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Abstract

In this study, we will address the problem of localising a source of pollutant given a
sparse set of noisy data. By sparse we mean spatially separated time-series measure-
ments in space. To this end, we will be adopting a machine learning algorithm, the
Physics Informed Neural Network (PINN) [43]. PINNs are neural networks which aim
to be possible alternatives to conventional forward and inverse PDE solvers. PINNs
are quite generalisable as the same method can be applied to a wide array of problems.
Furthermore, PINNs are not restricted to computational meshes, which gives us the
freedom to use sparse and incomplete data-sets.

Consequently, we wished to leverage the generality and power of this novel method
on a transport equation which models pollutant transport, the advection-diffusion equa-
tion. We will be investigating how we can localise the source by solving the advection-
diffusion equation in an inverse manner. It is the inverse problem which will be the
main goal of the study, as forward numerical solvers of linear PDEs are already robust,
fast and accurate. However, the forward problem will also be looked at as a preliminary
to the construction of the PINN. We compute the reference solutions of the transport
equation using traditional numerical methods, which gives us training data to be fed to
the PINN. Then we employ the PINNs on different test cases involving time-dependent
transport equations in one- and two-dimensional spatial domains. Our results show that
the PINN is indeed able to solve for these problems and localise sources with high ac-
curacy in certain situations.
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Chapter Outline

In chapter 1 we describe the motivation behind this thesis, derive the relevant partial
differential equations (PDEs), and define the problem statement that will be worked
on. In section 1.6 we briefly describe some related work on similar problems but us-
ing different methods. Next, we go through how we solved for the relevant PDEs using
numerical methods in chapter 2. Relevant proofs and arguments are provided for well-
posedness and stability. This is to show that the PDEs have a unique solution and
that the solution we generate, should be unique and accurate. The generated solutions
will be used as training data for our PINN, and as reference solutions to estimate errors.

In chapter 3, we describe how the Physics Informed Neural Network (PINN) works
in general terms, and how it can solve for a time-dependent PDE in both the forward
and inverse sense. We also discuss the pros and cons with the PINNs method over tra-
ditional numerical methods. We also go through the underlying mechanics of how a
densely connected neural network operates and trains and discuss the choice of the net-
work architecture we will use in chapter 4. Furthermore, in chapter 5, we describe in
specifics how we generate the solutions and how we implement the PINNs in code.

Then in chapter 6, we go over the results we achieved by using a basic implementation
of PINNs, the Baseline-PINN, and we discuss its limitations. In chapter 7, we discuss
some mitigating strategies to alleviate some of the problems we faced. Thereafter, in
chapter 8 we implement some of these strategies to gain better results. We also imple-
ment the improved PINN on very sparse data to simulate a more realistic scenario. At
the end of chapter 8 we propose a method which improves the performance further.

Next, we follow up with some conclusions and potential future work in chapter 9. Fi-
nally, we end the thesis with some final comments by the author in 10. Here we discuss
how the project could have been handled differently.

The appendices A, B and C include relevant mathematical derivations and analysis
which were too lengthy to include in the main chapters of the thesis. Appendices D and
E include information on where to find the code that was used and developed for this
thesis.
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Chapter 1

Introduction

1.1 Motivation

This study will focus on the application of PINNs on a transport equation. Specifi-
cally, the advection-diffusion equation (ADE), sometimes referred to as the convection-
diffusion equation, describes how a passive scalar, such as a pollutant, is transported
and diffused in a given velocity field. The velocity field can, for example, be obtained
by solving the Navier-Stokes equation. As the pollutant is assumed to be passive, it
does not influence the density of the fluid, and hence does not alter the velocity field.
Therefore, the solutions to the velocity field are not coupled to the ADE. And thus the
velocity can be solved independently.

The ADE is of interest as it can be used to determine the time evolution of a pollutant
in a fluid or gas environment. Specifically we are interested in discovering and localis-
ing the source terms contained within the ADE, as they will tell us where the pollutant
is generated from. Determining the location of a source can be of great importance.
For example in the field of environmental forensics, locating sources of undesirable
pollutants (such as crude oils, plastics, hazardous chemicals, greenhouse gasses) in the
environment is central. In particular the ACTOM project [2] aims to advance the tools
of offshore monitoring of stored CO2. One of the many goals behind ACTOM is to de-
velop tool-kits for detecting subtle leaks of CO2 storage in the environment, something
that PINNs may be able to accomplish. This is of particular interest for societal and en-
vironmental reasons, as CO2 capture, utilisation and storage (CCUS) is being funded
as a part of an international initiative to combat climate change.

For the application of pollutant source identification, it is necessary to solve for the
ADE in an inverse manner. The inverse problem makes use of measurements of phys-
ical variables to discover the relevant parameters of the governing equations. We will
employ PINN method as both a forward and an inverse solver on the ADE to do this.
For real-life applications, measurements of the physical variables may be noisy or pro-
hibitively expensive. As such we may be limited in the amount of and resolution of the
data. Due to how PINNs operate, we are not restricted to computational grids, and we
can deal with very sparse data-sets, as such PINNs may be used for this purpose. The
PINN will be discussed in full detail in chapter 3 and 4.
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1.2 The Advection-Diffusion Equation (ADE)

The ADE can be derived from a conservation law. A conservation law specifies how
some quantity is conserved in some volume, and by which mechanisms the quantity can
increase or decrease. In the case of a pollutant, we want that it can only enter or exit the
control volume Ω via two mechanisms; sources and boundary fluxes. A conservation
law which obeys these attributes can be written as:

∂

∂ t

∫∫
Ω

udx =
∫∫

Ω

F(x, t;P)dx+
∫

∂Ω

J ·ndS. (1.1)

Here, u(x, t) is a scalar field which describes the concentration of pollutant at any point
in space and time, F(x, t;P) is the source term for which positive values describe a
source and negative values describe a sink. The parameter P within the source term,
represents variables which describe attributes of the source. J is the flux, and it ac-
counts for the ways pollutant can enter the control volume through the boundary. n is
the outward unit normal vector on the surface of the control volume.

The flux of pollutant across the surface consists of two parts. For one, pollutant can ad-
vect through the surface due to transport imposed by a velocity field v(x, t). Second,
pollutant can diffuse through the surface. In the case of advection, the amount of pol-
lutant that can enter through a unit surface area of the control volume ∂Ω, will depend
on the amount of pollutant and the velocity infinitesimally close to the surface. Thus it
makes sense to assert that the flux due to advection can be written as the following.

JAdv =−uv.
The choice of sign will come apparent soon.

In the case of the diffusion, we can use Fick’s first law of diffusion [9]. It is derived
from the fact that pollutant will diffuse from regions with high concentration to regions
of low concentration. Fick’s law of diffusion postulates that the diffusion flux points in
the direction from high concentration to low concentration, and that the rate is directly
proportional to the gradient of said concentration,

JDi f f = D∇u.

Here, D is the diffusion rate. It determines how rapidly a peak of concentration, where
∇u is large, disperses and flattens towards an average.

Now let the total flux J be the sum of these two contributions J = JAdv + JDi f f . Then
by equation (1.1) we arrive at the following conservation law.∫∫

Ω

∂u
∂ t

dx =
∫∫

Ω

F(x, t;P)dx−
∫

∂Ω

uv ·ndS+
∫

∂Ω

D∇u ·ndS.

To explain the choice of signs, note the following. If the velocity at the surface is
pointing in the same direction as the outward unit normal vector then v ·n ≥ 0. If we
assume D = 0 and F = 0, then all pollutant inside Ω must be moving out from the do-
main. Therefore, we would expect the concentration inside Ω to be decreasing in this
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instance. That is why we have the negative sign for the second term on the right-hand
side.

Similarly, note what happens when we only look at the contribution from diffusion,
v = 0, and F = 0. If there is a higher concentration outside the domain Ω than inside,
then we would expect there to be a net inflow to the domain. In this case, the gradient
∇u would be pointing in the same direction as n, which does give a positive value cor-
responding to increasing concentration inside Ω.

Now, we apply Gauss’ theorem on the two surface integrals to transform them into
volume integrals. We gain the following:∫∫

Ω

∂u
∂ t

dx =
∫∫

Ω

F(x, t;P)dx−
∫∫

Ω

∇ · (uv)dx+
∫∫

Ω

∇ · (D∇u)dx.

Since all terms are valid under the same domain, we can transition over to the differen-
tial form of the conservation law. This allows us to get rid of the integral terms.

∂u
∂ t

+∇ · (uv) = ∇ · (D∇u)+F(x, t;P) (1.2)

Equation (1.2) is the most general version of the ADE. It can be further expanded as,

∂u
∂ t

+v ·∇u+u∇ ·v = D∇ ·∇u+∇D ·∇u+F(x, t;P). (1.3)

There are some simplifications that can be made, depending on the types of problems
we are looking at. For example, if the diffusion rate is independent of space, then
∇D = 0 and the second term on the right-hand side disappears. When dealing with
incompressible fluids, which is often the case, we can make another simplification. In-
compressible fluids has an extra condition imposed on the flow, namely ∇ · v = 0. In
this case, the third term on the left-hand side disappears.

For our studies, we assert that ∇D = 0, as we assume that the diffusion rate is only de-
pendent on the fluid and material properties of the pollutant. We will also be assuming
an incompressible flow. Thus, we finally arrive at the ADE which will be used in this
study as shown in equation (1.4). Note how ∆u = ∇ ·∇u.

∂u
∂ t

+v ·∇u = D∆u+F(x, t;P), x ∈ Ω, t ≥ 0 (1.4)

By specifying a velocity field v, a source term F , diffusivity rate D and with a sufficient
set of initial and boundary conditions, one should be able to find a unique solution for
u. The velocity field can be arbitrarily set by specifying it as a space-time dependent
function or by using a velocity-field data-set when solving the PDE numerically in the
discretized case.

There are two main types of boundary conditions applied to this problem, they are the
Dirichlet and Neumann boundary conditions. The former can be written as follows,

u(x, t)|x∈∂Ω = f (x, t), t > 0.
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This forces u to satisfy some known function f at the boundary. If say f = 0, then this
would represent walls which absorb pollutant such that the concentration is negligent
next to the walls.

The latter condition, the Neumann boundary condition, can be written as,

n ·∇u|x∈∂Ω = f (x, t), t > 0.

Here n is the outward unit normal vector to ∂Ω. In this case, it is the directional gradi-
ent of u that is forced to satisfy the known function f at the boundary. This on the other
hand, describe the fluxes of u at the boundary. If f = 0, then the walls would be reflec-
tive and pollutant would stay within the domain. If f > 0 at any point on the boundary,
then there would be a net positive flux of pollutant into the domain there and vice versa
for f < 0.

For the sake of simplicity, the homogeneous Dirichlet condition was chosen for our
case studies. In other words, we chose the Dirichlet boundary condition for when
f = 0. Though this is the less realistic scenario out of the two options, it does simplify
the derivation of well-posedness for the PDE, the numerical computation for generat-
ing data in MATLAB [47] and it simplifies the treatment of the PINN. Though it should
be noted that PINNs have been shown to be able to deal with Neumann boundary con-
ditions as well [27]. In addition, homogeneous initial condition was chosen, u(x,0)= 0.

In summary, with these choices, the problem describes how pollutant generated by a
source F develops in time under the influence of a velocity field v. It is known that the
concentration is zero at the boundaries and that the leak starts at t = 0. Thus, the only
possible way for pollutant to enter the domain would be from any sources within the
domain, specified by F .

1.3 Choice of Source

In our studies, we wanted to look at the advection of some pollutant u being generated
from a time-independent leak located at xs. This can be achieved by letting F ≥ 0 be a
forcing function such that it is non-zero at xs and vanishing away from xs. The simplest
way of achieving this would be to set F to the Kronecker-delta function.

F(x) = δ (x−xs) (1.5)

However, due to limitations in how PINNs operate, we could not define F as a delta
function. The problem is that the form of F in equation (1.5) is not continuous and
differentiable. Therefore, we chose the following N-dimensional forcing function,

F(x;P) = λN+1e−S(x−xs)
2
, (1.6)

for which,

P = [λ1, . . . ,λN+1]
T , xs = [λ1, . . . ,λN]

T .
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Here xs is the location of the source, λN+1 is the strength of the source and S is how
concentrated the leak is. P is used as a shorthand term for all of the lambda values.

This choice of F(x;P) will mimic the results given by the delta function (1.5), as the
functional values for (1.6) converge rapidly towards zero away from xs as long as S > 0
is kept large enough. Yet the form in equation (1.6) is still differentiable and continu-
ous such that it can be used in PINNs.

Therefore, when we are referring to the ADE, we mean the ADE of the form:

∂u
∂ t

+v ·∇u = D∆u+F(x;P), x ∈ Ω ⊂ RN, t ∈ [0,T ],

F(x;P) = λN+1e−S(x−xs)
2
, P = [λ1, . . . ,λN+1]

T , xs = [λ1, . . . ,λN]
T ,

u(x, t) = 0|x∈∂Ω, u(x,0) = 0,
vi =Vi(t).

(1.7)

Figure 1.1 shows an example of interplay between the ADE solution u and the ve-
locity field v. It shows how the the pollutant generated at a source F at the point
xs = [−1.45,0.0]T varies in intensity and how it is advected and diffused downstream.
The solution shown here was computed in MATLAB using the methods discussed in
chapter 2. The specific velocity-field used was generated by a Navier-Stokes solver
provided by Shibata [45].

Figure 1.1: ADE problem solved for the case where flow wraps around square obstruction in the do-
main. Arrows show the direction of the velocity field. The flow is laminar as the Reynolds number was
kept low.

1.4 Problem formulation

Now that we have discussed the form of relevant transport equation (1.7), we can now
discuss what scenarios we will be solving for. We will be looking at two different
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scenarios, the forward and inverse problems.

1.4.1 The Forward Problem
The forward problem consists of solving for u given the ADE and the initial and bound-
ary conditions as specified in equation (1.7). Note that P in equation (1.7) will be fully
specified here. To this end, we will employ both traditional numerical methods and the
PINN for solving the ADE. The numerical methods will provide us with a reference
solution u∗ which we can use to compare with the solution u provided by the PINN.
The goal is for the PINN to construct an accurate approximation to the reference solu-
tion, one which satisfies the ADE in all interior points and satisfies the homogeneous
boundary- and initial-conditions. At the end of training, the neural network will be a
continuous function u(x, t) which approximately solves for the ADE. Figure 1.2 visu-
alises the idea behind the forward problem.

Figure 1.2: Pipeline for the forward problem. The relevant PDE, boundary- and initial-conditions are
provided, which the PINN uses to generate a continuous solution.

1.4.2 The Inverse Problem
The inverse problem is what this study mainly be focused on, it consists of discovering
unknown coefficients or terms in the ADE by looking at measured samples of the ref-
erence solution u∗.

For the scenario we will be studying, the parameters in equation (1.7) such as the ve-
locity field v and the diffusive rate D will be known, but the location xs = [λ1, . . . ,λN]

T

and strength λN+1, will be unknown. The goal in this case, is for the PINN to return
approximations to the unknown parameters P in the source function F as specified by
equation (1.6). This will in other words discover where the leak is and how strong it is.
The training data-set will be the reference solution u∗ generated by traditional numeri-
cal methods.

Due to how the inverse PINN works, we also get a continuous extrapolated solution
u(x, t) for free. Similar to what we had in the forward case. This may sound redundant
as we already have the reference solution u∗ as training data. But, for some applica-
tions, this data-set might be quite sparse and noisy. Therefore, this extrapolated solution
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can come in handy. The PINN is able to use the imposed physics to infer a continu-
ous solution over the entire domain, and patch any holes in the data-set. Figure 1.3
visualises the idea behind the inverse problem.

Figure 1.3: Pipeline for the inverse problem. A sparse collection of measurements of the solution u∗ are
provided, which the PINN uses to generate a continuous solution and discover unknown parameters

1.5 Test-Cases

We wish to explore the capabilities of PINNs to solve both the forward and inverse
cases described above. To this end we will be looking at 1D and 2D test cases involv-
ing the ADE (1.7). The 1D cases were performed mainly as a first step to ensure our
solvers worked, before moving to the more complicated 2D cases. The 1D and 2D
forms of the ADE can be derived directly by substituting the component forms of the
∇u and ∆u operators in equation (1.7). We will be working in a Cartesian coordinate
system.

1.5.1 The 1D Test-Case
When discussing the 1D ADE we will be referring to the following instance,

∂u
∂ t

+Vx
∂u
∂x

= D
∂ 2u
∂x2 +λ2e−S(x−λ1)

2
, x ∈ Ω ⊂ R, t > 0,

u(x, t) = 0|x∈∂Ω, u(x,0) = 0,

Vx = 1, D =
1

4π
, S = 100,

λ1 =−0.8, λ2 = 5, P = [λ1,λ2]
T

Ω = [−1,1], t ∈ [0,1].

(1.8)

This is a simple case where all coefficients are constant in space and time. These coef-
ficients were chosen mostly arbitrary, in accordance with creating good looking plots,
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and they hold no physical significance.

Whenever we are dealing with an inverse problem, we will leave λ1 and λ2 as un-
knowns, and we will assemble them into a parameter P = [λ1,λ2]

T . These unknowns
will be left for the PINN to discover using the available data.

1.5.2 The 2D Test-Case
When discussing the 2D ADE we will be referring to,

∂u
∂ t

+Vx
∂u
∂x

+Vy
∂u
∂y

= D
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)
+λ3e−S

(
(x−λ1)

2+(y−λ2)
2
)
, x ∈ Ω ⊂ R2, t > 0,

u(x, t) = 0|x∈∂Ω, u(x,0) = 0,
Vx = 2, Vy = 3cos(3πt)+1, D = 0.2, S = 4,

λ1 =−1.4, λ2 =−1.0, λ3 = 1.0, P = [λ1,λ2,λ3]
T

Ω = [−2,2]× [−2,2], t ∈ [0,2].
(1.9)

This is a more complicated problem setup, as the vertical velocity component Vy is now
time-dependent. This form was chosen in accordance with creating nice looking plots,
but also to create a semi-realistic scenario in which the flow periodically changes di-
rection. Such as the case when dealing with tides.

Whenever we are dealing with an inverse problem, we will leave λ1, λ2 and λ3 as un-
knowns, and we will assemble them into a parameter P= [λ1,λ2,λ3]

T . These unknowns
will be left for the PINN to discover using the available data

1.6 Other Related Work

In the following section we discuss related work on the problem of finding source
locations by solving the inverse ADE. This is to show the alternate methods which can
be used to achieve similar goals.

1.6.1 Gradient Methods for Source Identification Problems
The problem statement in this thesis written by Banshoya [4] is similar to ours. Ban-
shoya wished to discover the location of a contaminant source given sparse measure-
ments of the ADE. Their test case consists of a 2D square domain with a single point
source inside with a uniform constant velocity-field.

They are able to localise the source by setting the problem up as a minimisation prob-
lem. In their case, their objective function was of the form,

J(u,d) =
1
2

Nm

∑
m=1

∫ T

0

(u(xm, t;d)−u∗m(t))
2

ω2
m

dt, (1.10)



1.6 Other Related Work 9

with,

F =
Ns

∑
i=1

aiδ (x− εi). (1.11)

Here, d = {ai,εi} is a parameter containing the source strengths and source locations
respectively. Unlike our continuous source given by (1.6), they were able to adopt point
sources in the form of delta functions (1.11). This gives their method an advantage in
that prior knowledge in leak ’size’ is not required, as every source is assumed a point
source. Though, it should be mentioned that there is nothing about the formulation
of PINNs that limits us from letting S in equation (1.7) be yet another unknown to be
solved for.

u∗m(t) corresponds to continuous time-series measurement data of the ADE model,
while u is the numerical solution. Thus, minimisation of their objective function cor-
responds to finding what numerical solution u with parameters d which most closely
corresponds to what the available measurements u∗ are. To this end, they used a con-
jugate gradient method to minimise the objective function J. Once the minimum is
found, the parameters d can be interpreted as the source intensities and locations.

Measurements were gathered from Nm = 30 locations in the domain, to give 30 dif-
ferent time-series plots. We will explore how the PINN performs on a very similar
data-set in chapter 8. The main difference in the problem setup, is that they use a con-
stant uniform velocity-field for most of their test cases. This was due to how their PDE
solver was not able to handle time-dependent velocities. Thus their method has not
been shown to work when the velocities can vary over time. Our test-cases in 2D how-
ever had a time-dependent velocity-field.

Their method was successful in localising the sources, however only for when the initial
guesses where set near the true answer. An initial guess too far away would lead to
diverging solutions.

1.6.2 Inverse Source Problem in a 2D Linear Evolution
Transport Equation: Detection of Pollution Source

In the study by Hamdi [17], they aimed to find the intensity and location of a contam-
inant source using data generated by the ADE. Although, their ADE model includes a
reaction term which we have not dealt with. In their test case, the contaminant is as-
sumed to be generated from a location inside a rectangular domain. The rectangular
domain is bounded by four boundaries: an inlet boundary, an outlet boundary and two
parallel walls. Intuitively, this situation can be thought of as a rectangular tube where
the fluid flows from one end to the other.

What makes this scenario unique is that the measurement stations are set only at the in-
let and outlet boundaries, but not in the interior. In addition, the source intensity varies
with time. Remarkably, they are able to discover not only the time evolution of the



10 Introduction

source intensity, but also the location of the source with good accuracy. This was done
with only four measurement stations on the inlet and outlet boundaries. Their results
were also stable with respect to noisy data.

This method has the clear advantage of being able to localise the source with measure-
ments taken only at the boundaries. In addition, it has the advantage of discovering
the time history of source intensity, which our implementation of PINNs cannot do in
a simple-to-implement manner. We suspect that the PINN may be able to do predic-
tions on time-dependent sources if we assume that our source term F(x, t;P) can be
expressed as a linear combination of simple functional terms such as a sum of sinu-
soidal waves. However, we have not attempted this, so we cannot confidently confirm
this claim.

Again their method was not shown to be able to deal with time-dependent velocities,
though this case was supposed to simulate the stream down a section of a rectangular
tube, where the mean velocity can, in a simple case, be assumed to be uniform and con-
stant in time.

1.6.3 Point Source Identification in Non-Linear Advection-
Diffusion-Reaction Systems

In the study by Mamonov and Tsai [28], the problem statement is again similar to our
own. Mamonov and Tsai are dealing with a rectangular domain, and the source is lo-
cated somewhere within this domain. Here they use a similar adjoint gradient method
as described in section 1.6.1. In this study however, they showed that their method
is robust with respect to obstacles in the domain, noisy data, multiple sources, and
time-dependent source intensities. However, it is unknown if their velocity-fields were
constant, or space-time dependent.

Mamonov and Tsai ran multiple test cases, varying the number of measurements, in a
range of Nm = 20 down to Nm = 3. They found that their method required a low number
of data to get good accuracy. Their study also includes a complimentary algorithm
which can determine the optimal locations to place new measurement stations in case
more refined results are desirable. The great advantage to their model is that their
algorithm includes a heat-map of source location probabilities, where the maximum of
this heat-map constitutes the predicted source location. This heat-map gives a measure
on how certain the prediction is, and it gives alternative possible locations.



Chapter 2

Numerical Solutions of PDE

Differential equations are one of the cornerstones of modern physics. A vast set of
real-life physical problems can be accurately modelled by rephrasing the physical setup
into the mathematical language of differential equations and then constructing their so-
lutions. For any given differential equation, one would ideally construct an analytical
closed form solution. Analytical solutions give us not just arbitrary precision, but also
valuable insight into how solutions behave with changes of parameters. Simple ODEs
and PDEs can in some instances be solved analytically by using clever mathematical
tricks. Unfortunately, this is not possible for most instances. For any given differen-
tial equation, one cannot be guaranteed that an analytical closed form solution exists.
And in many real-world cases the differential equations are sufficiently complex such
that only approximate solutions can be obtained. And this can only be achieved using
various numerical methods. Though numerical methods can in principle reach arbi-
trary accuracy, they may be prohibitively expensive to compute. Regardless, numerical
methods are still an essential tool for whenever one wants to solve and study complex
real-life problems via the use of differential equations.

Before arriving at the method of PINNs, we will discuss how we generated reference
solutions u∗ for the ADE in 1D and 2D as given by equation (1.8) and (1.9) respec-
tively. As we wished to have the maximum amount of control of the problem setup, we
generated the data ourselves by designing our own numerical solver. To this end, we
need to discuss the following: Well-posedness, the discretization scheme and stability.
Well-posedness asks if the problem posed by the PDE is solvable. The discretization
scheme gives us a way to solve the PDEs numerically, and stability ensures that the
numerical scheme used to solve the problem converges on the real solution.

2.1 Well-Posedness

Well-posedness of PDEs determine whether solutions actually exist, are unique and
if the solutions change continuously with changes in initial- and boundary-conditions.
Well-posedness also show that solutions do not explode to infinite values within fi-
nite time. The proof of well-posedness, for the general n-dimensional ADE considered
in equation (1.7), is quite lengthy. Therefore we place the proof in appendix A. Re-
gardless, well-posedness means that the solution of our PDE satisfies the following
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inequality.

||u(·, t)|| ≤ Keαt
(
||u(·,0)||+

∫ t

0
(||F(·,τ)||+ |g(τ)|2)dτ

)
||u(·, t)||=

∫∫
Ω

u(x, t)2dx
(2.1)

Where K ∈ R is a real number independent of F,g and u(·,0).

This inequality prohibits any growth to infinity in finite time. However, it does allow
for exponentially growing solutions with an arbitrary growth constant α ∈ R. This
condition also disallows the use of any unbounded initial data ||u(·,0)|| and disallows
unbounded growth in the source function ||F(·,τ)|| and boundary data |g(τ)|.

Working under the assumption that the ADE as described in equation (1.7) is well-
posed and has a unique solution, as proven in appendix A, we can continue to the next
step.

2.2 Solving PDEs With Finite Differences

A common way to compute the solution of PDEs is the method of finite differences.
The main idea behind finite differences is to approximate the derivative terms of a PDE
by a finite difference approximation. Thus we reduce derivative evaluations into func-
tion evaluations.

We computed the solution of our PDEs using finite differences via semi-discretization.
As such, we approximate the true solution u∗(x, t) by grid-functions ui(t) which ap-
proximates the solution u∗ at the grid-points xi at time t.

We construct the grid-function such that it takes the form u(t) = [u1(t), . . . ,uN(t)]T .
In other words, it takes the form of a column-vector for which each component i cor-
responds to the approximate solution ui(t) at the grid-point xi. The number N here
denotes the number of grid-points that constitute the grid which is superimposed on the
domain Ω.

This process then transforms the PDE into a large system of coupled ODEs, in which
each ODE corresponds to solving for each component ui(t). This ODE system can be
solved by using for example the fourth order Runge-Kutta time integrator. In appendix
B we derive the central difference approximations for the first and second order deriva-
tives on a general function f (x). Then we show their order of accuracy, and then apply
them on the ADE (1.7). We then end up with finite difference equations for our test
cases as shown in equation (B.5) and (B.10).
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2.2.1 Dealing With Boundary- and Initial-Conditions
As we have discussed in section 1.2, we settled on the homogeneous Dirichlet
boundary- and initial-conditions. For the finite difference scheme to obey the boundary
conditions, we need to consider how we deal with the boundary points.

In the 1D case as shown in appendix B, we divided the x-axis into Nx points such that
xi ∈ [a,b], i = 1, . . . ,Nx. Due to how the difference operators are constructed, we need
some way to deal with the fact that the points x−1 and xNx+1 are unavailable to us. The
simplest option is to set the solution u1 and uNx at the boundary points x1 and xNx to
obey the boundary data. This is a method called injection.

Consequently, it becomes unnecessary to solve for these boundary points using finite
differences, because they are already known. The finite difference scheme can be used
as-is for all interior points, excluding boundary points.

The same idea holds for the 2D case. In all computations, the injection method was
used. As such, any components of u(t) along the boundary grid-points were always set
to obey the homogeneous Dirichlet boundary condition. When it comes to obeying the
homogeneous initial condition, we simply initialise the grid-function u(0) with zeroes.

2.2.2 Finite Difference Method Applied to the N-Dimensional
Linear ADE

Now, let the solution u∗(x, t) of the N-dimensional ADE (1.7) be approximated with
a grid-function of the form u(t) = [u1(t), . . . ,uN(t)]T . Also let the source F(x) be
approximated as a grid-function of the form F = [F1, . . . ,FN]

T . Thanks to the method of
finite differences as discussed in appendix B, we can approximate the derivative terms
∇u and ∆u using finite difference operators D1(u) and D2(u) respectively. Therefore,
we can construct a finite difference scheme of the form,

∂u
∂ t

= DD2(u)−v(t) ·D1(u)+F. (2.2)

Each term on the right-hand side of (2.2) contains only the components of the grid-
functions u and F. In addition, D1(·) and D2(·) are linear operators, therefore we can
rephrase the difference scheme in (2.2) using a matrix-vector product,

∂u
∂ t

= A(t)u(t)+F. (2.3)

Here A is a sparse, diagonally-banded and possibly time-dependent matrix. In the 1D
case this matrix will have three bands, corresponding to the three grid-points used in
the derivative stencil, while in the 2D case, this matrix will have five bands correspond-
ing to its five-pointed stencil.

We could solve the difference scheme by writing the scheme explicitly as in equation
(B.5) and (B.10). However, the matrix-vector form as shown in equation (2.3) unifies
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the time marching scheme between the 1D and 2D case. Hence, the same solver can be
used without any modification between the two cases. In addition, it allows us to more
readily show stability.

What remains now is to show how we transfer the functions u(x, t) and F(x) into the
corresponding grid-functions u, F and the matrix A for the two cases. And we will show
that indeed the form in equation (2.3) can be constructed equivalent to (B.5) and (B.10).

Figure 2.1 and 2.2 show how we can construct the grid-function u(t) in the 1D and 2D
instances respectively.

2.3 The Finite Difference Method Applied to the 1D ADE

Let the domain Ω, consisting of the x-axis be divided into Nx grid-points. Then let the
solution u(x, t) for the 1D ADE as described in equation (1.8) be approximated by a
grid-function u(t) of Nx elements such that u(t) = [0,u2(t), . . . ,uNx−1(t),0]T . Here the
elements ui correspond to each grid-point i on the x-axis, see figure 2.1. Also let the
continuous source F(x) be approximated by a grid-function F = [0,F2, . . . ,FNx−1,0]T ,
such that it obeys the boundary conditions. Then, the finite difference scheme in as
derived in equation (B.5), can be rewritten in the following form:

∂

∂ t



u1
u2
...
ui
...

uNx−1
uNx


=



0
αx βx γx . . .

. . .
. . . αx βx γx . . .

. . .
. . . αx βx γx

0





u1
u2
...
ui
...

uNx−1
uNx


+



0
F2
...

Fi
...

FNx−1
0


, (2.4)

where

αx =
D

∆x2 +
Vx

2∆x
, βx =− 2D

∆x2 , γx =
D

∆x2 −
Vx

2∆x
.

The matrix here may be readily derived, by looking at equation (B.5). This is easy to
see, as equation (B.5) essentially tells us the following:

∂ui

∂ t
= αxui−1 +βxui + γxui+1 +Fi, i = 2, . . . ,Nx −1,

which is indeed equivalent to the matrix-vector form in (2.4). Notice how this formu-
lation of the numerical scheme automatically obeys the homogeneous boundary condi-
tions, as u1 and uNx are never updated. This is because their corresponding derivatives
remain at zero. Also note that none of the terms in A are time-dependent. This is be-
cause our 1D ADE as described in equation (1.8) has no time-dependent coefficients.
As such, we have simplified the difference scheme (B.5) into the desired form of (2.3).
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Figure 2.1: The one-dimensional line is divided into Nx grid-points. We assemble the solution u(xi, t)
into a vector according to the scheme shown in the figure. The difference scheme stencil is superimposed
on the grid.

Figure 2.2: The two-dimensional plane is divided into Nx ·Ny grid-points. We assemble the solution
u(xi,yi, t) into a vector according to the scheme shown in the figure. The difference scheme stencil is
superimposed on the grid.
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2.4 The Finite Difference Method Applied to the 2D ADE

The matrix A in the 2D case is a bit more involved to derive. One has to flatten the
two dimensional function u(xi,y j, t) = u(t)i, j into a vector u(t) = [u1, . . . ,uNx·Ny]

T with
Nx ·Ny elements. We found that the following procedure,

u(t)i, j = ui+Nx( j−1),

was sufficient to do this. But, this has to be done in such a way that A obeys the
difference scheme and each of the four homogeneous boundary conditions. The full
derivation of A is shown in appendix B. Regardless, we were able to simplify the dif-
ference scheme into the desired form of equation (2.3). In this case however, A(t) was
time dependent. This was because the 2D ADE as described in equation (1.9) contains
time-dependent velocity components.

2.5 The Fourth Order Runge-Kutta Method

We decided to use the explicit fourth order Runge-Kutta (RK4) time integrator for
our time marching scheme. This is because the RK4 method has a larger and more
favourable domain of stability in comparison to other many other explicit schemes such
as the forward Euler scheme. This becomes helpful when ensuring stability without re-
quiring very small time-steps dt. Also, since RK4 explicit, it is trivial to implement.

The fourth order Runge-Kutta method solves for ODE systems of the form,

∂u
∂ t

= f (t,u), (2.5)

where f describes the discretization scheme on the right-hand side of the finite differ-
ence equation (2.3). Let un = u(tn) be the solution of the grid-function u at time-step
tn. Marching forward in time is then accomplished by computing un+1 at the next time-
step tn+1 = tn +∆t. To do so, we compute (2.6) and then step forward by equation
(2.7).

k1 = f (tn,un)

k2 = f (tn +∆t/2,un +∆tk1/2)
k3 = f (tn +∆t/2,un +∆tk2/2)
k4 = f (tn +∆t,un +∆tk3)

(2.6)

un+1 = un +
1
6

∆t(k1 +2k2 +2k3 +k4) (2.7)

We know from before that we can rephrase the finite difference schemes in matrix-
vector form. As such, when solving for the ADE with RK4, we set f by,

f (t,u) = A(t)u(t)+F. (2.8)

To ensure that the solutions generated by the matrix-vector form (2.3) indeed give us the
same results as the explicit finite difference equations (B.5) and (B.10), we computed
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the solutions of both. We found that we do get the same solution down to machine
precision.

2.6 Consistency, Stability and Convergence of the Numeri-
cal Scheme

To know that our numerical scheme actually approximates the well-posed PDE, we
need to show that the scheme is consistent and stable. If this is the case, then it can be
shown by the Lax-Richtmyer equivalence theorem [6], that the scheme will converge
to the true solution of the PDE as the step sizes go to zero.

Consistency requires that the finite difference equations approximates the differential
equation as the step sizes go to zero. As we have shown in appendix B, the first order
central difference scheme approximates f ′(x) with order O(h2) and the second order
central difference scheme approximates f ′′(x) with order O(h2) as well. Clearly, as the
step-size h → 0 we have that the error shrinks as h2 and the finite differences converge
towards the actual derivatives contained in the PDE. Ergo, the numerical schemes (B.5)
and (B.10) approximate their respective ADEs and thus satisfy the consistency condi-
tion.

As for stability, one would typically design the scheme using SBP-SAT operators. Then
the scheme would satisfy stability by construction. Or one could apply the energy
method to the semi-discrete scheme to get an energy estimate, which mimics the well-
posedness results. If it can be shown that the energy does not blow up in finite time, we
can assert that the scheme is stable.

However, to leverage the SBP-SAT properties we would have to rephrase our numerical
schemes. This would become further complicated when promoting the system from 1D
to 2D. To avoid the tedious mathematical legwork, we instead decided to use a differ-
ent method. The method we chose let us leverage the power of computers to establish
the stability of our schemes.

In short, the method is based on computing the eigenvalues of A(t) in equation (2.3),
and plotting them against the stability regions of the time-marching scheme. We go
through the the stability and convergence analysis in further detail in appendix C. We
conclude that our difference schemes for the 1D and 2D ADE are both stable.

Furthermore, in appendix C we show the convergence rate for both schemes as the num-
ber of grid-points increases. We find that the schemes converge with approximate order
O(dx2). To balance performance and accuracy, we make a compromise and choose a
number of grid-points such that the relative L2-norm error as given by equation (5.1)
was around 0.1%.
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Chapter 3

Physics Informed Neural Networks (PINNs)

Now that we have discussed how we arrive at the solution for the ADE via traditional
numerical methods, we can now discuss the method that will be the focus in this thesis,
the physics informed neural network.

3.1 Intro to PINNs

Neural networks require a large amount of training data to perform well. For exam-
ple, the image classification problem can only really be solved effectively by gathering
sufficiently many labelled image examples for the neural network to train on in su-
pervised learning. With today’s powerful and efficient computers, training the neural
network does not constitute a huge hurdle anymore, even with large data-sets and large
networks.

However, for many scientific and engineering applications, there can be a great diffi-
culty and expense in gathering such great amount of data. Especially for large scale
systems such as the weather or the oceans or in systems in which it is challenging to
place measurement devices such as underground or inside living organisms. In those
cases, data may be quite sparse in both space and time and data may be corrupted by
noise. Hence, it may be prohibitively expensive to gather dense and accurate data for
the neural network to sufficiently train on.

Being motivated by solving PDEs in the forward and inverse sense in regimes where
data is sparse, there has been research put into combining the generality and power of
machine-learning techniques with physics and domain knowledge. To this end, physics
informed neural networks (PINNs) were developed. The method of PINNs is based on
embedding prior knowledge about the physical systems into a neural network in such
a way to constrict the space of possible solutions to only encompass the types of solu-
tions which we are interested in. As such, we magnify the information content that the
model obtains from the available data. This is done through a regulariser in the form of
the governing equations which enforces the physical laws into the solution. As such,
the model is not only much more information efficient with the data that it is dealt, but
also able to infer the solution by using the physical laws. This is especially useful in
the instances where data acquisition is expensive.
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In short, the PINN uses the universal function approximator capability of neural net-
works [18], to express solutions of time-dependent linear and non-linear PDEs of the
form,

∂u
∂ t

+N[u;P] = 0, x ∈ Ω ⊂ Rd, t ∈ [0,T ],

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0,T ],
u(x,0) = h(x), x ∈ Ω, t = 0.

(3.1)

Here N[u;P] is a differential operator acting on u with a set of parameters P. In the
general sense P are PDE parameters, but we will treat them as in equation (1.7).

Following the work of Raissi et al. [43], we approximate the solution u with a neural
network u(x, t;θ) = NN(x, t;θ) parametrized by θ and with input variables (x, t). The
form of this parametrized function is directly related to the architecture of the network
and the activation functions used, as will be discussed in further detail in chapter 4.

As with any regular neural network, one trains it by feeding it some training data, com-
puting the fitness metric via an objective loss function L and then adjusting the network
to improve the fit. The loss tells us how well the neural network performs given some
objective. During training, the parameters θ are updated with the goal of minimising
this loss function. For PINNs, the loss is typically divided into two parts: The residual
loss L f and the supervised loss Lu.

So, if we want our network to approximate some differential equation, we require that
for every point {xi, ti}

N f
i=1 ∈ Ω× [0,T ] that we feed to the network, it should approx-

imately satisfy the differential equation we wish to study, i.e, equation (3.1). To ac-
complish this task, one defines the residual of the PDE, f as the right-hand side in
(3.1),

f (x, t;θ ,P) =
∂

∂ t
u(x, t;θ)+N[u(x, t;θ);P]. (3.2)

The partial derivatives ∂u/∂ t and N[u;P] of the network u are computed using AutoDiff
methods [5] discussed in chapter 4. If the network u(x, t;θ) exactly satisfies the PDE in
equation (3.1), then we should expect this residual f to be zero. Note that any deviation
of u from the true solution u∗ would lead the residual to be nonzero, as it would no
longer exactly solve for the PDE. We want the residual to be zero or a positive value
as small as possible. Therefore, we can define the residual part of the objective loss
function L f as the mean squared error of the residual f on a set of points {xi, ti}

N f
i=1 ∈

Ω× [0,T ]. These points will henceforth be called collocation points. They represent
any space-time coordinates that may be sampled from the space-time domain of interest
Ω× [0,T ] without the need of knowing the reference solution u∗. This residual loss L f
is given as,
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L f (θ ,P) =
1

N f

N f

∑
i=1

| f (xi, ti;θ ,P)|2, {xi, ti}
N f
i=1 ∈ Ω× [0,T ]. (3.3)

Thus, if the network u(x, t;θ) approximately satisfies the PDE in (3.1), then we expect
L f to be a positive value near zero. Equation (3.3) is then a regularizer which rein-
forces the desired physics into the network. Note that the residual loss L f (θ ,P) is a
function of both θ and P here, but in the forward case, we have that P is fully specified.
Therefore P is only relevant for the inverse case.

Note that since the derivatives ∂u/∂ t and N[u;P] are computed using AutoDiff on the
network, we are no longer tied to a computational grid. We do not require a sufficiently
dense grid to compute these derivatives, as we did with finite differences. As such, we
have in a sense uncoupled the computational mesh from the PDE. Why is that? The
derivatives are instead dependent on the computational structure of the network. This
gives us the freedom to use any space-time coordinates {xi, ti}

N f
i=1 that we want for train-

ing and evaluation.

As in the case of any PDE solver, the enforcement of the governing equations is not
enough to guarantee a unique solution. We need to also specify initial and boundary
conditions. To enforce the initial and boundary conditions into the network, we define
an additional supervised loss function Lu as the mean squared error between the true
solution of (3.1), u∗(x, t), and the neural network prediction u(x, t,θ) on a set of points
{xi, ti,u∗i }

Nu
i=1 ∈ Ω× [0,T ] in which the true solution u∗i is known. These points will

hereafter be called data-points, as they include the sampled data of the true solution u∗

at the coordinate (x, t). The supervised loss takes the form,

Lu(θ) =
1

Nu

Nu

∑
i=1

|u(xi, ti;θ)−u∗i |2, {xi, ti,u∗i }
Nu
i=1 ∈ Ω× [0,T ]. (3.4)

Note that the data-points require that we know the reference solution u∗ at certain
points. This is not a problem in either the forward or inverse cases. In the forward
case, we simply provide the data that is given by the initial- and boundary-conditions,
while in the inverse case we can provide any data that is available inside the space-time
domain, but also including the initial- and boundary-conditions.

Typically, when training PINNs, we have seen that it is common to select collocation
points via a Latin-Hyper-cube sampling method. This ensures that the points are uni-
formly distributed in the space-time domain. But how do we determine the number of
points we need to ensure that the PINN sufficiently approximates the PDE? Chris Rack-
auckas touched on this point in his talk [10]. One can show that if the collocation- and
data-points are of a sufficient number and if they sufficiently cover the domain, then
minimising equation (3.3) is equivalent to solving the PDE (3.1). This proof was pro-
vided by Shin et al. [46] for elliptic and parabolic PDE. But this proof is concerned
with the limit as the number of points increases to infinity. Other studies conducted by
Mishra and Molinaro [34, 35] showed that the generalisation error can be bounded by
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the training loss and the number of training points.

The goal for the PINN algorithm then, is to find the parameters θ (and P in the inverse
case) which minimises the following objective loss function,

L(θ ,P) = fmL f (θ ,P)+umLu(θ). (3.5)

Here fm,um ∈ R are scalars which scale the contributions from the residual part (3.3)
and the supervised part (3.4).

This is where our formulation for PINNs differ from the one provided in the original
paper by Raissi et al. [43]. We will refer to their formulation as the Baseline-PINN.
In their studies, they had set fm = um = 1, and thus they assume that both parts should
contribute equally to training. However, as Raissi suggests in his presentation, proper
scaling between these two parameters is not fully understood, and there is a lot of open
questions left to be answered as to how to best scale these terms for optimal perfor-
mance [41].

The optimisation problem can be stated as,

[θ ∗,(P∗)]T = min
θ ,(P)

L(θ ,P). (3.6)

Without going into too much detail about training, the minimisation procedure can
be accomplished using back-propagation and gradient descent as will be discussed in
chapter 4. The basic idea is to differentiate the loss L with respect to θ (and P in the
inverse case). And then use these gradients to update the parameters iteratively. Note
that the parameters θ are shared between u(x, t;θ) and L(θ ,P), thus when the optimal
θ which minimise L are found, then we also have the optimal solution u which most
closely solve for the problem as stated in equation (3.1). This general formulation of
PINNs can be used both as a forward solver of the PDE, but also as a data-driven solver
in use for inverse modelling and discovery of unknown parameters P.

Figure 3.1 shows the basic pipeline for how a PINN operates for both forward inverse
problems. Note that for any given problem, only one optimiser will be acting on the
PINN.



3.2 Forward vs. Inverse Formulation of PINNs 23

Figure 3.1: The basic pipeline of how the PINN operates divided into three parts: the network u, the
physics informed part and the optimiser. Both the forward and inverse optimisers are shown here, but
only one will be active for any given problem..

Note that all the constraints put on the neural network via L in equation (3.5) are only
soft constraints [24]. As such, it is unlikely for the solution generated by the PINN,
u(x, t;θ), to exactly solve for the conditions in equation (3.1). This is because it is gen-
erally not feasible to find the global optimum of the optimisation problem posed by
equation (3.6). And even if we could find the global optimum, the data may be noisy
or limited, which would add a bound on how accurate the model can get. This is op-
posed to how some numerical solvers may impose strong constraints such that certain
conditions are always exactly satisfied, as for example, the method of injection for the
finite difference scheme.

This does not inhibit us from imposing strong constraints on our PINN however. One
can for example define the network u in the following manner:

u(x, t;θ) = t ·NN(x, t;θ).

As such, the homogeneous initial condition would be satisfied by construction. We
have seen this method used on occasion, but this is not in accordance with the Baseline-
PINN as provided by Raissi et al. [43], so we will not be using it in our studies.

3.2 Forward vs. Inverse Formulation of PINNs

The forward and inverse PINNs wish to solve for two very different problems, but there
are only very slight differences between how the two formulations are constructed. Re-
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call that the forward problem is concerned with solving for u when the PDE and ini-
tial/boundary conditions are fully specified. The inverse problem however, is concerned
with using data measured from u∗ and then estimating the unknown parameters P in the
PDE. The main difference comes from how the supervised loss Lu in equation (3.4) is
defined, and which parameters we set as we trainable variables.

3.2.1 The Forward PINN
The forward problem wishes to solve for u given only the PDE and the initial- and
boundary conditions. We assume here that the parameters P are known, such that we
are solving for a well-posed problem. By equation (3.1), we have that the true solution
u∗ is known only on the spatial boundaries x ∈ ∂Ω as u∗(x, t) = g(x, t) and at t = 0 as
u∗(x,0) = h(x). Hence, we define the residual loss Lu by equation (3.9).

Lub =
1

Nb

Nb

∑
i=1

|u(xi, ti;θ)−g(xi, ti)|2, {xi, ti}Nb
i=1 ∈ ∂Ω× [0,T ], (3.7)

Lu0 =
1

N0

N0

∑
i=1

|u(xi,0;θ)−h(xi)|2, {xi}N0
i=1 ∈ Ω, (3.8)

Lu = Lub +Lu0. (3.9)

Here, Lb is the loss with regards to how well the network u satisfy the boundary con-
ditions, while L0 is the loss regards to how well u satisfy the initial conditions. Note,
that any deviation of u from u∗ on the points specified by N0 and Nb, will lead to Lu
being non-zero. Thus, if the network approximately satisfies the boundary and initial
conditions as defined by (3.9), then we know Lu will be a positive value near zero.

The residual loss L f is defined precisely as in equation (3.3). Then all that is left to
do is to define the total loss L by equation (3.5) and then find the minima by gradient
descent with respect to the trainable variables θ . As the parameters P are known, we
do not need to minimise with respect to them. The gradient descent algorithm for the
forward PINN takes the form given in equation (3.10). Where α is the learning rate and
G[·] is some operator specified by the optimiser, which acts on ∇θL to create a gradient
step. How a network trains and the use of gradient descent will be explored further in
chapter 4. Therefore the gradient descent algorithm will take the form,

θn+1 = θn +α ·G[∇θL]. (3.10)

At the end of training, one should end up with a network u(x, t;θ) which acts as an
approximator to the PDE in (3.1).

3.2.2 The Inverse PINN
In the inverse case however, we have access to the functional value of u∗ in the interior
as well as on the boundaries. But we now have unknown parameters P in our PDE
which remain to be solved for. Here we assume that the data u∗i has been sampled from
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the boundaries, the initial condition and inside the domain. Here, we can define the
supervised loss as,

Lu =
1

Nu

Nu

∑
i=1

|u(xi, ti;θ)−u∗i |2, {xi, ti}Nu
i=1 ∈ Ω× [0,T ]. (3.11)

Notice that the form in equation (3.11) differs from the one in equation (3.9) in that the
data-points may lie inside the domain, and not just on the boundaries. This means we
are using all the information available to us to solve the problem. Additionally, since P
is now unknown, the residual loss (3.3) becomes a function of P,

L f (θ ,P) =
1

N f

N f

∑
i=1

| f (xi, ti;θ ,P)|2 = 1
N f

N f

∑
i=1

| ∂

∂ t
u(xi, ti;θ)+N[u(xi, ti;θ);P]|2,

{xi, ti}
N f
i=1 ∈ Ω× [0,T ].

(3.12)

With equation (3.11) and (3.12), we can assemble the total loss L with equation (3.5).

To accompany the change of objective from the forward to inverse case, the optimiser
needs to be modified slightly. This modification involves appending the unknown pa-
rameters P in 3.1 as extra trainable parameters to the network. In other words if θ is
some data-structure such that θ = [θ1, . . . ,θN]

T , then we can append the unknown pa-
rameters P to the end, θ → [θ ,P]T . The optimiser then computes the gradient of the
loss L with respect to not only the parameters of the network θ , but also the unknown
variables P. This differentiation process is done using back-propagation. Similarly to
how the parameters θ are adjusted during training to optimise the loss, so are the un-
knowns P. This is how the inverse formulation can discover unknown parameters. As
a result, they are treated as trainable parameters of the network and are thus subject
to the optimisation algorithm used for training. More specifically, the gradient descent
optimiser will take the form,[

θ

P

]
n+1

=

[
θ

P

]
n
+α ·G

[
∇θL
∇PL

]
. (3.13)

Once the loss is minimised, one will obtain guesses for the unknown parameters P. Ad-
ditionally, similar to the forward case, one will end up with a network u(x, t;θ) as an
approximate solution to the PDE.

As mentioned in section 1.4 this may sound redundant as we already had the true so-
lution u∗ as training data to train the inverse PINN. However, this feature of inverse
PINNs becomes very useful in reconstructing a solution when only very sparse and
noisy data are available for training. As u(x, t;θ) is a continuous function defined for
any arbitrary input (x, t), we are free to reconstruct the solution on any grid or structure
that we want.
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3.3 PINNs Applied to the ADE

The PDE we will be working with is described in its general form in equation (1.7).
By following the summary in section 3.1, we need to construct a residual f of the
form given in equation (3.2). Assuming that all derivative terms of u in equation (1.7)
can be computed at each collocation-point {xi, ti}

N f
i=1, then we can define the following

residual:

f (xi, ti;θ ,P) =
(

∂u
∂ t

)
i
+vi ·

(
∇u

)
i −D

(
∆u

)
i −F(xi, ti;P).

Here the subscript i denotes the functional values for each term at each of the
collocation-points. Thus, the physics informed, or residual part of the loss L f for the
ADE takes the form,

L f (θ ,P)=
1

N f

N f

∑
i=1

∣∣∣∣(∂u
∂ t

)
i
+vi ·

(
∇u

)
i−D

(
∆u

)
i−F(xi, ti;P)

∣∣∣∣2, {xi, ti}
N f
i=1 ∈Ω×[0,T ].

(3.14)
We also define the supervised loss Lu on the data-points {xi, ti,u∗i }

Nu
i=1 as,

Lu =
1

Nu

Nu

∑
i=1

|u(xi, ti;θ)−u∗i |2, {xi, ti,u∗i }
Nu
i=1 ∈ Ω× [0,T ]. (3.15)

Hence, the complete objective loss function (3.5) of the ADE described in equation
(1.7) becomes,

L(θ ,P)=
fm

N f

N f

∑
i=1

∣∣∣∣(∂u
∂ t

)
i
+vi ·

(
∇u

)
i−D

(
∆u

)
i−F(xi, ti;P)

∣∣∣∣2+ um

Nu

Nu

∑
i=1

|u(xi, ti;θ)−u∗i |2.

(3.16)
The loss L is a function of the parameters of the network θ (and P in the inverse case).
It is now clear that if the neural network u satisfies the ADE and the data u∗ as speci-
fied by 1.7 closely, then the loss should be small.

Also, recall the scaling factors um and fm. They will be manipulated later in section 7.1
to elevate the performance from the Baseline-PINN.
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3.4 Advantages and Disadvantages of the PINN as a PDE
Solver

PINNs have a lot of advantages over conventional methods for solving partial differen-
tial equations. Methods such as the finite difference, finite volume and finite element
schemes, which are commonly used as numerical solvers for real-life applications. One
of the greatest advantages of PINNs is that it is agnostic to grids and boundary treat-
ment schemes. In other words, one is not required to grid or tessellate the domain into
cells or nodes as a part of discretization. In fact, for PINNs, discretization is not needed
at all to compute derivatives. Differentiation is instead done by AutoDiff [5] on the
network. This means that one can use an arbitrary set of points inside of, and on the
surface of, the domain. Thus, one skips over any complicated meshing step.

For simple domain geometries, meshing is not usually a big deal for traditional meth-
ods. And with a rectangular domain, one can often get away with a regular rectangular
grid. However, for some applications, such as those of the fluid dynamics of an aerofoil,
proper meshing becomes important. However, there is nothing about the formulation
of PINNs as described in section 3.1 that limits us from solving PDEs on irregular do-
mains. We were not able to explicitly showcase this advantage, due to time-limitations.
Instead, we can refer to examples of PINNs running on complicated domain geome-
tries. Raissi et al. for example, showed the inverse PINN solving for the Navier-Stokes
equations on irregular shapes, and even on the CT-scan of a brain aneurysm [41, 42].
To this end there has been efforts to increase the robustness of PINNs on complex do-
mains, such as the development of XPINNs [20] or DeepXDE [26, 27].

In addition, for inverse problems, the neural network is agnostic to initial and boundary
conditions. So, there is no issue if the boundary and initial conditions for the problem
are unknown [42], uniqueness is ensured by the reference data u∗ that is available [41].
As such, the PINN can solve for ill-posed problems as well.

Due to grid-agnosticism, PINNs are able to handle sparse data-sets. This is because the
enforced physics allow the PINNs to patch holes of missing data in the domain. One
can therefore train the PINN on a coarse set of points, then later evaluate the problem
for a more refined set. This specific aspect was exploited in our studies, particularly in
the sparse 2D inverse case. We will show that the PINN can extrapolate the solution
for the whole domain, despite only being trained on a handful of points in space.

The methodology behinds PINNs is also generalisable. For example, if one wanted to
solve for the non-linear Burger’s equation instead of the ADE, one would simply have
to replace vi in equation (3.16) with ui. And then retrain the model. The non-linearity
of the Burger’s equation does not seem to impose any problems either as Raissi et al.
showed that the Baseline-PINN could handle the shock that develops very well [43].
This is unlike the finite differences formulation of the Burger’s equation. In which one
must take into careful consideration which spatial discretization one applies. The cen-
tral difference will lead to oscillatory solutions as the shock forms, whereas an upwind
scheme will not. But even the upwind scheme will not be completely accurate, as it will



28 Physics Informed Neural Networks (PINNs)

act as if there was a damping term present. As Raissi et al. suggests, one only needs to
ensure well-posedness of the PDE, for there to be an optimal solution for the PINN [43].

One of the main drawbacks however, is that convergence of PINNs is not fully under-
stood [41], but there have been studies conducted which aim to find a bound on the
generalisation error for PINNs on various PDE for both forward and inverse problems
[34, 35]. But it is still an open question which hyper-parameters should be used for
accurate solutions. Also, as Markidis [29] suggests, PINNs are still too slow and in-
efficient to be of any practical use as forward solvers. In large part, this is due to the
fact that PINNs require a lot of data. Despite the fact that the physics informed reg-
ularisation is supposed to make the neural network more data efficient, they still need
a large amount of data to achieve good accuracy. But, as Markidis showed, the use
of PINNs can be further optimised via the use of transfer learning [29]. This makes
it computationally faster to solve for several similar problem cases without having to
redo training from an initialised neural network each time. PINNs are therefore not as
useful as forward solvers in their current state. However, the use of PINNs seems much
more promising for use with inverse problems as the inverse problem can be solved
with the same computational complexity and efficiency as the forward problem [34].

Another drawback is that despite PINNs being generalisable, they may not always suc-
ceed in finding a good solution. This issue seems to be heavily problem specific, mean-
ing that PINNs may work well for some problems, but poorly for others. A lot of
contemporary research on PINNs is focused on mitigating these issues [24, 31, 49, 50].
We will mention some of these strategies later on in section 7.1, 7.2 and 7.3.



Chapter 4

PINNs Background

4.1 Feed Forward Neural Networks

To understand PINNs in proper detail, we need to understand the simple feed forward
neural network (FNN). The Baseline-PINN as formulated by Raissi et al. in [43] is an
FNN. The basic structure of the FNN we will be working with is shown in figure 4.1.

Figure 4.1: Basic structure of a feed forward neural network. Input nodes coloured in blue, hidden
nodes coloured in green and the output node coloured in red. Information propagates from left to right.
This example depicts an FNN with three input nodes, two hidden layers with 5 nodes each, and one
output node.

The network consists of nodes, organised into groups of layers, which are intercon-
nected by a web of weights W l

i, j ∈ R. A node computes a weighted sum of its inputs
and returns some output based on the activation function σ . An activation function is
simply a predefined function X → σ(X) ∈ Rd that determines the output given some
input X ∈Rd,d = N +1. Here we assume that the inputs of the network have the same
form as the collocation-points in section 3.1 Xi = [xi, ti]T .

The activation function is there to introduce non-linearity to the network, as it allows
the FNN to estimate non-linear functions. It can be shown that without the non-linearity
introduced by the activation functions, a multilayered network would act equivalent to
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a single layered network [14]. This is due the fact that a set of successive linear trans-
formations is still linear. Therefore, activation functions are essential for constructing
multi-layered networks.

The weights, are as the name suggests, variables which determine the weighting of
connections between each node pair in adjacent layers. Biases bl

j ∈ R are introduced
in each node as constants that offset each activation function by some amount. In the
general case for when the PINN u is a densely connected FNN, we can express the
network using nested functions and matrix multiplication.

u(X) = σ
L((W L)T

σ
L−1((W L−1)T

σ
L−2(. . .σ0((W 0)T X+b0)+bL−2)+bL−1)+bL)

(4.1)
Where L+1 is the total number of layers of the network, including the input and output
layers. The superscript l ∈ {0, . . . ,L} denotes the specific layer we are referencing. The
number Nl describes how many nodes are contained in layer l. In this convention, we
start counting from zero such that l = 0 describes the input layer. As such, L = 3 in fig-
ure 4.1. The weight matrix W l = (wi, j)

l is an Nl−1 ×Nl matrix containing the weights
between layer l−1 and l, where index (i, j) corresponds to the weight connecting node
i of layer l −1 with node j of layer l. Also bl is a Nl ×1 vector containing each of the
biases in layer l. Finally, σ l describe the activation function used in layer l.

4.2 Evaluation and Training

Training then consists of tuning the W l and bl parameters in a certain way such that the
output u(X) matches some given desired objective given by the loss L. This parame-
ter tuning happens by the method of gradient descent (4.2) on the objective function L.
The loss that we are concerned with is described in its general form in equation (3.5).
Training is thus an optimisation problem in which one must find what combination of
weights and biases minimises the loss L(θ). Here θ = {W l,bl}L

l=0 are all the weights
and biases from each layer of the network.

θn+1 = θn −α ·G[∇θL] (4.2)

Training consists of two parts, a forward pass and a backwards pass. In the forward
pass, the network u and loss L are evaluated. The network is evaluated by feeding
training data of the form {Xi}

N f
i=1 to the input nodes. While the loss is evaluated by

constructing L as given in equation (3.5). To evaluate the supervised part we require
data of the form {Xi,u∗i }

Nu
i=1. While for the physics informed part, we assume that the

derivatives of u with respect to the input X, can be computed using AutoDiff [5].

Once the gradients are computed, then they can be fed into an optimiser which will
update the weights and biases via gradient descent. This updating scheme is completed
several times by iterating over the data-set {Xi}

N f
i=1 and {Xi,u∗i }

Nu
i=1 until one converges
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on an optimal solution for θ . Each iteration over the entire data-set constitutes one
epoch of training.

The Forward Pass

The formulation of the FNN in equation (4.1) may be cumbersome to work with directly
as it requires us to write the network in full as a set of function compositions. We can
instead describe the network in an iterative fashion. Let zl be the weighted sum of
inputs into each of the nodes in layer l. zl takes the form of a Nl × 1 vector. Also
define the output (activation) of each node from layer l as al . Then we get the set of
equations shown in (4.3). The left column shows the matrix-vector notation, while the
right column shows the element notation for clarity. Here a−1 = X is the input fed into
the network,

al = σ
l(zl), al

j = σ
l(zl

j), j = 1, . . . ,Nl

zl = (W l)T al−1 +bl, zl
j = ∑

i
W l

i j ·al−1
i +bl

j, j = 1, . . . ,Nl.
(4.3)

The forward pass propagates the input data X through each layer of the network until we
reach the final layer aL = u. In other words, the forward pass is evaluating the network
u(X). For computational purposes, this formulation is advantageous. In addition to
computing u(X), we occupy each of the intermediate values al and zl numerical values.
These intermediate values are stored to be used in the backward pass. The forward
pass can be expressed as the set of iterative computations shown in (4.4). Note that this
iterative formulation is equivalent to (4.1). In fact, this order of operations is exactly
how the FNN is evaluated in code.

a−1 = X
z0 = (W 0)T a−1 +b0

a0 = σ
0(z0)

z1 = (W 1)T a0 +b1

...

aL−2 = σ
L−2(zL−2)

zL−1 = (W L−1)T aL−2 +bL−1

aL−1 = σ
L−1(zL−1)

zL = (W L)T aL−1 +bL

aL = σ
L(zL) = u

(4.4)

The Backward Pass

As mentioned earlier, the goal of the backward pass is to compute the gradient of L
with respect to θ . The issue is that we require some algorithm to compute the deriva-
tives of the loss function L with respect to the weights W l and biases bl . There are a
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couple options for computing derivatives. Finite differences or symbolic differentiation
for example.

Finite differences could in theory be used here, however it has several disadvantages.
The two main disadvantages are that finite differences require two or more distinct
points which lie relatively close to each other in parameter space in order to compute
an approximate derivative. This is the reason why finite differences require us to define
a regular computational grid. Additionally, this method becomes computationally inef-
ficient for large networks. This is as each parameter increases the dimensionality of the
problem. However, finite differences are sometimes used for validating results [14]. In
addition, for PINNs we will are required to compute the gradient of u with respect to
the inputs X as well. If we were using finite differences, then PINNs would no longer
be agnostic to grids. And finally, finite differences suffer from computational instabili-
ties as step sizes become small.

Another option is symbolic differentiation. This is feasible for small networks with very
few nodes and layers. However, the functional complexity of the derivatives grows ex-
ponentially as one adds more layers and nodes [5], and thus is not ideal for our use.
Neural networks may consist of thousands or even millions of nodes. And each node
of will have several weights associated with them. Symbolic differentiation will sim-
ply not be practical in such cases either. Another option however, AutoDiff, is meant
to sidestep these issues.

Automatic differentiation or AutoDiff (AD) [5] is the backbone of how neural networks
are trained. The main idea comes from applying the chain rule of calculus successively
through each layer in the network. In particular, it is a subclass of AutoDiff, the back-
propagation algorithm, that is most commonly used to train neural networks. This is
because the back-propagation algorithm is well suited for functions with many inde-
pendent variables [5], as is the case for neural networks with thousands of weights and
biases to be optimised. AD gives numerical values for derivatives similar to finite dif-
ferences. This is opposed to giving functional expressions for the derivatives, such as
what symbolic differentiation does. One might assume then, that AD is some approx-
imate numerical method. However, it is not, as it will give the exact numerical values
for the derivatives down to machine precision. As is the case to evaluation of sym-
bolic differentiation. Back-propagation lets us compute the gradients accurately and
efficiently.

Here we define the order of operations which back-propagation performs to compute
the desired gradients. Define ∂L/∂ zl

j = δ l
j , as the rate of change of the loss L with

respect to the inputs of node j in layer l. Now, notice from (4.3) that for l < L, we
have that zl+1

k is dependent on all the inputs from zl
j. Therefore, we must sum the

contribution from all these connections. By the chain-rule we get the following:

δ
l
j =

∂L

∂ zl
j
= ∑

k

∂L

∂ zl+1
k

·
∂ zl+1

k

∂ zl
j

= ∑
k

δ
l+1
k ·

∂ zl+1
k

∂ zl
j
.

From (4.3), we have,
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∂ zl+1
k

∂ zl
j

=W l+1
jk ·

∂al
j

∂ zl
j
=W l+1

jk · (σ l)′(zl
j).

Hence, we arrive at,

δ
l
j = ∑

k
δ

l+1
k ·W l+1

jk · (σ l)′(zl
j).

This formulation is cumbersome to work with, as such we convert it to vector form,

δ
l =W l+1

δ
l+1 � (σ l)′(zl), δ

l ∈ [Nl,1]. (4.5)

Where � denotes element-wise multiplication. We thus have a way of computing δ l

for all l < L. Now, we can derive ∂L/∂W l
i j. By the chain-rule we have,

∂L

∂W l
i j
=

∂L

∂ zl
j
·

∂ zl
j

∂W l
i j
.

By looking at (4.3) we get,

∂L

∂W l
i j
= δ

l
j ·al−1

i .

We transfer this into vector form to gain,

∂L

∂W l = al−1(δ l)T ,
∂L

∂W l ∈ [Nl−1,Nl]. (4.6)

Finally, we need to compute ∂L/∂bl
j. By looking at (4.3), it can be shown that,

∂L

∂bl
j
=

∂L

∂ zl
j
·

∂ zl
j

∂bl
j
= δ

l
j .

Hence, in vector form we gain,

∂L

∂bl = δ
l,

∂L

∂bl ∈ [Nl,1]. (4.7)

We now have a way of computing the derivative of L with respect to the weights W l and
biases bl in an iterative fashion by starting from layer l +1 and computing derivatives
backwards to layer l. For l = L however, we need to compute δ L = ∂L/∂ zL directly.
This is because δ L is problem specific, as it entirely depends on the form of L. This
is immediately evident by looking at (3.5). Different PDEs will give different forms of
the loss. Let us assume we know how to compute δ L for now, such that we can continue.

When defining the loss L for PINNs, we will also need to compute ∂u/∂X. In other
words, differentiate the network with respect to our input variables. We can replicate
what we did for L by defining a new variable. Let µ l be the rate of change of u with
respect to the inputs zl to layer l.
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µ
l =

∂u
∂ zl .

It is trivial to show by (4.3) that µL = (σL)′(zL). Thus, similarly to δ l we get,

µ
l =W l+1

µ
l+1 � (σ l)′(zl), µ

l ∈ [Nl,1]. (4.8)

We can then compute µ0 by working backwards from µL. This is done via the iterative
formula (4.8). Finally, we need to compute ∂ z0/∂a−1. From (4.3) we get,

∂ z0

∂a−1 = (W 0)T .

Finally, we have that,

∂u
∂X

=
∂u
∂ z0

∂ z0

∂a−1 = (W 0)T
µ

0. (4.9)

As such, we have shown how we can compute ∂u/∂X. Similarly ∂ 2u/∂X2 can be ob-
tained. These derivatives can then be used to construct L according to the PDE we
want to solve.

Once δ L has been computed by δ L = ∂L/∂ zL, then all gradients of L follow by the
iterative equations in (4.10).

δ
l =W l+1

δ
l+1 � (σL)′(zl), l ∈ L−1, . . . ,1

∂L

∂W l = al−1(δ l)T , l ∈ L−1, . . . ,1

∂L

∂bl = δ
l, l ∈ L−1, . . . ,1

(4.10)

This is how back-propagation operates. First, intermediate values are occupied by nu-
merical values in a forward pass (4.4). Then the loss can be numerically evaluated as
(3.5). Then gradients of this loss can be computed with the backward pass as described
in (4.10).

Notice that the only derivatives we are required to know symbolically are ∂L/∂ zL = δ L

and (σ l)′(·). As σ l(·) are predetermined activation functions, we can assume that we
also know their derivatives. On the other hand, ∂L/∂ zL = δ L can vary between prob-
lems. Also notice, that all of the intermediate values such as al and zl which are needed
to compute the iterative formula in (4.10), are already known to us. This is because we
already occupied these variables with numerical values in the forward step 4.2. This
is the main computational advantage of the back-propagation algorithm. The gradients
for each layer can be derived iteratively, using values which have already been used in
the forward pass.

For multiple training data, we can simply add the contribution from every point,
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δ
l =

1
N

N

∑
i=1

(
δ

l)
i,

∂L

∂W l =
1
N

N

∑
i=1

(
∂L

∂W l

)
i
,

∂L

∂bl =
1
N

N

∑
i=1

(
∂L

∂bl

)
i
.

(4.11)

Hence, we have shown how to compute the gradient of L with respect to the weights
W l and biases bl by (4.11). These gradients can be assembled into a ragged tensor
in TensorFlow ∇θL =

[
∂L/∂W l,∂L/∂bl

]T
= [∂L/∂θ ]T , which can be applied in

the gradient descent method (4.2). Additionally, we have shown how to compute the
gradient of u with respect to the inputs X by (4.9) for use in PINNs.

4.3 Initialisation, Network-Structure and Activation Func-
tions

As previously stated, activation functions introduce non-linearities into the neural net-
work. Common activation functions include tanh, ReLU , Swish and Sigmoid. Figure
4.2 show some of them.

Figure 4.2: Common activation functions used in neural networks.

Before a network can be trained, one must first specify the activation functions σ l(·)
and initialise the parameters θ . But how do we choose what activation functions to use,
and what should θ be initialised as? This is what we will discuss now.

When neural networks were first conceived, they often suffered from poor convergence.
One of the reasons for this turned out to be how the weights and biases of the neural net-
works were initialised prior to training. But also from a poor choice of activation func-
tions [14]. As it turns out, to get proper convergence, one must initialise the weights
and biases in a specific manner which corresponds to the appropriate activation func-
tions. One of the initialisation methods that were developed to this end was Glorot
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initialisation also called Xavier initialisation [12].

Glorot initialisation, specifically normal Glorot initialisation, is based on initialising
the weights by drawing from a normal distribution with a variance of σ and a mean
µ = 0. In other words W l

i, j ∼N(µ,σ2
stddev). For the use in PINNs, we found that Raissi

et al. had used normal Glorot initialisation in their codes [43]. The variance used in
normal Glorot initialisation is given by,

σ
2
stddev =

2
Nin +Nout

. (4.12)

Here, Nin describes the number of connections entering the given node and Nout de-
scribes the number of connections exiting the node. By following Raissi et al.’s work,
we found that the biases on the other hand, were initialised with zeros [43]. As such,
when initialising the PINN we also used normal Glorot initialisation as specified by
(4.12).

The proper choice of initialisation is important, because one tends to run into the prob-
lem of vanishing gradients whenever initialisation is done poorly. Vanishing gradients
occur when activations become saturated and thus these nodes no longer contribute to
training. This happens when the inputs x to the activation function σ(x) become so
small, or large that σ ′(x) becomes vanishingly small. As the Glorot and Bengio in [12]
suggest, Glorot initialisation makes it so that the variance of gradients is maintained
for all layers of the network. Therefore, one reduces the chance that any activations
become saturated. One might ask why one must initialise the weights with a random
distribution. Why can we not initialise all variables with the same value? The idea
is that if all variables are initialised identically, then back-propagation will affect each
node for every layer identically, this leads to the model acting as if each layer only has
one node. Random initialisation will break the symmetry and allow for better utilisa-
tion of multiple nodes [14].

For many machine learning applications, ReLU is typically used as it works well em-
pirically [14]. In the PINN case however, we are required to use activation functions
which can be differentiated more than once. This is due to the fact that any arbitrary
PDE might contain derivatives of higher order than one. If we were to use ReLU , we
would be limited to first order derivatives in our PDE. In the case of the ADE (1.7), we
have second order derivatives, thus we cannot use ReLU . In all contemporary papers
we had found on PINNs [21, 24, 29, 31, 42, 43, 49, 51] the tanh activation function
was used. Additionally, Markidis in [29] state that PINNs with ReLU and other non-
smooth activation functions, are not convergent methods. In the limit of an infinite
training data-set a well-trained PINN with ReLU-like activation functions, the solution
does not converge to the exact solution [29, 34].

As Glorot and Bengio in [12] suggest, their proposed normalised Glorot initialisation
scheme can be helpful in networks which use the tanh activation function. This is be-
cause magnitudes of activations and gradients are preserved between layers both in
forward and backward propagation. Hence, we also decided to settle on the tanh acti-
vation function with Glorot initialisation.
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The structure of the network is also an important aspect to be determined. One needs
to specify how many hidden layers there should be and how many nodes there should
be for each of the hidden layers individually. Unfortunately, there are not any strict
guidelines one can adhere to for optimal performance in this regard [14]. Raissi et al.
gave the following piece of advice: For PINNs to perform well, it is at a minimum, re-
quired for the network to have sufficient complexity to express the possible solutions
one would expect, given the PDE in question [43]. He argues that the network needs
to be given sufficient approximation capacity in accordance with the complexity of the
solution. However Raissi admits in his talk [41] that the interplay between required ar-
chitecture and the complexity is still poorly understood.

Generally, it holds that the more hidden nodes and layers there are, the more expressive
the network becomes. One also gets a higher efficiency by adding more hidden lay-
ers versus adding more nodes per hidden layer [14]. Thus, it is beneficial to construct
deeper neural networks instead of very wide ones. Though, more layers and neurons
come at an obvious computational cost. Hence, this is a balancing act that needs to be
performed. A network too small will not be able to express the nature of the solution,
while a network too large will require a greater amount of time and memory to train.

Instead of choosing a structure blindly. We instead, decided to use what we had ob-
served to work for other problems. We chose the same neural network structure as
was used in [43] for the inverse 2D Navier-Stokes problem. Namely, a densely con-
nected FNN with 8 hidden layers with 20 neurons each. The Navier-Stokes equation
is a non-linear version of the ADE, and as such, typically more difficult to solve for.
Therefore, we argue that if this specific architecture was sufficient to express the solu-
tion for the Navier-Stokes equation, then it should be sufficient for the ADE. This may
not be a perfect argument, however Krishnapriyan et al. [24] suggest that the failure of
a PINNs convergence is often not due to insufficient expressivity, but due to problems
with optimisation. This claim will be validated later on in chapter 8. As such, we feel
confident that this network should be expressive enough.

Deciding how many input and output nodes there are however, is trivial. The input
nodes for a PINN will simply correspond to each of the input variables available. For
our case, spatial and temporal coordinates. For a one dimensional time-dependent prob-
lem, it necessary to have two input nodes, one for x the spatial variable and one for t
the temporal variable. For a two dimensional time-dependent problem, one simply adds
another input node corresponding to the spatial variable y. As we will only predict one
quantity, namely the concentration u, we only need one output node. The network will
have the same form as shown in figure 4.1, but with more hidden nodes and more hid-
den layers.

Before we finish this section, we need to look at normalisation of the inputs. The tanh
activation function becomes saturated for inputs tending towards large absolute values.
This becomes evident by looking at the derivative of tanh given by sech2 as shown in
figure 4.3.
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Figure 4.3: Plot of tanh(x) versus its derivative sech2(x).

As we see, the derivative tends rapidly towards zero as the inputs lie further and further
away from the origin. As such, we need to ensure that the inputs to our network lie
in this ’effective range’ to avoid vanishing gradients. To this end, Raissi et al. in [43]
used a normalisation scheme applied to the inputs before being fed to the input layer as
given by,

X → 2(X− lb)
ub− lb

−1. (4.13)

Here, X = [x, t]T . ub is the component-wise upper bounds of X while lb is the
component-wise lower bounds of X. The division occurs component-wise.

If X = ub, in other words, each element of X take their maximum values, then the
input becomes normalised to one, while if X = lb, then the input becomes normalised
to negative one. As such, no matter the range of inputs X, we always have the inputs
to the network be normalised to the range [−1,1] to most effectively utilise the tanh
activation function gradients.

4.4 Minimising the Loss L

The training of a neural network is at its core an optimisation problem. The goal is
to find the parameters θ which give the optimal value for the objective loss function
L. To this end, there has been many different optimisation algorithms developed for
use with neural network optimisation. We will discuss training with full-batching and
mini-batching and two of the common optimisers used to train PINNs in the following
sections.

Full-Batch Gradient Descent

The full-batch gradient defines the loss L using the entire data-set. Here Nu and N f

constitute the entire data-set for the collocation-points {xi, ti,u∗i }
Nu
i=1 and data-points

{xi, ti}
N f
i=1 respectively. Then θ can be updated using the optimiser G. One step with

the optimiser is then considered an epoch as we have used the entire data-set in one
update. Let the loss L be given as equation (3.5), then:
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L(θ) =
um

Nu

Nu

∑
i=1

|ui(xi, ti;θ)−u∗i |2 +
fm

N f

N f

∑
i=1

| f (xi, ti;θ)|2,

θn+1 = θn −α ·G[∇θL].

The main issue with this method is that it may be slow to compute and memory inten-
sive, particularly when the data-set is large. It can also tend to get stuck in local minima.
This could lead to cases where the loss will quickly stagnate despite the model under-
fitting on the data.

Despite these disadvantages, we found that full-batch gradient descent was by far the
most common option for training PINNs, we could only find one example where mini-
batching was explicitly used [22].

Mini-Batch Gradient Decent

The mini-batch gradient descent method is meant to alleviate some of the issues of full-
batch gradient descent. This is done by computing the gradient of L for a random subset
of training points data-set Nrnd

u ⊂ Nu and Nrnd
f ⊂ N f . This noisy ’stochastic gradient’

is then applied to the network several times for each epoch until each data-point has
been used. Here each epoch may consist of multiple updates. Let the loss L be given
as equation (3.5), then:

L(θ) =
um

Nrnd
u

Nrnd
u

∑
i=1

|ui(xi, ti;θ)−u∗i |2 +
fm

Nrnd
f

Nrnd
f

∑
i=1

| f (xi, ti;θ)|2,

θn+1 = θn −α ·G[∇θL].

One of the main advantages of mini-batch gradient descent is that the gradient ∇θL
does not necessarily point in the true direction of greatest descent. This is due to the
randomness in the sampling of Nrnd . This means that with every step taken, one moves
only approximately towards the optimum. Therefore the optimiser may be able to es-
cape local minima. Despite only computing approximate descent directions, networks
still tend to converge close to the optimal solution [14]. A smaller amount of train-
ing data for each update also helps to alleviate with the memory issues encountered
with full-batch gradient descent. The downsides is that one needs to specify how many
training points that go into each mini-batch Nrnd . A range from 1 to 512 training points
work well empirically [14]. Kadeethum et al. [22] found a similar range that works
well for PINNs on non-linear Biot’s equations. We did conduct tests with mini-batch
gradient descent, but found that mini-batching was neither significantly beneficial or
detrimental to performance.

The Regular Gradient Descent Optimiser

The regular gradient descent method follows the form shown in equation (4.14).

θn+1 = θn −α∇θL(θn) (4.14)
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It implies that the gradient operator G[·] in (4.2) is the unitary operator. This is the
most simplistic form of the gradient descent. The main issue with this optimiser is that
the learning rate α is global and affects each of the gradients equally. This may not
always be optimal, as some parameters may be better suited to smaller or larger steps.
We found that none of the implementations of PINNs in the literature used this form of
gradient descent, as such we did not use it either.

The ADAM Optimiser

The ADAM optimiser is a popular adaptive optimiser used for training neural net-
works. Adam stands for adaptive moment estimation. It has been shown that for a
variety of different machine learning problems, the ADAM optimiser is a computation-
ally efficient and versatile optimisation method [14, 23]. The advantages to the ADAM
optimiser are that each parameter of the neural network are updated according to in-
dividual adaptive learning rates. Specifically, each parameter will update at different
rates depending on the parameters ’Signal-to-Noise-ratio’ (SNR). This ratio tells the
optimiser how certain an update to a parameter is aligned with the true gradient or not.
If the SNR is high, then the gradient is robust to changes in the data or noise. In such
an instance the parameters will be updated with a large learning rate. If the SNR is low,
then noise dominates, and the parameters will not be updated as heavily. The SNR can
also be low in instances where the parameters are close to an optimum. In which case,
we would want the step sizes to be small as we would not want to walk further away
from the optimal values.

Regardless, the learning rate is approximately bounded by the global learning rate α ,
such that updates cannot grow arbitrarily large. This effectively gives each parameter
its own adaptive learning rate. ADAM then has the advantage that it is not as sensitive
to learning rate tuning. The ADAM optimiser can be summarised by equations (4.15 -
4.18). These equations were taken from the original publication of ADAM [23].

The first moment estimate mn+1 of the gradient is computed with the exponential mov-
ing average as shown in equation (4.15). Similarly, the second moment estimate vn+1 is
computed with another exponential moving average as shown in equation (4.16). Next,
the first and second moments are corrected via a bias-correction term (4.17) which is
dependent on the iteration number n.

mn+1 = β1mn +(1−β1) ·∇θL(θn) (4.15)

vn+1 = β2vn +(1−β2) ·
(
gn+1 �gn+1

)
(4.16)

m̂n+1 =
mn+1

1−β
n+1
1

v̂n+1 =
vn+1

1−β
n+1
2

(4.17)

Finally, the weights and biases of the network θ are updated via the gradient descent
update in equation (4.18). The ratio m̂n/v̂n corresponds to the SNR.
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θn+1 = θn −α · m̂n+1√
v̂n+1 + ε

(4.18)

The value ε is there for numerical stability, as one would run into issues if the second
moment estimate v̂ ever went to zero. By default in TensorFlow, the parameters are set
as α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−7. Empirically the default values set
by TensorFlow should work well for most problems [14]. And indeed we found that
Raissi et al. had not changed these values either in their codes when implementing the
Baseline-PINN [43].

The ADAM optimiser is the main optimiser we used in our application of PINNs. We
found that all studies focusing on PINNs utilised this optimiser as well. However, it
seems that ADAM is not always sufficient to achieve optimal accuracy. Therefore,
ADAM is often supplemented with another optimiser, namely L-BFGS.

The L-BFGS Optimiser

In the canonical literature for PINNs, it is commonplace to supplement the ADAM
method with the L-BFGS optimiser. This optimiser is a second order optimiser, mean-
ing that it uses the Hessian of L with respect to the parameters θ . This is as opposed to
ADAM which is a first order optimiser as it only uses the first order gradients.

Generally for PINNs, one trains the network with ADAM first, then one switches over
to L-BFGS optimisation as the loss begins to stagnate and little is gained with any
further training with ADAM. More often than not, one tends to get vastly better per-
formance if L-BFGS optimisation is used in tandem with ADAM. One typically does
not train with L-BFGS alone as L-BFGS has a higher likelihood to get stuck in local
minima [29]. Therefore, ADAM is used to guide the network approximately towards
an optimal minimum, where L-BFGS takes care of the rest. As claimed by Bishop
[8], full-batch optimisation using simple gradient descent is actually a poor algorithm.
For full-batch optimisation, quasi-Newton methods such as L-BFGS is much preferred.
Moreover, Markidis [29] claims that L-BFGS is essential for the PINN to succeed.

In our studies, we performed test cases both with and without the addition of L-BFGS
optimisation. We found that yes, L-BFGS does improve performance by a significant
margin, especially with regards to accuracy on parameter discovery in the inverse prob-
lems. As such, we will also be using L-BFGS.

The discussion of how L-BFGS operates goes outside the scope of our studies, for more
information see [40] or [25].
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4.5 Network Summary

We have now explained how a network is evaluated and trained in general terms. We
have also explained the choice of initialisation, network-architecture and activation
functions for PINNs. We found that PINNs require a specific set of treatments to work
properly. At first glance, these choices seemed ambiguous to us, however the more we
investigated them, the more they made sense. This is why we decided to keep the net-
work in line with the Baseline-PINN in [43].

In summary, we chose a network with 8 hidden layers and 20 nodes each. Each hidden
layer is assigned the tanh activation function, while the first and last layers are linear.
The input layer is scaled by the normaliser in (4.13). The parameters of the network are
initialised according to the normal Glorot scheme (4.12). We then train the networks
first using ADAM, then by using LBFG-S. This is all in accordance with how the
Baseline-PINN is implemented in [43].



Chapter 5

Methodology

5.1 Generating Data with MATLAB

To train the PINN for forward and inverse problems, one needs training data. As dis-
cussed in chapter 2, the finite difference method with the RK4 time-marching scheme
was used to generate training and testing data u∗. Specifically, MATLAB [47] was used
to implement the numerical solver in code. The finite difference schemes for the 1D
ADE (B.5) and 2D ADE (B.10) were converted into matrix-vector form as shown in
equation (2.3), then solved by using equation (2.7).

As shown in chapter 2, the PDEs underlying the discretizations are well-posed. We
also know that the discretizations themselves are stable under the RK4 time-marching
scheme. Therefore, we know that for a sufficiently fine grid, the solutions we generated
should be close to the real solution. And we can be reasonably assured that solutions
will not explode or exhibit any growing oscillatory solutions.

We generated the solutions on sufficiently fine regular rectangular grids on the domains
of interest Ω× [0,T ] such that the relative L2-norm error (5.1) was below 0.1%. Figure
5.1 and figure 5.2 show the reference solutions u∗ we will be working with in 1D and
2D respectively.

5.2 Implementing PINNs in Python

When constructing PINNs, there are a couple of different options available to do so.
The TensorFlow [1] library offers a wide variety of in-built functions and model struc-
tures, which make many canonical machine learning problems such as image classifi-
cation simple plug-and-play affairs. However, the loss function used in PINNs (3.5)
cannot be constructed using these in-built functions directly. It must instead be con-
structed using lower-level functionality.

To this end, one can either code the PINN using these lower-level functionalities, or
one can use established PINNs libraries such as DeepXDE [26, 27], SciANN [15, 16]
or TensorDiffeq [32, 33]. These libraries offer simple yet powerful implementations
of PINNs, without having to deal with the underlying machinery of TensorFlow. The
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Figure 5.1: Data generated by the finite difference method in MATLAB for the 1D ADE as specified by
equation (1.8)

Figure 5.2: Data generated by the finite difference method in MATLAB for the 2D ADE as specified by
equation (1.9)



5.2 Implementing PINNs in Python 45

DeepXDE library in particular comes with the powerful ability to define any spatial do-
main Ω as the union and intersection of simple shapes. With this feature, one can solve
for PDEs on complicated domains in a straight forward manner. DeepXDE also has
implemented other experimental training schemes which may help with improving the
accuracy of PINNs.

Despite these advantages, we decided not to use them; to both avoid using the PINN
as a black box, and to have full control over how the code functions. Also, these PINN
libraries are still under development at the time of writing this thesis, with varying
quality of documentation. Thus, whenever a problem was encountered, it became pro-
hibitively difficult to debug them. Therefore we decided to code PINNs directly using
the TensorFlow library instead. In the literature, it appears that it is most common to
use TensorFlow 1.0 (TF1) for PINNs. However, as there is less up-to-date documen-
tation for TF1, we instead decided on using TensorFlow 2.0 (TF2). This comes with
the advantage of the syntax being easier to understand and with a greater amount of
support for it. But with the disadvantage that a bit of extra legwork was required to
construct custom training loops via low-level functions in TF2. This is because TF1
and TF2 operate quite differently. Hence, any code published by other researchers in
TF1 could not be transferred to our code without heavy tweaking and workarounds.

The code that was used in this study was originally made by Jacquier [19]. It is a TF2
conversion of the TF1 Burger’s equation PINN made by Raissi et al. [43]. This code
was then altered to solve the ADE and then modified further to handle 2D problems. We
also added many additional features to it. Such as a way to monitor the history of pa-
rameter prediction during training, the addition of mini-batch training and customised
training-data pre-processing. Since we had full control of the training pipeline, we
could add experimental algorithms which were meant to improve convergence, as will
be discussed in chapter 7.

In short, the network u(x, t;θ) was constructed as outlined in chapter 4. This was done
using the snippet of Python code shown below. Note that the for-loop iterates over ev-
ery hidden layer and applies the activation function according to the Python variable
activation_func. However, in the code provided by Jacquier [19], we found a discrep-
ancy. In his code, the final layer is also assigned an activation function. We believe
that this may have been a mistake because this does not align with that was done by
Raissi et al. for the Baseline-PINN [43]. Hence, we decided to correct this inconsis-
tency. Thus, the activation function in the final layer was made linear. As consistent
with the formulation of the Baseline-PINN.

Listing 5.1: u - model
1 s e l f . u_model = t f . k e r a s . S e q u e n t i a l ( )
2 s e l f . u_model . add ( t f . k e r a s . l a y e r s . I n p u t L a y e r ( i n p u t _ s h a p e =( l a y e r s [ 0 ] , ) ) )
3 s e l f . u_model . add ( t f . k e r a s . l a y e r s . Lambda ( lambda X: 2 . 0 * (X − l b ) / ( ub − ...

l b ) − 1 . 0 ) )
4 f o r wid th i n l a y e r s [ 1 : − 1 ] :
5 s e l f . u_model . add ( t f . k e r a s . l a y e r s . Dense (
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6 width , a c t i v a t i o n = a c t i v a t i o n _ f u n c ,
7 k e r n e l _ i n i t i a l i z e r = ' g l o r o t _ n o r m a l ' ) )
8 s e l f . u_model . add ( t f . k e r a s . l a y e r s . Dense (
9 l a y e r s [ − 1 ] , a c t i v a t i o n =None ,

10 k e r n e l _ i n i t i a l i z e r = ' g l o r o t _ n o r m a l ' ) )

The residual f to be fed into the residual loss (3.14), was computed using AutoDiff [5]
on the network self.u_model with the tf.GradientTape paradigm. The following snip-
pet of Python code shows how the residual f is computed for the 2D ADE. Here, l1, l2,
l3 are the unknown parameters P = [λ1,λ2,λ3]

T to be discovered by the PINN in the
inverse 2D case. The variable X_u consists of data-points of the form {xi,yi, ti,u∗i }.

Listing 5.2: f - model
1 d e f __f_model ( s e l f , X_u ) :
2 l1 , l2 , l 3 = s e l f . g e t _ p a r a m s ( )
3 x_f = t f . c o n v e r t _ t o _ t e n s o r ( X_u [ : , 0 : 1 ] , d t y p e = s e l f . d t y p e )
4 y_f = t f . c o n v e r t _ t o _ t e n s o r ( X_u [ : , 1 : 2 ] , d t y p e = s e l f . d t y p e )
5 t _ f = t f . c o n v e r t _ t o _ t e n s o r ( X_u [ : , 2 : 3 ] , d t y p e = s e l f . d t y p e )
6

7 wi th t f . G r a d i e n t T a p e ( p e r s i s t e n t =True ) a s t a p e :
8 t a p e . watch ( x_f )
9 t a p e . watch ( y_f )

10 t a p e . watch ( t _ f )
11 X_f = t f . s t a c k ( [ x_f [ : , 0 ] , y_f [ : , 0 ] , t _ f [ : , 0 ] ] , a x i s =1)
12

13 u = s e l f . u_model ( X_f )
14 u_x = t a p e . g r a d i e n t ( u , x_f )
15 u_y = t a p e . g r a d i e n t ( u , y_f )
16

17 u_xx = t a p e . g r a d i e n t ( u_x , x_f )
18 u_yy = t a p e . g r a d i e n t ( u_y , y_f )
19 u _ t = t a p e . g r a d i e n t ( u , t _ f )
20

21 d e l t a p e
22

23 PDE = u _ t + 2 . 0 * u_x + ( 3 . 0 * t f . math . cos ( 3 . 0 * np . p i * t _ f ) + 1 . 0 ) * u_y − ...
0 . 2 * u_xx − 0 . 2 * u_yy − l 3 * t f . math . exp ( −4 .0* t f . math . s q u a r e ( x_f ...
− l 1 ) −4.0* t f . math . s q u a r e ( y_f − l 2 ) )

24

25 r e t u r n PDE

As will be discussed later, the loss may be noisy and we might not always decrease the
loss with an iteration of our optimiser. To avoid the risk of ending up with a large loss
at the end of training, we decided to employ a model save-state-algorithm. When iter-
ating over our epochs, the algorithm will compare the current loss (3.5) with the lowest
loss achieved. If the current loss is higher, the algorithm will continue training. If not,
the current state of the network, θ , will be saved before training continues. At the very
end of training, the network will recover this saved state and re-apply the parameters
θ to the network. This makes sure that by the end of training, the network will per-
form optimally. This may sound ill-advised for general neural network problems. As
typically we want to avoid over-fitting. But here we are mostly interested in lowering
the loss as much as possible. This is to get the most accurate results on the training data.
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PINNs require a long time to train and they can be computationally and memory inten-
sive. For large networks and data-sets, graphics processing units (GPUs) are typically
required for training within reasonable time-frames. Our GPU unfortunately did not
meet the memory requirements for training. Therefore, we could at worst be faced
with training times of 10 hours. As training was very slow without a GPU, we had
to resort to cloud computing services. We used Google Colab [13], an online Jupyter
notebook environment specialised for prototyping machine learning models. Thanks
to their GPUs, we reduced training times significantly, down to the order of an hour at
worst. This was invaluable for whenever we wanted to test and debug code multiple
times.

Figure 5.3 shows a bare bones flowchart describing the implementation of the Baseline-
PINN in pseudo-code.

5.3 Solving the ADE and Determining Accuracy

We generated reference solutions of the ADE via the methods discussed in 5.1. The
PINN then used the reference solutions as training data. When training was completed,
the PINN was be able to generate its own predictions. The reference solutions was de-
noted as u∗ while the predictions given by the PINN as u.

We wanted to look at how well the PINN performs as a forward and inverse solver.
When it comes to the determining the accuracy of our solutions u, we used the relative
L2-norm error. It is here defined as,

ERel =
N

∑
i=1

||ui −u∗
i ||2

||u∗
i ||2

. (5.1)

Here u is the solution generated by the PINN, while u∗ is the reference solution gener-
ated by MATLAB. N is the total number of points on the grid we are evaluating on.

When it comes to the inverse problem, we used the relative error of the unknown pa-
rameters. Let the true solution be denoted as λ ∗

i and the predicted solution as λi, then
this error takes the form,

Eλi =
|λi −λ ∗

i |
|λ ∗

i |
. (5.2)
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Figure 5.3: Bare bones flowchart of how the Baseline-PINN is implemented in our code.



Chapter 6

Using the Baseline-PINN

This chapter focuses on how the Baseline-PINN as described by Raissi et al. [43],
performs for the 1D and 2D ADE in the forward and inverse case.

6.1 The Baseline-PINN on the 1D Advection-Diffusion Equa-
tion

6.1.1 The 1D Forward Problem
This first section showcases how the Baseline-PINN can approximate the solution for
the 1D ADE problem as specified by the problem-statement in equation (1.8).

In the forward case, the PINN only requires the reference solution u∗ at the initial state
and at the boundaries. This data is specified by the initial- and boundary-conditions.
These conditions are imposed on the PINN via Nu = 400 randomly sampled data-
points on the spatio-temporal boundaries of the form {xi, ti,u∗i }

Nu
i=1. Additionally, the

PINN will train on N f = 5000 randomly sampled collocation-points {xi, ti}
N f
i=1 within

the space-time domain. The training-data is shown in figure 6.1, the horizontal axis
represents the temporal dimension while the vertical axis represents the spatial dimen-
sion. Note that P is fully specified here.

After optimising θ with ADAM and L-BFGS, we end up with a final objective function
loss L of 6.1× 10−6. The predicted solution given by the network u(x, t;θ) is shown
in figure 6.2. We end up with a relative L2-norm error (5.1) of 0.87%.

By figure 6.2 see that the solution given by the PINN u accurately mimics the dynam-
ics of the system. There are no visible discrepancies when compared with the reference
solution u∗ generated by MATLAB, and indeed the L2-norm error is small.
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Figure 6.1: Dense training data. Orange dots represent data-points sampled from boundary and initial
conditions. Blue crosses represent collocation-points.

Figure 6.2: The predicted solution u generated by the forward Baseline-PINN versus the reference
solution u∗ of the 1D ADE as specified by equation (1.8) at different snapshots in time.

6.1.2 The 1D Inverse Problem
In the following section we show how the Baseline-PINN can accurately discover the
location and strength the source in the 1D ADE specified by (1.8), i.e, λ1 and λ2. These
two parameters were left as unknown variables for the PINN to discover.

In the inverse case, we feed the PINN Nu randomly sampled data-points from the ref-
erence solution u∗ over the entire domain. The data-set looks similar to 6.1, but here
collocation points are exchanged with data-points {xi, ti,u∗i }

Nu
i=1. We kept the total num-

ber of points the same.

Again, we trained the network with ADAM then L-BFGS. Figure 6.3 shows the pre-
diction histories of the two unknown variables and the corresponding loss over each
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epoch of training. The dashed horizontal lines in figure 6.3 show the corresponding
target values (the true λ ∗ values used to generate the reference data u∗). We see that
the unknowns λ1 and λ2 move away from their initial guesses and eventually converge
onto their target values. Figure 6.4 shows the reconstructed solution given by the PINN.
However, disappointingly the inverse PINN struggles to satisfy the initial condition at
t = 0 as there is now a visible deviation from the reference solution near the source.
Despite this discrepancy at the initial time, this reconstruction is overall more accurate
than the forward case as the relative L2-norm error was here 0.50% according to equa-
tion (5.1).

By looking at figure 6.3 we can see a clear benefit of using L-BFGS. Particularly in the
top panel, we see that λ2 takes a large number of epochs to converge with ADAM, and
it eventually stagnates just below the true value. However, once L-BFGS takes over, it
quickly jumps to the target value. Table 6.1 summarises our results.

Figure 6.3: Training histories for the Baseline-PINN on dense data in the inverse case for the problem
specified by equation (1.8). Top: The predicted values for λ1 and λ2 over each epoch of training.
Bottom: The Objective function loss over each epoch of training. Lowest achieved loss given by the
black square. Notice how loss decreases significantly once LBFG-S training is engaged.



52 Using the Baseline-PINN

Figure 6.4: The predicted solution u generated by the inverse Baseline-PINN versus the reference
solution u∗ of the 1D ADE as specified by equation (1.8) at different snapshots in time.

Baseline-PINN
Nu Parameter Predicted λ True λ ∗ Relative Error λ Relative Error L2

Nu =
5400

λ1 -0.8010 -0.8000 0.13%
ERel = 0.5%

λ2 4.9912 5.0000 0.18%

Table 6.1: Results generated by the Baseline-PINN versus the true target values for the unknown pa-
rameters λ1 and λ2 of the 1D ADE as specified by (1.8).

6.2 The Baseline-PINN on the 2D Advection-Diffusion Equa-
tion

The tests in the previous sections 6.1.1 and 6.1.2 were conducted to show that the
Baseline-PINN employed in chapter 5 works as expected on simple advection-diffusion
scenarios. We will now promote the system into 2D, and now include time-dependent
velocities.

6.2.1 The 2D Forward Problem
This next section showcases that the previous forward Baseline-PINN 6.1.1 can also
handle the 2D time dependent ADE. In this case we solved for the ADE as specified by
(1.9).

In this case we gave the network N f = 40000 collocation-points of the form {xi,yi, ti}
N f
i=1

and Nu = 10000 data-points on the boundaries and at the initial time of the form
{xi,yi, ti,u∗i }

Nu
i=1. The training data is shown in figure 6.5, note that though this data-set

consists of a dense cloud, it does not constitute every available data-point. Only about
0.3% of the available 2× 107 data-points were used. The predicted solution given by
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the network u is shown in figure 6.6. Again, ADAM was used in tandem with L-BFGS
to optimise the loss until we reached stagnation.

To more clearly show the magnitudes of error between the the predicted u and refer-
ence solutions u∗, we show the absolute point-wise error between the two in figure 6.7.
The L2-norm error was 4.3%.

By figure 6.6 we see that the solution given by the PINN, gives a good qualitative de-
scription of the dynamics of the system, albeit not perfectly accurate as we can see in
figure 6.7. In large part, the errors are the most prevalent by the incorrect prediction of
the initial condition, which also affects later predictions. This may be alleviated by in-
troducing more collocation-points at the initial instance, or by some of the fixes which
will be discussed in section 7.1.

Regardless, the tests shown here and in section 6.1.1 demonstrate that PINNs can be
used to solve PDEs without having to deal with complicated grid algorithms or time-
stepping procedures. This is because it solves for the entire domain at the same time.
One drawback however, is that we cannot be guaranteed that the solution we get is
within the accuracy tolerances we want, with more training. Despite loss stagnating,
the accuracy still leaves a lot to be desired. Accuracy may be improved by increasing
the number of training data as the following studies [34, 35, 46] suggests.

On the other hand, these tests validate one of the claims we made in chapter 4. We
claimed that the network architecture we chose should be able to express the solution
of the 2D ADE, and indeed it does.

Figure 6.5: Dense training data. Orange dots represent data-points sampled from boundary and initial
conditions. Blue crosses represent collocation-points.
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Figure 6.6: The predicted solution u generated by the forward Baseline-PINN of the 2D ADE as speci-
fied by equation (1.9) at different snapshots in time.

Figure 6.7: Absolute point-wise error between the predicted solution u generated by the 2D forward
Baseline-PINN and the reference solution u∗ for different snapshots in time.
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6.2.2 The 2D Inverse Problem
Sections 6.1.1 and 6.1.2 showcased that the Baseline-PINN we implemented operates
as expected, while section 6.2.1 showed that the network architecture is sufficient for
the solutions we will be looking at. Now we will move over to problem at focus in this
study, the 2D inverse problem.

Up until now, we have shown that the Baseline-PINN algorithm as described by Raissi
et al. [43], with fm = um = 1, is sufficient for solving the 1D forward, 1D inverse and
the 2D forward test cases. In all three instances we got acceptable results without any
hyper-parameter tweaking. Despite our successes so far with this method, we will now
demonstrate that we run into issues in the following 2D inverse case.

Here, we want the Baseline-PINN to discover the 2D ADE as specified by (1.9) with
three unknowns λ1, λ2 and λ3. The unknowns specify the x, y coordinates of the source
and the strength respectively. The training data consisted of Nu = 52000 data-points of
the form {xi,yi, ti,u∗i }

Nu
i=1 randomly sampled in the domain and on the boundaries. The

data-set is similar to what is shown in figure 6.5, but with collocation points replaced
with data-points. Again we only use about 0.3% of the available data. Figure 6.8 and
6.9 show the results given by the PINN after training terminated. Despite giving the
model ample data, we see that the Baseline-PINN very poorly regresses the solution,
and the unknown parameters λi do not converge to their expected values at all.

Baseline-PINN With the Dense Data-set
Nu Parameter Predicted λ True λ ∗ Relative Error λ Relative Error L2

Nu =
52000

λ1 -0.7460 -1.4000 47%
ERel = 55%λ2 0.4043 -1.0000 140%

λ3 -0.0121 1.0000 101%

Table 6.2: Results generated by the Baseline-PINN versus the true target values for the unknown pa-
rameters λ1, λ2 and λ3 of the 2D ADE as specified by (1.9).

Despite the loss decreasing to the lower half of 10−5, we see that the the parameters
λi wander around aimlessly without ever converging to their expected values. Addi-
tionally by looking at figure 6.9, we see that the reconstructed solution u was very
inaccurate. These sorts of issues were the main setback we faced when working with
PINNs on this thesis. This failure was observed regardless of hyper-parameter tuning
and massaging of data. The PINN failed to produce the expected results no matter what
was done to mitigate the issue.

We spent a large amount of time conducting a countless amount of independent tests,
implementing common fixes for convergence problems with neural networks. For each
test we would vary hyper-parameters, change training algorithms, vary network archi-
tecture and try different activation functions.
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Figure 6.8: Training histories for the Baseline-PINN on dense data in the inverse case for the problem
specified by equation (1.9). Top: The predicted values for λ1, λ2 and λ3 over each epoch of training.
Bottom: The Objective function loss over each epoch of training. Lowest achieved loss given by the
black square.

Among these changes, we attempted to expand the network to contain more layers and
more nodes. This change did not improve performance, and only extended training
time considerably. The fact that this did not help makes sense. We already know that
the network as implemented in section 5.2 and discussed in 4.3 should be expressive
enough to convey the solution. We know this as we have shown that the PINN can
solve the forward case in section 6.2.1. As such, the problem should not come from an
insufficiency in the network.

We also tried training for considerably longer, but unfortunately there seemed to be a
hard limit to the fit regardless of how much the network was trained. The loss would
stagnate at a certain point, and then never improve. We also experimented with other
training algorithms such as regular gradient descent, SGD, Adadelta and AdaMax.
However, ADAM and L-BFGS remained the best performing optimisation algorithms
out of all of them. Another aspect that was tried, was to increase the amount of training
data significantly. This would also only serve to increase training time, with no benefit
to performance.

Mini-batch training as discussed in chapter 4 was also an avenue we explored. At a
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Figure 6.9: The predicted solution u generated by the Baseline-PINN of the 2D ADE as specified by
equation (1.9) at different snapshots in time.

brief period of time, we thought that perhaps we were getting stuck in local minima.
However, mini-batch training also failed to produce any good results. Finally, we in-
vestigated different activation functions. For example, we tried Swish [44], as seen in
figure 4.2. This activation function has gathered interest from machine learning re-
searchers as it seems to perform as well or better than ReLU for some problems [44].
As the Swish function is continuous and infinitely differentiable, we thought that we
may leverage the form of ReLU-like activation functions with PINNs. However, again
very little to no improvement was observed. Ultimately, none of our tests would give
any satisfying results.

We also considered the possibility of there being some hidden bug in our code, which
would hinder the Baseline-PINN from working correctly. Sections 6.1.1 and 6.1.2,
were meant to discredit this possibility, but we felt that perhaps something happened in
the transition from 1D to 2D. To ensure that the problem was not with a bug, we de-
cided to create two separate codes implemented with DeepXDE [26, 27] and SciANN
[15, 16] respectively. We wanted to avoid using these libraries as they act closer to
black boxes, but they would rule out any coding misconducts on our end. Again, we
found that the Baseline-PINN was simply unable to solve for the inverse 2D ADE on
the same data-set. As such, we figured that there has to be a limitation to how far the
Baseline-PINN can take us on this specific problem.

Note that for every test we conducted for this case, the results would vary by a large
amount, even between runs with same hyper-parameters. As such, figure 6.8 and 6.9
only show one representative example of the failures we experienced. The specific
example we have highlighted show a failure for which the regressed solution is poor
and the unknowns λi wander aimlessly. We could for example also experience that the
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λi values would grow in the positive or negative directions endlessly until training was
concluded.



Chapter 7

Going Beyond the Baseline-PINN

Chapter 6 shows that the Baseline-PINN we implemented worked as expected for the
1D forward, 1D inverse and the 2D forward problems. But the 2D inverse problem
remained unresolved, despite pursuing various changes and tests. We now will discuss
methods which may elevate performance beyond what the Baseline-PINN can provide.

7.1 Improving Performance by Mitigating Gradient Patholo-
gies With the Weighted-PINN

The major issue that has yet to be addressed, is the scaling of the objective function.
Specifically the um and fm parameters in the objective loss functions (3.5). Raissi et al.
[43] had set these parameters to ones, which therefore assumes that the residual and su-
pervised parts of the loss contribute equally to training.

Once we had run out of things to try, we contacted one of the developers of DeepXDE,
Lu et al. [26, 27] for some advice. We were told that the relation between um and fm
is critically important for some PDEs. In all test cases up until this point, we had set
um = fm = 1 as was done for the Baseline-PINN in [43]. We were informed however,
that the loss should ideally be scaled such that each of the two parts of the loss (3.4)
and (3.3) contribute equally to training. If one part dominates heavily, then the PINN
will not be training efficiently as it will only conform to the contributions from one part
of the loss.

With this insight in mind, we took the naive approach of brute force. We conducted a
large number of trial runs, varying fm and um until the PINN could consistently solve
for the inverse problem in section 6.2.2 accurately. By testing many different combina-
tions of values, we settled on um = 10.0 and fm = 0.01 as suitable loss weights. This
particular setup of parameters seemed to strike a good balance between the two ob-
jective function terms in (3.5). This choice consistently lead to accurate results, even
when varying the problem setup, such as source location or the velocity fields. Fig-
ure 7.2 and 7.1 shows that this Weighted-PINN with um = 10.0 and fm = 0.01 can now
solve for the inverse problem as specified by (1.9). As we see, the solution is accurately
regressed and all three parameters λ1, λ2 and λ3 now converge onto their expected tar-
get values. Note that we are dealing with a dense data-set as described in section 6.2.2.
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Table 7.1 shows how the predicted values for the three unknowns λ1, λ2 and λ3 com-
pare with their true target values. We see that the predicted values turn out to be very
accurate. Furthermore the relative L2-norm error was 1.3%.

Figure 7.1: Training histories for the Weighted-PINN on dense data in the inverse case for the problem
specified by equation (1.9). Top: The predicted values for λ1, λ2 and λ3 over each epoch of training.
Bottom: The Objective function loss over each epoch of training. Lowest achieved loss given by the
black square.
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Figure 7.2: The predicted solution u generated by the Weighted-PINN of the 2D ADE as specified by
equation (1.9) at different snapshots in time.

Figure 7.3: Absolute point-wise error between the predicted solution u generated by the Weighted-PINN
and the reference solution u∗ for different snapshots in time.
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Weighted-PINN With the Dense Data-set
Nu Parameter Predicted λ True λ ∗ Relative Error λ Relative Error L2

Nu =
52000

λ1 -1.4010 -1.4000 0.071%
ERel = 1.3%λ2 -0.9975 -1.0000 0.25%

λ3 0.9951 1.0000 0.49%

Table 7.1: Results generated by the Weighted-PINN versus the true target values for the unknown
parameters λ1, λ2 and λ3 of the 2D ADE as specified by (1.9).

7.2 Automatic Weighting With the Adaptive-PINN

We have now shown that the PINN method is indeed able to solve for the inverse 2D
ADE as given by (1.9), but only after careful tweaking of um and fm in (3.5). This only
further validates our claim in chapter 4. As it turns out, the original formulation of
PINNs as described by Raissi et al. [43] seems to be insufficient to solve this specific
problem according to our tests. As Wang et al. in [49] suggests, this may be because
of improper scaling of the two variables um and fm. In fact, they categorise this inher-
ent issue with PINNs as a gradient pathology. They showed that in their test cases, as
training progresses, the gradients ∇θLu tend to vanish. In other words, they tend to-
wards zero and thus do not contribute to any training benefits. This is critical as Lu
regularises the network to obey uniqueness of the solution. And for inverse problems,
if we are not letting the data regulate the solution, then we are essentially solving for
an ill-posed PDE and we have no chance of finding the true values λ ∗.

One of the main issues is that proper scaling required for convergence is problem spe-
cific. Such that different PDEs or even the same PDE with different parameters may
require a different set of scaling values for good convergence. Therefore, there is no
one-size-fits-all set of parameters which will guarantee sufficient results. Without any
guiding principles on how to tune these parameters for good convergence, one will run
into the issue of having to tune the parameters fm and um with trial and error until good
convergence is achieved, as was done in section 7.1.

This is even more of a problem when we have no prior knowledge of what the solution
is supposed to be. We tuned our loss parameters until the PINN converged to the true
solution, but if we do not know the solution prior, then we will have no idea whether
or not the PINN is predicting accurately. This issue has proven to be a major setback
to the PINNs method, and much of the contemporary research on PINNs has been put
into identifying and mitigating convergence problems [3, 24, 30, 31, 39, 49, 50].

In addition, one may have noticed so far that the loss histories for the ADAM regime
exhibit oscillatory behaviour, as shown in figure 6.3 and 7.1. This is not be due to
stochasticity, because we are indeed using full-batch gradient descent and a dense data-
set here. We wondered for long time what the cause of this behaviour was. As it turns
out, this comes from the way the loss is formulated with PINNs, and how the gradient
descent algorithm steps forward in the parameter space θ . Specifically it is the residual
loss L f which gives us trouble. Wang et al. looked at the Hessian of the residual loss
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(3.3), and they found that it may develop a large gap between the largest and smallest
eigenvalues, leading to the gradient descent algorithm essentially becoming a stiff ODE
[3, 49]. The gradient descent algorithm is essentially a forward Euler ODE stepping
algorithm, and it is known that forward Euler is inherently unstable for stiff problems
[10].

Hence, even with full-batch gradient descent, the gradient descent step is no longer
guaranteed to decrease the loss monotonically, unless we use a sufficiently small learn-
ing rate. Therefore, the optimiser can get trapped in limit cycles [3]. This is most likely
why we are observing oscillations in the loss here as well, as their loss histories look
strikingly similar to ours, with an oscillatory nature. This finding seems to be corrobo-
rated by Krishnapriyan et al. [24], as they found that the loss landscape for PINNs can
become very noisy and chaotic, and in such a case, the optimiser may struggle to find a
suitable optima.

Wang et al. [49] indeed found that the tuning of um and fm was very important for
mitigating these issues and for improving the convergence and accuracy of PINNs. In-
spired by how ADAM adaptively tunes the learning rate, they developed an algorithm
to dynamically tune um during training at regular intervals using an exponential walk-
ing average.

As mentioned earlier, the main problem is that the gradients of ∇θLu vanish and train-
ing becomes dominated by ∇θL f . Their algorithm aim to scale Lu in such a manner
that these gradients are approximately on the same order throughout training. This is
essentially a way to dynamically change the learning rates between the two loss terms to
optimise training. This automatic weighting scheme is meant to mitigate issues above,
and should in theory let us avoid tedious manual tweaking and trial and error proce-
dures.

Unfortunately, the algorithm they provided comes in two different forms. We will
describe both of them here. First, they set fm = 1 in equation (3.5), then the intermediate
value ûm is computed by either equation (7.1) or (7.2),

ûm =
max(|∇θL f |)
mean(|∇θLu|)

, (7.1)

ûm =
max(|∇θL f |)

mean(|∇θ ui
mLu|)

. (7.2)

In equation (7.1) and (7.2) max(·|) signifies the maximum absolute value, similarly
mean(| · |), signifies the arithmetic mean of absolute values. The ui

m values are updated
using an exponential walking average as shown in equation (7.3), where α ∈ [0,1]
determines how strongly the update will depend on ûm. We found that α was typically
kept low to decrease the amount of stochasticity in um.

ui+1
m = (1−α)ui

m +α ûm, (7.3)

then the loss in iteration i+1 is given by the adaptive loss,
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L= L f +ui+1
m Lu. (7.4)

Confusingly, Wang et al. are not consistent with their choice of the intermediate values
ûm. In their paper [49], the intermediate variable ûm was given as equation (7.1), while
in their accompanying video presentation on the study [3], it is given by (7.2).

To add to the confusion, Jin et al. [21] and Wang and Perdikaris [48] refer to the algo-
rithm provided in the paper (7.1) [49], but then write equation (7.2) in their own papers.

We suspect that this is perhaps a printing error in their paper or that perhaps we have
an outdated version of the study. We examined the codes provided by [21, 48, 49], and
found that equation (7.2) seems more consistent. We tried both versions, and found that
the form in equation (7.2) also performed more consistently.

Therefore, when we refer to the Adaptive-PINN, we are referring to the PINN with
the loss given by equation (7.4), with the updating scheme given by equation (7.3) and
(7.2).

Regardless, this adaptive scheme has proved to be popular among PINN researchers
trying to solve for PDEs for which the Baseline-PINN is not sufficient [21, 48, 51].
This adaptive scheme, as described above, has the advantage of finding the proper scal-
ing automatically, we refer to it as the Adaptive-PINN. We will be implementing this
Adaptive-PINN in chapter 8.

The arguments given by Wang et al. [48] give us a reason as to why our weighting of
the parameters by um = 10.0 and fm = 0.01 worked in section 7.1. The Baseline-PINN
worked well enough for the 1D forward, 1D inverse and 2D forward case, but it seems
that the 2D inverse case was the breaking point. By scaling these terms sufficiently, we
were able to alleviate the issues of vanishing gradients and thus the PINN could con-
verge onto the correct solution u in correspondence with the fed data u∗. This static
weighting scheme been referred to static- or non-adaptive weighting in various litera-
ture [31, 51], but we refer to it as the Weighted-PINN.

7.3 Other Mitigative Training Schemes

In addition to adaptive schemes, there are other training schemes that have been pro-
posed to alleviate the weaknesses of the Baseline-PINN.

NTK Weighting

NTK weighting is another adaptive scheme which aims to update both fm and um in
tandem. This algorithm was also developed by Wang et al. [50]. Unfortunately, at the
time of writing this thesis, their codes were not available publicly and therefore we did
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not get to implement this specific method. Their algorithm however, seems to be a fur-
ther development of the scheme in [49]. Wang et al. claim that the previous method
works well in practice, but it does not have theoretical justification. This new adaptive
scheme however, comes with theoretical framework which shows how it may benefit
convergence. We remain hopeful that this alternate adaptive scheme will perform even
better than the one described above.

Self-Adaptive PINNs

McClenny and Braga-Neto propose a method for which each collocation- and data-
point are assigned a trainable weight Λi that is to be optimised and tuned during train-
ing. These weights will behave similarly to the scalars um and fm, but here they are
unique to each training point. The minimisation problem in equation (3.6) can obvi-
ously be solved by letting Λi = 0, but this is a trivial solution. As such, they instead
propose a min-max procedure for which the loss L(θ ,Λ) is to be minimised with re-
spect to θ , but maximised with respect to Λ. This forces the PINN to train more heavily
on points with high loss and less so on points with lower loss.

Curriculum Training

Krishnapriyan et al. in [24] suggested that PINNs train better by introducing the net-
work to simpler problems first. For instance, they showed that if one wished to solve
the 1D advection equation in the forward sense, it became increasingly difficult for the
PINN to accurately predict the solution as the advection rate increased. This corre-
sponds with increasing absolute values of v in equation (1.7).

They demonstrated that this problem could be alleviated by incrementally increasing
the advection rate during training until the desired rate was reached. They referred
to this type of training as curriculum training. This scheme proved successful at
improving the performance of PINNs in the forward sense.

Seq2seq Training

Krishnapriyan et al. also suggested a seq2seq training scheme, which is based on di-
viding the training data into discrete segments in time. Then the PINNs are trained on
data from each segment individually. This is opposed to how the Baseline-PINN is gen-
erally trained, where the PINN learns the solution over the entire domain at the same
time.

Krishnapriyan et al. argue that PINNs perform poorly at solving time-dependent prob-
lems over larger time-scales when trained with the whole data-set at once. This is
something that we can also attest to in our studies. Typically, neural networks perform
better when fed more data, thus we had hoped we could gain higher accuracy when we
increased the time horizon as this would only increase the amount of available data to
the PINN. However, counter-intuitively, we once again suffered poor performance in
this case, similarly to what is shown in section 6.2.2.
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As Krishnapriyan et al. suggests, PINNs perform better over shorter time-scales, so
if one wants to use PINNs over a larger time-scale, it may help to train it using their
suggested seq2seq scheme. Wight and Zhao [51] propose an alternative version of
seq2seq in which one uses an ensemble of PINNs, each of which specialise on one
specific segment in time, for which the initial data for the next PINN is based on the fi-
nal predictions made by the previous PINN.

Adaptive Re-sampling

In a similar vein, there are yet other methods that attempt to elevate the performance of
the Baseline-PINN. For example, adaptive re-sampling. Wight and Zhao [51] proposed
a method in which one adaptively re-samples the data-points based on the magnitude
of the residual loss (3.3). As such the PINN will train more heavily in areas with high
error. This method showed to be effective on the Allen-Cahn equation, but it does in-
crease the amount of data during training and thus increases computation time.
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Results

Now that we know several strategies to improve the performance of PINNs, we employ
some of them on the remaining 2D inverse problems.

8.1 The Adaptive-PINN on the 2D Inverse Problem With
Dense Data

We decided to put the Adaptive-PINN as described in section 7.1 to the test. We set
fm = 1.0, and then let um be adaptively updated for every training epoch with ADAM
using the equation (7.3) with α = 0.01. This choice of α smoothens the update history
and reduces the amount of noise.

The data-set and all other relevant hyper-parameters were left the same as the previ-
ous case in section 7.1. The data-set consists of Nu data-points and they are densely
distributed, similar to what is shown in figure 6.5. Figure 8.1 shows the prediction his-
tories of the three unknown parameters λ1, λ2 and λ3, and the corresponding loss over
each epoch of training. We can see that the Adaptive-PINN is also able to discover the
unknown parameters. Figure 8.2 shows the reconstructed solution given by the PINN.
Figure 8.4 shows how um changes with each epoch of training. Table 8.1 summarises
the results.

Again the predicted results are very accurate, we end up with a relative L2-norm error
of 1.1%. The results mostly remain the same as shown in section 7.1, with a marginal
increase of accuracy in the L2-norm error and λ3, but a marginal decrease for λ1 and
λ2. With the variance that we get in-between runs however, we can assert that this dis-
crepancy is well within the margin of error.

The Adaptive-PINN has shown to be able to converge onto the expected solution on
its own, without any manual tweaking of fm and um. Additionally, as shown in the
bottom panel of figure 8.1, the adaptive scheme seems to have reduced the oscillatory
behaviour of the loss which was prevalent in the Weighted-PINN 7.1. This is likely due
to the fact that the PINN now finds the optimal loss scaling to optimise training and
consequently reduces the stiff behaviour of the gradient descent optimiser as discussed
in [3, 49].
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Figure 8.1: Training histories for the Adaptive-PINN on dense data in the inverse case for the problem
specified by equation (1.9). Top: The predicted values for λ1, λ2 and λ3 over each epoch of training.
Bottom: The Objective function loss over each epoch of training. Lowest achieved loss given by the
black square. Notice how loss decreases significantly once LBFG-S training is engaged.
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Figure 8.2: The predicted solution u generated by the Adaptive-PINN of the 2D ADE as specified by
(1.9) at different snapshots in time.

Figure 8.3: Absolute point-wise error between the predicted solution u generated by the Adaptive-PINN
and the reference solution u∗ for different snapshots in time.
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Figure 8.4: The history of the adaptive parameter um over each epoch of training with ADAM.

Adaptive-PINN With the Dense Data-set
Nu Parameter Predicted λ True λ ∗ Relative Error λ Relative Error L2

Nu = 52000
λ1 -1.4017 -1.4000 0.13%

ERel = 1.1%λ2 -0.9970 -1.0000 0.30%
λ3 0.9973 1.0000 0.27%

Table 8.1: Results generated by the Adaptive-PINN versus the true target values for the unknown
parameters λ1 λ2 λ3 of the 2D ADE as specified by (1.9).

8.2 The Weighted-PINN on the 2D Inverse Problem With
Sparse and Noisy Data

The results from sections 7.1 and 8.1 look promising, but ultimately the results are not
particularly realistic for most applications. For the previous inverse problems 6.1.2,
6.2.2, 7.1 and 8.1, we have been required to gather a dense cloud of Nu data-points of
the form {xi,yi, ti,u∗i }

Nu
i=1 which covers the entire space-time domain as shown in figure

6.1 and 6.5. This may not be sensible for some situations. A more realistic scenario
would be if we had a coarse set of measurement stations which probe the solution u∗

at set coordinates continuously in time. In other words, if we have a set of time-series
measurements at a set of discrete locations, can we still reconstruct an accurate global
solution and predict the location of the source?

This section demonstrates how the PINN performs on this more realistic scenario.
Again we want to discover the source pollutant its strength. However, now there are
a limited number of measurement stations that are installed. We assume that the mea-
surement stations remain stationary in space, and that they measure the pollutant u∗

continuously in time. We also assume that we know the velocity v, at the stations. In
the following example Nm = 26 measurement stations were placed in a near uniform
staggered grid pattern in the domain, as shown in figure 8.5. This number of stations
Nm including boundary- and initial-data constituted approximately 62500 data-points.

The distribution of measurement stations is almost uniform, and as such we imply
no prior knowledge of the true solution u∗ and the true source location. Moreover,
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Gaussian noise of 5% was added to the data u∗. More specifically, the time-series of
measurements gathered from each measurement station is shown in blue in figure 8.7.
Note the change in u-axis range for each plot, which makes the noise look substantially
larger for some of them. It is natural that some measurements are dominated by noise
and are not as useful for training. This may happen whenever stations are too far away
from the source to receive any significant signal, as we can see is the case for station
20, 23 and 26.

This problem-setup gives the trains the PINN only on the values of u∗ at a set number
of locations in the x ∈ Ω space. This will present the PINN to the challenge of accu-
rately extrapolating the solution on the untrained areas between the stations.

Despite the seeming success of the Adaptive-PINN in section 8.1, we were not able to
solve the inverse 2D ADE reliably with the Adaptive-PINN for this sparse data-set, we
again got unsatisfactory results similar to those shown in figure 6.8 and 6.9. Thus, we
returned to the Weighted-PINN as described in section 7.1 here, as we found that it per-
formed more reliably for these problems.

Figure 8.6 shows the prediction histories of the three unknowns λ1, λ2 and λ3 and
the corresponding loss over each epoch of training, while figure 8.8 shows the recon-
structed solution u given by the PINN. We can see that the three unknown parameters
quickly converge close to their true values. The predicted solution u looks accurate to
the true solution; however, it is clear that the PINN is not as accurate as in the dense
case. The relative L2-norm error was 7.0%, significantly larger than in the dense case
as shown in table 7.1 and 8.1, despite having a similar number of training data.

This is likely due to the fact that the PINN is not trained on spatial locations in-between
the measurement stations. As such, the PINN has to extrapolate over large distances.
But, we do expect the solution u to be accurate at or near the measurement stations.
This is evident by looking at figure 8.7. We see that the PINN very accurately repro-
duces the underlying signal that is received at each of the stations. Thus, we know that
the predicted solution u is at its most accurate near where measurements were taken.

We see that despite there being a clear degradation in accuracy of u, the model still ac-
curately discovers the unknown variables λ1, λ2 and λ3. The final results are shown in
table 8.2.

Weighted-PINN With the Sparse Data-set
Nm Parameter Predicted λ True λ ∗ Relative Error λ Relative Error L2

Nm = 26
λ1 -1.3627 -1.4000 2.7%

ERel = 7.0λ2 -0.9945 -1.0000 0.55%
λ3 1.0791 1.0000 7.9%

Table 8.2: Results generated by the Weighted-PINN versus the true target values for the unknown
parameters λ1, λ2 and λ3 of the 2D ADE as specified by (1.9).
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Figure 8.5: Sparse training data. Orange dots represent data-points sampled from boundary and initial
conditions. Blue crosses represent data-points from the Nm = 26 measurement stations. Measurement
stations lie on a near uniform staggered grid.

Figure 8.6: Training histories for the Weighted-PINN on sparse data in the inverse case for the problem
specified by equation (1.9). Top: The predicted values for λ1, λ2 and λ3 over each epoch of training.
Bottom: The Objective function loss over each epoch of training. Lowest achieved loss given by the
black square.
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Figure 8.7: The predicted solution u generated by the Weighted-PINN versus the noisy training data u∗

given as time-series from measurement stations.
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Figure 8.8: The predicted solution u generated by the Weighted-PINN of the 2D ADE as specified by
(1.9) at different snapshots in time.

Figure 8.9: Absolute point-wise error between the predicted solution u generated by the Weighted-PINN
and the reference solution u∗ for different snapshots in time.
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8.3 The Weighted-PINN on the 2D Inverse Problem With
Randomly Distributed Sparse and Noisy Data

This test-case is the similar to the previous one in section 8.2. However, now the mea-
surement stations are randomly placed in the domain. As we will see, the Weighted-
PINN still managed to converge to a reasonable result. The data-set is shown below in
figure 8.10.

In figure 8.12 we see that in comparison to the previous runs in sections 7.1 8.1 and
8.2, the Weighted-PINN does not reconstruct the solution particularly accurately with
this data-set. There is a clear degradation of accuracy in u when the measurement sta-
tions are placed randomly as the L2-norm error is 19%. Nevertheless, it does accurately
discover the parameters λi we were looking for. This shows that we need not be very
particular in where we place our measurement stations, as it still performs reasonably
with a random distribution.

Figure 8.10: Sparse and randomly distributed training-data. Orange dots represents data-points sam-
pled from boundary- and initial-conditions. Blue crosses represents data-points from the Nm = 26
measurement stations. Measurement stations lie randomly placed in the spatial domain.

Weighted-PINN With the Sparse and Randomly Distributed Data-set
Nm Parameter Predicted λ True λ ∗ Relative Error λ Relative Error L2

Nm = 26
λ1 -1.3964 -1.4000 0.26%

ERel = 19%λ2 -0.9989 -1.0000 0.11%
λ3 0.9883 1.0000 1.2%

Table 8.3: Results generated by the Weighted-PINN versus the true target values for the parameters λ1,
λ2 and λ3 of the 2D ADE as specified by (1.9).
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Figure 8.11: Training histories for the Weighted-PINN on sparse and random data in the inverse case
for the problem specified by equation (1.9). Top: The predicted values for λ1, λ2 and λ3 over each epoch
of training. Bottom: The objective function loss over each epoch of training. The lowest achieved loss
is given by the black square.

Figure 8.12: The predicted solution u generated by the Weighted-PINN of the 2D ADE as specified by
(1.9) at different snapshots in time.
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Figure 8.13: Absolute point-wise error between the predicted solution u generated by the Weighted-
PINN and the reference solution u∗ for different snapshots in time.

8.4 Stability With Respect to Initial Guesses

One thing that remains unexplored is the choice of initial guesses of λi. In all of the 2D
test cases considered, the initial guesses were set at P = [λ1,λ2,λ3]

T = [0.0,0.0,0.5]T .
This seems reasonable as the location corresponds to the middle of the domain.

Changing this initial guess and performing further tests revealed to us that the
Weighted-PINN will again suffer from poor convergence if the initial guess is too far
away from the true solution. This is not too much of a problem in this case, as the mid-
dle of the domain seems to be the most reasonable first guess to make in the absence
of any data. However, if we are dealing with a larger or more complicated domain, this
initial guess will be more important to determine beforehand.

We aimed to establish how reliable and stable the results in section 8.2 are. The initial
guess for the two parameters λ1,λ2, determining location, were changed to different
points in the plane while λ3 was kept the same. Then several training sessions were run
on the same sparse data-set as shown in figure 8.5.

If the result is reproducible and stable, we should expect most of the PINNs to con-
verge near to the true solution. The traced paths of which each PINN take is shown in
the left plot in figure 8.14. Figure 8.14 shows the paths each prediction took over each
epoch. We see that the results are mostly stable with changes in initial guesses. Most
of the initial guesses given by the circles eventually converge near the source. There
were however three cases, coloured in bright red, which did not converge. Their final
guesses did not end up anywhere near the true location. Therefore, it seems that the
basin of attraction for the system is of finite size and one must choose a sufficient ini-



78 Results

tial guess for the PINN to converge correctly.

Something that can be done to mitigate this issue, is to simply select the initial guess
at the measurement station with the highest overall concentration. If the stations cover
the domain sufficiently, then this measurement station is likely to be somewhat close to
the source, and qualify for a good initial guess.

We consolidated all of the predicted values for λ1,2,3 using the arithmetic mean. The
variation of these predictions were computed by the standard deviation. Figure 8.15
shows the evolution of the all predictions over each training epoch, ignoring the three
instances that did not converge. We see that when the Weighted-PINN is initialised
properly, the predictions are fairly stable and we will end up with the same prediction
with changes in initial guesses. We summarise the results in table 8.4.

Figure 8.14: Predicted source paths over multiple runs with different initial guesses. Initial guesses
shown by circles, final guesses given by the crosses and the true location given by the black square. The
three runs in red represent runs that did not converge.

Weighted-PINNs With the Sparse Data-set
Nm Parameter Predicted λ (µ ±σ ) True λ ∗ Relative Error λ

Nm = 26
λ1 -1.3896 ±0.0088 -1.4000 ±1.0%
λ2 -0.9854 ±0.0060 -1.0000 ±2.0%
λ3 0.9933 ±0.0283 1.0000 ±3.5%

Table 8.4: Results generated by the Weighted-PINNs versus the true target values for the parameters
λ1, λ2 and λ3 of the 2D ADE as specified by (1.9).
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Figure 8.15: Consolidated histories for the three unknown parameters λ1, λ2 and λ3. The standard-
deviation for each prediction is given by the error bars. We see that the variation decreases with
training as every PINN home in on the same values. Notice that when L-BFGS kicks in, the variation
drops significantly.

8.5 Improving Performance Further and Reducing the Amount
of Measurement Stations

In sections 8.2, 8.3 and 8.4 we took use of Nm = 26 measurement stations placed in the
domain. This was the lowest number of stations we could achieve with the Weighted-
PINN without the L2-norm error becoming very high. But can we do better than this?
This is still a very large number of measurements, and it becomes hard to justify PINNs
in for practical purposes when the methods discussed in sections 1.6.2 and 1.6.3 suffice
with less data.

Note that in sections 8.2, 8.3 and 8.4 we assumed that our stations measured the con-
centration of pollutant u∗ but also the velocities v at that point. But what if we know the
velocity-field globally in the domain? This may be feasible by using an independent
Navier-Stokes solver or some extrapolation algorithm. As discussed in section 1.1, we
assume that the pollutant is passive, so the solution u does not affect the velocity-field v.
Therefore, it can be solved for separately. Why does this matter? By looking at figure
8.8 and 8.12 we can see there is a clear degradation of the solution u in the sparse-data
cases. Despite the PINN using the physics to extrapolate the solution on points it was
not trained on, it struggles to do so with the little information it has available. If we
could train the PINN on locations aside from only at the measurement stations, then
perhaps we could improve performance on solution u and the predicted parameters λi.

We propose the following hybrid training scheme: We train the inverse PINN on the
data-points of the form {xi, ti,u∗i }

Nu
i=1 given by the measurement stations, exactly as

was done in section 8.2. However, now we also supplement the residual loss as de-
scribed by equation (3.3) with additional collocation-points {xi, ti}

N f
i=1 which are ran-

domly sampled in the domain. This does not require any additional information on u∗,
we only require that we know v at the collocation-points. This is because these addi-
tional collocation-points will only be fed to the residual loss as given by (3.14), not the
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supervised loss (3.15). As such, we are employing a hybrid data-set which is a mixture
of sparse data-points and dense collocation-points, as such combining the ideas behind
the forward and inverse PINN. With this idea in mind, we aim to lower the required
number of measurement stations Nm and increase the accuracy in u and λi. Therefore,
we hope to localise the source with even less data.

To this end, we employ the Adaptive-PINN once more. Recall that we mentioned
in section 8.2 that the Adaptive-PINN could not solve for the data-set in figure 8.10.
However, we will now show that with our proposed training scheme, the Adaptive-
PINN was able to solve for the sparse data-set. For each test, we let Nm vary as Nm =
{26,13,8,5}. For the Adaptive-PINN we supplement the data-set with N f = 50000
collocation-points as to make a hybrid data-set. The results for the Adaptive-PINN on
the hybrid data-set are shown in table 8.7. For comparison, we show how the Weighted-
PINN performs on the sparse data-set on the same number of measurement stations Nm,
see table 8.5 for the results.

In table 8.5 we see that we have an acceptable predictive capacity on λi for Nm = 26
and Nm = 13, however as Nm lowers even further, the accuracy falters to the point of
becoming useless. Additionally, the relative L2-norm error as described by equation
(5.1) on u is considerably high for all four scenarios, starting at 7.0% and peaking at an
abysmal 73%.

As stated in section 8.2, we were unable to get the Adaptive-PINN to behave well with
the sparse data-set. In table 8.6 we have the corresponding results for the Adaptive-
PINN trained exclusively on the sparse data-set. We see that the errors are unsatisfac-
tory across the board.

On the other hand, in table 8.7 we have the analogous results for the Adaptive-PINN
trained on the hybrid data-set. We see that the predicted λi values have a relative error
at or below 1% for every scenario except for Nm = 5 with a maximum of 5.2% error.
In particular for when Nm = 8, the Adaptive-PINN only has only access to the solution
u∗ at 8 locations in space, yet it is able to predict the λi values with less than 1% error!
In addition, the L2-norm error remains below 3% for all scenarios except for the one
outlier at Nm = 5. In fact, the L2-norm error with Nm = 5 for the Adaptive-PINN on
the hybrid data-set is lower for the Nm = 26 case for the corresponding Weighted-PINN.

These results show us that we can drastically reduce the amount of information on u∗

to localise the source, while also improving performance as long as we can provide the
PINN additional collocation-points to train on. In our case, this is only possible if we
know the velocity-field v on the entire domain. This finding is very promising as it
makes the PINN method seem more viable again, as Nm = 26 is not particularly prac-
tical, but Nm = 8 and Nm = 5 sound more reasonable. And furthermore, since this was
accomplished on the Adaptive-PINN, we remain hopeful that changes in PDE param-
eters such as diffusion rate D, velocity-field v, and leak size S in equation (1.7) will
be accounted for automatically, without having to tediously tune fm and um in equation
(3.5) for proper convergence.
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Weighted-PINN With the Sparse Data-set
Nm Parameter Predicted λ True λ ∗ Relative Error λ Relative Error L2

Nm = 26
λ1 -1.3627 -1.4000 2.7%

ERel = 7.0λ2 -0.9945 -1.0000 0.55%
λ3 1.0791 1.0000 7.9%

Nm = 13
λ1 -1.4024 -1.4000 0.17%

ERel = 21%λ2 -0.9799 -1.0000 2.0%
λ3 1.0139 1.0000 1.4%

Nm = 8
λ1 -0.9937 -1.4000 29%

ERel = 45%λ2 -1.0534 -1.0000 5.3%
λ3 0.5044 1.0000 50%

Nm = 5
λ1 -0.7216 -1.4000 48%

ERel = 73%λ2 -0.6645 -1.0000 34%
λ3 0.6222 1.0000 38%

Table 8.5: Results generated by the Weighted-PINN on the sparse data-set versus the true target values
for the parameters λ1, λ2 and λ3 of the 2D ADE as specified by (1.9).

Adaptive-PINN With the Sparse Data-set
Nm Parameter Predicted λ True λ ∗ Relative Error λ Relative Error L2

Nm = 26
λ1 -1.3465 -1.4000 3.8%

ERel = 23%λ2 -0.8348 -1.0000 17%
λ3 0.4852 1.0000 51%

Nm = 13
λ1 -1.2476 -1.4000 11%

ERel = 74%λ2 -0.9614 -1.0000 3.8%
λ3 1.3455 1.0000 35%

Nm = 8
λ1 0.6246 -1.4000 145%

ERel = 64%λ2 -0.0083 -1.0000 99%
λ3 0.0215 1.0000 98%

Nm = 5
λ1 -0.7892 -1.4000 44%

ERel = 70%λ2 -0.6011 -1.0000 40%
λ3 0.4228 1.0000 58%

Table 8.6: Results generated by the Adaptive-PINN on the sparse data-set versus the true target values
for the parameters λ1, λ2 and λ3 of the 2D ADE as specified by (1.9).
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Adaptive-PINN With the Hybrid Data-set
Nm Parameter Predicted λ True λ ∗ Relative Error λ Relative Error L2

Nm = 26
λ1 -1.4029 -1.4000 0.20%

ERel = 2.1%λ2 -0.9947 -1.0000 0.53%
λ3 0.9982 1.0000 0.18%

Nm = 13
λ1 -1.3902 -1.4000 0.70%

ERel = 2.9%λ2 -0.9829 -1.0000 1.7%
λ3 0.9894 1.0000 1.1%

Nm = 8
λ1 -1.3907 -1.4000 0.66%

ERel = 1.6%λ2 -1.0034 -1.0000 0.34%
λ3 0.9914 1.0000 0.86%

Nm = 5
λ1 -1.3275 -1.4000 5.2%

ERel = 6.5%λ2 -0.9773 -1.0000 2.3%
λ3 0.9523 1.0000 4.8%

Table 8.7: Results generated by the Adaptive-PINN on the hybrid data-set versus the true target values
for the parameters λ1, λ2 and λ3 of the 2D ADE as specified by (1.9).

Figure 8.16 shows the training histories corresponding to the Adaptive-PINN trained
on the hybrid data-set with Nm = 8. We see that the oscillatory behaviour in the loss
history has been greatly reduced, and as expected the unknowns λi converge to their
target velus. By figure 8.18 and 8.19 we see that solutions for u are now more accurate
than in the case for the Weighted-PINN in section 8.2. Figure 8.17 shows the noisy
reference data u∗ that was available for the PINN to train on.
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Figure 8.16: Training histories for the Adaptive-PINN on hybrid data in the inverse case for the problem
specified by equation (1.9). Top: The predicted values for λ1, λ2 and λ3 over each epoch of training.
Bottom: The Objective function loss over each epoch of training. Lowest achieved loss given by the
black square.

Figure 8.17: The predicted solution u generated by the Adaptive-PINN versus the noisy training data
u∗ given as time-series from measurement stations.
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Figure 8.18: The predicted solution u generated by the Adaptive-PINN of the 2D ADE as specified by
(1.9) at different snapshots in time.

Figure 8.19: Absolute point-wise error between the predicted solution u generated by the Adaptive-
PINN and the reference solution u∗ for different snapshots in time.
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Conclusions and Future Work

We have seen how the PINN can be applied to a variety of different advection-diffusion
problems. We ran the PINN on series of test-cases in one and two dimensions in both
the forward and inverse sense. The main takeaways are the following:

The densely connected network containing 8 hidden layers and 20 neurons per layer
as discussed in section 4.3 is sufficient enough to express the solutions for both the 1D
and 2D ADEs specified by (1.8) and (1.9). This is evident, simply by the fact that the
PINN could indeed approximate the solutions for u in the forward sense, as shown in
section 6.1.1 and 6.2.1.

However, the Baseline-PINN would run into convergence issues whenever faced with
the 2D inverse ADE problem as shown in section 6.2.2, as the Baseline-PINN can ex-
press gradient pathologies which inhibit convergence. But as Wang et al. found, this
can be alleviated by scaling the objective loss function by the Weighted- or Adaptive-
PINN. The Adaptive-PINN is generalisable and can account for changes in problem
formulation, and it proved to be effective in solving the problem in section 8.1 with
dense data. But we found that it was not able to solve for the sparse data-sets in sec-
tion 8.2 and 8.3 effectively. As such, the Weighted-PINN had to be used here instead.
We found that the Weighted-PINN could accurately predict the source locations with
these sparse data-sets (see tables 8.2 and 8.3 in comparison to table 7.1), with a com-
promised accuracy for the regressed solution u.

We also investigated the stability of solutions with respect to changes in initial guesses.
We found that the basin of attraction for the initial guesses covers a significant part of
the domain, and if the initial guess is sufficient, then the PINN will reliably converge
onto the expected results. However, if the initial guesses are sufficiently far away from
the true values, the PINN will not converge, even with the strategies discussed in 6.2.2,
7.1 and 7.2. Therefore, it may be important to determine good initial guesses prior to
applying the PINN on an inverse problem.

In sections 8.2 and 8.3 we showed that the Weighted-PINN trained on sparse and
noisy data had the capacity to discover and localise sources very accurately. How-
ever, Nm = 26 measurement stations is not particularly practical. And furthermore, the
2D test case we were working with as specified by equation (1.9) is not particularly
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complex, as the velocity field is uniform and smooth. We can imagine that problems
would further compound if we were to use turbulent velocity fields. It puts into ques-
tion how PINNs would fair against complicated velocity-fields without an unrealistic
number of measurement stations. Furthermore, these results were only achieved on the
Weighted-PINN, which works well for the specific test case in equation (1.9), but it
may require manual re-tuning of um and fm if faced with a different test case.

Therefore, we aimed to improve the accuracy of the Adaptive-PINN and make it more
robust. In section 8.5 we proposed a hybrid training data-set which allows the Adaptive-
PINN to train on points other than those at the measurement stations. We found that
the Adaptive-PINN with this hybrid training set outperforms the Weighted-PINN on
the dense data-set by a significant margin. In term we can reduce the required amount
of measurement stations, by the supplement of additional collocation-points, from
Nm = 26 down to Nm = 8 or Nm = 5 depending on the desired accuracy. This result
strengthens the robustness of the PINN method, and it shows that we may be able to
implement the Adaptive-PINN on more complicated problems in the future without
having to go through the tedious work of finding suitable scaling values for um and fm
with the Weighted-PINN.

There is nothing in the formulation of PINNs that would impede us from expanding
to 3D problems, problems on complicated domains, and problems with non-uniform
velocity fields. However, the fact that the Baseline-PINN did not work very well, im-
plies that the method is not robust in its basic form. We therefore cannot fully trust
that the results would reflect the ground truth. But, the Weighted- and Adaptive-PINNs
worked very reliably, even on sparse data-sets. In particular we had notably high accu-
racy on the Adaptive-PINN trained on the hybrid data-set. We therefore conclude that
the PINN methodology indeed has the capability of localising and discovering sources
for inverse 2D advection-diffusion problems, as long as gradient pathologies are taken
care of and they are configured correctly for the specific problem at hand. As for pos-
sible future work, we can make the following remarks:

Further studies need to be conducted on how to make PINNs more robust and efficient.
There are still many questions that remain: Since the method is not fully robust, to
what degree can we trust the results? What are the best hyper-parameters for PINNs?
The Weighted- and Adaptive-PINNs work well, but are there other and more effective
ways of scaling the objective loss function for optimal performance? How do we se-
lect the best initial guesses for inverse problems? Are there other strategies that can
be employed to make PINNs more robust and less prone to convergence issues? We
discussed other possible mitigating strategies in section 7.3, and they could provide an
interesting avenue for further studies. Could these strategies we discussed increase per-
formance on the our test cases even further? Moreover, how does the Adaptive-PINN
with the hybrid data-set as described in section 8.5 compare to the alternative methods
discussed in sections 1.6.1, 1.6.2 and 1.6.3 in terms of accuracy, required data and op-
timisation times? In section 1.6.2 we mentioned that our implementation cannot deal
with time-dependent source intensities directly, but we gave a suggestion on one possi-
ble way to do so. Can the PINN be modified to deal with such problems? And lastly, it
possible to make the PINN able to solve for an unknown number of sources?
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Finally, a word of warning; If one aims to solve problems with PINNs, one should be
prepared to do a lot of trial and error to get them to work properly. As proclaimed by
Bilionis when discussing PINNs in his lecture: ’... What is the catch? The catch is that
when you try to apply PINNs to your problem, it is not going to work.’ [7]. We feel
that this quote articulates our position on PINNs. Before we figured out that gradient
pathologies were the culprit behind our convergence issues, we were led down an end-
less rabbit hole of parameter tuning which ultimately lead to nothing useful. And even
when we had an idea of what was going wrong thanks to Lu et al. [26, 27], we still
had to do a lot of tuning to get the Weighted-PINN to converge properly. The theory
behind PINNs is not fully understood, and one must be ready to encounter many set-
backs when implementing them for your own problems. Let sections 7.1, 7.2 and 7.3
be guidelines for established strategies to try.
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Chapter 10

Final Comments

If I could, I would have done many things differently. Mainly, I would have tried to
get a wider and more nuanced perspective of PINNs before attempting to implement
them. I started implementing PINNs almost immediately after reading about them in
the studies by Raissi et al. [42, 43]. These two papers in particular showed that PINNs
were very successful in solving a wide array of problems. And because of this success,
it gave me a skewed perspective of how robust and powerful the Baseline-PINN really
is. This perspective lead me to get stuck in a line of thinking that inhibited me from
trying other ideas. I would always blame the fault of the PINN on my own implemen-
tation. Whether that be possible bugs in the code or ill-suited hyper-parameters. Early
on, I never considered that the Baseline-PINN itself could be insufficient, as it had been
used to such great success.

It was only until I asked Lu et al. [27] for advice and found examples of PINNs failing,
that i realised that there is more to the story. Reading up on a wider selection of papers
relating to PINNs in the beginning, would have helped me realise the Baseline-PINN
does have inherent issues which can prevent proper convergence. As such, I could have
avoided several weeks of trial and error which ultimately lead to no real improvements,
and instead focus on the mitigative strategies that were mentioned in section 7.1, 7.2
and 7.3. I had a gut feeling about loss scaling for a long time, but I did not have a
proper justification for why it is important. This justification was apparent to me only
after reading the paper by Wang et al. [49].

If I had resolved the issues discussed in 6.2.2 at an earlier date, I may have been able to
work on the 2D inverse problem exclusively. Instead I became unsure if I would ever
resolve my issues, so I spent time on solving for the easier problems. As such, I did not
have the time to implement PINNs on the irregular domains and non-uniform velocity
fields. In fact, figure (1.1) shows one of the problem scenarios with an irregular domain
and non-uniform velocity field that I was prototyping, but ultimately had to be scrapped.
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Appendix A

Well-Posedness Proof for the ADE

The following section shows the well-posedness proof for the ADE in this study. It is
used to show that the solution exists and does not blow up within finite time.

A.1 Well-Posedness of the ADE

The ADE in n dimensions can be written according to equation (1.7). We write it again
here,

∂u
∂ t

+v ·∇u = D∆u+F(x, t). (A.1)

Here x = xiei for i = 1,2, . . . ,n is the position in the n dimensional space. v =Vi(x, t)ei
are the corresponding velocity components which may depend on space and time. D is
the diffusion rate, and F is a source/forcing term. Here we will interpret it as a source
for some contaminant leak which can be localised in space. In this specific case we let
it follow the form in equation (1.6),

F(x, t) = Ae−B((x−xs)
2).

The constant xs can be tuned to change the location of the contaminant leak in the do-
main. While A and B determine the strength and size of the leak respectively.

To prove well posedness of the PDE, we need to show that the following inequality
holds:

||u(·, t)|| ≤ Keαt
(
||u(·,0)||+

∫ t

0
(||F(·,τ)||+ |g(τ)|2)dτ

)
. (A.2)

Here g(t) are potential boundary data corresponding to different boundary conditions.
This condition is sufficient to prove that the solution will not grow without bound for
finite time and that a unique solution exists [6].
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We apply the energy method on the ADE by multiplying each term by u, then integrat-
ing over the spatial domain. First we define the L2-norm energy as the following:

||u(·, t)||2 =
∫∫

Ω

u(x, t)2dx. (A.3)

Now we multiply each term in the ADE by u and integrate. We look at the first term to
start, ∫∫

Ω

uutdx =
1
2

∫∫
Ω

∂

∂ t
u2dx =

1
2

∂

∂ t

∫∫
Ω

u2dx =
1
2

∂

∂ t

(
||u(·, t)||2

)
. (A.4)

We see that the first term readily simplifies into the time-derivative of the L2-norm
energy. The second term can be dealt with via integration by parts,∫∫

Ω

u(v ·∇u)dx =
∫

∂Ω

u2v ·ndS−
∫∫

Ω

u∇ · (uv)dx. (A.5)

The third term can be simplified with the help of Green’s first identity,∫∫
Ω

Du∆udx = D
∫

∂Ω

u(∇u ·n)dS−D
∫∫

Ω

(∇u ·∇u)dx. (A.6)

And for the final term, we use the Cauchy-Schwartz inequality,∫∫
Ω

uFdx ≤
∫∫

Ω

|uF |dx ≤ ||u|| · ||F || ≤ 1
2
||u||2 + 1

2
||F ||2. (A.7)

The last inequality comes from the fact that |ab| ≤ 1
2a2+ 1

2b2, for all real numbers a and
b. Assembling equations (A.4), (A.5), (A.6) and (A.7) all together according to (A.1),
gives us the following inequality:

1
2

∂

∂ t

(
||u(·, t)||2

)
≤−

∫
∂Ω

u2v ·ndS+
∫∫

Ω

u∇ · (uv)dx

+D
∫

∂Ω

u(∇u ·n)dS−D
∫∫

Ω

(∇u ·∇u)dx

+
1
2
||u||2 + 1

2
||F ||2.

The easiest way of guaranteeing well-posedness is to set u = 0 at the boundaries, thus
the boundary terms are guaranteed to disappear,

∂

∂ t

(
||u(·, t)||2

)
≤ 2

∫∫
Ω

u∇ · (uv)dx−2D
∫∫

Ω

(∇u ·∇u)dx+ ||u||2 + ||F ||2. (A.8)

Notice how −2D
∫∫

Ω
(∇u ·∇u)dx = −2D||∇u||2 ≤ 0, so this term is always negative

and it does therefore not contribute to any growth and it can be ignored for our proof.
We still need to bound the integral term containing the velocity field components v. We
have the following relations:

∫∫
Ω

u∇ · (uv)dx =
∫∫

Ω

u2
∇ ·v+u∇u ·vdx =

∫∫
Ω

u2
∇ ·vdx+

∫∫
Ω

u∇u ·vdx. (A.9)
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Now we need to show that we can bound these terms. We have the following relation
for the first term of the last equality in (A.9):∫∫

Ω

u2
∇ ·vdx ≤ max

x,t
(∇ ·v(x, t))

∫∫
Ω

u2dx = max
x,t

(∇ ·v(x, t))||u||2.

Here, maxx,t (∇ ·v(x, t)) represents the maximum value ∇ · v takes in the entire do-
main Ω for all times considered. For the sake of keeping clutter to a minimum, let
M∇ = maxx,t (∇ ·v(x, t)).

Now, for the second term of the last inequality in (A.9), define E = ∑i ei where ei are
the basis vectors for the space. E represents an n dimensional vector with all entries
occupied by 1. We can make the following upper bound:

∫∫
Ω

u∇u ·vdx ≤ max
x,t

(v(x, t))
∫∫

Ω

u∇u ·Edx = max
x,t

(v(x, t))
∫∫

Ω

∇u · (uE)dx. (A.10)

Similarly to before, maxx,t (v(x, t)) represents the maximum value that any of the com-
ponents |Vi| of v takes in the entire domain Ω for all times considered. Again, name
M = maxx,t (v(x, t)). Let U = uE. Now by integration by parts on (A.10), we get the
following:

∫∫
Ω

u∇u ·vdx ≤ M
∫∫

Ω

∇u ·Udx = M
[∫

∂Ω

uU ·ndS−
∫∫

Ω

u∇ ·Udx
]
. (A.11)

It can be shown that ∇u ·U = u∇ ·U in the last term of (A.11). It is easiest to see this
in component form. We have the following two component form expansions:

∇u ·U =
∂u
∂xi

ei ·u∑
j

e j = ∑
j

∂u
∂xi

uδi j = ∑
j

∂u
∂x j

u, (A.12)

and,

u∇ ·U = u
∂

∂xi
ei ·∑

j
ue j = ∑

j
u

∂u
∂xi

δi j = ∑
j

∂u
∂x j

u. (A.13)

Equations (A.12) and (A.13) are indeed equivalent. Thus, we can assert the following
from (A.11):

M
∫∫

Ω

∇u ·Udx =
1
2

M
[∫

∂Ω

uU ·ndS
]
= 0.

Where the last equality is due to our assertion that u = 0 on the boundaries ∂Ω.

Hence, from equation (A.11) we have the following:∫∫
Ω

u∇u ·vdx ≤ 0.

This term will also not lead to growth and can accordingly be ignored for our proof.
Therefore, we are now left with the following simplified form of (A.8),
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∂

∂ t

(
||u(·, t)||2

)
≤ 2M∇||u||2 + ||u||2 + ||F ||2.

This is an ODE of ||u||2. Solving for ||u(·, t)||2 gives the following inequality:

||u(·, t)||2 ≤ e(1+2maxx,t (∇·v(x,t))t
(
||u(·,0)||2 +

∫ t

0
e−(1+2maxx,t (∇·v(x,t))τ ||F(·,τ)||2dτ

)
.

Since (1+2maxx,t (∇ ·v(x, t)))≥ 0, we can further assert the following:

||u(·, t)||2 ≤ e(1+2maxx,t (∇·v(x,t))t
(
||u(·,0)||2 +

∫ t

0
||F(·,τ)||2dτ

)
.

Now let the growth constant α be set such that it obeys the following inequality.

α ≥ (1+2max
x,t

(∇ ·v(x, t)).

Therefore,

||u(·, t)||2 ≤ eαt
(
||u(·,0)||2 +

∫ t

0
||F(·,τ)||2dτ

)
.

Now we have shown that the L2-norm energy of u (A.3) obeys the inequality in (A.2).
Hence, for the boundary conditions u = 0|x∈∂Ω and by assuming that the derivatives
of the velocity components are bounded, maxx,t (∇ ·v(x, t)) ≤C < ∞ we have that the
PDE is well posed! We now have hopes of solving a well defined problem which would
result in a unique solution. Hence, when solving for the ADE, we mean solving for the
following problem,

∂u
∂ t

+v ·∇u = D∆u+F(x, t), x ∈ Ω,

u(x, t) = 0|x∈∂Ω, u(x,0) = 0,

vi =Vi(x, t).

A.2 Uniqueness of the solution

Showing uniqueness when assuming the problem is well-posed, is simple. Suppose
there are two solutions of the linear PDE in question, u and v, both of which obviously
satisfy the same boundary and initial data.

||u(·,0)||= ||v(·,0)||,
||Fu(·,τ)||= ||Fv(·, t)||,

||gu(τ)||= ||gv(τ)||.
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Let the difference between these two solutions be e = u− v. This difference must then
satisfy the linear PDE with the following energies,

||e(·,0)||= ||u(·,0)||− ||v(·,0)||= 0,
||Fe(·,τ)||= ||Fu(·,τ)||− ||Fv(·, t)||= 0,
||ge(τ)||= ||gu(τ)||− ||gv(τ)||= 0.

However, as both u and v are assumed to be well-posed, then by linearity e is also
well-posed. So, by the well-posedness inequality (A.2), we are lead to the following
equality:

||e(·, t)||= 0.

But, this could only be true if u = v for all t. Hence, we have shown uniqueness.
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Appendix B

Finite Differences Derivations

In this appendix we deal with defining the difference schemes which we use to generate
our reference data.

B.1 Finite Differences and Order of Accuracy

Let f be a real continuous function defined on x ∈ R. Then by the definition of the
derivative, we have the following relation,

d f
dx

= lim
h→0

f (x+h)− f (x)
h

.

On a computer, we cannot simply set h = 0 to compute our derivatives. But we can get
a reasonable approximation by letting h be some small value.

d f
dx

≈ f (x+h)− f (x)
h

, 0 < h << 1

This finite difference approximation for the first derivative is commonly called the for-
ward difference approximation. How small do we need to make h to reach some accu-
racy threshold? By Taylor expanding f we get,

f (x+h) = f (x)+h f ′(x)+
h2

2
f ′′(C), x <C < x+h.

Then, by inserting this into our approximation we get,

f (x+h)− f (x)
h

=
f (x)+h f ′(x)+ h2

2 f ′′(C)− f (x)
h

= f ′(x)+
h
2

f ′′(C) = f ′(x)+O(h).

As long as the second derivative of f is bounded such that | f ′′(C)| ≤ M < ∞ for x <
C < x+ h, then our finite difference approximation has an error of order O(h). This
means that the error decreases proportionally to h. However, we can do better than this.
By Taylor expanding f (x+h) and f (x−h) we have the following two expansions,

f (x+h) = f (x)+h f ′(x)+
h2

2
f ′′(x)+

h3

6
f ′′′(C1), x <C1 < x+h,
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f (x−h) = f (x)−h f ′(x)+
h2

2
f ′′(x)− h3

6
f ′′′(C2), x−h <C2 < x.

Then by taking the difference of these two expansions, we get cancelling terms,

f (x+h)− f (x−h) = 2h f ′(x)+
h3

6
[ f ′′′(C1)+ f ′′′(C2)].

Now, dividing by 2h, we get another finite difference approximation of f ′,

f (x+h)− f (x−h)
2h

= f ′(x)+
h2

12
[ f ′′′(C1)+ f ′′′(C2)] = f ′(x)+O(h2). (B.1)

In this case, we find a finite difference approximation with order of accuracy O(h2).
This specific approximation is commonly called the central difference scheme.

As the central difference scheme is symmetric around x and it has higher order accu-
racy than the forward difference scheme, we will use it over the forward difference
scheme.

It can be similarly shown that the second order derivative f ′′ has the central difference
approximation of the following form,

f (x+h)−2 f (x)+ f (x−h)
h2 = f ′′(x)+O(h2). (B.2)

We see that it also has an order of accuracy of O(h2).

To compute these derivatives on the computer, one will have to transfer the continuous
function f (x) into a grid-function fi. Where the index i denotes the position xi of the
input. Let fi = f (xi). In this notation, the first and second order central difference
schemes in equation (B.1) and (B.2) respectively become,

f ′i =D1 fi =
fi+1 − fi−1

2h
+O(h2)

f ′′i =D2 fi =
fi+1 −2 fi + fi−1

h2 +O(h2)

(B.3)

The same general idea can be applied to partial derivatives of multi-variable functions
as well.
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One can argue that the choice of the central difference scheme for the ADE is poor.
This is because it can be shown that the central difference can suffer from growing
oscillatory solutions when applied to the advection equation [11]. In fact, it is generally
advised to use an upwind scheme to avoid oscillatory solutions. However, as we wanted
to create a universal solver that can handle any advection direction, we decided to stick
with the central difference scheme. Regardless, as long as the diffusive rate D is large
enough and dt small enough, we can expect oscillatory solutions to be damped before
they become too much of a problem. In fact the authors of [11] argue that in the 1D
instance, if the the Péclet number,

Pe =
∆xVx

D
, (B.4)

satisfies Pe < 2, then oscillatory solutions do not occur. In our studies we had chosen our
ADE coefficients such that the Péclet number was kept well below one. Accordingly,
we did not expect any oscillatory solutions.

B.2 Finite Difference Approximation of the 1D ADE

Given the 1D instance of the ADE in equation (1.7) we have the following expanded
differential equation,

∂u
∂ t

+Vx
∂u
∂x

= D
∂ 2u
∂x2 +F(x;P), x ∈ [a,b],

F(x;P) = λ2e−S(x−λ1)
2
, P = λi,

u(a, t) = u(b, t) = 0, u(x,0) = 0.

We divide the x axis into Nx grid-points. Let u(t)i = u(xi, t) with xi = a+(i− 1)∆x,
∆x = (b−a)/(Nx −1) and i = {1, . . . ,Nx}, then by the equations in (B.3), we get,

(
∂u
∂x

)
i
≈ u(t)i+1 −u(t)i−1

2∆x
,(

∂ 2u
∂x2

)
i
≈ u(t)i+1 −2u(t)i +u(t)i−1

∆x2 .

Thus, the semi-discrete finite differences approximation can be written in the following
form,

(
∂u
∂ t

)
i
= D

u(t)i+1 −2u(t)i +u(t)i−1

∆x2 −Vx
u(t)i+1 −u(t)i−1

2∆x
+λ2e−S(xi−λ1)

2
,

u(t)1 = u(t)Nx = 0, u(0)i = 0,
i = {1, . . . ,Nx}.

(B.5)
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B.3 Matrix-Vector Form of the 1D ADE Finite Difference
Scheme

The finite difference equation for the 1D ADE is given by equation (B.5). We want to
transfer this equation into vector form given as,

∂u
∂ t

= Au+F.

To do this, we let the solution u(t) be a vector of the form u(t)= [u1(t), . . . ,ui(t), . . . ,uNx(t)]
T .

Similarly we also construct F = [F1, . . . ,FNx]
T .

The matrix A is constructed such that row i follows the same form as in (B.5). As
the difference scheme has a stencil consisting of three points, the matrix A will be a
tri-diagonal matrix. In particular, we get the following equations corresponding to the
different rows of Au,

A1 ju j = 0,

Ai ju j =

(
D

∆x2 −
Vx

2∆x

)
ui+1 −

2D
∆x2 ui +

(
D

∆x2 +
Vx

2∆x

)
ui−1,

ANx ju j = 0,

(B.6)

and similarly for the corresponding rows of F,

F1 = 0,

Fi = λ2e−S(xi−λ1)
2
,

FNx = 0.

(B.7)

The first and last rows of A and F are zero, as to obey the homogeneous boundary con-
ditions via injection.

By studying equation (B.6) we end up with a matrix A as given in equation (B.8) with
coefficients as given in (B.9).

A =



0
αx βx γx . . .

. . .
. . . αx βx γx . . .

. . .
. . . αx βx γx

0


(B.8)

αx =
D

∆x2 +
Vx

2∆x
, βx =− 2D

∆x2 , γx =
D

∆x2 −
Vx

2∆x
, (B.9)

With the definitions given in equations (B.7), (B.8) and (B.9) we can readily construct
the finite difference scheme of the desired form in equation (2.3), which can be solved
as described in section 2.5.
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B.4 Finite Difference Approximation of the 2D ADE

Given the 2D instance of the ADE in equation (1.7) we have the following expanded
differential equation,

∂u
∂ t

+Vx
∂u
∂x

+Vy(t)
∂u
∂y

= D
∂ 2u
∂x2 +D

∂ 2u
∂y2 +F(x,y;P), x ∈ [a,b], y ∈ [c,d],

F(x,y;P) = λ3e−S
(
(x−λ1)

2+(y−λ2)
2
)
, P = λi,

u(a,y, t) = u(b,y, t) = u(x,c, t) = u(x,d, t) = 0, u(x,y,0) = 0.

We divide the x,y rectangular plane into Nx ·Ny grid-points. Let u(t)i, j = u(xi,y j, t)
where xi = a+(i−1)∆x, y j = c+( j−1)∆y, ∆x = (b−a)/(Nx−1), ∆y= (d−c)/(Ny−
1) and i = {1, . . . ,Nx}, j = {1, . . . ,Ny}.

Then by the equations in (B.3), we get,

(
∂u
∂x

)
i, j

≈
u(t)i+1, j −u(t)i−1, j

2∆x
,(

∂ 2u
∂x2

)
i, j

≈
u(t)i+1, j −2u(t)i, j +u(t)i−1, j

∆x2 ,(
∂u
∂y

)
i, j

≈
u(t)i, j+1 −u(t)i, j−1

2∆y
,(

∂ 2u
∂y2

)
i, j

≈
u(t)i, j+1 −2u(t)i, j +u(t)i, j−1

∆y2 .

Thus, the semi-discrete finite differences approximation can be written as,

(
∂u
∂ t

)
i, j

= D
(

u(t)i+1, j −2u(t)i, j +u(t)i−1, j

∆x2 +
u(t)i, j+1 −2u(t)i, j +u(t)i, j−1

∆y2

)
−Vx

u(t)i+1, j −u(t)i−1, j

2∆x
−Vy(t)

u(t)i, j+1 −u(t)i, j−1

2∆y
+Fi, j,

Fi, j = λ3e−S
(
(xi−λ1)

2+(y j−λ2)
2
)
,

u(t)1, j = u(t)Nx, j = u(t)i,1 = u(t)i,Ny = 0, u(0)i, j = 0,
i = {1, . . . ,Nx}, j = {1, . . . ,Ny}.

(B.10)

The solution can then be assembled as a matrix U(t) of the form,

u(t) =
[
[u(t)1,1, . . . ,u(t)Nx,1]

T , . . . , [u(t)1,Ny, . . . ,u(t)Nx,Ny]
T
]
.
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B.5 Matrix-Vector Form of the 2D ADE Finite Difference
scheme

The finite difference equation for the 2D ADE is given by equation (B.10). We want to
transfer this equation into vector form given as,

∂u
∂ t

= Au+F.

This is not as straight forward as in the 1D instance as shown in section B.3. This is be-
cause we have treated the 2D grid-functions ui, j and Fi, j as matrices. We need some way
to flatten them into vectors of the form u= [u1,1, . . . ,uNx,Ny]

T and F= [F1,1, . . . ,FNx,Ny]
T .

We decided to flatten the matrices via the following transformations,

ui, j = ui+Nx( j−1),

and,

Fi, j = Fi+Nx( j−1).

Now that u and F are Nx ·Ny ×1 vectors, we need to construct the Nx ·Ny ×Nx ·Ny ma-
trix A. As this difference scheme is dependent on five points, the matrix will be a five
banded diagonal matrix. In addition, we need some rows of A to be zero as we want to
obey the homogeneous boundary conditions by injection.

We need to take into careful consideration the fact that boundaries consist of sparse sec-
tions of points since we flattened ui, j. By trial and error, we figured out the following
pieces of information about A: A consists of Nx +1 rows of zeros, then Ny −2 sections
of alternating Nx −2 non-zero rows followed by 2 rows of zeroes. This pattern repeats
until we get Nx −1 rows of zeroes for the last rows.

The non-zero rows are made up of five bands which correspond to each of the nodes
used in the difference scheme. This information was enough to write an algorithm
which could generate A for any size given by Nx and Ny. However, the form of this ma-
trix becomes quite a challenge to write down. Instead of showing it in its general form,
we show a simple example when Nx = Ny = 4.

By following our empirical algorithm, we need Nx+1 = 5 rows of zeroes, then we have
Ny − 2 = 2 sections with Nx − 2 = 2 rows non-zero followed by 2 rows with zeroes.
Followed up with Nx +1 = 5 rows of zeroes. We get,
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A(t) =



0
0

0
0

0
αy αx β γx γy

αy αx β γx γy
0

0
αy αx β γx γy

αy αx β γx γy
0

0
0

0
0



, (B.11)

with the following coefficients,

αx =
D

∆x2 +
Vx

2∆x
, βx =− 2D

∆x2 , γx =
D

∆x2 −
Vx

2∆x
,

αy =
D

∆y2 +
Vy(t)
2∆y

, βy =− 2D
∆y2 , γy =

D
∆y2 −

Vy(t)
2∆y

,

β = βx +βy.

(B.12)

Note that the gap in A(t) between β and αy and γy is of size Nx. This is because, to
get entry ui, j±1 one must travel ±Nx entries in the in the vector u. One should attempt
to validate that the matrix-vector form does indeed give us back the finite difference
scheme for when Nx = Ny = 4 and when u1, j = u4, j = ui,1 = ui,4 = 0 for all i, j ∈
{1, ...,4}.
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Appendix C

Stability and Convergence of The Differ-
ence Scheme

C.1 Stability Analysis

Assume that the difference scheme can be written in the form in equation (2.3). Now
let v(t) = u(t)+ e(t) be a solution slightly perturbed from the true solution u(t) by an
error e(t). Then, by (2.3),

∂v
∂ t

=
∂u
∂ t

+
∂e
∂ t

= A(u+ e)+F = Au+F+Ae.

As ∂u/∂ t = Au+F, we can assert the following,

∂e
∂ t

= Ae.

The perturbation e(t) therefore obeys the homogeneous difference scheme.

It is known that for semi-discrete schemes, if the spectrum of scaled eigenvalues λ ·dt
for A lie within the domain of stability for the time-marching scheme, then the scheme
is stable. If they do not, then the errors e may grow without bound and the scheme will
be unstable [36, 38, 52].

To determine the stability of the numerical scheme, we needed to compute the eigenval-
ues of A and find where they lie in the complex plane. However, these matrices become
quite large as Nx and Ny grow. Thus, we were required to compute the eigenvalues us-
ing the eig() function in MATLAB [47]. We computed the eigenvalues λ of A for the
1D and 2D ADE finite difference schemes as given in equations (B.8) and (B.11) re-
spectively. Then we plotted the scaled eigenvectors λ · dt against the stability regions
of different Runge-Kutta and the forward Euler schemes. The stability regions of the
RK4, RK3 and RK2 methods were provided from code made by Mostafa [37]. The re-
sults are shown in figure C.1 and figure C.2.

As we can see, the eigenvalues indeed sit comfortably inside the region of stability of
the RK4 method. Thus the numerical schemes are stable for the chosen parameter val-
ues. The eigenvalues can be brought closer to the origin by decreasing dt which would
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Figure C.1: Scaled eigenvalues λ · dt of A for 1D ADE finite difference scheme. Plotted against the
stability regions for the explicit RK4, RK3, RK2 and the forward Euler schemes. Left: View of the entire
region. Right: Enhanced plot showing that no eigenvalues lie to the right of the origin.

Figure C.2: Scaled eigenvalues λ · dt of A for 2D ADE finite difference scheme. Plotted against the
stability regions for the explicit RK4, RK3, RK2 and the forward Euler schemes. Left: View of the entire
region. Right: Enhanced plot showing that no eigenvalues lie to the right of the origin.
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also increase accuracy for the scheme. However, in this instance it was not necessary.

Note that in the 2D case however, we are dealing with a time-dependent matrix A(t).
Hence, we decided to apply the principle of frozen coefficients. The principle puts a
necessary but not sufficient condition on A(t) at time t. For the scheme with time-
dependent variables A(t) to be stable, we require that the same scheme is stable for all
values of A(t) at all times t ∈ [0,T ] [6].

We cannot reasonably consider all times t ∈ [0,T ], so instead we checked the eigenval-
ues of A(t) for the t for which the coefficients take their extrema values. Then, we assert
stability, as long as none of the eigenvalues wander out of the stability region. Luckily,
we observed practically no changes in the placement of eigenvalues for any change in
A(t) over time. All eigenvalues sat comfortably inside of the stability domain. This re-
sult was also verified by running several simulations with varying ranges for A(t). The
solution for the 2D ADE behaved nicely, even over extended time-periods. Thus we
can confidently assert that finite difference scheme (B.10) is also stable. This is not a
solid proof as we cannot reasonably test every possible value of A(t) over time. But,
we consider it a reasonable argument for stability here. Especially as the numerical ex-
periments suggest the solution behaves nicely even for values far outside the range of
values we were interested in.

The ADE as specified by equation (1.7) is a linear PDE. As such, the Lax-Richtmyer
equivalence theorem [6] can be applied. The theorem states that for a linear well-posed
PDE, as long as the scheme is consistent and stable, then the approximate solution will
converge to the true solution as the step sizes become more refined. Well-posedness has
been shown for our ADE (see appendix A), consistency has been shown (see section
2.6) and stability has been shown for our scheme. Therefore, we can assert that our
numerical methods will converge to the true solution of the PDE, given a fine enough
grid.

C.2 When the Numerical Scheme is Not Stable

For the sake of example. We show what happens whenever the eigenvalues land out-
side of the domain of stability. We increased the time step dt slightly for the 1D finite
difference scheme as shown in figure C.1, such that some of the eigenvectors landed
outside the stability domain. Then We attempt to plot the solution of the 1D ADE us-
ing this time-step dt. The results are shown in figure C.3 and C.4.

As we see, that the solution rapidly develops wild oscillations which blow up. This is
why stability needs to be considered, as unstable schemes may give erroneous and non-
physical solutions.
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Figure C.3: Scaled eigenvalues λ · dt of A for 1D ADE finite difference scheme. Here, dt is increased
slightly such that some of the eigenvalues poke outside the stability region of RK4 on the far left. Left:
View of the entire region. Right: Enhanced plot showing that no eigenvalues lie to the right of the
origin.

Figure C.4: Corresponding time-series solution for the 1D ADE for when the eigenvalues of A lie
outside the stability region of RK4. This shows how the solution develops oscillations which blow up to
infinity.
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C.3 Convergence Analysis

Now that we know that the schemes are convergent as the step sizes go to zero, i.e.,
Nx,Ny → ∞, we can determine convergence rate and an estimate of error.

We let dx and dy be defined by the following equations:

∆x =
Lx

Nx −1

∆y =
Ly

Nx −1
Here Lx,Ly are the side-lenghts of the rectangular domain along the x- and y-axis re-
spectively. We conducted several runs of the 1D and 2D finite difference solvers and
we reduced ∆x and ∆y between runs. dt was kept sufficiently small such that the eigen-
values of A(t) obey the conditions discussed in section C.1.

Then, we performed an error estimation by computing the relative error between the
solution u for consecutive runs. This will tell us how the error converges towards zero
as the grids become more refined. Figure C.5 and C.6 show for the relative L2-norm
error as defined by equation (5.1) decreases as ∆x diminishes for the 1D and 2D case
respectively. We see that both schemes converge approximately of order O(∆x2). In
a balance between performance and accuracy, we found it acceptable to settle on a
relative L2-norm error of 0.05% and 0.13% for the 1D and 2D case respectively. Note
that in the 2D case, we assumed a square domain with Nx = Ny, therefore ∆x = ∆y.

Figure C.5: Convergence rate for the finite difference scheme of the 1D ADE (B.5).
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Figure C.6: Convergence rate for the finite difference scheme of the 2D ADE (B.10).



Appendix D

MATLAB Codes

In total there are 10 main MATLAB codes that were used in this project. We will pro-
vide them here:

https://github.com/KetilIversen/ADE-PINN-Masters-Thesis-Code.

All MATLAB codes should be able to run as-is. There are also 2 data-sets provided,
corresponding to the reference solutions u∗ in 1D and 2D which can be used as training-
data in the TensorFlow codes.

https://github.com/KetilIversen/ADE-PINN-Masters-Thesis-Code
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Appendix E

Tensorflow Codes

There are in total 6 Python Notebooks that were used in this project. They will be pro-
vided here:

https://github.com/KetilIversen/ADE-PINN-Masters-Thesis-Code

It is recommended that they are run with Google Colab as that is the platform we
developed them on. The path to the training data may need to be given manually by the
user.

https://github.com/KetilIversen/ADE-PINN-Masters-Thesis-Code
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