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Abstract 

Background:  Traditional methods for single-variant genome-wide association study 
(GWAS) incur a substantial multiple-testing burden because of the need to test for 
associations with a vast number of single-nucleotide polymorphisms (SNPs) simultane-
ously. Further, by ignoring more complex joint effects of nearby SNPs within a given 
region, these methods fail to consider the genomic context of an association with the 
outcome.

Results:  To address these shortcomings, we present a more powerful method for 
GWAS, coined ‘Wavelet Screening’ (WS), that greatly reduces the number of tests to be 
performed. This is achieved through the use of a sliding-window approach based on 
wavelets to sequentially screen the entire genome for associations. Wavelets are oscil-
latory functions that are useful for analyzing the local frequency and time behavior of 
signals. The signals can then be divided into different scale components and analyzed 
separately. In the current setting, we consider a sequence of SNPs as a genetic signal, 
and for each screened region, we transform the genetic signal into the wavelet space. 
The null and alternative hypotheses are modeled using the posterior distribution of the 
wavelet coefficients. WS is enhanced by using additional information from the regres-
sion coefficients and by taking advantage of the pyramidal structure of wavelets. When 
faced with more complex genetic signals than single-SNP associations, we show via 
simulations that WS provides a substantial gain in power compared to both the tradi-
tional GWAS modeling and another popular regional association test called SNP-set 
(Sequence) Kernel Association Test (SKAT). To demonstrate feasibility, we applied WS 
to a large Norwegian cohort (N=8006) with genotypes and information available on 
gestational duration.

Conclusions:  WS is a powerful and versatile approach to analyzing whole-genome 
data and lends itself easily to investigating various omics data types. Given its broader 
focus on the genomic context of an association, WS may provide additional insight 
into trait etiology by revealing genes and loci that might have been missed by previous 
efforts.
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Background
The main objective of a genetic association study is to identify the genes and loci that 
are associated with a phenotype of interest. Although the human genome is very simi-
lar across individuals, it is interspersed with single base-pair differences called single-
nucleotide polymorphisms (SNPs) that collectively account for the observed differences 
across individuals. One of the most common approaches to genetic association test-
ing is to conduct a genome-wide association study (GWAS), where the significance of 
the effect of each SNP on a phenotype is assessed in a sequential fashion. Despite its 
many successes, this approach has two important limitations: (i) it incurs a substantial 
multiple-testing burden due to the large number of tests carried out simultaneously, and 
(ii) it ignores the genomic context of an association by failing to exploit the typically 
dense microarray-based genotyping of the genome. As larger regions of the genome are 
more likely to contribute to the phenotype [1], considering the effect of one SNP at a 
time would not efficiently model how a larger change in the genome might impact the 
phenotype.

The issue of multiple testing can be resolved using a regularization method such as 
Fused Lasso [2], which allows a penalized regression to be performed. It can also take 
into account how variables (here SNPs) located near each other might produce similar 
effects. Fused Lasso can thus be used to define a region of association between a group 
of SNPs and the phenotype. However, the main disadvantage of Fused Lasso is that it 
can only perform local testing, whereas it may be more judicious to test for associations 
over larger regions of the genome.

Despite an increased interest in penalized regressions within the broader statisti-
cal community, they remain elusive in the top-tiered genetic publications. Penalized 
regression has recently been incorporated into PLINK [3], one of the leading software 
for GWAS, but the lack of a comparable software for meta-analysis is a major drawback 
of this approach. A comprehensive genome-wide association meta-analysis (GWAMA) 
typically involves the analysis of summary statistics from multiple cohorts, and although 
such meta-analyses are now feasible in the Lasso regression setting [4], they are not cur-
rently available for variants of Lasso regression or other regularization penalties.

Several regional tests have been developed for GWAS, including the Burden test [5, 
6], C-alpha [7], and SKAT [8]. These tests were primarily designed for the analysis of 
rare variants. However, a few of the more recent developments, including SKAT-O [8], 
can handle both rare and common variants. As these tests are not specifically designed 
to pinpoint the exact location of the region harboring the association, they have to be 
applied to relatively small regions. As a result, the total number of tests needed to per-
form a genome-wide screening still remains too large and intractable.

To address these shortcomings, we developed a new approach called Wavelet Screen-
ing (WS) for analyzing genome-wide genotype data by leveraging key insights from 
functional modeling [9, 10]. Specifically, we adapt the approach of Shim and Stephens 
[10] to test for association with a functional phenotype (the response signal) by first 
transforming the signal using Fast Discrete Wavelet Transform (FDWT) [11] and then 
testing for single-SNP associations. In essence, we reverse the approach of Shim and Ste-
phens [10] by modeling SNP signals as wavelets over large regions of the genome fol-
lowed by a regression of the wavelet coefficients on the phenotype.
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The use of reverse regression to search for genetic associations is becoming more wide-
spread in the genetic literature (see [12] for an example). Our approach treats sizable 
chunks of the genome ( ≈ 1 million base pairs) as the functional phenotype and provides a 
broader test by enabling an estimation of the fraction of wavelet coefficients (blocks) associ-
ated at each level of depth. A dimensional reduction is then performed using wavelet trans-
form before testing for association between the wavelet coefficients and the phenotype. 
This broader approach to testing combined with multiple levels of information may pro-
vide additional insight into the reason for detecting a genetic association. Furthermore, by 
reversing the regression and targeting a region for association testing, we use regional asso-
ciation instead of single-SNP association to reduce the number of tests to be performed. 
Specifically, using overlapping windows of 1 Mb in length reduces the number of tests from 
eight million (for common SNPs) to approximately 5000. We propose screening regions of 
1 Mb in size to cover most of the linkage disequilibrium (LD) blocks that are present in a 
given population, irrespective of ethnicity [13].

The remainder of this paper is structured as follows. We first describe the statistical set-
ting of the different analyses, including the wavelet methodology used to generate the wave-
let coefficients. Next, we describe our test statistic between the wavelet spectrum and the 
phenotype � . In the current context, � represents a univariate vector of either a continu-
ous, countable, or binary trait. After a comprehensive evaluation of WS by a series of simu-
lations, we showcase its application using a large dataset from the Norwegian HARVEST 
study—a sub-project nested within the Norwegian Mother, Father and Child Cohort Study 
(MoBa) [14]. Our primary phenotype of interest is gestational duration.

Materials and methods
Haar wavelet transform

Our method transforms the raw genotype data similarly to the widely used ‘Gene- or 
Region-Based Aggregation Tests of Multiple Variants’ method [15] (Fig. 1). Like the Bur-
den test, the effects of the genetic variants in a given region are summed up to construct 
a genetic score for the regression. The first step in our analysis is the application of FDWT 
to the multi-SNP data. In the next subsection, we introduce the Haar wavelet transform 
and show how the wavelet coefficients are computed. Readers unfamiliar with wavelets are 
referred to a comprehensive introduction by Nason [16]. In the rest of this article, ‘wavelet’ 
specifically refers to the Haar wavelet.

We code a SNP 0 if an individual is homozygous for the reference allele (usually assigned 
to the more frequent or ‘major’ allele), 1 if heterozygous, and 2 if homozygous for the alter-
native allele (the less frequent or ‘minor’ allele). This is the standard way of coding alleles 
in an additive genetic model [3]. Let G0,k(bp) denote the ‘true’ genetic signal of individual 
k at physical position bp (base pair), and let Gk(bp) be the observed, imputed version of 
G0,k(bp) . We assume that

where ǫk(bp) are independently and identically distributed (iid) over individuals, with 
Var(ǫk(bp)) = σ 2(bp) . The variance σ 2(bp) at position bp can be interpreted as a func-
tion of the imputation quality IQ(bp), which has a value in [0, 1] . 1 represents a perfectly 
imputed SNP or genotyped SNP; hence, σ 2(bp) ∝ 1− IQ(bp) . As the data used here 

(1)Gk(bp) = G0,k(bp)+ ǫk(bp)
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were already quality-controlled, only SNPs with an IQ ∈ [0.8, 1] were retained for further 
analyses. We assume that the imputation metrics are independent and heteroscedastic 
over bp. As the value of a SNP is in {0, 1, 2} and then in [0, 2] according to the dosage con-
vention after imputation [3], the distribution of ǫk(bp) is not straightforward. However, 
as our model is calibrated by simulations, this error distribution does not have to be 
specified.

We define a genetic region GRlb,ub (GR, genetic region; lb, lower bound; up, upper bound) 
on a given chromosome as the set of physical positions bp in the interval lb < bp < ub . In 
the rest of the paper, we assume the analyses are performed within a fixed genetic region 
GRlb,ub on a given chromosome. We observe the value of Gk(bp) at pre-determined and 
increasing positions bp1, ..., bpn within the interval (lb,  ub), with some error due to the 
genome-wide imputation process [17]. For now, we assume having n = 2J equally spaced 
observations within GRlb,ub and denote the observed value of Gk(bpi) by gk(bpi) ; i.e., the 
data value measured on individual k at position bpi , i = 1, . . . n , where the bp′is are equally 
spaced. We define wavelet d and c coefficients as sequences of length 2J . These coefficients 
are computed by Mallat’s pyramid algorithm [11].

For the coefficients at the highest scale (i.e., scale J − 1 ), for i ∈ {1, . . . , 2J−1},

These coefficients correspond to local differences (or sums) of the measured values. For 
lower scales, the coefficients are computed as follows:

Finally, the coefficients at the lowest scale (i.e., scale 0) are computed as:

dJ−1,i = gk(bp2i)− gk(bp2i−1)

cJ−1,i = gk(bp2i)+ gk(bp2i−1).

dj−2,i = cj−1,2i − cj−1,2i−1

cj−2,i = cj−1,2i + cj−1,2i−1.
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Fig. 1  Genetic variation in one individual within a locus spanning two million base pairs (2 Mb), including 
10,000 imputed SNPs
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These procedures are often written as square matrices Wd and Wc (d and c procedures, 
respectively) of size 2J , where the rows of Wd and Wc are normalized. We have d = Wgk 
and c = W ′gk . In addition, because the matrix Wd is orthogonal, we have:

Using the 2J wavelet coefficients for individual k, all values gk(bp) in the genetic region 
GRlb,ub can be completely recovered. However, this wavelet transformation assumes that 
the data are evenly spaced and that there are n = 2J measurements, which may not be 
realistic in practice. To avoid this assumption, we use the method of Kovac and Silver-
man [18], which is briefly explained in the “Pre-processing of data” section.

Wavelet representation of the genome

In essence, the coefficients obtained after performing wavelet transform on a genomic 
region can be viewed as local ‘scores’ of the genotype, with the following interpretations:

•	 At scale 0, the wavelet coefficients d and c can be interpreted in the same way: they 
summarize the discrepancy between an individual’s genotypes and the reference gen-
otypes coded as 0...0. This is essentially the test comparison performed in standard 
gene or regional tests.

•	 The wavelet ds,l coefficient at scale s > 0 and location l for an individual represents 
the difference in the number of minor alleles between the left part of the region 
(defined by s, l) and the right part.

•	 The wavelet cs,l coefficient at scale s > 0 and location l for an individual represents 
the discrepancy between an individual’s genotypes and the reference genotypes 
coded as 0 . . . 0 for the region defined by s, l.

The main rationale behind this modeling is that, if a genetic locus has an effect on the 
phenotype, then the association is likely to be spread across genomic regions of a given 
size (scale) at different positions (locations). By using wavelet transform to perform a 
position/size (or, alternatively, time/frequency) decomposition and then regressing the 
wavelet coefficients on the phenotype, one can visualize where (location) and how (scale) 
the genetic signal influences the phenotype.

In the rest of this article, we use ‘wavelet coefficients’ to refer to c coefficients spe-
cifically. c coefficients are easier to interpret than d coefficients. For instance, in case of 
completely observed genotypes, c coefficients correspond to the sum of minor alleles, 
similar to the Burden test [19].

Pre‑processing of data

Non‑decimated wavelet transform

We use the method of Kovac and Silverman [18] to handle non-decimated and unevenly 
spaced data. This method takes an irregular grid of data, for example, the sampling of 
different genetic regions, and interpolates the missing data into a pre-specified regular 

d0,1 = c0,1 =
2J
∑

i=1

gk(i).

||d||2 =
(

Wgk
)t
Wgk = ||gk ||2.
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grid of length 2J . For a given genetic region GRlb,ub with measurements at n positions 
bp1...bpn , we map this region into a (0,  1) interval using the affine transformation 
x −→ x−bp1

bpn
 . We then define a new grid of points of length 2J on (0, 1) as: t0, . . . , tN−1 , 

where N = 2J , J ∈ N , tk = (k + 1
2 )2

−J and J = min{j ∈ Z, 2j ≥ n} . We interpolate the 
mapped signal into this grid and run wavelet transform to obtain the wavelet coeffi-
cients. In practice (see the “Applications” section), we recommend selecting genetic 
regions with a relatively high density of imputed SNPs.

Coefficient‑dependent thresholding and quantile transform

For each individual wavelet decomposition, we use the VisuShrink approach [18] to 
shrink the interpolated wavelet coefficients and reduce the dependence between the 
wavelet coefficients within scales. This allows an estimation of the variance of each 
wavelet coefficient before determining a specific threshold for each wavelet coefficient. 
We can account for the individual heteroscedasticity of the noise by determining specific 
coefficient-dependent thresholds using the variance of the wavelet coefficient. Next, we 
quantile-transform the distribution of each wavelet coefficient within the population to 
make sure that each distribution follows a N(0, 1) distribution. As we use the quantile-
transformed wavelet coefficient as the endogenous variable (see “Modeling” section), the 
above transformation ensures that, under the null hypothesis, the residuals are normally 
distributed. This also controls for spurious associations resulting from any deviation 
from the Normal distribution assumption of a linear model.

Modeling

In essence, our approach to modeling aims at detecting regions containing sub-regions 
associated with a trait/phenotype of interest. We localize these sub-regions to ease the 
interpretation of the output. We first need to assess whether certain scales are associ-
ated with the phenotype at different locations to estimate the effect of a genetic region 
on the phenotype of interest. Within a genetic region, let G̃sl denote the quantile-trans-
formed wavelet coefficient at scale s and location l. To test for association between the 
phenotype and the wavelet coefficient, we regress the wavelet coefficients on the phe-
notype � using the traditional least squares estimation for Gaussian linear models [20]. 
To adjust for covariates C that may be confounders in the GWAS, we incorporate the 
covariates into the regression models. The regression models for each scale and location 
are defined as follows:

where C is a matrix of dimension c × 1 and βsl,C is a matrix of dimension 1× c , and 
ǫ ∼ N (0, 1) . We compute the association parameters βsl,1 of the wavelet regression for 
each pair (s, l) using least squares estimation [20].

(2)M1 : G̃sl = βsl,0 + βsl,1�+ βsl,CC + ǫ
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Evidence towards the alternative

For a given locus, a genetic signal might be assumed to occur in only a subset of the 
regression coefficients. Thus, the β̂sl,1 may be viewed as originating from a mixture of 
two Gaussian distributions, each representing a specific hypothesis:

•	 Under H0 the β̂sl,1 are distributed as N (0, σ 2
null).

•	 Under H1 some β̂sl,1 are distributed as N (µalt , σ
2
alt).

To help identify a subset of β that convey the signal, we fit a mixture of the two Gaussian 
distributions to the collection of estimated β̂sl,1 , assuming mixture weights 1− πalt and 
πalt , respectively. Under the null hypothesis, the full mixture is not identifiable. To esti-
mate σ 2

null , µalt , and σ 2
alt in all cases, and to ensure that the estimated π̂alt becomes small 

under H0 , we constrain the Gaussian mixture fitting using a modified version of the EM 
algorithm with the restriction that σ̂ 2

null >
(XtX)

−1
2,2

10  and σ̂ 2
alt > k

(

XtX
)−1

2,2
 , where X is the 

design matrix with the phenotype � in the second column and k is of the order of 100.
After obtaining the estimates, we compute—for each beta coefficient—the posterior 

probability π̂l,s of H1 knowing βs,l by

where φ
(

·;µ, σ 2
)

 is the density of a Gaussian distribution, with mean µ and variance σ 2 . 
To reduce the influence of betas that most likely belong to H0 , we propose a thresholding 
of the posterior probabilities π̂l,s that decrease with sample size as well as wavelet depth. 
Based on the work by Donoho and Johnstone [21], we define the thresholded probabili-
ties by

We later use the π̃l,s to localize the sub-regions of interest (for details, see the “Model 
and results” section).

Finally, we compute the average evidence towards the alternative by

Note that, in contrast to the work of Shim and Stephens [10], where lower scales have 
more weight, our test statistic applies equal weight to each scale. As shown in the upper 
panel of Fig.  2, the separation between the null and alternative distributions achieved 
by this test statistic ( Lh ) alone is not optimal because the resulting test power is low. For 
additional details, see the “Complex genetic signal” section and the “Appendix”.

Inflation of the alternative hypothesis

To improve the separation of the null and alternative distributions, we extract two addi-
tional pieces of information from the π̃l,s . First, we compute the average proportion of 

(3)π̂l,s = P

(

H1|β̂sl,1
)

=
π̂alt,s,lφ

(

β̂sl,1; µ̂alt , σ̂
2
alt

)

π̂alt,s,lφ

(

β̂sl,1; µ̂alt , σ̂
2
alt

)

+
(

1− π̂alt,s,l

)

φ

(

β̂sl,1; 0, σ̂ 2
null

) ,

(4)π̃l,s = max

(

π̂l,s −
1

√

2log(n)
√
2s
, 0

)

.

(5)Lh =
S

∑

s=0

1

2s

2s
∑

l=1

π̃alt,s,lφ

(

β̂sl,1; µ̂alt , σ̂
2
alt

)

−
(

1− π̃alt,s,l

)

φ

(

β̂sl,1; 0, σ̂ 2
null

)

.



Page 8 of 20Denault et al. BMC Bioinformatics          (2021) 22:484 

associations per scale. The proposed test statistic is a weighted sum applying the same 
weight to each scale. This can be interpreted as an alternative horizontal summary of the 
association:

Second, we extract a vertical summary by considering sub-regions of the overall 
screened region. We divide the region of association into S − 1 sub-regions, where S is 
the maximum depth of analysis. We summarize the proportion of associations verti-
cally, and for each average, we consider the positions that overlap with the sub-regions. 
For example, the first coefficient at scale 1 contributes half of the sub-region average of 
association.

We use the new summaries of association to increase the separation between the null 
and the alternative by assuming that, under the alternative hypothesis, pv and ph tend to 

(6)ph =
S

∑

s=0

1

2s

2s
∑

l=1

π̃alt,s,l .

(7)pv =
S−1
∑

k=1

1

nk

S
∑

s=1

⌊

2Sk
S−1

⌋

∑

l=
⌊

2S (k−1)
S−1

⌋

π̃alt,s,l

(8)nk = Card

(

(s, l),∀s ∈ [1, S], l ∈ �

⌊

2S(k − 1)

S − 1

⌋

,

⌊

2Sk

S − 1

⌋

�

)
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Fig. 2  Average evidence towards the alternative hypothesis. The simulated null distribution is shown in blue 
(’null’), the empirical null distribution in green (’emp’), and the alternative distribution in pink (’alt’)
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be larger. We then build our full test statistic TS� , which requires calibration of the hyper-
parameter �:

A larger � would yield higher power if we assume that pv and ph tend to be larger under 
the alternative hypothesis. However, increasing � can also change the shape of the null 
distribution. Assuming that the null distribution is normal, we use this as a fitting crite-
rion to select the hyperparameter.

Calibration of the hyperparameter and statistical significance

Our goal is to find the right balance between having as large of a � value as possible 
while keeping the null distribution normal. As min(ph, pv) is not normally distributed 
(bounded distribution), the larger � is, the further TS� deviates from normality. To strike 
the right balance, we simulate Lh and min(ph, pv) under the null. Once simulated, we 
compute Lh and min(ph, pv) for each simulation ( 105 simulations in our case). Next, we 
fit a normal distribution on Lh and use this fit to generate the histogram of the p-values 
of the simulations for 1000 bins. We compute the number of counts in each bin and 
rank them by count (Figs. 2 and 3). We are particularly interested in the rank of the first 
bin, as an inflation of this bin would influence the false discovery rate. This procedure is 
repeated for increasing values of � , and the search is stopped when a rank increase in the 
first bin is observed. We select the largest � that results in the rank of the first bin to be 
equal to the rank of the first bin for Lh , denoted as �∗ . Finally, we use the normal fitting 
of TS�∗ to perform the testing. In the “Appendix”, we provide a pseudo code description of 
the procedure (see Algorithm 1).

As wavelet transform induces a correlation between the β̂sl,1 , it is not possible to simu-
late them from a univariate normal distribution using their theoretical null distribution. 

(9)TS� = Lh + � ·min(ph, pv)
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One option is to compute the empirical covariance matrix of the β̂sl,1 and simulate βsl,1 
using this empirical null distribution. A second option is to simulate wavelet coefficients 
using random signals from a normal Gaussian distribution and then re-scale them to 
obtain a mean of zero and variance of one. A third possibility is to compute the covari-
ance matrix of these wavelet coefficients and re-scale them using the theoretical null dis-
tribution of the β̂sl,1 . Similar results are achieved using these different options (see Fig. 1 
in the “Appendix” for a comparison). In the “Appendix”, we also provide a pseudo code 
description of the procedure (see Algorithm 2 and Algorithm 2bis).

Results
Complex genetic signal

We performed simulations catering to a complex genetic signal by combining real 
genetic data with a simulated phenotype. We used a previously identified locus for ges-
tational age in the Norwegian HARVEST dataset [14] and maternal genotype data from 
a region on chromosome 7 spanning nucleotide positions 40504539–41504539 based on 
the human genome build GRCH37-hg19 [22]. This region contains a total of 5209 SNPs 
in our dataset. An example of the genetic variation in a single individual is displayed in 
Fig. 1. We performed two sets of simulations to mirror local polygenic effects. Each set 
of simulation considered different local polygenic effects by SNP location, as follows:

•	 High LD Simulations: we computed the correlation structure (LD) of the above-
described locus and identified 28 small LD-blocks. In this simulation set-up, all the 
SNPs used in constructing the phenotype are selected within high LD regions. These 
simulations are engineered to mimic a diluted effect of SNPs within different LD 
blocks, also known as “block polygenic effect”, where each variant has a small addi-
tive effect.

•	 Random LD Simulations: all the SNPs (from 1 to 28) used in constructing the pheno-
type are taken uniformly at random from within the considered locus. These simula-
tions are engineered to mimic a diluted effect of SNPs regardless of the LD structure, 
where each variant has a small additive effect.

We provide an example of such a phenotype in Fig. 4. In addition to the above simula-
tions, we considered the following two models, each of which mimics different underly-
ing locus effects:

•	 Mono-directional model (MD): for each iteration, we randomly selected 1 to 28 SNPs, 
and for each individual, we summed up their SNP dosages within the selected set of 
SNPs to construct a score. On top of the individual scores, we added normally-dis-
tributed noise, scaled so that the genetic score explains 0.5% of the total phenotypic 
variance.

•	 Random direction model (RD): the same setting as above, but the sign of the effect 
(positive/negative) for each SNP is random. In the mono-directional simulations, any 
additional variant may increase the level of the phenotype. This is not necessarily the 
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case with the random direction model. Taken together, these simulations showcase 
the sensitivity of WS to the direction of the SNP coding.

The variance explained by a single SNP varies between 0.5% , which is typical for 
the top SNPs in a GWAS [1]), to 0.018% , a level at which variants are not normally 
detected by the standard GWAS framework. We performed simulations for different 
sample sizes (1000, 5000, 10,000), and for each set-up, we performed 10,000 simula-
tions and ran WS. In addition, we performed 2× 106 simulations for the scenario of 
no association to assess the type 1 error for each sample size (see Table 3).

Further, we performed 106 simulations of Lh and min(ph, pv) for each simulation set-
up and searched for the hyperparameter for each sample size (see “Calibration of the 
hyperparameter and statistical significance” section). As displayed in Fig. 2, there is a 
good match between the simulation and permutation distributions.

We also compared our method with one of the most popular regional methods for 
association testing called SNP-set (Sequence) Kernel Association Test (SKAT) [19]. 
For each sample size, type of effect, and number of SNPs, we performed 1000 simula-
tions. SKAT aggregates individual SNP effects into a regional score before testing for 
association. We applied SKAT to the same region of 1 Mb as with WS to allow a com-
parison of the simulation results between SKAT and WS. SKAT is generally recom-
mended for regions between 5 to 25 kb [19]. To run SKAT on a larger region, we used 
fast-SKAT [23] which allows an efficient computation of p-values.

In Tables 1 and 2, NA stands for ‘not applicable’. As the standard single-SNP GWAS 
does not take LD structure and local polygenicity into account, the only effect modeled 
here is the dilution effect. As we obtained similar results, we chose not to display them 
in Tables  1 and 2, but only specified the column Model with NA for SKAT. Overall, 
the results in Tables 1 and 2 show that WS is an attractive alternative to single-variant 
modeling in traditional GWAS. The dilution effect in both tables appeared to be highly 
non-linear for the GWAS linear modeling, with a steep elbow-shaped curve. In con-
trast, the power of WS decreases roughly linearly with the number of components in 
the score for Random LD Simulation but increases in the case of High LD Simulation. 
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Fig. 4  Simulated phenotype against the generated score (20 SNPs selected)
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The power of SKAT increases with increasing number of causal SNPs. Compared to 
WS, SKAT is more powerful for large sample sizes and when a large number of variants 
affect the phenotype. Conversely, WS has higher power especially for smaller sample 
sizes and when a moderate number of SNPs affect the phenotype. For n = 1000 , how-
ever, none of the methods were optimal. As seen in Tables 1 and 2, WS has non-zero 
power compared to both SKAT and the GWAS based on single-variant modeling.

For Random LD Simulation, Table  1 shows that the GWAS based on single-variant 
modeling is superior when up to five SNPs are considered and none of the SNPs are 
located within different LD blocks or are in LD with each other. For a sample size of 
n = 5000 , WS outperformed the other two methods when at least four SNPs are con-
sidered in the simulation. For n = 10,000 , the GWAS based on single-variant modeling 

Table 1  Power of the different methods depending on the number of components in the ‘Random 
LD Simulations’ (dilution effect)

Size Model Method Significance 1 2 3 4 5 6–10 11–15 16–20 > 20

1000 MD WS 1× 10
−5 0.4 0.5 0.8 1.0 1 0.7 0.6 0.7 0.7

1000 RD WS 1× 10
−5 0.8 0.1 0.0 0.3 0.2 0.5 0.9 0.2 0.4

1000 NA SKAT 1× 10
−5 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.8 1.8

1000 NA GWAS 5× 10
−8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5000 MD WS 1× 10
−5 9.2 11.1 9.1 6.1 4.6 3.5 2.5 2.3 2.3

5000 RD WS 1× 10
−5 9.6 9.3 7.3 5.4 5.1 2.6 1.4 1.7 1.6

5000 NA SKAT 1× 10
−5 0.0 0.2 0.57 0.8 2.8 7.14 26.2 54.5 82.0

5000 NA GWAS 5× 10
−8 45.5 25.8 16 3.1 2.7 2.8 1.1 0.6 0.3

10,000 MD WS 1× 10
−5 48.1 46.5 44.4 45.1 44.1 31.0 24.6 21.2 21.2

10,000 RD WS 1× 10
−5 49.1 45.2 46.3 47.2 39.2 27.2 15.6 17.2 15.9

10,000 NA SKAT 1× 10
−5 0.2 1.1 1.3 4.4 7.3 32.0 71.6 92.8 99.2

10,000 NA GWAS 5× 10
−8 100 81.8 75.0 68.8 30.6 28.1 15.5 9.6 3.3

Table 2  Power of the different methods depending on the number of components in the ‘High LD 
Simulations’ (dilution effect)

MD, mono-directional model; RD, random directional model; NA, not applicable

Size Model Method Significance 1 2 3 4 5 6–10 11–15 16–20 > 20

1000 MD WS 1× 10
−5 0.9 1.1 0.7 0.9 0.6 0.8 0.6 0.9 0.9

1000 RD WS 1× 10
−5 1.2 0.9 0.2 0.7 0.8 0.5 0.6 0.4 0.8

1000 NA SKAT 1× 10
−5 0.0 0.0 0.0 0.0 0.0 0.1 1.4 4.6 19.8

1000 NA GWAS 5× 10
−8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5000 MD WS 1× 10
−5 17.3 18.3 19.1 20.6 24.0 20.9 19.4 19.3 20.2

5000 RD WS 1× 10
−5 7.3 10.5 8.8 7.1 9.4 8.5 9.2 8.0 9.3

5000 NA SKAT 1× 10
−5 0.0 0.2 1.4 3.0 5.9 26.7 69.5 95.4 99.9

5000 NA GWAS 5× 10
−8 45.5 25.8 16 3.1 2.7 2.8 1.1 0.6 0.4

10,000 MD WS 1× 10
−5 54.8 70.9. 86.8 90.1 92.2 95.4 93.6 94.1 96.5

10,000 RD WS 1× 10
−5 57.3 49.8 54.6 53.8 56.1 54.4 50.7 50.6 52.1

1000 NA SKAT 1× 10
−5 0.0 1.1 6.5 15.6 24.9 64.5 96.5 100.0 100.00

10,000 NA GWAS 5× 10
−8 100 81.8 75.0 68.8 30.6 28.1 15.5 9.6 3.2
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proved to be the best method when only 1-4 SNPs are considered. As is evident from 
Table 2, WS has higher power in case of five SNPs or more within different LD blocks.

The increase in power for a single SNP, as shown in Tables 1 and 2, can be explained by 
the fact that the considered SNP for High LD Simulation is within an LD block, which is 
not necessarily the case with the Random LD Simulation. As it is rare that only a single 
SNP is responsible for the association observed with the phenotype, in a general setting 
WS would be more powerful than the standard GWAS based on single-variant mode-
ling. More importantly, our simulations show that WS has higher power for detecting an 
association in case of moderate ‘local polygenicity’. Overall, our simulations show that the 
type I error is well-controlled by WS for the proposed simulation settings (see Table 3).

Applications

Besides the above simulations, we also tested the applicability of WS by performing: 1) a 
chromosome-wide association study of human gestational duration using real data from 
a Norwegian cohort [24], and 2) a genome-wide association study of maize grain yield 
using a dataset from a European plant consortium [25].

Gestational age

Gestational duration is a complicated phenotype to study because of large measurement 
errors ( ≈ 7 days [26]) and typically small genetic effects ( ≈ 1.5 days [24, 27]). We used 
genome-wide genotypic data from mothers in the Norwegian HARVEST study [14] to see if 
we could replicate the lead SNPs reported by Zhang and colleagues [24] in the hitherto larg-
est GWAMA on gestational duration. These lead SNPs are located on chromosome 5, near a 
gene called Early B cell factor 1 (EBF1). Using the same exclusion criteria for SNPs and indi-
viduals as in Zhang et al.  [24], the lowest p-value obtained in our dataset was 2.8× 10−6 for 
n = 8006 , which is not statistically significant in the traditional GWAS setting.

Definition of regions and choice of resolution for gestational age

Although a typical GWAS can now interrogate millions of SNPs at a time, several chro-
mosomal regions are still difficult to analyze due to poor marker density, particularly 
regions located near telomeres and centromeres, regions containing highly repetitive 
DNA, and regions of low imputation quality. Most SNPs with low imputation quality are 
routinely discarded during quality control. Given that we pre-processed the gestational 
duration data using an interpolation, we tried to avoid analyzing purely interpolated 
regions by including an additional criterion in the pre-processing step to exclude these 
types of regions. We propose studying regions of size 1 Mb, with a maximum distance of 
10 kb between any two adjacent SNPs. Furthermore, we defined overlapping regions to 
avoid having a signal located at the very boundary of two regions. By applying these addi-
tional criteria, we excluded 18% of the SNPs and defined 248 regions on chromosome 5.

Besides avoiding fully-interpolated regions, we also need to choose an appropriate 
depth of analysis for the wavelet decomposition. The precision of the wavelet coefficient 
depends on the number of non-interpolated points in a given region [18]. As a rule of 
thumb, we propose aiming for 10 SNPs on average for each wavelet coefficient. Follow-
ing this criterion, the median spacing between any given pair of SNPs was 202 bp in our 
dataset. This means that, if we divide each locus of 1 Mb into 29 = 512 sub-regions, we 
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would, on average, have 10
6

29
× 1

202 ≈ 9.7 SNPs per sub-region. Moreover, this prevents us 
from having a small number of possible values for the wavelet coefficients of the highest 
resolution. Having a small number of possible values for the wavelet coefficients would 
imply that the wavelet coefficients would behave as a discrete variable, and, therefore, 
the proposed linear model would no longer be appropriate.

Model and results

We applied WS to the gestational duration dataset described above. We simulated Lh 
and min(ph, pv) 105 times under the null using an empirical correlation matrix. Using 
these simulations and the steps described in the “Calibration of the hyperparameter 
and statistical significance” section, we obtained �∗ = 696552 . We then fitted a normal 
distribution on Lh + �

∗min(ph, pv)+ �
∗min(ph, pv) . This distribution was then used to 

compute the p-values for each locus. These analyses identified two significantly associ-
ated loci, as shown in Fig. 5, but because we employed half-overlapping windows, these 
loci were in fact identical (their respective p-values are 1.1× 10−24 and 8.7× 10−7 ). 

0

1

2

3

4

5

6

7

8

9

1.627e+08 1.628e+08 1.629e+08 1.631e+08 1.632e+08 1.633e+08 1.634e+08 1.636e+08 1.637e+08
Base pair position

Le
ve

l o
f r

es
ol

ut
io

n

Fig. 5  Locus discovered by Wavelet Screening. The dots of different sizes represent the absolute values of the 
estimated β̂1,sl ; blue for negative, red for positive. The highlighted vertical bars represent π̂sl non-thresholded 
to zero

Table 3  Estimated Type I error for different sample sizes

α level

N 0.0500 0.0100 0.0010 0.0001 0.00001 0.00001

1000 0.050470 0.009669 0.000852 0.000017 0.000006 0.000003

5000 0.049319 0.008993 0.000730 0.000085 0.000013 0.000003

10, 000 0.050709 0.009661 0.000830 0.000112 0.000023 0.000002
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Reassuringly, our results showed that the main SNP in the published GWAMA by Zhang 
and co-workers is located less than 1 Mb from the locus near EBF1 detected by WS.

The classic pyramidal wavelet decomposition representation was used to display the β̂1,sl 
corresponding to each wavelet coefficient, with the size of a given point representing its 
absolute value and the coloring scheme representing its sign (blue for negative, red for posi-
tive). Furthermore, if a β̂1,sl has an associated π̂sl that is not thresholded to zero (see Eq. 3), 
we highlight the region corresponding to the wavelet coefficient using the color-coding 
scheme in Fig. 5. We provide the genomic position of the significant locus in the “Appendix”.

Grain yield

Grain yield in maize is a complex trait and there is a growing literature aimed at elucidat-
ing its etiology [25, 28]. The genetic underpinnings of grain yield is still not completely 
understood due to the small datasets available for a well-powered genome-wide analysis. 
Here, we used genome-wide genotypic data from 256 maizes from a large European plant 
consortium [25] to examine if we could replicate the lead SNPs discovered in that dataset. 
The lead SNPs are located on chromosome 6. Using the same exclusion criteria for SNPs 
and individuals as in the original article by Millet and co-workers [25], we analyzed 36,624 
SNPs scattered across the 10 maize chromosomes. The data are available in the R package 
statgenGWAS.

Definition of regions and choice of resolution for grain yield

As with the analysis of gestational age, we also excluded regions of poor marker density in 
the maize dataset. This was particularly important because the data provided by Millet and 
colleagues [25] have a lower SNP density than those in the HARVEST dataset. We propose 
studying regions of 1 Mb in size, with a maximum distance of 50 kb between any two adja-
cent SNPs. By applying these additional criteria, we excluded 8% of the SNPs and defined 
246 regions across the 10 chromosomes. Moreover, as explained in the previous section, 
the precision of the wavelet coefficient depends on the number of non-interpolated points 
in a given region. It is therefore important to select a depth of analysis corresponding to 
approximately 10 SNPs per wavelet coefficient. Following this criterion, the median spacing 
between any given pair of SNPs was 3525 bp in the maize dataset. By dividing each locus of 
1 Mb into 25 = 32 sub-regions, we have on average 10

6

25
× 1

3525 ≈ 8.9 SNPs per sub-region.

Model and results

We applied WS to the grain yield dataset and simulated Lh and min(ph, pv) 105 times 
under the null using an empirical correlation matrix. Using these simulations and the 
steps described in the “Calibration of the hyperparameter and statistical significance” 
section, we obtained �∗ = 105 . We then fit a normal distribution on Lh + �

∗min(ph, pv) . 
This distribution was then used to compute the p-values for each locus. To assess statis-
tical significance, we used the same genome-wide significance threshold (i.e., 10−6 ) as in 
the Millet et al. study [25].

WS identified 44 significantly associated loci. One of these loci corresponds to the 
genome-wide significant locus on chromosome 6 reported by Millet and colleagues [25]. We 
provide in the “Appendix” the positions and p-values of the 46 genome-wide significant loci. 
By comparison, we did not find any of the loci reported by Boyles and colleagues [28]. It 
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should be noted, however, that the study by Boyles and colleagues [28] did not identify any 
locus with a p-value below the genome-wide significance threshold.

Discussion
This paper introduces WS as a novel and powerful alternative to the classic GWAS 
methodology. It offers a more flexible modeling scheme than the standard single-SNP 
association approach and enhances the discovery rate in case of moderate local poly-
genicity. We acknowledge the empirical nature of this article, as most of the simulations 
indicate that WS is slightly over-conservative, which might be due to our calibration cri-
terion for �∗ or the shrinkage of the posterior probability. Furthermore, we acknowledge 
the potential limitation of the coding scheme for assigning a SNP allele as either risk-
conferring or protective. The minor (less frequent) allele is conventionally coded as the 
risk allele, while the major allele is treated as the reference (non-risk) allele. When han-
dling a large number of SNPs simultaneously, there is no definitive protocol for coding 
the alleles, especially when there is no prior knowledge of their true effects based on the 
results of targeted functional analyses. When the risk allele is coded wrongly, the direc-
tion of the effect of the allele may be treated as random. Under such a setting, WS would 
provide less power but would still be a better alternative to the single-SNP modeling. 
Moreover, this limitation in allele coding is not restricted to WS but is also present in all 
genotype-based regional tests that are not variance-based tests [19].

In future developments of WS, we plan to add new functionalities to enable GWAMAs 
based on the use of summary statistics from different participating cohorts, akin to what 
is routinely performed using the popular METAL software [29]. If each cohort defines the 
same genomic regions to be analyzed, as is usually done in a rare-variant meta-analysis [19]), 
a meta-analysis should be straightforward to perform. One can meta-analyze each region 
sequentially by combining the p-values for each region using Fisher’s method (see Eq. 10).

where S is the number of cohorts and ps is the p-value of the cohort s. However, it may 
be more appropriate to do a meta-analysis at the level of coefficients and then compute a 
new test statistic for the meta-analysis.

In addition, we aim to adapt our method to include phenotypes on non-ordered scales, 
e.g., blood types or psychiatric phenotypes. These phenotypes are usually analyzed in a 
case-control fashion and not by multinomial regression due to computational and power 
issues. By exploiting reverse regression, we can include such phenotypes in the predictor 
matrix by coding them in a similar way as in ANOVA. The modeling of the two hypoth-
eses can be done using multivariate Gaussian, with one dimension per coefficient, instead 
of using simple univariate Gaussian. Furthermore, by exploiting reverse regression, we can 
also easily adapt this method to the multiple-phenotype GWAS setting known as phenome-
wide association studies or PheWAS [30]. However, using reverse regression can reduce 
power, especially when analyzing phenotypes associated with large measurement errors, 
such as gestational duration. This can be regarded as a measurement error problem, which 
would result in a shrinkage of the estimated coefficients (see [31], Chapter 1, Section 1).

(10)χ2
2S = −2

S
∑

s=1

ln(ps)
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Conclusions
The complexity of the test statistics makes it difficult to infer directly how power would 
be influenced by different parameters, such as the distance between SNPs and their LD 
structure. Future work should focus on exploring power behavior under different set-
tings, including varying sample size, different percentage of variance explained, and une-
qually distributed effects between SNPs. The wavelet-based methodology presented here 
is both powerful and versatile, and lends itself easily to the analysis of other ‘omics’ data 
types. In future developments, we will investigate the feasibility of extending WS by add-
ing one more level of hierarchy to enable multi-omics data analyses.

Software
WS is distributed as an R package. In addition to the code, the package contains a 
data visualization tool to scrutinize any associations detected by WS. The R package 
is available at https://github.com/william-denault/WaveletScreening. We also provide 
a detailed example of a typical WS run by using simulated data. Additional details are 
provided in the help function wavelet_screening. Further, we show how to simulate Lh 
and min(ph, pv) under the null and how to compute �∗ from Lh and min(ph, pv) . Finally, 
the user can apply the plot_WS function to visualize the output of wavelet_screening, as 
exemplified in Fig. 5.

Appendix
S1 Fig. Covariance matrix for simulations of the Lh and min(ph,v ) statistics. Left panel: covari-
ance matrix computed using white noise (proxy covariance). Right panel: empirical covariance 
matrix computed using the result from GWAS. Color scale: yellow=high, red=close to 0.
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Data: A set of simulations of Lh,min(pv, ph), step ν

Result: λ∗

initialization
λ ← 0
Compute median µλ of Tλ and MAD σλ

Compute Tλ p-values using the function 1− φ(., µλ, σλ)
Compute histogram of the Tλ p-values
Rank the histogram bins by number of observation
Set Rank0 ← rank(bin containing smallest p-values)
while Rankλ < Rank0 do

λ ← λ+ ν

Compute median µλ of Tλ and MAD σλ

Compute Tλ p-values using the function 1− φ(., µλ, σλ)
Compute histogram of the Tλ p-values
Rank the histogram bins by number of observation
Set Rankλ ← rank(bin containing smallest p-values)

end
λ∗ ← λ− ν

Algorithm 1: Finding λ∗

Data: Design matrix X, level of analysis J , M
Result: A set of M simulated Lh,min(ph, pv) under the null
initialization
σ2
β ← (XTX)−1

2,2

Compute covariance
for (i in 1...100× 2J) do

Simulate a N(0, 1), 2J times
Compute the wavelet transform of the simulated N(0, 1)
Quantile transform the wavelet c coefficients

end
Σ ← cov(Simulated quantile transform the wavelet c coefficients)
Normalize Σ
Σ ← σ2

β × Σ for (m in 1...M) do
Simulate a set of βm = (β1,1,, β1,2....βJ,2J ) using a N(0,Σ)
Fit EM algorithm on βm

Compute Lh,min(ph, pv) using EM output and βm

end
Algorithm 2: Simulation of Lh, ph, pv, null distribution.
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Data: A set of fitted β̂r = (β̂1,1,, β̂1,2....β̂J,2J )
1...R

, for R different regions,
M

Result: A set of M simulated L,min(ph, pv) under the null
initialization
Σ ← cov

((

β̂r

)

1...R

)

for (m in 1...M) do
Simulate a set of βm = (β1,1,, β1,2....βJ,2J ) using a N(0,Σ)
Fit EM algorithm on βm

Compute Lh,min(ph, pv) using EM output and βm

end
Algorithm 3: Simulation of Lh, ph, pv, null distribution, empirical approach.
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