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Abstract 

Seismic modelling involves simulating the propagation of waves through an Earth 

model to retrieve information about the subsurface. If an a priori Earth model is known, 

seismic modelling allows geoscientists to assess how acquisition-, propagation- and 

processing parameters, may affect the obtained seismic image. Seismic modelling thus 

remains an important tool in exploration geophysics. 

Due to restricted survey illumination, limited bandwidth frequencies and propagation 

effects in the overburden, seismic images typically yield a blurred and incomplete 

representation of the actual Earth model parameters. These limited-illumination and 

blurring effects are expressed through the local point scatterer responses, or point-

spread functions. When accurately estimated point-spread functions are convolved 

with an input reflectivity grid, simulated prestack depth migrated images incorporating 

these effects are obtained. Conversely, if an accurate representation of the inverse 

point-spread functions can be estimated, seismic images may be deblurred, or 

deconvolved, to obtain a sharper, higher-resolution representation of the Earth model 

parameters.   

Target-oriented point-spread functions may be estimated via different approaches. 

Wave-based approaches involve solving the acoustic or elastic wave equation, typically 

through the implementation of a Finite-Difference, or Finite-Element approach. These 

approaches are generally robust and accurate, but the computational cost involved may 

be prohibitive. Alternatively, ray-based approaches may be used. Ray-based 

approaches involve a high-frequency approximation of the wave equation, which 

significantly reduces computation time. As such, efficient and flexible estimations of 

point-spread functions may be obtained at a low computational cost, but inherent 

limitations in ray theory may lead to less accuracy.  

The main objective of this thesis is to further validate, develop and improve a ray-based 

approach for estimation of point-spread functions. This approach utilizes a 

transformation which defines the point-spread functions in the wavenumber domain. 

Such an approach allows for fast computation of point-spread functions, as well as the 
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possibility for quickly designing analytical point-spread functions tailored to specific 

needs. 

First, an in-depth study of how ray-based point-spread functions compare to wave-

based point-spread functions, is presented (Paper 1). The governing equations for both 

approaches are derived for the homogeneous case, thus allowing for a thorough 

assessment of the conditions where the two approaches may diverge. Simulated seismic 

images obtained via point-spread function convolution modelling are also compared to 

fully modelled and migrated data. The results reveal that both wave- and ray-based 

approaches accurately model illumination, resolution and amplitude effects observed 

in the fully migrated images. In addition, although some minor deviations between the 

wave-based and ray-based approaches are observed, the overall results, as also 

confirmed through the analysis of the governing equations, indicate that both 

approaches can be used, even for complex models. 

Having validated the potential for ray-based point-spread functions to be used as 

convolution operators, the next study assesses how well such point-spread functions 

perform as seismic modelling operators on complex paleokarst geology (Paper 2). Due 

to the small-scale heterogeneity of paleokarst, wave-based modelling is inherently 

difficult to perform due to the high computational cost involved. However, precisely 

because of this small-scale heterogeneity, the ability to accurately simulate how 

perturbations of model- and seismic parameters affect paleokarst seismic images, is 

crucial. Through several case studies, different issues and challenges pertaining to 

seismic characterization and interpretation of paleokarst features are investigated. The 

validity of the point-spread function convolution approach is confirmed via 

comparisons with other seismic modelling work previously done on some of the same 

models. 

Finally, the potential of applying ray-based point-spread functions as deconvolution 

operators on reverse-time migrated images is demonstrated (Paper 3). Ray-based point-

spread functions are applied in an iterative conjugate-gradient algorithm for quick 

estimation of the local inverse Hessian operator valid at a target area of interest. Once 
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estimated, this operator may be used for target-oriented deconvolution of seismic 

images. The validity of the approach is assessed through comparisons with results 

obtained from conventional source-signature deconvolution. The results reveal that the 

ray-based PSF deconvolution approach yields better resolution gain both vertically and 

laterally. 
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1. Introduction 

The main objective for this study is to justify the validity of, and investigate potential 

ways to improve, a seismic modelling approach referred to as point-spread function 

(PSF) convolution modelling. This chapter provides relevant background information 

on seismic modelling, PSFs and their applications, as well as a summary of the novel 

contributions to the field which are presented in subsequent chapters.  

1.1 Seismic modelling 

Seismic modelling involves the simulation of elastic wave propagation through an 

Earth model. In exploration geophysics, seismic modelling is an important tool for 

assessing how acquisition-, propagation- and processing parameters affect seismic 

images of subsurface environments. Information gathered through seismic modelling 

may particularly be useful in sensitivity studies performed by seismic interpreters. 

Seismic modelling is also frequently applied in seismic inversion problems, where 

alternating modelling and migration algorithms are implemented with the purpose of 

retrieving the Earth model by minimizing the error misfit function. 

Although a substantial variety of seismic modelling methods exist (Carcione et al., 

2002), full-waveform (FW) approaches, which typically involve solving the complete 

acoustic or elastic wave equation through a discretized Finite-difference (FD) or Finite-

Element (FE) implementation, are generally considered the most complete because all 

types of wave phases are included. A drawback with FW-approaches, however, is that 

the computational cost involved may be prohibitive. This is particularly problematic 

for large-scale and elastic 3D studies where small-scale details are to be included, as 

for, e.g., paleokarst structures, fault zones, magmatic or sand injections, etc. (e.g., 

Botter et al., 2014; Botter et al., 2017; Kolyukhin et al., 2017; Eide et al., 2018; Rabbel 

et al., 2018; Grippa et al., 2019; Wrona et al., 2020). Sensitivity studies where various 

geological and geophysical parameters are tweaked, adjusted, and assessed multiple 

times, may also be prohibitive to perform via FW-approaches if new modelling and 

migration implementations are required after each parameter adjustment.   
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As an alternative to costly FW-approaches, ray-based (RB) approaches, derived from 

asymptotic ray theory following a high-frequency approximation of the wave equation, 

may be implemented. RB-approaches, usually relying either on ray-tracing algorithms 

or eikonal-equation solvers, allow for efficient and flexible sensitivity studies at a low 

computational cost, but with potentially less completeness than FW-approaches due to 

the abovementioned lack of all wave phases. Limitations in RB-approaches include an 

incomplete wavefield, the requirement of smooth interfaces and smooth velocity fields 

between these layers, and the risk of inaccuracies due to singular, caustic regions 

(Červený et al., 1977). However, refinements to these potential limitations can be made 

through a composite approach where various ray-based processes are combined 

(Gjøystdal et al., 2007). 

Regardless of whether a wave- or ray-based approach is applied, the main purpose 

typically involves solving either a seismic modelling or a seismic inversion problem 

(Figure 1). Seismic modelling aims to generate synthetic seismic data based on an a 

priori known Earth model. Seismic inversion, on the other hand, aims to infer the Earth 

model parameters based on already available seismic data and a specified forward 

modelling approach. Mathematically, seismic modelling can be expressed via the 

equation:  

𝒅𝒅 = 𝑳𝑳𝑳𝑳, (1) 

where 𝒎𝒎 represents the true Earth model parameter (e.g., reflectivity, velocity), 𝑳𝑳 is a 

forward modelling operator, and 𝒅𝒅 the observed seismic data. The inverse problem is 

formulated as: 

𝒎𝒎 = 𝑳𝑳−𝟏𝟏𝒅𝒅, (2) 

where 𝑳𝑳−𝟏𝟏 is a stable approximation of the inverse 𝑳𝑳-operator. 

Inserting (1) into (2) gives us the following equation: 

𝒎𝒎 = 𝑳𝑳−𝟏𝟏𝑳𝑳𝑳𝑳. (3) 
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Equation (3) shows that if an accurate inverse 𝑳𝑳−𝟏𝟏-operator is defined, the correct Earth 

model parameters should be retrieved. Frequently, however, a true inverse modelling 

operator is challenging to obtain, particularly due to the size of the 𝑳𝑳-operator. An 

approximation to the inverse operator thus typically involves applying the adjoint form 

of the 𝑳𝑳-operator instead (Schuster and Hu, 2000):   

𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆 = 𝑳𝑳𝑻𝑻𝑳𝑳𝑳𝑳 . (4) 

The 𝑳𝑳𝑻𝑻𝑳𝑳-operator, commonly referred to as the point-spread function (PSF), accounts 

for how frequency bandwidth, overburden propagation effects and limited illumination 

blur - and possibly remove parts of - the actual Earth model in the seismic image. As 

such, we only obtain an estimation, 𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆, of the true earth model parameter 𝒎𝒎.  

 

Figure 1: Illustration of seismic modelling and inversion. 

Finally, if an inverse approximation of the PSF itself can be obtained, an even more 

accurate representation of the Earth model 𝒎𝒎, may be obtained by multiplying each 

side of (4) with the inverse 𝑳𝑳𝑻𝑻𝑳𝑳-operator: 

𝒎𝒎 = (𝑳𝑳𝑻𝑻𝑳𝑳)−1𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆 (5) 
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This procedure is commonly referred to as deconvolution, or deblurring, of the seismic 

image. 

Equations (1), (4) and (5) represent the governing equations behind the operations 

referred to as seismic modelling, migration, and inversion, respectively. As seen in (4) 

and (5), the key operator in both migration and inversion is the PSF. Accurate 

estimation of the PSF is therefore essential. The PSF may be computed either through 

wave-based approaches (e.g., Xie et al., 2005; Toxopeus et al., 2008; Tang, 2009) or 

ray-based approaches (Hamran and Lecomte, 1993; Lecomte and Gelius, 1998). More 

recently, Kaur et al. (2020) also show how machine learning can be used to estimate 

the inverse PSF required for inversion.  

Before discussing in greater detail the specific properties of the PSF, and how PSFs 

may be used as seismic modelling and inversion operators, a brief review of one of the 

simplest methods for forward modelling of seismic images, repeated-1D convolution, 

will be provided. This method has been widely applied in the industry for decades, and 

a review of this approach will provide some useful reference examples for this chapter. 

1.2 Repeated-1D convolution 

In seismic images, vertical (or across-reflector) resolution is traditionally defined as 

𝜆𝜆/4, with 𝜆𝜆 being the wavelength of the applied pulse. Lateral resolution (not 

necessarily horizontal), on the other hand, is estimated from the Fresnel zone valid at 

the target of interest. In repeated-1D convolution, a wavelet is convolved trace-by-trace 

with an input reflectivity grid (Robinson and Treitel, 1978), thus yielding a modelled 

seismic image either in 2D (section) or 3D (cube). This approach is a computationally 

fast method for modelling vertical resolution effects, and, as such, the method remains 

a popular tool due to the ease in which it may be implemented even on large 3D models. 

In classical use of 1D convolution, the convolution itself is performed in the (poststack) 

time-migrated domain (Lecomte et al., 2015). As this study focuses on simulating 

prestack depth migrated (PSDM) images, i.e., in the depth migrated domain, we instead 

use a “depth-equivalent” wavelet for 1D convolution, with this wavelet representing 



 16 

the time-wavelet stretched in depth. See e.g., Lecomte et al. (2016) for illustration and 

comparison with PSF-based convolution results. 

Figure 2 illustrates the principle of repeated-1D convolution for the simplest case: a 

single pointwise reflectivity in an otherwise homogeneous model. When convolving 

this reflectivity model trace-by-trace with an input wavelet, a simulated seismic image 

is obtained. As the convolution is performed vertically, i.e., equivalent to a zero-offset 

acquisition over a horizontally-layered media, vertical resolution effects are modelled. 

Due to the limited bandwidth of the input wavelet, the reflectivity point is now 

represented as a vertically stretched depth signal corresponding to the input wavelet.  

 

 

Figure 2: Illustration of repeated-1D convolution where an input reflectivity grid consisting of a single 

point scatterer is convolved vertically with a wavelet to yield a modelled seismic section. The star 

symbol represents the convolution operation. Background velocity is defined as 𝑣𝑣 = 2 km/s. 

The principle of repeated-1D convolution can be extended to more complex geological 

models, though this is not advisable despite being done a lot (Lecomte et al., 2015). 

Figure 3 illustrates the application of repeated-1D convolution in a more complex 

geological setting characterized by several layers with two steeply dipping faults 

crossing the layers. This modelling principle is much used for simple and rapid 

modelling, particularly to add seismic on geomodels derived from either seismic 

interpretation or outcrop analogues (Jafarian et al., 2018).  
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Figure 3: Illustration of repeated-1D convolution for a complex geological setting. 

 

Figure 3 shows how repeated-1D convolution offers a simple way of assessing how a 

zero-offset acquisition over a complex geological setting would model vertical 

resolution effects due to the limited bandwidth frequency of the input wavelet. 

However, while reasonably accounting for such vertical resolution effects, repeated-

1D convolution does not account at all for horizontal resolution effects commonly 

prevalent in 2D and 3D seismic data. Furthermore, by not considering either acquisition 

geometries or propagation effects in an overburden, limited illumination effects are not 

accounted for (e.g., the very steep faults in Figure 3 would in practice not appear on 

actual seismic images). Lateral resolution constraints caused by these effects are not 

accounted for either.  

To better illustrate the limitations inherent in repeated-1D convolution, a more 

thorough analysis of how blurring and limited illumination impact seismic images, 

even after migration, will now be provided. This will later allow for a more detailed 

assessment of how several imaging effects not accurately captured in repeated-1D 

convolution, will be better preserved via 2(3)D PSF convolution modelling.  

1.3 Prestack depth migration (PSDM) and the PSF 

Following Equation (4), the PSF-operator is defined based on a matrix multiplication 

of a selected forward modelling operator, 𝑳𝑳, and an approximation of its inverse, 𝑳𝑳𝑻𝑻. 

Following Schuster (2017, p. 116), 𝑳𝑳𝑻𝑻𝑳𝑳 is the point scatterer response, or PSF, for a 

single source-receiver pair. When integrating over all source-receiver combinations, 

data coordinates and frequencies, a PSDM image is then obtained. In the migration 
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process, 𝑳𝑳 represents the forward propagating wavefield, and 𝑳𝑳𝑻𝑻 the backpropagating 

wavefield. 

To illustrate the relationship between PSDM and PSFs, we may consider a 

homogeneous velocity model of size 2 km × 2 km, sampled at every 0.01 km, with a 

constant velocity of 𝑣𝑣 = 2 km/s. The model contains a single point scatterer with a 

velocity of 𝑣𝑣 = 2.1 km/s at the centre point of the model. Four different survey setups 

were next defined. In all survey setups, sources and receivers are located at depth 𝑧𝑧 =

0.01 km. All surveys consist of a single shot at 𝑥𝑥 = 1 km. The first survey consists of 

one receiver located at 𝑥𝑥 = 1 km. The second survey consists of three receivers located 

between 𝑥𝑥 = 0.5 − 1.5 km, spaced 0.5 km apart. The third survey consists of nineteen 

receivers located between 𝑥𝑥 = 0.1 − 1.9 km, spaced 0.1 km apart. The final survey 

consists of two hundred receivers located between 𝑥𝑥 = 0.01 − 2 km, spaced 0.01 km 

apart.  The survey setups are illustrated in Figure 4a. For each survey, a zero-phase 

Ricker wavelet with peak frequency of 15 Hz, sampled at every 1 ms, was used.  

Forward modelling was performed for each of the four survey setups using a 2D 

acoustic Finite-difference (FD) approach with the domain discretized with a 2nd-4th 

order scheme (second-order in time, and fourth-order in space) based on the numerical 

implementation outlined in Youzwishen and Margrave (1999). Half-space was added 

to all edges to avoid unwanted boundary reflections. The obtained seismic traces were 

next back-propagated using the same FD-approach. Finally, reverse-time migration 

(RTM) (Baysal et al., 1983) was performed by cross-correlating all forward-modelled 

and back-propagated wavefields to obtain the point scatterer response, or PSF. Figure 

4 illustrates the obtained results. 
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Figure 4: Snapshot of forward-modelled wavefield with the star symbol representing shot position and 

the dot representing the point scatterer location, obtained seismic traces, snapshot of back-propagated 

wavefield, and migrated seismogram for a)-d) Survey 1; e)-h) Survey 2; i)-l) Survey 3; m)-p) Survey 

4. 

 

The PSFs extracted from all the migrated images using a window of size 0.4 km times 

0.4 km (41 × 41 grid points), and their corresponding wavenumber spectra, are 

illustrated in Figure 5. The extracted PSFs are here all normalized to have the same 

amplitude range. 
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Figure 5: PSFs and corresponding wavenumber spectra for a)-b) PSF extracted from Fig. 4d; c)-d) PSF 

extracted from Figure 4h; e)-f) PSF extracted from Figure 4l; g)-h) PSF extracted from Figure 4p. 

 

When increasing the number of shot-receiver combinations, more constructive 

interference between the forward-propagated and back-propagated wavefronts is 

obtained at the point scatterer location (Figure 5a, 5c, 5e, 5g). As such, an increase in 

shot-receiver combinations results in a more accurate representation of the point 

scatterer. However, due to limitations in survey illumination (because of limited 
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aperture and surface location only) and frequency bandwidth, the resulting PSFs 

nevertheless, even after constructive interference, do not fully image what is supposed 

to be just a single point scatterer occupying one grid cell. This illustrates how the 

parameters inherent in the 𝑳𝑳𝑻𝑻𝑳𝑳-operator blur the point scatterer in the PSDM image. 

The corresponding wavenumber spectra (Figure 5b, 5d, 5f and 5h) reflect this further, 

where an increase in shot-receiver combinations yields greater coverage in the 

wavenumber domain. The results presented in Figure 5 also exemplify how greater 

coverage in the wavenumber domain yields greater resolution in the spatial domain, 

which is a familiar concept in signal theory. 

It should finally be noted that although a wave-based implementation was used in this 

example (RTM), the estimation of the point scatterer responses could also be computed 

via a Kirchhoff approach (see e.g., Fig. 6 in Lecomte, 2008). In such an approach, the 

amplitude recorded at the total scattering traveltime 𝑡𝑡 = 𝑡𝑡𝑠𝑠 + 𝑡𝑡𝑟𝑟, with 𝑡𝑡𝑠𝑠 representing 

the traveltime between source point and point scatterer, and 𝑡𝑡𝑟𝑟 representing the 

traveltime between the point scatterer and receiver, would automatically be mapped 

and smeared along an ellipse (or circle in the case of a zero-offset source-receiver setup, 

as seen in Fig. 4a) in the spatial domain, representing all possible locations that would 

yield the obtained amplitude value at 𝑡𝑡. Constructive and destructive interference 

between all ellipses (circles) resulting from each shot-receiver combination would then 

yield the PSF, similarly to any wave-based migration. 

1.4 A ray-based approach for estimating PSFs 

The procedure illustrated in the previous subsection for estimating PSFs may be 

applied to any model, including complex, inhomogeneous geological models. If the 

velocity model is familiar, the true velocity model is usually applied for estimating the 

forward modelled Green’s functions, while a smooth migration velocity model is 

generally applied for estimating the back-propagation (Xie et al, 2005). The Green’s 

functions may either be estimated directly via this approach (Xie et al., 2005), or, 

alternatively, the velocity and/or density value may be perturbed at a single point in the 
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smooth model followed by forward modelling and migration. The point scatterer 

response may then be extracted as the PSF (Cao, 2013).   

Both approaches, while robust, typically require a substantial computational effort, 

particularly for large 3D models. Following Hamran and Lecomte (1993), Lecomte and 

Gelius (1998) and Gelius et al. (2002a), an alternative approach for estimating the PSFs 

in inhomogeneous models involves the use of ray-based information to define the PSF 

as a collection of so-called scattering wavenumber vectors (Lecomte, 2008) in the 

wavenumber domain. Understanding resolution in seismic migration is indeed easier 

when visualizing illumination in the wavenumber domain (Beylkin et al., 1985). The 

entire collection of scattering wavenumber vectors yields the wavenumber domain 

representation of the PSF, and once this is estimated, an inverse Fourier transform may 

be applied to obtain the PSF in the spatial domain. 

For estimation of the PSF via this approach, a target point is first defined, and any ray 

tracing (Červený et al., 1977), wavefront construction method (Vinje et al., 1993) or 

eikonal solver (Podvin and Lecomte, 1991), may then be applied in a smooth input 

velocity model (migration of actual seismic data uses such smooth velocity models as 

first estimated from the data in various manners) to calculate Green’s functions 

between survey positions, i.e., shots and receivers, and the target point (Figure 6a). The 

incident and scattered slowness vectors (𝒑𝒑𝑺𝑺 and 𝒑𝒑𝑹𝑹) are then computed for each shot-

receiver combination at the target point, being the key parameters of the ray-based PSF 

under a local plane-wave assumption (Fig. 6a; Lecomte, 2008). Alternatively, a local 

parabolic-wave assumption could also be used (Gelius et al., 2002b). For all shot-

receiver combinations, the so-called illumination vectors, defined by 𝑰𝑰𝑺𝑺𝑺𝑺 = 𝒑𝒑𝑹𝑹 − 𝒑𝒑𝑺𝑺, 

are computed (Fig. 6b). Finally, the wavelet spectrum is mapped along each 

illumination vector, thus yielding the sought-after scattering wavenumber vectors (Fig. 

6c). The collection of scattering wavenumber vectors, often referred to as a PSDM 

filter, now represents the PSF in the wavenumber domain, and once an inverse Fourier 

transform is applied, the PSF is obtained in the spatial domain (Fig. 6d).  
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Figure 6: Procedure for estimating PSFs via ray-based approach. a) Ray tracing is used to estimate the 

illumination vector (𝑰𝑰𝑺𝑺𝑺𝑺) for a single shot at a target point. b) All illumination vectors for a complete 

survey are obtained. c) Illumination vectors are combined with the wavelet frequency spectrum to 

obtain the local PSDM filter. d) The PSF is obtained in the space (𝑥𝑥 − 𝑧𝑧) domain via an inverse Fourier 

transform. Figure obtained from Jensen et al. (2021b). 

 

The approach illustrated in Figure 6 offers a cheap, efficient and flexible alternative to 

full-waveform approaches. However, as already pointed out, certain inherent 

limitations in ray-based approaches may result in slight inaccuracies. Jensen et al. 

(2021b) (Paper 1 in this thesis) illustrate how the plane-wave assumption, and the far-

field approximation used for ray-based approaches, may result in some divergence 

between ray-based and wave-based PSFs, especially for target points close to the shot 

location. Nevertheless, most scenarios resulting in a noticeable divergence between the 

two approaches would occur in unrealistic geological settings such as shallow targets 

characterized by high velocity and low frequencies (Jensen et al., 2021b).  
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1.5 PSF convolution modelling 

A PSDM-image can, ultimately, be viewed as the image resulting from the interference 

of all PSFs obtained at each grid point in the applied model. In the spatial domain, 

Equation (4) may be expressed as a convolution operation between the input 

reflectivity grid, 𝒎𝒎, and the PSFs, 𝑳𝑳𝑻𝑻𝑳𝑳: 

𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆 = 𝑳𝑳𝑻𝑻𝑳𝑳 ∗ 𝒎𝒎. (6) 

To illustrate this, we consider again the PSF generated from the survey setup in Figure 

4m. We now gradually add more point scatterers horizontally on each side of the central 

grid point, and convolve the reflectivity grids with the PSF. We then obtain the results 

illustrated in Figure 7. 

 

 

Figure 7: (a-d) Input reflectivity grids. (e-h) Corresponding simulated PSDM-images obtained after 

convolution with the PSF estimated from Survey 4 in Figure 4. 

 

In this example, it is assumed that the PSF computed at the centre point is valid 

throughout the target area. In practice, minor deviations should be expected at different 

points within the target area, but for smaller targets in geologically simple models, 

these deviations are generally negligible (Jensen et al., 2021b). The convolution of an 
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input reflectivity grid, represented by 𝒎𝒎, and a computed PSF, represented by 𝑳𝑳𝑻𝑻𝑳𝑳, 

thus allows for simulation of PSDM-images incorporating effects caused by, e.g., 

limited bandwidth, illumination, etc. (Lecomte et al., 2003; Lecomte, 2008; Toxopeus 

et al., 2003; Toxopeus et al., 2008). Realistic PSDM seismic images, can then be 

modelled, even for complex geomodels (Lecomte et al., 2003; Lecomte et al., 2016). 

Furthermore, in contrast to repeated-1D convolution, PSF convolution modelling 

accounts for both vertical and lateral resolution effects. This can now be seen by 

comparing Figure 2 and Figure 7e, where the same input reflectivity grid has been 

applied for both cases. Observe how in Figure 7e, the point scatterer is smeared not 

only vertically, but horizontally as well, thus illustrating how PSF convolution 

modelling yields a more realistic representation of what we may expect a PSDM-image 

to look like. This is confirmed by comparing Figures 2 and 7e to the actual migrated 

point scatterer illustrated in Figure 5g.  

 

The local across-reflector resolution may, mathematically, be estimated based on the 

magnitude of each illumination vector in the wavenumber domain. This magnitude is 

a function of the opening angle, 𝜃𝜃𝑆𝑆𝑆𝑆, between the incident and scattered illumination 

vectors (Figure 6a), and the velocity, 𝑣𝑣, of the incident and scattered waves at the image 

point (Lecomte, 2008): 

𝑰𝑰𝑺𝑺𝑺𝑺 =
2 cos �𝜃𝜃𝑆𝑆𝑆𝑆2 �

𝑣𝑣
𝒖𝒖𝑺𝑺𝑺𝑺, (7) 

 

Here 𝒖𝒖𝑺𝑺𝑺𝑺 is a unit vector pointing in the direction of 𝑰𝑰𝑺𝑺𝑺𝑺. From (7) we may infer that a 

wide angle between the incident and scattered illumination vectors, and/or high 

velocity at the target point of interest, will result in poor resolution. 

 

In addition to accounting for vertical and lateral resolution effects, PSF convolution 

modelling also accounts for limited illumination of target areas. The fan of scattering 

illumination/wavenumber vectors (Figure 6b-6c) is indeed indicative of the geological 

dip-range which is illuminated at the target point. As proven mathematically in Gelius 
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et al. (2002a), any reflector perpendicular to an illumination vector will be imaged 

well, whereas any reflector not having a perpendicular illumination vector will not be 

imaged well (Figure 8). In PSDM-images, this is often manifested in geology 

containing, for instance, steeply dipping faults. As illustrated in Figure 9, a symmetrical 

PSF defined via a PSDM-filter with maximum dip range of 45° in both directions away 

from the vertical illumination vector, will fail to image faults dipping at a greater angle 

than this. The faults dipping with 0° (a), 15° (b) and 45° (c) are imaged well after PSF 

convolution modelling, but the fault dipping with 75° (d) is not imaged well. As such, 

PSF convolution modelling can be an efficient tool for modelling whether or not a 

specific survey setup applied over a specific velocity model will capture the geological 

features at a target area. This information is not possible to assess at all with repeated-

1D convolution, in addition to the missing lateral resolution effect (the latter also 

constrained by the illumination). In Figure 10a, repeated-1D convolution with a 20-Hz 

Ricker wavelet vertically across a specific target area will image all geological features 

shown in the reflectivity grid. Assuming next that a chosen survey setup and 

background model would yield an asymmetric PSF with a dip range between -15° and 

+45°, there would be no illumination vector perpendicular to the fault seen in the 

reflectivity grid, Figure 10b shows how 2D PSF convolution modelling with this PSF 

would properly yield a seismic image where the fault is not captured. Such illumination 

effects are crucial to assess in seismic mapping of, e.g., faults and fault zones and any 

steep geological features (salt flanks, intrusions, folds, etc).  
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Figure 8: Illustration of dip ranges which may be imaged from a PSDM filter defined with an 

illumination range of a) -45° to +45° and b) -90° to +90°. The lines perpendicular to the vectors in the 

PSDM filter represent the dip angle imaged by each vector. 
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.

 

Figure 9: Convolution of input reflectivity grids and a PSF defined with a maximum dip of 45° away 

from the vertical illumination vector, 15 Hz peak frequency, and in a background velocity of 2 km/s. 

The reflectivity grids consist of a fault dipping with a) 0°, b) 15°, c) 45° and d) 75°, respectively. 
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Figure 10: a) Repeated-1D convolution of input reflectivity grid with 20-Hz Ricker wavelet. b) 2D PSF 

convolution of the same input reflectivity grid with a PSF unable to image the fault feature in the 

geological model due to limited dip range. 

 

Finally, it should be emphasized that the concept of convolution modelling is also 

extendable to complex 3D geomodels (e.g., Lecomte et al., 2015; Lecomte et al., 2016; 

Rabbel et al., 2019; Wrona et al., 2020; Jensen et al., 2021a). To illustrate this concept, 

a 3D velocity model of the Guilin Karst Tower system in China (Janson and Fomel, 

2011), with a highlighted target cube, is illustrated in Figure 11. For the given target 

cube, repeated-1D convolution was performed. PSF-based convolution modelling was 

next performed using an analytically defined PSF with a maximum dip of 45° as a 

proxy for standard 3D seismic. To further highlight the impact of illumination and 

resolution effects in PSDM images, PSF-based convolution modelling was also 

performed using a PSF with a maximum dip of 20°. This latter PSF represents a typical 

dip range obtained if the target area lies beneath complex overburden structures, such 

as salt bodies, or if a thin high-velocity layer is present above the target (Eide et al., 

2018). The two dip ranges furthermore represent typical values obtained from wide-

azimuth and narrow-azimuth acquisition (Feng et al., 2012; Wang et al., 2019). A 30-

Hz Ricker wavelet was used for both repeated-1D convolution and PSF convolution 
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modelling, and the background velocity was set to 3.5 km/s based on average P-

velocity values for the target area. The seismic results obtained for a vertical section 

(XZ-plane) is illustrated in Figure 12, while Figure 13 illustrates the results obtained 

for a horizontal slice (XY-plane).  

 

 

 
Figure 11: P-velocity model of the Guilin Karst Tower system with selected target area highlighted. 

 

 
Figure 12: Seismic data obtained via repeated-1D convolution and 3D PSF convolution modelling in 

the XZ-plane at the target defined in Figure 11 with superimposed PSFs scaled to model. a) Input 

reflectivity grid; b) repeated-1D convolution result; c) 3D PSF convolution result with maximum 

illumination dip of 45°; d) 3D PSF convolution result with maximum illumination dip of 20°. 
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Figure 13: Seismic data obtained via repeated-1D convolution and 3D PSF convolution modelling in 

the XY-plane at the target defined in Figure 11 with superimposed PSFs scaled to model. a) Input 

reflectivity grid; b) repeated-1D convolution result; c) 3D PSF convolution result with maximum 

illumination dip of 45°; d) 3D PSF convolution result with maximum illumination dip of 20°. 

 

The repeated-1D convolution results capture vertical resolution effects caused by 

limited frequency bandwidth, as evident at the main reflector which represents the top 

of the karst-tower system (Figure 12b). Furthermore, and still due to vertical resolution 

effects from band-limited frequency, seismic signals appear even in parts of the image 

where there is no reflectivity (Figure 13b, yellow boxes). This results from the sole 

vertical smearing of structures located either above or below the selected depth (Z) 

slice. The same phenomenon is observed in the seismic images obtained after PSF 

convolution modelling (Figure 12c-12d, 13c-13d), as expected. 
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The main difference between the repeated-1D convolved results and the PSF-

convolved ones is the total failure of repeated-1D convolution to account for proper 

horizontal resolution effects. In the vertical section (XZ-plane; Figure 12), the main 

reflector is indeed more smeared horizontally when a PSF with maximum dip of 45° is 

applied (Figure 12c). This is further evident in the horizontal slice (XY-plane, Figure 

13), where many small-scale features captured by repeated-1D convolution are not 

resolved in practice, as correctly modelled with PSF convolution (Figure 13c). When 

applying a PSF with a maximum illuminated dip of 20°, the problems are exacerbated 

because the lateral resolution further degrades due to a narrower illumination pattern. 

In addition, illumination contained in the PSF-operator in that case prevents the steep 

parts of the karst-tower system to be imaged (Figure 12d). Only the horizontal peaks 

and valleys of the tower system are captured. As a result, the seismic images obtained 

for both the XZ-plane (Figure 12d) and the XY-plane (Figure 13d) are difficult to 

interpret. The presence of, e.g., a high-velocity layer above the karst tower, yielding 

such strong illumination limitations, would therefore severely impact the geological 

interpretation of the karst tower features from seismic data. PSF convolution modelling 

thus allows for a more proper assessment of how various parameters may affect 

illumination and resolution in PSDM-images that what conventional repeated-1D 

convolution allows, especially for complex (non-flat) 3D geomodels.  

1.6 Refinements of the PSF as a convolution operator 

Having outlined the main principles of how PSFs may be used as convolutional 

operators for accurate simulation of PSDM-images, I will now briefly discuss two areas 

of refinement which may be considered when designing PSFs. First, I will highlight 

how geometrical spreading effects in complex models may yield different PSFs at the 

same target area depending on the chosen amplitude adjustments. Next, I will illustrate 

how PSFs may be defined for modelling different imaging conditions in PSDM. 

As a wave propagates through the Earth, its energy decays with increasing distance 

from the source due to geometrical spreading, scattering (reflection, transmission, 

diffraction and conversion) and attenuation. High velocity bodies particularly cause 
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divergence of the wavefront and an even more rapid decay in amplitudes with distance. 

The loss of energy may be compensated for by multiplying the wavefield by a scaling 

function. A perfect recovery of amplitudes so that they accurately relate to reflectivity 

values yields a so-called true-amplitude mode (Gray, 1997). Correspondingly, if no 

scaling is applied whatsoever to the seismic data, the resulting seismic image may be 

characterized as representing a raw-amplitude mode. The true-amplitude mode may, in 

the context of PSF convolution modelling, be considered as the PSF resulting from 

equally-weighted illumination vectors, while the various amplitude corrections 

attempted in real cases will yield a non-uniform weighting of these, often resulting in 

lower weight for the illumination vectors attached to longer raypaths, thus further 

reducing lateral resolution.  

As illustrated in Jensen et al. (2018), several geological features may not be imaged 

properly if amplitude loss is not accurately compensated for. To illustrate this, a 

selected target area of the Sigsbee2A P-velocity model (Paffenholz et al., 2002) is 

selected (Figure 14). Using a zero-phase 20-Hz Ricker wavelet, the standard marine-

survey parameters for the Sigsbee2A-model were implemented. Two PSFs were then 

estimated at the centre of the target area: one modelled after a true-amplitude mode, 

and one modelled after a raw-amplitude mode. The results obtained after PSF 

convolution modelling with the input reflectivity grid are displayed in Figure 15. 
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Figure 14: The Sigsbee2A P-velocity model with a selected target area highlighted. 

 

Figure 15: PSF convolution modelling within the target area of Figure 14, with PSF defined at the 

centre of the target from either a) true-amplitude mode, or b) raw-amplitude mode. 
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The fault (marked with the yellow arrow) is imaged when the PSF is designed 

according to a true-amplitude mode (Figure 15a). However, when a raw-amplitude PSF 

is applied, the fault is not imaged (Figure 15b). By considering the wavenumber spectra 

of the two PSFs, also illustrated in Figure 15, the illuminated dip range remains the 

same, but parts of the spectra are damped when keeping raw amplitudes. The 

illumination vector perpendicular to the fault is strongly weakened in the wavenumber 

spectrum. For this target, a seismic interpreter may still, however, be able to infer the 

presence of a fault in the seismic section, as the surrounding geological layers are 

imaged, the fault thus appearing – as often – as a discontinuity. Nevertheless, the 

example illustrates that the way the amplitude effects are accounted for could influence 

the PSF-operator, and subsequently the seismic image. More illustrative examples of 

this phenomenon are presented in Jensen et al. (2018). 

Another aspect which may affect the resolution of the PSF-operator involves the 

specific imaging condition which is to be simulated. For a Kirchhoff-type imaging 

condition, the absolute value of the wavelet spectrum, |𝑆𝑆(𝜔𝜔)| (𝜔𝜔 representing angular 

frequency), is typically applied in the governing imaging equation (Gelius et al, 2002a). 

However, for a two-way wave-equation migrated image using, e.g., a cross-correlation 

imaging condition (Claerbout, 1971), as in RTM, the wave spectrum is multiplied by 

its complex conjugate in the frequency domain. We then obtain a factor of |𝑆𝑆(𝜔𝜔)|2 in 

the imaging equation. The |𝑆𝑆(𝜔𝜔)|2-factor should therefore, if such an imaging 

condition is desired, be mapped along the illumination vectors in Figure 6c instead of 

the |𝑆𝑆(𝜔𝜔)|-factor. This may however affect the coverage in the wavenumber domain 

and, as such, the resolution. 

To illustrate the difference between the two imaging conditions, we consider again the 

survey setup in Figure 4m.  Ray-based PSFs valid for the target were generated for both 

imaging conditions. The PSFs with their respective wavenumber spectra, as well as the 

extracted vertical and horizontal centre traces, are illustrated in Figure 16.  
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Figure 16: PSFs and corresponding wavenumber spectra computed from (a-b) Kirchhoff imaging 

condition and (c-d) cross-correlation imaging condition. e) Vertical centre traces. f) Horizontal centre 

traces. 

There are some slight resolution differences between the two PSFs, with the PSF 

obtained from the Kirchhoff imaging condition yielding slightly better coverage in the 

wavenumber domain (Figure 16b). The extracted traces across the PSF (16e-16f) 

further reveal that the wavelet side lobes become slightly more prominent with the 

cross-correlation imaging condition. To further illustrate the effects resulting from 

applying the PSFs as convolution operators, both PSFs were convolved with a 

reflectivity grid consisting of a single reflector (Figure 17). The image obtained from 

the PSF designed based on a cross-correlation imaging conditions suffers, as expected 

from the results in Figure 16, from slightly worse resolution. This is exemplified at the 

locations marked with yellow arrows in Figure 17c. Although these effects may appear 

minor, they may nevertheless be important to account for, particularly if PSFs are 

designed as deconvolution operators, where even small deviances from the correct 

resolution, could result in deconvolved images of low quality. 
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Figure 17: a) Input reflectivity grid. Simulated PSDM-image obtained after convolution with PSF 

designed from b) Kirchhoff imaging condition and c) cross-correlation imaging condition.  

Although this subsection has focused on two potential refinements to include in the 

design of PSF-operators, other refinements beyond these may also be easily 

incorporated. Examples include adding anisotropic effects (Lecomte and Kaschwich, 

2008), going from a plane- to a parabolic-wavefront assumption to further improve the 

PSF for shallow and closer-to-source targets (Gelius et al., 2002b), the inclusion of 

converted waves (Gelius et al., 2002a), and accurate incorporation of Amplitude 

Versus Offset (AVO)/Amplitude Versus Angle (AVA) effects (Lecomte, 2008).   

1.7 PSFs as deconvolution operators 

The previous sections focused on how PSFs, when applied as convolution operators on 

an input reflectivity grid, may yield a simulated PSDM-image incorporating 

illumination and resolution effects. When applied to inverse modelling, i.e., when an 

approximation of the inverse PSF operator is applied on a seismic image to retrieve the 

input reflectivity grid, the procedure is commonly referred to as deconvolution (Arya 

and Holden, 1978) or deblurring (Schuster and Hu, 2000), expressed mathematically 

through Equation (5).  

Due to the size of the 𝑳𝑳𝑻𝑻𝑳𝑳 operator in Equation (5), a true inverse of this operator is 

usually difficult to obtain for seismic data. Several strategies therefore exist for solving 

that equation. By linearizing the forward problem in seismic exploration, Tarantola 

(1984) demonstrates how the inverse solution may be obtained by minimizing the 

difference between observed and predicated data through an iterative algorithm. An 
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example of such an approach in seismic migration is least-squares migration (Nemeth 

et al., 1999) which may be solved in the data domain (e.g., Kuhl and Sacchi, 2003; Dai 

et al., 2011; Dai et al., 2012; Dai and Schuster, 2013; Xue et al., 2016) or the image 

domain (e.g., Hu et al., 2001; Rickett, 2003; Guitton, 2004; Valenciano et al., 2006; Yu 

et al., 2006; Aoki and Schuster, 2009; Tang, 2009; Zhao and Sen, 2018; Jiang and 

Zhang, 2019, Xu et al., 2020). Data-domain approaches typically involve repeated 

modelling and migration with the aim of minimizing the error/misfit function between 

observed and predicted results. Image domain approaches typically involve 

approximating the PSF, and iteratively solving for the inverse PSF, in accordance with 

Equation (5). 

Sjoeberg et al. (2003) demonstrated that ray-based PSFs estimated via the approach 

illustrated in Figure 6, may be applied for successful deconvolution of Kirchhoff-

modelled seismic data. Their approach involved rewriting Equation (6) in the normal-

equation form followed by implementation of the conjugate-gradient method for 

iterative solving of the obtained equation. More specifically, Equation (6) represents 

the convolution between a localized PSF operator and the input reflectivity grid. 

Through lexicographical ordering of the PSF, this equation may be rewritten as a linear 

system of equations: 

𝒚𝒚� = 𝑫𝑫𝒙𝒙�, (8) 

 where 𝒚𝒚� represents the blurred seismic image, 𝒙𝒙� is the original image (i.e., reflectivity 

model) and 𝑫𝑫 is the lexicographically ordered PSF. The normal-equation form of 

Equation (8) involves multiplying each side of the equation with the transpose of 𝑫𝑫: 

𝑫𝑫𝑻𝑻𝒚𝒚� = 𝑫𝑫𝑻𝑻𝑫𝑫𝒙𝒙�. (9) 

Equation (9) may be solved through a variety of different iterative approaches. 

Frequently, a regularization term is also added to the equation: 

𝑫𝑫𝑻𝑻𝒚𝒚� = (𝑫𝑫𝑻𝑻𝑫𝑫 + 𝜆𝜆𝑰𝑰)𝒙𝒙�. (10) 
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 Here, 𝜆𝜆 is the chosen regularization parameter and 𝑰𝑰 is the identity matrix with same 

dimensions as 𝑫𝑫𝑻𝑻𝑫𝑫. Regularization may be applied to dampen noise, but the trade-off 

is a reduction in resolution.  

To illustrate the concept of PSF-based deconvolution, a target area of the 2D fault 

model extracted from a 3D-model presented in Qu and Tveranger (2016), and used by 

Kolyukhin et al. (2017) for statistical analyses of fault facies after seismic imaging of 

2D FD-modelled data, is selected (Figure 18). Note that Botter et al. (2017) applied 

PSF-based convolution to model various PSDM results from the 3D model to test 

various seismic attributes. In this thesis, the same P-velocity values applied by Botter 

et al. (2017) are used. 

The model itself is highly detailed, with a grid sampling of 1 meter in both 𝑥𝑥- and 𝑧𝑧-

directions. An analytic PSF with a maximum dip range of 45° was selected. The 

average velocity used for the used for the PSF was set at 2.86 km/s based on velocity 

values at the target area. Though Kolyukhin et al. (2017) and Botter et al. (2017) used 

standard seismic frequencies in their modelling studies (10-60 Hz), a 100-Hz Ricker 

wavelet was used here for the sake of illustrating the results down to a finer pixel level. 

The input reflectivity model at the target area was then convolved with the PSF (Figure 

19a) to yield a simulated PSDM image. Next, deconvolution was performed using the 

same PSF by implementing Equation (10) via the conjugate-gradient approach. As the 

PSF in this case was known in advance, no regularization was applied. The iterative 

tolerance error was set to 10−7. Figure 19b illustrates the deconvolution procedure. 

Figure 19c and 19d further illustrate the convolution and deconvolution procedures 

within the smaller area highlighted by the yellow box in Figure 19a to better appreciate 

the results down to the 1-m pixel level. 
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Figure 18: Fault velocity model with selected target area highlighted with the yellow box.  

 

Figure 19 a): Convolution of input reflectivity grid and PSF. b) Deconvolution of simulated PSDM 

image. (c-d) Convolution and deconvolution at the zoomed-in area highlighted by the yellow box in 

a). 
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The reflectivity grid is well retrieved after deconvolution of the seismic images through 

implementation of Equation (10) (Figure 19b and 19d). Some noise is present in the 

deconvolved images, but it is most likely due to truncation effects at the edges of the 

reflectivity grid. Nevertheless, all geological features, even in such a complex model, 

are properly retrieved, which validates the deconvolution approach. 

The retrieved reflectivity grid from deconvolution in Figure 19 stems, however, from 

the fact that the exact PSF used for the initial convolution was re-used for 

deconvolution, hence an ideal case. In practice, obtaining such exact PSFs is generally 

inherently difficult. As illustrated in previous sections, several features influence the 

ultimate illumination and resolution pattern of the PSF. Non-stationarity within target 

areas characterized by, e.g., high-velocity contrasts may furthermore require multiple 

PSFs to be estimated at various parts of the selected target area. To illustrate with a 

simple example how parameter errors in the PSF-operator may affect the deconvolved 

image, a PSF designed with the wrong velocity of 2 km/s was applied as a 

deconvolution operator on the obtained seismic image in Figure 19a. This error results 

in a seismic image plagued by more considerably more noise, as is shown Figure 20b.  

 

Figure 20: Deconvolution of simulated PSDM-image using PSF with a) correct velocity (2.86 km/s) 

and b) wrong velocity (2 km/s). 
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If the deconvolved image suffers from noise, a compromise might be to increase the 

regularization parameter to dampen noise issues caused by inaccuracies in the PSF and 

the presence of migration artefacts not captured in the PSF. The trade-off of that 

dampening, as pointed out, is a reduction in resolution. To illustrate this effect, we may 

consider the PSDM-image obtained after convolution in Figure 19a again, but this time 

with some random low-frequency (≤ 30 Hz), low-amplitude, noise (Figure 21) added 

to the image prior to deconvolution. Deconvolution was then performed using 

regularization parameters of 0, 0.05 and 0.5, respectively (Figure 22). 

 

Figure 21: Random noise added to the simulated PSDM-image in Figure 19b prior to deconvolution. 
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Figure 22: a) PSDM-image with added random noise prior to deconvolution. (b-d) Deconvolution with 

regularization parameter set to 0, 0.05 ad 0.5, respectively. (e-h) PSDM-image and deconvolution 

results at the zoomed-in area highlighted by the yellow box in a). 

A regularization parameter of 0 in this case results in a deconvolved image completely 

obscured by noise (Figure 22b and 22f). By increasing the regularization parameter, 

the noise is dampened, but resolution decreases with increasing regularization value, 

as expected (Figure 22c-22d and 22g-22h). Unlike the example illustrated in Figure 19, 

where the ideal PSF was applied, several geological details are not possible to retrieve 

in this case.  

In summary, the case study illustrated here thus shows how ray-based PSFs may be 

applied as deconvolution operators in a completely controlled experiment. Due to the 

low computational cost required for the design of ray-based PSFs, adjustments of PSF-

parameters may be done efficiently and with great flexibility when implemented on 

seismic data in general. Examples of how the method performs on seismic data 

obtained independently from PSF convolution are presented in the third paper included 

in this thesis.  
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1.8 Thesis contributions 

The previous subsections outline the general principles behind PSFs, PSF convolution 

modelling, and PSF-based deconvolution. This subsection will now briefly summarize 

the novel contributions to the field which comprise the main bulk of this thesis. The 

contributions are presented in three separate research papers supplemented by two 

published SEG conference abstracts. 

Paper 1 investigates in detail similarities and differences between PSFs obtained via 

wave-based and ray-based approaches. Analytical expressions valid in a homogeneous 

model are derived for wave-based and ray-based PSFs. The various parameters in the 

derived equations are analysed to assess the conditions in which divergence between 

the two approaches occurs. The analytically computed PSFs are also compared to PSFs 

obtained from full modelling and PSDM (reverse-time migration). Further assessments 

of simulated PSDM-images obtained via wave-based and ray-bases PFSs are next 

performed at selected targets in a subsection of the BP Statics Benchmark model. The 

PSF-convolved images are also compared to the output from a full modelling followed 

by RTM. Comparisons are made as to how well the wave-based and ray-based 

approaches model illumination, resolution and amplitude effects observed in the 

migrated image. Similarities and differences between the wave- and ray-based PSF-

convolved images are also analysed. A novel contribution to the field includes the full 

derivation of the governing equations for wave- and ray-based PSFs valid for the 

homogenous case. In addition, very few comparative studies between fully 

modelled/migrated data and simulated seismic images obtained via ray-based and 

wave-based PSF convolution modelling exist. The paper thus also provides a novel 

contribution by providing such a comparative study. 

Paper 1 was published in Geophysical Prospecting in July 2021. 

 

Paper 2 investigates the potential for PSF convolution modelling as an efficient 

approach for seismic modelling of paleokarst geology. Although PSF convolution 
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modelling has been applied as a modelling tool on various other geological geobodies, 

the assessment of how well the method performs on highly complex paleokarst geology 

has not been done previously. The validity of the approach is first assessed through a 

comparison with results obtained from a physical modelling experiment conducted by 

Xu et al. (2016). Four separate case studies next highlight the usefulness and flexibility 

of the approach by focusing on different aspects related to PSF convolution modelling, 

as well as challenges inherent in characterizing and interpreting paleokarst features. 

The first case study involves a 2D model of the Franklin Mountains paleocaves where 

comparisons are made between simulated PSDM-images obtained after modelling with 

different wavelet peak frequencies. Comparisons are also made between a model where 

the cave system is embedded in a uniform background versus a model where 

background layers are included, so that assessments can be made as to how various 

petrophysical properties affect the PSDM-image. The second case study, a 3D 

geocellular model of the Stergrotta cave, focuses on how repeated-1D convolution and 

PSF convolution modelling may yield drastically different modelled images of 

complex paloekarst systems characterized by small-scale features. Case study three 

focuses on a 3D geocellular model of the Devil’s Sinkhole. Comparisons are here made 

with previously modelled images of the sinkhole done by Janson and Fomel (2011) 

through an exploding-reflector split-step Fourier migration approach. As such, the 

validity of PSF convolution modelling is assessed by a direct comparison with results 

obtained from a different modelling algorithm. The Devil’s Sinkhole case is further 

used to assess how limitations in illumination could greatly exacerbate sinkhole 

features in seismic data. Finally, the fourth study, which applies a 3D geocellular model 

of the Lechuguilia Cave, investigates how PSF convolution modelling may be used to 

assess how coarse sampling yields seismic images which do not properly account for 

lateral resolution effects. In summary, novel contributions to the field include the 

assessment of how PSF convolution modelling may be used as a seismic modelling 

approach specifically for paleokarst geology, as well as the assessment of how results 

obtained via this modelling approach compare to results obtained from other modelling 

approaches previously applied on the same geology.  

Paper 2 was published in Interpretation (Vol. 9, Issue 2) May 2021.  
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Paper 3 focuses on the potential of applying ray-based PSFs as deconvolution 

operators on RTM images. As illustrated for the paleokarst case studies in Paper 2, 

seismic images usually exacerbate the true extent of geological features. Successful 

deconvolution of seismic images could therefore greatly enhance the level of detail and 

reduce this vertical and lateral exacerbation. To allow for deconvolution of seismic 

images through ray-based PSFs, the PSFs are defined in their normal-equation form, 

and a conjugate-gradient algorithm is implemented when solving for the unknown 

reflectivity grid. Deconvolution is performed on seismic images of point scatterers in 

a homogeneous model obtained from wave-equation based forward modelling 

followed by RTM. The deconvolved point scatterers are compared to results obtained 

via conventional source-signature deconvolution. Furthermore, for an assessment of 

the robustness of the approach, deconvolution is performed at a large target area of a 

fully modelled and reverse-time migrated image of the Sigsbee2A model. For this case 

study, multiple PSFs are applied at various grid locations within this target area, and 

each grid is deconvolved independently. The deconvolved grids are then finally 

combined into a complete deconvolved image of the entire target area. Novel 

contributions to the field thus include a thorough assessment of how well ray-based 

PSFs perform when used as deconvolution operators compared to conventional source-

signature deconvolution, as well as an assessment of how ray-based PSFs may applied 

as deconvolution operators on reverse-time migrated images. Due to the speed and 

flexibility with which ray-based PSFs may be designed, the approach holds great 

potential for reprocessing, for instance, legacy-seismic images, as well as being used 

as quick technique for reducing the number of iterations required in, i.e., least-squares 

migration. 

Paper 3 was submitted to Geophysical Prospecting in August 2021 and is currently in 

review. 
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Abstract 1 illustrates how ray-based PSF convolution modelling may be used to 

efficiently model how the altering of various migration parameters may affect 

illumination and resolution of seismic images. Specifically, the abstract focuses on how 

amplitude effects and choice of migration aperture width may influence seismic image 

quality. The effects of these parameters are assessed at two different target areas of the 

Sigsbee2A model. The novel contribution to the field is therefore the specific 

illustration of how ray-based PSFs may be used to assess how these two parameters 

affect PSDM-images. 

Abstract 1 was presented as an oral presentation at SEG 2018 in Anaheim, CA, USA. 

 

Abstract 2 presents preliminary work that ended up becoming Paper 2. The abstract 

presents a comparison of PSF-modelled seismic data and results obtained from the 

physical modelling experiment conducted by Xu et al. (2016). Preliminary results of 

The Devil’s Sinkhole case study, described in greater detail under Paper 2, are also 

presented. Novel contributions are the same as for Paper 2 but limited only to the 

comparison with the physical modelling experiment and The Devil’s Sinkhole case. 

Abstract 2 was accepted as a poster presentation for SEG 2020 in Houston, TX, USA, 

but due to the coronavirus epidemic the presentation was given digitally over the 

Internet. 
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2. Conclusions and future perspectives 

This study has evaluated the validity and potential of ray-based point-spread functions 

as seismic modelling and deconvolution operators. I will now summarize the main 

findings of each paper and provide some perspectives for potential future research 

directions. 

Paper 1 illustrates how ray-based PSFs, when used as convolution operators, yield 

simulated PSDM-images comparable to equivalent images obtained from wave-based 

PSFs. Resolution-, illumination- and amplitude effects prevalent in PSDM-images are 

accurately captured, as verified by comparisons with actual PSDM-images obtained 

via RTM. Through the derivation of the governing equations valid for both wave-based 

and ray-based PSFs in a homogeneous medium, the conditions under which the two 

approaches may diverge are also assessed. The equations reveal that divergence occurs 

at targets characterized by short distance to shot point and high velocity. These 

conditions represent geologically unrealistic scenarios, thus indicating that ray-based 

PSFs may be applied as a valid supplement to more costly wave-based PSFs.  

Having assessed in Paper 1 that PSF convolution modelling through ray-based PSFs 

indeed offers a valid alternative to more costly wave-based approaches, Paper 2 

demonstrates how ray-based PSFs are suitable for modelling highly complex 

paleokarst geology. The validity of the approach is first assessed through a comparison 

with modelled results obtained from a published physical modelling experiment. Four 

separate case studies then illustrate how ray-based PSFs may be used to analyse how 

parameters such as survey design, petrophysical background properties, wavelet 

frequency, infill properties, illumination coverage and sampling all influence seismic 

paleokarst signatures. Due to the inherent small-scale heterogeneity of paleokarst 

features, it is demonstrated how the approach allows for accurate assessments of how 

the size and geometry of these features may be misrepresented in seismic data. 

Comparisons are also made with previously published synthetic seismic modelling 

results, thus further validating ray-based PSFs as an efficient supplemental alternative 

to other modelling approaches. 
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Finally, Paper 3 assesses how ray-based PSFs may also be applied as seismic 

deconvolution operators on reverse-time migrated images. By using the estimated PSFs 

as inputs in an iterative conjugate-gradient algorithm, resolution enhancement of 

migrated images may be rapidly obtained at a low computational cost. The approach is 

demonstrated on migrated point scatterers embedded in a homogeneous medium, and 

at a large target area of the Sigsbee2A velocity model. Comparisons are made with 

deconvolved results obtained via conventional source-signature deconvolution, and the 

examples demonstrate that PSF-based deconvolution provides better resolution 

improvement, particularly in the lateral direction. Thus, while Paper 1 and Paper 2 

demonstrate and validate the potential of using ray-based PSFs as convolution 

operators for seismic modelling of PSDM-images, Paper 3 illustrates how ray-based 

PSFs may also be applied for inverse problems where the aim is to deblur seismic 

images. 

Two abstracts included in the thesis offer some additional, supplemental results. The 

first abstract, presented at SEG 2018 in Anaheim, CA, USA, shows how ray-based 

PSFs may be fine-tuned for various sensitivity studies, with particular focus on how 

different choices of migration aperture width and amplitude mode may result in 

significantly different seismic images at target areas of interest. The second abstract, 

presented at the virtual SEG 2020 conference in Houston, TX, USA, presents 

preliminary work on seismic modelling of paleokarst, which ultimately ended up being 

included in Paper 2. 

From the results presented in this thesis, there are several potential future research 

directions which may be considered. Although the findings from Paper 1 reveal that 

the simulated PSDM-images obtained through ray-based PSFs were virtually 

indistinguishable to images obtained through wave-based PSFs, more work should be 

done to assess whether this is the case for other complex models with different 

geological challenges. Furthermore, although the derived governing equations reveal 

that divergence should only be expected for geologically unrealistic scenarios, it is 

important to consider that the equations only account for a 2D homogeneous, isotropic 

medium. Further theoretical studies into how these equations may be modified for more 
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complex media are therefore desired. In general, as Paper 1 illustrates, migration 

artefacts, interference issues and wave-energy originating from outside the selected 

target area present in actual PSDM-images, may not be fully captured by simulated 

PSDM-images obtained from PSFs. A more thorough investigation of the mathematics 

involved in more complex cases, could reveal potential ways for PSFs to be designed 

in such a manner that these effects may be more accurately captured.  

Several other research directions may also be considered for refinements of the PSF-

operator. One option is to consider effects caused by anisotropy in the PSFs (Lecomte 

and Kaschwich, 2008). For large-scale 3D studies, such as the paleokarst case studies 

considered in Paper 2, it is reasonable to assume that anisotropic effects would occur 

in an actual seismic survey (Feng et al., 2012; Sun et al., 2012). The PSF-operator could 

also be further refined by including a more precise description of how reflectivity is 

impacted by the range of incidence angles. Seismic resolution is determined by the 

combined effects of angle-dependent reflectivity and angle-dependent 

illumination/resolution (Lecomte, 2008), but only the latter has been considered in this 

thesis. Thus, most comparisons between modelled and migrated data had to rely on 

manual calibration and regularization of amplitude values. Further investigation into 

this topic could therefore be useful in providing a more accurate assessment of how 

modelled and migrated amplitudes vary.  

The ray-based PSFs could be further refined by extending the plane-wave assumption, 

which has been a constant assumption in this thesis, to a parabolic assumption. This 

would allow for more accurate modelling of curvature effects present in migrated 

images and wave-based PSFs (Gelius et al., 2002b). Future studies could also assess 

whether ray-based PSFs may be used as realistic convolution operators for the 

simulation of elastic PSDM-images. The ray-based PSFs may be modified to model 

PS-converted waves by applying scaling factors to the individual wavenumber vectors 

in the wavenumber domain (Gelius et al., 2002a). As elastic wave-based PSFs are 

computationally expensive to obtain, accurately estimated ray-based PSFs for 

simulation of elastic images, could provide a fast alternative for modelling such 

images.   
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The abovementioned suggestions for future research could also yield ray-based PSFs 

capable of more accurate deconvolution. Although the findings of Paper 3 illustrate the 

potential of using ray-based PSFs in the deconvolution of reverse-time migrated 

images, it should be kept in mind that the results were obtained for synthetic models 

only. In addition, all acquisition- and processing parameters were known in advance. 

For actual seismic data obtained in the field, it is likely that many of the refinements 

suggested in this section may be required if proper deconvolution is desired. The lack 

of any real data used in this thesis is therefore something that should be acknowledged 

as a potential limitation of the findings. Future research should venture to more 

accurately assess how simulated PSDM-images obtained from PSF convolution 

modelling capture features observed in real data. Likewise, further assessments of how 

ray-based PSFs perform as deconvolution operators on real data are desired. This could 

yield more information as to which of the refinements outlined in this section may be 

most relevant to investigate further. It may also be worth assessing how iterative 

approaches other than the conjugate-gradient algorithm will perform when ray-based 

PSFs are used as deconvolution operators. 
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4. Papers 

The following section includes the three papers which present the main scientific 

contributions in this thesis. As the first two papers are published, they will be 

presented in their respective journal formats. The page numbering thus deviates from 

the thesis page numbers for these two papers. The third paper, which is currently in 

review, will be presented in the submitted Microsoft Word-format. Following the 

three main papers, two accepted SEG-abstracts are presented. These are presented in 

their published format.  
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ABSTRACT
Seismic migration commonly yields an incomplete reconstruction of the Earth model
due to restricted survey aperture, band-limited frequency content and propagation
effects. This affects both illumination and resolution of the structures of interest.
Through the application of spatial convolution operators commonly referred to
as point-spread functions, simulated prestack depth-migrated images incorporating
these effects may be obtained. Such simulated images are tailored for analysing dis-
tortion effects and enhance our understanding of seismic imaging and subsequent
interpretation. Target-oriented point-spread functions may be obtained through a va-
riety of waveform and ray-based approaches. Waveform approaches are generally
more robust, but the computational cost involved may be prohibitive. Ray-based ap-
proaches, on the other hand, allow for efficient and flexible sensitivity studies at a low
computational cost, but inherent limitations may lead to less accuracy. To yield more
insight into the similarities and differences between point-spread functions obtained
via these two approaches, we first derive analytical expressions of both wave- and
ray-based point-spread functions in homogeneous media. By considering single-point
scatterers embedded in a uniform velocity field, we demonstrate the conditions un-
der which the derived equations diverge. The accuracy of wave-based and ray-based
point-spread functions is further assessed and validated at selected targets in a sub-
section of the complex BP Statics Benchmark model. We also compare our simulated
prestack depth migrated images with the output obtained from an actual prestack
depth migration (reverse time migration). Our results reveal that both the wave- and
ray-based approaches accurately model illumination, resolution and amplitude effects
observed in the reverse time-migrated image. Furthermore, although some minor de-
viations between the wave-based and ray-based approaches are observed, the overall
results indicate that both approaches can be used also for complex models.

Key words: Imaging, Modelling, Rays, Seismics, Wave.

INTRODUCTION

Migration of seismic data aims to backpropagate the scat-
tered elastic energy to reconstruct the subsurface structure
(e.g. reflectors and point scatterers). However, due to a re-

∗E-mail: kristian.jensen@uib.no

stricted survey aperture, band-limited frequencies and prop-
agation effects in the overburden, migrated images inevitably
yield a blurred and incomplete reconstruction of the actual
Earth structures. In some cases, interference issues resulting
from poor resolution may be so severe that important geolog-
ical features become very difficult to identify, even when they
are illuminated. As such, vital subsurface information may be

1© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
of Geoscientists & Engineers
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.
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lost. An understanding of how these blurring and illumination
effects occur during seismic imaging is important for proper
interpretation of migrated seismic images.

For a given reflectivity model, m, we may compute syn-
thetic seismic traces, d, via the equation d = Lm, where L is an
applied forward modelling operator. A migrated image may
then be obtained from the equation mmig = LT Lm (Schuster
and Hu, 2000), with LT representing an approximation of the
inverse L-operator. The blurring effects observed in migrated
seismic data are now mathematically expressed through the
LTL-operator, commonly referred to as the local point-spread
functions (PSFs). Information about the local illumination, as
well as the overall resolution, may be retrieved by analysing
the PSFs, i.e. the point-scatterer response of the seismic imag-
ing system (Beylkin et al., 1985; Lecomte and Gelius, 1998;
Gelius et al., 2002a). This type of information can, in turn, be
analysed for assessing how the choice of, e.g., survey geom-
etry, source wavelet, migration aperture, imaging condition,
amplitude corrections and other processing parameters affects
the seismic image. When PSFs are used as 2(3)D convolution
operators applied to an incident angle-dependent input reflec-
tivity grid, simulated prestack depth-migrated (PSDM) images
incorporating these resolution and illumination effects are ob-
tained (Lecomte et al., 2003; Toxopeus et al., 2003; Lecomte,
2008; Toxopeus et al., 2008). Thus, realistic seismic images
can be easily and rapidly simulated based on possibly com-
plex geomodels (Lecomte et al., 2003).

In addition to allowing for simulation of migration ef-
fects, accurate target-oriented PSFs may be used for other ap-
plications as well. Several studies demonstrate how the lo-
cal PSF, or an estimate of its inverse, can be used for target-
oriented migration and inversion (e.g. Schuster and Hu, 2000;
Sjoeberg et al., 2003; Guitton, 2004; Xie et al., 2005; Valen-
ciano et al., 2006; Yu et al., 2006; Aoki and Schuster, 2009;
Tang, 2009; Ayeni and Biondi, 2010; Zhao and Sen, 2018;
Jiang and Zhang, 2019). Fehler et al. (2005) propose to use
PSFs to analyse how the choice of the migration operator af-
fects image resolution. Thomson et al. (2016) demonstrate
how the blurring function may be expressed as extended im-
age gathers. This approach may be used to assess how blurring
varies with the incidence slowness vector and reflectivity an-
gle. Lecerf and Besselievre (2018) show how PSFs may be suc-
cessfully applied in 4D time-lapse reservoir monitoring. Fast
and efficient methods for the estimation of accurate target-
oriented PSFs are therefore of ongoing interest.

Target-oriented PSFs are frequently estimated by vari-
ous wave-equation–based approaches. Xie et al. (2005) illus-
trate how target-oriented PSFs may be obtained using a one-

way wave-equation–based propagator to downward extrap-
olate the source functions and the receiver wavefields. Tox-
opeus et al. (2008) estimate PSFs by applying a one-way wave
equation as previously outlined in Thorbecke et al. (2004).
They demonstrate how these PSFs may be useful for both
simulating defocusing in migration images and as inputs for
inversion algorithms. Tang (2009) illustrates how PSFs may
be retrieved using a one-way wave-equation–based Fourier
finite-difference migration (Ristow and Rühl, 1994) and then
used to approximate the inverse Hessian operator for target-
oriented inversion.

As an alternative to wave-equation–based approaches,
Gelius et al. (1991), Hamran and Lecomte (1993) and
Lecomte and Gelius (1998) describe how target-oriented PSFs
may be estimated at a much lower computational cost with
the use of ray theory. Both ray-based and wave-equation–
based approaches for estimating PSFs have their advantages
and drawbacks. As for seismic modelling in general (see e.g.
Carcione et al. 2002 for an in-depth review of advantages and
disadvantages of various seismic modelling approaches), the
choice of method is often made as a trade-off between accu-
racy and computing cost, although, in some cases of highly
complex geology, ray-based approaches may not work prop-
erly. Ray-based methods generally suffer from drawbacks in-
herent in the high-frequency approximation used in ray trac-
ing, such as incomplete wavefield, the requirement of a smooth
velocity field, multipathing, the risk of breakdown in singular,
caustic regions, etc. (Červený et al., 1977). However, ray ap-
proaches are oftenmore robust than assumed (Gjøystdal et al.,
2007), especially when applied to the rather smooth velocity
models used for migration. Their low computational cost al-
lows for fast and flexible modelling of how various migration
parameters cause blurring and illumination effects in PSDM
images (Lecomte et al., 2016; Jensen et al., 2018).

Although ray-based PSF convolution modelling has been
applied in several geological case studies (e.g. Botter et al.,
2014; Lecomte et al., 2015; Botter et al., 2017; Kjoberg
et al., 2017; Eide et al., 2018; Rabbel et al., 2018; Grippa
et al., 2019; Lubrano-Lavadera et al., 2019; Jensen et al.,
2021), comparative studies between waveform-based mod-
elled/migrated data and simulated seismic images obtained
via ray-based and wave-based PSF convolution modelling are
limited. Lecomte et al. (2003) illustrate how PSF-convolved
images obtained from ray tracing match well with Kirch-
hoff PSDM images obtained from a model of the Gullfaks
field located on the Norwegian Continental Shelf. Toxopeus
et al. (2008) compare results obtained via wave-equation–
generated PSFs with actual time-migrated seismic images of

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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sulphate dissolution and karst collapse-related deformation.
The authors demonstrate an improvement in the modelled
results compared with results obtained via repeated 1D
convolution. Amini et al. (2020) compare prestack Kirchhoff
time-migrated results with modelled results obtained after
applying a lateral smoothing function aiming at reproduc-
ing lateral smoothing effects (Chen and Schuster, 1999), to
repeated 1D convolved results. This approach, as illustrated
by the authors, yields more similar migrated and modelled
images. Yet, a more thorough analysis of how PSF-convolved
images obtained via different approaches compare to ac-
tual PSDM images is needed. This applies particularly for
ray-based approaches where few comparative studies exist.

In the present work, we start by deriving analytical ex-
pressions for wave-based and ray-based PSFs valid for homo-
geneous media. By considering the case of single-point scatter-
ers embedded in a uniform background, analytical modelling
based on either wave- or ray-based implementations can be
compared with output from an actual PSDM. Possible limita-
tions inherent in the ray-based approach are identified and dis-
cussed. We then employ a subsection of the complex BP Stat-
ics Benchmark model (Ellison and Innanen, 2016) and assess
how wave-based and ray-based PSF-convolved seismic images
at selected targets compare to the output from a full PSDM
of the subsection obtained via reverse time migration (RTM).
Similarities and differences between the results obtained from
the two modelling approaches are also assessed and discussed.
The results may add to our understanding of the potential ap-
plications, as well as possible limitations, of using wave-based
and ray-based PSF convolution as an approach for simulating
PSDM images.

THE POINT-SPREAD FUNCTION IN A
HOMOGENEOUS MEDIUM

A migrated image,mmig, is related to a model quantity,m, via
the equation:

mmig = L−1 Lm, (1)

where L is a forward modelling operator, and L−1 is a stable
approximation of its inverse. Assuming the Born approxima-
tion holds, the modelling operator, L, may, for a single angular
frequency value, be defined as

L → ω2

∫
S (ω)G

(
ω, r′|rs

)
G

(
ω, rg, r′

)
dr′, (2)

where ω is angular frequency, S(ω) is the wavelet spectrum,
G(ω, r′|rs ) represents the Green’s function from the source at

Figure 1 Survey geometry and relevant parameters for a single shot–
receiver pair in a homogeneous model

rs to the image point at r′, andG(ω, rg|r′) the Green’s function
from the image point at r′ to the receiver at rg. The Green’s
functions are, following the Born approximation, computed
in the background media. A complete derivation of the Born
approximation may be found in e.g. Bleistein et al. (2001) and
Schuster (2017).

We now consider a homogeneous medium with an image
point of interest at r and a neighbouring point at r′. Further,
we assume a source located at position rs, and a receiver at po-
sition rg. The medium has a constant background velocity of
c0. We denote the distance from rs to r as Rs(r) = |r − rs|, and
the distance from rg to r as Rg(r) = |r − rg|. Figure 1 illustrates
the survey geometry and the involved parameters.

Using these initial assumptions, and the survey geome-
try in Figure 1, we may now derive analytical expressions for
the PSF generated at the point of interest in the homogeneous
medium.

Wave-equation approach

Within a wave-equation approach, the inverse operator L−1 is
usually approximated through the adjoint operator, LT . The
PSF is then expressed via the operator LTL, which accounts
for how limited illumination, overburden propagation and fre-
quency bandwidth blur the migrated image. The migration
equation may now, in the model space, be expressed as

m (r)mig =
∫

model space

PSFwave (r|r′)m (r′) dr′. (3)

Here m(r′) represents the perturbed slowness at the point r′:

m (r′) ∼= 2
c0 (r′)

[
1

c (r′)
− 1

c0 (r′)

]
, (4)

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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with c0 representing the reference, or background, veloc-
ity, and c representing the actual medium velocity at r′.
PSFwave(r|r′) is the PSF which, for a single shot and using the
definition for L in (2), is defined as (Schuster, 2017, p. 211)

PSFwave
(
r|r′) =

∫
ω

∫
rg

ω4
∣∣S (ω)

∣∣2G(
ω, rg|r

)∗

G(ω, r|rs)∗G
(
ω, rg|r′

)
G

(
ω, r′|rs

)
drgdω. (5)

Here, a star represents the complex conjugate operation,
and this equation can be interpreted as the migration response
at point r due to a point scatterer at r’. The multiplication of
the downgoing source field with the back-propagated reflec-
tions in (5) represents a standard cross-correlation imaging
condition (Claerbout, 1971).

For a homogeneous 3D medium, we may define the far-
field Green’s functions analytically by

G = exp
(−ikR

)
4πR

, (6)

where k is the wavenumber and R is the distance between two
points of interest. Inserted into (5), and using the parameter
definitions from Figure 1, as well as the relation k = ω/c0, we
obtain the analytical expression for the PSF for a single shot
and a point scatterer in a homogeneous 3D medium:

PSFwave,3D (r, r′) =
∫
ω

∫
xg

ω4
∣∣S (ω)

∣∣2
256π4Rg (r)Rg (r′)Rs (r)Rs (r′)

× exp
[
iω
c0

(
Rs (r) + Rg (r) − Rs

(
r′
) − Rg

(
r′
))]

drgdω.

(7)

For a homogeneous 2D medium, the Green’s function is de-
fined analytically by

G = − i
4
H1

0

(
kR

)
, (8)

where k and R represent the same parameters as in (6), and
H1

0 (kR) is the zeroth order Hankel function of the first kind.
Assuming a far-field approximation (for kR � 1), this func-
tion is approximated as

H1
0

(
kR

) ≈
√

2
πkR

exp
[
i
(
kR − π

4

)]
. (9)

Through (8) and (9), we then obtain the analytical ex-
pression for the PSF for a single shot and a point scatterer in
a homogeneous 2D medium:

PSFwave,2D (r, r′) =
∫
ω

∫
xg

c20ω
2
∣∣S (ω)

∣∣2
64π2

√
Rg (r )Rg (r′)Rs (r)Rs (r′)

× exp
[
iω
c0

(
Rs (r) + Rg (r) − Rs

(
r′
) − Rg

(
r′
))]

dxgdω.

(10)

We now proceed to derive the corresponding ray-based
approach.

Ray-based approach

In our ray-based approach, we take inspiration from the lo-
cal imaging method derived from local plane-wavenumber
diffraction tomography (Hamran and Lecomte, 1993). We
consider a small volumeV0 around the image point of interest.
We assume that the Born approximation holds in this region,
and that the background slowness is locally homogeneous.
Moreover, we assume that the incident and scattered wave-
fields are plane within the volume (Hamran and Lecomte,
1993; Gelius et al., 2002a). We let r denote the location of
an image point of interest, and r′ a reference point within the
same volume.

Using a ray-based approach, we may define the Green’s
functions via the high-frequency approximation:

G
(
ω, r j|r

) = A
(
ω, r j|r

)
exp

[
iωτ

(
r j|r

)]
, j = s, g, (11)

where A(ω, r j|r) represents the complex amplitude, and τ is
the traveltime between a source (or receiver) and the image
point. Assuming constant amplitude and a linear phase within
the local volume V0, we can Taylor expand the Green’s func-
tion around the reference point, r′:

G
(
ω, r j|r

) ∼= G
(
ω, r j|r′

)
exp

[
iω∇τ

(
r j|r′

)
(r′ − r)

]
. (12)

We now introduce the scattering wavenumber vector K
defined by

K = −ω
[∇τs (r|rs) + ∇τg

(
rg|r

)] = −ks + kg, (13)

where τs is the traveltime from source point to r, and τg is
the traveltime from r to receiver point. It can be shown that
K represents the Fourier vector of the model space (Gelius,
1995), meaning the Fourier transform of the model space co-
ordinates. This means that for each shot–receiver combina-
tion over the model space, a scattering wavenumber vector
can be defined in the wavenumber domain. The entire collec-
tion of scattering wavenumber vectors will then yield the local
wavenumber domain representation of the PSF. Thus, the ex-
pression in (13) links the model and acquisition domains.

We assume now that the phase of the wavefield varies sig-
nificantly faster than the amplitude changes within the local
volume of interest. At the same time, unlike in (10), we en-
sure that the PSF is normalized with respect to the reflectivity.
The following ray-based approximation of the inverse of the

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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modelling operator Lmay then be derived (Gelius et al., 1991;
Gelius, 1995):

L−1 = J
[
K|ω, rg

]
ω4

∣∣S (ω)
∣∣ ∣∣As

∣∣2∣∣Ag

∣∣2 LT . (14)

Here, J[K|ω, rg] represents a Jacobian, derived in full in the
Appendix, that maps between the Fourier-transformed model
(scattering wavenumber) domain and the acquisition domain
illustrated in Figure 1. In the general case, all quantities needed
to compute it can be obtained from dynamic ray tracing. The
inverse operator expressed in (14) is obtained from the use of a
deconvolution imaging condition (Claerbout, 1971). Through
(11)–(14) and the definition of the forward modelling opera-
tor L from (2), we obtain an expression for the ray-based PSF,
under a Born-scattering assumption, valid for both 3D and 2D
media (Gelius et al., 2002a):

PSFray (r|r′) =
∫
K

|S (ω)| exp [iK · (r − r′)] dK, (15)

where dK = J(K|ω, rg)dωdrg. Here, the PSF is represented as a
sum over all the scattering wavenumber vectors at the image
point of interest, and the source spectrum |S(ω)| is included as
an obliquity factor for the Born case. The equation represents
an inverse Fourier transform, yielding a real-valued PSF in the
spatial domain.

To allow for direct comparisons between wave-generated
and ray-generated PSFs, we consider the analytical expression
for the ray-based PSFs valid for a single shot and a point scat-
terer in a homogeneous 2D medium. By inserting the parame-
ters defined in Figure 1 into Equation (15), the following an-
alytical solution, derived in full in the Appendix, is obtained:

PSFray,2D (r, r′)

=
∫
ω

∫
xg

ω2
∣∣S (ω)

∣∣ [α ∣∣(z − zg
) (
x − xg

)∣∣ + β
(
z − zg

)2]
c20Rs (r)Rg(r)4

× exp
[
iω
c0

(
Rs (r) + Rg (r) − Rs

(
r′
) − Rg

(
r′
))]

dxgdω,

(16)

where

α = ∣∣(x − xs)Rg (r) − (
xg − x

)
Rs (r)

∣∣ ,

and

β = ∣∣(z − zs)Rg (r) − (
zg − z

)
Rs (r)

∣∣ .

Figure 2 Homogeneous 2Dmodel. Size: 2 km× 2 km. Sampling inter-
val: dx = dz = 0.01 km. Source location: (x, z) = (1 km,0.01 km).
Fixed receiver array consists of 200 equally spaced receivers (0.01 km
interval) at depth z = 0.01 km.

Validation in the homogeneous case

To validate the derived equations,we consider two targets (tar-
gets 1 and 2) in the homogeneous 2D model illustrated in Fig-
ure 2. Two versions of the model were used, one with a con-
stant velocity of 2 km/s (low-velocity model) and one with a
constant velocity of 4 km/s (high-velocity model). We use two
versions to demonstrate how the background velocity affects
the PSF estimation.

Using a 2D acoustic finite-difference (FD) approach
on a regular grid, we performed forward modelling was
performed for a single shot and a fixed receiver array located
along the top row (Fig. 2). To implement the FD code, the
domain was discretized with a second- to fourth-order scheme
(second-order in time and fourth-order in space) following
the numerical implementation presented in Youzwishen and
Margrave (1999). A standard zero-phase Ricker wavelet with
a peak frequency of 10 Hz was used as a source pulse, and the
temporal sample interval was 1 ms. Although a combination
of high velocity and low-frequency wavelet is geologically
unrealistic for shallow targets, which we get for target 2 in
the v = 4 km/s case, we deliberately chose these parameters
to illustrate where the divergence between the wave-based
and ray-based approaches occurs from a theoretical point.
Half-spaces were added to all edges of the models to avoid
reflections from the edges. Finally, a reverse time migration
(RTM) was performed on the seismograms to obtain the
responses from the point scatterers.

The obtained PSFs were extracted at both targets from
the migrated images using a window of size 0.4 km times
0.4 km (41 × 41 grid points), with the PSF centred at the
middle of the window. Correspondingly, PSFs for both targets
were calculated from Equations (10) and (16) using the same

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
of Geoscientists & Engineers,Geophysical Prospecting, 1–20
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Figure 3 PSFs and wavenumber spectra for homogeneous velocity model with v = 2 km/s. (a–c) PSFs obtained from RTM, analytic implementa-
tion of equation (10) and analytic implementation of equation (16) for target 1. (d–f) Corresponding wavenumber spectra for the PSFs. (g–i) PSFs
obtained from RTM, analytic implementation of equation (10) and analytic implementation of equation (16) for target 2. (j–l) Corresponding
wavenumber spectra for the PSFs

survey parameters. Following the cross-correlation imaging
condition inherent in RTM, an extra |S(ω)| factor was in-
cluded in the numerator of Equation (16) to obtain the |S(ω)|2
term. All PSFs were further normalized to have a maximum
amplitude of one to allow for relative comparison of the seis-
mic responses. The PSFs, and their corresponding wavenum-
ber spectra, are plotted in Figure 3 (low-velocity model) and
Figure 4 (high-velocity model). Figure 5 illustrates a compar-
ison of the centre traces obtained for all PSFs, both vertically
and horizontally.

For target 1, all PSFs (Fig. 3a–c and Fig. 4a–c) have the
same resolution patterns. The same observation applies in the
corresponding wavenumber domains (Fig. 3d–f and Fig. 4d–f),
where the spectra match in both overall coverage and in the
amplitude range. We do, however, notice that the ray-based
PSFs diverge slightly at the shallower target 2 (Figs 3i, 3l, 4i
and 4l). This is further illustrated in Figure 5. Here, we no-
tice how for target 1, the centre traces from the analytically
computed PSFs align almost perfectly with the traces obtained
from the PSF extracted from a complete migration. For target
2, we notice slightly more deviations between the ray-based
PSF traces and the others, both in the vertical and horizon-

tal directions. This is particularly seen for the shallow PSFs
computed in the high-velocity model (Fig. 5d and h).

To understand the observed differences, we consider
Equations (10) and (16) again. First,we keep inmind that both
equations are derived under a far-field approximation. Some
deviances from the PSFs extracted from RTM are therefore
to be expected for both approaches, particularly at the shal-
lower target 2. To quantify this issue, we computed the PSF
at 49 equidistant grid points in the low-velocity model using
the Green’s function defined in (8) with full Hankel functions
rather than their asymptotic approximation. At all 49 targets,
the absolute error spectra obtained from subtracting the PSFs
obtained with the Green’s function defined in (8) from the
PSFs obtained under the far-field assumption in (10) were cal-
culated. The standard deviation was then computed for each
error spectrum, and 2D linear interpolation was applied to ob-
tain expected standard deviation values for the entire model.
Figure 6 illustrates the obtained result. We notice that the de-
viation is largest close to the shot point, as expected consid-
ering that the criteria kR � 1 might not be fulfilled here. We
do, however, also notice that the standard deviation values are
close to zero for most parts of the model, meaning that the

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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Figure 4 PSFs and wavenumber spectra for homogeneous velocity model with v = 4 km/s. (a–c) PSFs obtained from RTM, analytic implementa-
tion of equation (10) and analytic implementation of equation (16) for target 1. (d–f) Corresponding wavenumber spectra for the PSFs. (g–i) PSFs
obtained from RTM, analytic implementation of equation (10) and analytic implementation of equation (16) for target 2. (j–l) Corresponding
wavenumber spectra for the PSFs

far-field approximation should be valid throughout most of
the model.

Regarding the two approaches themselves, we note that
the phase terms are identical in both equations. Differences
between the two approaches thus depend on the amplitude
factors. We notice that in the ray approach, as expressed by
(16), we only consider the distance to the image point at r, in
question, and not the surrounding scattering points located at
r′. In essence, the amplitude term in (16) may be considered
as a simple scaling factor valid throughout the entire target of
interest. This follows from (14) where we deconvolve the am-
plitude factors in accordance with the plane-wave assumption.
The amplitude factors in (16) are therefore not attributable
to the Green’s functions, but merely result from the Jacobian
mapping between the scattering wavenumber and acquisition
domains.

We illustrate this effect by again considering the two tar-
gets in the low-velocity model. Using the analytical expression
in (10), we computed the PSF amplitude responses (assuming
a constant phase of value one) obtained at the point scatterers.
For simplicity, we let ω = 1 and set |S(ω)| = 1 during the com-
putations to extract amplitude variations only. By selecting the
same PSF window of size 0.4 km × 0.4 km and normalizing

the centre point of the PSFs to a value of one in both cases,
we obtained the amplitude responses presented in Figure 7.
The corresponding amplitude responses for the ray-based ap-
proach obtained via (16) would simply, following the plane-
wave assumption, yield a constant value throughout the entire
PSF window.

As amplitudes vary within the target area for the wave-
based approach, slight asymmetry around the centre point
along the high-resolution axis (in this case the vertical axis) is
expected for traces obtained from the wave-based PSF.We also
notice that the amplitude range is larger for the shallow target
(Fig. 7b). This also follows from (10) as a smaller distance be-
tween shot point and target point yields smaller values for the
r and r′ parameters in the denominator in (10). The asymme-
try is usually negligible if the PSF operator only spans a small
amount of grid points around the centre point. However, for
low-resolution PSFs resulting from low-frequency bandwidth,
and/or high velocity at the target area, the effect would be
more noticeable. This is for instance observed in Figures 4(h)
and 5(d), where the combination of small distance between
shot point and target point, high velocity, and low wavelet
frequency, yields a noticeable asymmetry around the PSF cen-
tre point for the wave-based PSF. Furthermore, the plane-wave
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Figure 5 Left: Vertical centre traces obtained from PSFs at (a) target 1 (v = 2 km/s), (b) target 2 (v = 2 km/s), (c) target 1 (v = 4 km/s) and (d)
target 2 (v = 4 km/s). Right: Horizontal centre traces obtained from PSFs at (e) target 1 (v = 2 km/s), (f) target 2 (v = 2 km/s), (g) target 1 (v = 4
km/s) and (h) target 2 (v = 4 km/s)

Figure 6 Standard deviation of absolute error spectra obtained be-
tween normalized PSFs estimated with and without the far-field ap-
proximation expressed in equation (9) at 49 equidistant points fol-
lowed by 2D interpolation. The computations were performed in the
homogeneous model with constant velocity of v = 2 km/s

assumption inherent in the far-field ray-based approach may
produce differences in the PSF side lobes compared with wave-
based PSFs where curvature effects are preserved.These effects
should also be more prominent for shallow targets.

To illustrate in greater detail how the wave-generated
PSFs may diverge from ray-generated PSFs in the homo-
geneous case, we estimated amplitude ranges as illustrated
in Figure 7 for normalized PSFs obtained via (10) at 81
equidistant grid points in the low-velocity model. The stan-

Figure 7 Normalized PSF amplitude responses obtained at (a) target
1 and (b) target 2 via Equation (10) in the homogeneous model with
constant velocity of v = 2 km/s

dard deviation was then computed for each obtained ampli-
tude range. Finally, 2D linear interpolation was applied to esti-
mate expected standard deviation values for the entire velocity
model. The obtained results are illustrated in Figure 8. The re-
sults confirm that the divergence between the two approaches
will decrease with increasing distance from shot point in a ho-
mogeneous model.

In summary, divergence between wave-based and ray-
based approaches is attributable to the ray-based local plane-
wave assumption in amplitude, normalization with respect
to reflectivity, the far-field approximation and the Jacobian
mapping taking into account irregular sampling of the model
space. The divergence is mostly observed for shallow targets
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Figure 8 Standard deviation of normalized amplitude ranges obtained
via equation (10) at targets sized 0.4× 0.4 km estimated at 81 equidis-
tant points followed by 2D interpolation. The computations were per-
formed in the homogeneous model with constant velocity of v = 2
km/s

characterized by high-velocity and/or low-frequency band-
width.However, as such a combination is, as pointed out, geo-
logically unrealistic, we should, within the validity of ray the-
ory and even for complex models, not expect much divergence
between PSFs regardless of whether they are estimated with a
wave- or ray-based approach.

ESTIMATING POINT-SPREAD FUNCTIONS
IN INHOMOGENEOUS MODELS

In a homogeneous model, it is straightforward to analytically
implement (10) and (16) and compute the seismic response
due to a point scatterer. However, the Green’s functions are
not so easily computed for more complex models and must be
estimated via other methods.

When applying a wave-based approach, one option is to
estimate the PSFs by implementing the wave equation to re-
trieve the required Green’s functions in (5). The true veloc-
ity model is then used for estimating the forward modelled
Green’s functions, and the—often smooth—migration velocity
model is used for estimating the back-propagation (Xie et al.,
2005). An alternative approach is to perturbate the velocity or
density value at a single point in the smooth velocity model,
followed by forward modelling and migration over the model.
The extracted point-scatterer response would then yield the
PSF (Cao, 2013).

If a ray-based approach is implemented, we may, follow-
ing Lecomte and Gelius (1998) and Lecomte (2008), estimate
the scattering wavenumber vectors in (13) from ray tracing or
similar (e.g. eikonal solvers) in a smooth background veloc-
ity model (as done in actual migration). First, a target point
is selected for PSF computation. With a plane-wave assump-

tion, ray tracing is then used to calculate the incident and scat-
tered slowness vectors (pS and pR) at the target point for each
shot–receiver combination in a seismic survey. The so-called
illumination vectors, ISR = pR − pS, are then computed for
all these combinations (Fig. 9a). It can be shown mathemati-
cally that any reflector perpendicular to an illumination vec-
tor will be well illuminated (Gelius et al., 2002a). As such, the
fan of resulting illumination vectors obtained from all shot–
receiver combinations in the survey (Fig. 9b) contains infor-
mation about the local geological-dip range which may be
imaged at the point of interest. Furthermore, the local across-
reflector resolution depends on the magnitude of each illu-
mination vector, which is estimated as a function of opening
angle and medium velocity via (Lecomte, 2008):

ISR =
2 cos

(
θSR

2

)

c
uSR,

(17)

where θSR is the opening angle between the incident and scat-
tered wavefield, c is the velocity of the incoming and scat-
tered wavefields at the image point, and uSR is a unit vec-
tor pointing in the direction of ISR. By mapping the prop-
erly weighted wavelet spectrum (e.g. squared in the case of
a cross-correlation imaging condition following equations (7)
and (10)) along each illumination vector, scattering wavenum-
ber vectors as defined in (13) are obtained for the target point
(Fig. 9c). The entire collection of scattering wavenumber vec-
tors now represents the PSF in the wavenumber domain. A
Fourier transform of the spectrum yields the PSF in the space
domain (Fig. 9d).

An important point to consider is that the procedure il-
lustrated in Figure 9 assumes that the wavenumber spectrum
is defined directly on a regular grid in the wavenumber do-
main. Intrinsically, however, scattering wavenumber vectors
are best mapped in the polar domain in 2D (spherical in 3D).
But a direct implementation of a 2D FFT in such a domain, fol-
lowed by a polar-to-Cartesian transformation, is cumbersome
because seismic data are typically characterized in the polar
domain by very irregular sampling of the angular coordinate
(corresponding to irregular – and possibly lacking – illumina-
tion). As such, various non-uniform interpolation and resam-
pling strategies are used when converting raw data from polar
coordinates to Cartesian coordinates. This is seen in, e.g., syn-
thetic aperture radar (SAR) imaging (e.g. Carrara et al., 1995;
Jakowatz et al., 1996; Doerry, 2012). Note, however, that the
mentioned studies contain far less irregular sampling than in
seismic data as these studies deal with a homogeneous back-
ground velocity field (i.e. the air).
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Figure 9 Procedure for estimating PSFs via ray-based approach. (a) Ray tracing is used to estimate the illumination vector (ISR ) for a single
shot at a target point. (b) All illumination vectors for a complete survey are obtained. (c) Illumination vectors are combined with the wavelet
frequency spectrum to obtain the local PSDM filter. (d) The PSF is obtained in the space (x − z) domain via an inverse Fourier transform

In our approach, a nearest-point interpolation technique
is simply used. This technique is easy to implement and highly
efficient: each polar sample is assigned to the nearest sample of
the selected regular grid. However, such a mapping of points
along vectors all attached to the same origin or pole (here, the
reference point for which the PSF is calculated) yields an ir-
regular hit count, i.e. with a higher number of hits close to the
origin (where Kx = Kz = 0) than further away. To compensate
for this effect, the value at each grid cell is normalized by di-
viding it with the number of hits at that cell (Lecomte et al.,
2005). This simple and efficient procedure both compensates
for the polar-to-Cartesian mapping (Jacobian) and a possibly
irregular illumination, including local redundancy leading to
coherent noise in the migrated image (see example in Lecomte
et al., 2005; Fig. 16). The simulated prestack depth-migrated
(PSDM) image obtained this way is, in essence, representing a
‘perfect’ PSDM image where the illumination has been regu-
larized, as it should. If the goal, however, is to simulate PSDM
images obtained from a migration algorithm with a different
imaging condition which does not properly compensate for
irregular illumination, in particular in the case of redundant
illumination, the mapping may first be done directly in the po-
lar domain, where one can easily control range and sampling
while keeping the actual illumination hit. The final mapping
over to the Cartesian domain could then be done by interpola-

tion after accounting for aliasing via, e.g., adequate smoothing
(Lecomte et al., 2005).

CASE STUDY: BP STATICS BENCHMARK
MODEL

To assess the validity of simulated prestack depth-migrated
(PSDM) images obtained via point-spread function (PSF) con-
volution modelling, we consider a slightly modified subsec-
tion of the 1994 BP Statics Benchmark P-velocity model (El-
lison and Innanen, 2016). The velocity model is illustrated in
Figure 10(a) with three selected target areas highlighted. The
subsection is dominated by a large high-velocity intrusion in
a complex geological setting characterized by uneven layers
and faults. A thin, homogeneous water layer with constant
P-velocity of 1.5 km/s was added on top of the model for sim-
ulation of a marine-type survey.Model and survey parameters
are defined in the Figure 10 caption.

Using a zero-phase Ricker wavelet with a peak frequency
of 20 Hz, sampled at 1 ms, finite-difference forward mod-
elling was performed using the same approach as in the ho-
mogeneous case. Similarly, half-spaces were added at all four
boundaries to avoid unwanted boundary reflections. Next,
RTM was applied on the forward modelled traces. For the
migration itself, a velocity model smoothed over slowness was
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Figure 10 (a) P-velocity model and survey geometry with targets and survey parameters highlighted. The white boxes represent targets for PSF
convolution modelling. (b) Smoothed P-velocity model. (c) Migrated image obtained from RTM. Size of subsection: 256 × 370 grid points. Sam-
ple interval: dx = dz = 0.01 km. Survey: marine-type. Survey depth: z = 0.01 km. First shot: x = 0.99 km. Last shot : x = 3.57 km. Number
of shots: 130. Shot spacing: 0.02 km. Receiver array: 100 receivers spaced 0.01 km apart at depth z = 0.01. Initial receiver array from x = 0 km
to x = 0.99 km. The receiver array moves 0.02 km between each shot

Figure 11 Wave-based PSFs and corresponding wavenumber spectra for PSFs generated at the targets highlighted with white boxes in Fig-
ure 10(a). Wavenumber spectra are plotted for Kx between −32.9 and +32.9 km−1, and for Kz between −37.8 and −3.7 km−1

applied (Fig. 10b). The final image obtained after RTM is illus-
trated in Figure 10(c). A phase-shift operator was applied to
the migrated traces to obtain approximate zero-phase traces.

Following the procedure in Cao (2013), wave-based PSFs
were estimated at the centre of the three target areas by adding
point scatterers to the smooth velocity model presented in Fig-
ure 10(b) and extracting their responses after forward mod-
elling and RTM. All wave-based PSFs, with corresponding

wavenumber spectra, are illustrated in Figure 11. For target
3, an additional PSF was estimated just below the boundary
of the high-velocity intrusion. This was done as targets char-
acterized by high-velocity contrasts and complex geology may
need to account for space-variant PSFs for accurate modelling
results, as both the illumination and across-reflector resolu-
tion may vary substantially throughout the target area. For
target 3, we therefore illustrate the different results obtained
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Figure 12 Ray-based PSFs and corresponding wavenumber spectra for PSFs generated at the targets highlighted with white boxes in Figure 10(a).
Wavenumber spectra are plotted for Kx between −32.9 and +32.9 km−1, and for Kz between −37.8 and −3.7 km−1

when employing a single PSF versus employing two PSFs. In
the combined image, the centre PSFwas convolved with the re-
flectivity grid above the high-velocity intrusion, and the other
PSF was convolved with the reflectivity grid at and below the
intrusion boundary. For simplicity, the two modelled images
were then simply added together to yield the final image.

Using a wavefront construction approach presented in
Vinje et al. (1993), ray tracing was next performed in the same
smooth velocity model in order to estimate ray-based PSFs at
the centre of each target area via the procedure outlined in
Figure 9. For target 3, as we did for the wave-based approach,
an additional PSF was estimated below the intrusion bound-
ary. P-wave reflections were estimated based on the average
reflectivity and average angle range values obtained from ray
tracing. This was done for simplicity, as such an approach only
requires one modelling run instead of multiple modelling runs
for combination of angle ranges. All ray-based PSFs, with cor-
responding wavenumber spectra, are illustrated in Figure 12.

For each target, the seismic amplitude values were nor-
malized by extracting the amplitude value from the same point
at a well-imaged reflector and setting this value equal in the
migrated and modelled images. The results obtained at all
targets are illustrated in Figures 13–16. We will now discuss
the overall findings with focus on how well the modelled im-
ages capture illumination, resolution and amplitude effects ob-
served in the PSDM image.

Illumination effects

Targets 1 and 2 are located in well-illuminated parts of the
model. The migrated results (Figs 13a and 14a) capture all the

geological features observed in the reflectivity grids (Figs 13b
and Fig. 14b). We further observe that the modelled results
(Fig. 13c–d and Fig. 14c–d) match the migrated results well.
For target 2, however, there is a slight dimming of the mod-
elled seismic response at the steepest part of the upper reflector
(yellow box in Fig. 14c and d). By comparing the traces ob-
tained at x = 2.15 km (Fig. 14e), we do observe in more detail
how the amplitudes of the modelled traces weaken at depths
around z = 0.66 km – 0.7 km compared with the migrated
trace. This could result from minor changes in illumination
affecting different parts of the target area.

Illumination effects are also captured well by the mod-
elled images for target 3, whether through the use of one PSF
(Fig. 15) or two PSFs (Fig. 16). Target 3 is characterized by
two primary reflectors, with a fault crossing the layer between
the reflectors. The fault is not imaged in the migrated image
(Fig. 15a) due to lack of illumination. This is also captured
through PSF convolution modelling using both wave-based
and ray-based PSFs (Fig. 15c–d and Fig. 16c–d). As such, this
illustrates how PSF convolution modelling may properly ac-
count for limited illumination of dipping geological features
such as faults, even when the latter have an elastic impedance
contrast across.

Resolution effects

Differences in resolution between the migrated and modelled
images are primarily observed at target 3, which is character-
ized by high-velocity contrasts. No discernible differences in
resolution are observed for targets 1 and 2, but for target 1
we notice that the wave-based traces plotted in Figure 13(e, f)
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Figure 13 Results obtained for target 1 from (a) RTM; (b) input reflectivity grid; (c) wave-based PSF convolution modelling; (d) ray-based PSF
convolution modelling. (e) Traces obtained at x = 2.45 km from migrated and modelled results (yellow line marked (e) in Fig. 13b). (f) Traces
obtained at x = 2.73 km from migrated and modelled results (yellow line marked (f) in Fig. 13b). The horizontal dashed lines in (e) and (f)
represent exact reflector positions

align slightly closer to the traces obtained from the migrated
image than the ray-based traces do. As illustrated in Figure 8
for the homogeneous case, this might be a result of the shal-
lowness of the target. The lack of curvature effects captured by
the ray-based PSFs may also yield slightly different responses.
At target 2, the traces obtained from wave-based and ray-
based convolution (Fig. 14e, f) are almost identical and over-
all align better than for the shallower target 1, indicating that
the greater target depth leads to less divergence between the
wave-based and ray-based PSFs.

For target 3, however, we observe that the lower reflec-
tor, representing the intrusion boundary, suffers from slightly
worse resolution in the migrated image (Fig. 15a) than in the
modelled images (Fig. 15c–d). This is not surprising as the
single PSFs used for convolution modelling in Figure 15(c, d)
were estimated at the centre of the target area, located above
the intrusion boundary. The lower velocity here yields PSFs
with greater resolution than a PSF estimated at, or below,
the boundary. By comparing traces extracted at x = 1.61 km
(Fig. 15f), we do notice how the resolution of the migrated
trace deviates from the modelled traces at the lower reflector.
In order to mitigate this issue, multiple PSFs may be used to
capture the spatial variability of the PSFs at the target. As il-
lustrated in Figure 16(c, d),we indeed observe that when a sec-

ond PSF is estimated below the intrusion boundary and used
for convolution with the lower part of the reflectivity grid, the
combined image obtained from the two PSF convolutions bet-
ter capture the resolution observed in the migrated image. This
is also evident if we compare the traces plotted in Figure 16(f).
What is of note is that the traces obtained from wave-based
and ray-based PSFs overlap almost perfectly (Fig. 16e, f), indi-
cating that both methods yield approximately identical results
at this target.

Amplitude effects

The use of a single PSF convolution operator may, in some
cases, not fully capture amplitude effects caused by transmis-
sion loss. For target 1, we notice that the loss of energy of the
transmitted wave across the main reflector results in slightly
greater amplitude contrast between the reflectors in the mi-
grated image (Fig. 13a) compared with the modelled images
(Fig. 13c–d). As the modelled images were obtained by con-
volving only one PSF with the input target reflectivity grid,
this transmission effect is not accounted for. This is also ob-
served in the traces obtained at x = 2.45 km (Fig. 13e). We
observe here that the modelled traces, whether a wave-based
or ray-based PSF is applied, indeed deviate slightly from the
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Figure 14 Results obtained for target 2 from (a) RTM; (b) input reflectivity grid; (c) wave-based PSF convolution modelling; (d) ray-based PSF
convolution modelling. (e) Traces obtained at x = 2.15 km from migrated and modelled results (yellow line marked (e) in Fig. 14b). (f) Traces
obtained at x = 2.33 km from migrated and modelled results (yellow line marked (f) in Fig. 14b). The horizontal dashed lines in (e) and (f)
represent exact reflector positions

migrated trace in terms of amplitude. The same phenomenon
is observed for target 3 and is particularly evident in the trace
obtained at x = 1.61 km (Fig. 15f). When two PSFs are used,
this problem is mitigated (Fig. 16f).

Amplitude differences between migrated and modelled
images could also, in general, be caused by migration arte-
facts, interference issues and/or wave-energy originating from
other parts of the model outside the considered target area.
Such effects may not be fully captured by the (local) PSF con-
volution operators. The amplitude dimming observed in the
part of target 2 highlighted by the yellow box in Figure 14(c,
d) could, in addition to illumination sensitivity at the target,
be explained by this phenomenon. Sharp boundaries in areas
with high-velocity contrasts are prone to migration artefacts,
and we do also notice for target 3 that the migrated image
(Fig. 15a) appears to suffer from such artefacts at the diffrac-
tion point where the intrusion boundary begins to dip.

We further notice that, although most traces at all tar-
gets match well in terms of peak and trough locations, some
deviances between the migrated and modelled traces are ob-
served. Examples include the lower reflector in Fig. 14f (tar-
get 2) and the lower reflector in Figures 15(f) and 16(f) (tar-
get 3). This is most likely attributable to slight misalignments
of reflector locations in the PSDM image, resulting from the

smoothing of the velocity model prior to back-propagation of
the wavefield in the RTM algorithm.

DISCUSS ION

The presented study illustrates the potential of target-oriented
point-spread function (PSF) convolution modelling as a tool
for simulating prestack depth-migrated (PSDM) images. For
targets characterized by low-velocity contrasts, the use of one
PSF estimated at the centre of the target area may be suf-
ficient, thereby reducing computational cost. The cost may,
however, still be significant if a wave-based approach is ap-
plied for PSF estimation. An alternative option is therefore to
employ ray-based PSFs provided that the ray approach itself
does not break down due to caustics, multipathing, etc. While
the estimation of the wave-based PSFs in the BP Statics Bench-
mark Case required approximately ten hours of computation
time on a standard workstation (3.40 GHz Intel core), the ray-
based PSFs were estimated in approximately 20 seconds on the
same workstation.

Our findings illustrate that images obtained through
PSF convolution modelling, whether we apply a wave-based
or ray-based PSF, accurately capture most illumination, res-
olution and amplitude effects observed in PSDM images.
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Figure 15 Results obtained for target 3 from (a) RTM; (b) input reflectivity grid; (c) wave-based PSF convolution modelling; (d) ray-based PSF
convolution modelling. (e) Traces obtained at x = 1.41 km from migrated and modelled results (yellow line marked (e) in Fig. 15b). (f) Traces
obtained at x = 1.61 km from migrated and modelled results (yellow line marked (f) in Fig. 15b). The horizontal dashed lines in (e) and (f)
represent exact reflector positions

Amplitude effects such as migration artefacts, interference is-
sues and wave-energy originating from outside a selected tar-
get area may, however, be challenging to capture. Future stud-
ies could assess possible approaches for capturing such effects
in the PSF operators.

Regarding the PSF operators themselves, we observed
that simulated PSDM images obtained via wave-based or ray-
based PSFs were virtually indistinguishable for the applied
synthetic models. The present study thus suggests that when
PSF convolution modelling is applied for target-oriented seis-
mic modelling, especially addressing the needs in, e.g. seis-
mic interpretation, divergence effects between a wave-based
and ray-based approach may be negligible. As such, ray-based
PSFs may indeed offer an efficient and flexible alternative to
wave-based PSFs given the very low computational cost in-
volved. This is also confirmed from the analysis of the derived
governing equations. However, as the derived equations only
consider a 2D homogeneous isotropic medium, we acknowl-
edge that further studies are required for more thorough as-
sessments of how valid these findings are for complex cases.
Furthermore, although the obtained results from the selected
target areas of the BP Statics Benchmark model used in this
study were found to be similar, other complex models with
different geological challenges may yield greater divergence.

For more accurate seismic modelling, further refinements
may be considered. One possibility is to include effects caused
by anisotropy in the PSFs (Lecomte and Kaschwich, 2008).
Another possibility is to include a more precise description on
how the range of incidence angles impacts reflectivity, such as
observed in amplitude versus offset (AVO)/amplitude versus
angle (AVA) studies. Resolution of a target area of interest is
determined by the combined effects of angle-dependent reflec-
tivity and angle-dependent illumination/resolution (Lecomte,
2008). Future studies may therefore provide more accurate as-
sessments of how the modelled amplitudes match migrated
amplitudes without resorting to normalization, and which
calibration strategies are most effective. Furthermore, the
plane-wave assumption inherent in the ray-based PSF may be
extended to a parabolic assumption to better capture curva-
ture effects present in migrated images and wave-based PSFs
(Gelius et al., 2002b). For the near-field, higher-order parax-
ial ray theory could also be applied for more precise wave-
front approximations. Yet another possibility is to design PSFs
for elastic modelling with PS-converted waves. This exten-
sion is straightforward as it merely involves applying a scal-
ing factor to the individual scattering wavenumber vectors in
the wavenumber domain (Gelius et al., 2002a). Such an ap-
proach could be useful to assess improvements in the imaging
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Figure 16 Results obtained for target 3 from (a) RTM; (b) input reflectivity grid; (c) wave-based PSF convolution modelling with PSFs, marked
with stars, estimated at (x, z) = (1.59 km, 0.79 km) and (x, z) = (1.67 km, 1.01 km); (d) ray-based PSF convolution modelling with PSFs,
marked with stars, estimated at same coordinates as in (c). (e) Traces obtained at x = 1.41 km from migrated and modelled results (yellow
line marked (e) in Fig. 16b). (f) Traces obtained at x = 1.61 km from migrated and modelled results (yellow line marked (f) in Fig. 16b). The
horizontal dashed lines in (e) and (f) represent exact reflector positions

of small-scale features, as the lower S-velocities would yield in-
creased resolution, though the latter is often counterbalanced
by higher attenuation effects.

Furthermore, the 2D PSF convolution approach analysed
in this study is easily extendable to 3D models as well, with
only a marginal increase in the computational cost. Several
studies already document the potential of applying ray-based
PSFs for simulating PSDM images of complex 3D geology (e.g.
Lecomte, 2008; Lecomte et al., 2015; Jensen et al., 2021). Due
to the reduced cost, simulation of 3D PSDM images may be
obtained quickly on detailed models with significantly denser
sampling than what FD approaches may allow. As such, flex-
ible sensitivity studies of how various model parameters (ge-
ology, petrophysical properties) and seismic parameters (illu-
mination, survey geometry etc.) affect seismic images may be
performed. For this study, our limitation to simpler 2Dmodels
was motivated from our need to compare the ray-based results
to results obtained via costly wave-based approaches. How-
ever, further validation studies aimed towards 3D migrated
data should be a potential future area of study.

In addition to improving the validity of PSF convolution
modelling as a forward modelling approach, the abovemen-
tioned suggestions for future studies can also improve the

application of PSFs as deconvolution operators. Even just
a partial deconvolution of a migrated image may yield a
substantial saving of computation time prior to, for instance,
least-squares RTM (Aoki and Schuster, 2009). The speed in
which ray-based PSFs can be designed may allow for efficient
and flexible adjustments of the needed parameters, and fur-
ther refinements are therefore desired for improved accuracy
and validity. Overall, the choice of method is especially related
to the application and data/method available. If one has full
access to, and control of, the migration parameters, a wave-
based PSF might be a better choice due to the guaranteed
accuracy. However, when exact migration parameters are not
available, ray-based approaches provide an easy, cheap and
flexible alternative, providing one has a minimum of infor-
mation about the velocity model and the migration needs.

CONCLUSIONS

Target-oriented point-spread functions (PSFs) used as spatial
convolution operators allow for accurate seismic simulation
of prestack depth-migrated (PSDM) images. Analytical mod-
elling in a homogeneous velocity model based on govern-
ing equations derived for wave- and ray-based PSFs reveals
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negligible differences between PSFs obtained via the two ap-
proaches for the homogeneous case. Further comparisons be-
tween PSF-convolved images and actual PSDM images ob-
tained at selected targets in the BP Statics Benchmark model
suggest that PSF convolution modelling accurately captures
resolution, illumination and amplitude effects observed in mi-
grated images. The results indicate that regardless of whether
the PSFs are estimated through a wave-based or ray-based
approach, the modelled results are usually virtually indistin-
guishable. Some minor divergence may, however, occur at tar-
gets characterized by close proximity between shot point and
target point, high-velocity and/or low-frequency bandwidth,
and at targets where the ray tracing algorithm may not fully
account for amplitude and curvature effects. These effects may
be primarily attributable to the far-field approximation inher-
ent in ray theory. Further quantitative analyses of differences
in PSDM images simulated via wave-based and ray-based PSFs
should assess whether the former approach yields sufficient
improvements to justify the increased cost.
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APPENDIX

In this appendix, we provide more details of the derivation of
(15) and (16). Our starting point is equation (5) for the wave-
based approach:

PSFwave
(
r|r′) =

∫
ω

∫
rg

ω4
∣∣S (ω)

∣∣2G(
ω, rg|r

)∗

G(ω, r|rs)∗G
(
ω, rg|r′

)
G

(
ω, r′|rs

)
drgdω. (A1)

For the ray-based approach, we introduce the high-
frequency approximation of the Green’s function defined in
(11):

G
(
ω, r j|r

) = A
(
ω, r j|r

)
exp

[
iωτ

(
r j|r

)]
, j = s, g. (A2)

Expanding the Green’s function as a Taylor series around
the reference point r′, we obtain, following (12) and derived
from a constant amplitude and a linear phase assumption
within the local volume V0:

G
(
ω, rg|r′

) ∼= G
(
ω, rg|r

) · exp [
iω∇τ

(
rg|r

) · (r′ − r)
]

G (ω, r′|rs) ∼= G (ω, r|rs) · exp [iω∇τ (r|rs) · (r′ − r)] .
(A3)

Using the definition of the wavenumber vector in (13),
and inserting (A3) in (A1) yields

PSFray (r|r′) =
∫
ω

∫
rg

ω4
∣∣S (ω)

∣∣2G(
ω, rg|r

)∗
G(ω, r|rs)∗

G
(
ω, rg|r

)
G (ω, r|rs) exp [iK · (r − r′)] drgdω.

(A4)

From (6) and (9), we see that the phase terms will cancel out
in the analytical Green’s functions for both 3D and 2D media
when multiplied, leaving us with the amplitude terms:

PSFray (r|r′) =
∫
ω

∫
g

ω4
∣∣S (ω)

∣∣2A(
ω, rg|r

)∗
A(ω, r|rs)∗

A
(
ω, rg|r

)
A (ω, r|rs) exp [iK · (r − r′)] drgdω .

(A5)

Using the complex conjugate relation A A∗ = |A|2 , we
get

PSFray (r|r′) =
∫
ω

∫
g

ω4
∣∣S (ω)

∣∣2 ∣∣A (
ω, rg|r

) |2∣∣A (ω, r|rs) |2

× exp [iK · (r − r′)] drgdω.

(A6)

This represents the ray-based approach under the as-
sumption of an adjoint operator given by LT . From (14), we
may, at this point, under the assumption that the wavefield
phase varies significantly faster than the wavefield amplitude
within the local volume of interest, and that the PSF is normal-
ized with respect to reflectivity, apply a more accurate approx-
imation of the inverse L operator (Gelius et al., 1991; Gelius,
1995):

L−1 = J
[
K|ω, rg

]
ω4

∣∣S (ω)
∣∣ ∣∣As

∣∣2∣∣Ag

∣∣2 LT . (A7)

Inserted in (A6), this yields expression (15) in the main
body of the paper:

PSF ray (r|r′) =
∫
K

|S (ω)| exp [iK · (r − r′)] dK, (A8)

where dK = J(K|ω, rg)dωdrg is the Jacobian that maps be-
tween the Fourier-transformed model (scattering wavenum-
ber) and the acquisition domain as illustrated in Figure 1.
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In order to obtain (16) valid for a homogeneous 2D
medium, we may first rewrite (A8):

PSFray(r|r′) =
∫
K

∣∣S (ω)
∣∣

× exp
[
iω
c0

(
Rs (r) + Rg (r) − Rs

(
r′
) − Rg

(
r′
))]

dK. (A9)

We now define

φ
(
rs, rg, r

) = ω

c0

[
Rs (r) + Rg (r)

]
. (A10)

To retrieve the solution in the acquisition domain
for a single shot, we apply the Jacobian transform dK =
J(K|ω,xg)dωdxg, where from (13) and (A10) we obtain

J
(
K|ω,xg

) = ω

∣∣∣∣∣∣∣∣

∂2φ

∂x∂ω

∂2φ

∂z∂ω
∂2φ

∂x∂xg

∂2φ

∂z∂xg

∣∣∣∣∣∣∣∣
. (A11)

The computed Jacobian then becomes, using (A10), (A11)
and the parameters from Figure 1:

J
(
K|ω, xg

) = ω2
∣∣(z − zg

) (
x − xg

)∣∣ ∣∣(x − xs )Rg (r) − (
xg − x

)
Rs (r)

∣∣
c20Rs (r) · Rg(r)4

+ω2
(
z − zg

)2 · ∣∣(z − zs )Rg (r) − (
zg − z

)
Rs (r)

∣∣
c20Rs (r) · Rg(r)4

(A12)

Inserting into (A9) then finally yields the analytical solu-
tion expressed in (16).
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