoms derived from
clauses of auxiliary predicates introduced to P2 by Scheme A.3).

Proof. We show this claim by induction on the number of applications of the immediate conse-
quence operator SP .
Base Case (i = 1):

S1
P2,s

((MP2)s−1) =SP2,s(S
0
P2,s

((MP2)s−1)) ∪ S
0
P2,s

((MP2)s−1)) (Definition 2.16)

=SP2,s((MP2)s−1) ∪ (MP2)s−1 (Definition 2.16)

={α ∣ α ← ρ1, ..., ρp, not η1, ..., not ηn (p,n ≥ 0)

is a ground instance of a clause in P2,s

where {ρ1, ..., ρp} ⊆ (MP2)s−1 and {η1, ..., ηn} ∩ (MP2)s−1 = ∅}

∪ (MP2)s−1 (Definition 2.15)

S1
P2,s

((MP2)s−1) will then be all ground atoms derived in earlier strata and all ground atoms which
can be derived by one application of the immediate consequence operator.

If β is obtained in an earlier stratum than s+1 it trivially follows that ∃j ∶ β ∈ SjP1,s
((MP1)s−1)

(for instance j = 0).
If β is obtained at the first application of SP in stratum s + 1 then we know that there is a

clause instance with at most two atoms in the body (since all clauses in P2 have at most two
atoms in the body):

β ← γ1, γ2

where γ1 and γ2 are either positive or negative literals. Since the clause has at most two literals
in the body we know that it has not been transformed by Scheme A.3, and therefore the same
clause instance exists in P1.

Since β has been obtained we know that

γ1, γ2 ∈ (MP2)s−1 (if they are positive literals)

γ1, γ2 /∈ (MP2)s−1. (if they are negative literals)

We know that γ1 and γ2 are not ground atoms of auxiliary predicates because the clause from
which they derive has at most two literals. Therefore they must be part of the language of P1:
γ1, γ2 ∈ LP1 . Since (MP1)s−1 = (MP2)s−1 when we omit all ground atoms derived from clauses of
auxiliary predicates we know that:

γ1, γ2 ∈ (MP1)s−1 (if they are positive literals)

γ1, γ2 /∈ (MP1)s−1. (if they are negative literals)

49

Hence,

β ∈ S1
P1,s

((MP1)s−1),

and we have shown that

∃j ∈ N ∶ β ∈ S1
P2,s

((M21)s−1) Ô⇒ β ∈ SjP1,s
((MP1)s−1).

Induction Step:
Induction Hypothesis: For some l ∈ ω:

∃j ∈ N ∶ β ∈ SlP2,s
((MP2)s−1) Ô⇒ β ∈ SjP1,s

((MP1)s−1).

Show that for l + 1:

∃j ∈ N ∶ β ∈ Sl+1
P2,s

((MP2)s−1) Ô⇒ β ∈ SjP1,s
((MP1)s−1).

Let β be a ground atom obtained in SP application l + 1, i.e. β ∈ Sl+1
P2,s

((MP2)s−1) and β /∈

SlP2,s
((MP2)s−1), from a set of clause instances:

β ← ρ1, q1

q1 ← ρ1, q2

...

qp−1 ← ρn, qp

qp ← not η1, qp+1

...

qm−2 ← not ηn−1, ηn.

Since β has been obtained we know that

ρ1, ..., ρp, q1, ..., qm−2 ∈ S
l
P2,s

((MP2)s−1)

η1, ..., ηn /∈ SlP2,s
((MP2)s−1).

By the induction hypothesis we know that for some j:

ρ1, ..., ρp ∈ S
j
P1,s

((MP1)s−1)

η1, ..., ηn /∈ SjP1,s
((MP1)s−1).

The set of clauses from which β is obtained is constructed by Scheme A.3 from a clause in P1:

β(X)← ρ1(Y1), ..., ρp(Yp), not η1(Z1), ..., not ηn(Zn)

where each ρi(Yi) and ηi(Zi) can be satisfied by the corresponding ground atoms ρi and ηi. By
one more application of SP we get that:

β ∈ Sj+1
P1,s

((MP1)s−1).

Hence,

∃j ∈ N ∶ β ∈ Sl+1
P2,s

((MP2)s−1) Ô⇒ β ∈ SjP1,s
((MP1)s−1).

50

Theorem A.7. For any stratified program P1 there exists an equivalent stratified program P2

where each clause has at most two literals in the body.

Proof. Let P1 be a stratified program with an arbitrary amount of clauses and specifically a clause
c with n literals in the body:

c = p(X)← β1(Y1), ..., βn(Yn)

where each βi is a literal with a predicate defined in P1.
We show this claim by induction on the number of strata:

Base Case
Let P1 be stratified into one stratum (following Definition 2.12):

P1 = P1,1

Hence, all literals in the body of the clauses of P1 are positive. P1 has a minimal Herbrand model
conS(P1) constructed by Definition 2.19.

We construct a program P2 by Scheme A.3, where clause c is transformed into a set of clauses
R:

p(X)← β1(Y1), q1(Z1)

q2(Z1)← β2(Y2), q2(Z2)

...

qn−2(Zn−2)← βn−1(Yn−1), βn(Yn).

Show that

∀α ∈ LP1 ∶ α ∈ conS(P1) iff α ∈ conS(P2).

Case 1: If α ∈ conS(P1) then α ∈ conS(P2)
When deriving consequences of a stratified program we continually apply the immediate conse-
quence operator SP ω times (Definition 2.16), for each stratum. Let p be a ground atom derived
from the clause c in P1 at the i’th application of SP :

p ∈ SiP1,1
(∅).

Then we know that

β1, ..., βn ∈ S
i−1
P1,1

(∅).

By Lemma A.5 we have that for β ∈ LP1 :

∀i ∈ ω, ∃j ∈ N ∶ β ∈ SiP1,1
(∅) Ô⇒ β ∈ SjP2,1

(∅).

Hence, for some j:

β1, ..., βn ∈ S
j
P2,1

(∅).

Then we get

qn−2 ∈ S
j+1
P2,1

(∅)

from the last clause in R:

qn−2(Zn−2)← βn−1(Yn−1), βn(Yn).

51

Continually applying the immediate consequence operator n − 2 times (going through all clauses
of R) we get

p ∈ S
j+(n−2)
P2,1

(∅).

Hence, if p ∈ conS(P1) then p ∈ conS(P2).

Case 2: If α ∈ conS(P2) then α ∈ conS(P1)
Let p be a ground atom derived from the first clause in R:

p(X)← β1(Y1), q1(Z1)

in P2 at the i’th application of SP :

p ∈ SiP2,1
(∅).

Then we know that

β1, q1 ∈ S
i−1
P2,1

(∅)

Since each qi can only be satisfied if qi+1 and each βi is satisfied we know that

β1, ..., βn, q1, ...qn ∈ S
i−1
P2,1

(∅).

By Lemma A.6 we know that for β ∈ LP1 :

∀i ∈ ω, ∃j ∈ N ∶ β ∈ SiP2,1
(∅) Ô⇒ β ∈ SjP1,1

(∅).

Hence, for some j:

β1, ..., βn ∈ S
j
P1,1

(∅).

By one more application of SP , we get from the clause c:

p ∈ Sj+1
P1,1

(∅).

Hence, if p ∈ conS(P2) then p ∈ conS(P1).

From case 1 and case 2 it follows that

∀α ∈ LP1
∶ α ∈ conS(P1) iff α ∈ conS(P2).

Induction Step
Let P1 be a stratified program with S strata:

P1 = P1,1, P1,2, ..., P1,S ,

and P2 a stratified program constructed from P1 by Scheme A.3.
Induction Hypothesis: For some stratum s ≤ S:

∀α ∈ LP1 ∶ α ∈ (MP1)s iff α ∈ (MP2)s.

Show that for stratum s + 1:

∀α ∈ LP1 ∶ α ∈ (MP1)s+1 iff α ∈ (MP2)s+1.

52

Case 1: If α ∈ (MP1)s+1 then α ∈ (MP2)s+1

∀α ∈ (MP1)s+1

there exists an i ∈ ω such that:

α ∈ SiP1
((MP1)s).

As P2 is constructed from P1 using Scheme A.3 it will contain a larger number of clauses, and a
ground atom α may require more applications of SP2 to be added to the set of consequences.

For a ground atom α ∈ SiP1
((MP1)s) which is defined in P1,s+1 there is an instance of a clause

in P1,s+1:

α ← ρ1, ..., ρp, not η1, ..., not ηn

where each ρi is a positive literal and each ηi is a negative literal. If α ∈ SiP1
((MP1)s) then

ρ1, ..., ρn ∈ S
i−1
P1

((MP1)s),

η1, ..., ηn /∈ Si−1
P1

((MP1)s).

Since each ηi occurs as a negative literal in the clause it must be defined in an earlier stratum
than s + 1. Hence, all consequences of these predicates will have already been derived. Therefore:

η1, ..., ηn /∈ (MP1)s.

By the induction hypothesis we know that

η1, ..., ηn /∈ (MP2)s.

For the positive literals in the body of the clause: ρ1, ..., ρp, if a ρi is defined in an earlier stratum,
the same argument using the induction hypothesis tells us that

ρi ∈ (MP2)s.

For any ρi defined in stratum s + 1 we have Lemma A.5: for arbitrary stratum u:

∀i ∈ ω, ∃j ∈ N ∶ β ∈ SiP1,u
((MP1)u−1) Ô⇒ β ∈ SjP2,u

((MP2)u−1).

Hence,

∃j ∈ N ∶ ρ1, ..., ρn ∈ S
j
P2

((MP2)s),

η1, ..., ηn /∈ SjP2
((MP2)s).

Clauses that are transformed using Scheme A.3 into a set of clauses are then trivially satisfied by
further application of the immediate consequence operator, and we can conclude with:

α ∈ (MP2)s+1.

We have then shown that:

α ∈ If (MP1)s+1 then α ∈ (MP2)s+1.

53

Case 2: If α ∈ (MP2)s+1 then α ∈ (MP1)s+1

∀α ∈ (MP2)s+1

there exists an i ∈ ω such that:

α ∈ SiP2
((MP2)s).

For a ground atom α with its definiton in stratum s+ 1, derived from a clause which originally in
P1 had m > 2 literals in the body, there is a set of clause instances in stratum s + 1 in P2:

α ← ρ1, q1

q1 ← ρ2, q2

...

qp−1 ← ρp, qp

qp ← not η1, qp+1

...

qm−2 ← not ηn−1, not ηn. (n + p =m)

Since α ∈ SiP2
((MP2)s) we know that:

ρ1, ..., ρp, q1, ..., qm−2 ∈ S
i−1
P2

((MP2)s),

η1, ..., ηn /∈ Si−1
P2

((MP2)s).

Since η1, ..., ηn occurs negatively in the body of the clauses, the definition for each ηi must be in
an earlier stratum. Hence:

η1, ..., ηn /∈ (MP2)s.

By the induction hypothesis we know that

η1, ..., ηn /∈ (MP1)s.

For any ρi that is defined in an earlier stratum than s + 1 we have already derived the con-
sequences of those clauses, and therefore any ground atom derived from any of the ρi will be in
(MP2)s. By the induction hypothesis:

ρi ∈ (MP1)s.

For any ρi defined in stratum s + 1 we have Lemma A.6: for arbitrary stratum u:

∀i ∈ ω, ∃j ∈ N ∶ β ∈ SiP2,u
((MP2)u−1) Ô⇒ β ∈ SjP1,u

((MP1)u−1).

Hence,

∃j ∈ N ∶ ρ1, ..., ρp, ∈ S
j
P1

((MP1)s),

η1, ..., ηn /∈ SjP1
((MP1)s).

Each literal in the body of c can be satisfied by the corresponding ground atom ρi or ηi. From c
we now can derive α with one more application of SP :

α ∈ Sj+1
P1

((MP1)s).

We have then shown that:

α ∈ If (MP2)s+1 then α ∈ (MP1)s+1.

54

From case 1 and case 2 we conclude with:

∀α ∈ LP1 ∶ α ∈ (MP1)s+1 iff α ∈ (MP2)s+1.

By Definition A.1 and Theorem A.2 we have that

P1 ≡ P2.

Conjecture A.8. For any stratified program P1 there exists an equivalent stratified program P2

where each predicate is defined by at most two clauses.

We believe that this proposition is true and can be proved by following very much the same
structure as Theorem A.7. The proof itself is omitted due to time constraints.

References

[1] KR Apt, HA Blair, and A Walker. Towards a theory of declarative knowledge. Foundations
of Deductive Database and Programming (Jack Minker, Ed.), 1988.

[2] Francesco Bergadano, Daniele Gunetti, M Nicosia, Giancarlo Francesco Ruffo, et al. Learning
logic programs with negation as failure. 1996.

[3] Alonzo Church. Application of recursive arithmetic to the problem of circuit synthesis. Journal
of Symbolic Logic, 28(4), 1963.

[4] Keith L Clark. Negation as failure. In Logic and data bases, pages 293–322. Springer, 1978.

[5] Andrew Cropper and Stephen H Muggleton. Learning higher-order logic programs through
abstraction and invention. In IJCAI, pages 1418–1424, 2016.

[6] Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal
of Artificial Intelligence Research, 61:1–64, 2018.

[7] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Notices, 50(6):229–239, 2015.

[8] George Metcalfe. Fundamentals of fuzzy logics, 2005.

[9] Himanshu Singh and Yunis Ahmad Lone. Introduction to fuzzy set theory. In Deep
Neuro-Fuzzy Systems with Python, pages 1–34. Springer, 2020.

[10] Maarten H Van Emden and Robert A Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM (JACM), 23(4):733–742, 1976.

[11] William Yang Wang, Kathryn Mazaitis, and William W Cohen. A soft version of predicate
invention based on structured sparsity. In Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

55

	Introduction
	Background
	Logic Programming
	Basic Concepts
	Semantics of Definite Logic Programs

	Negation As Failure
	Recursion and Negation

	Stratified Programs
	Determining Stratification
	Semantics of Stratified Programs

	Inference in Logic Programming
	Inductive Logic Programming
	ILP as a Satisfiability Problem
	Basic Concepts
	Reducing Induction to Satisfiability

	Differentiable Inductive Logic Programming
	Valuations
	Induction by Gradient Descent
	Rule Weights
	Inference
	Computing the Fc functions
	Extracting our Program

	Stratified Negation as Failure
	Stratified Negation as Failure in Inductive Logic Programming
	Adding Negation As failure
	Selecting Clauses for Stratified Programs
	Non-monotonic Forward Chaining

	Stratified Negation as Failure in Differentiable Inductive Logic Programming
	Fuzzy Negation as Failure
	Stratification of ILP
	Non-Monotonic Differentiable Inference

	Experiments
	ILP tasks with Negation
	Learn innocent/1
	Learn can_fly/1
	Learn even/1
	Learn has_roommate/1
	Learn two_children/1
	Learn not_grandparent/2

	Failed Learning Tasks
	Valuation of Negation as Failure
	Dealing with Mislabelled Data

	Further Work
	Learning Parameters
	Other learning tasks

	Conclusion
	No Loss of Generality
	No Loss of Generality for Stratified Programs

	References

