
Deep learning-based cross-sensor super resolution of

satellite images

Multispectral-to-panchromatic single-image super resolution of GeoEye-1

satellite images using an ESRGAN deep learning model trained exclusively

on WorldView-2 images

Master’s thesis in Statistics

Øystein Helle Nordberg

Supervisor

Hans Karlsen

Department of Mathematics

University of Bergen

November 2021

Results on the GeoEye-1 test set
The images are intended to be viewed on a high resolution monitor.

Figure 1: La Spezia 2013-07-18, Satellite image © 2021 Maxar Technologies

Figure 2: Toulon 2010-06-08, Satellite image © 2021 Maxar Technologies

Figure 3: Toulon 2017-09-05, Satellite image © 2021 Maxar Technologies

See Appendix A and B for additional images.

Abstract

Today, easy and abundant access to high resolution satellite imagery is taken for granted by

consumers and businesses. Many remote sensing applications require optical images with a

spatial resolution of 0.5 meters ground sampling distance (GSD) or less, but satellites that

capture such high resolution images require heavy optical instruments, and are thus expensive

to manufacture and launch. Consequently there are only a handful of such commercial satellites

in orbit. WorldView-2 and GeoEye-1 are two of them. They both capture multispectral (MS)

bands with a GSD of approximately 2 meters, as well as a matching panchromatic (PAN) band

with a 4× higher resolution, a GSD of about 0.5 meters.

Miniaturization have enabled cheaper satellites, and has made it commercially viable to

launch and maintain large constellations of nanosatellites. While plentiful, their sensors are

not as capable as their larger counterparts. Their MS bands typically have a GSD of around

3-5 meters, and they do not capture a PAN band whatsoever. This limits their applications.

The question then arises: Can we increase the spatial resolution of the nanosatellites through

post-processing of the images? Single image super-resolution models, tasked to recover a high

resolution (HR) image from a single lower resolution (LR) image, are designed to do this.

We modify and apply one of the highest performing deep learning SISR models, ESRGAN,

to estimate an HR PAN band from a set of LR MS bands (4× increase in resolution). The model

is trained on images taken by WorldView-2 and evaluated on images taken by both WorldView-

2 and, most interestingly, GeoEye-1, a different satellite. We thus demonstrate an ability to

construct an artificial HR PAN band from the MS bands of a satellite, without training on

images from that particular satellite, i.e., a cross-sensor application of SISR. This opens up the

possibility to construct an artificial HR PAN band for the aforementioned nanosatellites, and we

suggest this topic as an area for further research.

An added benefit of the MS-to-PAN design is that we avoid having to downsample (degrade)

HR images into LR images as a preprocessing step, since the MS/PAN image pair is already

an LR/HR image pair. Consequently, our model performance is not reliant on any particular

downsampling method.

Acknowledgements

I would like to thank my supervisor Hans Karlsen for his continuous support, advice, encour-

agement, and for giving me the freedom to explore a topic relevant to my personal interests and

professional background. In addition, his support in providing me with the necessary compute

hardware to run my experiments was essential. I would also like to thank Sondre Hølleland for

his excellent technical assistance with setting up the necessary compute environment.

A special thanks to Aksel Wilhelm Wold Eide, Ingebjørg Kåsen, Eilif Solberg and Ole A.

Øverland at the Norwegian Defence Research Establishment (FFI), for both suggesting the topic

of the thesis, providing me with the satellite imagery data and for their continuous support and

advice throughout the process. Also, a thank you to Ingrid Byre in the Norwegian Armed Forces

for assisting me with copyright matters.

My passion for satellite imagery was sparked during my time in the Norwegian Armed Forces.

Thank you to my former colleagues and teachers who helped spark this interest, and provided

me with the necessary foundational knowledge of satellite imagery.

Finally, a very special thank you to my wonderful partner and role model, Hege, and my

joyful and inspiring son, Eirik. Hege’s professional and personal support with both the thesis

and the Master’s degree in general has been invaluable.

Contents

1 Introduction 9

1.1 Multispectral satellite images . 9

1.2 Single image super-resolution (SISR) and the perception-distortion plane 10

1.3 SISR applied to satellite images . 12

1.4 Research questions . 12

1.5 Method . 13

1.6 Outline of thesis . 13

I Background 15

2 Multispectral satellite imagery 17

2.1 WorldView-2 and GeoEye-1 . 18

2.1.1 The sun-synchronous orbit . 20

2.2 Four types of resolution . 21

2.2.1 Spatial resolution . 21

2.2.2 Spectral resolution . 23

2.2.3 Temporal resolution . 24

2.2.4 Radiometric resolution . 25

2.3 Processing of satellite images . 25

3 Deep learning 27

3.1 A machine learning model . 27

3.1.1 The task, T . 28

3.1.2 The experience, E . 28

3.1.3 The performance measure, P . 28

3.2 A single neuron . 29

3.3 Densely connected networks . 30

3.4 The forward pass . 31

v

CONTENTS vi

3.5 The activation function . 32

3.6 The loss function . 33

3.7 Training the network . 34

3.8 Back-propagation: Computing the gradient . 35

3.9 Stochastic Gradient Descent: Updating the weights 36

3.9.1 The Adam optimizer: Adaptive moments 37

3.10 Convolutional layers . 38

3.10.1 Zero padding . 40

3.11 Building and representing a network . 40

3.11.1 Building a network in TensorFlow . 42

3.12 Generative Adversarial Networks (GAN) . 43

4 Single image super-resolution (SISR) 47

4.1 Perceptual quality and the perception-distortion plane 48

4.2 SISR performance metrics . 48

4.2.1 Peak Signal-to-Noise Ratio (PSNR) . 50

4.2.2 Natural Image Quality Evaluator (NIQE) 52

4.2.3 Ma et al. 52

4.2.4 Perceptual Index (PI) . 53

4.3 ESRGAN . 53

4.3.1 ESRGAN loss functions . 55

4.3.2 ESRGAN Generator . 57

II Experiments on satellite imagery 59

5 Experimental design 61

5.1 The data: Two Mediterranean towns . 62

5.1.1 Introducing Toulon and La Spezia . 63

5.1.2 Data partition: training, validation and test sets 65

5.1.3 Temporal correlations . 66

5.2 The experiments . 67

5.2.1 E1. The baseline experiment . 67

5.2.2 E2. The regularization experiment . 68

5.2.3 E3. The final evaluation . 69

5.3 Training, logging and evaluation . 69

CONTENTS vii

5.3.1 Computing NIQE, Ma et al., and Perceptual Index (PI) metrics 70

5.4 Adapting ESRGAN to the MS-to-PAN task . 71

5.4.1 Changes to the network architecture . 71

5.4.2 Changes to the training configurations . 72

6 Data pipeline 75

6.1 Image patches and the fully-convolutional neural network 76

6.2 Step 1: Patch allocation . 77

6.3 Step 2: Patch extraction . 78

6.3.1 Border pixels . 78

6.3.2 Cloud and sea classifier . 79

6.4 Step 3: Patch pipeline . 80

6.4.1 Normalization . 81

7 Results 83

7.1 E1. The baseline experiment . 83

7.1.1 GeoEye-1 performance . 85

7.1.2 Are we overfitting? . 86

7.2 E2. The regularization experiment . 88

7.2.1 The best models . 90

7.3 E3. The final evaluation – Test set . 91

8 Conclusion 95

8.1 Ideas for future research . 95

8.1.1 Apply SISR to satellite images without a PAN band 96

8.1.2 Develop alternative performance metrics 96

8.1.3 Generalize beyond two towns and a temporal dataset 97

8.1.4 Train on less processed images . 97

Bibliography 97

A Random patches from the GeoEye-1 test set 107

B Random patches from the WorldView-2 test set 113

C Satellite image metadata 119

Nomenclature

Terms, abbreviations and acronyms

Adam An SGD-like optimizer (Kingma & Ba, 2014)

BN Batch Normalization

CCD Charge-Coupled Device

CNN Convolutional Neural Network, used interchangeably with ConvNet

ConvNet Convolutional Neural Network, used interchangeably with CNN

DCGAN Deep Convolutional Generative Adversarial Network, a GAN model by Radford

et al., 2016

DigitalGlobe A US satellite imagery company, acquired by Maxar in 2017

ECCV European Conference on Computer Vision

ERTS Earth Resource Technology Satellite, a 1972 NASA satellite later renamed Land-

sat 1

ESA European Space Agency

ESRGAN Enhanced Super-Resolution Generative Adversarial Network, a deep learning

SISR model by X. Wang, Yu, Wu, et al., 2018

FFI Norwegian Defence Research Establishment

FR Full-Reference, a type of IQA

GAN Generative Adversarial Network

GE01 GeoEye-1 satellite

GeoTIFF TIFF with additional geospatial metadata

GSD Ground Sample Distance

HR High Resolution

IQA Image Quality Assessment

L1 L1 loss

L2 L2 loss

Landsat A joint NASA/USGS satellite program

LR Low Resolution

1

NOMENCLATURE 2

Ma et al. A SISR specific IQA algorithm. The name refers to the authors of the paper

that introduced the algorithm (Ma et al., 2017)

MAE Mean Absolute Error

MATLAB A programming language and compute environment

Maxar Maxar Technologies, a US space technology company

MOS Mean Opinion Score

MS Multispectral

MSE Mean Squared Error

MSS Multispectral Scanner, an instrument carried by Landsat 1-5

Nadir The direction pointing directly below a particular location

NASA National Aeronautics and Space Administration

NGA US National Geospatial-Intelligence Agency

NIQE Natural Image Quality Evaluator, an IQA algorithm (Mittal et al., 2013)

NIR Near-infrared, sub-division of the electromagnetic spectrum.

NR No-Reference, a type of IQA

PAN Panchromatic

PI Perceptual Index, an IQA metric

PIRM Perceptual Image Restoration and Manipulation, a workshop in ECCV

Planet Planet Labs, a US space technology company, strongly associated with nanosatel-

lite imagery

PSNR Peak Signal-to-Noise Ratio

RaGAN Relativistic average GAN (Jolicoeur-Martineau, 2018)

ReLU Rectified Linear Unit, a common activation function

RGB Red, Green, Blue, a color model

RRDB Residual-in-Residual Dense Block

Sentinel A family of ESA satellites in the Copernicus program

SGD Stochastic Gradient Descent

Sigmoid Sigmoid function, an S-shaped function commonly used as activation function

SISR Single-Image Super Resolution

SR Super Resolution

SRCNN Super Resolution Convolutional Neural Network, a deep learning SISR model by

Dong et al., 2016

SRGAN Super-Resolution Generative Adversarial Network, a deep learning SISR model

by Ledig et al., 2017

NOMENCLATURE 3

SSO Sun-Synchronous Orbit

tanh Hyperbolic tangent function, an S-shaped function commonly used as activation

function

Tensor In this thesis defined to be a multidimensional array, i.e., a generalization of

matrices to higher orders (Bi et al., 2021; Kolda & Bader, 2009)

TensorFlow Open source machine learning library

TIFF Tag Image File Format

ULA United Launch Alliance, a US spacecraft launch service provider

USGS United States Geological Survey

VGG19 Visual Geometry Group (19 layer version), a deep convolutional image classifier

by Simonyan and Zisserman, 2015

WV02 WorldView-2 satellite

Notation

a A scalar

a A vector

A A tensor or matrix. See Tensor above for definition.

ai,j Row i, column j of a matrix A

f(·) A function

R The real numbers

a> The transpose of a

‖a‖p p-norm of a vector a

X Input features tensor or matrix, i.e., model input

Also denoted x if vector shaped

y Ground truth

Also denoted y or Y depending on its shape

e Residuals

ŷ Estimate of the ground truth y, i.e., model output

Also denoted y or Ŷ depending on its shape

W Trainable weights and biases in a neural network

W(k) The weights and biases of layer k in a neural network

L(ŷ,y) Loss function, often simply denoted L

∇WL Gradient of the loss function, L, with respect to the weights, W

ĝ Gradient estimate

NOMENCLATURE 4

η Learning rate

g(·) Activation function

T The Task of a machine learning algorithm

E The Experience of a machine learning algorithm, i.e., how the model learns from

data

P The Performance measure of a machine learning algorithm

G The Generator in a GAN

D The Discriminator in a GAN

XLR One or multiple low resolution (LR) images.

Satellite imagery context: XLR = XMS , the multispectral bands.

Either a 3D or 4D tensor:

HLR ×WLR × C (3D)

N ×HLR ×WLR × C (4D)

XHR One or multiple high resolution (HR) images.

Satellite imagery context: XHR = XPAN , the panchromatic band.

Either a 3D or 4D tensor:

HHR ×WHR × C (3D)

N ×HHR ×WHR × C (4D)

If the HR image is the panchromatic band, then C = 1

XSR One or multiple super-resoluted (SR) images. Estimate of XHR

Either a 3D or 4D tensor:

HHR ×WHR × C (3D)

N ×HHR ×WHR × C (4D)

If the SR image is the panchromatic band, then C = 1

List of Figures

1.1 WorldView-2 multispectral and panchromatic bands 9

1.2 The perception-distortion plane . 11

2.1 1976 M satellite image of the Bergen, Norway area 17

2.2 WorldView-2: Schematic overview of the main components 19

2.3 A satellite capturing both nadir and off-nadir images (Maxar, 2019a, 2019c) . . . 20

2.4 A syn-synchronous orbit . 20

2.5 A push broom scanner . 22

2.6 Focal plane layout of WorldView-2 . 22

2.7 Relative spectral radiance response for WorldView-2 and GeoEye-1 satellites . . . 24

3.1 The use of training, validation and test sets during model selection and the final

estimation of model performance. 29

3.2 A single artificial neuron . 29

3.3 A densely connected feedforward neural network 30

3.4 Comparison of some of the most common activation functions 32

3.5 Backpropagation in a densely connected feed-forward neural network 35

3.6 SGD with and without momentum . 37

3.7 2D convolutions . 40

3.8 Zero padding . 41

3.9 A small convolutional neural network . 42

3.10 Standard GAN architecture . 44

4.1 Overview of relevant SISR performance metrics 49

4.2 Scatter plots comparing PSNR and Ma et al. with MOS 50

4.3 The main steps of the Ma et al. performance measure 52

4.4 A standard GAN architecture applied to SISR . 53

4.5 GAN training of ESRGAN on the MS-to-PAN task 54

4.6 Deep feature extraction from a trained VGG19 network 55

5

LIST OF FIGURES 6

4.7 The ESRGAN Discriminator Network with RaGAN 56

4.8 The ESRGAN Generator Network . 57

5.1 Experimental design . 61

5.2 Satellite images of Toulon and La Spezia . 63

5.3 Distribution of image sizes . 64

5.4 Image patches of the same location extracted from multiple images 66

5.5 Flips and 90 degree rotations applied to an MS patch 68

5.6 Image patches at different stages of training . 70

6.1 Overview of the data pipeline . 75

6.2 Extraction of paired MS and PAN image patches from larger satellite images . . 76

6.3 Overview of patch extraction process . 78

6.4 Density maps of sampled patches . 79

6.5 Effect of different pipeline optimization techniques 81

7.1 Baseline experiment results summarized on the perception-distortion plane 83

7.2 Comparison of baseline models with different number of MS bands 84

7.3 Scatter plot of m4 individual image patches . 85

7.4 Learning curves: PSNR and NIQE plotted against training iterations in E1 . . . 87

7.5 Regularization experiment results summarized on the perception-distortion plane 88

7.6 Learning curves: PSNR and NIQE plotted against training iterations in E2 . . . 89

7.7 Scatter plot of individual image patches, comparing the baseline m4 with regular-

ized version . 90

7.8 Scatter plot of individual image patches, comparing the regularized m4-os-aug

model on both validation and test set . 91

7.9 GeoEye-1 test set: Comparison between an MS, an ESRGAN estimated and a

PAN ground truth image patch . 92

List of Tables

2.1 Selection and description of some common satellite imagery processing levels . . . 26

5.1 Contingency table with number of images by areas and satellite sensor 64

5.2 Contingency table with number of images in train, validation and test sets across

town and satellite sensor . 65

5.3 Models and band combinations in the baseline experiment (E1). 67

5.4 Configuration and hyperparameter settings . 72

6.1 Different patch sizes for different partitions. C varies across experiments. 77

7

List of Algorithms

3.1 Training a feedforward neural network . 34

3.2 Stochastic gradient descent (SGD) . 36

3.3 Adam optimizer . 38

3.4 GAN . 45

8

Chapter 1

Introduction

1.1. Multispectral satellite images

The design and construction of a camera is a result of many engineering trade-offs. For instance,

we might want our camera to capture images with high spatial resolution and dynamic range,

yet we also want the camera to be small, cheap and robust. Probably nowhere are these trade-

offs more prominent than on optical remote sensing instruments, i.e., satellite-mounted cameras.

WorldView-2 is a so-called very high resolution optical multispectral imagery satellite. It captures

eight multispectral (MS) bands with a spatial resolution of about 2 meters, and one panchromatic

(PAN) band with a four times higher spatial resolution, about 0.5 meters. This is all done from

an altitude of 770 km and a velocity high enough to orbit the Earth in 100 minutes. Optical

requirements are on the extreme end of the spectrum. (Maxar, 2019c)

Figure 1.1: WorldView-2 image with eight MS bands that capture different wavelength ranges across the elec-

tromagnetic spectrum, and one higher-resolution PAN band that captures a single, wider range of wavelengths.

Satellite image © 2021 Maxar Technologies

9

CHAPTER 1. INTRODUCTION 10

WorldView-2 launched into orbit in 2009. Still, there are only a handful of commercial satel-

lites with similar specifications in orbit today. As a consequence, image capturing is prioritized

over areas where customer demand is high. Thus, the temporal resolution, a measure of how

frequently images are captured over a specific area, is low across large portions of the Earth.

Years may pass between each time satellites like WorldView-2 capture an image of a low demand

area. (E. O. P. ESA, 2021b; Maxar, 2019b)

Miniature satellites have become increasingly popular. Their optical instruments are not

as capable as their heavier counterparts, but unit costs are orders of magnitude smaller. Con-

sequently, companies can launch and maintain large constellations of these smaller satellites.

Planet Labs, the largest player in the miniature optical imagery satellite space, maintains a

constellation of over 200 satellites with a goal to capture the entire surface of the Earth every

day. Their Dove nanosatellite is about as big as a shoe box and weigh around 4 kilograms. The

trade-off is a comparably lower spatial resolution, about 3-5 meters for its four MS bands, and

no PAN band whatsoever. (Planet, 2021)

Users of commercial satellite imagery are thus often left with a trade-off between spatial and

temporal resolution. Can this trade-off be reduced through post-processing of images? Can the

spatial resolution of satellite images be increased after the image has been captured?

1.2. Single image super-resolution (SISR) and the perception-distortion plane

Single image super-resolution (SISR), a classic computer vision problem, is the task of estimating

a high-resolution (HR) image from a single lower-resolution (LR) image. It is inherently difficult,

and considered an ill-posed, inverse problem, since for every LR image input there exists multiple

HR image solutions. Ever since the pivotal work of Dong et al., 2016 and their SRCNN model,

deep learning methods have dominated SISR. Dong et al. showed that a convolutional neural

network (CNN) was equivalent to several of the leading SISR methods at the time. (Ledig et al.,

2017)

The next big advancement in deep learning-based SISR came with SRGAN (Ledig et al.,

2017). Until then, most SISR models had focused on minimizing the distortion between the SR

image and the ground truth HR image. Distortion between two images are usually measured

with the peak-signal-to-noise (PSNR) metric, a derivative of the well-known mean squared error

(MSE). SR images produced by these models were blurry and easily distinguishable from the

ground truth by humans. The images had low perceptual quality. Ledig et al., 2017 combined

and implemented a few different techniques, including the use a generative adversarial network

(GAN) design (I. J. Goodfellow et al., 2014), to motivate the model into producing more photo-

CHAPTER 1. INTRODUCTION 11

realistic outputs, i.e., SR images with higher perceptual quality.

Figure 1.2: The perception-distortion plane illustrating the trade-off between perceptual quality and distortion.

It was however evident that a trade-off between high perceptual quality and low distortion

existed. SR images could not both have high perceptual quality and low distortion, and we may

depict this as a boundary on a perception-distortion plane (see Figure 1.2). Real images often

consist of sharp edges and high-frequency details. Models that favor high perceptual quality have

to be more aggressive in predicting such details, often resulting in penalties by distortion-type

metrics like PSNR. We may illustrate this with checkerboard image example. A model that

favors high perceptual quality will try to estimate sharp edges between black and white squares.

Still, if the model misses with just one pixel in any direction it will receive a low PSNR score.

Lots of pitch black pixels should have been chalk white, yet humans will probably not notice this

one-pixel shift. (Blau & Michaeli, 2018; Vasu et al., 2018)

In 2018, a competition, the PIRM Challenge on Perceptual Super-Resolution (Blau et al.,

2019), challenged participants to push the boundaries of the perception-distortion trade-off.

Enhanced SRGAN (ESRGAN), a modified and evidently improved version of SRGAN, emerged

as one of the winners.1 Naturally, better performing models have been published since 2018

(Blau et al., 2019; Ma et al., 2020; Soh et al., 2019). However, amongst models that favor

high perceptual quality over distortion, GAN-based models still dominate and most share many

similarities with SRGAN and ESRGAN.
1In the challenge, the perception-distortion plane was divided into three regions. ESRGAN won first place in

the high-perceptual-quality region.

CHAPTER 1. INTRODUCTION 12

1.3. SISR applied to satellite images

There has been some research into SISR on satellite images. Many have focused on super-

resoluting images beyond their native spatial resolution. HR images are downsampled into

LR, and models are trained on the resulting LR-HR image pairs. After training, the models

are subsequently fed HR images instead of LR images, outputting SR images with a higher-

than-native spatial resolution. Shermeyer and Van Etten, 2019 showed that object detection

models performed better on super-resoluted 15 cm imagery than on the native 30 cm imagery.

Additionally, Maxar have recently productized this approach with their Maxar HD Technology

(Gleason, 2020).

Others have focused on the multispectral aspects of satellite imagery. Lanaras et al., 2017

apply SISR to Sentinel-2 images. Images taken by the Sentinel-2 satellite has MS bands with

varying spatial resolution, and their SISR model super-resolve all bands equal to the highest

resolution band: 10 meters GSD. Müller et al., 2020 takes advantage of the relationship between

the lower resolution MS bands and the higher resolution PAN band. Pan-sharpening, a widely

used deterministic technique to fuse MS and PAN bands into a single HR image, is used to create

HR versions of the MS images. They subsequently train different SISR models on pairs of LR

MS images and 4× HR pan-sharpened images.

To our knowledge there is almost no publicly available research into training a SISR model on

images from one satellite and applying it to images from another satellite. A notable exception

is the work done by Pouliot et al., 2018. They demonstrate the ability to train SISR models

on images from Sentinel-2 and apply the model to images taken by Landsat-5 and Landsat-8.

However, they limit their research to SRCNN

Evidently, there is a general lack of research into super-resolving images from one satellite by

training on images from another. This is an area that warrants more attention, especially due

to the potential benefits from increasing the spatial resolution of nanosatellites.

1.4. Research questions

The overall goal in this thesis is to determine whether a SISR model can be trained to estimate a

higher-resolution PAN band from lower-resolution MS bands. Furthermore, we want to explore

whether this model can be used to super-resolve images taken by a different satellite. With this

background we formulate our research questions. Using ESRGAN as our SISR model we explore

the following topics:

R1: To what extent can the higher-resolution 0.5 m GSD PAN band be reconstructed from the

CHAPTER 1. INTRODUCTION 13

lower-resolution 2.0 m GSD MS bands?

R2: To what extent can the model trained on images from satellite A be used to super-resolute

images from a similar satellite B?

R3: Can we increase performance by introducing regularization, in the form of data augmen-

tation and over-sampling of patches from the satellite images? If so, by how much?

1.5. Method

We run a set of experiments on satellite images of the French town of Toulon and the Italian town

of La Spezia. The images have been captured by Maxar satellites WorldView-2 and GeoEye-1,

two satellites with somewhat similar image characteristics. Both capture a number of MS bands,

eight in the case of WorldView-2 and four in the case of GeoEye-1, with a similar spatial resolution

of around 2 meters GSD. Both also capture a matching PAN band with a spatial resolution of

around 0.5 meters GSD, a 4× increase in resolution compared to the MS bands. Still, the

satellites are different. In fact they were designed and operated by two different companies prior

to a merger between GeoEye and DigitalGlobe (now Maxar) in 2013.

Why GeoEye-1 as satellite B? Why not choose a satellite with no PAN band? That would

directly demonstrate the utility of our approach. The answer is simply that with the lack of prior

research on cross-sensor SISR of satellite images, we see a need to first evaluate performance on

a test set that has a ground truth PAN band. While it is possible to use so-called no-reference

image quality metrics to assess the quality of a super-resolved image, without a reference ground

truth image, it is much harder to reach a conclusion based on such metrics. In Chapter 8 we

suggest building on the findings of this thesis and apply SISR to a satellite without the PAN

band.

1.6. Outline of thesis

The thesis is divided into two main parts: Background and Experiments. Background starts

with an introduction to multispectral satellite imagery. We then proceed with a chapter on deep

learning and how neural networks are trained, covering topics such as loss functions, backpropa-

gation and optimizers to name a few. Background is concluded with a chapter on SISR covering

the ESRGAN network and the performance measures used to evaluate models.

In the Experiments part we present the data and methods used to answer the research

questions. We also dedicate a chapter to the custom data pipeline developed to support efficient

training. Finally, experiment results are presented, discussed, and the thesis concludes with

pointing to ideas for future research.

CHAPTER 1. INTRODUCTION 14

We also encourage the reader to check out the project’s GitHub repository.2 A large portion

of the work behind this thesis have gone towards modifying and implementing the ESRGAN

model in TensorFlow 2, implementing a performant TensorFlow data pipeline decoding satellite

images and feeding the model with appropriately shaped tensors, and finally getting the whole

GAN machinery to train consistently, without loss divergence.

In addition, there are four appendices. Appendix A and Appendix B contain results from

randomly sampled image patches from the test set. They provide an unfiltered view of actual

image results on unseen data, and we actually recommend taking a look at these now before

proceeding with the rest of the thesis. Finally in Appendix C we provide a full list of satellite

images used.

2https://github.com/onordberg/multispectral-super-resolution

https://github.com/onordberg/multispectral-super-resolution

Part I

Background

15

Chapter 2

Multispectral satellite imagery

Multispectral satellite imagery was introduced to the research community with the launch of the

NASA Earth Resource Technology Satellite (ERTS) in 1972, later renamed Landsat 1. ERTS

carried two sensing instruments, of which the Multispectral Scanner (MSS) became the primary

instrument. It captured four spectral bands with a spatial resolution of 80 meters and a range

of 6 bits per pixel. An example of such an image can be seen in Figure 2.1. ERTS and MSS

were spectacularly successful, exceeding expectations on both utility and operating lifetime.

(Baghdadi & Zribi, 2016; Mika, 1997)

Figure 2.1: 1976 MS satellite image of the Bergen, Norway area captured by the Landsat 2 MSS sensor (identical

to the Landsat 1 MSS sensor). (USGS, 1976) Landsat 2 image courtesy of the U.S. Geological Survey (USGS)

17

CHAPTER 2. MULTISPECTRAL SATELLITE IMAGERY 18

Unsurprisingly then, the Landsat program is still going strong, with Landsat 7, 8 and 9 cur-

rently in operation. Naturally, their capabilities have improved dramatically since the 1970s, and

together with the European Space Agency’s (ESA) Sentinel satellites, Landsat is the backbone

of free and publicly available satellite imagery. Satellite imagery from these two programs serve a

wide variety of use cases. Examples include mapping, climate research, land cover classification,

forest management, agricultural analyses and disaster response. Yet, the 10-60 meter spatial

resolution (varies between spectral bands) of the Landsat and Sentinel satellites excludes plenty

of use cases, for instance many related to urban analysis and most satellite web map use cases.

Today’s web map users expect a spatial resolution of 0.5 meters or better when they toggle im-

agery on in their web map application. This is where satellites like WorldView-2 and GeoEye-1

from commercial actors like Maxar come into play. (NASA, 2018, 2021b)

Books on multispectral satellite images typically start with a chapter on radiometry, the

science of measuring radiation, covering topics like the electromagnetic spectrum, reflectance,

absorption, polarization, atmospheric distortions, calibrations and corrections. We will touch

upon some radiometric topics throughout this chapter, yet with a focus on specifics related to the

WorldView-2 and GeoEye-1 satellites, as well as relationships between the lower-resolution MS

bands and the higher-resolution PAN band. For a more systematic introduction to radiometry in

the context of multispectral satellite imagery, we refer you to Baghdadi and Zribi, 2016, pp. 1–56.

2.1. WorldView-2 and GeoEye-1

WorldView-2 can trace its commercial origins back to a contract between Maxar, then Digital-

Globe, and the US National Geospatial-Intelligence Agency (NGA), in 2003. Manufacturing of

the actual satellite started in 2006 and it was finally launched into orbit on a United Launch

Alliance (ULA) Delta-2 rocket in 2009. Full operational capability was reached in January 2010

and it was then the first commercial satellite to carry a very high resolution 8-band MS sensor.

WorldView-2 is still, as of October 2021, operating nominally, collecting up to 1 million square

kilometers of imagery per day. (E. O. P. ESA, 2021b; Maxar, 2019c)

Similarly, the commercial origins of the 4-band multispectral satellite GeoEye-1 are also a

result of a US government contract. GeoEye, the company1, was awarded a contract by NGA in

2004. In addition, the company signed a deal with Google, giving the map services behemoth

web map exclusivity rights to use GeoEye-1 imagery in their Google Maps and Google Earth

services. The satellite was manufactured by General Dynamics C4 Systems and launched on a

ULA Delta-2 rocket in 2008, becoming fully operational in February 2009. Just like WorldView-2,
1GeoEye was later, in 2013, acquired by and merged into Maxar, then DigitalGlobe.

CHAPTER 2. MULTISPECTRAL SATELLITE IMAGERY 19

GeoEye-1 is still as of October 2021, operating nominally.

Figure 2.2: WorldView-2: Schematic overview of the main components. © 2021 Maxar Technologies. Reprint-

ed/adapted with permission. (DigitalGlobe, 2009)

The main components of WorldView-2 are depicted in Figure 2.2. GeoEye-1 has a similar

design. Looking at the lower part of the figure, WorldView-2 would not be an imagery satellite

without its optical telescope. The telescope captures sunlight reflected off the earth surface

and channels it to the focal plane unit, where the charge-coupled device (CCD) image sensor is

located. We will revisit these core components in a short while. At the center of the figure we

notice the spacecraft bus, the backbone that connects everything on the satellite together and

provides central services like data storage and transmission. (DigitalGlobe, 2009; E. O. P. ESA,

2021b)

At the top of the figure are components used to physically control the satellite. The propulsion

module contains propellant that is burnt in order to control and maintain the ideal orbit, while

the gyroscope controls the direction of the whole satellite body, including the optical telescope.

It enables the satellite to capture images at an off-nadir angle, for instance to the right or left of

its orbit, consequently increasing its range. A nadir image is taken vertically, with the telescope

pointing straight down on the Earth’s surface. An off-nadir image, on the other hand, is captured

at an angle, revealing details of vertical surfaces, like the walls of buildings. (DigitalGlobe, 2009;

E. O. P. ESA, 2021b)

Figure 2.3 illustrates how satellites like WorldView-2 and GeoEye-1 are capable of capturing

images of the same Earth surface from different angles in one pass. Keep in mind that the

CHAPTER 2. MULTISPECTRAL SATELLITE IMAGERY 20

Figure 2.3: A satellite capturing both nadir and off-nadir images (Maxar, 2019a, 2019c)

satellite travels at a ground speed of almost 7 kilometers per second. Consequently, the gyroscope

module must be both quick and precise. When a satellite captures two off-nadir images of the

same Earth surface we get so-called stereoscopic imagery, as illustrated in Figure 2.3. A use case

of such images is stereophotogrammetry, the construction of a 3D model from two of more 2D

images. (Maxar, 2019c)

2.1.1. The sun-synchronous orbit

Figure 2.4: A syn-synchronous orbit. Left: As Earth orbits around the Sun the satellite orbit is fixed with reference

to the Sun. (Brandir & XZise, 2018) Right: A syn-synchronous orbit is a polar orbit. Its descending node is fixed

at the same local time every orbit. (Beck, 2016) Both figures are adaptations of originals, in accordance with CC

BY 3.0.

WorldView-2 and GeoEye-1 follow so-called sun-synchronous orbits (SSO). These low-altitude,

CHAPTER 2. MULTISPECTRAL SATELLITE IMAGERY 21

fast orbits are a particular kind of polar orbits, synchronized to always be in the same fixed po-

sition relative to the Sun. This is achieved through careful calibration of the velocity, angle and

altitude of the satellite. Satellites in SSO will always visit the same spot at the same local time.

For imagery satellites, this is a very attractive property. Every time the satellite is overhead, the

surface illumination is nearly the same, enabling consistent conditions for monitoring an area

over time. Satellites in SSO also benefit from the fact that SSO is a subtype of polar orbits.

Satellites in polar orbits covers the entire surface of the Earth, since the Earth is rotating be-

neath the satellite in an almost perpendicular plane to the satellite’s orbit. SSOs are relatively

low-altitude and high speed. WordView-2, for instance, has an altitude of 770 kilometers and an

orbital period of 100 minutes. For comparison, a satellite in geostationary orbit has an altitude

of approximately 35786 kilometers and an orbital period of 24 hours. (ESA, 2020; Maxar, 2019c)

2.2. Four types of resolution

People often think of spatial resolution, when the term image resolution pop up. However, within

the field of remote sensing we typically speak of four types of image resolution: spatial, spectral,

temporal and radiometric. Understanding these types give us an insight into how multispectral

satellite imagery works and how this relates to the overall MS-to-PAN SISR task we introduced

in Chapter 1. Emphasis is put on spatial and spectral resolution, since these concepts lie at the

core of the MS-to-PAN SISR task. (Baghdadi & Zribi, 2016, pp. 68–74)

2.2.1. Spatial resolution

In the digital era where images are represented by arrays of pixels, spatial resolution refers to

the size of each pixel in the image, or the distance between each measurement pixel center point.

For satellite images, we typically report spatial resolution with a meters per pixel metric (0.5

meters/pixel), or simply report the size of a pixel in meters (0.5 × 0.5 meters). Alternatively,

we may report the ground sample distance (GSD) of an image. GSD is the distance between

pixel center points in an image. Given square pixels, e.g., 0.5 × 0.5 meters, GSD and the afore-

mentioned ways of reporting spatial resolution is equivalent. We use the terms interchangeably

throughout this thesis. (Baghdadi & Zribi, 2016, pp. 68–70)

Spatial resolution is at the core of super-resolution, and in Figure 1.1 we already introduced

how WorldView-2 captures eight lower resolution MS bands (approximately 2 meters GSD) and

a single higher resolution PAN band (approximately 0.5 meters GSD). Why the difference, and

how are images actually captured by a multispectral satellite? To better understand this we

need to take a closer look at the actual image sensor. (Maxar, 2019c)

CHAPTER 2. MULTISPECTRAL SATELLITE IMAGERY 22

Figure 2.5: A push broom scanner scanning the surface of the Earth sequentially one line at the time.

WorldView-2 and GeoEye-1 uses a push broom scanning technique to capture images. This

technique is comparable to how a regular photo-copier line scanner works: scanning is done line

by line in one direction. As the satellite passes over the Earth, its sensors scan the surface one

pixel line at a time. This sequential process is depicted in Figure 2.5, and we notice the time

differences within a single satellite image taken by a push broom scanner. Push broom scanning

is not the only method used by imagery satellites. For instance, the Dove satellites operated by

PlanetLabs, which we introduced in Chapter 1, capture images similarly to how everyday digital

cameras work. A complete 2D image is captured simultaneously by a frame CCD image sensor.

(E. O. P. ESA, 2021a, 2021b; Planet, 2021; Updike & Comp, 2010)

Figure 2.6: Focal plane (image plane) layout of WorldView-2 with multiple staggered CCDs. The figure is

conceptual and not drawn to scale. © 2021 Maxar Technologies. Reprinted/adapted with permission. (Updike

& Comp, 2010)

Returning to push broom scanners, their task is to transform optical signals (photons) into

electrical signals (electrons). This is achieved through the use of multiple one-dimensional CCDs

organized in a staggered, overlapping fashion. The concept is illustrated in Figure 2.6, where we

CHAPTER 2. MULTISPECTRAL SATELLITE IMAGERY 23

in the specific case of WorldView-2 notice three separate arrays of staggered CCDs: PAN, MS1

and MS2. The PAN array consists of fifty staggered, overlapping CCD sub-arrays each capturing

a smaller number of pixels. Subsequently, outputs from the individual sub-arrays are combined

into a single 35, 420 pixel-wide line, equivalent to about 17 kilometers of the Earth’s surface.

(Maxar, 2019c; E. O. P. ESA, 2021b)

The MS arrays uses different color filters to split light into separate spectral bands. In the

next section we will explore this further in the context of spectral resolution, but the color filtering

has direct implications on spatial resolution as well. Any filter applied before an image sensor

will reduce the number of photons that passes through it, and thus reduce the spatial resolution

of the image sensor compared to a sensor that is directly exposed to the same photons. In the

case of WorldView-2 the MS1 array, consisting of 10 staggered MS CCD sub-arrays, is capable

of producing lines with a width of 8, 881 pixels, approximately four times less than its PAN

counterpart. However, in contrast to the PAN array, the MS1 array produces four such lines, one

for each spectral band. (Baghdadi & Zribi, 2016, p. 74; Updike & Comp, 2010; E. O. P. ESA,

2021b)

2.2.2. Spectral resolution

Spectral bands have been referred to multiple times already, and the concept is central to the

main topic in this thesis. In Figure 2.6 we saw that MS images are produced as a result of

photons or radiance being separated into different spectral bands by color filters. We lose spatial

resolution, but gain the ability to split the electromagnetic spectrum into bands: spectral bands.

Simply put, with MS sensors we trade away spatial resolution for spectral resolution. (Baghdadi

& Zribi, 2016, pp. 70–72, 74)

Why spectral bands? Remember that for optical satellite images, the principal source of

illumination is the Sun and our sensors measure the intensity of sunlight reflected from the

Earth’s surface. Different surface materials (water, sand, snow, asphalt etc.) absorb and reflect

different wavelengths to a varying degree. Surfaces have spectral profiles, and by measuring the

light intensity in different spectral bands we are better able to analyze and distinguish different

surface materials. A banal example may illustrate the point: A red car may be distinguished

from a gray car by measuring the difference in intensity of the red spectral band. (Baghdadi &

Zribi, 2016, pp. 70–72)

A high spectral resolution is usually correlated with more spectral bands and it is fair to say

that the eight-band WorldView-2 images have higher spectral resolution than their four-band

GeoEye-1 counterparts. However, spectral resolution is also related to how well the spectral

CHAPTER 2. MULTISPECTRAL SATELLITE IMAGERY 24

Figure 2.7: Relative spectral radiance response for WorldView-2 and GeoEye-1 satellites. The figure is reproduced

from Maxar’s (then DigitalGlobe) official spectral response data. (DigitalGlobe, 2014)

bands fit a particular use case. Taken to the extreme, for a red car detector, high spectral

resolution may mean having one single, well-defined and calibrated spectral band centered around

the wavelength humans perceive as pure red. (Baghdadi & Zribi, 2016, pp. 70–72, 74)

In Figure 2.7 we see the relative spectral response of all WorldView-2 and GeoEye-1 spectral

bands on the same plot. We notice that most of the four bands present in both satellites overlap

quite well, except for the Red and Near-infrared 1 (NIR1) bands. Such a systematic difference

between the two sensors is a challenge that a model trained on one satellite and tested on

another will have to overcome. Notice also how the PAN band covers a large portion of the

electromagnetic spectrum, but overlaps only with six out of the eight WorldView-2 MS bands.

We will revisit this topic in Chapter 7. (DigitalGlobe, 2014)

2.2.3. Temporal resolution

The temporal2 resolution of a an imagery satellite is a measure of how frequently the satellite

revisits a specific site. As such, temporal frequency is not only related to the sensor itself, but

also the orbital characteristics of the satellite. (Baghdadi & Zribi, 2016, pp. 72–73)

There are two ways to define temporal frequency. The first and traditional approach is to

require the satellite to have the exact same image acquisition conditions, including both position
2Temporal is a word that can be traced back to the Latin word temporālis, meaning of time, or belonging to

time. (Lexico, 2021)

CHAPTER 2. MULTISPECTRAL SATELLITE IMAGERY 25

and angle. Alternatively, one can allow different image acquisition conditions, as long as an

image can be taken of the same site. This definition may make more sense for agile satellites like

WorldView-2 and GeoEye-1 that constantly use their gyroscopes to capture off-nadir images in

all directions relative to its path. Yet, it is important to note that images taken from different

off-nadir angles can present strong disparities. Revisit times for both satellites are a few days,

depending on the latitude (more frequent towards the poles), spatial resolution, and maximum

off-nadir angles accepted. (Maxar, 2019a, 2019c; Baghdadi & Zribi, 2016, pp. 72–73)

We will get more hands-on experience with the temporal aspect of satellite imagery in the

Experiments part of the thesis (see Chapter 5 and beyond). Many of the images in our dataset

are of the same area, but taken under diverse image acquisition conditions.

2.2.4. Radiometric resolution

Radiometric resolution refers to the sensitivity of a sensor within the same spectral band. A

sensor with higher radiometric resolution is able to capture a wider range of radiance intensity.

We say that the sensor has higher dynamic range, since the range of possible intensity values

are higher. In digital images, the bit depth of the pixels serves as an indication of radiometric

resolution. A common bit depth for images is 8 bits. In 8 bit images every pixel can take one of

28 = 256 discrete values. WorldView-2 and GeoEye-1 have higher dynamic range. Their sensors

capture 11-bit images, with pixels then being able to take one of 211 = 2048 discrete values.

(Baghdadi & Zribi, 2016, pp. 73–74; Stathaki, 2011, p. 394)

2.3. Processing of satellite images

The raw images captured by a push broom scanner such as the one in Figure 2.5 are seldom

used directly by any customers of satellite images. Instead, images are sent through a processing

pipeline. Customers are typically able to request images processed at different levels of the

pipeline. Expert imagery analysts may prefer close-to-raw images, while web map users want fully

processed satellite images tuned for maximum aesthetic qualities. There is a semi-standardized

hierarchy that many satellite image providers use to market and communicate their imagery.

Some of the most common levels are summarized in Table 2.1. We will only deal with Level 2A

imagery in this thesis. Images at this level are typically delivered in a georeferenced raster image

format like GeoTIFF, and require very little tuning of basic settings like brightness and contrast

to display good looking images. (Maxar, 2020; NASA, 2021a; Steele, 2018)

NASA Levels Maxar Product Description

Level 0 Raw, unprocessed instrument data at full resolu-

tion, with any and all communications artifacts.

Level 1B
System-Ready

(Basic Imagery)

Sensor corrections: Remove known optical dis-

tortions, edge effects and artifacts.

Radiometric corrections: Calibration of relative

radiometric response of and between detectors,

conversion to absolute radiometry.

Level 2A
View-Ready

(Standard Imagery)

Atmospheric corrections: Remove atmospheric

effects (haze, water vapour, particulates, sun re-

flectance etc.).

Geometric corrections: The image is georefer-

enced and projected onto a coarse digital eleva-

tion model.

Map-Ready

(Ortho Imagery)
Orthorectification: The image is projected onto

a more detailed digital elevation model to reduce

topographic distortions.

Table 2.1: Selection and description of some common satellite imagery processing levels (NASA, 2021a; Steele,

2018)

Chapter 3

Deep learning

The introduction to deep learning in this chapter is brief and only covers the essentials needed

to understand how deep learning is applied to the SISR problem. We will go through the core

components of a neural network and how it is trained. By the end of the chapter you should be

able to dissect and understand the model architecture of ESRGAN (skip forward to Figure 4.8

for a peek).

If you are already familiar with deep learning, this chapter may safely be skipped. If, on the

other hand, you are interested in getting a broader and deeper introduction, there are plenty of

options. As of 2021 the best theoretical introduction to the field is arguably still Deep Learning

by I. Goodfellow et al., 2016 (available for free at www.deeplearningbook.org). If you prefer a

more applied and hands-on approach the courses available at Andrew Ng’s www.deeplearning.ai

is a good alternative.

3.1. A machine learning model

Deep learning, as the term is used today, generally refers to the training of deep neural net-

works, i.e., artificial neural networks with multiple layers of neurons. By contrast and by most

definitions, a shallow network may at maximum consist of an input layer, an output layer and a

couple of single layers in-between, so-called hidden layers.1 The trend has been for networks to

become deeper and deeper. In fact, depending on the configuration and how layers are counted,

the ESRGAN generator network has between 200 and 400 layers. (Schmidhuber, 2015)

Furthermore, deep learning is by most definitions considered a sub-field of machine learning

(L. Deng, 2014; I. Goodfellow et al., 2016). As such it makes sense to apply machine learning

terminology to deep learning models. What then is a machine learning model? The definition

provided by Mitchell, 1997 is both succinct and widely used: “A computer program is said to
1This is a simplified way of discussing the depth of a neural network, and does for instance not take into

account recurrent neural network designs. For a more thorough discussion see (Schmidhuber, 2015, pp. 6–7)

27

www.deeplearningbook.org
www.deeplearning.ai

CHAPTER 3. DEEP LEARNING 28

learn from experience E with respect to some class of tasks T and performance measure P , if its

performance at tasks in T , as measured by P , improves with experience E.”

Let us explore T , E and P with a simple house price prediction example.

3.1.1. The task, T

A common task T is regression. In a typical regression task we want our model to estimate

a scalar value given a vector of inputs, ŷ = f(x). For instance estimate a house price based

on a set of house attributes (location, size, number of bedrooms etc.). A neural network may

be employed to perform such a task, and we will revisit the regression task in Section 3.3. (I.

Goodfellow et al., 2016, p. 98)

3.1.2. The experience, E

Experience E relates to how machine learning models learn from data. Learning is usually

categorized as supervised, unsupervised, reinforcement learning or some combination of the three.

Boundaries between the categories are soft. In supervised learning ground truth targets, y, is

provided. The model is then tasked to estimate individual scalar values ŷ from the input vector

x. In our house price example, y are the actual selling prices.

In unsupervised learning there is no y. Yet, it is still possible to learn useful properties from

the dataset. We may for instance attempt to learn the probability distribution of the data and

use this to generate new, synthetic samples. (I. Goodfellow et al., 2016)

3.1.3. The performance measure, P

In order to evaluate a machine learning model we need some way to measure its performance

quantitatively. In our house price regression example one way to measure P is to measure how

close our model estimates, ŷ, are to the actual ground truth house prices, y. Mean squared error

(MSE) is commonly used for this purpose. It is also frequently used as a so-called loss function,

L, during training (see Section 3.6). Yet, keep in mind that the performance measure, P , and

the loss function, L, need not be the same. An important distinction between the two is that

we are usually interested in P evaluated on data not seen by the model during training. L and

P are thus evaluated on different subsets of the data, L on a training set and P on a test set.

(I. Goodfellow et al., 2016)

It is established practice in the field of machine learning to partition the data into three sets;

training, validation and test sets. The training set is used to estimate the model parameters,

the validation set is used for selection of the model hyperparameters and the test set is used

CHAPTER 3. DEEP LEARNING 29

Figure 3.1: The use of training, validation and test sets during model selection and the final estimation of model

performance.

to estimate the final model performance P , the generalization error, i.e., how well the model

performs on completely unseen data. There are trade-offs when determining the proportional

size of each set. More training data is generally associated with better performing models, so

we want to maximize the size of the training set. However, we also need the validation and test

sets to be large enough to provide low-variance estimates of P and the generalization error. (I.

Goodfellow et al., 2016, pp. 117–118; Bishop, 2006, p. 32; Ng, 2018, pp. 13–19)

3.2. A single neuron

Figure 3.2: The structure of a single artificial neuron

The core component of an artificial neural network is the single artificial neuron, a data

structure inspired by the biological neuron. Figure 3.2 depicts how the single neuron accepts N

scalar inputs, performs a weighted sum operation and passes this sum z into a so-called activation

function g(·) to produce a single scalar output a. We call this operation a forward pass and the

operation is mathematically expressed in (3.1).

CHAPTER 3. DEEP LEARNING 30

a = g(z) = g

(
w0 +

N∑
n=1

xnwn

)

= g
(
x>w

) (3.1)

The first parameter, w0, is commonly referred to as the bias (analogous to the intercept

in linear regression) and is sometimes denoted b. The other {wn}Nn=1 are usually referred to

as the weights and denoted wn. By combining the bias and the weights into a weight vector

wT = (w0, w1, . . . , wN) and a corresponding input vector xT = (1, x1, . . . , xN) we are able to

express the forward pass compactly with vector notation.2

The single artificial neuron is interesting, but its learning ability on its own is very limited.

In the next few sections we will cover how the activation function g(·) operates and how the

weights w are learned, but to make things a bit more interesting let us first connect neurons

together and introduce the artificial neural network.

3.3. Densely connected networks

Figure 3.3: A densely connected feedforward neural network with one hidden layer. The network is applied to a

supervised scalar regression problem.

When artificial neurons are organized in layers and every neuron in one layer is connected to

every neuron in the consecutive layer we have a so-called densely connected feedforward neural

network.3 Dense because of the high density of connections and feedforward since no connections

form a cycle. In Figure 3.3 we see an example of a very small such network. It is both shallow

and narrow, and is by most definitions not considered a deep neural network. The number of
2The combination of biases and weights is in some literature referred to as parameters and denoted θ. We

keep with terminology and notation used by I. Goodfellow et al., 2016: weights, w and W
3A densely connected feedforward neural network is also commonly referred to as a multilayer perceptron.

CHAPTER 3. DEEP LEARNING 31

layers defines its depth, and this network has three layers: an input layer (0), a so-called hidden

layer (1) and an output layer (2) predicting a scalar output ŷ.

Our small network is applied to a supervised scalar regression problem. It is supervised

because we know y and intend to use this knowledge to train our network. It is a regression

problem since the range of y is unbounded: y ∈ R. The latter is achieved by using a linear

activation function, g(z) = z, in the output layer. In the end we notice that a loss function, L,

operates on both our prediction ŷ and the labelled ground truth y. The goal of L is to reward

more correct predictions (low loss), or formulated oppositely: to penalize less correct predictions

(high loss).

The activation functions, g(·), in Figure 3.3 operate on scalars. However, since all activation

functions within the same layer are equal, it is more efficient to define g(k)(·) as an element-wise

activation function that operates on vectors.

3.4. The forward pass

Let us define our dense network mathematically and express the forward pass, from input x

to prediction ŷ. We start by organizing our weights in matrices. In Figure 3.3 we notice that

weights {w(k)
i,j } belong to layer k, counting eight weights in layer 1 and similarly three in layer 2.

The weights in layer k may now be structured in a matrix W(k). In our small network we get

the following two matrices:

W(1) =

w(1)
1,0 w

(1)
1,1 w

(1)
1,2 w

(1)
1,3

w
(1)
2,0 w

(1)
2,1 w

(1)
2,2 w

(1)
2,3

 , W(2) =
[
w

(2)
1,0 w

(2)
1,1 w

(2)
1,2

]
In addition to the input vector x we also construct activation vectors a(k). In our case we

only have a(1):

x =


1

x1

x2

x3

 , a(1) =


1

a
(1)
1

a
(1)
2


Putting it all together we can express the forward pass for our small network in four steps:

z(1) = W(1)x

a(1) = g(1)(z(1))

z(2) = W(2)a(1)

ŷ = g(2)(z(2))

CHAPTER 3. DEEP LEARNING 32

Or expressed recursively:

ŷ = g(2)
(
W(2)g(1)

(
W(1)x

))
(3.2)

Generalizing from our small network into any feedforward network we get the following set

of equations that completely describe a forward pass:

a(0) = x

a(k) = g(k)
(
W(k)a(k−1)

)
, for k = 1, . . . ,K

ŷ = a(K)

(3.3)

3.5. The activation function

Figure 3.4: Comparison of some of the most common activation functions

The choice of activation functions g(·) is consequential. To illustrate this, let us for a moment

revisit our single neuron example in Section 3.2. If the activation function g(·) in (3.1) is the

identity function we end up with the formula for linear regression. In Figure 3.2 we briefly

introduced the rectified linear unit (ReLU) as the activation function for our single neuron.

ReLU is a piece-wise linear function defined by

g(z) = max(0, z)

ReLU is one of the most, if not the most used activation function in deep networks today.

It was popularized after Glorot et al., 2011 demonstrated that it vastly improved the training

CHAPTER 3. DEEP LEARNING 33

of deeper networks compared to the most widely used activation functions at the time, sigmoid

and tanh. ReLU is more efficient to compute, enabling faster training, and more robust to the

vanishing gradient problem. On the flip side, ReLU can suffer from the so-called dead neuron

problem. When z < 0 the gradient is 0 and this can permanently disable learning in the neuron.4

Several modifications of ReLU have been suggested to mitigate the dead neuron problem.

Most involve adding some form of slope when z < 0, and thereby avoid the 0 gradient. A straight-

forward and widely used modification is the Leaky ReLU function, depicted in Figure 3.4 and

defined by:

g(z) =


z, if z > 0

αz, otherwise

Leaky ReLU was introduced by Maas et al., 2013 and they suggested setting α = 0.01.

The default value of the tensorflow.keras implementation of Leaky ReLU on the other hand

is much higher, α = 0.3 (TensorFlow, 2020). Leaky ReLU is the activation function used in

ESRGAN and we will therefore revisit it in Chapter 4.

3.6. The loss function

When training a neural network we need something to optimize for. In Section 3.1.3 we intro-

duced the performance measure P and the loss function L. P is typically optimized indirectly

through the minimization of L. In Figure 3.3, L was depicted as a function operating on a single

sample: L(ŷ, y) = L(f(x; W), y). This is a simplification. Neural networks are normally trained

on so-called mini-batches of data samples. The term can be somewhat confusing, especially since

we often denote the mini-batch size as the batch size, B. Let us consider a mini-batch of samples,

X ∈ RB×D, y ∈ RB. B is the batch size and D is the dimension, the number of independent

variables, of the input. In our house price example (see Section 3.1) this could for instance be

square meters, number of bedrooms, level of standard etc.

The mean absolute error (MAE) and mean square error (MSE) are two widely used loss

functions for regression tasks. They are also frequently used in SISR, either directly as loss

functions, L, or for model performance evaluation, P . For ESRGAN in particular, MAE is used

as the loss function in the pretraining phase and is also a component of the loss function in the

GAN training phase. Let us define the two and discuss how they relate to each other:
4The vanishing gradient and dead neuron problems are topics outside the scope of this thesis. See I. Goodfellow

et al., 2016, pp. 187–190 and Szandała, 2021 for introductions to the topics.

CHAPTER 3. DEEP LEARNING 34

MAE =
1

B

B∑
b=1

|yb − ŷb| =
1

B

B∑
b=1

|yb − f(xb)| =
1

B
‖e‖1 (3.4)

MSE =
1

B

B∑
b=1

(yb − ŷb)2 =
1

B

B∑
b=1

(yb − f(xb))
2 =

1

B
eTe =

1

B
‖e‖22 (3.5)

We see from (3.4) that MAE is a scalar multiple of ‖e‖1, the so-called L1 norm of the residuals

vector, e. Similarly from (3.5) we note that MSE and ‖e‖2, the L2 norm of the residuals vector,

are closely related. In practice the terms are used interchangeably in the deep learning literature:

MAE are often called L1 loss, and MSE called L2 loss.

3.7. Training the network

Training a neural network is all about finding the optimal weights W so that our model performs

best at some performance measure P . Let us for a moment ignore the problem of overfitting

and just consider our densely connected network in Figure 3.3. Here we have a loss function L,

closely related to P , that we want to minimize by adjusting the values of W. How do we do

this? Minimizing L directly is intractable for non-trivial machine learning problems.5 Instead,

we take an iterative and example-based approach:

Algorithm 3.1: Training a feedforward neural network

Data: Training set of input-output pairs {xn,yn}Nn=1

Input: A feedforward neural network m with initial parameters Θ

Input: A loss function L

Input: A stochastic gradient descent-like optimizer W

while stopping criterion not met do

(1) Sample a mini-batch of B input-output pairs {xb,yb}Bb=1 from the training set

(2) Compute ŷ with a forward pass through m, see equations (3.3)

(3) Compute the loss L(ŷ,y)

(4) Compute the gradient estimate ĝ of the loss L with respect to W through

backpropagation

(5) Update the weights W with optimizer SGD(W, ĝ)

end

We have already covered step (2) and (3) in the preceding text. In the next few sections we
5See I. Goodfellow et al., 2016, pp. 268–275 for a discussion of how optimization of a deep neural network

differs from pure optimization.

CHAPTER 3. DEEP LEARNING 35

will cover step (4) and (5), but before we do that a few notes on the the mini-batch sampling in

step (1) is necessary.

In step (1) of Algorithm 3.1 we sample some number of training examples from the training

set and call this a mini-batch. If we instead were to proceed with all training examples in the

training set, step (4) and (5) would no longer be stochastic. In step (4) we would compute the

gradient g, not the estimate ĝ = ∇WL, and in step (5) we would perform a gradient descent-

like optimization, not SGD. The mini-batch size B is a hyper-parameter that can be tuned and

the optimal size is usually determined by characteristics of the computational hardware, e.g.,

available GPU memory. (I. Goodfellow et al., 2016, pp. 271–275)

3.8. Back-propagation: Computing the gradient

In Section 3.4 we introduced the forward pass recursive equations (3.3). Information from the

input x was forward-propagated through the network predicting ŷ (scalar ŷ in our Figure 3.3

dense example network) and ending up as a scalar loss L. The back-propagation algorithm

(Rumelhart et al., 1986) flips the model on its head, so to speak. We let information from the

loss flow backwards all the way to our first parameters W(1), by using the chain rule of calculus

to compute the gradient of the loss with respect to the weights: ∇WL. Since it is only based on

a mini-batch sample of training data, not all the training data, we call it the gradient estimate

and denote it ĝ.

Figure 3.5: Backpropagation in a densely connected feed-forward neural network: Computing partial derivatives

with the chain rule

In Figure 3.5 we see backpropagation applied to compute partial derivatives for a few of the

CHAPTER 3. DEEP LEARNING 36

parameters in our densely connected network. We immediately notice the recursive nature of the

algorithm: the derivatives in layer k− 1 is dependent on the derivatives in layer k. Based on the

above example, the backpropagation algorithm might seem pretty straight-forward to generalize.

For feed-forward networks with a nice and tidy structure this is true, yet it requires a few pages

to do it well and is slightly outside the scope of this thesis. Please refer to Chapter 6.5 in Deep

Learning (I. Goodfellow et al., 2016, pp. 197–217) for a more thorough introduction to the topic,

including how computational graphs and automatic differentiation is related to backpropagation.

What is required going forward is to accept that after completing the backpropagation step

(4) in Algorithm 3.1 we have a gradient estimate ĝ.

3.9. Stochastic Gradient Descent: Updating the weights

In the fifth and final step of Algorithm 3.1 we want to use an optimizer to update the weights

of our model so that it, hopefully, performs better. In deep learning, the Stochastic Gradient

Descent (SGD) optimizer and its many improved variants, dominate.

Algorithm 3.2: Stochastic gradient descent (SGD) (I. Goodfellow et al., 2016)

Data: Training set of input-output pairs {xn,yn}Nn=1

Input: Learning rate η

Input: Initial parameters W

while stopping criterion not met do

Sample a mini-batch of B input-output pairs {xb,yb}Bb=1 from the training set

Compute gradient estimate: ĝ ← 1
B∇W

∑
b L(f(xb; W),yb)

Apply update: W←W − ηĝ

end

Algorithm 3.2 summarizes SGD. The idea behind SGD is to use gradient estimates, ĝ, to

iteratively adjust the weights, W, step-by-step in the direction where the loss, L, is minimized

the most. ĝ points in the direction where L increases the most. Adversely, −ĝ points in the

direction where L decreases the most.

On the left hand side of Figure 3.6 we see the SGD stochastic step-wise approach towards

a minimum on the actual loss surface. Keep in mind that the actual loss surface is invisible

to the optimizer and that gradient estimates may point in wrong directions. The size of the

steps, commonly referred to as the learning rate, η, is a crucial hyper-parameter. If steps are

too large, SGD could easily miss (jump over) minima. If steps are too small, the algorithm may

take forever to converge. Consequently, η should be tuned during training.

CHAPTER 3. DEEP LEARNING 37

Figure 3.6: SGD with and without momentum. The contour lines represent the actual loss surface. The jagged

lines represent the steps taken by SGD algorithms.

3.9.1. The Adam optimizer: Adaptive moments

Ordinary SGDs, like Algorithm 3.2, are sometimes used in deep learning today, but improved

variants are the norm. Some variants have incorporated so-called momentum. These compute

and update a velocity variable at every step and use this, instead of the raw gradient estimate, to

update the weights. The effect of momentum may be seen on the right hand side of Figure 3.6.

After a few initial jagged steps we notice that the algorithm starts taking more focused steps

towards the minimum.

CHAPTER 3. DEEP LEARNING 38

Algorithm 3.3: Adam optimizer (Kingma & Ba, 2014)

Data: Training set of input-output pairs {xn,yn}Nn=1

Input: Learning rate η (Suggested default: 0.001)

Input: Exponential decay rates for moment estimates: β1, β2 ∈ [0, 1)

(Suggested defaults: 0.9 and 0.999 respectively)

Input: Small constant ε for numerical stabilization (Suggested default: 10−8)

Input: Initial weights W

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a mini-batch of B input-output pairs {xb,yb}Bb=1 from the training set

Compute gradient estimate: ĝ ← + 1
B∇W

∑
b L(f(xb; W),yb)

Increment time step: t← t+ 1

Update biased first moment estimate: s← β1s + (1− β1)ĝ

Update biased second moment estimate: r ← β2r + (1− β2)ĝ � ĝ

Correct bias in first moment: ŝ← s
1−βt

1

Correct bias in second moment: r̂ ← r
1−βt

2

Compute update: ∆W = −η ŝ√
r̂−βt

2

Apply update: W←W + ∆W

end

Other variants have incorporated adaptive learning rates. In these variants, of which AdaGrad

(Duchi et al., 2011), RMSProp (Hinton et al., 2012) and Adam (Kingma & Ba, 2014) are the most

prominent, learning rates are adapted to the individual weights in the model at each training step.

Adam is of particular interest to us, since this is the optimizer used to train ESRGAN. Adam,

short for adaptive moments, also incorporate momentum. In the Adam optimizer algorithm,

Algorithm 3.3, momentum is referred to as the first moment estimate, s, and adaptive learning

rates are incorporated through the computation of the second moment estimate, r. Adam is

regarded as fairly robust to the choice of hyper-parameters. (I. Goodfellow et al., 2016)

3.10. Convolutional layers

Convolutional neural networks (ConvNets) is a pivotal innovation in neural network design,

and arguably the most important innovation in the computer vision subfield of deep learning.

Introduced with the LeNet digit recognizer (LeCun et al., 1989) and further refined in LeNet-5

CHAPTER 3. DEEP LEARNING 39

(Lecun et al., 1998), the significance of ConvNets really took off when AlexNet (Krizhevsky et al.,

2012) won first place in the 2012 ImageNet (J. Deng et al., 2009) competition with a staggering

10.9% margin on the runner-up.

At the core of ConvNets is the convolution6 function:

Y(h,w) = (X ∗K)(h,w) =
∑
i

∑
j

X(h+ i, w + j)K(i, j) (3.6)

(3.6) is the 2D variant of convolution. A kernel K operates on a region of an input image X

to produce an output scalar value Y(h,w), a pixel value at position (h,w) in the output image

Y. The effect of this operation is best understood visually. In Figure 3.7 we see a sharpening

kernel, a hand-crafted kernel designed to sharpen images, operate on a 2D image input. In deep

learning we let the values of the kernel be trainable parameters and update these just like we

update the weights of a densely connected layer: forward pass, backpropagation and an SGD-like

optimizer. In this particular case a stride, or step-size, of 1 is used. Larger strides may be used

to further reduce the height and width of the output matrix/tensor. (I. Goodfellow et al., 2016,

pp. 321–361)

In Figure 3.7 we also see convolutions extended to tensors where kernels are replaced by

filters. All filters operate on the same input tensor, but outputs at different slices of the output

tensor. Keep in mind that convolutions in this case is still 2D: Every slice C of the filter perform

a 2D convolution only on slice C in the output tensor.

Why are convolutions so effective? Three closely related aspects are leveraged: sparse in-

teractions, parameter sharing and translation invariance. Sparsity means that not every pixel

in the input is connected to every pixel in the output. Sparsity is closely related to parameter

sharing, the fact that the same weights are applied to the whole input. Every weight is reused

multiple times during a forward pass. This particular form of parameter sharing makes a convo-

lutional layer translation invariant. For instance, a convolutional layer in a ConvNet classifier is

able to detect a particular type of feature everywhere in the image. (I. Goodfellow et al., 2016,

pp. 321–361)

The kernel or filter K is usually much smaller than the input, drastically reducing the number

of weights that has to be learned in comparison with a densely connected layer. A 3× 3 kernel,

such as the one in Figure 3.7, only contains 9 + 1 trainable weights (weights + bias). For

comparison, a fully connected layer in-between a 7× 7 input and a 5× 5 output matrix requires
6Actually the cross-correlation function, a closely related function to the mathematical convolution function.

It has become convention in deep learning literature to refer to both as convolution. Most machine learning

libraries actually implement the cross-correlation function and call it convolution.

CHAPTER 3. DEEP LEARNING 40

Figure 3.7: 2D convolutions. Left: A 2D convolution kernel operates with a stride of 1 on an input matrix. The

values in the yellow part of the input matrix is multiplied element-wise with the kernel values. Right: K 2D

convolution filters operate on the input tensor. The depth of the output tensor is determined by the number of

filters.

(7 · 7 + 1) · (5 · 5) = 1250 trainable weights. The reduction in number of parameters is significant.

3.10.1. Zero padding

Notice in Figure 3.7 how the width and height of the output is reduced compared with the input.

This is often undesired, for instance in SISR models. The problem is usually removed through

the use of a simple, yet elegant solution: zero padding.

The zero paddings in Figure 3.8 are of the same type. With same type paddings the number

of zeros padded to the input is decided based on the shape of the input and the kernel. Enough

are added to create an output with the same size as the input. For instance, a 5×5 kernel would

require padding with two zeros in every direction. (I. Goodfellow et al., 2016, pp. 321–361)

3.11. Building and representing a network

One strength of neural networks is that it is relatively straight-forward to piece together a network

consisting of various types of layers and connections. Hyper-parameters may need to be updated,

but the core principles of Algorithm 3.1 still applies.

CHAPTER 3. DEEP LEARNING 41

Figure 3.8: "Same" type zero padding used during 2D convolutions. Zeros are added outside the border of the

original input matrix in order to let output dimensions equal input dimensions.

A common type of network is the ConvNet image classifier, a network that inputs an image

and outputs either a scalar binary variable or a vector of categorical variables, depending on how

many classes there are to predict. A simple ConvNet classifier is depicted in Figure 3.9.7 We

notice something that is typical for ConvNets. The width and height of the hidden tensors get

smaller while the depth increases. The rationale behind this approach is that we somehow have

to reduce the size of the tensors, down to in the end a scalar variable, while at the same time

allow the network to pick up on different types of features in the input. This is achieved through

increasing the stride and/or configuring the padding

As networks get larger a simplified way of presenting them is required. The minimal rep-

resentation visible in the lower part of Figure 3.9 is typical for how networks are presented in

academic papers today. Hidden tensors and their shapes are removed. Only layers and paths

are visible. Such a representation may in the beginning, especially for deep and complex net-

works, seem a bit daunting to comprehend, yet they include everything necessary to reproduce

a network in one of the common neural network libraries, e.g. TensorFlow or PyTorch. Notice

how k5n16s1 in the first 2D convolutional layer exposes the kernel size (5 × 5) the number of

filters (16) and the stride (1). In addition the type of padding used is specified. For the densely
7ConvNets usually contain pooling layers, of which tasks are to more rapidly reduce dimensions within a

network and make the network more invariant to minor changes to the input. Pooling is usually not employed

in SISR models and will thus not be covered in this thesis. See (I. Goodfellow et al., 2016, pp. 330–336) for an

introduction.

CHAPTER 3. DEEP LEARNING 42

Figure 3.9: A small convolutional neural network represented in an "educational" form (top) and in a minimal

form (bottom). The latter, or a similar variant, is what is usually encountered in deep learning papers. Two

consecutive convolutional operations are performed on an RGB image input. Then, the hidden tensor is flattened

before two densely connected layers condense all information into one final scalar variable, ŷ.

connected layers it is sufficient to specify the shape of the output (16).

3.11.1. Building a network in TensorFlow

How difficult is it to actually build our Figure 3.9 ConvNet classifier? With libraries like Ten-

sorFlow and PyTorch: Not so difficult. TensorFlow 2.3 with the Keras API is used for the

experiments in this thesis. We may use the same to build the Figure 3.9 classifier:

model = tf.keras.Sequential()
model.add(tf.keras.layers.InputLayer(input_shape=(9,9,3,)))
model.add(tf.keras.layers.Conv2D(filters=16, kernel_size=5, strides=(1,1), activation='relu'))
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=(1,1), activation='relu'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=16, activation='relu'))
model.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics='accuracy')
model.summary()

The final line of code prints a summary of the model:

Model: "sequential"

Layer (type) Output Shape Param #
===
conv2d (Conv2D) (None, 5, 5, 16) 1216

CHAPTER 3. DEEP LEARNING 43

conv2d_1 (Conv2D) (None, 3, 3, 32) 4640

flatten (Flatten) (None, 288) 0

dense (Dense) (None, 16) 4624

dense_1 (Dense) (None, 1) 17
===
Total params: 10,497
Trainable params: 10,497
Non-trainable params: 0}

The shapes and number of parameters match Figure 3.9 with an important exception: An

extra dimension is added to every shape and this dimension is undefined (None). This is the

mini-batch dimension, a dimension we have skipped over in all our figures above, since it would

have introduced difficult-to-visualize 4D tensors. Take note that since it is undefined at build

time, we may use the same model to train on, for instance mini-batches of 16 images at the time,

yet when using the model for prediction we may use it on a single image.

3.12. Generative Adversarial Networks (GAN)

The networks we have introduced so far in this chapter have been discriminative models. This

class of models make predictions ŷ by estimating the conditional probability p(y|x). Another

class of models are the generative models. They estimate the joint probability distribution,

p(x, y), or just p(x) if there are no labels y. A generative model may then then generate samples,

x∗, y∗, from this estimated distribution. (Foster, 2019, pp. 1–30)

Deep neural networks are well suited to estimate probability distributions of high-dimensional

inputs, such as images. Multiple powerful deep generative model designs, e.g., Restricted Boltz-

mann Machines and Variational Autoencoders, have been proposed over the years.8 Yet today,

the generative adversarial network (GAN) (I. J. Goodfellow et al., 2014), with its game-theoretic

and intuitive approach to learning, is one of the most prominent frameworks.

In Figure 3.10 we see that a GAN consists of two separate neural networks, a generator,

G, and a discriminator, D. The task of G is to generate fake outputs, x̂ = G(z), in practical

applications often images, that are indistinguishable to real outputs, x. Subsequently, the task

of D is to evaluate whether images are real or fake. It is in other words learning to distinguish
8See (I. Goodfellow et al., 2016, pp. 645–710) for an introduction to, and a historical perspective on different

deep generative model designs. See (Foster, 2019) for a more applied and hands-on introduction focusing on

present day models.

CHAPTER 3. DEEP LEARNING 44

Figure 3.10: A standard GAN architecture applied to the problem of generating fake images

fake images from real images. With the appropriate training configuration and tuning of hyper-

parameters, both G and D should improve its performance in tandem.

We notice two separate losses in Figure 3.10: generator loss, LG, and discriminator loss, LD.

GAN loss functions is a topic of much research interest and the original 2014 versions are rarely

used in practice today. However, if we keep to the original for now, it is commonly referred to

as the minimax loss function9, derived from the following minimax game:

min
G

max
D

L(D,G) = E [logD (x)] + E [log (1−D (G (z)))] (3.7)

where x is a stochastic variable sampled from the distribution of training images and z is

a random noise variable, often Gaussian. G tries to minimize the function while D tries to

maximize it. From (3.7) we may then extract separate empirical loss functions for D and G:

LD = logD (x) + log (1−D (G (z)))

LG = log (1−D (G (z)))
(3.8)

Both LD and LG in (3.8) evaluates a single image and/or noise input. We want our training

algorithm to maximize LD and minimize LG. The difference between the two stems from the

fact that G cannot directly affect the logD (x) term. We may now formulate a GAN training

algorithm:
9Using the term loss function is slightly misleading in this context since optimization of the function also

involves maximization, and a loss . I. J. Goodfellow et al., 2014 used the term value function and objective

function. Still, for consistency we use the loss function terminology.

CHAPTER 3. DEEP LEARNING 45

Algorithm 3.4: GAN (I. J. Goodfellow et al., 2014)

Data: Training set {xn}Nn=1

Input: Initial weights WD,WG

Input: Noise prior pg(z), e.g., Gaussian or uniform distribution

for number of training iterations do

for k steps do
Sample a mini-batch of B noise samples {z(1), . . . ,z(B)} from the noise prior

pg(z)

Sample a mini-batch of B examples {x(1), . . . ,x(B)} from the training set

Compute the gradient estimate of the discriminator: ĝD ← ∇WD
1
B

∑B
b=1 LD

Update the weights, WD, by ascending its gradient estimate ĝD

end

Sample a mini-batch of B noise samples {z(1), . . . ,z(B)} from the noise prior pg(z)

Compute the gradient estimate of the generator: ĝG ← ∇WG
1
B

∑B
b=1 LG

Update the weights, WG, by descending its gradient estimate ĝG

end

In Algorithm 3.4 k = 1 is often used, including by the authors of the original GAN pa-

per. We thus get a training algorithm that alternates between training the generator and the

discriminator.

With this introduction to the original GAN, we conclude the chapter on deep learning in

general. We will revisit GANs at the end of the next chapter when investigating the ESRGAN

architecture.

Chapter 4

Single image super-resolution (SISR)

Single image super-resolution (SISR), the task of estimating a high-resolution (HR) image from

a single lower-resolution (LR) image, is considered an ill-posed, inverse problem, since for every

LR image input there exists multiple HR image solutions. In this chapter we will review prior

research, discuss the challenges that present themselves when evaluating a SISR model and finally

present the GAN-based and perceptually oriented SISR model ESRGAN in detail.

A typical approach to solving a SISR problem is to restrict the number of possible solutions

by adding priors to the SISR model. A straight-forward approach is to use interpolation-based

methods, like bilinear or bicubic upsampling, to deterministically generate HR pixel values from

neighboring LR pixel values. The result is a smooth estimation of the HR image, usually easily

distinguishable from the actual HR image because of the lack of high frequency details and sharp

edges.

A more advanced approached is to learn a mapping function between LR and HR images, esti-

mating the parameters of a statistical regression model. Today, deep learning methods dominate

this approach to SISR. SRCNN (Dong et al., 2016) showed that some of the leading methods at

the time (Yang et al., 2014) were equivalent to a convolutional neural network (CNN). SRCNN’s

design was simple, with only three convolutional layers and a mean squared error (MSE) loss

function, but performed overall better than its peers on established benchmark datasets.

SISR models have since evolved at a rapid pace. Some design elements have been adopted

from other deep learning computer vision models, and some are the result of SISR-specific re-

search. Of particular importance has been the introduction of residual networks, ResNets, (He

et al., 2016a), skip-connections (He et al., 2016b), the perceptual loss function (Johnson et al.,

2016) and GANs (I. J. Goodfellow et al., 2014).

47

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 48

4.1. Perceptual quality and the perception-distortion plane

The pivotal SRGAN model (Ledig et al., 2017) implemented all of the above design elements.

It focused on predicting HR images with a high human-perceived image quality, not simply a

low MSE. SRGAN had a GAN architecture with a generator, in the form of a ResNet-based

model with skip-connections, and a discriminator, based on the DCGAN (Radford et al., 2016)

discriminator. Perceptual loss1, an attempt to quantify human-perceived image quality, was

implemented with the help of a separate VGG19 (Simonyan & Zisserman, 2015) convolutional

image classification model, trained on the ImageNet database of labelled images (J. Deng et al.,

2009). The rationale of this approach is that the VGG19 model evaluates details in the image

similarly to the human visual perception system when it has learned to classify images.

SRGAN triggered a wave of research into GAN-based, perceptual quality focused SISR. The

2018 PIRM Challenge on Perceptual Image Super-resolution, a competition hosted in conjunction

with the European Conference on Computer Vision (ECCV), focused on the tradeoff between

minimizing distortion and maximizing perceptual quality. The perception-distortion plane (see

Figure 1.2) was divided into three regions and the goal of the competition was to achieve the

best perceptual quality within each region.

ESRGAN by X. Wang, Yu, Wu, et al., 2018 achieved best results in Region 3, the high

perceptual quality region. As indicated by its name, ESRGAN is heavily inspired by SRGAN,

yet with several modifications that both improve perceptual quality and ease training. We will

revisit ESRGAN in Section 4.3.

4.2. SISR performance metrics

In Section 3.1.3 we introduced the concept of the performance measure, P , as an absolutely

essential part of a machine learning model. The choice of P should motivate the choice of loss

function, L. For SISR tasks, the choice of both is one of the most challenging aspects of model

development and evaluation.

Evaluating the performance of a SISR model is closely related to performing an image quality

assessment (IQA) of the model’s predictions XSR. IQA is its own research field with applications

beyond SR. Examples include image processing, compression and restoration. Within IQA the
1Perceptual loss has slightly different meanings in the SRGAN (Ledig et al., 2017) and ESRGAN (X. Wang,

Yu, Wu, et al., 2018) papers. In SRGAN, it is the name of the combined loss function, including MSE loss, VGG19

feature extraction loss and adversarial loss from the discriminator. In ESRGAN, perceptual loss is simply the

name of the VGG19 feature extraction loss. Since ESRGAN is the topic of this thesis we use the latter definition

to avoid confusion.

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 49

Figure 4.1: Overview of relevant SISR performance metrics organized in an IQA hierarchy. Underlined metrics

are used to evaluate model performance in our experiments (see Chapter 7)

term image quality is usually defined to mean perceived image quality by human observers (Athar

& Wang, 2019; Zhou Wang et al., 2004). If we keep by this human-centered definition it becomes

necessary to define a separate assessment if our observer is non-human, e.g., an object detection

algorithm. In Figure 4.1 we call this Computer Vision IQA. There are some references in the

literature to the use of object detection performance as a performance metric for SISR models,

also for satellite image SISR (Courtrai et al., 2020; Rabbi et al., 2020), but the idea is not well

established in the IQA literature.

Computer Vision IQA is not used as a performance metric in this thesis, so while it is very

much a relevant topic, we will instead focus on human-centered IQA. On the highest level it is

common to divide IQA methods into subjective and objective IQA. In many ways, subjective

IQA is the gold standard. When measuring image quality as perceived by human observers,

nothing beats asking human observers directly. The mean opinion score (MOS) is then often

used. Human observers are asked to evaluate perceived image quality on a scale, usually 1-4 or

1-5. MOS has some obvious downsides though, the most prominent being that it is expensive

and time-consuming. Consequently, there is a need for algorithmic methods that correlate well

with subjective IQA methods. We call these objective IQA methods. Their goal is to estimate

the human-perceived image quality. (Z. Wang & Bovik, 2006, pp. 1–3; Athar & Wang, 2019,

p. 1)

In Figure 4.2 we see how two objective IQA metrics correlate differently with MOS. Based

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 50

Figure 4.2: Scatter plots comparing the objective IQA methods PSNR and Ma et al. (Y-axes), with the Mean

Opinion Score (MOS) (X-axes). Every point is a super-resoluted image, colored by SISR algorithm. Reprinted

from Ma et al., 2017. Copyright 2021, with permission from Elsevier

on these scatter plots alone, there seem to be strong evidence in favor of the Ma et al. metric

over the PSNR metric.

In the overview of IQA metrics (Figure 4.1) we also notice the terms No-Reference (NR) and

Full-Reference (FR). A FR IQA method compares the distorted image, i.e., a SISR estimate,

with the ground truth image, the reference image. A FR method is thus reliant on the existence

of a reference image, something that is seldom available in real-world applications of IQA. A NR

IQA method, on the other hand, is only a function of the distorted image itself. FR and NR

has its strengths and weaknesses. In SISR research it is common to report metrics from both

categories, as long as a reference image is available. (Athar & Wang, 2019)

4.2.1. Peak Signal-to-Noise Ratio (PSNR)

The Peak Signal-to-Noise Ratio (PSNR), a metric derived from the well-known MSE we intro-

duced in Section 3.6, has historically been the default objective IQA method. A decibel scale

is used to increase interpretability compared to a raw MSE metric. The historical standing,

combined with its ease of use and good interpretability, is probably the reason why it is still used

extensively in SISR today. PSNR is historically defined for one-channel (grayscale) images only.

For color images, a color space transformation, i.e., an RGB-to-HSV, is usually performed so

that PSNR may be computed only on the value/brightness (V) channel. (Athar & Wang, 2019)

PSNR = 10 log10
L2

MSE
= 20 log10

L

MSE
(4.1)

where L is the dynamic range of pixel intensities. In many image applications L = 28 − 1 =

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 51

255, the dynamic range of an 8-bit image. In the case of 11-bit WorldView-2 and GeoEye-1

satellite images, L = 211−1 = 2047. L may also be a decimal number, for instance 1.0, a typical

value when dealing with preprocessed images in neural networks. The use of L makes PSNR,

to a certain extent, invariant to the dynamic range of the image.2 (Horé & Ziou, 2010; Maxar,

2019a, 2019c)

Despite its status as a default IQA metric, it has been repeatedly shown that it correlates

poorly with subjective IQA methods. It relies on assumptions that do not hold when measuring

visual perceptual quality. For instance, PSNR is independent of any spatial relationships in

the image; it is only a pixel-by-pixel evaluation. Shifting the whole image by one pixel in any

direction would lead to a disastrous PSNR score, yet probably no noticeable difference when

evaluated by a human observer. We illustrated this with a checkerboard example in Section 1.2.

For a comprehensive, and as a matter of fact funny, evaluation of PSNR, see Z. Wang and Bovik,

2009.

A note on MSE and MAE of 2D, 3D and 4D tensors

We introduced MSE (3.4) and MAE (3.5) as functions operating on vectors. In SISR problems we

are usually interested in 2D (H×W) or 3D (H×W ×C) images stored in tensors. Additionally,

during training the loss is computed over a mini-batch of images, extending the number of

dimensions to 4 (B×H ×W ×C). Luckily, the extra dimensions does not add much complexity

to the computation of MAE and MSE. Given pairs of SISR predictions XSR and ground truth

HR images XHR we compute the residuals E

E = XHR −XSR, where E, XHR, XSR ∈ RB×Hhr×Whr×C

MAE and MSE are then computed element-wise. This is equivalent to vectorizing, or flat-

tening, E into e.

e = vec(E), e ∈ RBHhrWhrC

By doing this we may then use the vector notation in (3.4) and (3.5), with a modified

denominator:

MAE = L1 =
1

BHhrWhrC
‖e‖1 (4.2)

MSE = L2 =
1

BHhrWhrC
eTe =

1

NHhrWhrC
‖e‖22 (4.3)

2Rounding errors occur, especially for integer data types.

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 52

4.2.2. Natural Image Quality Evaluator (NIQE)

The Natural Image Quality Evaluator (NIQE) is a frequently used so called opinion-unaware

no-reference IQA algorithm introduced by Mittal et al., 2013. The metric is on a continuous

scale where most images receive a score between 0 and 10, and a lower score is better.

A reference model is created by fitting a multivariate Gaussian model to a training set of

natural and pristine images. Let us consider a distorted image. At evaluation time the same

model is fitted to the distorted image. The NIQE score is then a function of the distance between

the parameters of the two model fits. A shorter distance means that the distorted image is more

similar to the training set of natural and pristine images. By this measure one can say that the

distorted image is more natural and pristine, i.e., it has a higher perceptual quality. (Mittal

et al., 2013)

NIQE is a no-reference metric since the algorithm does not depend on having access to a

reference image. It is opinion-unaware because it has not been trained on human-evaluated

distorted images. NIQE is only aware of how natural and pristine images look and use this

knowledge to estimate image quality. (Athar & Wang, 2019)

4.2.3. Ma et al.

Figure 4.3: The main steps of the Ma et al. performance measure. Reprinted from Ma et al., 2017 Copyright

2021, with permission from Elsevier

Ma et al., 2017 proposed an image quality metric specifically to evaluate SISR algorithms.

They did not explicitly name their algorithm, so it is commonly referred to as the Ma et al.

metric or just Ma metric for short. The metric is on a continuous [0, 10] scale where a higher

score correlates with higher perceptual quality. Similarly to NIQE it is also a no-reference

measure. However contrary to the opinion-unaware NIQE, Ma is opinion-aware. A regression

model has been fitted to a dataset of human-evaluated super-resoluted images. This also has the

added effect of making it optimized to pick-up on typical SR artefacts.

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 53

The Ma et al. model exploits three types of statistical properties to quantify artifacts and

assess the quality: local frequency variations, global frequency variations and spatial disconti-

nuity. In Figure 4.3 we see how these three types of features are extracted through the use of

a quite a few different algorithms. Subsequently, a random regression forest is fitted to each of

the three features, before finally all scores are combined with linear regression, outputting a final

scalar quality score. (Ma et al., 2017)

4.2.4. Perceptual Index (PI)

ESRGAN was first introduced as a contender in the 2018 PIRM Challenge on Perceptual Image

Super-Resolution, where the model won first place in one of the disciplines. The challenge

sought to reward both accuracy and perceptual quality and as a consequence they introduced

the Perceptual Index (PI) as a measure for perceptual quality. (Blau et al., 2019)

PI =
1

2
((10−Ma) + NIQE) (4.4)

As evident from (4.4) PI combines two other performance metrics, Ma and NIQE. As de-

scribed in the preceding few sections these metrics evaluate image quality in two distinctly

different ways. PI should therefore be a relatively robust measure of perceived image quality. In

fact Blau et al., 2019 validated different measures against human-rated MOS on the 2018 PIRM

images. They found that PI correlated well with MOS at least on this particular set of images.

4.3. ESRGAN

Figure 4.4: A standard GAN architecture applied to SISR where HR images are downsampled/degraded into LR

images and presented as an input to the generator.

Before diving into the details of ESRGAN, let us take a bird’s eye view of how a GAN can be

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 54

applied to the SISR task. In Section 3.12 we introduced GAN applied to the task of generating

realistic-looking images from random noise (see Figure 3.10). In Figure 4.4 we have modified the

design slightly, replacing random noise with a set of LR images. In theory such a GAN model

could work. However, in practice, a number of modifications have been made in both SRGAN

and ESRGAN that optimize both performance and training. The high-level modifications are

depicted in Figure 4.5.

Figure 4.5: GAN training of ESRGAN on the MS-to-PAN task. One training iteration includes forward passes,

backpropagation of the loss to compute gradients and the updating of weights in both the generator and the

discriminator.

Note that Figure 4.5, and all subsequent illustrations of ESRGAN, include some modifica-

tions made for the MS-to-PAN task that is the topic of this thesis. We summarize those in

Section 5.4.1.

ESRGAN is trained in two phases: First a pretraining phase where only the L1 content

loss (4.2) is used to train the generator, then a GAN training phase where the full set of losses

depicted in Figure 4.5 is applied. Pretraining is done in order to produce a reasonable starting

point for GAN training. Two reasons for pretraining are mentioned in the ESRGAN paper.

Firstly, pretraining helps the generator avoid undesired local optima. Secondly, it helps the

generator focus more on texture discrimination and detail from the start. They used the Adam

optimizer (see Section 3.9.1) and trained the model for 400k pretraining and 400k GAN training

iterations on the DIV2K (Agustsson & Timofte, 2017), Flickr2K (Timofte et al., 2017) and

the OutdoorSceneTraining (X. Wang, Yu, Dong, et al., 2018) image datasets. For a full list of

ESRGAN configuration hyper-parameters, see Table 5.4.

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 55

4.3.1. ESRGAN loss functions

In the GAN training phase the loss function for the generator consists of the L1 content loss, the

perceptual loss and the relativistic average GAN (RaGAN) loss:

LG = Lpercep + λLRaG + ηL1 (4.5)

λ and η are hyperparameters that adjust the relative significance of each loss component.

X. Wang, Yu, Wu, et al., 2018 used λ = 0.005 and η = 0.01 for their experiments, and the same

values were used for the MS-to-PAN experiments in this thesis.

Perceptual loss

Figure 4.6: Deep feature extraction from a VGG19 network trained on ImageNet. SRGAN and ESRGAN extracts

the feature tensor at different locations. The layers to the right of the feature extraction is not used. (Ledig et al.,

2017; Simonyan & Zisserman, 2015; X. Wang, Yu, Wu, et al., 2018)

The perceptual loss, Lpercep, used in ESRGAN builds on the foundations of Johnson et al.,

2016 and SRGAN (Ledig et al., 2017). A separate convolutional neural network image classifier,

VGG19 (Simonyan & Zisserman, 2015), trained on the ImageNet database of labelled images

(J. Deng et al., 2009), is used as a proxy for the human visual system. In Figure 4.6 we see how

features are extracted from deep within the VGG19 network. Both the ground truth HR and the

SR images are forward propagated through the network and the difference is computed with L1

loss (4.2). A lower loss indicates that the SR image has more similar perceptual characteristics

to the HR image.

X. Wang, Yu, Wu, et al. demonstrated that extracting features before an activation layer

increases the perceptual quality of SISR outputs. They argue that this is because activation

layers turn off a large percentage of neurons, leading to weaker supervision and less information

in the gradients.

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 56

Relativistic average GAN (RaGAN) loss

Figure 4.7: The ESRGAN Discriminator Network with the RaGAN configuration at the end. RaGAN is illustrated

computed over a single real image and a single fake image. In actual implementations all images in the mini-batch

are used in the computation.

SRGAN and ESRGAN employs a discriminator network architecture that builds on the well-

established DCGAN (Radford et al., 2016) guidelines. SRGAN uses the standard minimax

GAN loss function (3.7) we introduced in Chapter 3. The authors of ESRGAN have employed

a different loss function, Relativistic average GAN (RaGAN) (Jolicoeur-Martineau, 2018), that

they argue perform better on SISR tasks. Instead of simply estimating the probability of whether

an image is fake or real, RaGAN estimates the probability that a real (HR) image is more

realistic than the average fake (SR) image, with the average (arithmetic mean) computed over

the mini-batch of images. Vice versa, it also estimates the probability that a fake (SR) image is

more realistic than the average real (HR) image. This concept is depicted on the right side of

Figure 4.7.

The mathematical representation of RaGAN is somewhat involved. If we first express the

standard discriminator output in the original GAN as D(X) = σ (C(X)), where σ(·) is the

sigmoid output activation function and C(X) is the output of the preceding layer in the discrim-

inator, then RaGAN formulated on single HR and SR images, XHR,b and XSR,b belonging to a

mini-batch of HR-SR image pairs, {XHR,b,XSR,b}Bb=1, is:

DRa (XHR,b,XSR) = σ

(
C (XHR,b)−

1

B

B∑
b=1

C (XSR,b)

)

DRa (XSR,b,XHR) = σ

(
C (XSR,b)−

1

B

B∑
b=1

C (XHR,b)

) (4.6)

We can think of (4.6) as replacing the standard sigmoid output activation function that

operates on the HR and SR mini-batches individually, with a stateful sigmoid function that

operates on both mini-batches. (4.6) is then used in loss functions similar to the GAN minimax

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 57

loss functions (3.8). Formulated as operating on mini-batches of images, and with minus signs

introduced so that both LRaD and LRaG can be minimized, we get the following two loss functions:

LRaD = − 1

B

B∑
b=1

(logDRa (XHR,b,XSR) + log (1−DRa (XSR,b,XHR)))

LRaG = − 1

B

B∑
b=1

(log (1−DRa (XHR,b,XSR)) + logDRa (XSR,b,XHR))
(4.7)

Notice that the generator loss, LRaG , in (4.7) contains both XSR and XHR, something that is

not the case for the loss functions in SRGAN. The authors of the ESRGAN paper argue that

this improves the ability of the generator to learn sharper edges and more detailed textures.

In addition, Jolicoeur-Martineau, 2018 argues for several other favorable properties of RaGAN,

including increased stability during training.

4.3.2. ESRGAN Generator

We conclude this chapter on SISR and ESRGAN with a review of the ESRGAN generator network

architecture. From a first glance at the generator in Figure 4.8 the jump in complexity from the

small ConvNet introduced in Section 3.11, and even the VGG19 (Figure 4.6) and discriminator

network (Figure 4.7) seems significant. A more thorough inspection however, reveals that the

network consists of the same basic building blocks: convolutional layers, activation layers and

skip-connections. It is just a matter of how you put them together.

Figure 4.8: The ESRGAN Generator Network with Residual-in-Residual Dense Block and Dense Block architec-

ture. The input and output dimensions of this version is modified from the original so that it can be applied to

the satellite MS-to-PAN task.

CHAPTER 4. SINGLE IMAGE SUPER-RESOLUTION (SISR) 58

The design is inspired by the SRGAN (Ledig et al., 2017) generator, which again builds

on previous designs like ResNet (He et al., 2016a). A historical review of convolutional image

generators is beyond the scope of this thesis. Our focus in the next few paragraphs will thus be

on the differences between SRGAN and ESRGAN.

The ESRGAN authors made four changes to the SRGAN generator. First, they removed all

so-called batch normalization (BN) layers (Ioffe & Szegedy, 2015). BN layers are not covered in

this thesis since they are not employed in ESRGAN. Consequently we will not do a deep dive

on the topic here, but suffice to say BN layers normalize, re-centers and re-scales a mini-batch

inside the network, and the layers are widely used due to their positive effects on training speed

and stability. It has however been demonstrated by Lim et al., 2017 that they do not work as

well for PSNR-oriented tasks, including SISR. Furthermore it was observed by the authors of

ESRGAN that BN layers introduced artifacts, especially for deeper networks trained under a

GAN framework.

The second change they made to the SRGAN generator was replacing the straight-forward

Residual Block, a block consisting of two convolutional layers, two BN layers and an activation

layer, with the novel Residual-in-Residual Dense Block (RRDB) depicted in Figure 4.8. RRDB is

inspired by the Residual Dense Block (Zhang et al., 2018) and the Densely Connected Convolu-

tional Network (G. Huang et al., 2017). The RRDB block-within-another-block design increases

the depth and capacity of the network substantially. Additionally, all the skip connections ensure

that the gradient flows all the way back to the first layers. We thus avoid the vanishing gradient

problem (see Section 3.5).

The third and fourth changes are relatively minor. Residual scaling is used to scale down

residuals by multiplying with a hyper-parameter, β, between 0 and 1. This prevents instability

during training (Lim et al., 2017; Szegedy et al., 2017). Lastly, Leaky ReLU (3.5) is used as

activation function throughout the ESRGAN generator. SRGAN uses Parametric ReLU (He

et al., 2015), a version of Leaky ReLU where the α is a trainable parameter.

Part II

Experiments on satellite imagery

59

Chapter 5

Experimental design

In this chapter we will introduce the experiments and the data and see how they relate to the

research questions posed in Chapter 1. In addition, we will look at which changes and adaptations

we have made to the default ESRGAN architecture and training configuration.

Figure 5.1: Experimental design

For convenience we repeat the three research questions:

R1: To what extent can the higher-resolution 0.5 m GSD PAN band be reconstructed from the

lower-resolution 2.0 m GSD MS bands?

R2: To what extent can the model trained on images from satellite A be used to super-resolute

images from a similar satellite B?

R3: Can we increase performance by introducing regularization, in the form of data augmen-

tation and over-sampling of patches from the satellite images? If so, by how much?

61

CHAPTER 5. EXPERIMENTAL DESIGN 62

The first two relate to how well SISR work on the MS-to-PAN problem, either internally on

images from the same satellite (R1: training and testing on images from the same satellite A),

or across satellites (R2: training on images from satellite A, testing on images from satellite B).

WorldView-2 was selected as satellite A and GeoEye-1 selected as satellite B.

As seen in Figure 5.1, we have designed a baseline experiment (E1) that will provide insight

into these questions. In the baseline experiment we focus on investigating how different num-

ber of MS bands affect performance, instead of absolute performance. Why is this important?

WorldView-2 has eight MS bands, while GeoEye-1 has four. While we may use all eight available

WorldView-2 bands when researching R1, we are restricted to a maximum of four bands when

researching R2. It is therefore of interest to study if and by how much performance is decreased

when reducing the number of bands.

Our third research question relates to increasing absolute performance, particularly the ability

to generalize well across sensors (R2). We have designed a regularization experiment (E2) where

we test a couple of regularization techniques on the otherwise unregularized ESRGAN model.

Ultimately, we run our most interesting and promising model through a final performance

evaluation (E3) on completely unseen data from the test set. This reduces the risk of an over-

optimistic, overfitted final performance evaluation. (See Section 3.1.3 for more on the topic).

We will revisit the experiments in Section 5.2 after an introduction of the dataset.

5.1. The data: Two Mediterranean towns

The selection and acquisition of the satellite images was done in collaboration with FFI. We

had access to search the Maxar satellite image archive. Together we developed some criteria for

which areas to acquire images of. We wanted to (a) have a high number of archived satellite

images available, (b) train and test on two or more similar and comparable areas, (c) have the

images contain a diverse collection of maritime vessels (civilian and military), and finally (d)

have the images contain built-up areas (buildings, roads, vehicles etc.).

The criteria are a result of general research interests at FFI as well as a wish to study satellite

images with high content variability, i.e., images with diverse details. The latter should increase

the generalisability of any findings and frankly make a SISR project more interesting.

It was soon identified that criterion (c) limited the number of potential areas. Most military

vessels are located either at sea or at naval bases, and most present-day naval bases are located

away from civilian infrastructure and harbors. In Europe there are however some naval bases

which for historical reasons are located within the natural boundaries of a town’s harbor. The

search for potential areas were therefore focused on naval bases in Europe.

CHAPTER 5. EXPERIMENTAL DESIGN 63

Potential naval bases were identified and then vetted against criterion (a) . The number

of available images of an area is primarily driven by previous image customer interest. It is

mostly the customers of a satellite imaging company that order image collection. The number

is also heavily influenced by the typical cloud and sun conditions in the area. Consequently

there are orders of magnitude more images of sunny and populous cities like San Diego than an

uninhabited patch of land along the dark and rainy coasts of the North Atlantic. We therefore

found there to be more images available of naval bases in the Mediterranean since conditions

here are drier and sunnier than other coastlines in Europe.

5.1.1. Introducing Toulon and La Spezia

Toulon

La Spezia

Toulon

The French and Italian Rivieras

La Spezia

© OpenStreetMap contributors

Figure 5.2: Satellite images of Toulon and La Spezia and their location on the French and Italian Rivieras –

Satellite image © 2021 Maxar Technologies

Toulon on the French Riviera and La Spezia across the border, on the Italian Riviera, are

two historical naval towns located only 330 km apart. Both have military and civilian ports as

well as a combination of historical and modern architecture and street structure. In Figure 5.2

CHAPTER 5. EXPERIMENTAL DESIGN 64

we see the boundaries of the two areas that images have been acquired from. The acquisition

boundaries have been set with a focus on including harbor infrastructure. Consequently the

more compact nature of Toulon’s harbor has resulted in a smaller acquisition boundary for this

town, ca. 13.7 km2, than for that of La Spezia, ca. 23.5 km2.

Town

Satellite WorldView-2

8 MS + 1 Pan

GeoEye-1

4 MS + 1 Pan
Total

La Spezia

(ca. 23.5 km2)
22 11 35

Toulon

(ca. 13.7 km2)
20 9 38

Total 42 20 62

Table 5.1: Contingency table with number of images by areas and satellite sensor

We also note that large portions of both images consist of sea surface. In addition, some

images are cloudy. From a SISR perspective, sea and cloud surfaces are monotonous and un-

interesting compared to the rest of the images. The fact that these surface types combined

dominate versus all other surface types (buildings, roads, ships, vegetation etc.) means we have

a severe data imbalance problem that could be detrimental to the performance of a robust CNN

based model (Buda et al., 2018). Initial training of ESRGAN confirmed that this indeed was a

problem. We observed overfitting of the model to sea surfaces and mode collapse during GAN

training. To correct for this imbalance we trained and implemented a cloud and sea classifier

and used this to significantly undersample sea and cloud patches. We will revisit this classifier

in Section 6.3.2.

Figure 5.3: Distribution of image sizes in km2 by town and satellite sensor

CHAPTER 5. EXPERIMENTAL DESIGN 65

FFI acquired 62 images that partly or fully overlap the acquisition boundaries in Figure 5.2.1

Table 5.1 depicts the distribution and we note a good balance between the number of images

from satellites WorldView-2 and GeoEye-1 as well as between the two towns. It is however worth

noting that actual images vary in size as some only partly cover the acquisition boundaries. How

the image sizes are distributed across the two towns and two satellites can be seen in Figure 5.3.

We note that small image sizes are concentrated in La Spezia and most prominently in the set

of GeoEye-1 images of La Spezia. This may lead to less representative and robust performance

measures of this particular combination of town and sensor, something we are taking into account

in the next section.

5.1.2. Data partition: training, validation and test sets

In Section 3.1.3 we introduced the practice of dividing the complete dataset into three disjoint

subsets: training, validation and test. We have followed the same practice for the experiments,

and the distribution is depicted in Table 5.2. The images were sampled with Python NumPy’s

pseudorandom number generator. For the WorldView-2 images we used a 50/25/25 split (train/-

val/test), with one exception: images that covered less than 50 % of the area in Figure 5.2 were

designated to the training set. This was done in order to increase the representativeness of the

validation and test set. For the GeoEye-1 images we used a 0/50/50 split since no images from

this satellite should be used for training (see the introduction to this chapter).

Town Satellite

Partition La Spezia Toulon All GE01 WV02 All

Training 12 10 22 0 22 22

Validation 10 9 19 9 10 19

Test 11 10 21 11 10 21

All 33 29 62 20 42 62

Table 5.2: Contingency table with number of images in train, validation and test sets across town and satellite

sensor

Finally, a training set size of 22 should at face value raise alarms for anyone familiar with

neural networks. We are however boosting this number considerably by sampling smaller patches

from the larger satellite images. In our baseline experiment (E1) we are for instance training on

almost 130 000 image patches extracted from the 22 large satellite images. We elaborate further

on this topic in Section 6.1.
174 images were originally acquired, 11 of which were taken by the WorldView-3 satellite. These are not

included in our experimental design. In addition, one image was found to only consist of opaque clouds and

consequently discarded, bringing the total to 62.

CHAPTER 5. EXPERIMENTAL DESIGN 66

5.1.3. Temporal correlations

A consequence of our dataset being concentrated on two towns is that we get multiple overlapping

images taken of the same area, but at different times. In Figure 5.4 we see an example of how

this looks in practice. It is natural to believe that temporal correlations exist and that these

impact the performance on the training set as well as the validation and test set. For instance, in

Figure 5.4 we notice a distinct looking roof in the center of the image patches. A neural network

may start memorizing this specific roof after some period of training. Depending on the task at

hand this could be problematic, since memorization could impact the network’s ability to digest

new information in a new, previously unseen, MS input image. For instance, an explosion could

blow a hole in the roof, large enough to be clearly visible in the MS image. A model relying too

much on memorization could then interpolate and thus remove the hole in its SISR prediction.

Figure 5.4: Image patches of the same location extracted from multiple satellite images taken at different times

Satellite image © 2021 Maxar Technologies

As we have not investigated the impact of temporal correlations, it is unclear to what extent

memorization affects performance. Based on anecdotal inspections of image patches, such as

CHAPTER 5. EXPERIMENTAL DESIGN 67

in Figure 5.4, we could also hypothesize that there is enough variation from image to image,

especially at the pixel level, that pure memorization is a non-viable strategy for a neural network

anyway. Yes, images are taken at the same location, but angles and light conditions are different.

In addition, ground activities like construction, moving vehicles and people, make the content

of images taken of the same location at different times quite different. In E2 and E3 we also

implement data augmentation (flips and rotates) on the image patches (see Section 5.2.2). This

should make it harder for a neural network to memorize specific features across time.

5.2. The experiments

5.2.1. E1. The baseline experiment

As mentioned in the introduction to this chapter, E1 is designed to answer research questions R1

and R2. From this perspective m8 and m4 should be the most interesting models. In m8 we let

ESRGAN use all available information, all WorldView-2 MS bands, and hypothesize that this will

enable the best possible reconstruction of the WorldView-2 PAN band. In m4 we let ESRGAN

use only four of the WorldView-2 MS bands, the four particular bands that are also available in

GeoEye-1 images (see Figure 2.7). We are curious about whether training on these WorldView-2

images, without any pre-processing or transformations to imitate GeoEye-1 MS characteristics,

is enough to produce acceptable SR performance on the unseen GeoEye-1 images.

WorldView-2 (WV02) GeoEye-1 (GE01)

Model name 0: Coastal 1: Blue 2: Green 3: Yellow 4: Red 5: Red Edge 6: NIR 7: NIR2 0: Blue 1: Green 2: Red 3: NIR

m8 X X X X X X X X

m6 X X X X X X

m4 X X X X X X X X

m3 X X X X X X

Table 5.3: Models and band combinations in the baseline experiment (E1).

In addition, we include models m6 and m3 to check whether simpler models perform equally

well, or even better, than m8 and m4 respectively. The rationale behind m6 is that it only

includes MS bands that actually overlap with the PAN band on the electromagnetic spectrum

(see Figure 2.7). m3 is included to investigate the performance without the NIR band. This

is relevant because certain satellites, for instance early versions of Planet’s Dove satellites, only

capture RGB.

CHAPTER 5. EXPERIMENTAL DESIGN 68

5.2.2. E2. The regularization experiment

In the regularization experiment we investigate whether and to what degree regularization in-

crease the performance of our models. Regularization should improve the generalizability of the

models, i.e., reduce the generalization error and improve performance on validation and test

sets. After an initial review of the ESRGAN architecture and the data available we hypothesized

that a data-centric approach to regularization is effective, seeing as the training set is somewhat

limited in size. (More on the sampling of patches in Chapter 6)

Figure 5.5: Flips and 90 degree rotations applied to an MS patch. There are 16 combinations at face value, but

on further inspection we notice that only 8 are unique. Satellite image © 2021 Maxar Technologies

In E2 we test two regularization techniques on the m4 model from E1. Why m4? We found

m4 to be the most interesting model emerging from E1 (see Chapter 7 for more) as it allows

evaluation on both WorldView-2 and GeoEye-1 data (R1 and R2). In addition it performed

better than its competitor, m3, in E1. A total of three models were trained and evaluated in E2:

• m4-os: Sampling five times as many patches from the 22 training images than what was

done in the baseline (m4). This oversampling (os) would result in a large number of

overlapping image patches. The expected number of patches covering a unique square

CHAPTER 5. EXPERIMENTAL DESIGN 69

meter is set to 10, producing approximately 650k image patches.

• m4-aug: Randomly augment patches using two data augmentation methods: random flips

and random 90 degree rotations. We consider these methods conservative/safe in the

context of the MS-to-PAN problem since neither pixel resampling nor any pixel value

manipulation that could change the spectral signature of an area is performed. In Figure 5.5

we notice that one image patch is augmented into eight different versions through the

combination of the two methods.

• m4-os-aug: Combine oversampling and the random data augmentation described above.

5.2.3. E3. The final evaluation

In E3 we want to perform a final performance evaluation of the most promising and interesting

model identified through E1 and E2, m4-os-aug. To avoid effects of hyperparameter overfitting

this evaluation should be done on the completely unseen test set (see Figure 3.1 and the accom-

panying section). The validation set is now included in the training set, adding much needed

variation to our training set. If our m4-os-aug model generalize well we should not observe a

considerable dip in performance across the performance metrics, P , of interest.

5.3. Training, logging and evaluation

All models were trained in two phases: 400k iterations of pretraining with L1 loss and 400k

iterations of GAN training with the composite loss function (4.5).2 Subtracting for time spent

on validation, the total training time hovered around four days, with pretraining taking slightly

less than two days and GAN training taking slightly more. In Figure 5.6 we see how the SISR

output changes as training progresses.

Tensorboard was used to log metrics during experiments. In addition, model weights were

saved to disk every 1000 training iterations, enabling time travel and post-experiment evaluation

of performance at different iterations of the two training phases.

All logs and some model weights are publicly available under the MIT license in the project’s

GitHub repository. The satellite images are not publicly available and would have to be acquired

from Maxar Technologies. However, metadata about the images is available in the GitHub

repository and in Appendix C, enabling ordering of the exact same images and extents by others

who would like to either reproduce or build on the experiments in this thesis.
2One iteration defined as including the forward pass, the backward pass (backpropagation) and the updating

of the model weights.

https://github.com/onordberg/multispectral-super-resolution

CHAPTER 5. EXPERIMENTAL DESIGN 70

Figure 5.6: Image patches at different stages of pretraining and GAN training. The training set image patches

were extracted during training of the m6 model in Experiment 1. Top: La Spezia 2018-07-06. Bottom: Toulon

2014-04-06 Satellite image © 2021 Maxar Technologies

5.3.1. Computing NIQE, Ma et al., and Perceptual Index (PI) metrics

We wanted to evaluate performance on the perception-distortion plane (see Figure 1.2), using the

same metrics as in the original ESRGAN paper (X. Wang, Yu, Wu, et al., 2018) and the PIRM

Challenge (Shoeiby et al., 2019). These metrics were NIQE, Ma et al. and PI (see Section 4.2).

Official releases of the algorithms are MATLAB implementations and to our knowledge there are

no working and validated Python implementations. 3

This left two alternatives: (1) Evaluate performance in a separate MATLAB environment,
3The scikit-video Python package includes a NIQE function, but during testing this algorithm failed to repro-

duce the same results as the official implementation.

http://www.scikit-video.org/stable/modules/generated/skvideo.measure.niqe.html

CHAPTER 5. EXPERIMENTAL DESIGN 71

or (2) call on the MATLAB functions from our Python environment with the MATLAB Engine

API for Python. As the first option would be unnecessarily cumbersome, we opted for the second

option. We implemented calls to the official MATLAB NIQE and Ma et al. libraries from inside

our TensorFlow Keras ESRGAN model and computed PI in TensorFlow. Consequently we were

able to evaluate performance on these metrics just as if they were native TensorFlow metrics like

MSE and PSNR. To our knowledge this is a first, at least among publicly available source code

and research.

5.4. Adapting ESRGAN to the MS-to-PAN task

The unofficial TensorFlow 2 implementation of ESRGAN by K.-Y. Huang, 2020 was selected as

the starting point for this project.4 We have since made significant changes to the code base.

Some changes are unrelated to the specifics of the MS-to-PAN task, such as our implementation

of ESRGAN as a subclassed TensorFlow Keras Model (tf.keras.Model), allowing for the use of

nifty and time-saving features already implemented by the Keras team. Other changes are very

specific to the MS-to-PAN task, such as designing a data pipeline that enables efficient training

on GeoTIFF satellite images. Since the data pipeline is not directly related to ESRGAN, it can

be used to train other models as well, we have dedicated a separate chapter, Chapter 6, on how

we designed and implemented our data pipeline.

Changes to the ESRGAN network architecture and training configuration are relatively few,

and we will cover them in the next few sections. For a complete overview of all/most configuration

hyperparameters, not just the ones that differ from the original ESRGAN , see Table 5.4.

5.4.1. Changes to the network architecture

There are really only three changes to the ESRGAN network architecture (also visible in Figure 4.5

and Figure 4.8):

1. No degradation algorithm is needed to produce LR images from HR images. MS images

are used directly as input to the generator.

2. The number of channels in the input layer is configurable and depends on the number of

MS bands that will be used. The original implementation used 3 (RGB).

3. The number of output channels is fixed to one, since the PAN image consists of only one

band. The original implementation used 3 (RGB).
4PyTorch is used in the official implementation (X. Wang, 2019). The author was and is more proficient in

the use of TensorFlow than PyTorch, and this is the rationale behind the choice of an unofficial implementation

as a starting point.

https://se.mathworks.com/help/matlab/matlab-engine-for-python.html
https://se.mathworks.com/help/matlab/matlab-engine-for-python.html

CHAPTER 5. EXPERIMENTAL DESIGN 72

Training settings
Value Model settings Value

Pretraining GAN-training Number of RRDB blocks 16

Optimizer: Number of filters 64

Training iterations 400k 400k Input: Number of channels 8, 6, 4 or 3

Type of optimizer Adam Input: Height, Width None, None

Generator learning rate 5 ∗ 10−5 2 ∗ 10−5 Output: Number of channels 1

Discriminator learning rate 2 ∗ 10−5 Output: Height, Width None, None

Generator β1 0.9 0.9

Generator β2 0.999 0.999
Data settings

Value

Generator ε 0.9 Training set Validation set

Discriminator β1 0.9 Number of images 22 19

Discriminator β2 0.999 MS patch size 32x32 128x128

Generator ε 10−7 PAN patch size 128x128 512x512

Loss coefficients: Expected patch density 2.0 patches/m2

L1 1 0.01 Number of patches 129 221 8 113

Lpercep 0 1 Batch size 16 8

LGAN 0 0.005 Cloud/Sea classifier:

Probability threshold 0,95

Keep rate 0,10

Table 5.4: Configuration and hyperparameter settings of the MS-to-PAN version of ESRGAN used in the exper-

iments

In addition it is worth mentioning that we only employ the shallower 16 Residual-in-Residual

Dense Blocks (RRDB) version of ESRGAN. The authors of ESRGAN trained both a 16 and a 23

block version. We made the choice in order to decrease training time and because we observed

only negligible differences in performance during initial testing of the model.

5.4.2. Changes to the training configurations

Unsurprisingly, the training configurations presented in the ESRGAN paper (X. Wang, Yu,

Wu, et al., 2018) did not work out-of-the-box on our MS-to-PAN task. After all, the authors

trained ESRGAN on images of people, buildings, bananas and dogs; content very different from

multispectral satellite images. Pre-training worked, although not optimally, but during GAN

training the loss frequently diverged. The hyperparameters of the Adam optimizer as well as

the loss function (4.5) were hot candidates in the search for what needed to be changed. A

set of minor experiments were run on a limited set of data, with TensorBoard used as a tool

to investigate performance across metrics. After a decent amount of root-cause-analysis, we

ultimately found it necessary to only change the configuration of the Adam optimizer. The

following changes were made:

1. We removed the learning rate decay scheduler (halving of the learning rate at fixed inter-

vals). Using learning rate decay would probably work and provide regularization benefits,

CHAPTER 5. EXPERIMENTAL DESIGN 73

but it complicated the search for feasible learning rates. In addition, learning rate decay

also adds some complexity to the interpretation of loss curves.

2. Pretraining generator learning rate changed from 2 · 10−4 to 5 · 10−5

3. GAN training generator learning rate changed from 1 · 10−4 to 2 · 10−5

4. GAN training discriminator learning rate changed from 1 · 10−4 to 2 · 10−5

Ideally these changes should be made after a set of rigorous hyperparameter search experi-

ments. This was not done due to time constraints. As a consequence the hyperparameters are

probably still sub-optimal.

Chapter 6

Data pipeline

Implementing an efficient data pipeline was essential in order to maximize the utilization of

the graphics processing unit (GPU), in our case an NVIDIA GeForce RTX 2080 Ti. Training

ESRGAN is computationally expensive, even compared to many computer vision problems. As

depicted in Figure 4.5 it first requires forward passes through three different deep neural networks:

the generator, the discriminator and the separate VGG19 network used to compute perceptual

loss. It then requires backpropagation and optimization of two networks: the generator and the

discriminator.

Figure 6.1: Overview of the data pipeline

The data pipeline was developed and improved iteratively over the course of the project. A

summary of the final pipeline is seen in Figure 6.1. It describes the steps involved in processing

large satellite images, stored as georeferenced TIFF files (GeoTIFFs) on disk, into smaller fixed-

size tensors stored in GPU memory, ready to be consumed by the ESRGAN model.

75

CHAPTER 6. DATA PIPELINE 76

The central component of the pipeline is the tf.data API, TensorFlow’s highly optimized

module for data pipelines. With tf.data it would be possible to implement an end-to-end pipeline

combining steps 1 through 3 in Figure 6.1. However, despite the apparent elegance of such a

pipeline, it would require reading large GeoTIFF images from disk during training. We found

this to be a bottleneck, and instead chose a step-wise approach where allocation and extraction

of patches was separated from the other processes described in step 3.

6.1. Image patches and the fully-convolutional neural network

Despite the apparent complexity of the ESRGAN generator network architecture (see Figure 4.8)

it is at its core a series of convolutional operations and is considered a so-called fully convolutional

network (Long et al., 2015). This means that the generator is input size invariant (height and

width), a very attractive property for a SISR algorithm. For instance, the same 4x ESRGAN

generator can accept both a 32×32×3 and a 128×128×3 input image. Yet, a fully convolutional

network is not invariant to the number of channels (3 in the preceding example). The number

of trainable parameters in the first convolutional layer will change, depending on the number of

channels of the input. Consequently, the network architecture is different: the same generator

cannot accept a 32× 32× 3 and a 32× 32× 4 input image.

The discriminator (see Figure 4.7) is not fully convolutional. It contains dense layers at the

end, and the number of trainable parameters in these layers are dependent on the size of the

input.

Figure 6.2: Extraction of paired MS and PAN image patches from larger satellite images.

Satellite image © 2021 Maxar Technologies

CHAPTER 6. DATA PIPELINE 77

The implications of the preceding properties is that fixed and equal input sizes are required

during training. However, during inference, the discriminator is not used. Thus, the model

may accept any input size (height and width)1, when performing inference, but the number of

channels must be fixed at all times.

In practice, SISR models like ESRGAN are usually trained on smaller fixed-size patches

extracted from larger variable-sized images. ESRGAN is trained on 32 × 32 LR and 128 × 128

HR patches. As seen in Table 6.1 we use the same sizes in our setup. Where we depart from

common configurations is that we have used a four times higher input size, 512 × 512, during

validation and testing. This is a result of our active use of the Ma, NIQE and PI metrics during

hyperparameter tuning and model selection. These metrics require larger patch sizes, more

content, in order to give meaningful results. A small study was conducted to investigate the

impact of patch size on these metrics and select an appropriate patch size for the validation and

test sets.2

Multispectral (MS) Panchromatic (PAN)

Training 32× 32× C 128× 128× 1

Validation 128× 128× C 512× 512× 1

Test 128× 128× C 512× 512× 1

Table 6.1: Different patch sizes for different partitions. C varies across experiments.

6.2. Step 1: Patch allocation

The first step is relatively straight-forward and would not be necessary were it not for the

difference in satellite image size. We wanted to randomly sample smaller patches from several

satellite images, with an equal sampling density across all images. To allow for both different

image and patch sizes we introduce (6.1) to compute the number of patches, n, that should be

sampled from an individual satellite image.

n = C · HPAN ·WPAN

hPAN · wPAN
(6.1)

where HPAN and WPAN are the pixel dimensions of the satellite image, hPAN and wPAN

are the patch pixel dimensions, and C is a hyperparameter that defines the sampling density.

We used C = 2.0 as a baseline in experiment E1 and E2, and C = 10.0 for the models that use
1Memory requirements impose certain limitations, which depend on whether a GPU is used for inference and

the specifics of that GPU. See Siu et al., 2018 for a review of the topic.
2The patch size study is available as a Jupyter Notebook in the project’s public GitHub repository, https:

//github.com/onordberg/multispectral-super-resolution

https://github.com/onordberg/multispectral-super-resolution
https://github.com/onordberg/multispectral-super-resolution

CHAPTER 6. DATA PIPELINE 78

oversampling as a regularization technique in E2 and E3 (see Figure 5.1). The effect of changing

C and the size of the patches can be observed in the Figure 6.4 patch density heat map.

6.3. Step 2: Patch extraction

Figure 6.3: Overview of patch extraction process

The second step of the data pipeline centers around the random extraction of paired low-

resolution MS and high-resolution PAN patches from the satellite images. The process is sum-

marized in Figure 6.3. Rasterio, a Python library well-suited to read and write georeferenced

raster data, is used to read the MS and PAN GeoTIFF files stored on disk. A suite of custom

Python functions then uniformly sample matched pairs of MS and PAN patches.

6.3.1. Border pixels

Some GeoTIFF files include NoData pixels encoded as 0. In Figure 6.3 these pixels are referred

to as border pixels and occur because raster files must be rectangular, no matter what shape the

underlying data has organically. Whenever a randomly sampled patch intersects with at least

one border pixel, the patch is dropped and replaced. While it would be possible to proceed with

patches including border pixels, such an artificial boundary could complicate both training and

evaluation. Consequently, since handling border pixels is not central to the topic under research

it was decided to avoid them.

CHAPTER 6. DATA PIPELINE 79

6.3.2. Cloud and sea classifier

A major component of step 2 is the use of a cloud and sea classifier to significantly undersample

patches that only consist of clouds and/or sea surfaces. We touched upon the rationale behind

this decision when we introduced Toulon and La Spezia in Section 5.1.1. To reiterate, the

dominance of monotonous surfaces is problematic. Early testing indicated that it could lead to

mode collapse during GAN training, a condition where the generator only produces one type of

output, in our case sea surfaces. We hypothesize that this was caused by the dominance of sea

surface patches in the training data.

One straight-forward and widely used strategy to mitigate the effects of such data imbalance

is to undersample the dominant class, or equivalently to oversample the non-dominant class.

We decided to undersample cloud and sea patches. However, in order to undersample, we first

needed to detect whether a patch was a cloud or a sea patch.

Figure 6.4: Density maps of sampled patches with different sampling densities and different patch sizes. A cloud

and sea classifier has been utilized to undersample patches that with a high degree of confidence only contain

clouds and/or sea surfaces.

We did this through training our own cloud and sea classifier. 2500 patches of varying sizes

was sampled from the complete dataset. Every patch was then manually labelled as either 1:

"Completely covered by either sea and/or clouds", or 0: "The inverse". 750 of the patches were

held out in a validation set, while the remaining 1750 patches were used to train a convolutional

neural network classifier, EfficientNetB0, from scratch. (Tan & Le, 2020). Data augmentation

techniques like random rotates, flips, translation and contrast adjustments were implemented

to artificially increase the diversity of the training set. The chosen classifier achieved accuracy

CHAPTER 6. DATA PIPELINE 80

scores of above 0.95 on the validation set. Even after accounting for some over-fitting of hy-

perparameters to the validation set, we consider this well above the requirements for our use

case.3

Returning to Figure 6.3, every sampled patch is fed through the cloud and sea classifier.

Since we do not want to discard valuable non-sea/cloud patches we use a conservative prediction

cutoff of 0.95 when deciding whether to classify a patch as cloud and/or sea. 90 % of patches

classified as either cloud and/or sea is then discarded without replacement.

At the end of step 2, patches are saved to disk as paired MS and PAN GeoTIFF files.

Georeferencing metadata is preserved through the process, enabling the possibility to display

patches on top of satellite images and web maps at a later stage.

6.4. Step 3: Patch pipeline

The third and final step of the data pipeline reads paired MS and PAN GeoTIFF patches from

disk and exposes mini-batches of these as tensors ready to be consumed by a TensorFlow model.

A sequential overview of the operations involved is depicted in Figure 6.1. Some operations

are strictly necessary, for instance GeoTIFFs need to be decoded and it is imperative to shuffle

data during training and batch several samples together in a mini-batch. Other operations,

like caching and prefetching, are included to optimize performance and maximize the utilization

of the GPU. This is conceptualized in Figure 6.5. The combined effects of all implemented

optimizations are substantial: we observed improvements on the order of 10x compared to a

naive, sequential approach. Parallelizing non-TensorFlow functions during GeoTIFF decoding

contributed most to these improvements.

Our patch pipeline, GeotiffDataset, is implemented as a Python class, and can be considered

an end-to-end data pipeline in itself. This allows us to call on a relatively complex pipeline

through a few lines of code:

ds_train = GeotiffDataset(tiles_path=TILES_PATH, batch_size=16,
ms_tile_shape=(32, 32, 4), pan_tile_shape=(128, 128, 1),
sensor='WV02', band_selection=(1, 2, 4, 6),
mean_correction=MEAN, cache_memory=True,
cache_file=CACHE_PATH, repeat=True,
shuffle=True, shuffle_buffer_size=SHUFFLE_BUFFER_SIZE).get_dataset()

The above ds_train object is now a tf.data.Dataset instance that can be directly consumed
3The cloud and sea classifier is documented in a Jupyter Notebook in the project’s public GitHub repository,

https://github.com/onordberg/multispectral-super-resolution

https://github.com/onordberg/multispectral-super-resolution

CHAPTER 6. DATA PIPELINE 81

Figure 6.5: Effect of different pipeline optimization techniques (TensorFlow, 2021). Modified figure based on work

created and shared by Google and used according to terms described in the Creative Commons 4.0 Attribution

License.

by a TensorFlow model.

6.4.1. Normalization

The dynamic range of both WorldView-2 and GeoEye-1 images is 11 bits per pixel , meaning

that the range of every pixel in the image is [0, 2047] (Maxar, 2019a, 2019c). 11-bit unsigned

integers is a non-standard data type so the pixels in the actual GeoTIFF images are encoded

as 16-bit unsigned integers. We normalized the image patches with (6.2), a variant of min-max

scaling with zero-centering, normalizing values to within a hard [−1, 1] range and subtracting

the mean.4

Z =
X− µ

max (|0− µ|, |2047− µ|)
(6.2)

where X is a single MS or PAN image patch and µ is the empirical mean of all image patches in

the training set. The empirical mean of our training set varied a bit depending on the experiment,

but generally hovered around µ = 340, producing a normalized range ≈ [−0.199, 1.0].

4The output of the ESRGAN generator model (Figure 4.8) is actually unbounded: there is no final activation

layer. In retrospect a min-max approach to scaling is therefore not necessary. Z =
X− µ

σ
would suffice. We did

at one point consider modifying the generator by adding a tanh activation layer at the end. This would require

pixels in the PAN image to be bounded within a [−1, 1] range, hence the choice of normalizing with (6.2).

https://developers.google.com/readme/policies
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Chapter 7

Results

In this chapter we will present and discuss the results from the baseline experiment (E1), the

regularization experiment (E2) and from the final run of the best model on the test set (E3).

7.1. E1. The baseline experiment

lower is better

h
ig

h
er

 is
 b

et
te

r

MS model input (RGB)

GAN-trained
models

Pretrained
models

PAN (truth)

Bicubic
upsampling

Figure 7.1: The baseline experiment results summarized on the perception-distortion plane. The different models

(m3, m4, m6 and m8) have been evaluated on the validation set. The points on the plane represent the mean PSNR

(higher is better) and Perceptual Index (lower is better) scores. Satellite image © 2021 Maxar Technologies

The baseline experiment gave somewhat predictable, yet interesting results. Firstly, we ob-

serve in Figure 7.1 how 400k iterations of GAN-training have increased the perceptual quality

substantially. There is a notable jump in Perceptual Index from the pretrained to the GAN-

trained versions of the models. Secondly, we observe that the increase in perceptual quality has

come at the cost of more distortion, i.e, a lower PSNR score. The perception-distortion trade-off

83

CHAPTER 7. RESULTS 84

is in line with previous research.

The third observation is more specific to our MS-to-PAN satellite imagery task. We notice

a relationship between the number of MS bands and the level of distortion. More MS bands

generally result in less distortion (higher PSNR scores). A possible interpretation is that the

model is able to utilize and exploit information in the additional bands. In Figure 2.7 we noticed

how the spectral range of the PAN band approximately overlapped with six of the WorldView-2

MS bands (all eight except the low wavelength Coastal band and the high wavelength NIR2

band). Model m6 uses the same six bands as its input, and in Figure 7.1 we notice that m6

perform well compared to the eight band m8. Evidently, there is no indication that using MS

bands outside the spectral range of the PAN band increases the performance of the ESRGAN

model. This fact may also be interpreted as a validation of the model; it adheres to the laws of

physics.

Finally, a fourth observation relates to the performance of models m3 and m4 on the GeoEye-

1 validation set. We notice that the performance lags behind the that of their WorldView-2

counter-parts. This was expected. The models are trained on WorldView-2 images, and GeoEye-

1 validation images are not drawn from the same distribution. A decrease in performance is

therefore to be expected and the remaining question is whether the performance is good enough.

Figure 7.2: Comparison of baseline models with different number of MS bands. The image patches are from

the WorldView-2 validation set. Yellow circles highlight some areas with a noticeable difference in performance.

Satellite image © 2021 Maxar Technologies

Are the differences between the different models noticeable by the human eye? The difference

between a pretrained and a GAN-trained model is apparent (see image patches in Figure 7.1 and

randomly drawn image patches in Appendix A and Appendix B). Pretrained models produce

blurry, smooth and somewhat conservative estimates, while GAN-trained models produce images

CHAPTER 7. RESULTS 85

with sharper edges and more details, some correct and some erroneous. We call the latter SISR

artefacts.

The difference between the different GAN-trained models are not that obvious. In Figure 7.2

we compare two patches across the m8, m6, m4 and m3 models. In the topmost comparison,

the one containing shipping containers, we notice for instance that some shipping containers are

combined into one in the m3 model. The m8 and m6 models, on the other hand, are able to

separate the containers, and when comparing with the PAN ground truth image, we see that this

is indeed closer to the truth. A similar effect is noticeable with the cars. The m3 model produces

a noisy blob where the m8 model outputs objects that more closely resemble cars. Meanwhile,

the comparison at the bottom of Figure 7.2 displays similar differences. The houses lack and/or

misrepresent details in m3, compared to m8.

7.1.1. GeoEye-1 performance

In Figure 7.1, the model performances are represented only by their mean PSNR and PI, com-

puted from a sample of approximately 4000 image patches per sensor in the validation set. When

investigating performance on images from the GeoEye-1 sensor it is of interest to peek behind

these statistics and plot individual image patches on the perception-distortion plane.

4 6 8 10
10

20

30

40

50

60

4 6 8 10

m4: WorldView-2 vs. GeoEye-1

Perceptual Index (PI) Perceptual Index (PI)

P
e

a
k

 S
ig

n
a

l-
to

-N
o

is
e

 R
a

ti
o

 (
P

S
N

R
)

GAN-trained WorldView-2 GAN-trained GeoEye-1

PAN (ground truth) PI

Per-image mean

Grand mean:

PI: 5.6

PSNR: 32.0

PAN (ground truth) PI

Per-image mean

Grand mean:

PI: 5.2

PSNR: 33.5

Figure 7.3: Scatter plot of individual image patches from the m4 model, comparing WorldView-2 (left) with

GeoEye-1 image patches (right). Each point represents a 512x512 patch that is a part of a larger satellite image.

The points are colored by satellite image and the colors are not comparable across satellites, e.g., the pink

WorldView-2 is not the same as the pink GeoEye-1 image.

Not surprisingly, Figure 7.3 reveals a distribution with some complexities. Comparing the

CHAPTER 7. RESULTS 86

left plot (WorldView-2) with the right plot (GeoEye-1), we notice that the distributions are not

entirely different. This is promising for our attempt to generalize the models to work well on

GeoEye-1 images (research question R2). What we would not want to see in this plot is entirely

different distributions, for instance a GeoEye-1 distribution where points are more clustered

together with other points from the same satellite image. This seems to be the case for only one

of the satellite images in the GeoEye-1 plot, the image represented with pink-colored points.1

Remember that we want our images to be located in the upper left corner of the perception-

distortion plane. In both plots we notice that as PSNR increases there is a tendency of PI to

also increase, establishing an upper left boundary on the plane that no outliers seem to cross. In

general, we may say that the the scatter plot reveal non-linear relationships within and between

satellite images. We have not investigated this in detail, but can note that based on manual

inspection the upper right region/tail is dominated by sea and cloud patches. It is easy for the

models to achieve high PSNR scores on very monotonous patches, but these almost all-black

images are not very natural-looking and thus receives low PI scores.

7.1.2. Are we overfitting?

When dealing with an unregularized neural network like ESRGAN it is natural to be concerned

about overfitting of the model to the training data. Indeed, we observe a gap between training

loss and validation loss. This is to be expected from an unregularized setup. Still, validation

PSNR curves in the upper left corner of Figure 7.4 generally appear to stabilize and converge.

This behaviour contradicts classical bias-variance trade-off theory, but is more in line with recent

research into how high-capacity models, like deep neural networks, behave (Belkin et al., 2019).

Still, in Section 7.2, we will see whether regularization helps to further stabilize and increase

performance.

Expanding the focus beyond PSNR curves from pretraining, in Figure 7.4 we see PSNR and

NIQE curves from both pretraining and GAN-training. In this instance, NIQE represents the

perception axis of the perception-distortion plane.2 From these curves we make a few observa-

tions. First, we note the immediate drop of all PSNR and NIQE curves from the last iteration

of pretraining to the first completed iteration of GAN-training.

The second observation is the rising NIQE curves during GAN-training. A lower NIQE score

is supposedly better, and a rising curve may be a sign of overfitting. Still, the concern is somewhat
1Image ID: GE01_Toulon 2019_10_07_011651194010_0. See Appendix C for more details.
2The reason for not reporting Perceptual Index (PI) as in previous plots is because PI is a function of the Ma

et al. metric, and the computation of this metric at several iteration steps is very time consuming (several weeks

on our hardware setup).

CHAPTER 7. RESULTS 87

27

28

29

30

31

32

33

34

35

36

0 100k 200k 300k 400k
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 100k 200k 300k 400k

m8: WorldView-2, 8 (all) bands
m6: WorldView-2, 6 bands
m4: WorldView-2, 4 bands
m3: WorldView-2, 3 bands

m4: GeoEye-1, 4 (all) bands
m3: GeoEye-1, 3 bands

PAN (truth): WorldView-2

PAN (truth): GeoEye-1

ESRGAN Baseline Experiment – Validation set

training iterations training iterations

Pe
ak

 S
ig

na
l-

to
-N

oi
se

 R
at

io
 (

PS
N

R
)

N
at

ur
al

ne
ss

 I
m

ag
e

Q
ua

lit
y

Ev
al

ua
to

r
(N

IQ
E)

Pretraining (L1) GAN-training

Figure 7.4: Learning curves: PSNR and NIQE plotted against training iterations in E1. Evaluated against

WorldView-2 and GeoEye-1 validation sets. All image patches in the validation set have been evaluated every

25k iterations.

mitigated by the NIQE scores of the actual, true PAN images (gray, horizontal lines). These are

generally higher than their SISR counterparts (especially true for WorldView-2). In theory, on the

assumption that NIQE is a good measurement of the perceptual quality of satellite images, NIQE

should be lower on ground truth images than on SISR images. NIQE’s usefulness as a metric for

satellite image SISR is therefore weakened by these findings. A reasonable explanation is that

NIQE is trained on a set of natural, pristine images – not on satellite images (see Section 4.2.2).

The learning curves indicate that NIQE is a reasonable choice for a satellite image perceptual

metric, but only up to a certain point. The metric captures the transition from pretraining

on L1 loss to GAN training very well, but when the network starts fine-tuning features in the

image that is specific to satellite images, NIQE scores increase. This belief has been validated

by manual visual comparisons of image patches from training iterations 150k and 400k. Image

patches from the 400k-th iteration have sharper edges and seem to capture more details than

those from the 150k-th. Still, we suggest further validation of perceptual performance in the

CHAPTER 7. RESULTS 88

later stages of GAN training.

The third observation is something that should be noted, but is not explored further in this

thesis. The NIQE curve of the m8 model seems to behave erratically towards the end of GAN-

training. Combined with the approximately equal PSNR performance of m6 and m8, and the

fact that m6 is a simpler model, this suggests that m6 is preferred over m8 for WorldView-2

models, i.e., models trained and tested on images from the same sensor (R1).

7.2. E2. The regularization experiment

lower is better

hi
gh

er
 is

 b
et

te
r

Pretrained
models

Bicubic
upsampling

GAN-trained
models

Figure 7.5: The regularization experiment results summarized on the perception-distortion plane. The different

models, the baseline m4 from E1 and its regularized versions, have been evaluated on the WorldView-2 and

GeoEye-1 validation sets. The points on the plane represent the mean PSNR (higher is better) and Perceptual

Index (lower is better) scores.

Results from the regularization experiment is somewhat mixed, and point in a couple of

different directions. We notice from Figure 7.5 and Figure 7.4 that overall performance on the

WorldView-2 validation set is actually negatively affected by regularization. By contrast, perfor-

mance on the GeoEye-1 validation set is generally improved. What could explain this difference?

One hypothesis is that the m4 model memorizes specific features in the WorldView-2 training

set, for instance a special looking building or ship, in a way that transfers to the WorldView-

2 validation set. This, despite the variation in lighting conditions, angles and other ground

conditions from image to image (see Section 5.1.3). In certain cases memorization may be a

useful feature, but it could also lead to a model that is hesitant to suggest new features, opting

CHAPTER 7. RESULTS 89

for what it has seen before instead. It could for instance be hesitant to suggest a new roof on a

building despite evidence in the MS image that the roof has been replaced. Our regularization

techniques, especially the flips and rotations, are probably limiting the network’s ability to

memorize specific features. Memorization of such specific features is thus likely less rewarded,

replaced with an incentive to learn more generalizable features, for instance the features of typical

roofs.

27

28

29

30

31

32

33

34

35

36

0 100k 200k 300k 400k
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 100k 200k 300k 400k

m4: WorldView-2, 4 bands
m4-os: WorldView-2, 4 bands
 with oversampling (os)
m4-au: WorldView-2, 4 bands
 with augmentation (aug)
m4-os-au: WorldView-2, 4 bands
 with os and aug

m4: GeoEye-1, 4 (all) bands
m4-os: GeoEye-1, 4 (all) bands
 with oversampling (os)
m4-au: GeoEye-1, 4 (all) bands
 with augmentation (aug)
m4-os-au: GeoEye-1, 4 (all) bands
 with os and aug

PAN (truth): WorldView-2

PAN (truth): GeoEye-1

ESRGAN Regularization Experiment – Validation set

training iterations training iterations

Pe
ak

 S
ig

na
l-

to
-N

oi
se

 R
at

io
 (

PS
N

R
)

N
at

ur
al

ne
ss

 I
m

ag
e

Q
ua

lit
y

Ev
al

ua
to

r
(N

IQ
E)

Pretraining (L1) GAN-training

Figure 7.6: Learning curves: PSNR and NIQE plotted against training iterations in E2. Evaluated against

WorldView-2 and GeoEye-1 validation sets. All image patches in the validation set have been evaluated every

25k iterations.

Under the same hypothesis, m4 is not able to utilize the memorization as well on images

taken by GeoEye-1. It could be that the network tries to use memorized features, is somewhat

unsuccessful and consequently receives a lower PSNR score. Regularization helps, simply because

the model is relying less on memorization, and more on generalized representations.

CHAPTER 7. RESULTS 90

7.2.1. The best models

It is difficult to select a single best-performing model based on results from the regularization

experiment (E2). As mentioned, there are indications that for WorldView-2 images, an unreg-

ularized model is best, and for GeoEye-1 images some form of regularization helps. Still, the

margins are small, learning curves fluctuate (see Figure 7.6) and the ranking of models at 400k

iterations of GAN-training may be a result of random chance. If we for a moment assume that all

three regularization models (m4-os, m4-aug, m4-os-aug) perform equally well on the GeoEye-1

validation set, then established theory suggests that the most heavily regularized model should

be selected. With the types of regularization we have introduced, it is hard to imagine that they

will make the model less generalizable. By this argument, the model with both oversampling

and data augmentation, m4-os-aug, is selected as "the best" model for GeoEye-1 images.

4 6 8 10
10

20

30

40

50

60

4 6 8 10

m4 baseline vs. oversampled and augmented version (m4-os-aug)

Perceptual Index (PI) Perceptual Index (PI)

P
e

a
k

 S
ig

n
a

l-
to

-N
o

is
e

 R
a

ti
o

 (
P

S
N

R
)

m4: GAN-trained GeoEye-1 m4-os-aug: GAN-trained GeoEye-1

PAN (ground truth) PI

Per-image mean

Grand mean:

PI: 5.6

PSNR: 32.0

PAN (ground truth) PI

Per-image mean

Grand mean:

PI: 5.8

PSNR: 32.5

Figure 7.7: Scatter plot of individual image patches, comparing the baseline m4 model from E1 with the over-

sampled and augmented version (m4-os-aug) from E2. Each point represents a 512x512 patch that is a part of a

larger satellite image. The points are colored by satellite image.

Comparing the baseline m4 model with the regularized m4-os-aug model in Figure 7.7, we

observe a few indications of a better performing model to the right. In addition to the already

mentioned increase in PSNR, we note less clustering between images, i.e. the colors are less sep-

arated, indicating a more generalizable model. Consequently, the performance is less dependent

on which image the patch is extracted from.

CHAPTER 7. RESULTS 91

7.3. E3. The final evaluation – Test set

4 6 8 10
10

20

30

40

50

60

4 6 8 10

m4-os-aug: Final evaluation on the test set

Perceptual Index (PI) Perceptual Index (PI)

P
e

a
k

 S
ig

n
a

l-
to

-N
o

is
e

 R
a

ti
o

 (
P

S
N

R
)

GAN-trained WorldView-2 GAN-trained GeoEye-1

4 6 8 10
10

20

30

40

50

60

4 6 8 10

m4-os-aug: Evaluation on the validation set

Perceptual Index (PI) Perceptual Index (PI)

P
e

a
k

 S
ig

n
a

l-
to

-N
o

is
e

 R
a

ti
o

 (
P

S
N

R
)

GAN-trained WorldView-2 GAN-trained GeoEye-1

PAN (ground truth) PI

Per-image mean

Grand mean:

PI: 5.3

PSNR: 33.1

PAN (ground truth) PI

Per-image mean

Grand mean:

PI: 5.8

PSNR: 32.5

PAN (ground truth) PI

Per-image mean

Grand mean:

PI: 5.4

PSNR: 33.6

PAN (ground truth) PI

Per-image mean

Grand mean:

PI: 5.7

PSNR: 35.0

Figure 7.8: Scatter plot of individual image patches, comparing the oversampled and augmented version of m4

(m4-os-aug) on both validation and test set. Each point represents a 512x512 patch that is a part of a larger

satellite image. The points are colored by satellite image.

Overall, results from the final evaluation on the test set indicates that our selected best model

from E2, m4-os-aug, is not overfitting on the validation set. As a matter of fact, performance is

generally better on the test set than on our validation set. This is particularly true in the case

of GeoEye-1 where we in Figure 7.8 notice better PSNR scores, similar PI scores and what looks

to be less clustering by individual satellite image (colors are less clustered). In addition we see a

more well defined perception-distortion boundary (see Figure 1.2) along the upper left portion of

CHAPTER 7. RESULTS 92

the plane. This indicates that image patches have been pulled more towards an optimal trade-off

between perceptual quality and distortion than in the other plots.

A better performance on the test set than the validation set is somewhat uncommon. One

generally assumes that the model selected in the model selection phase, to a certain degree

overfits on the validation set. In our case, overfitting might have been mitigated by us selecting

the most regularized version of the model.

Additionally, we increase generalizability during final training because we also train on the

validation set (see Figure 3.1). In our case we increase the total number of training satellite

images from 22 to 32 (see Table 5.2), corresponding to an increase in the total number of extracted

image patches from ca. 645k to ca. 935k (31% increase). At last, we should not underestimate

random effects. We evaluate on a test set of 9315 image patches, but they are extracted from a

set of only 11 GeoEye-1 and 10 WorldView-2 satellite images. These 21 images could, by chance,

fit our model well and be well-suited for the MS-to-PAN SISR task. In other words, the increase

in performance when evaluated on the test set could also partly be explained by luck.

Figure 7.9: GeoEye-1 test set: Comparison between an MS image patch, an ESRGAN estimated PAN patch and

an PAN ground truth patch. La Spezia 2013-07-15, Satellite image © 2021 Maxar Technologies

Finally, in Figure 7.9 we see a phenomenon indicative of a general pattern in our results. Here,

two interesting areas are highlighted. In the yellow rectangle we notice that boat structures and

textures are well estimated. What is lacking are details that in many ways are impossible for the

model to estimate. Meanwhile, in the blue rectangle we notice severe artefacts in at least one of

the boats located on land. A boat on land is a rare event in the training set compared to a boat

on the water, and we generally notice that ESRGAN captures the structure of frequent textures

CHAPTER 7. RESULTS 93

very well, but fails to reproduce these types of rarer textures. SISR estimates of forested areas

are for instance almost indistinguishable from its ground truth counterpart.

Chapter 8

Conclusion

A deep learning-based SISR model like ESRGAN can be successfully applied to the 4x SISR

MS-to-PAN task, without much modification to either the network architecture nor the training

configuration. On images from the WorldView-2 satellite we have established that it is possible

to reconstruct the PAN band to a degree of similarity and image quality that far outperforms

the most commonly used deterministic upsampling method: bicubic upsampling.1 Even more

interestingly, we have shown that it is possible to train the model on images from one satellite

(WorldView-2), and directly apply the model on images from a different satellite (GeoEye-1). In

both cases the super-resoluted PAN images were evaluated on unseen test data and performance

was measured with both a distortion-type full-reference metric, PSNR, as well as a perception-

type no-reference metric, Perceptual Index. When using the same number of MS bands as input

(RGB+NIR), performance on the unseen GeoEye-1 test imagery were similar to the performance

on the unseen WorldView-2 test imagery. These results were achieved with a version of ESRGAN

implementing data augmentation (flips and 90 degree rotations) on image patches randomly

sampled with a high degree of overlap from the underlying satellite images.

The ability of applying a SISR model trained on images taken by one satellite, to images taken

by another satellite is significant. It opens the possibility of enhancing images taken by smaller

satellites not capable of capturing a high-resolution PAN band. These cheaper nanosatellites are

plentiful and their significance within the domain of satellite imagery is only increasing.

8.1. Ideas for future research

To our knowledge there is no publicly available research directly related to the cross-sensor MS-

to-PAN SISR topic. We are hopeful that this will change and would therefore like to conclude

with pointing to some interesting directions for future research.
1See Appendix A and B for examples of bicubic upsampling.

95

CHAPTER 8. CONCLUSION 96

8.1.1. Apply SISR to satellite images without a PAN band

A natural extension of the research done in this thesis would be to apply the same, or a sim-

ilar SISR model to satellite imagery with no PAN band. Imagery from Planet’s PlanetScope

nanosatellite constellation is a possible candidate. This imagery has four multispectral band

(RGB+NIR) with a spatial resolution (GSD) of around 4 meters, compared to the approxi-

mately 2 meter resolution of WorldView-2 and GeoEye-1 (Planet, 2021). If WorldView-2, or

imagery from similar satellites are to be used for training, one would probably need to down-

sample the imagery to a resolution more similar to PlanetScope’s resolution. Another approach

could be to use training imagery from a satellite with an MS resolution closer to PlanetScope’s 4

meter resolution. Satellites with this specifications are few and far between. However, historical

imagery from the decommissioned IKONOS satellite could fit the bill.(DigitalGlobe, 2013)

A major challenge when evaluating performance on imagery without a PAN band is that full-

reference image quality metrics cannot be used. There is no ground truth, no XHR, available to

compare the super-resoluted PAN image with. We have seen that relying solely on no-reference

algorithmic image quality metrics developed for non-satellite imagery is difficult. One would

therefore need to explore and/or develop alternative performance metrics, alternatively rely

solely on human evaluation.

8.1.2. Develop alternative performance metrics

There is a need for image quality metrics that are more tailored towards measuring satellite

imagery quality in general, and the super-resolution of satellite imagery specifically. Perceptual

quality metrics like NIQE, Ma et al. and Perceptual Index have been developed with non-satellite

imagery in mind. NIQE, for instance, has been trained on a set of pristine, natural images. One

could retrain NIQE on pristine satellite images and presumably get a no-reference metric more

suited to the satellite imagery SISR task.

A quite different approach would be to research and develop what we in Figure 4.1 dub

Computer Vision IQA metrics. These differ from perceptual metrics in that they would measure

the impact the quality of a satellite imagery has on computer vision tasks, like object detection

and image segmentation. One could for instance establish a labelled benchmark dataset, possibly

building off one of the labelled datasets from the SpaceNet challenges. This labelled dataset could

then be used to evaluate whether for instance the performance of an object detection model is

improved by super-resolution. Rabbi et al., 2020 used this approach to evaluate their ability to

use ESRGAN to enhance the ability to detect small objects, but their labelled datasets were not

appropriate to use for the MS-to-PAN task.

https://spacenet.ai/

CHAPTER 8. CONCLUSION 97

8.1.3. Generalize beyond two towns and a temporal dataset

Our research has been focused on a dataset with multiple overlapping images of two small areas

of the Earth’s surface. In Section 5.1.3 we discussed how we likely have temporal correlations

within our dataset and how this could motivate the model into memorizing specific areas of the

dataset, instead of learning generalizable features. While this may be viewed as a feature rather

than a bug, memorization’s effects on performance should be further researched. One possible

way to study this is to spatially divide up the dataset so that a temporally and a non-temporally

trained model can be compared on as equal terms as possible. For instance, one model could be

allowed to train on areas (but not images!) included in the test set, and the other not.

8.1.4. Train on less processed images

We have trained on images that have been through several post-processing steps after their

capture by the arrays of CCD sensors onboard the satellite. Specifically, our dataset only contains

Level 2A imagery. In Section 2.3 we introduced the NASA processing levels, and from these we

read that Level 2A images have been geometrically corrected. Geometric corrections will cause

image resampling: original pixels are mapped to a new grid of pixels. No matter which resampling

method used, this will lead to some level of degradation and could cause artefacts, for instance

jaggedness. Consequently, introducing SISR at an earlier stage in the post-processing pipeline

should be further researched.

Bibliography

Agustsson, E., & Timofte, R. (2017). NTIRE 2017 challenge on single image super-resolution:

Dataset and study. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops. Retrieved August 28, 2021, from https://openaccess.thecvf.com/

content_cvpr_2017_workshops/w12/html/Agustsson_NTIRE_2017_Challenge_

CVPR_2017_paper.html

Athar, S., & Wang, Z. (2019). A comprehensive performance evaluation of image quality as-

sessment algorithms [Conference Name: IEEE Access]. IEEE Access, 7, 140030–140070.

https://doi.org/10.1109/ACCESS.2019.2943319

Baghdadi, N., & Zribi, M. (2016). Optical remote sensing of land surface: Techniques and meth-

ods. Elsevier.

Beck, A. (2016, December 27). Sunsynchronous orbit. Retrieved October 30, 2021, from https:

//commons.wikimedia.org/wiki/File:Sunsynchronous_orbit_en.jpg

Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine learning practice

and the bias-variance trade-off. arXiv:1812.11118 [cs, stat], arxiv 1812.11118. Retrieved

July 11, 2021, from http://arxiv.org/abs/1812.11118

Bi, X., Tang, X., Yuan, Y., Zhang, Y., & Qu, A. (2021). Tensors in statistics [_eprint: https://doi.org/10.1146/annurev-

statistics-042720-020816]. Annual Review of Statistics and Its Application, 8 (1), 345–368.

https://doi.org/10.1146/annurev-statistics-042720-020816

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Blau, Y., Mechrez, R., Timofte, R., Michaeli, T., & Zelnik-Manor, L. (2019). The 2018 PIRM

challenge on perceptual image super-resolution. arXiv:1809.07517 [cs], arxiv 1809.07517.

Retrieved October 12, 2020, from http://arxiv.org/abs/1809.07517

Blau, Y., & Michaeli, T. (2018). The perception-distortion tradeoff. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. Retrieved July 13, 2021, from

https ://openaccess . thecvf .com/content_cvpr_2018/html/Blau_The_Perception-

Distortion_Tradeoff_CVPR_2018_paper.html

Brandir, & XZise. (2018, February 1). Heliosynchronous orbit. Retrieved October 30, 2021, from

https://commons.wikimedia.org/wiki/File:Heliosynchronous_orbit.svg

98

https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/html/Agustsson_NTIRE_2017_Challenge_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/html/Agustsson_NTIRE_2017_Challenge_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/html/Agustsson_NTIRE_2017_Challenge_CVPR_2017_paper.html
https://doi.org/10.1109/ACCESS.2019.2943319
https://commons.wikimedia.org/wiki/File:Sunsynchronous_orbit_en.jpg
https://commons.wikimedia.org/wiki/File:Sunsynchronous_orbit_en.jpg
http://arxiv.org/abs/1812.11118
https://doi.org/10.1146/annurev-statistics-042720-020816
http://arxiv.org/abs/1809.07517
https://openaccess.thecvf.com/content_cvpr_2018/html/Blau_The_Perception-Distortion_Tradeoff_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Blau_The_Perception-Distortion_Tradeoff_CVPR_2018_paper.html
https://commons.wikimedia.org/wiki/File:Heliosynchronous_orbit.svg

BIBLIOGRAPHY 99

Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class imbalance

problem in convolutional neural networks. Neural Networks, 106, 249–259. https://doi.

org/10.1016/j.neunet.2018.07.011

Courtrai, L., Pham, M.-T., & Lefèvre, S. (2020). Small object detection in remote sensing images

based on super-resolution with auxiliary generative adversarial networks [Number: 19

Publisher: Multidisciplinary Digital Publishing Institute]. Remote Sensing, 12 (19), 3152.

https://doi.org/10.3390/rs12193152

Deng, J., Dong, W., Socher, R., Li, L., Kai Li, & Li Fei-Fei. (2009, June). ImageNet: A large-scale

hierarchical image database [ISSN: 1063-6919], In 2009 IEEE conference on computer

vision and pattern recognition. 2009 IEEE Conference on Computer Vision and Pattern

Recognition. ISSN: 1063-6919. https://doi.org/10.1109/CVPR.2009.5206848

Deng, L. (2014). Deep learning: Methods and applications. Foundations and Trends® in Signal

Processing, 7 (3), 197–387. https://doi.org/10.1561/2000000039

DigitalGlobe. (2009, June 4). WorldView-2 overview. Retrieved October 3, 2021, from https :

//content.satimagingcorp.com.s3.amazonaws.com/static/satellite-sensor-specification/

WorldView-2-PDF-Download.pdf

DigitalGlobe. (2013, June). IKONOS data sheet. https : / / dg - cms - uploads - production . s3 .

amazonaws.com/uploads/document/file/96/DG_IKONOS_DS.pdf

DigitalGlobe. (2014, October 22). Spectral response for DigitalGlobe earth imaging instruments.

Retrieved January 18, 2021, from https://dg-cms-uploads-production.s3.amazonaws.

com/uploads/document/file/105/DigitalGlobe_Spectral_Response_1.pdf

Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image super-resolution using deep convolu-

tional networks [Conference Name: IEEE Transactions on Pattern Analysis and Machine

Intelligence]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38 (2),

295–307. https://doi.org/10.1109/TPAMI.2015.2439281

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and

stochastic optimization. Journal of machine learning research, 12 (7).

ESA. (2020, March 30). Types of orbits. Retrieved October 3, 2021, from https://www.esa.int/

Enabling_Support/Space_Transportation/Types_of_orbits

ESA, E. O. P. (2021a). GeoEye-1 - eoPortal directory - satellite missions. Retrieved October 11,

2021, from https://directory.eoportal.org/web/eoportal/satellite-missions/g/geoeye-1

ESA, E. O. P. (2021b). WorldView-2 - eoPortal directory - satellite missions. Retrieved October

11, 2021, from https : / / earth . esa . int /web / eoportal / satellite - missions / v - w - x - y -

z/worldview-2

https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.3390/rs12193152
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1561/2000000039
https://content.satimagingcorp.com.s3.amazonaws.com/static/satellite-sensor-specification/WorldView-2-PDF-Download.pdf
https://content.satimagingcorp.com.s3.amazonaws.com/static/satellite-sensor-specification/WorldView-2-PDF-Download.pdf
https://content.satimagingcorp.com.s3.amazonaws.com/static/satellite-sensor-specification/WorldView-2-PDF-Download.pdf
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/96/DG_IKONOS_DS.pdf
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/96/DG_IKONOS_DS.pdf
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/105/DigitalGlobe_Spectral_Response_1.pdf
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/105/DigitalGlobe_Spectral_Response_1.pdf
https://doi.org/10.1109/TPAMI.2015.2439281
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
https://directory.eoportal.org/web/eoportal/satellite-missions/g/geoeye-1
https://earth.esa.int/web/eoportal/satellite-missions/v-w-x-y-z/worldview-2
https://earth.esa.int/web/eoportal/satellite-missions/v-w-x-y-z/worldview-2

BIBLIOGRAPHY 100

Foster, D. (2019, June 28). Generative deep learning: Teaching machines to paint, write, compose,

and play [Google-Books-ID: RKegDwAAQBAJ]. "O’Reilly Media, Inc.".

Gleason, M. (2020, October 21). HD satellite imagery and machine learning: More accurately

detect and. . . [Maxar blog]. Retrieved July 20, 2021, from https://blog.maxar.com/earth-

intelligence/2020/hd-satellite- imagery-and-machine- learning-more-accurately-detect-

and-locate-features-of-interest-with-greater-consistency

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks, In Proceedings

of the fourteenth international conference on artificial intelligence and statistics, JMLR

Workshop; Conference Proceedings.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., & Bengio, Y. (2014). Generative adversarial networks. arXiv:1406.2661 [cs, stat],

arxiv 1406.2661. Retrieved February 18, 2021, from http://arxiv.org/abs/1406.2661

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. http ://www.

deeplearningbook.org

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level

performance on ImageNet classification. Proceedings of the IEEE International Confer-

ence on Computer Vision. Retrieved August 28, 2021, from https://openaccess.thecvf.

com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html

He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Re-

trieved April 12, 2021, from https://openaccess.thecvf.com/content_cvpr_2016/html/

He_Deep_Residual_Learning_CVPR_2016_paper.html

He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual networks (B.

Leibe, J. Matas, N. Sebe, & M. Welling, Eds.). In B. Leibe, J. Matas, N. Sebe, & M.

Welling (Eds.), Computer vision – ECCV 2016, Cham, Springer International Publishing.

https://doi.org/10.1007/978-3-319-46493-0_38

Hinton, G., Srivastava, N., & Swersky, K. (2012). Neural networks for machine learning: Lecture

6e rmsprop: Divide the gradient by a running average of its recent magnitude.

Horé, A., & Ziou, D. (2010, August). Image quality metrics: PSNR vs. SSIM [ISSN: 1051-4651],

In 2010 20th international conference on pattern recognition. 2010 20th International

Conference on Pattern Recognition. ISSN: 1051-4651. https://doi.org/10.1109/ICPR.

2010.579

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convo-

lutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern

https://blog.maxar.com/earth-intelligence/2020/hd-satellite-imagery-and-machine-learning-more-accurately-detect-and-locate-features-of-interest-with-greater-consistency
https://blog.maxar.com/earth-intelligence/2020/hd-satellite-imagery-and-machine-learning-more-accurately-detect-and-locate-features-of-interest-with-greater-consistency
https://blog.maxar.com/earth-intelligence/2020/hd-satellite-imagery-and-machine-learning-more-accurately-detect-and-locate-features-of-interest-with-greater-consistency
http://arxiv.org/abs/1406.2661
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1109/ICPR.2010.579

BIBLIOGRAPHY 101

Recognition. Retrieved March 9, 2021, from https://openaccess.thecvf.com/content_

cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.

html

Huang, K.-Y. (2020, June 4). peteryuX/esrgan-tf2 (Version 90e8eeced35a677aa80851f185e1227a71fad1ac)

[original-date: 2019-12-31T16:49:49Z]. Retrieved March 2, 2021, from https ://github.

com/peteryuX/esrgan-tf2

Ioffe, S., & Szegedy, C. (2015, June 1). Batch normalization: Accelerating deep network training

by reducing internal covariate shift [ISSN: 1938-7228], In International conference on

machine learning. International Conference on Machine Learning, PMLR. ISSN: 1938-

7228. Retrieved April 12, 2021, from http://proceedings.mlr.press/v37/ioffe15.html

Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and

super-resolution (B. Leibe, J. Matas, N. Sebe, & M. Welling, Eds.). In B. Leibe, J.

Matas, N. Sebe, & M. Welling (Eds.), Computer vision – ECCV 2016, Cham, Springer

International Publishing. https://doi.org/10.1007/978-3-319-46475-6_43

Jolicoeur-Martineau, A. (2018). The relativistic discriminator: A key element missing from stan-

dard GAN. arXiv:1807.00734 [cs, stat], arxiv 1807.00734. Retrieved February 18, 2021,

from http://arxiv.org/abs/1807.00734

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications [Publisher: Society

for Industrial and Applied Mathematics]. SIAM Review, 51 (3), 455–500. https://doi.org/

10.1137/07070111X

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convo-

lutional neural networks. Advances in neural information processing systems, 25, 1097–

1105.

Lanaras, C., Bioucas-Dias, J., Baltsavias, E., & Schindler, K. (2017). Super-resolution of multi-

spectral multiresolution images from a single sensor. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops. Retrieved July 13, 2021, from

https://openaccess.thecvf.com/content_cvpr_2017_workshops/w18/html/Lanaras_

Super-Resolution_of_Multispectral_CVPR_2017_paper.html

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition [Conference Name: Proceedings of the IEEE]. Proceedings of the

IEEE, 86 (11), 2278–2324. https://doi.org/10.1109/5.726791

https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
https://github.com/peteryuX/esrgan-tf2
https://github.com/peteryuX/esrgan-tf2
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1007/978-3-319-46475-6_43
http://arxiv.org/abs/1807.00734
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w18/html/Lanaras_Super-Resolution_of_Multispectral_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w18/html/Lanaras_Super-Resolution_of_Multispectral_CVPR_2017_paper.html
https://doi.org/10.1109/5.726791

BIBLIOGRAPHY 102

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel,

L. D. (1989). Backpropagation applied to handwritten zip code recognition [Publisher:

MIT Press]. Neural computation, 1 (4), 541–551.

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani,

A., Totz, J., Wang, Z., & Shi, W. (2017). Photo-realistic single image super-resolution

using a generative adversarial network. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. Retrieved October 12, 2020, from https://openaccess.

thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_

2017_paper.html

Lexico. (2021). TEMPORAL | definition of TEMPORAL by oxford dictionary on lexico.com also

meaning of TEMPORAL [Lexico dictionaries | english]. Retrieved October 11, 2021, from

https://www.lexico.com/definition/temporal

Lim, B., Son, S., Kim, H., Nah, S., & Mu Lee, K. (2017). Enhanced deep residual networks for

single image super-resolution. Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops. Retrieved April 13, 2021, from https://openaccess.

thecvf . com/ content_ cvpr_2017_workshops /w12 / html / Lim_Enhanced_Deep_

Residual_CVPR_2017_paper.html

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic seg-

mentation. arXiv:1411.4038 [cs], arxiv 1411.4038. Retrieved July 6, 2021, from http :

//arxiv.org/abs/1411.4038

Ma, C., Yang, C.-Y., Yang, X., & Yang, M.-H. (2017). Learning a no-reference quality metric

for single-image super-resolution. Computer Vision and Image Understanding, 158, 1–16.

https://doi.org/10.1016/j.cviu.2016.12.009

Ma, C., Rao, Y., Cheng, Y., Chen, C., Lu, J., & Zhou, J. (2020). Structure-preserving super res-

olution with gradient guidance. Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. Retrieved July 20, 2021, from https://openaccess.thecvf.

com/content_CVPR_2020/html /Ma_Structure - Preserving_Super_Resolution_

With_Gradient_Guidance_CVPR_2020_paper.html

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network

acoustic models, In In ICML workshop on deep learning for audio, speech and language

processing.

Maxar. (2019a, August 26). GeoEye-1 data sheet. Maxar. Retrieved January 18, 2021, from

https://resources.maxar.com/data-sheets/geoeye-1

https://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html
https://www.lexico.com/definition/temporal
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/html/Lim_Enhanced_Deep_Residual_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/html/Lim_Enhanced_Deep_Residual_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/html/Lim_Enhanced_Deep_Residual_CVPR_2017_paper.html
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
https://doi.org/10.1016/j.cviu.2016.12.009
https://openaccess.thecvf.com/content_CVPR_2020/html/Ma_Structure-Preserving_Super_Resolution_With_Gradient_Guidance_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ma_Structure-Preserving_Super_Resolution_With_Gradient_Guidance_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ma_Structure-Preserving_Super_Resolution_With_Gradient_Guidance_CVPR_2020_paper.html
https://resources.maxar.com/data-sheets/geoeye-1

BIBLIOGRAPHY 103

Maxar. (2019b). Maxar technologies reports failure of its WorldView-4 imaging satellite. Re-

trieved July 13, 2021, from https : / /www . prnewswire . com / news - releases /maxar -

technologies-reports-failure-of-its-worldview-4-imaging-satellite-300773567.html

Maxar. (2019c, August 29). WorldView-2 data sheet. Maxar. Retrieved January 18, 2021, from

https://resources.maxar.com/data-sheets/worldview-2

Maxar. (2020, July 23). View-ready imagery. Retrieved October 12, 2021, from https://resources.

maxar.com/satellite-access/view-ready-imagery-data-sheet

Mika, A. M. (1997). Three decades of landsat instruments [Publisher: [Falls Church, Va.] Amer-

ican Society of Photogrammetry.]. Photogrammetric Engineering and Remote Sensing,

63 (7), 839–852.

Mitchell, T. M. (1997). Machine learning. New York, McGraw-Hill.

Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a “completely blind” image quality

analyzer [Conference Name: IEEE Signal Processing Letters]. IEEE Signal Processing

Letters, 20 (3), 209–212. https://doi.org/10.1109/LSP.2012.2227726

Müller, M. U., Ekhtiari, N., Almeida, R. M., & Rieke, C. (2020). Super-resolution of multispec-

tral satellite images using convolutional neural networks. ISPRS Annals of Photogramme-

try, Remote Sensing and Spatial Information Sciences, V-1-2020arxiv 2002.00580, 33–40.

https://doi.org/10.5194/isprs-annals-V-1-2020-33-2020

NASA. (2018). Landsat: Benefiting society for fifty years. Retrieved October 3, 2021, from https:

//landsat.gsfc.nasa.gov/how-landsat-helps/case-studies

NASA. (2021a, July 13). Data processing levels | earthdata. Retrieved October 12, 2021, from

https : / / earthdata . nasa . gov / collaborate / open - data - services - and - software / data -

information-policy/data-levels/

NASA. (2021b, September 28). NASA and USGS launch landsat 9 [Publisher: NASA Earth

Observatory]. Retrieved October 3, 2021, from https : / / earthobservatory. nasa . gov /

images/148888/nasa-and-usgs-launch-landsat-9

Ng, A. (2018, September). Machine learning yearning (Draft Version 2018-09). Unpublished.

Retrieved January 25, 2021, from https : / /www .deeplearning . ai /machine - learning -

yearning/

Planet, L. (2021, February). Planet imagery product specifications. Retrieved July 13, 2021, from

https://www.planet.com/products/satellite- imagery/files/1610.06_Spec%20Sheet_

Combined_Imagery_Product_Letter_ENGv1.pdf

Pouliot, D., Latifovic, R., Pasher, J., & Duffe, J. (2018). Landsat super-resolution enhance-

ment using convolution neural networks and sentinel-2 for training [Number: 3 Pub-

https://www.prnewswire.com/news-releases/maxar-technologies-reports-failure-of-its-worldview-4-imaging-satellite-300773567.html
https://www.prnewswire.com/news-releases/maxar-technologies-reports-failure-of-its-worldview-4-imaging-satellite-300773567.html
https://resources.maxar.com/data-sheets/worldview-2
https://resources.maxar.com/satellite-access/view-ready-imagery-data-sheet
https://resources.maxar.com/satellite-access/view-ready-imagery-data-sheet
https://doi.org/10.1109/LSP.2012.2227726
https://doi.org/10.5194/isprs-annals-V-1-2020-33-2020
https://landsat.gsfc.nasa.gov/how-landsat-helps/case-studies
https://landsat.gsfc.nasa.gov/how-landsat-helps/case-studies
https://earthdata.nasa.gov/collaborate/open-data-services-and-software/data-information-policy/data-levels/
https://earthdata.nasa.gov/collaborate/open-data-services-and-software/data-information-policy/data-levels/
https://earthobservatory.nasa.gov/images/148888/nasa-and-usgs-launch-landsat-9
https://earthobservatory.nasa.gov/images/148888/nasa-and-usgs-launch-landsat-9
https://www.deeplearning.ai/machine-learning-yearning/
https://www.deeplearning.ai/machine-learning-yearning/
https://www.planet.com/products/satellite-imagery/files/1610.06_Spec%20Sheet_Combined_Imagery_Product_Letter_ENGv1.pdf
https://www.planet.com/products/satellite-imagery/files/1610.06_Spec%20Sheet_Combined_Imagery_Product_Letter_ENGv1.pdf

BIBLIOGRAPHY 104

lisher: Multidisciplinary Digital Publishing Institute]. Remote Sensing, 10 (3), 394. https:

//doi.org/10.3390/rs10030394

Rabbi, J., Ray, N., Schubert, M., Chowdhury, S., & Chao, D. (2020). Small-object detection in

remote sensing images with end-to-end edge-enhanced GAN and object detector network

[Number: 9 Publisher: Multidisciplinary Digital Publishing Institute]. Remote Sensing,

12 (9), 1432. https://doi.org/10.3390/rs12091432

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv:1511.06434 [cs], arxiv 1511.06434.

Retrieved March 2, 2021, from http://arxiv.org/abs/1511.06434

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors [Number: 6088 Publisher: Nature Publishing Group]. Nature, 323 (6088),

533–536. https://doi.org/10.1038/323533a0

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61arxiv

1404.7828, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

Shermeyer, J., & Van Etten, A. (2019). The effects of super-resolution on object detection

performance in satellite imagery. Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition Workshops. Retrieved April 19, 2021, from https:

//openaccess.thecvf.com/content_CVPRW_2019/html/EarthVision/Shermeyer_The_

Effects_of_Super-Resolution_on_Object_Detection_Performance_in_Satellite_

CVPRW_2019_paper.html

Shoeiby, M., Robles-Kelly, A., Wei, R., & Timofte, R. (2019). PIRM2018 challenge on spec-

tral image super-resolution: Dataset and study. arXiv:1904.00540 [cs], arxiv 1904.00540.

Retrieved October 12, 2020, from http://arxiv.org/abs/1904.00540

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image

recognition. arXiv:1409.1556 [cs], arxiv 1409.1556. Retrieved April 12, 2021, from http:

//arxiv.org/abs/1409.1556

Siu, K., Stuart, D. M., Mahmoud, M., & Moshovos, A. (2018, September). Memory requirements

for convolutional neural network hardware accelerators, In 2018 IEEE international sym-

posium on workload characterization (IISWC). 2018 IEEE International Symposium on

Workload Characterization (IISWC). https://doi.org/10.1109/IISWC.2018.8573527

Soh, J. W., Park, G. Y., Jo, J., & Cho, N. I. (2019). Natural and realistic single image super-

resolution with explicit natural manifold discrimination. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. Retrieved July 20, 2021, from

https : //openaccess . thecvf . com/content_CVPR_2019/html/Soh_Natural_and_

https://doi.org/10.3390/rs10030394
https://doi.org/10.3390/rs10030394
https://doi.org/10.3390/rs12091432
http://arxiv.org/abs/1511.06434
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.neunet.2014.09.003
https://openaccess.thecvf.com/content_CVPRW_2019/html/EarthVision/Shermeyer_The_Effects_of_Super-Resolution_on_Object_Detection_Performance_in_Satellite_CVPRW_2019_paper.html
https://openaccess.thecvf.com/content_CVPRW_2019/html/EarthVision/Shermeyer_The_Effects_of_Super-Resolution_on_Object_Detection_Performance_in_Satellite_CVPRW_2019_paper.html
https://openaccess.thecvf.com/content_CVPRW_2019/html/EarthVision/Shermeyer_The_Effects_of_Super-Resolution_on_Object_Detection_Performance_in_Satellite_CVPRW_2019_paper.html
https://openaccess.thecvf.com/content_CVPRW_2019/html/EarthVision/Shermeyer_The_Effects_of_Super-Resolution_on_Object_Detection_Performance_in_Satellite_CVPRW_2019_paper.html
http://arxiv.org/abs/1904.00540
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/IISWC.2018.8573527
https://openaccess.thecvf.com/content_CVPR_2019/html/Soh_Natural_and_Realistic_Single_Image_Super-Resolution_With_Explicit_Natural_Manifold_CVPR_2019_paper.html

BIBLIOGRAPHY 105

Realistic_Single_ Image_Super - Resolution_With_Explicit_Natural_Manifold_

CVPR_2019_paper.html

Stathaki, T. (2011, August 29). Image fusion: Algorithms and applications [Google-Books-ID:

VmvY4MTMFTwC]. Elsevier.

Steele, A. (2018, June 20). Satellite data processing & multispectral data analysis.

Szandała, T. (2021). Review and comparison of commonly used activation functions for deep

neural networks (A. K. Bhoi, P. K. Mallick, C.-M. Liu, & V. E. Balas, Eds.). In A. K. Bhoi,

P. K. Mallick, C.-M. Liu, & V. E. Balas (Eds.), Bio-inspired neurocomputing. Singapore,

Springer. https://doi.org/10.1007/978-981-15-5495-7_11

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February 12). Inception-v4, inception-

ResNet and the impact of residual connections on learning, In Thirty-first AAAI con-

ference on artificial intelligence. Thirty-First AAAI Conference on Artificial Intelligence.

Retrieved August 28, 2021, from https://www.aaai.org/ocs/index.php/AAAI/AAAI17/

paper/view/14806

Tan, M., & Le, Q. V. (2020). EfficientNet: Rethinking model scaling for convolutional neural

networks. arXiv:1905.11946 [cs, stat], arxiv 1905.11946. Retrieved July 6, 2021, from

http://arxiv.org/abs/1905.11946

TensorFlow. (2020, October 1). Tf.keras.layers.LeakyReLU API documentation [TensorFlow].

Retrieved March 9, 2021, from https://www.tensorflow.org/versions/r2.3/api_docs/

python/tf/keras/layers/LeakyReLU

TensorFlow. (2021, March 19). Better performance with the tf.data API | TensorFlow core [Ten-

sorFlow]. Retrieved July 7, 2021, from https : / /www . tensorflow . org / guide / data_

performance

Timofte, R., Agustsson, E., Van Gool, L., Yang, M.-H., & Zhang, L. (2017). NTIRE 2017 chal-

lenge on single image super-resolution: Methods and results. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops. Retrieved August

28, 2021, from https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/

html/Timofte_NTIRE_2017_Challenge_CVPR_2017_paper.html

Updike, T., & Comp, C. (2010). Radiometric use of WorldView-2 imagery, 17.

USGS. (1976, July 5). Landsat 2 image EMP217r18_2m19760705. Retrieved October 24, 2021,

from https://earthexplorer.usgs.gov/scene/metadata/full/5e83a358acceddc0/EMP217R18_

2M19760705/

Vasu, S., Thekke Madam, N., & Rajagopalan, A. N. (2018). Analyzing perception-distortion

tradeoff using enhanced perceptual super-resolution network. Proceedings of the Euro-

https://openaccess.thecvf.com/content_CVPR_2019/html/Soh_Natural_and_Realistic_Single_Image_Super-Resolution_With_Explicit_Natural_Manifold_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Soh_Natural_and_Realistic_Single_Image_Super-Resolution_With_Explicit_Natural_Manifold_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Soh_Natural_and_Realistic_Single_Image_Super-Resolution_With_Explicit_Natural_Manifold_CVPR_2019_paper.html
https://doi.org/10.1007/978-981-15-5495-7_11
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
http://arxiv.org/abs/1905.11946
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/LeakyReLU
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/LeakyReLU
https://www.tensorflow.org/guide/data_performance
https://www.tensorflow.org/guide/data_performance
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/html/Timofte_NTIRE_2017_Challenge_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/html/Timofte_NTIRE_2017_Challenge_CVPR_2017_paper.html
https://earthexplorer.usgs.gov/scene/metadata/full/5e83a358acceddc0/EMP217R18_2M19760705/
https://earthexplorer.usgs.gov/scene/metadata/full/5e83a358acceddc0/EMP217R18_2M19760705/

BIBLIOGRAPHY 106

pean Conference on Computer Vision (ECCV) Workshops. Retrieved April 13, 2021,

from https://openaccess.thecvf.com/content_eccv_2018_workshops/w25/html/Vasu_

Analyzing_Perception - Distortion_Tradeoff_using_Enhanced_Perceptual_Super -

resolution_Network_ECCVW_2018_paper.html

Wang, X. (2019, June 2). Xinntao/ESRGAN [original-date: 2018-08-31T08:18:41Z]. Retrieved

July 8, 2021, from https://github.com/xinntao/ESRGAN

Wang, X., Yu, K., Dong, C., & Loy, C. C. (2018). Recovering realistic texture in image super-

resolution by deep spatial feature transform. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. Retrieved August 28, 2021, from https :

//openaccess .thecvf .com/content_cvpr_2018/html/Wang_Recovering_Realistic_

Texture_CVPR_2018_paper.html

Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Loy, C. C., Qiao, Y., & Tang, X. (2018). ESR-

GAN: Enhanced super-resolution generative adversarial networks [version: 2]. arXiv:1809.00219

[cs], arxiv 1809.00219. Retrieved October 29, 2020, from http://arxiv.org/abs/1809.00219

Wang, Z., & Bovik, A. C. (2006, December 1). Modern image quality assessment [Google-Books-

ID: CXhgAQAAQBAJ]. Morgan & Claypool Publishers.

Wang, Z., & Bovik, A. C. (2009). Mean squared error: Love it or leave it? a new look at signal

fidelity measures [Conference Name: IEEE Signal Processing Magazine]. IEEE Signal

Processing Magazine, 26 (1), 98–117. https://doi.org/10.1109/MSP.2008.930649

Yang, C.-Y., Ma, C., & Yang, M.-H. (2014). Single-image super-resolution: A benchmark (D.

Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars, Eds.). In D. Fleet, T. Pajdla, B. Schiele,

& T. Tuytelaars (Eds.), Computer vision – ECCV 2014, Cham, Springer International

Publishing. https://doi.org/10.1007/978-3-319-10593-2_25

Zhang, Y., Tian, Y., Kong, Y., Zhong, B., & Fu, Y. (2018). Residual dense network for image

super-resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. Retrieved March 9, 2021, from https://openaccess.thecvf.com/content_

cvpr_2018/html/Zhang_Residual_Dense_Network_CVPR_2018_paper.html

Zhou Wang, Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment:

From error visibility to structural similarity [Conference Name: IEEE Transactions on

Image Processing]. IEEE Transactions on Image Processing, 13 (4), 600–612. https://doi.

org/10.1109/TIP.2003.819861

https://openaccess.thecvf.com/content_eccv_2018_workshops/w25/html/Vasu_Analyzing_Perception-Distortion_Tradeoff_using_Enhanced_Perceptual_Super-resolution_Network_ECCVW_2018_paper.html
https://openaccess.thecvf.com/content_eccv_2018_workshops/w25/html/Vasu_Analyzing_Perception-Distortion_Tradeoff_using_Enhanced_Perceptual_Super-resolution_Network_ECCVW_2018_paper.html
https://openaccess.thecvf.com/content_eccv_2018_workshops/w25/html/Vasu_Analyzing_Perception-Distortion_Tradeoff_using_Enhanced_Perceptual_Super-resolution_Network_ECCVW_2018_paper.html
https://github.com/xinntao/ESRGAN
https://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Recovering_Realistic_Texture_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Recovering_Realistic_Texture_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Recovering_Realistic_Texture_CVPR_2018_paper.html
http://arxiv.org/abs/1809.00219
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1007/978-3-319-10593-2_25
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Residual_Dense_Network_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Residual_Dense_Network_CVPR_2018_paper.html
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861

Appendix A

Random patches from the GeoEye-1 test set

The images in this appendix are intended to be viewed on a high resolution monitor.

Figure A.1: La Spezia 2013-07-15, Satellite image © 2021 Maxar Technologies

Figure A.2: La Spezia 2019-01-03, Satellite image © 2021 Maxar Technologies

Figure A.3: Toulon 2016-09-21, Satellite image © 2021 Maxar Technologies

107

APPENDIX A. RANDOM PATCHES FROM THE GEOEYE-1 TEST SET 108

Figure A.4: La Spezia 2011-01-24, Satellite image © 2021 Maxar Technologies

Figure A.5: La Spezia 2013-07-15, Satellite image © 2021 Maxar Technologies

Figure A.6: Toulon 2016-09-21, Satellite image © 2021 Maxar Technologies

Figure A.7: La Spezia 2013-07-23, Satellite image © 2021 Maxar Technologies

Figure A.8: La Spezia 2013-07-18, Satellite image © 2021 Maxar Technologies

APPENDIX A. RANDOM PATCHES FROM THE GEOEYE-1 TEST SET 109

Figure A.9: Toulon 2016-09-21, Satellite image © 2021 Maxar Technologies

Figure A.10: Toulon 2016-03-26, Satellite image © 2021 Maxar Technologies

Figure A.11: La Spezia 2011-01-24, Satellite image © 2021 Maxar Technologies

Figure A.12: La Spezia 2019-01-03, Satellite image © 2021 Maxar Technologies

Figure A.13: La Spezia 2013-07-23, Satellite image © 2021 Maxar Technologies

APPENDIX A. RANDOM PATCHES FROM THE GEOEYE-1 TEST SET 110

Figure A.14: La Spezia 2013-07-18, Satellite image © 2021 Maxar Technologies

Figure A.15: Toulon 2017-09-05, Satellite image © 2021 Maxar Technologies

Figure A.16: La Spezia 2013-07-23, Satellite image © 2021 Maxar Technologies

Figure A.17: Toulon 2016-03-26, Satellite image © 2021 Maxar Technologies

Figure A.18: La Spezia 2019-01-03, Satellite image © 2021 Maxar Technologies

APPENDIX A. RANDOM PATCHES FROM THE GEOEYE-1 TEST SET 111

Figure A.19: La Spezia 2013-07-23, Satellite image © 2021 Maxar Technologies

Figure A.20: La Spezia 2013-07-15, Satellite image © 2021 Maxar Technologies

Figure A.21: La Spezia 2013-07-15, Satellite image © 2021 Maxar Technologies

Figure A.22: La Spezia 2013-07-23, Satellite image © 2021 Maxar Technologies

Figure A.23: La Spezia 2013-07-18, Satellite image © 2021 Maxar Technologies

APPENDIX A. RANDOM PATCHES FROM THE GEOEYE-1 TEST SET 112

Figure A.24: Toulon 2010-06-08, Satellite image © 2021 Maxar Technologies

Figure A.25: Toulon 2016-09-21, Satellite image © 2021 Maxar Technologies

Figure A.26: La Spezia 2013-07-18, Satellite image © 2021 Maxar Technologies

Figure A.27: Toulon 2016-09-21, Satellite image © 2021 Maxar Technologies

Figure A.28: La Spezia 2013-07-18, Satellite image © 2021 Maxar Technologies

Appendix B

Random patches from the WorldView-2 test set

The images in this appendix are intended to be viewed on a high resolution monitor.

Figure B.1: La Spezia 2015-05-21, Satellite image © 2021 Maxar Technologies

Figure B.2: La Spezia 2017-07-31, Satellite image © 2021 Maxar Technologies

Figure B.3: Toulon 2016-03-25, Satellite image © 2021 Maxar Technologies

113

APPENDIX B. RANDOM PATCHES FROM THE WORLDVIEW-2 TEST SET 114

Figure B.4: La Spezia 2015-03-19, Satellite image © 2021 Maxar Technologies

Figure B.5: La Spezia 2017-03-10, Satellite image © 2021 Maxar Technologies

Figure B.6: Toulon 2016-03-25, Satellite image © 2021 Maxar Technologies

Figure B.7: La Spezia 2015-05-21, Satellite image © 2021 Maxar Technologies

Figure B.8: La Spezia 2015-03-19, Satellite image © 2021 Maxar Technologies

APPENDIX B. RANDOM PATCHES FROM THE WORLDVIEW-2 TEST SET 115

Figure B.9: La Spezia 2017-03-10, Satellite image © 2021 Maxar Technologies

Figure B.10: Toulon 2016-03-30, Satellite image © 2021 Maxar Technologies

Figure B.11: La Spezia 2017-07-31, Satellite image © 2021 Maxar Technologies

Figure B.12: La Spezia 2015-05-21, Satellite image © 2021 Maxar Technologies

Figure B.13: Toulon 2016-03-25, Satellite image © 2021 Maxar Technologies

APPENDIX B. RANDOM PATCHES FROM THE WORLDVIEW-2 TEST SET 116

Figure B.14: La Spezia 2015-05-21, Satellite image © 2021 Maxar Technologies

Figure B.15: Toulon 2016-03-25, Satellite image © 2021 Maxar Technologies

Figure B.16: La Spezia 2017-03-10, Satellite image © 2021 Maxar Technologies

Figure B.17: La Spezia 2017-07-31, Satellite image © 2021 Maxar Technologies

Figure B.18: Toulon 2016-03-30, Satellite image © 2021 Maxar Technologies

APPENDIX B. RANDOM PATCHES FROM THE WORLDVIEW-2 TEST SET 117

Figure B.19: La Spezia 2015-05-21, Satellite image © 2021 Maxar Technologies

Figure B.20: La Spezia 2017-03-10, Satellite image © 2021 Maxar Technologies

Figure B.21: La Spezia 2015-05-21, Satellite image © 2021 Maxar Technologies

Figure B.22: La Spezia 2017-03-10, Satellite image © 2021 Maxar Technologies

Figure B.23: La Spezia 2015-05-21, Satellite image © 2021 Maxar Technologies

APPENDIX B. RANDOM PATCHES FROM THE WORLDVIEW-2 TEST SET 118

Figure B.24: Toulon 2011-12-22, Satellite image © 2021 Maxar Technologies

Figure B.25: Toulon 2016-03-30, Satellite image © 2021 Maxar Technologies

Figure B.26: La Spezia 2015-05-21, Satellite image © 2021 Maxar Technologies

Figure B.27: Toulon 2016-03-30, Satellite image © 2021 Maxar Technologies

Figure B.28: La Spezia 2017-03-10, Satellite image © 2021 Maxar Technologies

Appendix C

Satellite image metadata

The table contains the identification numbers needed to acquire the same satellite images from

Maxar as was used in the experiments. More columns of metadata, for instance exact time of

capture, image size and exact spatial resolution, are available in the project’s GitHub repository,

https://github.com/onordberg/multispectral-super-resolution.

uid string_uid part pan_catalog_id ms_catalog_id

0 GE01_La_Spezia_2009_09_25_011651186010_0 test 2030010563489B00 2030010563489800

1 GE01_La_Spezia_2011_01_24_011651197010_0 test 2030010563690B00 2030010563690500

2 GE01_La_Spezia_2012_02_23_011651192010_0 val 2030010563727300 2030010563727000

3 GE01_La_Spezia_2012_05_07_011651189010_0 val 2030010563738800 2030010563738300

4 GE01_La_Spezia_2012_05_16_011651187010_0 val 2030010563726F00 2030010563726D00

5 GE01_La_Spezia_2013_07_07_011651184010_0 val 2030010563735C00 2030010563735A00

6 GE01_La_Spezia_2013_07_15_011651183010_0 test 2030010563737600 2030010563737400

7 GE01_La_Spezia_2013_07_18_011651195010_0 test 2030010563719700 2030010563719400

8 GE01_La_Spezia_2013_07_23_011651202010_0 test 20300105636D9400 20300105636D9200

9 GE01_La_Spezia_2017_04_16_011651188010_0 val 2030010563736D00 2030010563736900

10 GE01_La_Spezia_2019_01_03_011651196010_0 test 203001056371F100 203001056371EC00

11 GE01_Toulon 2009_03_23_011651190010_0 val 2030010563738900 2030010563738500

12 GE01_Toulon 2010_06_08_011651191010_0 test 2030010563733400 2030010563733000

13 GE01_Toulon 2013_08_20_011651198010_0 val 2030010563465E00 2030010563465800

14 GE01_Toulon 2014_10_16_011651185010_0 test 203001056372E200 203001056372DA00

15 GE01_Toulon 2016_03_26_011651193010_0 test 2030010563482700 2030010563482300

16 GE01_Toulon 2016_09_21_011651200010_0 test 203001056372F600 203001056372F300

17 GE01_Toulon 2017_09_05_011651201010_0 test 2030010563733200 2030010563732D00

18 GE01_Toulon 2018_02_13_011651199010_0 val 203001056371EB00 203001056371E400

19 GE01_Toulon 2019_10_07_011651194010_0 val 2030010563158400 2030010563158200

20 WV02_La_Spezia_2010_08_06_011650744010_0 test 20300105635BC200 20300105635BC400

21 WV02_La_Spezia_2011_05_02_011650586010_0 train 2030010563517600 2030010563517A00

22 WV02_La_Spezia_2011_05_10_011650587010_0 train 203001056350B200 203001056350B400

23 WV02_La_Spezia_2011_10_28_011650745010_0 train 2030010563350A00 2030010563350D00

24 WV02_La_Spezia_2012_01_10_011650582010_0 train 2030010563525500 2030010563525B00

119

https://github.com/onordberg/multispectral-super-resolution

APPENDIX C. SATELLITE IMAGE METADATA 120

uid string_uid part pan_catalog_id ms_catalog_id

25 WV02_La_Spezia_2012_05_17_011650585010_0 train 2030010563306700 2030010563306900

26 WV02_La_Spezia_2013_10_31_011650588010_0 train 203001056351E500 203001056351E700

27 WV02_La_Spezia_2013_12_08_011650589010_0 train 2030010563517300 2030010563517800

28 WV02_La_Spezia_2014_11_20_011650595010_0 train 2030010563525300 2030010563525A00

29 WV02_La_Spezia_2015_01_05_011650746010_0 val 2030010563598800 2030010563598A00

30 WV02_La_Spezia_2015_03_19_011650598010_0 val 203001056350CE00 203001056350D000

31 WV02_La_Spezia_2015_03_19_011650600010_0 test 203001056350EC00 203001056350EE00

32 WV02_La_Spezia_2015_04_24_011650748010_0 train 203001056359B800 203001056359BB00

33 WV02_La_Spezia_2015_05_21_011650592010_0 test 2030010563517D00 2030010563517F00

34 WV02_La_Spezia_2017_03_10_011650750010_0 test 2030010563573100 2030010563573400

35 WV02_La_Spezia_2017_07_31_011650593010_0 test 203001056351CF00 203001056351D100

36 WV02_La_Spezia_2018_05_18_011650597010_0 val 2030010563526100 2030010563526300

37 WV02_La_Spezia_2018_05_29_011650583010_0 val 203001056351E200 203001056351E400

38 WV02_La_Spezia_2018_07_06_011650749010_0 train 2030010563593500 2030010563593700

39 WV02_La_Spezia_2019_05_23_011650590010_0 train 20300105634FCE00 20300105634FD000

40 WV02_La_Spezia_2019_06_03_011650596010_0 val 203001056350B800 203001056350BA00

41 WV02_La_Spezia_2019_10_11_011650594010_0 train 203001056301AE00 203001056301B100

42 WV02_Toulon_2010_11_04_011651051010_0 val 20300105636D8800 20300105636D8A00

43 WV02_Toulon_2011_05_04_011651058010_0 train 203001056312A600 203001056312A800

44 WV02_Toulon_2011_12_22_011651063010_0 test 20300105636DC500 20300105636DC800

45 WV02_Toulon_2013_03_16_011651062010_0 train 2030010563428C00 2030010563429000

46 WV02_Toulon_2013_04_07_011651056010_0 train 203001056312A000 203001056312A200

47 WV02_Toulon_2013_04_10_011651050010_0 val 20300105636D7B00 20300105636D7F00

48 WV02_Toulon_2013_10_09_011651061010_0 test 20300105636DA100 20300105636DA300

49 WV02_Toulon_2014_04_06_011651052010_0 train 20300105636D8200 20300105636D8400

50 WV02_Toulon_2015_11_16_011651049010_0 val 203001056359AD00 203001056359AF00

51 WV02_Toulon_2016_03_14_011651064010_0 train 20300105636D9800 20300105636D9A00

52 WV02_Toulon_2016_03_22_011651057010_0 train 20300105636D8500 20300105636D8700

53 WV02_Toulon_2016_03_25_011651060010_0 test 20300105636D8F00 20300105636D9100

54 WV02_Toulon_2016_03_30_011651053010_0 test 20300105636D9500 20300105636D9700

55 WV02_Toulon_2016_09_28_011651048010_0 val 20300105636D2E00 20300105636D3000

56 WV02_Toulon_2017_08_19_011651059010_0 test 20300105636D9D00 20300105636D9F00

57 WV02_Toulon_2019_07_29_011650877010_0 train 20300105630ECF00 20300105630ED300

58 WV02_Toulon_2019_08_04_011650878010_0 train 20300105630ECC00 20300105630ECE00

59 WV02_Toulon_2019_09_11_011650876010_0 train 20300105630EBC00 20300105630EBF00

60 WV02_Toulon_2019_10_16_011650874010_0 val 20300105630EC000 20300105630EC200

61 WV02_Toulon_2019_12_15_011650875010_0 train 20300105630EC600 20300105630EC800

	Introduction
	Multispectral satellite images
	Single image super-resolution (SISR) and the perception-distortion plane
	SISR applied to satellite images
	Research questions
	Method
	Outline of thesis

	I Background
	Multispectral satellite imagery
	WorldView-2 and GeoEye-1
	The sun-synchronous orbit

	Four types of resolution
	Spatial resolution
	Spectral resolution
	Temporal resolution
	Radiometric resolution

	Processing of satellite images

	Deep learning
	A machine learning model
	The task, T
	The experience, E
	The performance measure, P

	A single neuron
	Densely connected networks
	The forward pass
	The activation function
	The loss function
	Training the network
	Back-propagation: Computing the gradient
	Stochastic Gradient Descent: Updating the weights
	The Adam optimizer: Adaptive moments

	Convolutional layers
	Zero padding

	Building and representing a network
	Building a network in TensorFlow

	Generative Adversarial Networks (GAN)

	Single image super-resolution (SISR)
	Perceptual quality and the perception-distortion plane
	SISR performance metrics
	Peak Signal-to-Noise Ratio (PSNR)
	Natural Image Quality Evaluator (NIQE)
	Ma et al.
	Perceptual Index (PI)

	ESRGAN
	ESRGAN loss functions
	ESRGAN Generator

	II Experiments on satellite imagery
	Experimental design
	The data: Two Mediterranean towns
	Introducing Toulon and La Spezia
	Data partition: training, validation and test sets
	Temporal correlations

	The experiments
	E1. The baseline experiment
	E2. The regularization experiment
	E3. The final evaluation

	Training, logging and evaluation
	Computing NIQE, Ma et al., and Perceptual Index (PI) metrics

	Adapting ESRGAN to the MS-to-PAN task
	Changes to the network architecture
	Changes to the training configurations

	Data pipeline
	Image patches and the fully-convolutional neural network
	Step 1: Patch allocation
	Step 2: Patch extraction
	Border pixels
	Cloud and sea classifier

	Step 3: Patch pipeline
	Normalization

	Results
	E1. The baseline experiment
	GeoEye-1 performance
	Are we overfitting?

	E2. The regularization experiment
	The best models

	E3. The final evaluation – Test set

	Conclusion
	Ideas for future research
	Apply SISR to satellite images without a PAN band
	Develop alternative performance metrics
	Generalize beyond two towns and a temporal dataset
	Train on less processed images

	Bibliography
	Random patches from the GeoEye-1 test set
	Random patches from the WorldView-2 test set
	Satellite image metadata

