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Abstract
Boolean delay equations (BDEs), with their relatively simple and intuitive mode of
modelling, have been used in many research areas including, for example, climate
dynamics and earthquakepropagation.Their application to biological systemshas been
scarce and limited to themolecular level.Here,we derive and present twoBDEmodels.
One is directly derived from a previously published ordinary differential equation
(ODE) model for the bovine estrous cycle, whereas the second model includes a
modification of a particular biologicalmechanism.Wenot only compare the simulation
results from the BDEmodels with the trajectories of the ODEmodel, but also validate
the BDE models with two additional numerical experiments. One experiment induces
a switch in the oscillatory pattern upon changes in the model parameters, and the
other simulates the administration of a hormone that is known to shift the estrous
cycle in time. The models presented here are the first BDE models for hormonal
oscillators, and the first BDE models for drug administration. Even though automatic
parameter estimation still remains challenging, our results support the role of BDEs
as a framework for the systematic modelling of complex biological oscillators.

Keywords BDEs · Bovine estrous cycle · Hormones · Dynamical systems ·
Semi-discrete models · Boolean delay equation

1 Introduction

There exist different approaches to create mathematical models of biological systems.
Two commonly usedmodelling types are ordinary differential equations (ODEs), with
continuous time and continuous values for the model components, i.e. “continuous
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space”, and Boolean models, with discrete time and discrete space. Both types of
models have their advantages and disadvantages. They need different knowledge of
the modelled system and result in different types of information. Developing an ODE
model that adequately reflects the behaviour of a particular biological system requires
detailed knowledge of the underlying mechanisms. Moreover, accurate quantitative
values for the model parameters or sufficient data to determine the parameter values
using some suitable parameter estimation method are needed. The construction of a
Booleanmodel, on the other hand, requires only qualitative knowledge about a system,
for example, the type of interaction (inhibitory or stimulatory) between two species in
the model. However, Boolean models cannot adequately reflect time scales.1 Hence, it
is evident that exploring new types of models that combine the properties of ODEs and
Boolean models is a promising approach. There exist various modelling frameworks
with discrete time and continuous space as, for instance, difference equations, or with
continuous time and discrete space. One approach for the latter, presented by Stoll
et al. (2012), uses continuous-time Markov chains. Another example are Boolean
delay equations (BDEs). In BDEs, the components are linked with logical functions.
A delay matrix ensures that the components do not influence each other immediately,
but after a certain time. The delays enable the modelling of different time scales in
processes such as signalling or gene transcription.

Even if there already exists an ODE or Boolean model for a particular biological
system, it can be elucidating to create a model of another type, such as a BDE, for that
system. An analysis of the additional model can either be performed independently
from the existingmodels or it can be carried out in comparisonwith the existingmodels
(Stötzel et al. 2015). ODE models have the advantage that they are very detailed,
meaning that they provide an exact time course of species with high resolution. Their
disadvantage is that very precise knowledge of the system is required to build and
parameterise the model, and that global analysis is often impossible due to model
complexity. In contrast, BDEs can be analysed more systematically due to their finite
state space. Unlike Boolean models, BDEs can incorporate more precise time scales,
which allows for the simulation of external stimuli with delayed effect, e.g. drug
administration.

The aim of our work is to analyse the potential of BDEs for modelling a periodic,
biological system by creating a BDE model for the bovine estrous cycle. The starting
points are an existing ODE model (Stötzel et al. 2014a) and a Boolean model (Stötzel
et al. 2015) that was derived from the same ODE model. The BDE models presented
here are in fact the first BDE models for a hormonal system. Since BDEs always
become periodic for rational delays, they are periodic in numerical simulations after
a certain time, the so-called transient. This intrinsic periodicity suggests that BDEs
might be a suitable modelling approach for the hormonal cycle.

In this paper, we introduce two BDE models, which we refer to as Model A and
Model B, whose logical functions are based on the logical functions derived in Stötzel
et al. (2015). Model A is derived directly from the existing ODE and Boolean model,

1 However, there is the possibility of integrating time delays into Boolean models by adding additional
auxiliary variables that can cause a delay, as shown by Hinkelmann and Laubenbacher (2011).
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whereas Model B is based on the same equations but includes a modification of a
particular biological mechanism to incorporate biological knowledge.

If other models are already available for a certain system, one possible approach
is to use these models and to replicate their trajectories with the new model, as we
did for Model A. Possible shortcomings of the existing models may, however, be
adopted. Therefore, we also test the alternative approach of creating a model based on
biological knowledge, which results inModel B. In order to compare the two models,
we validate them with two in silico experiments. One experiment induces a switch in
the oscillatory pattern upon changes in the model parameters. The other experiment
simulates the administration of a hormone that is known to shift the estrous cycle in
time.

The potential use of thesemodels for further research lies in the field of experimental
design, as well as in testing treatment protocols in silico, thereby contributing to the
3Rs: replacement, reduction, and refinement of animals in testing.

2 Methods

2.1 Boolean Delay Equations

Boolean delay equations are continuous-timemodels over aBoolean state space. BDEs
are categorised as semi-discrete models (Ghil et al. 2008). In that manner, BDEs can
be placed between Boolean models (with discrete time and discrete space) and ODEs
(with continuous time and continuous space).

BDEs were first introduced by Ghil and Mullhaupt (1985). They have been applied
to awide range of research areas, comprising inter alia the following: climate dynamics
(El Niño/Southern Oscillation (ENSO) phenomenon (Saunders and Ghil 2001)) and
climatic systems (Ghil et al. 1987), damage propagation in networks (Coluzzi et al.
2011; Colon and Ghil 2017) earthquake modelling (Zaliapin et al. 2003), genomic
interactions (Oktem et al. 2004), and circadian systems (Akman et al. 2012). To our
knowledge, the herein presented approach is not only the first application of BDEs
to a hormonal regulatory system, but also the first BDE modelling approach for a
biological oscillator and for the effect of drug administration.

The main advantage of modelling with BDEs compared to ODEs is that it affords
a very simple and intuitive way of model construction. Modelling with ODEs either
needs deep knowledge about underlying mechanisms or appropriate ansatzes to repre-
sent them. Even if parameter values do not need to have obvious biological correlates,
measurement data are needed to numerically estimate their values. In contrast, BDE
models involve fewer parameters and usually need less information of the underlying
mechanisms. For each species, one needs to specify a logical function, and for each
tuple of species connected by a logical function, one needs an entry in a delay matrix
which represents the time span it takes until the influence takes place. In terms of
optimisation, the use of BDEs reduces the number of parameters drastically compared
to ODEs. Since the number of possible logical configurations is finite, a systematic
search for the model that best matches the data is possible (Doherty et al. 2017).
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Regarding initial values, BDEs need more information than ODEs. To conduct a
simulation with ODEs, one needs to assign one value for each species at the starting
time of the simulation. For BDEs, one has to define a time series with the length of
the largest delay (usually scaled to 1) for all species. Then, the solution of the BDE
system exists for arbitrary time intervals and is unique; a proof of this can be found in
Ghil et al. (2008). In this initial period, expert knowledge about the biological system
is incorporated. In many cases, the solution is sensitive to the initial period, which
means that even small changes in the initial period can lead to very different periodic
behaviours, whereby not all of these solutions are biologically reasonable.

2.1.1 Formal Definition of BDEs

According to Ghil et al. (2008), BDEs can be formally defined as follows:
A BDE system consists of n species x1, . . . , xn ∈ {0, 1}, corresponding to the

species being either ON or OFF, or being below or above a certain threshold. The
time-dependent value of each species is given by a logical function:

xi (t) = fi
(
x1(t − θi,1), . . . , xn(t − θi,n)

)
(1)

for i = 1, . . . , n,where fi : {0, 1}n → {0, 1} are Boolean functions and θi, j are delay
values, summarised in the delay matrix:

Θ =
⎛

⎜
⎝

θ1,1 · · · θ1,n
...

. . .
...

θn,1 · · · θn,n

⎞

⎟
⎠ .

The system is normalised so that the largest delay is 1.
As by Ghil et al. (2008), only autonomous BDEs are considered that means without

explicit time dependence of the logical functions. Each species’ value at time t depends
on the values of other species and/or its own value at an earlier time point, defined by
the delays.

2.1.2 Properties of BDEs

From a theoretical point of view, BDEs have some very interesting properties. One
is described by the so-called pigeon-hole lemma (Ghil et al. 2008), which states that
all BDEs with a delay matrix containing only rational delays, become periodic after a
certain amount of time. Since numerical simulations of BDEs can always handle just
rational delays (because of machine accuracy), all numerical simulations lead to BDEs
that after some (perhaps very long) time reach a periodic orbit (Ghil et al. 2008) or a
stable steady state (meaning constant values of all species). Since biological systems
usually reach stable behaviour, this property does not restrict the class of biological
systems that can be modelled with the BDE formalism. In particular, it is this property
of periodicity that gave rise to the idea of modelling the hormonal cycle in terms of
BDEs.
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BDEswith instantly periodic solutions for all initial periods are called conservative,
while all other BDEs are called dissipative. Dissipative BDEs might show transient
behaviour before becoming periodic, at least for some initial data. Being conservative
is equivalent to the property of being reversible, which means the time reversal of the
system of BDEs is also a system of BDEs (Ghil et al. 2008).

From a theoretical point of view, dissipative BDEs have much more interesting
behaviour. Relatively simple examples with irrational delays can be constructed in
which the number of jumps on intervals of length 1 increases arbitrarily strongly with
advancing time (Ghil et al. 2008).

Another surprising property of BDEs is called periodic approximation (Ghil et al.
2008), meaning that all solutions of a BDE system for a fixed finite time interval, even
non-periodic ones, can be approximated by the periodic solutions of another BDE
system with rational delays only. However, this other BDE might be intractable for
interpretations with respect to application.

For a summary ofmore important theoretical results onBDEs, seeGhil et al. (2008).

2.2 Previous Bovine Estrous Cycle Models

The bovine estrous cycle is the periodic cycle of changes in the levels of fertility related
hormones and their influence on the body (for example growth of follicles) in female
cattle. The basis of fertility is the regular production of an ovum that is released by
a follicle. The remaining parts of the follicle transform into the corpus luteum (CL),
which decays after a few days upon a certain hormonal signal. The part of the cycle
during which the CL is present is called the luteal phase.
The model BovCycle is a mathematical model for the bovine estrous cycle, consisting
of 12 ODEs and 54 parameters. The original BovCycle model was published by Boer
et al. (2011b). It is capable of simulating the growth and regression of the bovine
follicles and corpus luteum as well as the dynamics of the main fertility hormones
during the estrous cycle.

In Stötzel et al. (2014a), a reduced model was published that is capable of repro-
ducing the state trajectories of the original model. The reduced model contains ten
ODEs and 38 parameters and was derived by model reduction techniques from the
original BovCycle model. In both ODE models, the species are normalised such that
their values are between 0 and 1.

In Stötzel et al. (2015), the reduced BovCycle model was used to introduce a
comprehensible and systematic formalism to translate an ODE model into a Boolean
model using a discrete transformation that resembles Euler’s method. The formalism
for transferring the ODE to a Boolean model was described in a general framework
so that it can be applied to any ODE model whose equations meet certain conditions
(the systemmust be autonomous, and the right hand sides have to consist only of sums
and products of monotone functions). It was shown by Stötzel et al. (2015) that the
Boolean model reproduces the trajectories of the reduced BovCycle ODE model. In
addition, some interesting global properties could be derived from the Boolean model
that could be observed but not proven with the ODE model.
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Table 1 Model components as described by Boer et al. (2011a) and Stötzel et al. (2012)

Model component Explanation

GnRH Gonadotropin releasing hormone

LH Luteinizing hormone

CL Corpus luteum

P4 Progesterone

PGF2α Prostaglandin F2α

I OF Inter-ovarian factors

FSH Follicle stimulating hormone

Foll Development of the total size of all follicles

E2 Estradiol

I nh Inhibin

2.3 Modelling Approaches

The results from Stötzel et al. (2015) demonstrate how a Boolean model allows for a
systematic analysis of the system’s behaviour. However, for the simulation of certain
experiments, such as drug administration, it is necessary to include time information
in order to account for, e.g. different half-lives of drugs. BDEs meet exactly these
requirements. It is known from experiments that the estrous cycle has a very stable
cyclic behaviour. However, for some types of perturbation the system needs some time
to converge back to the original cycle2. Therefore, building dissipative BDEs fits the
desired behaviour of the model.

We present two different models for the bovine estrous cycle,Model A andModel B,
which are discussed in detail in the following section. Both BDE models incorporate
the same ten species as the reduced BovCycle model (Stötzel et al. 2014a), namely
CL , E2, FSH , Foll, GnRH , I nh, I OF , LH , P4, PGF2α. These abbreviations
stand for the biological components specified in Table 1.

A very rough summary of the interaction of the species can be given as follows:
After ovulation, the remaining parts of the ovulated follicle transform into a mass

of cells called the corpus luteum (CL). The hormone Estradiol (E2) is produced by
the follicles, and Progesterone (P4) by the CL . Inhibin (I nh) is produced by domi-
nant follicles and suppresses the follicle stimulating hormone (FSH ). Gonadotropin
releasing hormone (GnRH ) is released by the GnRH pulse generator located in the
hypothalamus, modulated by the hormones P4 and E2, depending on the stage of
the cycle. GnRH causes the release of the gonadotropins luteinizing hormone (LH )
and FSH , which stimulates the maturation of the follicles (Foll) and LH induces
ovulation. The regression of the CL (called luteolysis) is caused by Prostaglandin
F2α (PGF2α), which is released when implantation does not take place. The inter-
ovarian factors (I OF) are the summary of several components that control the effect
of PGF2α on the CL . The growth of the follicles occurs in a wave-like pattern,

2 For example, in estrous synchronisation protocols a certain percentage of cows, depending on the protocol,
are not in estrous at the expected time.
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Fig. 1 Interaction graph for both BDE models, Model A and Model B. Black solid lines stand for depen-
dencies that exist in both models. Light grey colour indicates dependencies that exist inModel A but not in
Model B. The dotted arrow line indicates a dependency which exists in Model B but not in Model A. The
signs on the arrows mark whether the influence is stimulating or inhibiting

with usually two or three waves per estrous cycle. Corresponding to that the hormone
FSH , which stimulates the follicles’ growth, has in most cases two or three peaks per
cycle. A more detailed description of the model components as well as the biological
background can be found in Boer et al. (2011a) and Stötzel et al. (2012).

In Figure 1, the interaction graphs for both Model A and Model B are depicted to
illustrate the dependencies between the model components. As basis for the two BDE
models, the logical functions are derived from the truth tables of the Boolean model
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presented in Stötzel et al. (2015). These truth tables were found using the formalism
described in Stötzel et al. (2015), where a Boolean update function is derived from an
ODE system using a discrete transformation similar to Euler’s method.

3 Results and Discussion

In the following, we present the two different BDEmodels as explained in the previous
section. For some initial data, the two models show a transient, so they are dissipative.
Since the main interest is in the periodic part of the solution, the initial periods are
adjusted so that there is no transient left. Therefore, the property of being dissipative is
not directly recognisable in the examples shown, but was recognised when the models
were created.

3.1 Model A

Model A was created to reproduce the trajectories of the reduced BovCycle model as
accurately as possible. The resulting model is capable of simulating cycles with either
two or three follicular waves.

3.1.1 Equations and Delays

All equations were extracted from the truth tables in Stötzel et al. (2015), except
the equation for Foll. The equations of the BovCycle model are included as Online
Resource 1.

Gonadotropin releasing hormone : GnRH = ¬P4 ∧ E2

Luteinizing hormone : LH = ¬P4 ∧ GnRH

Corpus luteum : CL = (¬I OF ∧ CL) ∨ (LH ∧ Foll ∧ ¬CL)

Progesterone : P4 = CL

Prostaglandin F : 2α PGF2α = P4 ∧ E2

Inter-ovarian factors : I OF = PGF2α ∧ CL

Follicle stimulating hormone : FSH = ¬I nh

Size of follicles : Foll = (FSH ∨ ¬P4) ∧ ¬LH ∧ Foll

Estradiol : E2 = Foll

Inhibin : I nh = Foll

The original equation for Foll was:

Foll = (
(FSH ∨ ¬P4) ∧ ¬LH ∧ Foll

) ∨ (FSH ∧ ¬Foll).

Using this equation results in simulations with too many jumps in the Foll com-
ponent, followed by too frequent jumps in all other components as well, which is
not biologically reasonable. A figure provided as Online Resource 2 shows how a
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simulation looks like in this case. Through a systematic analysis of the simulation
results it was possible to identify the term that caused the unwanted jumps. This term,
(FSH ∧ ¬Foll), is an artefact from the ODE model:

It allows for an increase in Foll over time even if its initial value was 0, i.e.
yFOLL(0) = 0. In the BDE system, each initial period with a biologically reasonable
time course contains at least one period with Foll = 1, which allows the follicle to be
switched ON also later in time. Therefore, this term is not needed in the BDE model.

For finding biologically reasonable values for the delays, one could use either
experimental time series data or trajectories from an existing ODE model that has
been validated with time series data. Since time series data are not available here,
the trajectories of the ODE model are used. In these trajectories, the time differences
between the ascents or descents of the various components are monitored and used
as initial guess for the delays. These values were adjusted by hand later on until the
simulation results fitted the time course of the ODE trajectories. The delay matrix was
finally defined as

Θ =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

− − − 0.050 − − − − 0.050 −
0.025 − − 0.050 − − − − − −

− 0.550 1.000 − − 0.100 − 0.550 − −
− − 0.100 − − − − − − −
− − − 0.100 − − − − 0.050 −
− − 0.050 − 0.050 − − − − −
− − − − − − − − − 0.050
− 0.800 − 0.300 − − 0.050 0.500 − −
− − − − − − − 0.025 − −
− − − − − − − 0.050 − −

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

The largest delay is θ3,3 = 1, which describes the delay of CL influencing itself.
This delay also defines the cycle length, as it leads to CL reproducing its own state
after the delay, see also Sect. 3.3.

The trajectory of the ODE model was also used to find a suitable initial period
that resulted in a biologically meaningful BDE trajectory. This initial period was then
replaced by the values of the BDE simulation after a short non-periodic transient to
obtain periodicity right from the beginning of the simulation.

3.1.2 Simulation Results

The simulation results in Fig. 2 are shown in comparison with the reduced BovCycle
(blue lines). It can be seen thatModel A nicely reproduces the ON and OFF switching
of the components in the ODE model, thus providing comparable trajectories.

This is not surprising, since the BDE model was derived from the ODE trajectories
and equations. However, the clear consistency of the trajectories also shows that the
abstraction is actually able to preserve the qualitative behaviour of the more complex
system. Furthermore, the model is capable of switching between cycles with two or
three follicular waves by a simple scaling of some delays (see Sect. 3.1.3 for details).
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The originalODEBovCyclemodel can also reproduce experimental data that shows
a shift of the ovulation time after administration of PGF2α at certain time points in
the cycle (Stötzel et al. 2012). Note, however, that this works only for the original
model.With the reduced BovCycle model, it is not possible to conduct this experiment
successfully (Stötzel 2014).

When Model A is challenged with this experiment, it also fails at this task. This is
not unexpected since the model is derived from the reduced ODE model rather than
from the original ODEmodel. The reason for the failure is that some mechanisms that
cause the shift are missing in both the reduced ODE model andModel A. The shift of
ovulation in the original ODE model is based on the following cascade of hormones
influencing one another:

Administration of PGF2α inhibits CL
↓

A smaller CL produces less P4
↓

Low P4 activates GnRH (only if the value of E2 is sufficiently high)
↓

GnRH activates LH (which is equivalent to ovulation).

This cascade of dependencies leads to an earlier ovulation compared to a cycle without
interventions. In Model A, the administration does not have the desired effect, hence
this experiment fails. The reason for this is that in Model A, CL depends on I OF :
When the administration of PGF2α is set to the correct time and causes I OF to be
switched ON, it actually causes CL to be turned OFF. However, this in turn switches
I OF OFF, which leads to CL being activated. The short disturbance of CL induced
in this way has no influence on the time course of GnRH , and therefore cannot shift
the cycle.

3.1.3 Varying the Number of Follicular Waves

It is described that the bovine estrous cycle mostly has either two or three follicular
waves (Adams 1999). The ODE model can also show both behaviours, depending on
parameter values (Stötzel et al. 2014b).

In nature, four of the modelled species can show different wave patterns, in most
cases two or three follicular waves per cycle, namely FSH , Foll, E2, and I nh. To
induce this change of the wave pattern in the model simulations, the delays of these
species onto themselves (represented by the entries in the lower right 4 × 4 block
in the delay matrix) need to be multiplied by a factor of 2

3 . This factor is due to the
fact that the components that previously had two waves in one cycle should now have
three waves. The delays are therefore shortened in order to compress the time course
of these four components and to produce the desired number of waves.
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Fig. 2 Model A (red) and reduced BovCycle (blue), simulation results for all 10 components over a time
span of four period lengths. The grey part indicates the initial period in whose range the values of the BDE
system were not simulated but entered as initial values for the simulation. The BDE system is periodic
right from the beginning of the simulation, with a period length of 1. The simulation results of the reduced
BovCycle ODE model were scaled to the same period length for comparability (Color figure online)
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The resulting delay matrix (changed values in bold text) is then

Θ =

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

− − − 0.050 − − − − 0.050 −
0.025 − − 0.050 − − − − − −

− 0.550 1.000 − − 0.100 − 0.550 − −
− − 0.100 − − − − − − −
− − − 0.100 − − − − 0.050 −
− − 0.050 − 0.050 − − − − −
− − − − − − − − − 0.033
− 0.800 − 0.300 − − 0.033 0.333 − −
− − − − − − − 0.017 − −
− − − − − − − 0.033 − −

⎞

⎟
⎟⎟⎟⎟⎟
⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

.

The simulation results for this experiment are shown in Fig. 3. The initial period
was the same as for the simulation with two follicular waves as can be seen in the first
part of the plots. As soon as the numerical solution of the BDEmodel starts (at t = 1),
the four components that should switch to three waves show the desired behaviour.
The other six species remain peaking once per cycle. It can be seen that after the
switching, the peak times no longer match those of the ODE for all components. It is
clear that the four components that switch from two to three peaks now have different
peak times. Among the components that peak once per cycle, the peak of GnRH ,
LH , and PGF2α is shifted to an earlier time. This effect could not be prevented by
adjusting the delays.

Even though Model A can reflect different wave patterns, its inability of capturing
the administration of PGF2α led us to the development of a second BDE model.

3.2 Model B

Treatment with PGF2α is frequently conducted in cows to synchronise the estrous
cycles in a group of cows to reduce the costs for artificial insemination. The biological
background and underlyingmechanisms are described in detail by Stötzel et al. (2012).
It is shown there that the BovCycle model is able to reproduce the shift of ovulation
following administration of PGF2α at a specific point in time.

To obtain a BDE model that can reproduce this behaviour, the logical equations of
Model B are not only based on the equations derived from Stötzel et al. (2015), but
they are complemented and improved by physiological knowledge.

3.2.1 Equations and Delays

All logical functions are the same as for Model A, except the functions for Foll and
CL , which look as follows:

CL = ¬PGF2α ∧ (LH ∨ CL)

Foll = ¬LH ∧ FSH
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Fig. 3 Simulation result for all ten components of Model A (red) with a change in five delays over a time
span of four period lengths, compared to the reduced BovCycle model (blue).Model A can be switched by
simply changing the delays so that there are three follicular waves per cycle instead of two. This is visible
here for the model components FSH , Foll, E2 and I nh. The other six components have in both cases one
peak per cycle (Color figure online)

The luteolytic action of PGF2α, i.e. its negative effect on CL , is well-known (Wen-
zinger and Bleul 2012), as explained in Sect. 3.2.3. Therefore, it is reasonable to
implement this mechanism directly into the equation of CL . Since the CL evolves
during ovulation, which is indicated by a peak of LH , the positive influence of LH
on CL is needed to initiate the growth of CL . To ensure that CL = 1 is maintained
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during the luteal phase, CL has a positive feedback on itself. It keeps itself alive as
long as PGF2α is not ON.

As the name suggests, the hormone FSH is stimulating the follicles and there-
fore has a positive impact on Foll. LH is active shortly before ovulation, when the
dominant follicle ovulates, and therefore leads to a significant drop in the size of all
follicles, which explains the negative influence of LH on Foll.

The delay matrix forModel B is

Θ = 1

4.5

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

− − − 0.75 − − − − 0.75 −
0.75 − − 0.75 − − − − − −
− 0.75 0.75 − 4.5 − − − − −
− − 1.5 − − − − − − −
− − − 0.75 − − − − 0.75 −
− − 1.5 − 0.75 − − − − −
− − − − − − − − − 3
− 0.75 − − − − 1.5 − − −
− − − − − − − 0.75 − −
− − − − − − − 1.5 − −

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

Model B should have a physiologically reasonable cycle length of 21 days, but in
contrast toModel A it should not have the cycle length fixed by a delay with the value
of the cycle length. The factor in front of the matrix is for rescaling purpose, so that
the largest delay is 1. Before rescaling, the delays of the successive switchings add
up to the desired cycle length of 21 days, see also Sect. 3.3 and Fig. 6. I OF does not
influence any other component in Model B, unlike in Model A, where it occurs in the
logical equation for CL . Therefore, I OF is redundant in this model. However, I OF
was not removed fromModel B to make the simulation results comparable with those
of Model A.

3.2.2 Simulation Results

The simulation results for all components are shown in Fig. 4. Initially, the same initial
period as inModel Awas used. After the simulation became periodic following a short
transient, this periodic part was used as initial period so that this simulation is also
periodic from the beginning.

Again, the simulation results are shown in comparison with the reduced BovCycle
model (blue lines). Model B also reproduces the behaviour of the ODE model well.
The period length of Model B is 4.6. The reason for this is that this BDE model was
designed to have a physiologically reasonable period length of 21 days (see Fig. 6).
The largest delay in the resulting BDE model is 4.5. Therefore, the delay matrix is
multiplied by 1

4.5 to scale the model in a way that the largest delay is 1. This scaling
of the delay matrix leads to a period length of 21

4.5 = 4.6.

123



Modelling Oscillatory Patterns in the Bovine Estrous… Page 15 of 25   121 

Fig. 4 Simulation results for Model B (red) compared to the reduced BovCycle model (blue) for all ten
model components. The grey highlighted part indicates the initial period. The period length of Model B is
4.6. The simulation results of the reduced BovCycle were scaled to the same period length (Color figure
online)

3.2.3 Administration of PGF2˛

Prostaglandin F2α (PGF2α) is commonly used in estrous synchronisation protocols,
making use of its luteolytic action. It causes luteolysis in cows,whichmeans regression
of the corpus luteum, and therefore ends the luteal phase, so that a new estrous cycle
can start (Okuda et al. 2002).
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In Fig. 5, the results of a numerical simulation of PGF2α administration are pre-
sented. The value of the species PGF2α was manually set to 1 during the simulation
for a duration of 1 day at time t = 7.67. All other species are simulated without direct
manual intervention. The simulation results show that LH is switching on earlier than
in the simulation without PGF2α administration. Then, the cycle continues so that a
synchronisation could be simulated successfully. The cycle length after synchronisa-
tion is the same as before due to the fixed values of the delays.

This experiment does not work for administration of PGF2α at any time in the
cycle. The time point t = 7.67 is chosen to be approximately in the middle of the
first time window in which certain conditions are satisfied. In the BDE model, the
condition for a successful shift of the cycle is that a period of CL = 1 overlaps with
the administration period (shifted by the corresponding delay, which is in this model
θ3,5 = 1) so that CL can be switched OFF. Another condition is that E2 is at value 1
at the right time, since GnRH can be activated by switching OFF P4 only if E2 = 1.

This observation coincides with experimental results on administration of PGF2α
at different stages in the cycle. In Wenzinger and Bleul (2012), a PGF2α analogue
is administered on days 3 and 5 after ovulation. The authors report that ovulation can
not be induced by the drug administered on day 3, but in five out of eight cows on day
5, indicating that PGF2α has no effect when administered too early in the cycle. This
is consistent with the behaviour of the BDE model as the value of CL is 0 at earlier
administration time points so that no shift in ovulation would occur. Thus, this result
serves as an additional validation of Model B.

3.3 Trajectories and Periodicity

The observations in this section serve for model validation because they confirm that
the models reproduce biological knowledge about the cycle. They also establish a
context between the abstract model states and biological concepts in the different
phases of the cycle.

The normal range for the length of the bovine estrous cycle is 18–24 days (Forde
et al. 2011). In contrast to Model B, Model A is not designed to match a given period
length, but to reproduce the simulation results of the reduced ODE BovCycle model.
The largest delay is θ3,3 = 1, which is also the cycle length. The absolute value of the
cycle length has no particular significance at this point, since the length is derived from
the largest delay (θ3,3), which is scaled to 1 and represents the delay ofCL influencing
itself. The corpus luteum renews itself after expiration of one cycle.

ModelB is designed to have the same cycle length of 21 days as theBovCyclemodel.
This cycle length is obtained by setting the influential delays to values which add up
to the desired length of 21 days. This is shown in Fig. 6. Not all model components are
part of the cycle, but all (except I OF) are necessary so that the components can pass
through the cycle. In particular, the influence of the other components is necessary
at the time point where GnRH is switched on. This can only happen because P4 is
switched OFF at the appropriate time.

The number of times at which components are turned ON or OFF is 28 for both
models as well as for the trajectory of the Boolean model described by Stötzel et al.
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Fig. 5 Simulation results forModel Bwith PGF2α administration at time t = 7.67 for a duration of 1 day.
The red solid lines show the simulation results for all ten species. The dashed light red line in all subplots
shows the time course of PGF2α to illustrate the influence of the administration on the other species. It
can be seen how CL is switched OFF shortly after the beginning of the administration of PGF2α. As in
the other figures, the grey highlighted part indicates the initial period

(2015). In the Boolean model, no two switchings can happen at the same time, as
the model was implemented with asynchronous updates. In both BDE models, some
components switch at the same time. Therefore, counting the states passed through
during one cycle results in 23 states forModel A and 21 states for Model B.
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Fig. 6 Delays and cycle length for Model B. It can be seen that the delays of the components that switch
one after the other add up to the desired cycle length of 21 days. Numbers with the same colours indicate
that the same delay applies. It should be noted that the black numbers represent different delays. It should
also be noted that not all switching components are represented in the circle, but only those that directly
influence each other and ultimately cause the LH peak and therefore ovulation

In Fig. 7, the trajectory of Model A with two waves is shown together with colour
markings for the follicular phase (yellow background) and the luteal phase (green
background). The two follicular waves are marked by the colour differences of the
eighth digit of the states, which represents the component Foll. In this case, the luteal
phase is defined as the phase inwhichCL has the value 1. The figure shows 23 different
states. Since in several cases not only one but up to three components switch at the
same time, the total number of ON and OFF switches of components per cycle is 28.
We provide the same figure for a cycle with three follicular waves as Online Resource
3.

3.4 Sensitivity

The herein constructed BDE models are very sensitive with respect to changes in
some of the model parameters, i.e. delays and initial periods. That means, even very
small changes in the input parameters can lead to a completely different periodic
behaviour of the BDE system. At this point, no global investigation of the sensitivity
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Fig. 7 This image shows the trajectory ofModel A. The ten numbers of each state are the values of the ten
components of the model in the order as stated above the circle. The pink/light pink colour of the eighth
component (Foll) indicates the two follicular waves per cycle. The green background is for the luteal phase
(here defined as states with CL = 1, represented by the third component) and the yellow background for
the follicular phase (Color figure online)

is carried out. Instead, we demonstrate with the following example how a small change
of only one delay significantly disturbs the behaviour of the simulation and leads to
a biologically unreasonable result. For this purpose, the delay of P4 influencing LH
in Model B is changed by 1%. The original value of θ2,4 = 0.75

4.5 is replaced by
θ2,4 = 0.165 = 0.75

4.5 · 0.99. The results of the simulation are shown in Fig. 8. It is
clearly visible that all components have a strongly increased number of jump points.
This result cannot be interpreted biologically. This high sensitivity with regard to
single delays can also be observed for other delays, not only in Model B, but also in
Model A, where θ3,3 is an example for a highly sensitive parameter.

As a consequence of this high sensitivity, an automated optimisation of the highly
sensitive parameters with respect to time series data is extremely difficult, which is a
major disadvantage. For this reason, the delays and initial periods were fittedmanually
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Fig. 8 This figure shows the simulation result for Model B with one changed delay: θ2,4 = 0.165 =
0.75
4.5 · 0.99. The completely different behaviour of the model for a small change of only one parameter
illustrates the very high sensitivity of the model towards changes of the delays

during the creation of bothModel A andModel B. In addition, the number of possible
jump points during the computation of the solution is determined by the least common
multiple of the denominators of all delays in Θ . Small perturbations of the delays can
therefore lead to a strong increase in this value and therefore in the number of possible
jump points. In these cases, the computing time is extremely prolonged, which makes
automatic optimisation even more challenging. However, the high sensitivity does not
apply to all delay parameters. For less sensitive parameters, automatic optimisation
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might be possible. A high sensitivity towards specific parameters also shows up in the
ODE model BovCycle, where for example the cycle length is very sensitive towards
changes in the parameter for the blood volume. It should be noted that the disadvantage
of high sensitivity cannot be concluded forBDEs ingeneral, but only for the twomodels
presented here.

4 Conclusion and FutureWork

Two BDE models of the bovine estrous cycle have been created and presented in this
article. The simulation results and equations of theODEmodel BovCycle were used as
a guideline, in addition to known physiological findings for the bovine estrous cycle.

The trajectories of both models match well with the ODE trajectories, but neither
reproduces the exact trajectory of the Boolean model in Stötzel et al. (2015). However,
the switching sequences resulting from the two BDE models are just two out of sev-
eral possible discrete representations for the signalling cascade that drives the bovine
estrous cycle. The reason for the existence of multiple discrete representations of the
switching order is the fact that the components are continuous in vivo and that some
hormones can have different thresholds for different sites of action. Therefore, it is not
possible to uniquely determine at which value in the continuous space a component
in the discrete space must be ON or OFF.

In comparison with ODE models or with time series data, both of which are not
discrete, it is difficult to decide on the quality of a discrete trajectory like the one
produced by a BDEmodel. To make a direct comparison, one would have to discretise
the continuous ODE trajectories or time series data. The result of this discretisation,
however, highly depends on the choice of thresholds. Therefore, it is amore appropriate
method to use qualitative properties and experiments for validation.

Model A can be switched between two and three follicular waves by a simple
scaling of some particular delays. WithModel B, one can successfully simulate a shift
of the estrous cycle following the administration of PGF2α at specific time points
that fulfil certain conditions on the development of the CL . This result coincides with
experimental observations by Wenzinger and Bleul (2012), which validatesModel B.
To our knowledge, this is the first time that a BDE model has been used to simulate
the effect of drug administration.

Both experiments (switching the number of waves and shifting the cycle) are only
possible with one model and not with the other. With Model B, it is not possible to
conduct the switching to three follicular waves in the same way as with Model A.
In Model A, the delays of four components were multiplied by 2

3 to switch from a
cycle with two follicular waves to a cycle with three follicular waves. If the same
scaling of the delays is applied to Model B, one can observe a reduced cycle length,
while the number of follicular waves per cycle remains two. The reason for this is that
the delays determine the cycle length. For example, as shown in Fig. 6, the delay of
GnRH influencing LH is part of the summed up cycle length of 21 days. If this delay
is reduced, the cycle length is shortened at the same time. The structure of Model B
does not allow for a change of the number of follicular waves by simply scaling the
delays of the involved species.
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It is known that more than 95% of all cycles in cows have either 2 or 3 follicular
waves (Adams andSingh 2014). Therefore, it is an interesting observation thatModel A
can reflect both wave behaviours. However, switching between 2 or 3 follicular waves
is not an experiment that can be directly induced in real life. Therefore, it does not argue
against the quality ofModel B that it cannot reproduce this switching. Synchronisation
by administration of PGF2α, on the contrary, is in vivo a very frequently performed
protocol. The inability of Model A to simulate these protocols is inherited from the
ODE model it was constructed from.

An approach to construct a BDEmodel by fitting it to time series data derived from a
given ODEmodel is presented by Doherty et al. (2017). Based on the work by Akman
et al. (2012), Doherty et al. (2017) use a given ODE model and a BDE model for the
same system (a simple circadian clockmodel) and optimise the parameters of the BDE
model by discretising the trajectories of the ODE model and using them as artificially
generated time series data. They test different approaches for the optimisation of
combinations of three different types of parameters: (i) gate configuration parameters
of the logical functions (which, for example, determine if a term stands for the logical
identity or for the logical negation), (ii) thresholds for the discretisation of the ODE
trajectories, and (iii) delays. The methods by Doherty et al. (2017) are much less
manual compared to the herein presented approach. Once the optimisation method is
chosen, one can almost automatically generate a BDE from an ODE, provided that
the logical functions for the BDE are given in a very basic form.

However, applying the method by Doherty et al. (2017) to the BovCycle model
appears to be challenging, as the number of parameters in the models for the bovine
estrous cycle is much larger, containing ten thresholds, 17 and 20 delays for Model
A and Model B, respectively, and a yet unknown number of gate parameters (to be
determined by constructing a more abstract version of the logical equations, using
gate parameters instead of logical connectives). In contrast, the model by Doherty
et al. (2017) contains only two thresholds, three delays, and three gate parameters.
Nevertheless, the approach of fitting BDEs to data seems promising since the number
of parameters is smaller than in corresponding ODEmodels, which could facilitate the
reverse-engineering of biochemical networks. However, a potential problem in esti-
mating the parameters in the bovine estrous cycle BDEmodels is the high sensitivity of
solutions to changes in the parameters. Since the number of possible jump points can
increase strongly upon changes in the delays, the computing time for an optimisation
can become very long. An idea to continue the work presented here would be to find
a reproducible formalism for automatically transferring an ODE model into a BDE
model, similar to what was done by Stötzel et al. (2015) to convert an ODE model
into a Boolean one. One would have to define a threshold for each species, and then
find a method to extract the delays from the discretised trajectories, possibly making
use of the thresholds within the Hill functions that occur very frequently in the ODE
model. For defining the logical functions, the procedure described by Stötzel et al.
(2015) could be used as a guideline.

All in all, some steps were carried out manually during the development of the
BDE models. For future work, it would be desirable to perform these steps more
automatically. The difficulty here is that the computing effort is very high due to the
size of the models and the number of parameters. Nevertheless, this step should be
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taken in the future to make the procedure applicable to other models and to ensure
reproducibility.

We also want to extend the model by the dependence of FSH on GnRH , which is
included neither inModel A nor inModel B. This extension of themodel will hopefully
allow to successfully simulate the biological impact of the pathological condition of
persisting follicles or CL . Experience has shown, however, that the delays need to
be adjusted when changing the logical functions, so this extension involves a certain
effort. Overall, it seems most promising to first carry out future work related to the
automatisation of modelling and to the use of optimisation algorithms, since this could
result in considerable time savings compared to manual adaptation and extension of
the model.

To summarise, our results support the role of BDEs as original framework. As
our motivation for modelling is to construct a model that is able to reproduce the
behaviour of a real object as well as possible, we conclude with the recommendation
to construct a BDE model based on biological knowledge rather than deriving it from
an existing ODE model. Furthermore, a comparative analysis of several models of the
same system can also lead to a gain in knowledge, since deficits can be discovered
in the individual models that would not become apparent in the analysis of a single
model. Our conclusion on the usefulness of BDEs for modelling periodic hormonal
systems is that the difficulty of parameter estimation and the very high sensitivity
towards some of the delays are major disadvantages compared to modelling with
ODEs. However, much less detailed information is needed to construct a BDE model,
so that a rather rough model can be generated much more easily if only qualitative
knowledge of the underlying system is available and no time series data. We therefore
see the modelling with BDEs as a useful complementary tool in the process of gaining
mechanistic insight into complex biological systems.
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