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Abstract 

Cancer represents a formidable health burden and was the second leading cause of 

death globally in 2018. In Norway, almost 35000 new cancer cases were reported in 

2019. For colon cancer, the incidence and mortality rates in Norway are among the 

highest in the world. Furthermore, the tumour-node-metastasis (TNM) system used 

today is not optimal for selecting which patients should receive adjuvant therapy or 

not.  

With the implementation of digital pathology in different pathology departments, 

there will be better opportunities for digital image analysis, a tool aimed at giving a 

more reproducible and objective diagnosis than subjective evaluation in a 

microscope. In digital image analysis, a computer programme is used for the 

quantification of different biomarkers. This can improve cancer diagnostics because 

several biases in manual evaluation can be reduced or avoided. One of the challenges 

in pathology is intra-and inter-observer variability of prognostic and predictive 

biomarkers. This especially applies for gastroenteropancreatic neuroendocrine 

neoplasms (GEP-NENs), in which the proliferation marker Ki67 is important for 

grading (1–3), prognosis and treatment of patients. Several studies have shown inter-

and intra-observer variations in the manual evaluation of Ki67 positivity, which can 

be improved with digital image analysis. This is important because the interpretation 

of the immunohistochemical staining of different biomarkers, such as Ki67, often 

influences patient prognosis and treatment.  

The immune system, especially the number of T-cells in and around the tumour, has 

been investigated as a promising biomarker for predicting prognosis and survival in 

colorectal cancer (CRC). The immune system is closely linked to microsatellite 

instability (MSI) in CRC, and MSI-high CRC has been shown to respond well to 

immune therapy. A TNM-immune is suggested based on scoring of the number of T-

cells in the tumour centre and the invasive margin using digital image analysis. 

In this study, we explored the correlation between T-cells in presurgical blood 

samples and T-cells in the invasive margins and the tumour centres in CRC with 
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digital image analysis in a feasibility study and found a correlation. Furthermore, we 

used digital image analysis to calculate the immune score in colon cancer patients 

based on immunohistochemical (IHC) staining of cluster of differentiation (CD)3+ 

and CD8+ T-cells in invasive margins and tumour centres in a prospective cohort. 

This immune score corresponded strongly with known clinicopathological features, 

such as stage and MSI status.  

Also, we evaluated digital image analysis as an objective assessment tool for two 

different proliferation markers in GEP-NENs: Ki67 and Phosphohistone 3 (PHH3). 

We compared manual (visual) evaluation of Ki67 from pathology reports with digital 

image analysis of Ki67 and found excellent agreement, but there is a tendency to 

upgrade cases from grade 1 to grade 2 with digital image analysis. For the digital 

image analysis of PHH3, the measurements were more diverging.  

The data presented show the use of digital image analysis in two settings: developing 

an immune score as a prognostic marker in colon cancer and providing an objective 

and reproducible evaluation of proliferation in neuroendocrine neoplasms. With the 

transition to digital pathology, digital image analysis can be implemented in daily 

diagnostics. This implementation requires more research for the validation of the 

different methods. With time, digital image analysis is expected to be utilized for 

tasks performed by pathologists today. 
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1. Introduction 

This PhD thesis comprises two subprojects. First, a subproject with quantification of 

T-cells in colorectal cancer (CRC). Papers I and II are based on this subproject. The 

second subproject is on quantifying proliferative markers in neuroendocrine 

neoplasms (NENs) of the gastrointestinal tract using digital pathology. Paper III is 

based on this subproject.  

The common denominator for this thesis is using digital image analysis to quantify 

different cell types in cancers of the gastrointestinal tract. For the first subproject, we 

quantified T-cells, and in the second subproject, we quantified proliferative tumour 

cells.  

In Norway, a national project for implementing digital pathology is currently running, 

and all pathology departments in the region of Helse Vest, Norway, are scheduled to 

be fully digitalised in 2021/22. With this transformation, the adaption of existing 

grading systems must be integrated and implemented in digital pathology. With this 

adaptation, software offering digital image analysis can be integrated with 

diagnostics, either as supplementary software or the software used for viewing slides 

for the diagnostics. The benefit of integrating digital image analysis into diagnostics 

is that measurements can be made objectively and reproducibly. However, for this 

integration to occur, research is needed to develop methods, ensure that the methods 

are validated and give prognostic information similar to the manual evaluation 

performed today.  

This thesis developed and explored two different digital image analysis methods. We 

aim to use these methods to give prognostic information to patients after the methods’ 

validation. There is a need for more objective measurements of prognostic markers in 

pathology, and this thesis can contribute to such knowledge. After validation, we aim 

to integrate the methods into the daily diagnostics at pathology departments, as digital 

pathology is introduced in different departments. 
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1.1 Digital pathology 

 

1.1.1 Background 

 

Since the start of modern pathology, when Rudolf Virchow started describing the 

disease in the microscope, it has been the workhorse for pathologists to investigate 

tissues, understand the disease and give details about biology and formally stage 

disease severity for prognosis. While this is a refined art and a learned process with 

criteria and consensus developed over decades of practice, the current use of the 

human eye and mind is limited by subjective interpretation, leading to inter- and 

intra-observer variabilities. Several attempts have been made to overcome these 

shortcomings in pathology over the decades, such as using standardised criteria to 

grade disease and equipment like grid filters in the microscope when counting cells. 

Due to digital technology advancements in pathology, digital image analyses have 

become a tool to overcome the obstacles of subjective interpretation. Furthermore, 

digital image analysis, if performed correctly, can produce precise and highly 

reproducible results1.  

A virtual slide is a scanned slide image that is an exact copy of a physical slide 

image. However, the scanned slide image is evaluated on a computer screen instead 

of using a light microscope. During the last two decades, virtual microscopy/whole 

slide imaging technology has developed substantially, with several companies 

offering solutions for telepathology/digital pathology imaging systems2.  

Digital pathology requires digital platforms to capture, store, share, analyse and 

report on pathological examination. This includes digitalising the whole laboratory 

process, from registering a specimen to reporting the final diagnosis3. Today, several 

pathology departments worldwide have been digitalised and have used whole slide 

imaging in routine practice4, 5.  
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Digital pathology can be divided into whole slide imaging and digital image analysis. 

Compared to manual observation utilising the human eye alone, digital pathology 

provides opportunities for a more consistent and quantitative evaluation6, 7. Using 

digital image analysis also provides opportunities for different morphometric 

measurements that are not possible with a light microscope8. 

 

1.1.2 Whole slide imaging 

 

Whole slide imaging requires dedicated equipment and an IT infrastructure. The 

technical requirements for whole slide imaging are image acquisition, storage, 

processing and visualisation9. In addition, both trained personnel and specific quality 

control steps are required to ensure that the scans are satisfactory3. Image acquisition 

is both image capture by a digital scanner and image display. For optimal scanning, it 

is important that the tissue section has optimal thickness, and that the tissue is placed 

in the slide’s centre. Artefacts of the microtomy and mounting must be avoided. The 

resolution of a virtual slide should be at least x20 magnification, but, for some types 

of slides, there is a higher diagnostic accuracy with x40 magnification10, which 

unfortunately also increases the scanning time and requires more storage space. The 

pathologist can view the virtual slide on an image-viewing software locally or 

remotely (Figure 1). Most imaging viewing software programmes offer the 

opportunity to annotate on the virtual slide. Some imaging software programmes are 

more advanced and offer various options for digital image analysis.  
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Figure 1: Whole slide imaging in a digital workflow in a pathology department. 
Created with BioRender.com. 

 

1.1.3 Digital image analysis 

 

Image analysis is a specific discipline that aims to obtain meaningful information 

from images in an objective and reproducible manner1. Analysing images with 

objective tools began as early as the 17th century when Leeuwenhoek developed a 

system to measure microscopic objects11. There has been a development in pathology, 

with a transition from qualitative information to semi-quantitative and quantitative 

evaluation of pathological features and biomarker expression, such as IHC expression 

(Figure 2)12. An example is the percent positivity of the proliferation marker Ki67 of 

tumour cells in neuroendocrine neoplasm (NEN). This development occurs 

independent of digital pathology, but digital image analysis may be a helpful tool and 

may improve quantitative measurements. One of the challenges in pathology is intra-

and inter-observer variability of prognostic and predictive biomarkers13-15, hence the 

need for objective and reproducible quantitative measurements using digital image 

analysis.  
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Figure 2: Evolution in pathology. Pathology has developed from describing the 
tissue and giving a diagnosis to giving more quantifiable data with grading and then 
using biomarkers such as immunohistochemistry for grading and quantification. 
This example shows the development in diagnosing neuroendocrine neoplasms.  

 

Digital image analysis can be area based, cell based, and measurements pertaining to 

objects in the tissue aside from cells8. Digital image analysis can be used for several 

tasks in pathology, including the measurement of the staining of a protein with IHC 

or the measurement of size or area on a virtual slide. For some IHC markers, there are 

semiquantitative evaluations of staining intensity available, for example, human 

epidermal growth factor 2 in breast cancer, where a trier scoring system from zero to 

3+ in >/< 10% of the tumour cells is used diagnostically. However, difficulties are 

encountered in determining whether the tumour is 1+ or 2+ with manual evaluation16. 

The College of American Pathologists has developed guidelines for quantitative 

image analysis with digital image analysis for human epidermal growth factor 2 IHC 

in breast cancer, which may aid in scoring human epidermal growth factor 217. 

Unfortunately, there is a lack of similar guidelines for other IHC markers analysed by 

quantitative image analysis. By introducing personalised medicine and individualised 

therapies related to IHC assessments, many IHC analyses will likely require digital 
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image analysis for reliable quantitative and more objective measurements in the 

future1.  

An emerging field in digital image analysis is the development of artificial 

intelligence (AI). AI refers to the simulation of the human mind in computer systems 

programmed to think like humans and mimic their actions, such as learning and 

problem-solving18. This is a more complex form of digital image analysis than 

quantitative image analysis, in which the computer programme learns and interprets 

the data based on training. The learning process can be supervised or unsupervised. 

Supervised learning has a defined set of outputs compared to unsupervised learning, 

whose output is not predefined19, 20. AI can be divided into machine learning and deep 

learning. Machine learning is the ability to learn without being directly programmed, 

while deep learning is a subset of machine learning using artificial neural networks, 

in which statistical models are established through input data18, 21. Using deep neural 

networks, these computer algorithms can be used to detect malignant tissue in a 

histological specimen22 or give prognostic information to guide treatment (e.g. 

adjuvant therapy in CRC23). An example from gastrointestinal pathology is the 

development of multiple deep learning algorithms, where the computer could classify 

several types of colorectal polyps, including hyperplastic, sessile serrated, traditional 

serrated, tubular and tubulovillous/villous polyps with an overall accuracy of 93%24. 

Deep learning algorithms like this can help in colorectal screening programmes to 

identify high-risk polyps for further evaluation by a pathologist.  

 

1.1.4 Advantages and disadvantages of digital pathology 

 

A transition to a digital workflow likely provides several advantages, including easier 

sharing of slides for consultation with other pathologists, collaboration with 

interdisciplinary and remote research teams or during routine practice by the 

contribution of pathology in multidisciplinary clinical teams. It can also help to 

standardise teaching1. One of the major benefits of digital pathology is the 
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opportunity of remote consulting. This technology is important, especially in 

countries with a shortage of pathologists25, 26, and in other countries like Norway, 

with long distances and a lack of or limited pathology services at many small 

hospitals27. Furthermore, with the evolving subspecialisation in pathology, there is an 

increasing need for consultation among pathologists. Digital pathology may facilitate 

this28.  

 

Several technical aspects of digital pathology need to be addressed. First, the 

hardware and storage capacity are important. Each scanned slide is currently about 

0.5–4.0 GB, and huge storage capacity, both locally and in a cloud is necessary21. The 

computer must be powerful enough to process the images rapidly and 

upload/download the data to storage. So, both the intranet and the internet capacity 

are critical21, 29. Compared to a traditional glass slide, the scanned slide does not 

break, fade or get lost30. Thus, the organisation of archived digitized slides is easier 

than physical filing 1. Also, there is evidence that digital pathology will increase 

safety with barcode identification and thus improve quality and efficiency3. A study 

by Nakhleh and co-workers in 136 institutions found that the overall mislabelling of 

cases occurred in about 1.1 pr. 100031. The rates for specimens, blocks and slides 

were 1.0, 1.7 and 1.1, respectively. Only 27% of the laboratories in this study had 

barcoding, which dramatically reduced the error rate31. One large study found that 

misidentification errors were reduced by 55% when barcoding was implemented for 

the throughput of an entire laboratory32. Barcoding allows full laboratory tracking, 

which reduces misidentification errors and increases efficiency33.  

A meta-analysis showed that whole slide imaging was discordant in about 4% of the 

cases compared with light microscopy. Most of this discordance was related to 

diagnosing and grading dysplasia (32%) or to the inability to find small objects 

(10%)34. A study that assessed mitosis in breast cancer found a reduction of 20% 

when counting mitosis using whole slide imaging compared with light microscopy35. 

This illustrates the need for automated measurements using digital image analysis. 

Automated measurements of IHC staining can give more precise and reliable results, 
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reducing the under-and overtreatment of patients36. Digital quantification of 

histopathological parameters, such as steatosis or fibrosis, has also been more precise 

and reproducible than manual quantification of the same features37. With digital 

image analysis, data can be extracted in a highly reproducible fashion via specialized 

software, which is a great benefit of this technology8.  

With whole slide imaging, AI and machine learning are facilitated22, and promising 

results using AI in histopathology have been shown in several studies18, 23, 24. 

Algorithms, as delineated in Figure 3, may be helpful in routine diagnostics in the 

future.  

 

Figure 3: Processing of whole slide imaging (WSI). Potential workflow at a given 
department of pathology in the future. Reprinted under CC BY 4.0 with permission 
from38. Copyright © MDPI 2020. 

 

Digital image analysis likely yields more precise and reproducible results, which may 

partly be explained by reducing many biases that influence manual scoring, including 

visual and cognitive traps (Table 1)39. Biases are systematic errors that can affect 

scientific investigations and destroy the validity of a study40, 41. There are several 

visual traps in manual scoring, such as the illusion of size, where the perception of 
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size is influenced by the context in which it is displayed, which is the Ebbinghaus 

illusion (Figure 4)42. Other visual traps are also present in manual scoring, such as 

‘inattentional blindness’, in which one fails to observe salient features when engaged 

in a different task43, 44. For example, in a study of chest X-rays, 60% of radiologists 

failed to observe a missing left medial clavicle45. The perception of colour and hues 

also depends on their context and the individual who does the evaluation42, 46. In 

addition, there are several cognitive traps. Pathologists tend to avoid extreme ranges 

when assigning pathology scores47. Furthermore, measurements tend to be given and 

end at a value of 0 or 5, for example, in blood pressure measurements48, 49. The same 

would probably apply to the manual scoring of percentages in pathology. A 

pathologist may also be influenced by context bias when evaluating a sample50. For 

example, if a disease is prevalent, it is more likely to consider a sample as abnormal 

when viewed together with other samples showing high disease prevalence. One of 

the most important cognitive biases is the predisposition to seek informative support 

for a favourable hypothesis51. The introduction of digital pathology and digital image 

analysis will probably reduce bias, such as the ones mentioned above and enhance the 

accuracy and reproducibility of different biomarkers, such as the interpretation of 

IHC stains1.  
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Visual and cognitive traps where the effect can be diminished by digital image analysis  

Visual traps Brief description 

Illusion of size Perception of an object’s size is influenced by 

the context in which it is displayed 

Inattentional blindness The phenomenon of failing to observe salient 

features or events when engaged in a different 

task 

Perception of colour and hues Perception of colours and hues depends on their 

context 

Checker shadow illusion Perception of a surface’s brightness is 

influenced by our knowledge of how it should 

appear, even if it is covered by a shadow 

Lateral inhibition A tendency for activated neurons to influence 

neighbouring neurons in the visual pathway, 

yielding an increased ability to respond to edges 

of surfaces 

Cognitive traps  

Confirmation bias The predisposition of people to seek 

information supportive of a favoured hypothesis 

Avoidance of extreme ranges Tendency to avoid extremes of ranges when 

assigning pathology scores 

Diagnostic drift The situation in which scoring values vary 

slightly and in a consistent fashion during a 

study 

Number preference Predisposition to assign numerical scores 

ending in 0 or 5 

Context bias Predisposition to consider a sample as abnormal 

when viewed in series with other samples 

showing a high disease prevalence but not when 

the sample is interpreted as part of a group with 

lower disease prevalence 

Gambler’s fallacy Inability to consider individual samples and 

endpoints (e.g. cytoplasmic versus membrane 

staining in IHC) as events independent from 

previous and following slides or scoring events 

Table 1: Visual and cognitive traps that can be reduced with digital image analysis. 
Adapted with permission from39. Copyright© College of American Pathologists 
2017. 
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Figure 4: Ebbinghaus illusion. Although the inner circles are the same size, the 
surrounding circles affect how we interpret the size. Reprinted with permission 
from52. Copyright© Sage 2015.  

 

1.2 Cancer 

 

Cancer represents a formidable health burden and was the second leading cause of 

death globally in 2018. About 1/6 of deaths are due to cancer53. According to a recent 

report from the Cancer Registry of Norway, over 35 000 new cancer cases (54.1% 

men) were reported annually, and 10981 deaths from cancer were encountered54. 

 

The cancer formation process is called carcinogenesis. In this process, various 

biological events and molecular changes are involved. Several genetic changes lead 

to abnormal cell division and cause normal cells to transform into cancer cells55. For 

cancer to develop, genes that regulate cell growth and differentiation must be altered 

by genetic or epigenetic changes56. An epigenetic change is a phenotype change 

without altering the DNA sequence (e.g. DNA methylation or histone modification)57.  

 

Genetic alterations are usually somatic events and take a long time to accrue (hence, 

the debut of cancer is usually in the age groups 60–70s), but a germline mutation 

predisposes a person to cancer at a much earlier age (usually in their early 30s or 40s) 

56. Driver mutations are causal in the neoplastic process and are positively selected 

during carcinogenesis. They often occur in genes that regulate cell division, apoptosis 

and deoxyribonucleic acid (DNA) repair. Passenger mutations are biologically neutral 
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and provide no advantage to the tumour but are retained by chance during repeated 

cell division and clonal expansion58.  

 

In carcinogenesis, these genetic changes affect two broad categories of genes: proto-

oncogenes and tumour suppressor genes. Proto-oncogenes encode proteins that 

control cell proliferation and or/apoptosis56. These may be normal genes expressed at 

inappropriately high levels or altered genes with novel properties. Tumour suppressor 

genes inhibit cell division, survival or other properties of cancer cells and are often 

disabled by cancer-promoting genetic changes59. An important difference between 

oncogenes and tumour suppressor genes is that oncogenes result from 

the activation (switching on) of proto-oncogenes, whereas tumour suppressor genes 

cause cancer when they are inactivated (switched off)60. 

 

 

1.2.1 Hallmarks of cancer  

 

Our understanding of carcinogenesis involves several other aspects besides genetic 

changes. Several alterations are found in cancer, and these have been called 

Hallmarks of cancer61 in a publication by Hanahan and Weinberg in 2000. The list 

included six functional acquired capabilities: sustaining proliferative signalling, 

evading growth suppressors, resisting cell death, enabling replicative immortality, 

inducing angiogenesis, activating invasion and metastasis62. A decade later, two more 

hallmarks and two enabling characteristics were added, see figure 562.  
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Figure 5: Hallmarks of cancer. Adapted with permission from62. Copyright © 
Elsevier Inc. 2011. 

 

The most fundamental trait of a cancer cell is its ability to sustain continuous 

proliferation. Normally, proliferation is controlled by the release of growth-

promoting signal molecules that regulate the cell cycle to ensure the homeostatic 

maintenance of normal tissue. Cancer cells deregulate these signals. In addition, there 

is resistance to cell death, which adds to the uncontrolled proliferation of cancer 

cells62. Furthermore, cancer cells develop the ability to avoid destruction by the 

immune system, which aids in their resistance to cell death63. For cancer cells to 

survive and metastasis to other organs, angiogenesis and modification of the tumour 

microenvironment are critical to access nutrients. In addition, there is a gain of 

telomerase in cancer cells, which has a life-prolonging effect64.  
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1.3 Colorectal Cancer 

 

1.3.1 Epidemiology and aetiology 

 

Worldwide, CRC represents a formidable health burden, with an estimated 72% 

increase in cases towards 204065. It is the third most common cancer type and the 

second most common cause of death from cancer worldwide (Figure 6)66, 67. Despite 

the improvements in surgical and oncological treatments over the last decade68, about 

half of all patients will develop metastasis and eventually die from disseminated 

disease69, 70. The incidence of CRC varies greatly, and about 60% of all deaths occur 

in countries with a high or very high human development index70.  
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Figure 6: Incidence (A) and mortality rates (B) of colorectal cancer in the world. 
Reprinted with permission from71. Copyright© International Agency for Research on 
Cancer IARC 2020. 

 

In Norway, almost 4500 patients were diagnosed with CRC in 2020. It is the second 

leading cause of cancer death in Norway, following lung cancer. Of CRC, about 2/3 

is colon cancer54. For decades, incidence rates for both colon and rectal cancer have 

been on the rise in Norway. However, the incidence rate of rectal cancer has levelled 

B 

A 
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since the 1990s, and the mortality rate is about half of what it used to be54. For colon 

cancer, the incidence and mortality rates in Norway are among the highest in the 

world54, 66.  

Incidence rates are influenced by lifestyle factors, such as diet and obesity, while 

mortality rates depend on the stage of the disease at the time of diagnosis and the 

available treatment options72. In many low-income countries, adjuvant therapy is not 

available73. Screening programmes may have contributed to the decrease in mortality 

rates seen in many countries, such as Israel, Japan, the United States74 and several 

European countries75. In Norway, a national screening programme for CRC is 

scheduled to start in 202276.  

Both hereditary and environmental risk factors play a role in development of CRC 

(Figure 7)77. Positive family history is a risk factor for CRC78, but only a subgroup of 

approximately 5–7% is affected by a well-defined hereditary CRC syndrome, such as 

Lynch syndrome or familial adenomatous polyposis79, 80. People with a positive 

family history of CRC, but where the genetic pathway is unknown, will have a 

moderately increased risk of developing CRC compared with the general 

population81.  
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Figure 7: Risk factors for the development of colorectal cancer. Reprinted with 
permission from77 Copyright © Elsevier Ltd 2019.  

 

1.3.2 Pathogenesis 

 

Carcinogenesis was first described for CRC in the 1990s and referred to as the 

adenoma–carcinoma sequence (Figure 8)82, 83. Although our understanding of 

carcinogenesis in CRC is more complex today77, this model illustrates the molecular 

events in the most common pathway of CRC leading to precancerous disease 

(adenoma) before developing into invasive carcinoma. The commonest genetic 

changes in this pathway include alterations seen in adenomatous polyposis coli, 

tumour protein 53 and the KRAS (Kirsten rat sarcoma) gene, which are present in 

81%, 60% and 43% of sporadic CRCs, respectively84. About 70-90% of CRC 

develop via this pathway82. The other development pathways are the serrated 

neoplasia pathway (10–20%) and the microsatellite instability pathway (2–7%) 

(Figure 9). 
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Figure 8: Adenoma-carcinoma sequence. Development of cancer through different 
genetic changes, which promote tumour development. Adapted with permission 
from83 using BioRender.com. Copyright© Cell Press 1990. 

 

 

Figure 9: The three different developmental pathways of colorectal cancer and their 
associated hereditary syndromes and molecular genetic changes. Abbreviations: 
FAP: Familial adenomatous polyposis, APC: adenomatous polyposis coli, TP53: 
tumour protein 53, KRAS: Kirsten rat sarcoma, BRAF: Proto-oncogene B-raf, MMR: 
Mismatch repair, PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
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subunit alpha, MGMT: O(6)-methylguanine-DNA methyltransferase MLH: MutL 
homolog 1, CIMP: CpG island methylator phenotype, MSH: MutS homolog, PSM: 
protein signalling modulator. Adapted with permission from77. Copyright © Elsevier 
Inc. 2019. 

 

1.3.3 Microsatellite instability in colorectal cancer 

 

A microsatellite is a stretch of repetitive DNA, where certain DNA motifs (typically 

1–6 base pairs) are repeated in the genome85. Microsatellites comprise 

mononucleotides, dinucleotides or higher-order nucleotides such as (A)n or (CA)n
86, 

and are present in about 3% of the human genome87. Microsatellites are often referred 

to as short tandem repeats or simple sequence repeats. Due to their repetitive 

structure, microsatellites are particularly prone to replication errors and have a higher 

mutation rate than other segments of DNA88. These errors are normally repaired by 

the mismatch repair (MMR) system86. MSI is a state of genetic hypermutability that 

results from an impaired MMR system. Thus, MSI is phenotypic evidence that the 

MMR system is not functioning normally. Deficient in the MMR system are either 

caused by germline mutation (Lynch syndrome), somatic mutation or epigenetic 

silencing86.   

In 1993, several papers reported the presence of MSI as a frequent molecular 

phenomenon in CRC89-91. MSI was found in Lynch syndrome patients, linked to a 

specific genetic locus (D2S123)89 subsequently identified as one of the MMR genes. 

15–20% of CRCs have MSI. About 2–3% of these have Lynch syndrome, an 

autosomal dominant genetic disorder with defect MMR genes92-95.There is a 

correlation between MSI and tumours in the proximal colon and increased patient 

survival90. MSI is reported in several other tumour types, such as endometrial, 

ovarian and gastric carcinoma96.  

MSI can be detected by polymerase chain reaction (PCR) of specific microsatellite 

repeats or IHC staining of different MMR proteins. In Bethesda in the late 1990s, a 

consensus conference established a panel of microsatellite markers to diagnose MSI 
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in CRC. Microsatellite instability is defined as ‘a change in length due to either 

insertion or deletion of repeating units, in a microsatellite within a tumour when 

compared to normal tissue’96. The guidelines suggest a panel of five microsatellite 

loci to assess instability, known as the Bethesda panel. Originally, it included five 

microsatellite loci, two mononucleotides (BAT25 and BAT26) and three 

dinucleotides (D5S346, D2S123 and D17S250)86, 96. The panel has later been debated 

and revised and now includes five monomorphic repeats, where the dinucleotides 

have been replaced by the mononucleotides NR-21, NR24 and NR27. The Bethesda 

guidelines also describe three different classes of CRC based on MSI status. These 

classes were MSI-high, showing MSI at ≥ 2/5 loci, MSI-low, with instability at 1/5 

loci, and MSS CRCs, where no instable marker was detected out of the suggested 

five96.  

IHC staining for MMR proteins was first successfully performed in 199697. Today, 

the recommended panel includes MLH1, MSH2, MSH6 and PMS298. Normally, 

cancer cells will show nuclear staining for MMR-proteins. Loss of one or more of 

these proteins/negative staining is pathologic and suggests mismatch repair defects, 

either sporadic or inherited (Lynch syndrome)98. In cases of difficult interpretation of 

the IHC stain, a more sensitive method of PCR is recommended99. In general, IHC 

and PCR-based analysis for MSI/MMR show good concordance100, but weak or 

heterogeneous staining of MMR proteins might be difficult to interpret101. 

Testing for MSI and/or examining MMR proteins with IHC is recommended in 

patients with CRC, who at the time of diagnosis are less than 60 years of age, have 

high-risk stadium II or following the Norwegian national guidelines, are eligible for 

adjuvant therapy102. If a patient is MSI-high and/or has lost MMR proteins, further 

PCR analysis to check for proto-oncogene B-raf (BRAF) mutation and/or MLH1 

promoter hyper-methylation is recommended. If these are absent, genetic counselling 

and testing for Lynch syndrome are warranted103. 
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EMAST 

An alternative form of MSI is found in tetranucleotide-based microsatellites and is 

labelled Elevated Microsatellite Alterations at Selected Tetranucleotides or 

EMAST104, 105. While MSI with repetitive mono-and dinucleotides has been 

extensively investigated, less is known about EMAST. Currently, the prognostic 

value, molecular mechanisms and clinical implications of EMAST are unclear. Thus, 

there are no consensus guidelines regarding EMAST. In CRC, EMAST is more often 

found in elderly and female patients and tumours of the proximal colon. It is 

associated with longer recurrence-free survival106.  

 

1.3.4 Diagnosis and treatment  

 

CRC patients present with a wide range of symptoms. The most common symptoms 

are changes in bowel habits, occult or overt rectal bleeding, anaemia and abdominal 

pain. However, many patients are asymptomatic77. In diagnosing CRC, colonoscopy 

is the reference standard107. This examination allows for biopsy or even the removal 

of small lesions. In addition, computer tomography (CT) colonography is done, and 

in cases of rectum cancer, magnetic resonance imaging. CT scans of the liver and 

thorax are also performed following Norwegian national guidelines102. For advanced 

diseases, positron emission tomography (PET) may be performed. Measuring the 

tumour marker carcinoembryonic antigen in blood at the time of diagnosis is 

recommended108. A high level of carcinoembryonic antigen is associated with a 

worse prognosis, and can be useful in monitoring the disease after surgery109.  

Surgical resection is the recommended treatment for patients with non-metastatic 

CRC. Tumour location, depth of invasion and vascular structure in the area determine 

the extent of the resection. For rectal cancer, total mesorectal excision is performed, 

either with or without preoperative radiotherapy. In patients with metastatic disease in 

the liver or lung, curative resection of metastases might be possible. Other options 

include microwave ablation or stereotactic radiotherapy of the metastases. More 
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options are becoming available, notably personalised treatment like immunotherapy 

in patients with MSI-high tumours or epidermal growth factor receptor inhibitors102. 

For patients with non-curative disease, palliative surgery might be an option. 

Depending on the disease stage, patients might be offered radiotherapy or systemic 

chemotherapy following primary surgery or as a primary treatment in a palliative 

setting77, 102. 

 

1.3.5 Histopathology and staging 

 

Pathology staging is done using the tumour-node-metastasis (TNM) system (Figure 

10)110, American Joint Committee on Cancer (AJCC) 8th edition. The TNM system 

compiles information of importance to the patient’s prognosis. A standardised gross 

pathology and microscopic histopathology template is used for reporting relevant 

findings and stages. The pathologist’s evaluation of the resected specimen provides 

information necessary in deciding which patients are eligible for adjuvant treatment, 

as this depends on whether there is metastasis to the lymph nodes or distant 

metastasis110. We used the AJCC 7th edition for Paper I, and for Paper II, we used 

the AJCC 8th edition (Figure 11). Minor changes were made in the TNM 

classification from the 7th to the 8th edition, with an expansion of the M category, as 

M1c was added for peritoneal metastasis111. Peritoneal metastasis was previously 

encompassed in M1b. The AJCC 8th edition offers a personalised approach to 

diagnosing and treating CRC, including the use of molecular markers for somatic and 

germline mutations leading to mismatch repair deficiency or microsatellite instability 

and RAS/RAF pathway mutations, such as KRAS, NRAS and BRAF110, 111. 
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Figure 10: Tumour-node-metastasis (TNM) classification of colorectal cancer. Used 
with permission of the American College of Surgeons, Chicago, Illinois. The source 
of this information is the American Joint Committee on Cancer (AJCC) Cancer 
Staging System (2020)110. Created with BioRender.com. 
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Figure 11: American Joint Committee on Cancer (AJCC) Colorectal Cancer 
Staging, 8th edition110. Used with permission of the American College of Surgeons, 
Chicago and Illinois. The source of this information is the AJCC Cancer Staging 
System (2020). Created with BioRender.com. 

 

According to the latest WHO classification112, several histopathological parameters 

are recommended in the pathology report. These are tumour size and location, 

histological subtype, tumour grade, depth of invasion, presence of lymphatic and/or 

vascular infiltration, perineural growth, lymph node status, tumour budding113, 114, 

resection margins, presence of treatment response if neoadjuvant therapy, MSI-status, 

immune response and presence or absence of relevant mutations112. Figure 12 shows 

a photo of a surgical specimen with the corresponding histological image.  
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Figure 12: A: Cross sections through a colon cancer specimen. B: Haematoxylin 
and eosin staining x11.5 of the same tumour as A, showing an invasive 
adenocarcinoma. In both images, you can see tumour infiltration through the 
muscularis propria and into pericolic tissue. This is classified as a T3 tumour, 
according to the Tumour-Node-Metastasis system. 
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Challenges of the TNM system  

 

The TNM system110 is the most widely used staging system for CRC. It is easy to use 

and allows for a fairly accurate estimation of prognosis115, 116. However, the TNM 

system is imperfect in defining appropriate subgroups of patients and guiding 

treatment beyond surgical resection117. The TNM-system does not permit 

discrimination between ‘good’ and ‘bad’ cancers within the same stage. In fact, up to 

20% of stage II patients may still die of recurrent disease118. For stage III patients, 

about half of the patients are cured by surgery alone, and about 20% benefit from 

adjuvant therapy119. The TNM system largely leaves the decision of adjuvant 

treatment up to lymph node status. Consequently, due to the current guidelines for 

adjuvant chemotherapy, there is a risk of under-and overtreatment of patients120, 121.  

Concerns have been raised regarding updates in the newest editions of the TNM-

system. Critiques claim that existing system elements are not evidence-based and 

question making changes without a basis in systematic empirical investigation122, 123. 

Specifically, they question keeping the subdivision of T4 into T4a (invasion of 

visceral peritoneum) and T4b (invasion of adherent structures and/or organs), as 

studies have not confirmed a difference in outcome between these two124. 

The definition of tumour deposits has been altered several times, as new editions of 

the TNM classification have been published. The reason for this is criticism regarding 

the use of unpublished data and difficulties in understanding the definition125. Thus, 

pathologists use different versions of the TNM-classification126. This reduces validity 

and hampers comparison of results across regions, as patients may be down-/up-

staged according to the variation in definitions. The challenges of the TNM system 

illustrate the need for other prognostic markers to better determine optimal treatment 

of CRC in the future.  
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1.3.6 Prognosis and prediction 

 

Based on figures from the Cancer Registry of Norway, the five-year relative survival 

rate for colon cancer is 69.4% for men and 71.3% for women, and the corresponding 

figures for rectum cancer are 71.4% and 72.4%, respectively54. Thus, during the last 

five years, CRC survival rates have increased slightly for both men and women54. In 

Europe, decreasing mortality rates for CRC has been ascribed to reduced prevalence 

of risk factors and/or improved treatment127. In addition, CRC screening has had an 

effect in some countries74, 128 but has not yet been generally established in Norway.  

In addition to the TNM system and histopathological parameters, there are several 

other predictive biomarkers in CRC, including the ras-genes and BRAF. Mutations in 

the ras-genes (HRAS, NRAS and KRAS) are found in about 30% of human 

cancers129. For primary colon cancer, KRAS is found in about 32%, NRAS in about 

3% and BRAF in about 14% of the cases129. About half of the patients with metastatic 

CRC have mutations in KRAS and NRAS. This excludes them from receiving 

epidermal growth factor receptor directed therapy130. BRAF mutation is found in 

about 7–8% of patients with metastatic CRC130, 131. Mutations in either KRAS or 

BRAF are associated with reduced progression-free survival and overall survival132. 

For NRAS, the data is sparser, but a meta-analysis indicates that NRAS is associated 

with poor overall survival, especially in western countries133. There have been clinical 

trials with BRAF inhibitors, either alone or in combination with other therapies, but 

the results have been quite disappointing134. 

MSI status is another predictive biomarker. About 3–5% of patients with metastatic 

CRC have MSI-high tumour or deficient MMR proteins135. Although MSI-high is a 

marker of less aggressive disease in a primary CRC136, 137, the opposite is the case in 

metastatic CRC, where MSI-high is associated with a worse overall survival138. MSI 

reduces the effect of fluorouracil-based chemotherapy139, 140. In sporadic cases of 

MSI, approximately 40–60% have a BRAF mutation. Lynch syndrome is associated 

with wild type BRAF141. Both MSI and BRAF mutations in metastatic CRC are 
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independent markers of poor prognosis regarding progression-free survival and 

overall survival142. 

The effect of immune check point inhibitors (ICI) in CRC is being investigated in 

several clinical trials, as studies have shown an effect on Programmed cell death 

1/Programmed cell death ligand-1 and cytotoxic T-lymphocyte-associated protein-4 

inhibition in MSI-high CRC135, 143, 144. In Norway, MSI-high CRC can receive ICI as 

part of ongoing clinical trials102. 

 

1.4 Neuroendocrine Neoplasms 

 

1.4.1 Epidemiology and aetiology 

 

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) belong to a 

heterogeneous family of rare epithelial neoplasms originating from the pancreas or 

the gastrointestinal tract. GEP-NENs include both neuroendocrine tumours (NET) 

and neuroendocrine carcinoma (NEC), with detrimental prognoses for most NEC 

patients145. GEP-NENs are characterized by heterogeneous clinical patterns, a 

relatively indolent growth rate and the ability to secrete peptide hormones and 

biogenic amines146-148. GEP-NENs are divided into functional tumours (which secrete 

hormones or peptides, causing clinical symptoms or syndromes) and nonfunctional 

tumours.  

Many patients with well-differentiated NENs, even those with advanced disease at 

the time of diagnosis, can survive for several years149-151. Although rather rare, due to 

the low mortality rates, GEP-NENs are the most prevalent gastrointestinal 

malignancy, second to CRC146. According to the international literature, the incidence 

of GEP-NENs is 2.39 per 100,000 inhabitants/year worldwide, and the prevalence is 

35 per 100,000/year worldwide152. In Norway, the incidence is 5.83 per 100,000 
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inhabitants/year153, which complies with recent reports from different regions, 

suggesting that the incidence is higher and increasing149, 154. Increased awareness by 

clinicians and improved diagnostics, such as IHC and radiological imaging, may in 

part explain this increase155. Five-year survival rates vary between 40–100% 

according to the tumour site and stage of disease156, 157. Gastrointestinal NENs are 

more common in women with a median age of 57 years158. About 13% of 

gastrointestinal NENs have metastasis at the time of diagnosis159. The most common 

site for metastasis is the liver, followed by lung, bone and brain158. 

Most NEN is sporadic160. However, some reports of NEN in the lower 

gastrointestinal tract are associated with hereditary colorectal syndromes, such as 

familial adenomatous polyposis and Lynch syndrome161. Furthermore, NET can be 

seen in the pancreas or gastrointestinal tract as a part of hereditary syndromes, such 

as multiple endocrine neoplasia type 1, von Hippel-Lindau syndrome, 

neurofibromatosis type 1 and tuberous sclerosis complex162. These hereditary 

syndromes usually involve the pancreas, but also the occurrence of NETs outside the 

gastrointestinal tract.  

 

1.4.2 Pathogenesis 

 

Neuroendocrine tumours as an entity were described in 1907 by Siegfried 

Oberndorfer (1876–1944). He described them as small tumours of the intestine and 

called them Karzinoide Tumoren, which means ‘cancer-like’. This term was used 

because of its indolent clinical behaviour163. For many years, ‘carcinoid tumours’ has 

been the terminology for these tumours, but this is now outdated and not 

recommended112.  

NENs in the gastrointestinal tract originate from enterochromaffin cells and 

enterochromaffin-like cells164. Pancreatic NENs are thought to develop in the islets of 

Langerhans148, but alternative origins have also been suggested165. NETs are 
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characterised by the high-density expression of somatostatin receptors, which 

modulate proliferation and protein synthesis in addition to hormone secretion. NEC, 

in contrast, have fever somatostatin receptors148.  

The pathogenesis of NENs is not fully understood. The heterogeneity of these 

tumours, from indolent to highly aggressive, suggests that it is multifactorial. In the 

molecular pathogenesis of NET, aberrant activation of signalling by the mammalian 

target of rapamycin (mTOR) is a hallmark, regardless of the primary site148 (Figure 

13). mTOR modulates cell survival, proliferation, angiogenesis and metabolism. 

Mutations in the mTOR pathway are observed in approximately 15% of pancreatic 

NET166, 167. In hereditary syndromes, such as tuberous sclerosis, which is associated 

with pancreatic NET, there are losses of function mutations in two tumour suppressor 

genes (TSC1 and TSC2) that inhibit mTOR168. Phosphatase and tensin homolog 

(PTEN), which regulate mTOR activity through the Akt pathway, and TSC2 are 

downregulated in approximately 75% of pancreatic NETs, and their low expression is 

associated with shorter disease-free and overall survival169. Studies of molecular 

pathways in NENs have shown high expression of proangiogenic molecules, such as 

angiogenic cytokine vascular endothelial growth factor170. Several vascular 

endothelial growth factor inhibitors have shown clinical effects on some NENs, 

particularly in pancreas171, 172. 
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Figure 13: Schematic representation of the mammalian target of rapamycin (mTOR) 
pathway and associated regulatory circuitries. mTOR exists as two different 
complexes (mTORC1 and mTORC2) that are activated through different signalling 
cascades. Here is depicted the activation of mTORC1 by receptor tyrosine kinases–
triggered signalling. Positive and feedback regulatory loops are also described. 
Abbreviations – PIP2: phosphatidylinositol (4,5)-bisphosphate, ERK: extracellular 
signal-regulated kinase. IGFR: insulin-like growth factor receptor, MEK: MAP–ERK 
kinase, PDGFR: platelet-derived growth factor receptor, PI3K: phosphoinositide 3-
kinase, PIP2: phosphatidylinositol (4,5)-bisphosphate, PIP3: phosphatidylinositol 
(3,4,5)-triphosphate. Republished with permission from168. Copyright© American 
Association for Cancer Research 2013.  

 

 

1.4.3 Diagnosis and treatment 

 

The clinical symptoms depend on the tumour localisation and stage of the disease. In 

some locations (i.e. appendix, rectum and stomach), a NEN is often an incidental 

finding. Patients with GEP-NENs may have general cancer-associated symptoms, 

including loss of appetite, unexpected or unintended weight loss and fatigue. In 

addition, there might be localised symptoms, such as pain or obstruction, depending 

on where in the body the tumour is located. Functional tumours usually lead to 

diarrhoea and facial flushing. The patient might also experience hyper-or 
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hypoglycaemia, gastric ulcers, skin rashes, wheezing, tachycardia or high blood 

pressure, determined by which hormone is produced. The combination of symptoms 

related to the release of serotonin is called carcinoid syndrome173. About ¼ of patients 

with GEP-NENs have hormone hypersecretion symptoms174. NEN in the distal colon 

and rectum or NEC is rarely associated with hormonal syndrome/carcinoid 

syndrome175. 

For diagnosing GEP-NENs, a biopsy of the tumour is recommended. In addition, 

biochemical markers such as serum-chromogranin A (CgA), are measured in blood. 

Serum-CgA is a predictor of outcome176 and correlates with tumour progression or 

regression177. Measuring other markers in blood such as gastrin, insulin, somatostatin 

and other endocrine markers is recommended, depending on tumour location175. 

Several imaging techniques are also used. Multidetector CT and/or magnetic 

resonance imaging with intravenous contrast are usually performed175. PET is 

increasingly used to gain information about functionality in tumours. Several tracers 

can be used for PET evaluations of NEN patients, including F-deoxyglucose (i.e. 

measures glucose metabolism in the tumours) of poorly differentiated NENs and 

Gallium-DOTATOC (i.e. detects one of the somatostatin receptors) in well-

differentiated NENs. Somatostatin receptor imaging is used for tumour staging, 

monitoring tumour recurrence and evaluating eligibility for peptide receptor 

radionuclide therapy178. 

Surgery is the recommended treatment for NEN and should always be considered175. 

While curative surgery is not always possible, even in advanced disease, debulking 

surgery is considered beneficial to ease symptoms from local large tumour masses 

and reduce tumour volumes to alleviate therapy-resistant and debilitating endocrine 

effects179. However, even when surgery with curative intent is employed, several 

patients will eventually present with recurrent disease.  

A better understanding of the biology of this disease and the development of novel 

diagnostic approaches and treatment options have increased the complexity of the 

clinical management of NENs148, 180. Other therapies include chemotherapy in 
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advanced pancreatic NET, GEP-NET grade 3 and NEC175. Somatostatin analogues 

are used as symptomatic and anti-proliferative treatment181. Patients with functional 

tumours might benefit from tryptophan hydroxylase inhibitors. Peptide receptor 

radionuclide therapy is used in inoperable or metastatic NEN with high tumour 

uptake on somatostatin receptor imaging. Several other molecular-targeted therapies 

are being introduced. Examples include an inhibitor of the mTOR pathway 

(Everolimus) and a tyrosine kinase inhibitor (Sunitinib) in pancreatic NEN175. 

 

1.4.4 Histopathology and staging 

 

On histopathological examination, NET is a well-defined cellular tumour with 

uniform round to ovoid cells. The cytoplasm is amphophilic or eosinophilic. Nuclei 

are enlarged, often with a stippled salt-and pepper-type pattern of the chromatin 

(Figure 14A). Tumour cells may have a nested, solid, trabecular or pseudoglandular 

growth pattern182. NECs, however, are poorly differentiated tumours and often show 

bleeding or necrosis and destruction of surrounding normal tissue (Figure 15)182. 

The diagnosis is based on morphological features and a positive IHC staining for 

synaptophysin and/or CgA (Figure 14BC). Synaptophysin is a glycoprotein that 

occurs in the presynaptic vesicles of neurons and the small vesicles of normal and 

neoplastic neuroendocrine cells. CgA is one of several soluble proteins located in the 

matrix of the secretory granules of many neuroendocrine cells183. The proliferation 

marker Ki67 is performed for grading112. Different IHC markers might be used to 

indicate primary tumour sites, such as CDX2, for the gastrointestinal tract. IHC can 

also be used to detect endocrine production, such as gastrin or insulin, in functional 

tumours (Figure 14D). 



 47 

 

Figure 14: A) Haematoxylin and eosin (HE) staining of primary neuroendocrine 
tumour in pancreas x400. Arrow marks the nest of tumour cells. B) Positive 
immunohistochemical (IHC) staining of synaptophysin in tumour x400. C) Positive 
IHC staining of chromogranin A in tumour x400. D) Positive IHC staining of gastrin 
in tumour x400.  

 

The nomenclature and classification of NENs have changed over the last decades. 

There is no uniform classification of morphology or grading that covers all 

anatomical sites. For example, the nomenclature of GEP-NENs and NEN in the lung 

are different184. NEN was grouped into three categories in the 2000 WHO 

classification: well-differentiated endocrine tumours, well-differentiated endocrine 

carcinomas and poorly-differentiated carcinomas185. In 2006, the European 

Neuroendocrine Tumour Society (ENETS) proposed a new classification of GEP-

NENs based on mitotic count and Ki67 index186. This was adapted and modified in 

the WHO grading system (2019) for GEP-NET, which is in use today112.  

Grading is based on mitotic activity, estimated either by counting mitosis on HE-

stained slides or by calculating the percentage of Ki67-positive cells in a hot spot 

(Table 2)112, 187. In the case of discordance between the two, the highest grade should 

be applied112. It has, however, been shown that the Ki67 index more accurately 

predicts prognosis than mitotic count188. 
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 Grade Mitotic count, per 2 mm2* Ki-67%* 

NET Grade 1 Low 1 < 3 

NET Grade 2 Intermediate 2–20 3–20 

NET Grade 3 High > 20 > 20 

LCNEC High† > 20 > 20 

SCNEC High† > 20 > 20 

MiNEN Variable Variable Variable 

LCNEC: Large‐cell neuroendocrine carcinoma, MiNEN: Mixed neuroendocrine–non‐

neuroendocrine neoplasm, NEC: Neuroendocrine carcinoma, NET: Neuroendocrine tumour, 

and SCNEC: Small‐cell neuroendocrine carcinoma 

* Mitotic rates are expressed as the number of mitoses/2 mm2 as determined by counting in 

50 fields of 0.2 mm2 (i.e. in a total area of 10 mm2); the Ki67 proliferation index value is 

determined by counting at least 500 cells in the regions of highest labelling (hot spots), 

which are identified at scanning magnification. 
† Poorly differentiated NECs are not formally graded but are considered high‐grade by 

definition. 

 
Table 2: Grading of gastroenteropancreatic neuroendocrine neoplasms according 
to World Health Organization (2019)112. 

Figure 15: Neuroendocrine tumour grade 1 (A) and large cell neuroendocrine 
carcinoma grade 3 (B) and immunohistochemical staining of the proliferation 
marker Ki67 in the same tumours (C and D).  

 

NET grade 3 and NEC can be difficult to discriminate from one another, and 

additional analyses may be helpful189. Genetic alterations in tumour protein 53 and/or 

Retinoblastoma protein 1 are frequently seen in poorly differentiated NENs and can 



 49 

be demonstrated by IHC190. Analysis of mutations in BRAF might be an option in 

selected cases when BRAF/MEK inhibitor treatment is considered175.  

Staging is done according to the AJCC 8th edition110. The staging of NET (grades 1 

to 3) depends on the primary organ. NEC and MiNEN are staged as primary 

carcinomas in their respective primary organs110, 112. 

 

Challenges with grading 

 

Grading poses several challenges for the pathologist. Mitotic count is time 

consuming, and it is often difficult to identify mitosis in tumour cells191, 192. In 

addition, it requires 10 mm2 of tumour tissue, which makes it less convenient for 

biopsies74, 112. For Ki67, controversies exist regarding what to count and how to do 

the count193. Several methods have been proposed. A study by Tang and co-workers 

recommended either doing a manual count of 2000 cells or using digital image 

analysis15. Another study recommended counting at a camera captured or printed 

picture14. For Ki67, counting > 500 – 2000 cells is time-consuming, which may lead 

to an eyeball estimate as a shortcut in a busy routine practice15. In addition, the 

identification of a ‘hot spot’ in a section is sometimes difficult13. These difficulties 

may partly explain the reported poor intra-and inter-observer reliability of grading15. 

Furthermore, since the WHO defined NET grade 3 as a distinct entity, the challenge 

of differentiating between NET grade 3 and NEC has presented itself. There is no 

cut-off proliferation value to separate these two entities, as Ki-67 values are 

overlapping. Also, follow-up data on both are sparse194 (Figure 16).  

Tumour heterogeneity and the fact that different locations have different prognoses is 

another challenging issue110, as this makes it difficult to compare grading between 

different organs and to ensure correct treatment for these patients.  

Differences in procedures for fixation and processing of the tissue and IHC of Ki67 

may lead to differences in grading between laboratories195. While automated IHC 
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staining is recommended, this option is not available at all laboratories. 

Standardisation of protocols, such as external quality control, may help improve 

staining quality and reproducibility192, 196.  

 

Figure 16: Neuroendocrine neoplasms’ separation according to grade, Ki-67 and 
morphology. The red circle shows the overlap in the Ki-67 index between 
neuroendocrine tumour (NET) grade 3 and neuroendocrine carcinoma (NEC).   
Republished with permission from194. Copyright© Elsevier Science & Technology 
Journals 2018. 

 

1.4.5 Prognosis and predication 

 

There is no national cancer statistics registry specifically for GEP-NENs in Norway. 

Existing statistics are often deficient because only malignant tumours are registered, 

and NEN outside the gastrointestinal tract are registered together with GEP-NENs. A 

Norwegian study, based on data from the period 1993 to 2015 in the Cancer Registry 

of Norway, found that the 5-year relative survival rate in patients with 

low/intermediate aggressive NENs was 64.8% (95% CI, 63.3–66.2). In patients with 
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highly aggressive NENs, the rate was 8.4% (95% CI, 7.8–9.1). In the same study, 

multivariable analysis showed that gender, age and stage at the time of diagnosis and 

primary site were all predictors of outcome, independent of grade. In addition, 

survival improved significantly during the period145. However, the study included all 

organs in the body. The primary location in the lung was the most common tumour 

site. This might hamper the interpretation of the results.  

A recent study based on data from the Southwestern region of Norway showed a 

median overall survival of 183 months for GEP-NENs, with 5-and 10-year survival 

rates of 66% and 57%, respectively. The significant determinants of overall survival 

were age, WHO tumour grade and surgery as primary treatment197. The same study 

found that the occurrence of different WHO grades varied between different organs. 

For example, grade 3 tumours were more commonly found in the stomach, pancreas, 

colon and rectum. Other population-based studies have demonstrated that sex, tumour 

differentiation, stage and primary site were independent predictors of overall 

survival149, 150, but these studies also included tumour locations outside of the 

gastrointestinal-pancreatic area. 

Since prognosis depends on grade and location, survival data vary significantly 

between organs. The five-year survival of GEP-NET is directly related to the 

restriction of the disease (i.e. primary tumour) and the occurrence of (distant) 

metastases: 96% (localised), 77% (nodal), 73% (liver) and 50% (extrahepatic 

metastases)198. For the appendix, most tumours are grade 1 and < 1 cm in size. In this 

group, the 5-year survival rate is close to 100%, while for patients with metastatic 

NEC, it is less than 10%175. 

The prognostic relevance of tumour grading was first proposed in Europe199 and 

eventually embraced by clinicians worldwide200-202. Tumour grade may also serve as 

a predictive factor in selecting GEP-NEN patients for chemotherapy202, particularly in 

cases with a well-differentiated morphology despite a high Ki67 index (>55%)203. 

NET does not progress to NEC182, but NET can have a NEC component190.  
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As mentioned, serum CgA is an important prognostic marker and marker of tumour 

progression. It may also be a predictive indicator of progression-free survival and 

overall survival204. However, serum CgA is only elevated in about 50–70% of NEN 

patients, and there are few prospective studies on serum CgA in NEN patients205.  

The role of other emerging biomarkers is not determined, including the tumour 

mutational burden or programmed cell death ligand 1 expression in exploring the 

possibilities for immunotherapy206, 207 or treatment options targeting different somatic 

and germline mutations, especially in the mTOR pathway166. Biomarker panels in 

liquid biopsies, such as NETestTM, are another interesting emerging possibility208. 

 

1.5 Cancer and the immune system 
 

In 1863, Rudolf Virchow deducted leucocytes in neoplastic tissues and connected 

inflammation and cancer. Virchow suggested that the ‘lymphoreticular infiltrate’ 

reflected the origin of cancer at sites of chronic inflammation209.We now know that 

cancer-related inflammation plays a key role as a contributor to cancer progression, 

both in the tumour microenvironment and the induction of genetic instability and has 

been described as the seventh hallmark of cancer210. Inflammation is now included in 

the ‘Next generation of Hallmarks of cancer’62. 

 

Globally, about 1/4 of cancers are related to infection and chronic inflammation211. 

Out of these, it is estimated that 1/8 are directly caused by infection and the resulting 

inflammation212. Examples are Helicobacter pylori as a cause of gastric cancer and 

the human papillomavirus in developing cervical cancer209. The rest are due to other 

causes of chronic inflammation, such as chemical, physical or autoimmune disease213, 

214.  

 

The immune system comprises two parts: the innate and the adaptive or acquired 

immune system. The innate immune system is ‘what we are born with’ and is at the 
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front line of defence. Evolutionary, this is an older defence mechanism than the 

adaptive immune system, which is more specialised. However, both systems 

contribute to the destruction of pathogens using both humoral immunity components 

and cell-mediated immunity (Figure 17). 

 

The innate immune system uses toll-like receptors to recognise pathogens. Most of 

the cells in the innate immune system are derived from multipotent stem cells in the 

bone marrow and perform phagocytosis. These cells express ‘self-proteins’ on their 

surface, along with major histocompatibility complex (MHC) class I, thus helping 

other components of the immune system discriminate ‘self’ from ‘not-self’. The 

innate immune system also has antigen-presenting cells with MHC class I or II, 

presenting protein antigens to adaptive immune cells. In addition, some antigen-

presenting cells, such as dendritic and B-cells, contain MHC classes I and II on their 

cell surface63.  

 

The adaptive immune system relies on the recognition of antigens and the activation 

of T-cells or B-cell production of antibodies215. T-cells enable the immune system to 

recognize foreign antigens through an interaction between their T-cell receptors and 

peptide epitopes presented by MHC class I molecules on cancer cells. This activation 

requires the co-stimulation of a CD28216. B-cells modulate immune response and 

inflammation through antibody production and promote T-cell activation and 

proliferation through antigen presentation217. B-cells also produce different pro-

inflammatory cytokines and promote co-stimulation and the activation of other types 

of immune cells218.  
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Figure 17. Innate and Adaptive Immune Systems. The innate immune system 
provides a nonspecific response against invading pathogens. This response is 
mediated by various immune cells (granulocytes, monocytes, macrophages, 
dendritic cells, neutrophils, basophils and natural killer cells, and active molecules 
as proteins of the complement cascade) through the recognition of pathogens. The 
innate immune response shapes adaptive immunity, resulting in the production of 
antigen-specific T and B lymphocytes. Abbreviations – APCs: antigen-presenting 
cells, CD: cluster of differentiation, CLRs: C-type lectin receptors, CTL: cytotoxic 
lymphocytes, ICOS: inducible T-cell costimulatory, MHC: major histocompatibility 
complex, NKT: natural killer T-cells, NLRs: nucleotide-binding, oligomerization 
domain (NOD)-like receptors, TCR: T-cell receptor, TLRs: Toll-like 
receptors. Adapted with permission from219. Copyright© Cell Press 2017. 

 

The immune system protects the organism from harmful endogenous and exogenous 

events. For instance, inflammation is a normal response to infection and is also part 

of the wound-healing process after an injury. The inflammatory process releases 

different chemical mediators, such as cytokines, to recruit immune cells and growth 

factors, stimulating tissue growth and neovascularisation. This is something cancer 

cells take advantage of220. The inflammatory cells are part of the tumour 

microenvironment, which surrounds the tumour cells. The tumour microenvironment 
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harbours different components, such as extracellular matrix, blood and lymphatic 

vessels and several cell types, including fibroblasts and immune cells, such as 

neutrophils, lymphocytes, natural killer cells, tumour-associated macrophages and 

dendritic (antigen-presenting) cells221. Thus, there is a complex interaction between 

immune cells and cancer cells in the tumour microenvironment, and tumour 

microenvironment-associated cells play an important part in tumour development and 

growth (Figure 18)62.  

 

 

 

Figure 18: Cells in the tumour microenvironment. Reprinted with permission from 62 
Copyright © 2011 Elsevier Inc. 

 

The immune system can work as both an agonist and an antagonist in cancer 

development and progression (Figure 19). First, the immune system recognises 

tumour antigens on the surface of cancer cells or from antigen-presenting cells. This 

initiates an immune response. Tumour-promoting inflammatory cells include 

macrophages (several subtypes), mast cells, neutrophils and T- and B-cells. These 

cell types produce several signal molecules that mediate their tumour-promoting 

effects, such as tumour growth factor, angiogenic growth factor, chemokines and 
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cytokines. Tumour-promoting inflammatory cells also produce proangiogenic and/or 

proinvasive matrix-degrading enzymes, which may help the cancer cells to 

proliferate, invade normal tissue and metastasise62. On the antagonist side, the innate 

immune system induces antibody-induced complement-mediated lysis222. The 

adaptive immune system induces an anti-tumour response, activating both cytotoxic 

T-cells that can kill the cancer cells and B-cells, producing antibodies directed against 

the cancer cells. Tumour-associated macrophages can have antagonistic and agonistic 

effects. They can kill tumour cells but may also produce growth factors and protease 

enzymes, which can stimulate tumour cell proliferation209. 

 

 

 

 

Figure 19: A model of innate and adaptive immune cell functions during 
inflammation-associated cancer development. Antigens that are present in early 
neoplastic tissues are transported to lymphoid organs by dendritic cells (DCs) that 
activate adaptive immune responses, resulting in both tumour-promoting and anti-
tumour effects. The pathways that regulate DC trafficking during early cancer 
development and the exact nature of the antigen(s) remain to be established. 
Activation of B cells and humoral immune responses results in chronic activation of 
innate immune cells in neoplastic tissues. Activated innate immune cells, such as 
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mast cells, granulocytes and macrophages, promote tumour development by the 
release of potent pro-survival soluble molecules that modulate gene-expression 
programmes in initiated neoplastic cells, culminating in altered cell-cycle 
progression and increased survival. Inflammatory cells positively influence tissue 
remodelling and the development of the angiogenic vasculature by producing 
proangiogenic mediators and extracellular proteases. Tissues in which these 
pathways are chronically engaged exhibit an increased risk of tumour development. 
In contrast, activation of adaptive immunity also elicits anti-tumour responses 
through T-cell-mediated toxicity (by induction of FAS, perforin and/or cytokine 
pathways) in addition to antibody-dependent cell-mediated cytotoxicity and 
antibody-induced complement-mediated lysis. Adapted with permission from222. 
Copyright© Springer Nature 2006. 

 

1.5.1 The immune system in colorectal cancer 

 

Over the last few decades, great efforts have been made to investigate how immune 

response affects progression and prognosis in CRC. Pronounced lymphocytic or 

inflammatory cell infiltrate in and around the tumour is associated with an improved 

prognosis in primary resectable CRC223, 224 and reduces disease progression and 

metastatic potential225. Especially, the T-cell response plays a significant role in this 

respect226, 227. For example, Galon and co-workers showed that CRC patients with a 

high number of CD3+ cells (T-cells) and CD45RO+ (Memory T-cells) in tumours 

had a better prognosis compared to patients with a low number, independent of TNM 

stage226. In contrast, chronic inflammation and the presence of anti-inflammatory 

macrophages favour tumour growth and the spreading of cancer228. Another study 

found that low densities of CD68+ (macrophage linage) and CD57+ (T-cells/natural 

killer cells) were independent prognostic markers, regardless of stage (stage II–III), in 

patients with CRC229.  

 

MSI-high cancers have a better prognosis. However, they also have a distinct 

histopathological growth pattern and prominent inflammation, with tumour-

infiltrating lymphocytes (Figure 20)230. The mechanism for this is believed to be 

mutations in mismatch repair (MMR) genes, leading to high levels of MSI. This 

results in a higher mutational burden, which correlates with increased expression of 

neoantigens on MHC-I molecules, in turn leading to an increased immune response 

(Figure 21)231. 
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Figure 20: Various morphologic features associated with microsatellite instable 
cancer (MSI-high). A) Medullary-type carcinoma showing nests and cords of cells 
with pink cytoplasm, vesicular nuclei, and prominent nucleoli (note apparent tumour 
infiltrating lymphocytes). B) Mucinous carcinoma with abundant extracellular mucin 
and free-floating carcinoma cells. C) Signet-ring cells. D) Histologic heterogeneity 
with a distinct mucinous component abutting a poorly differentiated carcinoma 
component. Republished with permission from230. Copyright© Wolters Kluwer 
Health, Inc 2003. 
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Figure 21. The immune landscape of microsatellite instable (MSI) and microsatellite 
stable (MSS) cancer. The DNA mismatch repair (MMR) system relies on key genes, 
such as MLH1, MSH2, MSH6, PMS2 or MSH3, that correct mismatched or wrongly 
inserted or deleted bases in the DNA. If this machinery fails due to defects in one or 
more repair genes, these errors are free to be integrated into the DNA permanently, 
forming microsatellites. Thus, deficient MMR/MSI-high tumours have a defect in 
one of the major DNA repair genes, resulting in high levels of microsatellites (MSI-
high). However, tumours with a functional MMR system result in low or stable levels 
of microsatellites (MSS). The result of this damaged repair system in deficient 
MMR/MSI-high tumours is a higher mutational burden, which correlates with a 
higher expression of neoantigens on MHC-I molecules. Adapted with permission 
from231 under Creative Commons Attribution (CC BY) licence. Copyright© MDPI 
2020. 

 

Immunotherapy 

 

Immunotherapy, particularly ICI, has revolutionized cancer treatment232. Although 

the response rate to ICI is only about 10–20% in different cancers, those who respond 

usually have an enduring response233. ICI inhibits negative regulatory receptors on T-

cells, such as cytotoxic T lymphocyte antigen 4 and programmed cell death 1. This 
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results in a boosting of anti-tumour immune responses216. Several factors influence 

tumour response to immune checkpoint inhibitors, for example, mutational load, 

MHC, tumour infiltrating lymphocytes and regulatory checkpoint receptors231. 

Tumours with high mutational burdens, such as non-small cell lung cancer and 

melanomas, respond better to ICI. For stage IV CRC, patients with MSI-high tumours 

have been shown to benefit from immunotherapy. These cancers have a high 

mutational burden and respond to ICI231. Thus, so far, not many CRC patients have 

been eligible for this treatment234. Although MSS CRC generally does not respond to 

ICI, some patients may still respond to this therapy235. Studies have shown that MSS 

CRC with a high T-cell infiltrate in tumours has a better prognosis236, 237. Further 

studies are required to determine whether some of these patients are candidates for 

ICI231.  

 

1.5.2 Immunoscore 

 

In exploring the role of T-cells in CRC as a diagnostic tool for evaluating immune 

reactions, the Immunoscore was developed by Galon and coworkers238. Two 

populations of lymphocytes (either CD3/CD45RO, CD3/CD8 or CD8/CD45RO), in 

the core of the tumour and at the invasive margin, are visualised using IHC. The 

slides were analysed by digital pathology. Based on the number of positive cells, a 

score between 0 and 4 was calculated (Figure 22). A high score (I4) equals a strong 

immune reaction238. They found that CRC patients with high densities of CD8+ and 

CD45RO+ T-cells (high Immunoscore) in tumours had a 5-year survival rate of 

86.2%. Those with low densities had a 5-year survival rate of only 27.5%239. The 

method has been validated for colon cancer in an international consortium (14 centres 

in 13 different countries), which found that the Immunoscore association with time to 

recurrence was independent of existing prognostic factors and patient age, sex, T- and 

N-stage and MSI status237. Immunoscore is not validated for rectal cancer, but it 

might be a prognostic tool in patients with rectal cancer treated with primary 

surgery236. It has been suggested to implement the Immunoscore in a TNM-Immune 
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classification system for CRC237, 240. Initially, there was a scoring system of five 

categories, but in the validation study, this was reduced to three: low, intermediate 

and high237. The prognostic value of the Immunoscore might also be relevant in other 

types of cancer241, 242. The method has been patented and is now commercially 

available as Immunoscore® (HalioDx, Marseille, France)237. A validated, non-

commercial, method for scoring immune response is therefore lacking.

 

Figure 22: (A) A section of colonic cancer immunostained for CD3, showing the 
regions of interest (the tumour and the invasive margin). (B) An enlargement 
showing CD3+ cells (stained brown) in the stroma and within the tumour glands 
(original magnification ×300). (C) The tumour (shown in red) and the invasive 
margin (shown in brown) were selected to determine the Immunoscore. (D) The 
Immunoscore is based on the numeration of CD3+ and CD8+ cells in the tumour 
and the invasive margin. The densities of the stained cells were determined using 
an image analysis workstation. According to a predetermined cut-off value, the 
immune densities are categorized as Hi (high) or Lo (low) in each tumour region. 
Patients are stratified according to a score ranging from I0 to I4, depending on the 
total number of high densities observed (the two markers CD3 and CD8 are 
assessed in the tumour, and the two markers are assessed in the invasive margin). 
Abbreviations: CD: Cluster of differentiation. Reprinted with permission from243. 
Copyright© Oxford University Press 2016.  
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1.6 Proliferation in cancer cells 

 

Proliferation is the most essential feature of cancer development. The ability of 

cancer cells to sustain proliferative signalling, evade growth suppressors, resist cell 

death and enable replicative immortality is evident in the Hallmarks of cancer, as 

mentioned above61, 62. Cell proliferation is a complex and carefully regulated process 

with an intrinsic quality control system244, dependant on interaction with the 

surrounding cells/environment and stimulation of growth factors. When this process 

gets out of control, cells avoid the intrinsic control system in the body, and cancer 

may develop. Cancer cells often establish autocrine proliferation stimulation as 

well62. 

Cell proliferation occurs in a multistep process called the cell cycle, which comprises 

several phases. The cells’ resting phase are called G0. The active part of the cell cycle 

starts with G1, where the cells grow and prepare for DNA synthesis. The S-phase is 

when the DNA replication occurs. The S-phase is followed by the G2-phase, where 

the cells continue to grow and prepare for mitosis, with DNA maintained at double 

copies. The final phase is mitosis, the M-phase, where the division into two cells 

occurs. The M-phase is divided into several sub-stages, see Figure 23. Together, G1, 

S and G2 are called the interphase. The interphase constitutes the largest part of the 

cell cycle245. 
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Figure 23: The different phases of the cell cycle. From G0 (resting phase) to 
mitosis. The phases in preparation for mitosis are called the G1, S and G2, while 
mitosis (M-phase) is divided into several sub-stages, from prophase to mitosis 
abscission. Created with BioRender.com. 

 

Proliferation is a prognostic marker in several types of cancer, such as breast cancer, 

malignant lymphomas, gastrointestinal stromal tumour and NEN246, 247.  

 

1.6.1 Mitotic activity 

 

Tumour growth correlates with mitotic activity, which is one of the main prognostic 

factors in several types of cancer192. Mitotic activity can be visualised and counted in 

the microscope with haematoxylin and eosin (HE) – staining. This is, however, time-

consuming. In some cases, it is also difficult to determine whether a cell is mitotic, 

especially to distinguish it from an apoptotic body (Figure 24)191. There are different 
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ways to determine and score mitotic activity, depending on the cancer type. For NEN, 

the mitotic count is reported as the number of mitosis pr. 2 mm2, counting in a tumour 

area of 10 mm2, which is 50 high-power fields at x40. This usually requires a surgical 

specimen to ensure enough tumour tissue for evaluation112.  

 

Figure 24: Haematoxylin and eosin (HE) and phosphohistone H3 (PHH3) staining of 
different sub-stages of mitosis. The examples include cells in prophase, 
metaphase, anaphase and telophase. Reprinted with permission from191. Copyright 
© Springer 2008. 

  

1.6.2 Ki67 

 

Ki67 is a nuclear DNA-binding protein expressed in proliferating cells247. Its function 

has been unclear, but it has been shown to play a role in controlling and timing of cell 

division248. To visualise Ki67 in pathological specimens, IHC staining with the MIB-

1 antibody is the most commonly used and recommended assay249. However, the 

method has been criticised because of difficulties in standardising Ki67 staining, 

which affects reliability and reproducibility250, 251. Ki67 can be expressed in apoptotic 

bodies252, which may overestimate the number of positive cells in a specimen. 

However, Ki67 correlates with a mitotic count, even though more cells than those in 

actual mitosis are labelled, and Ki67 is easier to quantify compared to the mitotic 

count in an HE stain193. Consequently, Ki67 is used as a prognostic biomarker in 

several types of cancers, such as GEP-NENs192. However, its role as a predictive 

marker is not yet well established253. 
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1.6.3 Phosphohistone H3 

 

Histone H3 is a nuclear core histone protein of DNA chromatin with an important 

role in chromosome condensation and cell cycle progression during mitosis. 

Phosphorylation occurs between late G2 and early prophase, while dephosphorylation 

occurs slowly from late anaphase to early telophase. Therefore, histone H3 is always 

heavily phosphorylated in the metaphase and positive for phospho-histone H3 

(PHH3) IHC. In the interphase, there is no or minimal expression of PHH3, which 

allows PHH3 to stain only mitotically active cells. Hence, PHH3 is regarded as 

proliferation-specific and a promising marker of mitotic activity254. In addition, it is a 

validated prognostic marker in several types of cancer255 and has been identified as a 

promising marker for predicting disease-free survival and disease-specific survival in 

pancreatic NEN256, 257. However, its role in GEP-NENs has yet to be determined. 

As already mentioned, counting mitosis in an HE stain is challenging because 

apoptotic bodies can be misinterpreted as mitotic figures191, 252. In contrast to Ki67, 

which is present in all proliferative phases of the cell cycle and can also be expressed 

in apoptotic bodies, PHH3 only stains M-phase cells, see Figure 25. Thus, with 

PHH3, mitotic activity can be specifically determined258, and PHH3 may be a better 

biomarker for mitosis252. Several studies have shown good concordance between the 

number of mitoses and PHH3259, 260. PHH3 is suggested as an alternative to the Ki67 

index in pancreatic NEN252 and is regarded as promising for assessing grading in 

GEP-NENs in general. 
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Figure 25: Expression of Ki67 (A) and phosphohistone H3 (PHH3) (B) in the cell 
cycle. The arrows indicate which phase the immunohistochemical markers are 
expressed. Created with BioRender.com. 
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2. Aims of the study 

Prognostic and predictive factors are important for treatment decisions in 

gastrointestinal cancer. In addition, the reproducibility and accuracy of the methods 

used in the diagnostics are crucial for the optimal clinical management of patients.  

The aims of our study were as follows: 

 To establish a method for evaluating the immune response in CRC tumours 

(Papers I and II); 

 To compare the serologic immune response with the immune response in CRC 

tumours (Paper I); 

 To calculate an immune score for colon cancer and see how it corresponds 

with known histopathological parameters (Paper II); 

 To improve the prognostic assessment regarding which patients with colon 

cancer may benefit from additional treatment (Paper II);  

 To improve the prognostic value of grading using digital image analysis of Ki-

67 in GEP-NENs compared to manual evaluation with a light microscope 

(Paper III); and 

 To evaluate the proliferation marker phosphohistone-H3 (PHH3) in GEP-

NENs to improve prognostic assessment and evaluate the potential advantages 

or challenges in routine practice (Paper III) 
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3. Methods 

 

3.1 Study population 

 

This thesis involved two different study populations. The patients recruited for the 

Papers I and II were from the ACROBATICC cohort261 (clinicaltrials.gov identifier: 

NCT01762813). This is an ongoing prospective clinical-molecular biomarker 

outcomes study. ACROBATICC is an abbreviation for ‘Assessment of clinically 

related outcomes and biomarker analysis for translational integration in colorectal 

cancer’. The study was approved by the Norwegian Regional Committees for 

Medical and Health Research Ethics (REK-Vest, #2012/742) and conducted 

according to national legislation. Written informed consent was obtained from all 

participants before inclusion in the ACROBATICC project.  

Twenty-one patients were recruited for an early pilot feasibility study, resulting in 

Paper I. These patients were recruited for the ACROBATICC cohort between 

February 2015 and May 2015. Eighteen of them had stage I–III invasive CRC and 

were included in the analysis. Three patients were excluded due to a final diagnosis 

of adenoma without an invasive tumour. The second study, culminating in Paper II, 

encompassed a sub-cohort of patients with stage I–III colon cancer that did not 

undergo neoadjuvant treatment from the initial cohort recruited between January 

2013 and May 2014106.  

The second study population, for Paper III, was all consecutive patients diagnosed 

with GEP-NENs and treated at Stavanger University Hospital from 2003 to 2013. 

This hospital serves as the only hospital for a well-defined Norwegian population of 

approximately 380,000 people153. The study was approved by the Norwegian 

Regional Committees for Medical and Health Research Ethics (REK -Vest, 

#2016/1622) and conducted following national legislations. Written informed consent 
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was obtained from all living participants before they were included in the study. Out 

of 204 consecutive patients, 35 did not respond or declined their participation.  

3.2 Material and data collected 

 

3.2.1 ACROBATICC 

 

ACROBATICC is a translational cancer research project led by the Department of 

Gastrointestinal Surgery at Stavanger University Hospital. The prospective 

registration includes all patients with CRC, either primary or metastatic disease261. 

Collaboration between departments and institutions is key to the project. By 

inclusion, the patients received a unique identifier number in the project. Blood 

samples were taken before surgery and at follow-up, which is normally about one 

month after surgery. From the surgical specimen, fresh frozen tissue was sampled 

from the normal mucosa and the tumour tissue and stored at –80ºC. In addition, 

routine samples were selected for diagnostics as formalin-fixed paraffin-embedded 

(FFPE) tissue. Minimum three FFPE blocs were sampled from the primary tumour 

from each patient. The section with the deepest infiltration was used in this study. 

The same procedures were performed with patients who developed metastatic 

disease. The database was handled and protected according to the hospital’s 

regulations and current legislation.  

 

3.2.2 GEP-NENs cohort 

 

The GEP-NENs cohort was obtained from the Department of Gastrointestinal 

Surgery at Stavanger University Hospital, and this department led the inclusion of 

patients. In addition, FFPE sections were retrieved from archives at the Department 

of Pathology. All tumours were confirmed as NENs by positive IHC staining for 
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synaptophysin and/or chromogranin A. NEC was included as grade 3 (high grade). 

MiNENs were excluded. A patient was excluded due to possible primary pulmonary 

NEC. Nine patients were excluded due to a lack of tissue for analysis. Thus, 159 

(77.9%) patients were included in the study. The material comprised 63 (39.6%) 

biopsies and 96 (60.4%) surgical specimens. For some patients, there was not enough 

material to perform IHC for PHH3. In these cases, only IHC for Ki67 was analysed.  

Routine evaluation of patients encompassed clinical examination, blood tests, 

including tumour marker detection (i.e. CgA), and standard oncologic imaging, as 

recommended in available guidelines155, 262-264. PET imaging was not routinely 

performed. Transthoracic echocardiography was performed in cases of suspected 

carcinoid heart disease. Endoscopy, including endoscopic ultrasound (EUS) and 

video capsule endoscopy, was available if indicated. If a GEP-NEN was incidentally 

discovered during an unrelated surgery, a clinical evaluation was performed 

postoperatively. 

 

3.2.3 Enhancing the quality and transparency of health research 

 

The ACROBATICC cohort study is reported according to the STROBE 

(strengthening of the reporting of observational studies in epidemiology)265 and the 

REMARK (REporting recommendations of tumour MARKer prognostic studies)266 

guidelines for biomarker studies. STROBE is a checklist to improve reports of 

observational studies developed by methodologists, researchers and journal editors to 

ensure transparency and good reporting of observational studies267. The checklist is 

used for both cohort, case-control and cross-sectional studies268.The REMARK 

guidelines are used to provide relevant information about the study design, 

preplanned hypotheses, patient and specimen characteristics, assay methods and 

statistical analysis methods. These guidelines were developed jointly by the US 

National Cancer Institute (NCI) and the European Organisation for Research and 

Treatment of Cancer (EORTC)269. The goal of these guidelines is to encourage 
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transparent and complete reporting so that relevant information is available to 

others in tumour marker studies269.  

 

3.3 Statistical analysis 

 

IBM SPSS Statistics for Windows, Version 23 or 26.0 (IBM Corporation, Armonk, 

NY, USA), was used for the statistical calculations.  

In Paper I, correlation analyses were performed using the non-parametric test 

Spearman’s rank correlation coefficient (rho; ρ), assuming a non-Gaussian 

distribution of variables. In Paper II, associations between categorical variables were 

tested with Chi-square. In addition, Mann–Whitney U test was used to compare 

differences in continuous or ordinal variables between groups. All tests were two-

tailed, and a p-value <0.050 was determined as statistically significant.  

In Paper III, quadratically weighted kappa was used to measure the agreement 

between ordinal variables270 and calculations were aided using VasserStats271. The 

interclass correlation coefficient (ICC) was used to measure the agreement between 

continuous variables (single rater, absolute agreement). All agreement estimates are 

presented with 95% confidence intervals (CIs). Values less than 0.50, between 0.50 

and 0.75, between 0.75 and 0.90 and greater than 0.90 indicated poor, moderate, good 

and excellent reliability, respectively272. To plot the difference in pathology Ki67 and 

digital image analysis Ki67 measurements against the average value, we used a 

Bland-Altman plot273.  
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3.4 Techniques 

 

 

3.4.1 Flow cytometry 

 

 

Flow cytometry enables the rapid analysis of numerous cells at a single cell level. 

Physical characteristics of each cell are registered as it flows in suspension through a 

detector based on scatter made from laser excitation. Targeted antibodies with 

fluorescent markers can be used to label whole cells or cellular components, such as 

organelles, nuclei, DNA, ribonucleic acid (RNA), chromosomes, cytokines, hormone 

receptors or protein content274. This allows flow cytometry to be used for many 

purposes, such as antigen detection. 

The main principle of this technique is based on the scattering of light and the 

emission of fluorescence, which occurs when light from an excitation source, usually 

a laser beam, hits the cells moving in a directed fluid stream274, 275. A flow cytometer 

comprises several components for the different analytical steps. First, there is a 

fluidic system that contains the material to be analysed, such as white blood cells. 

Second, the fluidic system aligns the cells to flow at the same speed and axis through 

the light source. The light source is usually one or several lasers that focus on the 

cells. The resulting light scatter is detected through a forward scatter and a side 

scatter. Forward scatter is proportional to the cell surface area or size and is suitable 

for detecting particles greater than a given size. Side scatter is a measurement of 

refracted and reflected light collected at approximately 90° of the laser beam. It is an 

expression of the granularity/complexity of the cell. Forward scatter and side scatter 

combined are commonly used for immunophenotyping, as different blood cells are 

easily separated by size and granularity274.To study specific biomarkers or the 

complexity of cells, cell components are detected using antibodies with different 

fluorescent markers and lasers emitting light at different wavelengths. The light 

signals are converted to voltage by a detection system that comprises photodiodes or 
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photomultiplier tubes. The photodiodes detect the strong signals sent by forward 

scatter, while photomultiplier tubes detect the weaker signal generated by side scatter 

and fluorescence. A converter transforms analogue signals from detectors into digital 

signals, which are then sent to a computer. The software usually displays the results 

as a scatter plot or histogram, which can then be analysed (Figure 26). Finally, the 

waste products end up in a collecting waste container to be disposed of275.  

  

  

Figure 26: The signalling process of flow cytometry. The fluidics contain particles 
that go through the light detection system. Here, two types of light scatter occur: 
forward scatter (FSC) and side scatter (SSC). The light signals are converted to 
voltage by detectors. There are two types of detectors: photodiodes (FSC) and 
photomultiplier tubes (PMT). The photodiodes detect signals sent by FSC, while 
PMT detects signals generated by SSC and fluorescence. The signals from the 
detectors go to a computer that analyses and displays the results. Adapted with 
permission from274. Copyright© Taylor & Francis 2017.  
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In present work, blood samples were run using a two-laser flow cytometer (BD 

Accuri C6 and Cytoflex, Beckman-Coulter, USA). The flow cytometer was equipped 

with a blue (588 nm) and red laser (640 nm), two light scatter detectors (forward 

scatter and side scatter) and four fluorescence detectors. The fluorescence detectors 

were equipped with optical filters optimized for the detection of fluorescence from 

fluorescein isothiocyanate (FITC 588/30 nm), phycoerythrin (PE 585/40 nm), 

peridinin chlorophyll (PER-CP 670 nm) and allophycocyanin (APC 675/25 nm). As 

described in our paper, we used an antibody kit from BD Biosciences (NJ, USA). 

White blood cells were marked with CD45+ conjugated to Per-CP, all T-cells were 

marked with CD3+ linked to FITC and cytotoxic T-cells with CD8 PE. In addition, 

CD4+ positive T-cells were marked with APC-conjugated antibodies for staining. 

Using the corresponding software, we calculated the absolute numbers of the 

different T-cell populations per ml blood276.  

 

3.4.2 Multiplex polymerase chain reaction and fragment analysis 

 

 

PCR is a method used to examine small segments of DNA or RNA. PCR can be used 

to detect gene mutations, but it is widely used in forensic medicine277. The method is 

based on the amplification of small segments of DNA278.  

PCR is performed in several stages. First, a DNA template is made. To do this, the 

tissue of interest is mixed with a buffer before primers, DNA polymerase and 

nucleotides are added. A primer is a short stretch of DNA, usually 20–30 base pairs, 

which complement the DNA region to be examined. At least two primers are used. 

These are forward and reverse primers and ensure that the DNA strands can be read 

upstream and downstream directions in the region of interest. DNA polymerase is the 

enzyme that synthesises DNA, and nucleotides are the actual building stones for 

DNA.  
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The DNA template was placed in a PCR machine. The machine can change 

temperature very quickly, and a rapid temperature change is one of the key factors of 

the method. The process comprises three steps (Figure 27). Step 1 is the denaturation 

of DNA, in which the DNA strands are separated. For this to take place, a high 

temperature is required. Step 2 involves annealing when the primers bind to the 

separated DNA strands. Step 3 is elongation, as the primers synthesise DNA strands. 

These steps were repeated several times, with the resulting amplification of the DNA 

segments. The process requires specific temperatures at each step.279 When 

amplification is completed, the product is analysed with electrophoresis. In modern 

PCR techniques, the fluorescent labelling of primers makes detection by laser 

possible. In multiplex PCR, several primers are used so that several genes can be 

examined simultaneously280.  

 

 

Figure 27: Steps in the polymerase chain reaction. Green = primer. Purple = 
nucleotides. Red and blue: DNA template strands. Created with BioRender.com 
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In our case, tissue was extracted from sections of FFPE blocs. Five primers were used 

for both MSI and EMAST, and two independent multiplex PCR reactions were 

performed. Detailed descriptions of the procedure and interpretation of the results are 

given in each paper (Papers I and II). 

 

3.4.3 Immunohistochemistry 

 

IHC is used to detect specific proteins in FFPE tissue and has revolutionised 

diagnostics in pathology281. When performing IHC, enzyme-linked antibodies are 

used to detect tissue antigens. The basic principles of IHC are described in Figure 28. 

The first step is sectioning tissue from the FFPE block onto a slide. Next, the slide is 

heated in a buffer to unmask the antigen, a process called antigen retrieval. After 

incubation with the primary antibody, a secondary antibody with a polymer complex 

(polymer with horseradish peroxidase) binds to the primary antibody. The peroxidase 

enzymes convert a chromogen substrate solution called 3,3 Diaminobenzidine into a 

brown precipitate. This occurs close to the location of the antigen and is used to 

visualise the antibody. Endogenous enzymes are blocked, so they will not interfere 

with the detection system. Between each step of the procedure, unbound reagents are 

washed off. The final step is to counterstain the slide with haematoxylin and apply a 

cover glass before viewing and interpreting the results in a microscope. 
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Figure 28: Basic principles of immunohistochemistry. Abbreviations: HPR: 
horseradish peroxidase, DAB: 3.3 diaminobenzidines, CD: cluster of differentiation. 
Created with BioRender.com 

  

Over the years, the different steps of IHC have been standardised and automated281. 

This improved the method. However, international standardisation remains 

insufficient, hampering reproducibility282. Several studies have shown poor intra-and 

inter-observer reliability15, 283. Numerous factors affect the results: pre-analytical, 

such as fixation time; analytical, such as detection system; and post-analytical, such 

as interpretation of results282. Therefore, every step of IHC has to be optimised for the 

method to be reliable284.  

All the IHC stains used in our studies were performed in routine diagnostics at the 

Department of Pathology, Stavanger University Hospital. The laboratory participates 

in Nordic immunohistochemical quality control (NordiCQ), a scientific organisation 

that standardises and recommences protocols for IHC196. Hence, the method was 

optimised before our studies. The specific methods for the different IHC antibodies 

are described in each paper. An automated slide stainer was used, with positive and 

negative controls in each run.  

 

 

3.4.4 Digital image analysis 

 

Digital image analysis involves several variables that must be optimised for a 

successful result. These can be divided into pre-processing, classification and post-

processing variables. Pre-processing variables include laboratory routines for 

fixation, preparation and staining of the surgical specimen or biopsy. The section you 

want to scan has to be evenly cut and stained. Artefacts from suboptimal processing 

or staining can hamper the results. Furthermore, the slide has to be clean, without air 

bubbles or dust under the glass.  
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The first step in digital image analysis is scanning the sections. Photos taken with a 

camera can also be used, but usually, a scanner is preferred. The scanner is calibrated 

and adjusted for focus, white balance, light source, exposure time and colour. To 

sustain details in the image, scanning at x40 is favourable. The more details you 

want, the more storage is required. The scanned image is compressed into a digital 

image file. File format varies depending on the scanner and programme used. 

Examples of formats are tagged image file format (TIFF) and joint photographic 

expert group (JPEG). TIFF preserves more details in the image, whereas JPEG is 

more compressed and results in a smaller file size with less detail. The Leica scanner 

used in our studies uses scenario (SCN) format, which is comparable to TIFF.  

 

For classification, there are three categories of digital image analysis measuring 

algorithms8: 

- Area-based measurements 

o Pixel-based assessment, where the algorithm quantifies the colour (or 

intensity of staining) in each pixel 

- Cell-based measurements 

o Morphometry-based assessment where pixels are grouped based on 

similarity defines structure (e.g. cells or nuclei) profiles that meet 

certain preselected criteria (e.g. size and shape).  

- Object-based counting or assessment of ‘events’  

o Specialised algorithms are designed to serve a particular need, often the 

automated identification and/or enumeration of non-cell structures. 

 

Classification, in applications used for digital image analysis, requires a classifier. A 

classifier aims to create a contrast between the structures you want to examine in the 

image and other image segments. One aim could be to separate positively stained 

nuclei from negatively stained nuclei in an image. Several types of classifiers are 

available, and some will be mentioned here. The simplest classifier is ‘Threshold’. 

This classifier marks areas of and above a defined pixel value to separate objects 

from the background285. Although ‘Threshold’ is used in some image analysis 
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software286, it is not very sensitive to variation in staining intensity, and the optimal 

‘Threshold’ might vary from one image to another. More sophisticated classifiers 

include ‘Bayes classification’ and ‘K-means clustering’285. These can be 

unsupervised (K-means clustering) or supervised (Bayes classification), depending on 

whether pixels relevant for the classification are set or not21. K-means clustering does 

not need a training set to be used for digital image analysis287, while Bayes 

classification is a probabilistic model that uses training data to find the most probable 

prediction288. If you teach the classifier to recognise one or several colour pixels in a 

training set, the classifier will use this knowledge to recognise the same colours in 

different virtual slides that have not been presented to the classifier before. This 

knowledge is used to develop an application for digital image analysis. Applications 

that use more sophisticated classifiers can be trained to group several colour pixel 

intensities into the same category287. For example, a nucleus positive for 3.3 

diaminobenzidine staining can be light brown or dark brown, and the application can 

be trained to include different shades of brown in the positive category. For 

haematoxylin (blue) staining, the same applies. This feature is important when the 

same application is used for several scanned sections, as there will always be some 

differences between scanned slides from different patients. Lezoray and Cardot found 

that Bayes classification gave a better segmentation of colour pixels than K-means 

clustering287. Bayes classification can also be used to assign objects to different 

groups, depending on the size and shape in a segmentation285. This can be used to 

separate tumour cells from stroma and lymphocytes in digital image analysis. An 

example of Bayes classification used in digital image analysis is shown in Figure 28.  
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Figure 29: Bayes classification of Ki67 immunohistochemical staining in a 
neuroendocrine neoplasm. The green dotted line outlines the region of interest. The 
classifier has separated tumour from stroma (blue line). It has also identified 
positive tumour cells (green) and negative tumour cells (blue) based on nuclei 
staining. The red areas are cytoplasm/background, which was excluded from the 
calculation. The different classified areas are exemplified by the green, blue and red 
arrows. 

 

An important step in digital image analysis is selecting the region of interest on a 

virtual slide. The region of interest can be manually selected, or digital image 

analysis can be used to do this. For example, digital image analysis can identify the 

region of interest using a heat map that selects a hot spot based on threshold, 

clustering or other criteria285, 289. The benefit of automation is avoiding selection bias. 

However, manual selection might be better to avoid tissue that you do not want to 

include in the analysis. If a technician selects a region of interest, it should always be 

controlled by a pathologist8. Several regions of interest can be selected, and 

measurements can be performed on several areas simultaneously.  

 

Post-processing involves manual control and adjustment of the image. Examples 

include the removal of artefacts or the separation of overlapping objects1. This 

usually requires some knowledge of histopathology. Digital image analysis measures 
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pixels, and this must be translated into understandable variables that can be 

interpreted. This is done by applying definitions to output data. A spreadsheet or 

other type of software is usually used in this process. 

 

In our studies, we used Bayes classification to develop the different classifiers 

utilised in applications for digital image analysis. The applications used for digital 

image analysis were developed based on knowledge from similar studies13, 191. 

Region of interest and applications used were defined differently in the different 

papers. In Paper I, we used two different applications. The first counted T-cells 

(CD3 and CD8) in a manually defined region of interest in the tumour centre and the 

invasive margin. The second separated the epithelium and stroma into a 2 mm circle 

in the tumour centre and the invasive margin before quantifying the same T-cell 

populations. In Paper II, we used the first application from Paper I. In Paper III, a 

manually defined region of interest for hotspot Ki67 was used. 500–2000 cells in the 

region of interest were counted based on the mean nuclear size. Stroma was excluded 

from the region of interest if present. The percentage of Ki67-positive nuclei was 

calculated based on positive and negative nuclei staining. For PHH3, depending on 

the area available, we had 1 to 4 different manually selected regions of interest in 

hotspots where the number of PHH3-positive cells was counted in an area of 2mm2. 

Further details and photos are provided in the corresponding papers276, 290, 291. All the 

annotations of the region of interest, analysis and post-processing were done by a 

certified pathologist (DL). To avoid selection bias, measurements were done without 

information about clinicopathological data, such as the stage of the disease or the 

previous histopathological evaluation. 
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4. Results 

In Paper I, (Hagland, Lea et al., Anticancer Research, 2017), the relationship 

between circulating T-cells in blood and intratumoural T-cells in CRC was 

investigated in a feasibility study. Eighteen patients with stage I–III CRC were 

included. Using flow cytometry, pre-surgical blood samples were analysed for T-cell 

type (CD3+, CD4+ and CD8+) and count. Intratumoural T-cells were stained with 

CD3 and CD8 using IHC and quantified in the invasive margin and tumour centre by 

digital image analysis, using an automated image analysis software, Visiopharm® 

(Hoersholm, Denmark). We found that the number of CD3+ and CD4+ T-cells in pre-

surgical blood samples correlated with the number of CD3+ T-cells found in the 

invasive margin (Spearman ϱ = 0.558, p < 0.05 and 0.598, p < 0.01, respectively) and 

with CD3+ T-cells in the tumour centre (ϱ = 0.496, p < 0.05, and ϱ = 0.637, p < 0.01, 

respectively). There was a strong correlation between CD4+ T-cells in blood and 

CD8+ T-cells in the tumour centre and the invasive margin (ϱ = 0.602 and ϱ = 0.591, 

p<0.01). The correlation was strongest for analysis on whole section scans, compared 

to 2 mm circles in the tumour centre and invasive margin. 

 

In Paper II (Lea, Watson et al., Cancer Immunology Immunotherapy, 2021), we 

developed an objective quantification method for T-cells to calculate an immune 

score for colon cancer. The method was based on one of the digital image analysis 

applications used in Paper I and used automated image analysis software, 

Visiopharm® (Hoersholm, Denmark). CD3 and CD8 T-cells at the invasive margin 

and in the tumour centre were quantified. An algorithm template for whole slide 

assessment generated cell counts per square millimetres (cells/mm2), from which the 

immune score was calculated using distribution volumes. To confirm its relevance, 

the immune score was juxtaposed with the clinical and histopathological 

characteristics. Based on the number of T-cells calculated by digital image analysis, 

patients were classified into low (n = 83, 69.7%), intermediate (n = 14, 11.8%) and 

high (n = 22, 18.5%) immune score groups. A high immune score was associated 

with stage I–II tumours (p = 0.017) and a higher prevalence of MSI-high tumours (p 
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= 0.030). MSI-high tumours had significantly higher numbers of CD3+ T-cells in the 

invasive margin and significantly higher numbers of CD8+ T-cells in both the tumour 

centre and the invasive margin than MSS tumours. Our digital template to quantify T-

cells is an easy-to-use immune score, corresponding with known clinicopathological 

features such as stage and MSI in colon cancer.  

 

In Paper III (Lea, Gudlaugsson et al., Applied Immunohistochemistry & Molecular 

Morphology, 2021), we evaluated the use of digital image analysis as an objective 

assessment of proliferation markers in GEP-NENs. The study included 159 patients 

(57% male) in a consecutive cohort of 204 patients. Automated digital image analysis 

measurements of Ki67 (digital image analysis Ki67) and PHH3 (digital image 

analysis PHH3) on IHC slides were analysed using Visiopharm® image analysis 

software (Hoersholm, Denmark). The results were compared with the Ki67 index 

recorded in the corresponding routine pathology reports (pathology Ki67). The 

median pathology Ki67 was 2.0%. Median digital image analysis Ki67 was 4.1%. 

The interclass correlation coefficient of the digital image analysis Ki67 compared 

with the pathology Ki67 showed an excellent agreement of 0.96 (95% confidence 

interval [CI]: 0.94–0.96). When comparing grades based on the same methods, the 

observed kappa value was 0.86 (95% CI: 0.81–0.91). PHH3 was measured in 145 

(91.2%) tumours. The observed kappa value was 0.74 (95% CI: 0.65–0.83) when 

comparing grades based on the digital image analysis PHH3 and the pathology Ki67. 

In conclusion, there was excellent agreement between digital image analysis Ki67 

and pathology Ki67. However, digital image analysis Ki67 tended to upgrade cases 

from grade 1 to grade 2. The digital image analysis PHH3 measurements were more 

diverse and could not replace established methods for grading GEP-NENs. 
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5. Discussion 

There is an ongoing paradigm shift in pathology, where laboratories are going digital 

and the microscope will eventually become obsolete. There are many benefits to 

digitalisation, especially concerning patient safety and logistics in the pathology 

departments. However, one challenge in pathology today is the subjectivity in 

evaluating and interpreting IHC staining, especially in the quantification of 

prognostic markers. This leads to intra-and inter-observer variations. By introducing 

new diagnostic methods, including digital image analysis, some of these obstacles 

might be solved. In addition, novel prognostic parameters (e.g. a score for immune 

response) not routinely used today might be introduced. 

5.1 Determine immune status in colorectal patients 

 

We aimed to investigate the correlation between T-cells in the blood and T-cells in 

tumour tissue from patients with CRC (Paper 1). Although this was a feasibility 

study with only 18 patients, we found an interesting relationship between the two. 

Unfortunately, these findings are not explored further in the cohort at this time. To 

our knowledge, no other studies with the same methodology have been conducted for 

CRC. However, a study by Chirca et al. found different levels of CD4+ and CD8+ in 

peripheral blood compared with tumours, using flow cytometry for both analyses292. 

A study by Won et al. found a lower number of circulating mucosal-associated 

invariant T-cells in mucosa-associated cancers (including colon cancer) compared to 

healthy controls293. Sun et al. found that several immune-related genes were 

upregulated in blood samples from CRC patients compared with healthy controls. 

Furthermore, the gene protein phosphatase 3 regulatory subunits Bα (PPP3R1) was 

especially associated with poor prognosis294. In this latter study, the CRC patients 

were significantly older than the healthy controls, which may have influenced the 

results. The beneficial effect of a local cancer-specific immune reaction in CRC is 

well documented and has been shown to be related to a better outcome. However, a 
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lower immune response is associated with a worse prognosis226, 237, 295, 296. Liquid 

biopsies, especially in the blood, are evolving in other fields of cancer diagnostics for 

the early detection and tracking of biomarkers297. The role of liquid biopsies for 

immune cells as prognostic markers in CRC remains unsettled. 

5.2 Immune score for colon cancer 

 

In Papers I and II, we developed a method for quantifying T-cells in CRC. In Paper 

I, two different digital image analysis methods to quantify T-cells in the tumour were 

explored. We found that analysis of whole-section scans gave the highest correlation 

with T-cells in the corresponding blood samples. The method emanates from the 

constructed principle of Immunoscore® (HalioDx, Marseille, France), which has 

been validated in a large international cohort series237. Over the years, there has been 

a shift in methodology for calculating iImmunoscore, from analysis on tissue micro 

arrays to analysis on whole section scans226, 237. In addition, the classification of 

Immunoscore® (HalioDx, Marseille, France) has been changed from five to three 

categories237, 240. The calculations, including the cut-off values, are largely under 

wraps237, complicating the method’s reproducibility. In addition, the commercially 

available Immunoscore® (HalioDx, Marseille, France) is adapted to certain 

manufacturers of antibodies and autostainer237, and this may prevent pathology 

departments from setting up the method with equipment available in their laboratory. 

Others have developed deep learning methods to analyse tumour-infiltrating 

lymphocytes in CRC and have found an association with survival23, 298. 

Our method for immune score (Paper II) may represent an alternative that is 

adaptable, easy to implement, affordable and objective and provides transparency for 

reproduction. The latest guidelines from the European Society for Medical Oncology 

recommend that Immunoscore® (HalioDx, Marseille, France) be considered in 

conjunction with TNM to refine the estimate of prognosis for early colon cancer 

patients and assist chemotherapy decision making in stage II and low-risk stage III 
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patients299. This highlights the necessity of this parameter in clinical practice. 

However, pathology departments must be able to determine immune scores using the 

available equipment. Integration with digital software must also be possible, as 

pathology departments are transitioning to digital pathology. The necessity of an 

immune score is also highlighted as an indication for immunotherapy becomes more 

available. Chalabi et al. showed that neoadjuvant immunotherapy decreased primary 

tumours in MSI–high colon cancer patients. In several cases, the tumour disappeared 

completely. Some patients with MSS tumours also responded to immunotherapy300, 

and an immune score might be a tool for selecting these patients231. 

5.3 Digital image analysis of proliferation markers in 
neuroendocrine neoplasms 

 

In Paper III, we quantified two different proliferation markers in GEP-NENs, where 

one of the markers, Ki67, is currently used in diagnostics. Previous studies have 

shown that digital image analysis or counting on a camera captured/printed image 

gave the best results for evaluating Ki67 in GEP-NENs14, 15. The same studies found 

that eyeball estimation had the lowest agreement and reproducibility. In this study 

(Paper III), we found more grade 2 tumours when digital image analysis calculated 

the Ki67, but when we compared the percentage of digital image analysis Ki67 with 

the pathology Ki67, we found excellent agreement. We think that an explanation for 

this finding is that many of these cases had a percentage between 2% and 4%, which 

is around the cut-off value to separate WHO grade 1 and grade 2 tumours. Another 

explanation might be that eyeball estimations of Ki67 tend to downgrade more NETs 

to grade 1 than evaluations by digital image analysis, as found by Kroneman et al.301. 

A study by Owens et al. found that digital image analysis overestimated the Ki67 

percentage compared with manual counting, but increasing the hot spot size reduced 

the difference302. One can discuss whether manual evaluation should be the reference 

standard303, 304 since we believe that many of the diagnostic cases have been evaluated 

with eyeball estimation, while others have been counted properly. A study by 
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Hacking et al. did not manage to establish a good concordance between digital image 

analysis and manual counting, and an explanation might be the program/software 

used for digital image analysis in their study305. In our routine practice today, we 

always use quantitative counting if there are Ki67-positive cells in the tumour. This 

was not the case when the cohort was established. We have not yet established a 

routine for digital image analysis Ki67, but hopefully, we will get more experience 

with the method when digital pathology is established in our department.  

In Paper III, we explored PHH3 as a marker in GEP-NENs. The results for PHH3 

varied, and agreement with WHO grade was worse than for the digital image analysis 

Ki67. This parallels the results of others257, 305, 306. Villani et al. found this marker to 

be of prognostic value in pancreatic NEN256 and seven mitosis pr. 10 high power 

fields differentiated between low-and high-risk patients. We did not explore whether 

this marker or Ki67 gives prognostic information about disease-free survival or 

overall survival in this study. The challenge with these comparisons is the limited 

number of patients in this study and the prognosis varies depending on tumour 

localisation175. 

  

5.4 Methodological considerations and limitations 

 

5.4.1 Study population 

 

Two different study populations were included in this study. Paper I is a feasibility 

study with a limited number of patients. The aim of that study was merely to test the 

hypothesis that there is an association between blood and tumour T-cell count, which 

we could confirm. In Paper II, the total number of patients was 119, which is quite 

low for analysing disease-free survival and overall survival. In addition, there is no 

validation cohort. Validation is necessary to demonstrate any predictive or prognostic 
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impact of our immune score method. However, the ACROBATICC cohort is 

consecutive and thus should not have an inherent referral bias. This makes our results 

more robust.  

In Paper III, 159 patients were included. For GEP-NENs, this is quite a large cohort. 

In addition, the cohort includes quite an even distribution of WHO grade 1–3. 

Compared with similar studies, the number of included patients with grade 2 and 3 

tumours were high14, 15, 252, 303-305. Like with the ACROBATICC cohort, we lack a 

validation cohort for the GEP-NENs. A validation of our findings in another cohort 

will be necessary, with data for disease-free survival and overall survival, to 

demonstrate the predictive and prognostic impact of digital image analysis methods. 

A drawback of Paper III is that almost 40% of the tumour samples were from 

biopsies. Therefore, the material was more fragmented, and the sample size was 

smaller compared to surgical specimens. However, this parallels current routine 

practice at many centres, as surgical specimens are not achievable for all patients, 

especially patients with advanced disease197. A study by Yang et al. showed that the 

Ki67 staining of core biopsies was reliable for the prognosis of metastatic NETs to 

the liver, despite tumour heterogeneity307. The same biopsies were compared using 

different methods in this study; therefore, a small sample size should not affect the 

comparison. However, PHH3 was omitted for some of the samples.  

  

5.4.2 Reference standard 

 

In Paper II, we did not compare our method with the patented Immunoscore® 

(HalioDx, Marseille, France). Immunoscore® (HalioDx, Marseille, France) is the 

closest resemblance to a reference standard, but the calculations in this method are 

different, using intervals of 0%–25%, > 25%–70% and > 70%–100% for mean 

percentiles237. However, it would be interesting to see whether our method for an 

immune score gave similar results. Unfortunately, since our laboratory used different 

equipment and our immune stains were done with different antibodies/laboratory 
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equipment, we could not have sent our IHC slides for evaluation either, but we had to 

send the tumour blocs for an evaluation. This was quite expensive and was not done.  

In Paper III, the digital image analysis of Ki67 was compared with manual counting 

from the corresponding pathology report. Several pathologists have been involved in 

diagnostics, and there might be differences in how they count and grade these 

tumours. These data are subjective histopathological scores39 and reflect routine 

practice in different pathology departments. Tumours were graded and staged, and 

patients underwent follow-up based on these evaluations. Discussions are ongoing 

regarding whether digital image analysis of Ki67 versus manual counting should be 

the reference standard15, 303, 304. Digital image analysis is more objective and 

reproducible than manual counting due to several known cognitive and visual biases 

hampering human visual evaluation of tissue39. This favours digital image analysis. 

For breast cancer, several studies have shown superior prognostic information from 

digital image analysis308, 309. For GEP-NENs, Tang and co-workers demonstrated the 

best agreement with the digital image analysis of Ki6715. The same is true for similar 

studies14, 305, but none of these studies compared their results with disease-free 

survival or overall survival.  

 

5.4.3 Digital image analysis 

 

Digital image analysis was used in all of our papers to evaluate prognostic and 

predictive markers. The biggest challenge with digital image analysis in Papers I and 

II was that the same analysis was performed on two different slides. Although slides 

for IHC CD3 and CD8 were cut immediately following each other, there were small 

differences between one image and the next. In addition, the orientation of the 

sectioned tissue was of significance. In Paper I, we used two different applications 

for digital image analysis of the same scanned images. For one of the applications in 

Paper I, tissue orientation on the CD3 and CD8 slides did not matter, as the region of 

interest was circular. For the other method, using a whole-section scan, the 
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orientation of the tissue was important for us to mark the same region of interest on 

both slides. In all of our papers, the region of interest was manually annotated in the 

scanned images. This process might be biased compared with an automated 

annotation of the region of interest. For the region of interest shaped as 2 mm circles 

in Paper I, the circles were placed in the centre of the tumour and at the deepest 

infiltration of the invasive margin. For the whole section scans, a larger region of 

interest was employed for the analyses, largely avoiding selection bias.  

Manual scoring of IHC slides has the inherent possibility of several biases and errors 

compared to digital image analysis, wherein visual traps/optical illusions are 

avoided39. With manual scoring, the region of interest was selected by the pathologist. 

So, although selection bias might be present using digital image analysis with manual 

annotation, the same bias is present in manual scoring.  

Not only does the method used for digital image analysis matter, but the work 

beforehand must also be optimal and standardised. Several preanalytical variables 

may affect the results of digital image analysis, such as tissue collection, fixation 

time, section thickness, morphologic criteria for assessment and the staining 

processes310. In our laboratory, we have procedures for handling the tissue, fixation 

time, section thickness, etc. to avoid bias from such variables. The same technician 

was also used to section the samples for the different studies. Furthermore, digital 

image analysis can be hampered by poor slide quality and a lack of consistency in 

slide preparation. In addition, the digital image analysis results can be greatly affected 

by the quality of IHC6. As mentioned in the method, our laboratory participates in 

Nordic immunohistochemical Quality Control (NordiCQ) to ensure standardised and 

recommended protocols for IHC196. 

In Papers I and II, we analysed the number of cells in an area given as n cells/mm2. 

The mean nuclear area of the lymphocyte was the basis for the algorithm. As the 

image analysis software measured area rather than register entities, the IHC staining 

intensity of positive cells was important. Although CD3 and CD8 staining of T-cells 

are similar, there are differences in staining intensity between the slides and from 
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patient to patient. Therefore, it is of great significance that the algorithm for digital 

image analysis is trained to recognize different staining intensities to make it more 

robust285. In our study, we used the Bayes classifier to ensure that the application of 

digital image analysis could handle different staining intensities. Since we 

programmed the applications ourselves, we could adjust the different applications 

until we found the results satisfying to perform digital image analysis. 

In Papers I and III, we used segmentation to distinguish the stroma from the 

epithelium and identify negative IHC-stained nuclei (Paper III). This process is often 

difficult in the presence of adjacent or overlapping cells, which can lead to under-

segmentation or over-segmentation285. There are several ways to adjust the 

application for digital image analysis to avoid these issues311. When developing 

algorithms for digital image analysis, it is often necessary to prioritise between 

sensitivity (how likely the algorithm is to capture a weakly stained nucleus or cell), 

specificity (how well the algorithm rejects artefacts) and contour accuracy (how well 

the algorithm can approximate the exact shape of the nucleus or cell)1.  

In all our papers, we used a software called Visiopharm® (Hoersholm, Denmark). 

This is licenced commercial software. The alternative would be an open-source 

software312. Options for adaptions and adjustments are often better in commercial 

software compared to open-source software1. The Visiopharm® (Hoersholm, 

Denmark) offers CE-IVD applications for use in the diagnostic workflow, which 

means that the programme is approved according to the requirements of the European 

Union for in vitro diagnostic medical devices313. We did not use these applications in 

diagnostics but programmed and adjusted the applications according to what we 

wanted to examine in our studies. To our knowledge, no CE-IVD applications are 

available for either scoring immune cells or measuring proliferation in NEN. There 

are, however, applications for CE-IVD Ki67 in breast cancer314.  
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6. Conclusion and future perspectives 
 

We developed a whole slide digital pathology template to quantify immune cells 

(Papers I and II) in CRC using imaging software. In Paper II, we established an 

immune score based on the distribution volumes of CD3 and CD8. We found that 

immune scores correlate with known clinicopathological parameters, such as MSI 

status and stage of the disease. In Paper I, we found an association between T-cells 

in the blood and T-cells in the tumour, but this association was not investigated 

further. Thus, there is a need for large-scale internal and external validation to 

demonstrate the robustness and adaptability of the immune score for clinical use in 

CRC. We initiated such validation with a follow-up study encompassing a larger 

cohort of ACROBATICC patients. We hope that this will provide further information 

about the predictive and prognostic value of the immune scores we developed. 

In Paper III, we successfully developed a digital image analysis for grading GEP-

NENs based on Ki67 IHC. The method can be integrated with routine diagnostics in 

pathology departments that are digital. However, because of the heterogeneity of the 

disease, it is difficult to obtain reliable data regarding disease-free survival and 

overall survival. Survival rates need to be further evaluated in subsequent studies to 

gain more information about this method’s predictive and prognostic value. PPH3 

needs to be further evaluated in a larger cohort to determine whether it can be of any 

predictive or prognostic value in GEP-NENs patients. It might be of prognostic value 

in subpopulations of GEP-NENs, such as NET grade 3 versus NEC grade 3 or large-

cell or small-cell NEC.  

With the implementation of digital pathology, there is a need for validation of both 

equipment and whole slide imaging, including methods for digital image analysis315, 

316, to ensure that the developed methods can be safely used at different laboratories. 

This requires both national and international collaboration. In Norway, the National 

Department of Health has appointed a national forum to address equipment issues. 

This forum will also establish guidelines for standardisation for handling 

tissue/surgical specimens, macroscopic examination and reporting of results317. It is 
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difficult to predict how this will be implemented and what the ramifications will be. 

Hopefully, it will enhance quality control and provide results based on more robust 

and comparable diagnostics across pathology departments. It would be interesting to 

perform a similar analysis for digital image analysis to what we conducted with open-

source software tools. It would be a great advantage if the method could be used in 

platforms available to pathology departments free of cost. We hope to evaluate 

immune score on other digital image analysis platforms in close collaboration with 

researchers within our network. 
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9. Errata 

In Paper I, the terminology ‘invasive front’ is used in the published paper. The 

terminology has changed to ‘invasive margin’ in the international literature, so 

‘invasive margin’ is used as terminology in the PhD thesis.   
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Background In colon cancer, the location and density of tumor-infiltrating lymphocytes (TILs) can classify patients into low 
and high-risk groups for prognostication. While a commercially available ‘Immunoscore®’ exists, the incurred expenses and 
copyrights may prevent universal use. The aim of this study was to develop a robust and objective quantification method of 
TILs in colon cancer.
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histopathological characteristics to confirm its relevance.
Results Based on the quantified TILs numbers by digital image analyses, patients were classified into low (n = 83, 69.7%), 
intermediate (n = 14, 11.8%) and high (n = 22, 18.5%) immune score groups. High immune score was associated with stage 
I–II tumors (p = 0.017) and a higher prevalence of microsatellite instable (MSI) tumors (p = 0.030). MSI tumors had a sig-
nificantly higher numbers of CD3 + TILs in the invasive margin and CD8 + TILs in both tumor center and invasive margin, 
compared to microsatellite stable (MSS) tumors.
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Introduction

Colorectal cancer (CRC) is a leading cause to the cancer bur-
den and cancer deaths worldwide. Despite improvements in 
surgical and oncological management over the last decade [1], 
about half of all patients will develop metastasis and eventually 
die from disseminated disease [2]. The Tumor–node–metasta-
ses system (TNM classification) used for staging and prognos-
tication is imperfect in its ability to correctly guide treatment 
and define appropriate subgroups beyond surgical treatment 
[3]. The TNM system largely dependent on using the node sta-
tus to guide further adjuvant treatment, and as a consequence 
there is ongoing risk for under- and overtreatment of patients, 
based on the current guidelines for adjuvant chemotherapy 
[4, 5].

Of note, emerging data suggest the role of molecular sub-
types with distinct features and associated outcomes [6, 7]. 
Among the suggested consensus molecular subtypes is the 
“immunogenic” type, which is associated with hypermuta-
tion, microsatellite instability (MSI) and a favorable prog-
nosis. Abundant immune cells are found in the vicinity of 
such tumors and the type, density and location of the immune 
cells within tumor samples strongly influence the evolution 
of CRCs [8, 9] with impact on prognosis reported in large, 
multicenter studies [10–12]. This adaptive immune response 
of T-cells in tumor has been quantified as a measure called 
“Immunoscore®” (HalioDx, Marseille, France) [11, 13], and 
is available commercially as a test [14]. However, the costs 
implied with the commercially available assay may be pro-
hibitive in a public health care setting and/or may currently 
not be reimbursed for clinical routine use. More widespread 
use of immune scoring could be available if easy, accessible 
and low-cost methods would allow for stratification of immu-
nogenic tumors. Moreover, manual and subjective assessment 
such as counting cells, is increasingly being replaced by digi-
tal pathology in routine practice in departments of pathology 
[15, 16]. The benefits of digital pathology include objective 
measurement on regular slides [17] with a quantitative read of 
how many cells of interest are present in an area using immu-
nostained sample slides. The highly objectivity and quantita-
tive approach makes it easier to compare high number of tissue 
slides from patients and correlate to disease outcome.

The aim of this study was to establish an objective and 
highly reproducible quantification method for tumor-infil-
trating lymphocytes (TILs) in colon cancer and to correlate 
immune score to clinicopathological characteristics and MSI 
status.

Methods

Study design

Patients were recruited from an ongoing prospective, clin-
ical-molecular biomarker outcomes study, the ACROBAT-
ICC project [18] (clinicaltrials.gov ID: NCT01762813). 
This cohort study is reported according to the STROBE 
[19] and the REMARK [20] guidelines for biomarker 
studies.

Compliance with ethical standards

The study is conducted in accordance to national regulations 
and approved by the Norwegian Regional Ethics Committee 
(REK Helse Vest, #2012/742). All procedures performed 
in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national 
research committee and with the 1964 Helsinki Declaration 
and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all partici-
pants prior to inclusion in the study.

Study population

All patients were diagnosed, managed and followed-up 
at Stavanger University Hospital (SUH), a public-funded 
university hospital within the universal health care sys-
tem of Norway. The protocol [18] and study cohort have 
been described in further detail elsewhere [21, 22]. The 
current study is based on patients with stage I–III colon 
cancer from the initial cohort recruited between January 
2013 and May 2014 [21] that did not undergo neoadju-
vant treatment. Of 132 consecutive stage I–III colon can-
cers, 119 were included in the study. Patients with two or 
more invasive colon carcinomas at time of surgery were 
excluded from the study, as these tumors might have a 
different biology [23]. When multiple tumor blocks were 
present, the tumor block that included invasive margin and 
most immune cells was selected for analysis [24].

Histopathology

All specimens were staged (AJCC 8th edition) [25, 26] 
by board certified pathologists using a standardized gross 
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pathology and microscopic histopathology template for 
reporting.

Immunohistochemistry

Antigen retrieval and antibody dilution were optimized prior 
to the study onset. Adjacent to the hematoxylin–eosin (H&E) 
stained sections, consecutive 2 µm paraffin sections were cut 
and mounted onto Superfrost Plus slides (Menzel, Braun-
schweig, Germany), along the principles suggest previously 
[27]. The CD3 and CD8 slides were incubated at 60 °C for 
1 h and then placed in the autostainer (Dako Omnis), where 
they were subject to an automated protocol as per manufac-
turer instructions, with a pretreatment at 97 °C in 30 min. 
CD3 (Dako Clone F7.2.38) was diluted with Dako Antibody 

diluent by 1:75 and CD8 (Dako Clone C8/144B) by 1:50. A 
peroxidase detection kit (Envision substrate working solu-
tion, Dako, Glostrup, Denmark) visualized the immune com-
plex for all the antibodies. Sections were then counterstained 
with hematoxylin in the Dako Omnis stainer. Afterwards, the 
slides were dehydrated and mounted manually.

Digital pathology assessment

CD3- and CD8-stained slides were scanned at 40 × mag-
nification using Leica SCN400 slide scanner (Leica 
Microsystems, Wetzlar, Germany) and uploaded to image 
analysis software,  Visiopharm® (Hoersholm, Denmark). 
The region of tumor center (TC) and invasive margin (IM) 
were marked manually on whole slides in  Visiopharm® 

Fig. 1  a Hematoxylin–eosin staining of tumor. b Immunohisto-
chemical staining of CD3 (brown) in the same tumor with marking 
of tumor center/TC (blue) and invasive margin/IM (green). c Digital 
image analysis measured the CD3 + tumor-infiltrating lymphocytes 
(TILs) in TC and IM. The number of positive TILs was calculated pr. 

 mm2. The same tumor area was analyzed for CD3 and CD8 for each 
patient. d Close-up view that shows positive TILs marked with green. 
Negative nuclei are marked blue and surrounding stroma is marked 
red
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and these regions (region of interest, ROI) were used for 
CD3 + and CD8 + cell quantification (Fig. 1).  Visiopharm® 
identified and measured the area of positive cells (µm) 
using digital image analysis (DIA). After DIA, the area 
of positive cells were transformed into number of positive 
TILs based on the estimation of mean area of a lympho-
cyte (60 µm2). The number of positive CD3 + and  CD8+ 
TILs was calculated per square millimeters (n cells/mm2) 
[28], further represented as density of cells.

Unspecified stains and artefacts were removed manu-
ally using the image software. Application in the image 
software was adjusted for detection of different immune 
stain intensity.

Immune response was calculated based on mean den-
sities of CD3 + and CD8 + in TC and IM in all of the 
patients in the study. The calculated mean density was 
used to divide the individual cases into “high” or “low” 
immune response. Cases with mean density ≥ 75-percen-
tile were regarded as “high” immune response. Patients 
were stratified from I0 to I4 according to the “Immu-
noscore®”, based on the total number of observed high 
densities  (CD3+ TILs and  CD8+ TILs in TC and IM) [11, 
13]. The final immune score was categorized based on 
mean percentiles for all four markers, and divided into 
immune score “low”, “intermediate” and “high” based on 
the number of markers (0–4) ≥ 75th percentile (Fig. 2).

Histopathological parameters

Histopathological parameters were registered from the 
pathology report including mucinous component, lympho-
vascular infiltration and lymph node status. In addition, 
tumor budding was registered in the HE section with deepest 
infiltration according to recommended guidelines [29, 30].

Analysis of microsatellite instability

Analysis of MSI has been described previously [31, 32]. 
Briefly, FFPE blocks were selected by an experienced 
pathologist (DL) and 4 × 10  μm sections were cut at a 
microtome. Automated DNA extraction was carried out 
using AllPrep DNA/RNA FFPE kit (Qiagen, Hilden, Ger-
many) on a QiaCUBE instrument (Qiagen) according to 
manufacturer’s instructions. Nucleic acid concentration and 
purity were measured on a NanoDrop 2000 (ThermoFischer 
scientific, Waltham, USA). Multiplex PCR reactions (one for 
each MSI) were set up for tumor and normal DNA in each 
patient. TypeIT microsatellite (Qiagen) master mix, together 
with a blending of 5 × 5′-fluorescently labelled primer pairs 
was used for each reaction. PCR conditions were as follows: 
5′ at 95 °C (initial denaturation and enzyme activation), fol-
lowed by 37 cycles of 30″ at 95 °C (denaturation), 90″ at 
55 (MSI) and 30″ at 72 °C (extension). A final extension 
step for 30′ at 60 °C. The primers for MSI were specific for 

Fig. 2  Flowchart for calculating immune response based on mean densities of CD3 + and CD8 + in tumor center (TC) and invasive margin (IM)
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BAT-25, BAT-26, NR-21, NR-24 and NR-27 [33, 34], which 
are all quasimonomorphic mononucleotide repeats with a 
high fidelity to high-frequency MSI, as shown previously 
[32]. To define a tumor as MSI, at least 2/5 markers needed 
to be unstable in their panels.

Statistics

IBM SPSS Statistics for Windows, Version 26.0 (IBM Cor-
poration, Armonk, NY, USA) was used for statistical analy-
sis. Associations between categorical variables were tested 
with Chi-square. Mann–Whitney U test was used to com-
pare differences in continuous or ordinal variables between 
groups. All tests were two-tailed and a p value < 0.050 was 
determined as statistically significant.

Results

The study cohort included 119 stage I–III colon cancer 
patients that underwent surgery with curative intent. Patient 
characteristics is presented in Supplement Table 1. Accord-
ing to the TNM classification, the distribution between stage 
I–III were approximately equal (31%, 36% and 32%, respec-
tively). Slightly more women were noted in the cohort, oth-
erwise the distributions were as expected for a consecutive 
cohort of colon cancer, with lymph node status, tumor size, 
histological type and grade, and overall age.

Distribution of the number of CD3 + and CD8 + TILs 
in TC and IM is presented in Fig. 3. The number of TILs 

was higher in IM compared with TC, both for CD3 + and 
CD8 + cells. Percentiles for evaluating immune response 
based on density (cells/mm2) of CD3 and CD8 is presented 
in Table 1. The total numbers of cells/mm2 counted in 
the upper range (75th percentile) were almost double in 
the invasive margin compared to tumor center, for both 
CD3 + and CD8 + cells, respectively. Table 2 shows dis-
tribution of cases with high immune response (≥ 75th 
percentile) in the different regions. These results were 
summarized to calculate immune score, which is pre-
sented in Table 3. According to the immune score set up 
(Table 3), there number of patients in the immune score 
groups of low, intermediate and high was 83 (69.7%), 14 
(11.8%) and 22 (18.5%), respectively. Hence, two-thirds 
of the colon cancers were deemed immune-low, with the 
immune-high cases split even between a three of four and 
four of four regions marked as immune high.

Fig. 3  Distribution of number of CD3 + and CD8 + TILs in tumor center (TC) and invasive margin (IM)

Table 1  Density (cells/mm2) cut-off values based on highest quartiles 
(75th percentile)

Tumor center Invasive margin

CD3 + CD8 + CD3 + CD8 + 

cells/mm2 cells/mm2 cells/mm2 cells/mm2

Median 393 220 858 513
Percentiles 25th 187 112 452 277

50th 393 220 858 513
75th 760 466 1390 896
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Higher immune scores were associated with a higher 
frequency of stage I–II tumors (p = 0.017) and a higher 
prevalence of MSI tumors (p = 0.030), compared with 
tumors from intermediate and low immune score. Three of 
22 patients with high immune score had stage III disease, 
whereas for stage I and II the number was 12 and 7, respec-
tively. For patients with low immune score, 19 were stage 
I, 34 stage II and 30 stage III. For intermediate immune 
score, the corresponding number of patients were 6 stage I, 
2 stage II and 6 stage III. Twelve of 42 MSI tumors (28.6%) 
had high immune score and 10 of 77 microsatellite stabile 
(MSS) tumors (13.0%) had a high immune score, respond-
ing to twofold increase of immune-high cases in the MSI 
colon cancers.

Tumors with MSI had a significantly higher number 
of CD3 + TILs in IM and CD8 + TILs in both TC and IM 
(Fig. 4). There was no significant association between high 
immune score and sex, median age, localization, grade, 
tumor size, N-status, tumor budding, lymphovascular or 
perineural infiltration.

Discussion

In this study, we present an objective automated, digital 
quantification method of CD3 + and CD8 + lymphocytes at 
IM and in TC in colon cancer. The resultant immune score 
is strongly associated with TNM stage and microsatellite 
instability, two well-documented and very strong prognostic 
factors in colon cancer. The immune score allowed to stratify 

patients into low, intermediate and high immune response 
groups. The quantification should be easy to use by other 
digital pathology laboratories and represent a robust and 
objective approach to immune cell quantification in colon 
cancer specimens.

The method is based on the construct principle of the 
“Immunoscore”, which has been validated in a large interna-
tional cohort series [11]. However, this commercially avail-
able  Immunoscore® (HalioDx, Marseille, France) is adapted 
to certain manufactures of antibodies and autostainer [11], 
and may prevents laboratories from setting up the method 
with available equipment in the laboratory. Widespread eval-
uation and dissemination may thus be hampered. Hence, the 
current quantification may represent an alternative measure-
ment that is adoptable, easy to implement, affordable and 
objective, yet provides transparency for reproduction.

We found that the number of TILs is significantly higher 
at the IM than in TC, corresponding to a previously reported 
study [35]. Furthermore, our study showed that patients with 
high immune score were associated with an earlier stage of 
the disease, which might explain why high immune score is 
associated with better prognosis. Several studies show that 
TILs play a significant role for prognosis in colon cancer. 
Mlecnik et al. found that a high density of CD8 + TILs is 
associated with reduced risk of relapse [35], whereas Angell 
and co-workers [36] found that tumors with reduced num-
bers of CD8 + had a higher risk of metastasis. A recent meta-
analysis of 22 studies including 5108 patients by Zhao and 
co-workers, found that high CD3 + infiltrates in colon can-
cer correlated with improved cancer-specific survival and 
overall survival. Furthermore, the same study found that 
high density of CD3 + in IM indicated increased disease-
free survival (DFS) and high CD8 + in TC was associated 
with improved DFS [37]. The abovementioned studies all 
support that scoring TILs in colon cancer can give valuable 
prognostic information.

In the NICHE study [38], the investigators explored the 
safety and efficiency of neoadjuvant immunotherapy (ipili-
mumab and nivolumab) in operable colon cancers. Despite 
being a small phase I/II study with over half being MSI 
cancer, a remarkable response was found (pathological 
response in 20/20 MSI patients; 19 had major pathological 

Table 2  Distribution of patients 
(n) with high immune response 
(≥ 75th percentile) in different 
regions

Tumor center Invasive margin

CD3 Low CD3 High CD8 Low CD8 High CD3 Low CD3 High CD8 Low CD8 High

0 of 4 69 0 69 0 69 0 69 0
1 of 4 13 1 12 2 9 5 8 6
2 of 4 5 9 5 9 8 6 10 4
3 of 4 3 8 3 8 3 8 2 9
4 of 4 0 11 0 11 0 11 0 11
Total 90 29 89 30 89 30 89 30

Table 3  Immune score based on high tumor density of CD3 and CD8 
in different regions

Number of regions Patients (n) Means of markers

0 of 4 69 Low
1 of 4 14
2 of 4 14 Intermediate
3 of 4 11 High
4 of 4 11
Total 119
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response and 12 had complete pathological response. Even 
in tumors with MSS, 4 of 15 had response [38]. As density 
of immune cells were related to response, a pre-treatment 
biopsy may become important. While not investigated in 
the NICHE study, the current template for immune score by 
digital pathology may become essential to select the patients 
who would benefit from such treatment in the future. Of 
note, half the patients in the NICHE study had MSI tumors, 
suggesting a selection of the included patients. The current 
rate of 35% MSI is high, but reflect that only colon (and no 
rectal) cancers were selected for the cohort and, is in line 
with previously reported data for such cohorts [39].

So far, and to the best of our knowledge, no biomark-
ers based on digital image analysis (DIA), has been used 
in pathological classification of colon cancer [24], despite 
digital pathology now being steadily introduced in routine 
diagnostic practice at several pathology departments. While 
there is a lack of consensus biomarkers for use, the imple-
mentation and spread in use makes it easier to use DIA in 
diagnostic setting and to perform prognostic scoring. For 
immune score to become an international recognized stand-
ard, it is important that it is available through affordable soft-
ware and that the method is transparent. Others have applied 
deep learning methods to analyze TILs in HE sections [40, 
41] and have found association with survival.

The added time and cost to stain and score relies on a 
couple of assumptions. One, a digital platform needs to be 
in place. We recognize that not all pathology labs may have 
this readily available, but increasingly this is being rolled 
out as the way forward to standardize scoring in quantitative 
pathology. Second, the time taken for a technician or bioen-
gineer to cut slides and prepare counts from the template is 
time efficient. If standardized and introduced into the routine 
pathway of clinical work, the estimated extra time for a bio-
engineer to cut, stain and prep for digital analysis would be 
in the range of 15–20 min; the pathologist’s time to mark the 
area for digital analyses would be part of the routine clini-
cal work and add a maximum of 30 min, but probably less. 
Hence, the use of this score should not be labor intensive nor 
require extensive human hours of labor.

The cost implied (given that digital pathology instruments 
are available in a given pathology lab) amounts to reagents 
for immunohistochemistry markers. These are usually avail-
able already in most labs, and in general inexpensive (esti-
mated at around 10 Euros per slide), but with variable costs 
between countries. Taken together, we believe that the tem-
plate for an automated immune score presented here would 
be both time efficient and cost containing.

Our study has some limitations to address, with one 
being the size of the cohort. A larger cohort size might have 

Fig. 4  Comparison of number of CD3 + and CD8 + tumor-infiltrating lymphocytes (TILs) of MSS and MSI tumors in tumor center (TC) and 
invasive margin (IM). Extreme values > 4000 cells is not shown in figure
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demonstrated more differences between the clinicopatho-
logical parameters in the patients to the high immune score 
versus the patients with intermediate and low immune score. 
Furthermore, the DIA method is not validated against manual 
pathology evaluation using a microscope and counting cells. 
This is near impossible (from a time and labour perspective 
implied) due to the high number of positive cells found in each 
tissue slide. However, the less time-consuming and labour-
efficient results obtained by DIA exemplifies the strength of 
using automated digital pathology to this extent. The interna-
tional effort of validating the “Immunoscore®” as a prognostic 
marker demonstrated value of the commercial test [11]. Future 
studies using easy-to-use, available, objective and reproduc-
ible methods to assess TILs in colon cancer may facilitate its 
wider dissemination and clinical implementation. With further 
validation, internally and externally, the role of the current 
template-based immune score should arrive at clinically rel-
evant use and be able to designate appropriate subgroups of 
patients stratified to their relevant therapy decisions.

Conclusion

A whole slide, digital pathology template using imaging 
software was developed to quantify immune score. Known 
clinicopathological features like MSI status correlated with 
a higher immune infiltrate, exemplified by a greater immune 
score. Large-scale internal and external validation to dem-
onstrate robustness and generalizability for clinical use is 
ongoing.
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Digital Image Analysis of the Proliferation Markers Ki67
and Phosphohistone H3 in Gastroenteropancreatic
Neuroendocrine Neoplasms: Accuracy of Grading

Compared With Routine Manual Hot Spot Evaluation
of the Ki67 Index

Dordi Lea, MD,*†‡ Einar G. Gudlaugsson, MD, PhD,* Ivar Skaland, PhD,*
Melinda Lillesand, MSc,* Kjetil Søreide, MD, PhD, FACS, FRCSEd,†‡§

and Jon A. Søreide, MD, PhD, FACS, FISS†§

Abstract: Gastroenteropancreatic neuroendocrine neoplasms
(GEP-NENs) are rare epithelial neoplasms. Grading is based on
mitotic activity or the percentage of Ki67-positive cells in a hot
spot. Routine methods have poor intraobserver and interob-
server consistency, and objective measurements are lacking. This
study aimed to evaluate digital image analysis (DIA) as an ob-
jective assessment of proliferation markers in GEP-NENs. A
consecutive cohort of patients with automated DIA measure-
ment of Ki67 (DIA Ki67) and phosphohistone H3 (DIA PHH3)
on immunohistochemical slides was analyzed using Visiopharm
image analysis software (Hoersholm, Denmark). The results
were compared with the Ki67 index from routine pathology re-
ports (pathology Ki67). The study included 159 patients (57%
males). The median pathology Ki67 was 2.0% and DIA Ki67
was 4.1%. The interclass correlation coefficient of the DIA Ki67
compared with the pathology Ki67 showed an excellent agree-
ment of 0.96 [95% confidence interval (CI): 0.94-0.96]. The ob-
served kappa value was 0.86 (95% CI: 0.81-0.91) when
comparing grades based on the same methods. PHH3 was
measured in 145 (91.2%) cases. The observed kappa value was
0.74. (95% CI: 0.65-0.83) when comparing grade based on the

DIA PHH3 and the pathology Ki67. The DIA Ki67 shows ex-
cellent agreement with the pathology Ki67. The DIA PHH3
measurements were more varied and cannot replace other
methods for grading GEP-NENs.

Key Words: neuroendocrine tumor, neuroendocrine carcinoma,
proliferation, digital image analysis, immunohistochemistry

(Appl Immunohistochem Mol Morphol 2021;29:499–505)

Gastroenteropancreatic neuroendocrine neoplasms (GEP-
NENs) comprise a heterogeneous group of rare, benign,

or malignant epithelial tumors (carcinoids) originating from
the pancreas (PNENs) or gastrointestinal tract (GI-NETs).
The reported annual incidence varies between 2.39 and
5.83 per 100,000 inhabitants according to international
literature,1,2 with an estimated prevalence of 35 per 100,000
because of the long survival times. The 5-year survival rates
vary between 40% and 100% and are associated with the
primary tumor site, tumor grade, and stage of disease at the
time of diagnosis.3–5 Moreover, GEP-NENs classified as
functional tumors (which secrete hormones or peptides to
cause clinical symptoms or syndromes) show a different bio-
logical behavior from those classified as nonfunctional GEP-
NENs,6 and tumor behavior is also associated with the his-
topathologic pattern, including the features of an
adenocarcinoma.7 The diagnostic criteria of neuroendocrine
tumors are based on morphology and the positive staining of
the neuroendocrine markers synaptophysin and/or chromog-
ranin A by immunohistochemistry (IHC).8

According to the World Health Organization (WHO)
criteria, the grading of GEP-NENs is based on the evalua-
tion of mitotic activity, either by counting mitosis, the so-
called “mitotic activity index” (MAI), on hematoxylin and
eosin (HE)-stained slides or by calculating the percentage of
Ki67-positive cells in a hot spot (Table 1).9,10 The highest
grade should apply if any discordance between the MAI and
Ki67 index assessment occurs.10 The Ki67 index predicts
prognosis better than MAI.11
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One of the challenges related to the current routine
grading procedure is the time-consuming counting of >500
cells by a pathologist, which may lead to an eyeball esti-
mation as a short-cut in a busy routine practice. Moreover,
the identification of “hot spots” in a section may be
difficult,12 which may partly explain the reported poor in-
traobserver and interobserver reliability.13 Consequently,
objective measurements, including digital image analysis
(DIA), are warranted for accurate grade reporting.

The heterogeneous biological behavior of GEP-NENs
has encouraged a search for better prognostic markers. Phos-
phohistone H3 (PHH3) has been identified as a promising
marker for the prediction of disease-free survival and disease-
specific survival in PNENs.14,15 In contrast to Ki67, which is
present in cell nuclei in the G1, S, G2, and M phases of the cell
cycle, PHH3 stains mitotic cells (M phase). Thus, with PHH3,
mitotic activity can be specifically determined;16 therefore,
PHH3 has been suggested as an alternative to the Ki67 index in
PNENs.17 Furthermore, counting MAI is challenging because
apoptotic figures can be misidentified as mitotic figures.17,18

PHH3 does not stain apoptotic cells and can therefore be a
better biomarker for mitosis than MAI. Several studies have
shown good concordance between the number of mitoses and
PHH3.19,20 Accordingly, PHH3 is regarded as promising for
the assessment of grading in GEP-NENs in general.

In this study, we evaluated and compared the DIA
Ki67 with the routine procedure for the Ki67 index as-
sessment (pathology Ki67). In addition, we applied DIA
for PHH3 assessment (DIA PHH3) to explore possible
associations between PHH3 and the Ki67 index to eval-
uate the potential advantages or challenges of PHH3 as a
proliferation marker in routine practice.

MATERIALS AND METHODS

Ethical Approval
All procedures performed in studies involving human

participants were per the ethical standards of the institutional
and/or National Research Committee and the 1964 Helsinki
Declaration and its later amendments or comparable ethical

standards. This project was approved by the Regional Ethics
Committee of the Western Health Authority (REK 2016/
1622). Patients still alive have signed a written consent form to
participate.

Materials
We identified all consecutive patients diagnosed with

GEP-NENs and treated at Stavanger University Hospital
from 2003 to 2013. The hospital serves as the only hospital
for a well-defined Norwegian population of ∼380,000
people.2 Of 204 consecutive patients during that period, 35
declined to participate. In addition, 1 patient was excluded
because of the possibility of primary pulmonary neuro-
endocrine carcinoma, and 9 patients were excluded be-
cause of a lack of tissue for analysis. Thus, 159 (77.9%)
patients were included.

Archived formalin-fixed paraffin-embedded tissue from
the hospital’s diagnostic biobank was obtained. The current
WHO criteria for neuroendocrine tumors10 were used, and
pathologic tumor-node-metastasis (TNM) staging was per-
formed according to the American Joint Committee on Cancer
(AJCC) 8th edition.21 For Ki67, 500 to 2000 tumor cells were
assessed in hot spots by microscopic evaluation.21 The Ki67
index was retrieved from the original routine pathology reports,
and cases without available information were re-evaluated to
complete pertinent information on all patients, as reported in
our previous study.2

All tumors were confirmed as NENs by positive IHC
staining for synaptophysin and/or chromogranin A. Neuro-
endocrine carcinoma was included as grade 3 (high grade).
Mixed neuroendocrine–non‐neuroendocrine neoplasms were
excluded. The sample included 63 (39.6%) biopsies and 96
(60.4%) surgical specimens. MAI was not evaluated because
of the high number of biopsies with an area <10mm2.

Methods
IHC

Ki67. The MIB-1 clone (Dako, Glostrup, Denmark)
was used for routine staining at the Department of Pathol-
ogy. The method has had minor changes in processing from
2003 to 2013, but the MIB-1 clone has been the same. The
MIB-1 clone is validated for GEP-NEN grading.22,23

PHH3. Antigen retrieval and antibody dilution were
optimized before study onset. Paraffin sections adjacent to
the HE sections were cut into 2-µm-thick sections and
mounted on Superfrost Plus slides. The slides were in-
cubated at 60°C for 1 hour and stained using a Dako
Omnis immunostainer. PHH3 (nr. 06-570; Merck Group,
Darmstadt, Germany) was used at a dilution of 1:5000.
The Dako EnVision Flex+ (Dako GV80011-2) detection
system was used in line with the recommendations of the
manufacturer.

DIA
IHC staining of Ki67 was already performed, and

the available archived sections were retrieved from the
hospital’s archive. HE sections, Ki67, and PHH3 were
scanned at ×40 magnification using a Leica SCN400 slide

TABLE 1. WHO Grading of Neuroendocrine Tumors
(WHO 2019)

Grade Mitotic Activity, Per 2 mm2* Ki67%*

NET Grade 1 Low 1 < 3
NET Grade 2 Intermediate 2-20 3-20
NET Grade 3 High > 20 > 20
LCNEC High† > 20 > 20
SCNEC High† > 20 > 20
MiNEN Variable Variable Variable

*Mitotic rates are expressed as the number of mitoses/2 mm2 as determined by
counting in 50 fields of 0.2 mm2 (ie, in a total area of 10 mm2); the Ki67 pro-
liferation index value is determined by counting at least 500 cells in the regions of
highest labeling (hot spots), which are identified at scanning magnification.

†Poorly differentiated NECs are not formally graded but are considered high‐
grade by definition.

LCNEC indicates large‐cell neuroendocrine carcinoma; MiNEN, mixed
neuroendocrine–non‐neuroendocrine neoplasm; NEC, neuroendocrine carcinoma;
NET, neuroendocrine tumor; SCNEC, small‐cell neuroendocrine carcinoma;
WHO, World Health Organization.
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scanner (Leica Biosystems, Wetzlar, Germany) and up-
loaded to the image analysis software (Visiopharm,
Hoersholm, Denmark). The person responsible for the
DIA evaluation (D.L.) was blinded to the previously re-
ported routine Ki67 index results and other parameters
when DIA was performed. Patients were excluded from
the DIA if there was insufficient tumor material for
analysis (< 500 tumor cells). If a biopsy material and not a
surgical specimen was used for the original routine Ki67
evaluation, DIA was also performed on the biopsy sam-
ple, given that sufficient materials were available.

For Ki67, the percentage of positive tumor cells was
measured in the hot spot of the tumor in an area that
includes 500 to 2000 tumor cells with the Visiopharm
program (Fig. 1). The software program identified positive
nuclei (label 1) and negative nuclei (label 2) within a
manually selected area named the region of interest (ROI).
Stroma and stromal cells were excluded from the ROI by
the software program so that only the tumor cells were
evaluated, similar to our DIA Ki67 method described for
breast cancer.12 The percentage of tumor cells was
calculated. If the hot spot was ill-defined on a slide, the
measurement was repeated in different areas, and the area
with the highest positivity was counted. The program
measured the areas of positive and negative nuclei, and
based on the size of the nuclei in each tumor, an estimate
of tumor cells was calculated. A percentage was calculated
from ∼2000 tumor cells. If there were <2000 cells but
> 500 cells, a percentage was given based on the available
cells in the section. This value was compared with the
pathology Ki67 (regarded as the gold standard).

The number of PHH3-positive cells was calculated in 4
different ROIs of 2mm2 (ROI: 1 to 4) (Fig. 2). The different
ROIs were chosen subjectively from the visual identification of
areas with the highest number of PHH3-positive cells. The
number of PHH3-positive cells within each ROI was
calculated. If there was insufficient material for 4 ROIs,
fewer ROIs were chosen for measurement. For PHH3,
Visiopharm was programmed to detect IHC-stained mitotic
cells as described by others.24 Cells in all 4 substages of
mitosis, prophase, metaphase, anaphase, and telophase, were
regarded as positive.25 Objects smaller than mitotic figures
were removed by a size filter. The remaining objects were
dilated to fuse the chromatin structures of cells in anaphase or
telophase into 1 object. All remaining objects were counted,
and the number of objects per 2mm2 was calculated. The
counted objects were encircled in the original image, allowing
a visual inspection of the counted mitotic cells. Apart from the
manual selection of the 4 different ROIs, the DIA procedure
and all calculations were fully automated.

Statistics
IBM SPSS Statistics for Windows, Version 26.0 (IBM

Corporation, Armonk, NY) was used for statistical calcu-
lations. The quadratically weighted kappa was used to mea-
sure the agreement between ordinal variables.26 The interclass
correlation coefficient was used to measure the agreement
between continuous variables (single rater, absolute agree-
ment). All agreement estimates are presented with 95% con-

fidence intervals (CIs). Values <0.50, between 0.50 and 0.75,
between 0.75 and 0.90, and >0.90 indicated poor, moderate,
good, and excellent reliability, respectively.27 To plot the dif-
ference in pathology Ki67 and DIA Ki67 measurement
against average value, we used a Bland-Altman plot.28

RESULTS
The clinicopathologic characteristics of the patients are

shown in Table 2. The distribution of grading based on the
DIA Ki67, DIA PHH3, and pathology Ki67 are shown in
Figure 3. This figure shows that different methods influence
grading, with more grade 2 tumors and fewer grade 1 tumors
with the methods based on DIA than with the pathology
Ki67. The median pathology Ki67 was 2.0% (range: 1.0% to
100%). The median DIA Ki67 value was 4.1% (range: 0.0%

FIGURE 1. A, Hematoxylin and eosin staining of a grade 2
neuroendocrine tumor. B and C Immunohistochemical staining
of Ki67 with digital image analyses performed on the same
tumor. Black arrows point to some of the positive cells.
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to 99.9%). The interclass correlation coefficient of the DIA
Ki67 and pathology Ki67 showed an excellent agreement of
0.96 (95% CI: 0.94-0.98). Figure 4A shows a scatter plot of

the distribution of the DIA Ki67 and pathology Ki67. The
observed kappa between grading based on the DIA Ki67
and the pathology Ki67 was 0.86 (95% CI: 0.81-0.91).

FIGURE 2. A, Hematoxylin and eosin staining of a grade 2 neuroendocrine tumor. B, Digital image measurement of im-
munohistochemically stained phosphohistone H3 in 4 different regions of interest. C, Close-up image of hematoxylin and eosin
staining with marking of mitosis. D and E, Close-up image of the measurement of phosphohistone H3 in the regions of interest with
the highest mitotic activity.
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A Bland-Altman plot was created to visualize the difference
in agreement against average value of pathology Ki67 and
DIA Ki67 (Fig. 5).

The agreement between grading based on the DIA
Ki67 and the pathology Ki67 is shown in Table 3. None of
the grade 3 tumors was graded as grade 1 and vice versa.
Cases with less correlation between the methods
comprised mostly grade 1 and grade 2 tumors, and the
percentage was mostly measured higher (ie, > 3%) by DIA
than with the pathology Ki67. Among 26 cases with a
discrepancy between grades 1 and 2, Ki67 values of 2% to

TABLE 2. Demographics and Clinical Characteristics of the
Patients
Characteristics Value

Age, median (range), y 61.8 (12.5-94.2)
Sex, n (%)
Male 91 (57.2)
Female 68 (42.8)

Tumor size, median* (range), cm 1.7 (0.1-13.8)
Localization of tumor, n (%)
esophagus 2 (1.3)
Stomach 9 (5.7)
Duodenum 5 (3.1)
Small intestine 54 (34.0)
Meckel 1 (0.6)
Appendix 31 (19.5)
Pancreas 21 (13.2)
Colon 15 (9.4)
Rectum 14 (8.8)
Metastasis liver/unknown primary 7 (4.4)

WHO grade, n (%)
1 85 (53.5)
2 38 (23.9)
3 36 (22.6)

T classification*, n (%)
T1 51 (37.5)
T2 21 (15.4)
T3 50 (36.8)
T4 14 (10.3)

N classification*, n (%)
N0 69 (44.5)
N1 86 (55.5)

M classification*, n (%)
M0 95 (61.3)
M1 60 (38.7)

AJCC stage*, n (%)
I 51 (32.4)
II 12 (7.6)
III 34 (21.6)
IV 60 (38.2)

*Numbers may not add up because of missing data: n= 18 for tumor size,
n= 23 for T-stage, n= 4 for N-stage and M-stage and n= 2 for AJCC stage.

AJCC indicates American Joint Committee on Cancer; WHO, World Health
Organization.

FIGURE 3. Comparison of World Health Organization (WHO)
grading based on different methods for proliferation meas-
urement. PHH3 indicates phosphohistone H3.

FIGURE 4. A, Scatter plot showing the correlation between the
Ki67 index from the pathology report and Ki67 based on
digital image analysis. B, Scatter plot showing the correlation
between the Ki67 index from the pathology report and digital
measurement of the number of phosphohistone H3 (PHH3)-
positive cells per 2mm2.

FIGURE 5. A Bland-Altman plot showing the difference Ki67
index against mean value from the pathology report and Ki67
based on digital image analysis.
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4% were found in 24 (92.3%) of the cases by either DIA
Ki67 or pathology Ki67.

PHH3 was measured in 145 (145/159=91.2%) of the
patients. Fourteen patients were excluded because of a lack
of available tumor material for analysis. A median of 3
mitoses (range: 0 to 678 cells/mm2) was observed. Figure 4B
shows a scatter plot of the distribution of DIA PHH3 and
the pathology Ki67. The observed kappa between grading
based on the DIA PHH3 and pathology Ki67 was 0.742.
(95% CI: 0.65-0.83). The agreement between grading based
on DIA PHH3 and the pathology Ki67 is shown in Table 4.
For the DIA of PHH3, there were no grade 3 tumors that
were graded as grade 1. Moreover, 35 NENs were upgraded
from grade 1 to grade 2 based on the DIA PHH3
measurement compared with pathology Ki67. In 20 (20/
35=57.1%) of these tumors, the PHH3 value was 2 or 3.

DISCUSSION
The current study explored several comparative mea-

sures for grading by the use of DIA and alternative markers
for proliferation. Grading based on the DIA Ki67 showed
good reliability compared with grading based on the path-
ology Ki67. The use of DIA PHH3 for grading did not show
similar results, with a higher number of NENs migrating
between grades, especially grade 2, as a consequence.
Whether this represents true grade migration or just artefacts
from variation in scores remains unproven.

This study confirms an excellent agreement between
the DIA Ki67 and the pathology Ki67, a finding that is
supported by other studies.13,29 DIA can improve the re-
liability and reproducibility of grading in routine

practice.30 Thus, likely the pathology departments with
this method or similar DIA available, can use DIA Ki67
as a part of their routine diagnostics. Digital pathology
has during recent years, been introduced at more pathol-
ogy departments, and the numbers are increasing.31,32

Manual counting is often difficult because of the high
cellularity commonly encountered in these tumors.30 One
of the benefits of our DIA method of Ki67 is the auto-
matic separation of stroma and stromal cells from tumor
cells. This does not apply to all DIAs, which may partly
explain the previously reported poor concordance between
the DIA and manual analysis of Ki67 found by others.33

This study included a consecutive series from a pop-
ulation-representative cohort of GEP-NEN patients in a
well-defined region of Norway. Compared with other studies
of GEP-NENs, the number of included patients with grades
2 and 3 was high, and the distribution of different grades was
more even.13,17,30,33–35 A limitation of our study is that al-
most 40% of the tumor samples were from biopsies. How-
ever, this is in line with current routine practice at many
centers since surgical specimens are not achievable for all
patients, especially patients with advanced disease.

Grading based on the DIA PHH3 agreed less well with
the WHO grade based on the pathology Ki67. This is in line
with the results of others.15,33,36 Accordingly, we believe the
DIA and use of PHH3 are not supported for routine use or as
an alternative in GEP-NEN grading. Some of the cases with
low Ki67 had high PHH3. Others have reported a specific
value for PHH3 in PNENs,14 but we could not confirm or
refute this based on the limited number of PNENs.

For both DIA Ki67 and DIA PHH3, the proportion
of grade 2 tumors was higher than the routinely reported
grading. This illustrates the difficulty in separating grade 1
and grade 2 tumors.33,37 A factor that might explain this
finding is that the DIA method makes it easier to identify a
hot spot than manual evaluation in a busy routine practice.
With DIA, measurements can be repeated or several areas
can be measured if the hot spot is difficult to identify. The
size of the hot spot (500 to 2000 cells) might also influence
the grading. A study of G1 and G2 PNENs found that DIA
overestimated the Ki67 index compared with manual eval-
uation. The difference was reduced by increasing the size of
the hot spot.38 Kroneman et al37 found that eyeball esti-
mations of Ki67 tended to downgrade more NETs to grade
1 than evaluations by DIA. These studies support our find-
ings. In many cases with a discrepancy, the value of Ki67 or
PHH3 was near the cut-off level for the grading criteria.
Discussions are ongoing regarding which method should be
regarded as the gold standard.13,34,35 For breast cancers,
there is a debate about whether the manual analysis of Ki67
should be the gold standard since several studies have shown
superior prognostic information from DIA.39,40

In conclusion, standardized DIA Ki67 scoring gave
similar results as subjective scoring but may be a time-saving
supplementary tool in surgical pathology29 that can improve
the poor intraobserver and interobserver reliability with
manual evaluation methods.41 DIA PHH3 do not agree so
well with routine grading and is not recommended as an
alternative to MAI or Ki67 in routine practice.

TABLE 3. Agreement Between Grading of Tumors Based on
Digital Image Analysis of Ki67 and Grading From Routine
Pathology Reports

Grade (DIA Ki67) n, (%)

1 2 3 Total, n (%)

Grade (routine)
1 63 (39.6) 22 (13.8) 0 85 (53.5)
2 4 (2.5) 33 (20.8) 1 (0.6) 38 (23.9)
3 0 1 (0.6) 35 (22.0) 36 (22.6)

Total 67 (42.1) 56 (35.2) 36 (22.6) 159

DIA indicates digital image analysis.

TABLE 4. Agreement Between Grading of Tumors Based on
Digital Image Analysis of Phosphohistone H3 and Grading from
Routine Pathology Reports

Grade (DIA PHH3) n, (%)

1 2 3 Total n, (%)

Grade (routine)
1 43 (29.7) 35 (24.1) 0 78 (53.8)
2 4 (2.8) 28 (19.3) 4 (2.8) 36 (24.8)
3 0 3 (2.1) 28 (19.3) 31 (21.4)

Total 47 (32.4) 66 (45.5) 32 (22.1) 145

DIA indicates digital image analysis; PHH3, phosphohistone H3.
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