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Abstract

In this thesis, I intend to study the mechanisms that unfold during the light-matter interactions

between an atomic system and a high-intensity laser. In an effort to investigate the system in its

smallest components, the system is interpreted as a one-dimensional hydrogenic atom with a central

potential. As the Coulomb-potential lacks a one-dimensional equivalent, it is approximated by a

soft-core potential. Stationary solutions to the modelled 1D system will be represented in some B-

spline basis, yielding solutions in both Dirac and Schrödinger frameworks. From these solutions, time

can be introduced to the modelled systems, and the light-matter interaction will be regarded. The

modelled system is exposed to the high-intensity laser for a short time, and the excitation energy

of the electron is used as a measure for relativistic effects within the system. Initially, the Dirac

and Schrödinger modelled systems will interact near identically to one another, and relativistic effects

cannot be observed. Later, by adjusting the basis from which the time-dependent Dirac equation is

solved, the relativistic effects can be seen in the one-dimensional system.
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Chapter 1

Introduction and background

1.1 On the laser and light-matter interaction

The laser has, since its inception in 1960[21], enabled humanity to achieve things that are

incomprehensible to many among us. It enables the functionality of DVDs and fibre-optic

communication, can cut through thick sheets of metal, and can even be used in medicine to combat

tumours. More importantly, at least pertaining to the current work, is the laser’s persistence as an

invaluable tool in the pursuit of further understanding the inner workings of the universe. Being able

to precisely influence systems governed by quantum mechanics has led to entire new fields of research

within physics, as well as in other realms of science. One such field, under which the majority of the

contents of this thesis fall, is the study of light-matter interactions of an atom in a high-intensity

laser field.

Research of light-matter interactions in high-intensity laser fields has been a topic prevalent in

physics for decades[4, 15, 24, 6, 5, 7, 19, 26, 11]. As with all things on the quantum scale, physically

observing individual processes require tremendous time, funding, and effort, without any guarantee

of achieving reliable observations. Separate physical mechanisms can manifest their effects on a

system in complex ways, making them difficult to disentangle and describe independently. As such,

we are nudged in the direction of theoretical research - attacking the problem with pen, computer,

and the intent to predict how the physical world will unfold itself. This does not imply, however, that

investigating the quantum world in this way is a breeze. With choices of which frameworks,

approximations, and corrections to include - or exclude - from one’s calculations, one faces the risk of

leaving out some crucial component of the physical problem one had set out to investigate.
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1.2 Common approaches to the research of light-matter

interactions

The world, as we understand it, is often described as 3+1 dimensional, with three spatial dimensions

plus time[17]. Precise calculations in this framework demand significant computational power to

carry out, while also requiring whoever might attempt to solve such problems be particularly

meticulous in composing it. The most important tools in this type of research comes in the form of

approximations and corrections to the time-dependent Schrödinger equation [9, p. 131],

iℏ
∂Ψ(x⃗, t)

∂t
= − ℏ2

2m
∇2Ψ(x⃗, t) , (1.1)

as well as the inherently relativistic Dirac equation [17, p. 57].

iℏ
∂Ψ(x⃗, t)

∂t
=
[
−iℏcα · ∇+ βmc2

]
Ψ(x⃗, t) (1.2)

A common approach to simplifying the light-matter interactions of an atom in an external laser field

is to apply the dipole approximation. In doing this, one can essentially remove the spatial

dependency of the laser’s electric field, while also discarding the effects of its magnetic field. This

non-relativistic approximation does come with some constraints for the intensity and frequency of the

incident laser, however. As the intensity and/or frequency of the laser goes up, relativistic effects

must be given higher importance when trying to describe the system. This is most often done by

introducing relativistic or semi-relativistic corrections to the TDSE.

1.3 Skewed energy probability differential

Exposing a model hydrogenic atom to a high-intensity laser potential can stimulate the emission of

the electron[9]. Theoretical research in a TDSE framework on this sort of system can, depending on

the set of approximations and corrections being applied, produce significantly different results from

other sets of approximations [28, 14, 6, 15, 24]. Given photons of equal energy, classically, one could

assume that the energy spectrum of the emitted electrons would have peaks near integer multiples of

the photon energy. Through recent numerical research, however, this is not always the case, and the

multi-photon resonance peaks appear to shift out of integer amounts of laser-emitted monochromatic

photons depending on which approximations are being used [31, 7, 8].
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Figure 1.3: Illustration of skewed electron emission spectre. The primary axis
corresponds to the energy of the emitted electron, while the secondary axis signifies
the probability of observing an electron with this energy as a function of the
density of energy states in its proximity. The black curve corresponds to emissions
where the probability peaks are exactly 50Ha apart, while the red and blue curves
corresponds to the shifts resulting from differences in the model used.

Figure 1.3 is an exaggerated illustration meant to express the findings from [31, 7, 8], and is not the

result of any physical model. The intent is to show the variation in results, from different sets of

approximations and corrections, for some 3D model hydrogenic atom that has been exposed to a

high-intensity laser pulse. The inclusion of relativistic effects seems to increase the distance between

peaks corresponding to multi-photon resonances in the emission spectrum (blue shift, Fig. 1.3), while

including higher-order terms of the dipole approximation tends to move these peaks closer to one

another (red shift, Fig. 1.3). Furthermore, with these shifts being of similar magnitude and opposite

directions, they nearly exactly cancel each other out when both are taken into account. Further

research is being done on this problem to determine how the model can be represented precisely in a

numerical framework. Still, as earlier noted, three dimensional models of light-matter interactions

tend to be very computationally involved, and many approximations are still essential to their

methods.

In the effort of identifying specific mechanisms in composite systems, such as the light-matter

interaction found in three-dimensional hydrogenic atom models in the presence of a high-intensity

laser field mentioned above, reducing the problem to its smallest parts can potentially be useful.

1.4 One-dimensional model

Previous research [13, 15, 26] has taken a peculiar approach to investigate the mechanisms involved

in such systems as described in sec. 1.3, namely by reducing the dimensionality of the system. By

doing away with two of the spatial dimensions altogether, the dipole approximation is no longer an

approximation of the system - but an inherent attribute of the one-dimensional variant. Assuming

that the laser encompasses an area which is orders of magnitude larger than the atom being

5



considered, there is no longer any spatial dependency for the light-matter interaction between the

electron and photons. Previous studies have made efforts to devise accurate (within the

one-dimensional framework, at least) mathematical models for the 1D atom, both in regards to the

Coulomb-potential and the electron “orbits” [13, 15, 28].

Besides previous research in this field, there are other good arguments for why one-dimensional

models have applications in physical research. Many problems in classical mechanics can be

analytically reduced to one dimension by substitution of variables [18], sometimes even allowing for

applications within a relativistic regime. Furthermore, in systems where interaction with a magnetic

field is of little significance, reducing a system containing electromagnetic fields to one dimension

allows for simple inspection of such system if the polarization is aptly chosen.

While discussing the results found from studying some numerical one-dimensional model of a

real-world system, having concerns regarding their validity would be justified. Any such model could

be articulated as a vastly simplified interpretation of the quantum mechanical framework, a

framework that itself is a simplified interpretation of the real world. As such, and as with any

scientific research, the intention should not be to find some definitive proof or exact explanation of

any physical phenomena. Rather, the goal should be to make accounts of such phenomena from

different perspectives, so as to further the wealth of information one could review in an effort to gain

a better understanding of the world. My argument for the validity of this work, based on the current

paragraph as well as the paragraphs above, is this: The investigation of a numerical, one-dimensional

model of a hydrogenic atom, in the presence of a high-intensity laser potential, could grant some

insight into the light-matter interactions that are present in the physical, real-world system.

1.5 Aim and approach of the thesis

After the introductions made above, it is opportune to present the main goals of this thesis.

It is my intention within this thesis to investigate the energy emission spectra of one-dimensional

hydrogenic model atom interacting with a high-intensity laser beam, within the confines of both the

Schrödinger equation and the Dirac equation. This will initially be done by constructing

time-independent models in the B-spline basis, with the intent to solve the resulting eigenvalue

problems. The solutions to these problems, in the form of energy levels and wave functions, will then

be used as a basis to investigate the time-dependent light-matter interactions between these model

atoms and the laser pulse. The resulting energy-emission spectra will be discussed in regard to their

convergence and differences. The ionization probabilities will be commented on, and possible future

applications for these models will be considered.

This thesis will have as its main goal to determine whether the shifts in the energy spectra (as

illustrated in Fig. 1.3), corresponding to multi-photon resonances in a one-dimensional model, can be

observed.
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1.6 Atomic units

For ease of notation, all formulas and equations are written in atomic units. The SI values of all

physical constants given in the table below are found in [30].

Physical Unit Symbol Physical origin Value (SI) Value (a.u.) Expression

Mass me Electron mass 9.109 · 10−31 kg 1 a.u.

Charge e
Absolute value of
electron charge

1.602 · 10−19 C 1 a.u.

Action ℏ The reduced
Planck constant

1.055 · 10−34 Js 1 a.u.

Length a0
Bohr radius for
atomic hydrogen

0.529 · 10−10m 1 a.u.

Energy Eh
Eg.s. of atomic
hydrogen

4.359 · 10−18 J 1 a.u.
ℏ2

mea2
0

Permittivity 1
4πϵ0

Permittivity
factor in vacuum 8.988 · 109Nm2

C2
1 a.u.

a0ℏ2

mee2

Fine-structure
constant

α
Electromagnetic
interaction

7.297 · 10−3 ≃ 1/137

Velocity c
Speed of light in
vacuum

2.998 · 108m/s ≃ 137 a.u.
a0Eh

ℏα

Table 1.6: List of atomic units for use in calculations.

Specifically regarding the Somerfield fine-structure constant α, calculations within the present work

will use the 2018 CODATA recommended value [30].

α := 7.2973525693 · 10−3 (1.3)

Consequently, the speed of light in vacuum c, which in atomic units is expressed as c = 1
α has the

following value:

c := 137.035999084 (1.4)
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1.7 Formalisms and naming conventions

Mathematical

operation

Effect

Hermitian conjugate

of a square matrix


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n


†

:=


a∗1,1 a∗2,1 · · · a∗1,n

a∗1,2 a∗2,2 · · · a∗2,n
...

...
. . .

...

a∗1,n a∗2,n · · · a∗n,n



Hermitian conjugate

of a vector


a1

a2
...

an


†

=
(
a∗1 a∗2 · · · a∗n

)

Object Symbol Definition

Identity matrix In :=


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


n×n

Kronecker delta δi,j :=

1, i = j

0, i ̸= j

Inner product

(Analytic)

〈
A
∣∣∣Q̂∣∣∣B〉 :=

∫
Ω
A†(Q̂B) dx ,

where Q̂ is an arbitrary operator

Inner product

(Numerical, 1D)

〈
A
∣∣∣Q̂∣∣∣B〉 :=

∫ b

a
A†(Q̂B) dx ,

where Q̂ is an arbitrary operator

and a, b ∈ R are bounded

numbers satisfying a < b

Time-dependent

wave-function

Ψ := Ψ(x, t)

Time-independent

wave-function

ψ := ψ(x)

Pauli matrices

σ1 :=

(
0 1

1 0

)

σ2 :=

(
0 −i
i 0

)

σ3 :=

(
1 0

0 −1

)
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For minimal coupling, the following convention will be used within the present work:

p→ p+ qeA

E → E + qeϕ
, where qe := −1 a.u. is the charge of a single electron.

In mathematical expressions, this is shortened to
p→ p−A

E → E − ϕ
, for ease of notation.

All illustrations presented within this thesis are created by the author. For a handful of illustrations

presented in chapter 4, some input data for graphs were contributed by M. Førre. When this is the

case, it will be explicitly stated. The process of making all illustrations contained within the current

work has been done by using the Python-package Matplotlib v.3.3.4 [12].

This thesis has been written in a free, open source TEX/LATEX interpreter, LYX [29].
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Chapter 2

Theory and derivations of formulae

2.1 More about emission spectra

The system that is to be considered in the present work is a hydrogenic atom in the presence of an

external vector field. More precisely, the aim is to investigate the emission spectra of the electron

after interacting with the pulse. This is to be done numerically by modeling the system in one spatial

dimension, within both the Dirac and Schrödinger framework. The current chapter will describe the

approach taken in the effort to facilitate this, before presenting theory, formulae, and approximations

pertinent to the current work. Looking at the problem which was posed in sec. 1.5 is composed of

several different elements, and some room is set aside to give a brief explanation of how the present

work will go about to solve it.

First and foremost, to describe a quantum mechanical system, one needs a framework on which the

description will be based. As previously stated, the present work aims to compare findings from

models based on Dirac and Schrödinger, in an effort to describe differences between them. It is

therefore necessary to examine the methods and applications for both of these, as well as how they

can eventually be translated into numerical models. These models, upon which most of the presented

results will be based, are also to be confined to a single spatial dimension. As such, great care must be

taken when considering how the Dirac and Schrödinger equations change when applied in such a way.

In describing the transitions from three to one spatial dimensions, the Dirac (TDDE) and Schrödinger

(TDSE) equations are to be presented in many shapes. In their general forms, they are partial dif-

ferential equations which can be used to predict how the configuration of a system evolves in time

[9, 17]. For the predictions put forth from these equations to be precise, it is necessary to apply them

to well-defined descriptions of the systems they are to evolve.

The basis for the time-evolution of the system will be constructed by solving the eigenvalue problems

arising from the applications of the time-independent Dirac (TIDE) and Schrödinger (TISE) equations.

Both of these equations give accurate predictions for the energy levels of 3D hydrogenic atoms, where

the Coulomb-potential can be represented without much issue. This potential does not, however, have
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a well-defined analytic transformation into 1D, and the TIDE and TISE must be adjusted to ensure

their applicability within the confines of such a model.

After the adapting these equations to a 1D numerical model, the process to solve the eigenvalue

problems that arise from them will be discussed. The eigenstates resulting from this process will then

be used as a starting point for the system which will be subjected to a high-intensity laser pulse. To

express this time-evolution, appropriate one-dimensional interpretations of the TDDE and TDSE will

be utilised, and the final product will be formulated. This will be presented as the emission spectra

of the emitted electron, in the form of a probability differential with regard to the density of energy

states.

2.2 3D Dirac

The time-dependent three-dimensional Dirac equation (3D TDDE) for a free electron in atomic units

is given by (1.2).

i
∂Ψ(x⃗, t)

∂t
=
[
cα · p̂+ βc2

]
Ψ(x⃗, t) (2.1)

This equation is the starting point for future calculations relating to the Dirac framework. As noted,

this equation has proven exceedingly difficult to find converging solutions for. To make a solution more

manageable, it is simplified to act on an electron constrained to movement in only the direction of

polarization for the electric field.

First it is necessary to express this equation using a Hamiltonian and its corresponding energy. This

is done by assuming that Ψ(x⃗, t) can be written on the form

Ψ(x⃗, t) = ψ(x⃗) · e−iEt , (2.2)

which when differentiated with regards to time returns

i
∂Ψ(x⃗, t)

∂t
= iψ(x⃗)

∂

∂t
(e−iEt) = Eψ(x⃗)e−iEt = EΨ(x⃗, t) . (2.3)

The three-dimensional momentum operator p̂ is defined as

p̂ := −i∇ . (2.4)

By performing the substitutions stated by the minimal coupling rule [9, p. 181], namely

p̂ → p̂− A⃗ = −i∇− A⃗ , (2.5)

and

E → E − ϕ , (2.6)
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equation (2.1) can be expanded to include electric fields.

EΨ(x⃗, t) =
[
cα ·

(
−i∇− A⃗

)
+ βc2 + I4ϕ

]
Ψ(x⃗, t) (2.7)

From the dipole approximation, the spatial dependency of the vector field is ignored (A⃗ → A⃗(t), or

∇· A⃗ = 0), and the vector field can be expressed as only a function of time. The vector field is for now

assumed to be zero (A⃗(t = 0) = 0), but will be reintroduced later.

The scalar potential ϕ which was introduced by minimal coupling is assumed to be a Coulomb potential,

which in atomic units can be expressed as

ϕ→ ϕ(r) = − z

|r⃗|
(2.8)

To further explore equation (2.7), a common representation of the α and β matrices are the Dirac

matrices, given by

β = γ0 =

(
I2 0

0 −I2

)
(2.9)

α = αi = γ0γi =

(
0 σi

σi 0

)
, i = 1, 2, 3 (2.10)

where σi are the Pauli spin matrices.

The 3D TIDE (2.1) can, with Ψ(x⃗, t = 0) = ψ(x⃗) at t = 0 (2.2), be expressed as

Eψ(x⃗) =
[
cα · p+ βc2 + I4ϕ(x)

]
ψ(x⃗) (2.11)

From the RHS of this equation, the Hamiltonian can simply be extracted:

HTIDE
3D =

[
cα · p+ βc2 + I4ϕ(x⃗)

]
(2.12)

For the three dimensional system, multiple attempts have been made to simulate the energy probability

differential to as high accuracy as possible. This does, due to the complexity of the system, pose

some requirements to approximations along the way. In this framework (as with most numerical

calculations), any result found by simulating some model of a physical system can be heavily influenced

by whichever approximations have been made. Therefore, in the effort of simplifying this system, it will

in this work instead be simulated in one dimension. This removes the need for dipole approximations,

as there is no possibility of the electromagnetic field of the photon beam to have any spatial dependency.

The axis of movement is chosen to be co-directional with the polarization of the electric field carried

by the photons, to further investigate their effect on electron energy.
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2.3 Representing the Dirac equation in one spatial dimension

To justify the removal of two spatial dimensions from the Dirac equation, it must undergo significant

changes. Most easily apparent is the momentum operator p̂ (2.4)

p̂ → p̂ ≡ −i ∂
∂x

(2.13)

which can only retain one of its components. A good starting point for derivation of the 1D time-

independent Dirac equation is to consider the relativistic energy-momentum relation

E = c
√
p2 +m2c2 (2.14)

By assuming, as Dirac did, that the expression under the square root can be rewritten as a sum of

matrices and operators, eq. (2.14) can be expressed in atomic units as

Ĥ = cαp̂ + βc2 (2.15)

Still, the following constraints must be placed on the α and β matrices:

tr(α) = tr(β) = 0

α2 = β2 = I2

{α, β} = 02

A set of already known matrices that fulfill these conditions are the Pauli spin-matrices.

σ1 ≡

(
0 1

1 0

)
, σ2 ≡

(
0 −i
i 0

)
, σ3 ≡

(
1 0

0 −1

)

As any pairing of two spin-matrices are valid, it becomes trivial to choose two from the three to form

the required basis for our 1D Dirac equation. For ease of calculation, the β matrix is set as β → σ3,

while the α matrix (which now only retains one of its three configurations) is defined as α→ σ2.

The 1D Dirac Hamiltonian from (2.15) for a free particle can now be rewritten as

Hfp,Dirac
1D =

[
cσ2p̂ + σ3c

2
]

(2.16)

Using this, as well as the energy operator Ĥ = i ∂
∂t , gives rise to the 1D TDDE for a free particle.

i
∂Ψ(x, t)

∂t
=
[
cσ2p̂ + σ3c

2
]
Ψ(x, t) (2.17)
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By applying the substitutions provided by minimal coupling to this equation, the 1D TDDE can be

expanded to include its interaction with the scalar and vector fields.

i
∂Ψ(x, t)

∂t
=
[
cσ2(p̂−A) + σ3c

2 + I2ϕ
]
Ψ(x, t) (2.18)

The scalar potential ϕ = ϕ(x) is assumed to be some one-dimensional model of the 3D Coulomb

potential (2.8). Coulomb potentials on this form do, however, introduce some problematic properties

in one dimension. While the electron can take any arbitrary path around the nucleus in a three

dimensional world, there exists no such option in 1D. Corrections must therefore be made to avoid the

singularity of the Coulomb potential at x = 0. A plethora of models for the one-dimensional Coulomb

potential have been investigated (see [10, 28] and references therein), with a wide variety of attributes.

For this thesis, the most important bound state of the system is the ground state, and the soft-core

potential expressed in [28] will suffice. The one-dimensional scalar potential ϕ = ϕ(x) will, for the

remainder of this thesis (unless explicitly stated) be defined by

ϕ(x) = − z√
x2 + ξ

, ξ =
2

z2
, (2.19)

with z as the proton number for the nucleus. Now considering the vector potential, by applying

the same arguments as with the dipole approximation, the vector field A = A(t) is assumed to be

exclusively time-dependent. Including these assumptions in eq. (2.18) yields an expression for the 1D

TDDE, which will be the starting point for further calculations.

i
∂Ψ(x, t)

∂t
=
[
cσ2(p̂−A(t)) + σ3c

2 + I2ϕ(x)
]
Ψ(x, t) , (2.20)

From this equation, the corresponding Hamiltonian can be easily extracted.

HTDDE
1D =

[
cσ2

(
−i ∂
∂x

−A(t)

)
+ σ3c

2 + I2ϕ(x)

]
(2.21)

2.3.1 Deriving the 1D TIDE

To describe the time-evolution of the system, it is useful to first find the eigenstates of the time-

independent system. By separating the wave function Ψ(x, t) into its space and time-dependent com-

ponents,

Ψ(x, t) = exp(−iEt)ψ(x), (2.22)

and then performing the time-derivative from the LHS, the equation (2.20) takes the form

EΨ(x, t) = HTDDE
1D Ψ(x, t) (2.23)
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Now, setting t = 0 =⇒

{
Ψ(x, t = 0) = ψ(x)

A(t = 0) = 0
, the 1D Dirac equation can be expressed without

time-dependence

Eψ(x) =
[
cσ2p̂ + σ3c

2 + I2ϕ
]
ψ(x) , (2.24)

with corresponding Hamiltonian

HTIDE
1D =

[
cσ2p̂ + σ3c

2 + I2ϕ
]

(2.25)

Writing this Hamiltonian on matrix form, with the momentum-operator represented explicitly, yields

HTIDE
1D =

[(
0 −c d

dx

c d
dx 0

)
+

(
c2 0

0 −c2

)
+

(
ϕ 0

0 ϕ

)]
=

(
c2 + ϕ −c d

dx

c d
dx −c2 + ϕ

)
(2.26)

The 1D TIDE (2.24) can now be expressed with the Hamiltonian (2.26),

Eψ = HTIDE
1D ψ =

(
c2 + ϕ −c d

dx

c d
dx −c2 + ϕ

)
ψ (2.27)

From this, the wave function ψ = ψ(x) must be expressed in the way of spinors.

ψ =

(
P (x)

Q(x)

)
=

(
P

Q

)
, (2.28)

where P = P (x) and Q = Q(x) represent the large and small components of the 1D Dirac wave spinor,

respectively.

As the solution to the Dirac equation can be represented as a linear combination of an infinite amount

of eigenstates, one can write the total wave function ψ as

ψ =

∞∑
n=1

cnψn , (2.29a)

ψ =

∞∑
n=1

cn

(
Pn

Qn

)
(2.29b)

Now, substituting the expression for ψ from (2.29a) into eq. (2.27), one can in bracket notation write

∞∑
n=1

cnEn |ψn⟩ =
∞∑

n=1

cnH
TIDE
1D |ψn⟩ (2.30)
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From this equation it is useful to apply the orthonormality condition for eigenstate solutions to the

Dirac equation. This is done by multiplying the above equation with an arbitrary eigenstate ⟨ψk| from
the left, and then finding the inner product.

∞∑
n=1

cnEn ⟨ψk|ψn⟩ =
∞∑

n=1

cn
〈
ψk

∣∣HTIDE
1D

∣∣ψn

〉
(2.31)

In the case of analytical models, the inner product on the LHS of (2.31) could be reduced by enforcing

orthonormality on the system, allowing for the use of the Kronecker delta ⟨ψk|ψn⟩ = δk,n. By doing

this, all terms of the infinite series except the case where n = k vanishes, and the above equation can

be expressed as

ckEk =

∞∑
n=1

cn
〈
ψk

∣∣HTIDE
1D

∣∣ψn

〉
(2.32)

Writing out the inner product of the RHS in the way of vectors and matrix yields

ckEk =
∑∞

n=1 cn
∫∞
−∞

( Pk(x)

Qk(x)

)†(
c2 + ϕ(x) −c d

dx

c d
dx −c2 + ϕ(x)

)(
Pn(x)

Qn(x)

) dx
=

∑∞
n=1 cn

∫∞
−∞

[
P ∗
k (x) ·

(
c2 + ϕ(x)

)
· Pn(x)− cP ∗

k (x) ·
dQn(x)

dx +

+cQ∗
k(x) ·

dPn(x)
dx +Q∗

k(x) · (−c2 + ϕ(x)) ·Qn(x)
]
dx (2.33)

By doing this for every eigenstate ⟨ψk|, the above equation can be expressed as an infinite matrix

equation in the form of a general eigenvalue problem,

Ax⃗ = λx⃗ (2.34)

where A has matrix elements Ak,n =
〈
ψk

∣∣∣HTIDE

1D

∣∣∣ψn

〉
, the eigenvalue λ = E is the energy of the

system, and the eigenvector x⃗ = c⃗ =


c1

c2
...

 gives the coefficient of each eigenstate.

2.3.2 Adaptations for numerical representation of the 1D TIDE

To be able to represent an eigenvalue problem such as the one in eq. (2.31) numerically, some approx-

imations must be made. Most of the steps taken will be left to section 3.2 and the subsections therein,

but it is important to note some differences already at this point. First among these is the presence of

the infinite sum in eq. (2.31). Infinite sums are impossible for computers to regard, and as such the
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series will be truncated at some number M . Furthermore, as this is no longer an analytical problem

(consider the approximation from (2.19)), the orthonormality condition no longer holds for the system.

Therefore, it is useful to introduce notation for the inner products present in (2.31). The notation that

will be used for the matrix elements of this eigenvalue problem in derivations of numerical methods

are listed below.

Sk,n := ⟨ψk|ψn⟩ (2.35)

Hk,n :=
〈
ψk

∣∣HTIDE
1D

∣∣ψn

〉
(2.36)

The eigenvalue problem in eq. (2.34) will also have a slightly different form. As the inner product

⟨ψk|ψn⟩ in the LHS of eq. (2.31) does not vanish from the Kronecker delta, (2.34) is instead written

as

hc⃗ = Esc⃗ , (2.37)

where c⃗ is the eigenvector of coefficients for each eigenstate, and h and s are the M ×M Hamiltonian

matrix and overlap matrix, respectively. Written out on their matrix forms, h and s can be represented

as

h =


H1,1 H1,2 · · · H1,M

H2,1 H2,2 . . . H2,M

...
...

. . .
...

HM,1 HM,2 . . . HM,M

 , (2.38)

and

s =


S1,1 S1,2 · · · S1,M

S2,1 S2,2 . . . S2,M
...

...
. . .

...

SM,1 SM,2 . . . SM,M

 (2.39)

Finally, for the integration contained in the inner products of (2.35) & (2.36), the domain of the wave

function must be truncated to be numerically solvable. Whereas the interval of integration for analytic

solutions is the entire real line x ∈ (−∞,∞), it is shortened to x ∈ (a, b) with a < b for numerical

solutions. With this truncation of the real line, the integral which is present in the overlap matrix

element Sk,n (2.35) can be expressed numerically as

Sk,n =

∫ b

a

ψ†
k(x)ψn(x) dx (2.40)

17



2.4 Introduction of the vector field

After solving the eigenvalue problem from eq. (2.32), the modeled system is set to evolve in time.

This time-evolution is governed by the 1D TDDE (2.20), and uses solutions to the 1D TIDE (2.32)

as its basis. Now, for The electric field of the photon beam is polarized in the x-direction, parallel to

the direction of movement for the electron. Since the electron is locked on the x-axis, the positional

dependency of its interaction with the electric field can be neglected.

The time evolution of the system is now influenced by the interaction between the electron and the

electric field of the photon beam. This can be modeled by considering the Hamiltonian of interaction

(HI), expressed by reinstating the term −A(t) to the momentum operator in the gauge transformation

that was performed previously.

HD,I
1D = HD

1D(t) = −cσ2A(t) = −icA(t)

(
0 −1

1 0

)
(2.41)

The time evolution is determined by incrementally propagating the 1D TDDE in time. The Hamilto-

nian governing this time-evolution is given by

HTDDE
1D = HTIDE

1D +HD
1D(t), (2.42)

with HTIDE
1D defined as in (2.26). This yields a corresponding 1D TDDE on the form

i
∂Ψ(x, t)

∂t
=
[
HTIDE

1D +HD
1D(t)

]
Ψ(x, t) (2.43)

Now, still keeping the total wave function as a product of separate time and space dependent functions,

it can be written out as

Ψ(x, t) =

∞∑
n=1

cn(t) |ψn(x)⟩ (2.44)

Inserting this into the 1D TDDE (2.43), it takes the form

∞∑
n=1

i
∂

∂t
[cn(t) |ψn(x)⟩] =

∞∑
n=1

cn(t)
[
HTIDE

1D +HD
1D(t)

]
|ψn(x)⟩ (2.45)

Which, given the separation of time and space dependent functions, can be expressed as

∞∑
n=1

iċn(t) |ψn⟩ =
∞∑

n=1

cn(t)
[
HTIDE

1D +HD
1D(t)

]
|ψn⟩ (2.46)

With the intent to formulate an eigenvalue problem, multiplying with ⟨ψk(x)| from the left gives

⟨ψk|
∞∑

n=1

iċn(t) |ψn⟩ = ⟨ψk|
∞∑

n=1

cn(t)
[
HTIDE

1D +HD
1D(t)

]
|ψn⟩ , (2.47)
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or, sorting the summations outside of the inner products,

∞∑
n=1

iċn(t) ⟨ψk|ψn⟩︸ ︷︷ ︸
=δk,n

=

∞∑
n=1

cn(t)

〈ψk

∣∣HTIDE
1D

∣∣ψn

〉︸ ︷︷ ︸
=Eδk,n

+
〈
ψk

∣∣HD
1D(t)

∣∣ψn

〉 (2.48)

Recognizing that the inner product
〈
ψk(x)

∣∣HTIDE
1D

∣∣ψn(x)
〉
in the RHS of this equation can be substi-

tuted by (2.32), as well as applying the orthonormality condition to the LHS [
∑

n iċn(t)δk,n → iċk(t)],

the only term left to expand on is the time-dependent component of the RHS.

By substitutingHD
1D(t) → −icA(t)

(
0 −1

1 0

)
and ψj(x) →

(
Pj(x)

Qj(x)

)
, j = {k, n} into

〈
ψk(x)

∣∣HD
1D(t)

∣∣ψn(x)
〉
,

the result is

〈
ψk(x)

∣∣HD
1D(t)

∣∣ψn(x)
〉

= −icA(t)
∫
Ω

( Pk(x)

Qk(x)

)†(
0 −1

1 0

)(
Pn(x)

Qn(x)

) dx
= −icA(t)

∫
Ω
[P ∗

k (x) ·Qn(x)−Q∗
k(x) · Pn(x)] dx

(2.49)

For ease of notation, the integral is annotated as Vk,n =
∫
Ω
[P ∗

k (x) ·Qn(x)−Q∗
k(x) · Pn(x)] dx. Thus,

the 1D TDDE (2.48) can be simplified to

iċk(t) =

∞∑
n=1

cn(t)(Eδk,n − icA(t)Vk,n) (2.50)

or, by multiplying both sides with −i,

ċk(t) =

∞∑
n=1

cn(t)(−iEδn,k − cA(t)Vk,n) (2.51)

This equation will be taken as the grounds for time-evolution of the system. As it is impossible to

regard infinite of this sort using computers, the rest of the derivation of the time-propagator is left to

the chapter about numerical solutions.

2.5 1D TISE

Given the 1D TDSE (1.1) for a free particle

1

2
p̂2Ψ(x, t) = i

∂Ψ(x, t)

∂t
, (2.52)

still with the same momentum operator p̂ = −i ∂
∂x as in the Dirac equation (2.13). Separation of

variables in Ψ can be performed by substituting
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Ψ(x, t) → T (t)ψ(x) = e−iEtψ(x) , (2.53)

which allows for carrying out the derivative on the RHS of the equation.

i
∂

∂t
e−iEtψ(x) = EΨ(x, t) (2.54)

Again applying substitutions (2.6) & (2.5) from minimal coupling to the system,

p̂ → p̂−A(t) (2.55)

E → E − ϕ(x) , (2.56)

the Schrödinger equation can be rewritten as

[
1

2
(p̂−A(t))

2
+ ϕ(x)

]
Ψ(x, t) = EΨ(x, t) (2.57)

By setting t = 0, causing A(t = 0) = 0 and Ψ(x, t = 0) = ψ(x), one gets the 1D TISE for an electron

in a Coulomb potential.

[
−1

2

d2

dx2
+ ϕ(x)

]
ψ(x) = Eψ(x) (2.58)

The corresponding Hamiltonian becomes

HTISE
1D =

[
−1

2

d2

dx2
+ ϕ(x)

]
(2.59)

To explore this equation further, the total wave function ψ(x) is expressed as a linear combination of

its eigenstates,

ψ(x) =

∞∑
n=1

cnψn(x) , (2.60)

which by substitution makes eq. (2.58) take the form

∞∑
n=1

cn

[
−1

2

d2

dx2
+ ϕ(x)

]
ψn(x) = E

∞∑
n=1

cnψn(x) (2.61)

Again introducing bracket notation, and then multiplying by an arbitrary eigenstate ⟨ψk(x)| from the

left to find the inner products, one can transform eq. 2.61.
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〈
ψk(x)

∣∣∣∣∣
∞∑

n=1

cn

[
−1

2

d2

dx2
+ ϕ(x)

]∣∣∣∣∣ψn(x)

〉
=

〈
ψk(x)

∣∣∣∣∣E
∞∑

n=1

cn

∣∣∣∣∣ψn(x)

〉
(2.62)

Moving the sum operator and constants out of the inner products yields

∞∑
n=1

cn

〈
ψk(x)

∣∣∣∣[−1

2

d2

dx2
+ ϕ(x)

]∣∣∣∣ψn(x)

〉
= E

∞∑
n=1

cn ⟨ψk(x)|ψn(x)⟩ , (2.63)

which when when exposed to the orthonormality condition [⟨ψk(x)|ψn(x)⟩ → δk,n,
∑∞

n=1 cnδk,n → cnδk,n]

becomes

∑∞
n=1 cn

〈
ψk(x)

∣∣∣[− 1
2

d2

dx2 + ϕ(x)
]∣∣∣ψn(x)

〉
=

∑∞
n=1 cn

〈
ψk(x)

∣∣HTISE
1D

∣∣ψn(x)
〉

= Ecnδk,n

(2.64)

Rewriting the inner product on the LHS to integral form, the equation reads

∞∑
n=1

cn

∫
Ω

ψ∗
k(x)

[
−1

2

d2

dx2
+ ϕ(x)

]
ψn(x) dx = Ecnδk,n (2.65)

As the goal of this thesis is to find numerical solutions to the system, further work on transforming

this equation into an eigenvalue problem is left for the corresponding chapter on numerical methods.

Eq. (2.65) does, however, provide a useful relation when trying to solve the time-dependent system in

sec. 2.6 & 3.5.

2.6 1D TDSE in a laser field

The time-evolution of the 1D model is governed by the 1D TDSE, formulated in eq. (2.57). It is helpful

to reconstruct it into separate time and space dependent terms, starting with the minimal coupling

momentum operator.

i
∂

∂t
|Ψ(x, t)⟩ =

[
1

2

(
−i ∂
∂x

−A(t)

)2

+ ϕ(x)

]
|Ψ(x, t)⟩ (2.66)

The electric field from the photon beam is, due to the dipole approximation, assumed to be exclusively

time-dependent. the total Hamiltonian for the 1D TDSE can be expressed as
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HTDSE
1D = − 1

2
∂2

∂x2 + iA(t) ∂
∂x + 1

2A(t)
2 + ϕ(x)

= −1

2

∂2

∂x2
+ ϕ(x)︸ ︷︷ ︸

=HTISE
1D

+ iA(t)
∂

∂x
+

1

2
A(t)2︸ ︷︷ ︸

=HSE
I

⇓
HTDSE

1D = HTISE
1D +HSE

I

(2.67)

Explicitly, the Hamiltonian of interaction for the 1D Schrödinger model in a laser field (2.67) can be

written as

HSE
I = iA(t)

∂

∂x
+

1

2
A(t)2 . (2.68)

Still assuming that the total wave function |Ψ(x, t)⟩ can be expressed as a linear combination of all

eigenstates, the time-dependent component can inserted into the coefficient.

|Ψ(x, t)⟩ =
∞∑

n=1

cn(t) |ψn(x)⟩ (2.69)

The 1D TDSE can now be rewritten as

i

∞∑
n=1

∂

∂t
cn(t)︸ ︷︷ ︸

=ċn(t)

|ψn(x)⟩ =
∞∑

n=1

cn(t)
[
HTISE

1D +HSE
I

]
|ψn(x)⟩ (2.70)

By again finding the inner product with an arbitrary eigenstate ⟨ψk(x)| of the time-independent system

from the left, the equation takes the form

i

∞∑
n=1

ċn(t) ⟨ψk(x)|ψn(x)⟩︸ ︷︷ ︸
=δk,n

=

∞∑
n=1

cn(t)
[ 〈
ψk(x)

∣∣HTISE
1D

∣∣ψn(x)
〉︸ ︷︷ ︸

=Eδk,n

+
〈
ψk(x)

∣∣HSE
I

∣∣ψn(x)
〉︸ ︷︷ ︸

=V
′
k,n

]
(2.71)

This expression allows for some substitutions into the equation.

• From orthonormality, and again using the interaction between the Kronecker delta with a series,

the LHS of this equation is simplified to LHS→ ċk(t).

• From the relation found in (2.64), the inner product with the HTISE
1D operator can be replaced

with Ecn(t)δk,n.

• Finally, for ease of notation, the last inner product of the equation above is substituted with

V
′

k,n, given by
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V
′

k,n = A(t)

∫
Ω

[
iψk(x) ·

dψn(x)

dx
+
A(t)

2
· ψk(x) · ψn(x)

]
dx =

〈
ψk(x)

∣∣HSE
I

∣∣ψn(x)
〉
, (2.72)

where HSE
I is defined as in (2.68). The equation for the time-dependent system can now take the

following form:

ċk(t) =

∞∑
n=1

cn(t)
[
−iEnδk,n − iV

′

k,n

]
(2.73)

The above eq. 2.73 will, in league with its corresponding Dirac counterpart 2.51, form the basis for

time-evolution of the system in high-intensity laser potential. Further derivations and transformation

into a matrix eigenvalue problem will be presented in a numerical framework, in chapter 3.

2.7 Radial solution to 3D TISE

For the sake of checking the validity of the script, it is reasonable to compare the results of a numeric

solution to the analytic solution. Given how well-established the analytic solutions to the radial

Schrödinger equation in 3D are, specifically in hydrogenic atoms, they pose as a practical tool for

comparison.

The 3D TISE for an electron in a coulomb field is given by [9]

Eu(r) =

[
−1

2

d2

dr2
− z

r
+
l(l + 1)

2r2

]
u(r) , (2.74)

with corresponding Hamiltonian

HTISE
3D =

[
−1

2

d2

dr2
− z

r
+
l(l + 1)

2r2

]
. (2.75)

In the same way as before, the radial wave function is written out as a sum of its eigenstates,

u(r) =
∑
n=1

cnun(r) , (2.76)

and the inner product is found by multiplying with an arbitrary eigenstate ⟨uk(r)| from the left.

∑
n=1

cnE ⟨uk(r)|un(r)⟩ =
∑
n=1

cn

〈
uk(r)

∣∣∣∣[−1

2

d2

dr2
− z

r
+
l(l + 1)

2r2

]∣∣∣∣un(r)〉 (2.77)

Orthonormality is applied, and the resulting eigenvalue problem becomes

ckE =
∑
n=1

∫ ∞

0

[
−1

2
uk(r) ·

d2un(r)

dr2
− uk(r) ·

z

r
· un(r) + uk(r) ·

l(l + 1)

2r2
· un(r)

]
dr (2.78)

23



2.8 The form of the vector potential

Before continuing to chapter 3 on numerical methods, the time-dependent vector potential A(t) in-

troduced in minimal coupling (2.5) should be discussed. As the subject of this thesis is to investigate

the light-matter interaction between some model atom and a high-intensity laser pulse, the modeled

vector potential A(t) will be produced by the aforementioned laser. For the sake of simplicity, the field

is assumed to be identical across the to-be-established models governed by both the 1D TDSE (2.66)

and the 1D TDDE (2.51). To give results which are comparable to previous models [7, 27, 31], the

form of the pulse is modeled as a sine wave contained in an “envelope” function. That is, assuming

total spatial independence from the dipole approximation
(
dA
dx

:= 0
)
,

A(t) =
E0

ω
sin2

(
πt

T

)
sin(ωt) , (2.79)

with E0 as the amplitude of the electric field strength, ω as the angular frequency of the field, and T as

the total time of the pulse. The component sin2
(
πt
T

)
will act as the envelope of the pulse, while sin(ωt)

governs the oscillations taking place within the envelope. The shape of the pulse will be presented in

sec. 3.6 on numerical methods.
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Chapter 3

Numerical methods

3.1 B-splines as a basis for representing wave functions

To accurately represent some as of yet unknown wave functions, which are not polynomials, as a linear

combination of piece-wise polynomial basis functions, sounds counter-intuitive. However, with a finite

basis set consisting of piece-wise polynomials which have been constructed in a specific way and which

fulfill a set of conditions, representing them in this way has been shown to produce highly accurate

results [1]. The choice of B-splines as a basis for representing the wave functions facilitates some

computational advantages, such as being able to employ Gauss-Legendre integrals for inner products.

In this section, theory relating to the creation and applications of B-splines will be discussed.

3.1.1 Basic properties of B-splines

The foundation for understanding of B-splines in the present work, as well as the definitions and

properties given in this section, are largely based on [16] (with light adjustments to notation).

B-splines are sets of piece-wise polynomials with specific intervals within which they have non-zero

values. These intervals are defined by a knot sequence {Ti}mi=1 containingm elements of non-decreasing

values, such that

T1 ≤ Ti ≤ Tj ≤ Tm ∀ 1 ≤ i ≤ j ≤ m

The knot sequence can be used to define B-splines of degree k if it has m ≥ k + 2 elements.

The individual B-spline Bk
i (x) is a real polynomial of degree k that is non-negative everywhere. It also

satisfies

Bk
i (x) > 0, x ∈ (Ti, Ti+k+1) , (3.1)

m∑
i=1

Bk
i (x1) = 1, x1 ∈ (T0, Tm) , (3.2)
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Both of these attributes make B-splines suitable for the calculations at hand.

For the creation of B-splines, a common method is by using the Cox-de Boor recursion formula [3]. In

[16]’s Definition 2 (p. 4), this is expressed as

Bk
j,(x) :=

x− Tj
Tj+k − Tj

Bk−1
j (x) +

Tj+k+1 − x

Tj+k+1 − Tj+1
Bk−1

j+1 (x) , (3.3)

with the first B-spline being defined as

Bk=0
i (x) :=

1 , ifx ∈ [Ti, Ti+1)

0 , otherwise.
(3.4)

In the current work, generation of B-splines is done by using the “BSpline” and “basis element”

functions included in the Python package “SciPy” [32]. This makes for quicker generation, and also

makes extrapolation to higher resolutions much more efficient since each B-spline is stored as a callable

object instead of as an array of numbers.

The knot sequence which will be used for the present work has knot vectors with the following prop-

erties:

T1 = T2 = · · · = Tk+1 = xmin (3.5)

Tm = Tm−1 = · · · = Tm−k−1 = xmax (3.6)

Ti − Ti−1 = ∆t , k + 2 < i < m− k − 1, (3.7)

where ∆t is a constant defined by the number of internal knots in the knot sequence. Particularly, the

knot sequence will have its upper and lower bound padded with k+1 knots of equal value on each end,

with the intent to avoid issues with the boundary conditions (this will be further discussed in section

3.1.3 during the test run of the 3D Schrödinger script). In particular, the padding of the original knot

sequence T ′ can be expressed as follows:

T = Tpad = (xmin, xmin, . . . , xmin︸ ︷︷ ︸
k+1 times

, T ′, xmax, . . . , xmax, xmax︸ ︷︷ ︸
k+1 times

) (3.8)

Below will be presented two illustrations of different-ordered B-spline basis function sets.

26



Figure 3.1a: B-spline basis functions of degree k = 2 with m = 6 internal knots.

Fig. 3.1a shows the general shape of the B-spline basis functions. Within the illustration, the internal

knots of the knot sequence T can also be spotted, at x = {0, 2, 4, 6, 8, 10}. Noticeably, the two curves

that descend from the upper right (Blue) and left (Pink) corners only give values in what seems like a

single knot interval [Ti, Ti+1) each. This, however, is not the case due to the padding taking place at

the ends of the knot sequence (3.8). As the initial 3.5 and final 3.6 k+1 values on the knot sequence of

T have equal values of Ti, each B-spline basis function can still have non-zero values in the full interval

[Ti, Ti+k+1) as it requires.

Now, to illustrate how the B-spline basis functions scale with increasing order k, Fig. 3.1b is given

below.

27



Figure 3.1b: B-spline basis functions of degree k = 4 with m = 8 internal knots.

Increasing the order k of the B-spline basis has a few effects on the basis functions, as well as on the

knot sequence T . Most noticeably, it allows for sharper curvature within each basis function, while also

increasing the number of intervals on the knot sequence T in which each B-spline basis function has

non-zero values. From (3.1), an increase in k also increases the number of knots that allow non-zero

values for the basis function.

Following this short introduction to B-splines, it is appropriate to proceed by introducing the Gauss-

Legendre quadrature - a concept that furthers the suitableness of B-splines for use within numerical

quantum mechanics.

3.1.2 Gauss-Legendre quadrature

Numerical methods for integration come in many shapes, but the one pertinent to the present paper

is governed by the Gauss-Legendre quadrature, given by [2]

∫ 1

−1

f(x)dx ≃
n∑

i=1

ωif(xi) . (3.9)

Here, f(x) is some well-defined function, and ωi are weights given by the roots of the n-th degree

Legendre polynomial. The weights ωi, which will be determined by using the SciPy [32] function

“scipy.special.roots legendre” in the following numerical calculations, will not be discussed in detail

within the present work (though a comprehensive presentation can be found in [2, pp. 126-129]).
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This quadrature provides exact values for integrals where f(x) = P k(x) are polynomials with degree

k ≤ 2n − 1. As of right now, however, the integral is restricted to the interval (−1, 1), though this is

remediable through change of variable. For some y ∈ Z such that the knots {Ty−1, Ty} of the knot

sequence T (3.8) giving the x-interval [Ty−1, Ty) with a non-zero length, and x1, xn as the first and

last root of the n-th degree Legendre polynomial, the change of variable can be expressed as

u =
(Ty − Ty−1)(x+ 1)

2(x1 + xn)
+ Ty−1 . (3.10)

Adapting the Gauss-Legendre quadrature (3.9) to fulfill the needs for the calculations at hand is done

in a few steps. Notably, the integrals that need to be computed (e.g. eqs. (2.65) & (2.33)) will be

expressed as products of two polynomials of degree k. Using similar notation as what will be used

for B-splines in later calculations, integrating over the product of two B-spline basis functions can be

expressed as

∫ Ty+1

Ty

Bk
i (x) ·Bk

j (x)dx , (3.11)

where y is an integer such that Bk
i (x) and B

k
j (x) both have non-zero values in the interval [Ty, Ty+1).

Now, for some k ∈ Z+, the product between the B-splines can be expressed on the form

P 2k(x) := Bk
i (x) ·Bk

j (x) (3.12)

This means that the integral can be approximated exactly by the Gauss-Legendre quadrature if the

value of n is chosen to be n ≥ k + 1. This also holds for integrals which contain ν-th derivatives of

B-splines, as these are simply polynomials of degree k − ν. To illustrate how this is done, Fig. 3.1c

contains the same set of B-spline basis functions as Fig. 3.1b in high resolution (Black, solid curves),

and in only finding their values in the integration points from the Legendre-polynomials (Red, dashed

lines).
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Figure 3.1c: Comparison of B-spline basis functions with degree k = 4 and m = 8 internal knots.
Black, solid curves: 30001 discrete x-values. Red, dashed lines: Only values that correspond to roots

of the Legendre polynomials of n = k + 1 = 5 are given.

From Fig. 3.1c, the discrepancy in resolution is apparent when comparing the black and red curves.

With the Gauss-Legendre quadrature being able to exactly integrate the product of two k-th order

polynomials with n ≥ k + 1 discrete data points, only this amount of points is required. Because of

the comparatively small amount of values needed, the computations become less intensive, and larger

data sets can practically be solved.

Before proceeding to implementing the B-spline representation, it is important to consider the ap-

proximation that has been done in regard to the Coulomb potential (2.19). Since it contains the

denominator
√
x2 + ξ, with ξ ∈ R, it does not have the shape of a polynomial, and is not exactly

integrated by the Gauss-Legendre quadrature. Still, the Gauss-Legendre quadrature proves adept at

approximating even this integral, which will be shown at a later point.

3.1.3 Preliminary tests for B-splines as basis functions for the 3D TISE

To consider the validity of using B-splines as basis functions within a quantum mechanical framework,

a good comparison comes in the shape of the radial wave functions of the three-dimensional time-

independent Schrödinger equation. This eigenvalue problem has well-defined analytical solutions for

hydrogenic atoms, and a relatively simple form in comparison to the Dirac counterpart. Much of the

derivations of these solutions will be left out, as they are all but repeated in section 3.4 about the 1D

TISE solution. Starting from eq. (2.74) for some arbitrary eigenstate u(r) = un(r),
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Enun(r) =

[
−1

2

d2

dr2
− z

r
+
l(l + 1)

2r2

]
un(r) . (3.13)

Now, reintroducing bracket notation, multiplying by some arbitrary eigenstate ⟨uk| from the left, and

then taking the inner product, eq. (3.13) transforms.

En ⟨uk|un⟩ =
〈
uk
∣∣HTISE

3D

∣∣un〉 (3.14)

It is assumed that any wave function which solves (3.13) can be approximated as a linear combination

of B-spline basis functions [1].

un(x) ≃
N∑
j=1

cjBj(x) (3.15)

Note also the change of variables as r → x. This is merely to keep consistent notation within the

B-spline basis. In the radial equation 3.13, it is assumed that x is limited to the domain of x > 0. For

the sake of being able to solve this numerically, the interval of integration is also restricted to some

finite bound in 0 = a < x < b < ∞. Since the coefficients are unknown at the present (and they are

to be found by solving an eigenvalue problem), they are discarded. By combination with the B-spline

representation 3.15 of the radial wave functions, eq. (3.14) can be transformed.

N∑
i=1

N∑
j=1

cjEn

∫ b

a

Bi(x) ·Bj(x)dx =

N∑
i=1

N∑
j=1

cj

∫ b

a

[
−1

2
Bi(x) ·

d2Bj(x)

dx2
− . . . (3.16)

−Bi(x) ·
z

x
·Bj(x) +Bi(x) ·

l(l + 1)

2x2
·Bj(x)

]
dx

To shorten this expression, the integrals in eq. 3.16 are substituted for the matrix elements Hi,j for

the Hamiltonian matrix (RHS) and the matrix elements Si,j of the overlap matrix (LHS). The above

equation can be rewritten as

En

N∑
i=1

N∑
j=1

cjSi,j =

N∑
i=1

N∑
j=1

cjHi,j , (3.17)

or in the matrix form of the eigenvalue problem,

Ensc⃗n = hc⃗n . (3.18)

Solving eq. (3.18) will yield the eigenvalue En corresponding to energy level of the eigenstate un(x).

Furthermore, the eigenvector c⃗n will contain the coefficients required to represent the wave function

un(x) in the B-spline basis. To facilitate this, all matrix elements Hi,j and Si,j are calculated using a

self-created Python script, before being solved by an eigenvalue solver. The solver is contained in the

package “SciPy”, and the specific command being utilised is “scipy.linalg.decomp.eigh(H, S)” [32].
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As the intent of computing these wave functions is to consider the validity of the B-spline representation

of wave functions, running the script with l = 0 will suffice. The following parameters for the generation

of the B-spline basis functions and Gauss-Legendre integration points are fed to the program:

• B-spline polynomial order: k = 7

• Interval for knot sequence: a = 0 < Ti < 50 = b

• Number of internal knots: m = 200

Furthermore, the proton number z is set to z = 1, so as to regard a modeled hydrogen atom. With

this input, the first few wave function solutions to 3.18 are presented in the illustration below.

Figure 3.1d: Above – the three lowest–energy solutions to the radial 3D TISE (3.13), represented in a

B-spline basis 3.15. Below – the ground state (n = 1) graph with illustrated B-spline basis functions.

The resulting wave functions from Fig. 3.1d have similar shapes to the 1s, 2s and 3s wave functions.

Still, to evaluate the validity of these results, it is necessary to see them in comparison to the analytic

solution. This is done in Fig. 3.1e below.
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Figure 3.1e: Numeric solution (black, solid line) and analytical solution (red, dotted line) to the
strongest-bound

solutions to the radial 3D TISE (3.13).

The ground state of the radial 3D TISE (3.13), as drawn in Fig. 3.1e above, has the exact solution [9],

u10(r) = xe−x , in atomic units. (3.19)

The B-spline representation of the ground state radial wave function seems to be very spot on, with the

largest single-point difference (from corresponding x-values, as in Fig. 3.1e) coming out to a total of

6.6 ·10−11. This result bolster the credibility of the B-spline representation for the wave functions, but

the energy levels are still yet to be considered. In solving the equation numerically, one has to discard

the infinite number of bound states within the atom. Therefore, it is to be expected that energy levels

corresponding to less tightly bound states will diverge. Energy levels corresponding to the numerical

solution of eq. (3.13), as well as analytical energy solutions to the 3D TISE (with En = − 1
2n2 for

hydrogen [9]), are presented in table 3.1.

State (n) Numerical value Analytic value Absolute difference

1 −0.50000 −0.50000 1.2 · 10−14

2 −0.12500 −0.12500 1.9 · 10−14

3 −0.05556 −0.05556 7.7 · 10−9

4 −0.03120 −0.03125 4.6 · 10−5

5 −0.01786 −0.02000 2.1 · 10−3

Table 3.1: Numeric and analytic solutions for energy levels of the hydrogen atom

From table 3.1, it is apparent that something happens as the model moves to higher energy states.

The immediate and obvious solution to this comes from looking at such wave functions near the upper

boundary of the permitted values of x, as illustrated below.
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Figure 3.1f: Numerical solutions to eq. (3.13) in a B-spline basis, n = {4, 5, 6}

As expected, the numerical solutions are limited by the interval in which the electron is allowed to

propagate. A possible explanation for why they are still relatively close to the correct answer (see

table 3.1) comes in the form of the boundary conditions. From previous research [31, 27] and based

on advice from the supervisor to the current thesis, this component has been a part of the script since

the beginning. It proves to be a useful feature in dampening the boundary values of wave functions

produced by this method, and its effect can be seen at the right edge of Fig. 3.1f.

Now, having somewhat thoroughly tested the validity of representing wave functions in a B-spline

basis, as well as to have given my Python-script a test run, it is time to get on with something more

squarely in the purview of this thesis - to solve the one-dimensional problem in such a way.

3.2 Approach to numerical solutions of the 1D TIDE in a cen-

tral potential

Within this section, the methods and approximations used to obtain a numerical solution to the

eigenvalue problem in eq. (2.31) are presented. For the sake of clarity, the 1D TIDE that will be the

foundation for all calculations is given from eq. (2.30) is repeated:

∞∑
n=1

cnEn |ψn⟩ =
∞∑

n=1

cnH
TIDE
1D |ψn⟩ (3.20)

Here, cn and En is the coefficient and energy corresponding to the n-th eigenstate |ψn⟩, HTIDE
1D is the

Hamiltonian
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HTIDE
1D :=

(
c2 + ϕ −c d

dx

c d
dx −c2 + ϕ

)
, (3.21)

as defined by (2.26), wherein ϕ is some soft-core approximation of the Coulomb potential, as found in

(2.19)

ϕ ≡ ϕ(x) := − z√
x2 + ξ

, ξ :=
2

z2
(3.22)

To articulate the numerical adaptation of the eigenvalue problem in (2.31), it is helpful to apply the

adaptations discussed in sec. 2.3.2. In the case of solutions in the Dirac frame, the dimensions of the

matrices in the eigenvalue problem (2.37) are set as 2N , to account for negative energy solutions. As

such, the series in (2.31) is also truncated at this number, and can be rewritten as

2N∑
n=1

cnEn ⟨ψk|ψn⟩ =
2N∑
n=1

cn
〈
ψk

∣∣HDirac
1D

∣∣ψn

〉
, (3.23)

or by using the matrix elements introduced in (2.35) and (2.36), as

2N∑
n=1

cnEnSk,n =

2N∑
n=1

cnHk,n (3.24)

By inserting the matrix form of the 1D TIDE Hamiltonian from eq. (3.21), as well as by substituting

ψk and ψn for the form introduced in (2.29b), eq. 3.23 can be rewritten on the form

2N∑
n=1

cnEn

∫ b

a

( Pk(x)

Qk(x)

)†(
Pn(x)

Qn(x)

)dx =

2N∑
j=1

cn

∫ b

a

( Pk(x)

Qk(x)

)†(
c2 + ϕ −c d

dx

c d
dx −c2 + ϕ

)(
Pn(x)

Qn(x)

)dx
(3.25)

From the formulation of the eigenvalue problem (3.25), each matrix element of the Hamiltonian matrix

h and the overlap matrix s (as defined in (2.38) and (2.39)) can be expressed as

Hk,n =

∫ b

a

( Pk(x)

Qk(x)

)†(
c2 + ϕ −c d

dx

c d
dx −c2 + ϕ

)(
Pn(x)

Qn(x)

)dx (3.26)

Sk,n =

∫ b

a

( Pk(x)

Qk(x)

)†(
Pn(x)

Qn(x)

)dx (3.27)

From (3.26) and (3.27), the matrix and vector multiplication is carried out, yielding
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Hk,n =

∫ b

a

[
P ∗
k (x)

(
c2 + ϕ

)
Pn(x)− cP ∗

k (x)
dQn(x)

dx
+ cQ∗

k(x)
dPn(x)

dx
+Q∗

k(x)
(
−c2 + ϕ

)
Qn(x)

]
dx ,

(3.28)

and

Sk,n =

∫ b

a

[P ∗
k (x) · Pn(x) +Q∗

k(x) ·Qn(x)] dx (3.29)

The expressions (3.28) and (3.29) will be the starting point from which the large and small components

of the eigenstates are represented in a B-spline basis.

3.2.1 B-spline representation of wave function eigenstates

Before proceeding to the next section, some remarks about the notation which will be used going

forwards needs to be introduced. Specifically, notation related to the indices pertaining to the matrix

elements of the eigenvalue problems. To signify matrix elements of the eigenvalue problem relating to

the wave functions, the indices k, n are used. To avoid the confusion that can be caused by introducing

another sum over indices to the mix, the indices i, j will be used to specify B-spline basis functions

and matrix elements consisting of these. To further clarify:

• When presented with indices k, n, the Hamiltonian matrix element Hk,n (3.28) corresponds to

the inner product of two eigenstates ψk, ψn surrounding the 1D TIDE Hamiltonian operator

HTIDE
1D (3.21).

• On the other hand, when written with indices i, j, the Hamiltonian matrix element Hi,j is to be

understood as the inner product of two basis functions Bi(x), Bj(x) surrounding the same (3.21)

operator.

Additionally, it is useful to write a more general form for the integrals contained in the matrix elements

of (3.28) and (3.29). Instead of using the large and small component of the wave spinor, they are to

be represented as integrals over arbitrary two-component spinors. Additionally, as all B-spline basis

functions are real polynomials, they are also self-adjoint. Using the notation which was introduced in

the paragraph above this one, the substitution

(
Pk(x)

Qk(x)

)
−→

(
fi(x)

gi(x)

)
,

allows for rewriting the Hamiltonian matrix elements (3.28) as

Hi,j =

∫ b

a

[
fi(x)

(
c2 + ϕ

)
fj(x)− cfi(x)

dgj(x)

dx
+ cgi(x)

dfj(x)

dx
+ gi(x)

(
−c2 + ϕ

)
gj(x)

]
dx , (3.30)
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while the overlap matrix elements (3.27) can be expressed as

Si,j =

∫ b

a

[fi(x) · fj(x) + gi(x) · gj(x)] dx (3.31)

Going forward, in the subsections 3.2.2-3.2.4 three different approaches to representing the wave func-

tions of the Dirac equation will be described. Furthermore, each approach will be evaluated in terms

of their qualities, before only one approach will be kept when moving into time-evolution in sec. 3.3.

3.2.2 First approach - exclusive large and small components

The first approach taken to represent the solutions to the 1D TIDE (3.23) in a B-spline basis, is

by assuming that some eigenstate ψn can be written as separate sums of exclusive large and small

components.

ψn =

(
Pn(x)

Qn(x)

)
=

N∑
i=1

ci,nB
κ
i (x)

(
1

0

)
+

2N∑
i=N+1

ci,nB
κ
i−N (x)

(
0

1

)
, (3.32)

where κ is the order of the B-spline basis functions. For ease of notation, κ will be omitted from

calculations until sec. 3.2.3. Proceeding to represent the wave functions on this (3.32) form, the

matrix of the Hamiltonian matrix Hi,j (3.30) and the overlap matrix Si,j (3.31) of eq. (3.24) may

be expressed in the same way. To facilitate this split into upper and lower components, the h and

s-matrices are split into four block submatrices. This is done by the following partition:

 α | β

−− + −−
γ | δ

 (3.33)

Explicitly, the four submatrices have corresponding intervals of the indices i, j given as follows:

α :
1 ≤ i ≤ N

β :
1 ≤ i ≤ N

1 ≤ j ≤ N N + 1 ≤ j ≤ 2N

γ :
N + 1 ≤ i ≤ 2N

δ :
N + 1 ≤ i ≤ 2N

1 ≤ j ≤ N N + 1 ≤ j ≤ 2N

Table 3.2.2.1: Intervals for the values of i and j belonging to each submatrix

Inner products included in the matrix elements Hi,j (3.30) and Si,j (3.31) can then be written out for

each submatrix.

Submatrix α :
{ 1 ≤ i ≤ N

1 ≤ j ≤ N
→

fi = Bi(x)

gi = 0
,
fj = Bj(x)

gj = 0

For the overlap matrix,
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S
[α]
i,j =

∫ b

a

Bi(x) ·Bj(x) dx (3.34)

and for the Hamiltonian,

H
[α]
i,j =

∫ b

a

Bi(x)
(
c2 + ϕ

)
Bj(x) dx (3.35)

= c2
∫ b

a

Bi(x) ·Bj(x) dx︸ ︷︷ ︸
=S

[α]
i,j

+

∫ b

a

Bi(x) · ϕ(x) ·Bj(x) dx︸ ︷︷ ︸
=V

[α]
i,j

(3.36)

H
[α]
i,j = c2S

[α]
i,j +V

[α]
i,j , with V

[α]
i,j ≡

∫ b

a

Bi(x) · ϕ(x) ·Bj(x) dx (3.37)

This process is repeated for each submatrix, and the results with some calculations are presented

below. respective matrix elements:

Submatrix β :
{ N + 1 ≤ i ≤ 2N

1 ≤ j ≤ N
→

fi = 0

gi = Bi−N (x)
,
fj = Bj(x)

gj = 0

Overlap:

S
[β]
i,j = 0 (3.38)

Hamiltonian:

H
[β]
i,j = c

∫ b

a

Bi−N (x) · dBj(x)

dx
dx︸ ︷︷ ︸

=D
[β]
i,j

= cD
[β]
i,j (3.39)

Submatrix γ :
{ 1 ≤ i ≤ N

N + 1 ≤ j ≤ 2N
→

fi = Bi(x)

gi = 0
,
fj = 0

gj = Bj−N (x)

Overlap:

S
[γ]
i,j = 0 (3.40)

Hamiltonian:

H
[γ]
i,j = −c

∫ b

a

Bi(x) ·
dBj−N (x)

dx
dx︸ ︷︷ ︸

=D
[γ]
i,j

= −cD[γ]
i,j (3.41)
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Submatrix δ :
{ N + 1 ≤ i ≤ 2N

N + 1 ≤ j ≤ 2N
→

fi = 0

gi = Bi−N (x)
,
fj = 0

gj = Bj−N (x)

Overlap:

S
[δ]
i,j =

∫ b

a

Bi−N (x) ·Bj−N (x) dx (3.42)

Hamiltonian:

H
[δ]
i,j = −c2

∫ b

a

Bi−N (x) ·Bj−N (x) dx︸ ︷︷ ︸
=S

[δ]
i,j

+

∫ b

a

Bi−N (x) · ϕ(x) ·Bj−N (x) dx︸ ︷︷ ︸
=V

[δ]
i,j

(3.43)

H
[δ]
i,j = −c2S[δ]i,j +V

[δ]
i,j with V

[δ]
i,j =

∫ b

a

Bi−N (x) · ϕ(x) ·Bj−N (x) dx (3.44)

By inserting the findings from eqs. (3.34), (3.37), (3.38), (3.39), (3.40), (3.41), (3.42) and (3.44) into

the Hamiltonian matrix and the overlap matrix, each submatrix can be represented by the following

block matrices:

h =

c
2S

[α]
i,j +V

[α]
i,j | cD

[β]
i,j

−−−−− + −−−−−
−cD[γ]

i,j | −c2S[δ]i,j +V
[δ]
i,j

 (3.45)

s =

 S
[α]
i,j | 0

−−− + −−−
0 | S

[δ]
i,j

 (3.46)

By formulating the matrix elements in this way, the number of computations required to represent

the matrices can be greatly reduced. Another reduction can be found in limiting the amount of

matrix elements even considered for computation, by using an inherent attribute of the B-spline basis

functions. Since any basis function Bi(x) only has a limited interval Ti ≤ x ≤ Ti+k+1 in which it is

non-zero (3.1), the inner product between two basis functions can only return a non-zero value if the

intervals in which they have non-zero values overlap. That is,

Hi,j ≡ 0 ≡ Si,j ∀ i, j such that max(Ti, Tj) ≥ min(Ti+k+1, Tj+k+1) (3.47)

With this, any matrix elements of h and s which do not fulfill the condition of |i − j| ≤ k + 1 must

contain the value 0, and does not require calculation. This condition also applies to the diagonals

of the submatrices β and γ, with mildly modified notation; Since one of the two indices i, j must be

larger than N
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Additionally, with these being Hermitian matrices with real elements, it can also be assumed that they

are symmetrical. Therefore, only values on and above the diagonal need to be calculated. This can be

formulated as

Hi,j ≡ 0 ∀ i, j ⇒ 0 ≤ i− j ≤ k + 1 (3.48)

This, in effect, means that all non-zero elements of the h and s matrices will be located on or near

the diagonal of each submatrix. In the case of the s matrix, only the α and δ submatrices will have

non-zero elements.

By taking the approach described in this section, the script is able to come up with solutions to the

1D TIDE (3.23). To inspect their accuracy, some illustrations and solutions for the energy are given

below.

Figure 3.2a: Large component of the first few positive energy solutions of the 1D TIDE(3.20) in
B-spline basis (3.32). k = 7, (a, b) = (−30, 30), ninternal knots = 200, Z = 5
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Figure 3.2b: Small component of the first few positive energy solutions of the 1D TIDE (3.20) in
B-spline basis (3.32). k = 7, (a, b) = (−30, 30), ninternal knots = 200, Z = 5

Looking at Figs. 3.2a & b above, something is clearly wrong in this representation. The waviness that

is present within all of them, though which is especially prevalent in the n = 2 state, is likely due to

some misrepresentation of the wave function of the wave functions. In addition to looking at the wave

functions, it is helpful to inspect the energy levels corresponding to each state. The analytical energy

values below are given from a 3D model[22] from the expression

ϵ =
1√

1 + Z2α2(
n+

√
(j+1/2)2−Z2α2

)2

, with j = 0 corresponding to 1D. (3.49)

State n Numerical energy 1D [a.u.] Analytical energy 3D [a.u.] Absolute difference

1 Ee.o.
1 = −12.49275 −12.52086 0.02811

2 Ee.o.
2 = −5.85523 −3.12839 2.72386

3 Ee.o.
3 = −3.34361 −1.38997 1.95364

4 Ee.o.
4 = −2.36280 −0.78172 1.58108

Table 3.2.2.1: Energy levels of numerical [k = 7, (a, b) = (−30, 30), ninternal knots = 200, Z = 5, 1D
TIDE (3.20), equal-order B-spline rep. (3.32)] and analytical [(2.11), values from (3.49)] solutions of

the first few positive energy states.

As expected, the energy levels for non-ground state energies have a much larger difference from the

analytical energy than the ground state does. In table 3.2.2.1 there is, however, another interesting

point of data: The ground state energy of the model hydrogenic Boron (Z = 5) is less tightly bound in
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the numerical Dirac than what you would expect from the Schrödinger frame (Eg.s = − Z2

2n2 → −12.5

[21]). In sec. 3.3, this will be further investigated when results from a 1D TISE model are presented.

Continuing with the investigation into what might have set the model off-balance, it is useful to look

at the wave functions for some negative energy states.

Figure 3.2c: Large component of the first two negative energy solutions to the 1D TIDE (3.20) in
B-spline basis (3.32). k = 7, (a, b) = (−30, 30), ninternal knots = 200, Z = 5
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Figure 3.2d: Small component of the first two negative energy solutions to the 1D TIDE (3.20) in
B-spline basis (3.32). k = 7, (a, b) = (−30, 30), ninternal knots = 200, Z = 5

Looking at Figs. 3.2c & d, it is more apparent than ever that something is going wrong with the

representation given by (3.32), at the start of this subsection. Now, by inspecting the solutions for the

energy of the first 4 negative energy states (presented in Table 3.2.2.2), another pattern emerges.

Energy state n Energy [a.u.]

−1 −0.2221
−2 −0.2232
−3 −0.2882
−4 −0.2898

Table 3.2.2.2: Numerical solutions of the 1D TIDE (3.20) in B-spline basis (3.32) for the energy of
the first four negative energy states. k = 7, (a, b) = (−30, 30), ninternal knots = 200, Z = 5

From table 3.2.2.2, it might seem as if the energy solutions are paired up with one another. Previous

studies have discovered similar results (see e.g. [25] and references therein), and the phenomenon is

called spurious states. Graphing the density of negative energy states,
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Fig. 3.2-1: Density of negative energy solutions to the 1D TIDE (3.20) in B-spline basis (3.32)
k = 7, (a, b) = (−30, 30), ninternal knots = 200, Z = 5, σ(E) = 2

Ei+1−Ei−1
.

It has become apparent that this method (3.32) for representing solutions to the 1D TIDE (3.20)

is unsatisfactory. Rather immediately discarding this method, however, the professor supervising the

current thesis proposed an adjustment to the representation, by including different-order B-spline basis

functions for the large and small components of the wave functions. This approach will be discussed

in the next subsection.

3.2.3 Second approach - Different ordered B-splines for large and small

component

The adjustment which will be applied to the B-spline representation (3.32) from last subsection is

relatively simple. The order of the B-splines used to represent the small component of solutions to the

1D TIDE (3.20) is increased by one. Specifically, this different-order B-spline representation can be

written as

ψk =

(
Pn(x)

Qn(x)

)
=

N∑
i=1

ci,nB
κ
i (x)

(
1

0

)
+

2N+1∑
i=N+1

ci,nB
κ+1
i−N (x)

(
0

1

)
. (3.50)

Very few significant changes are introduced by applying this adjustment, and most calculations per-

taining to the solutions of the 1D TIDE (3.20) are done near identically to the process which was

described in sec. 3.2.2. The main differences come in the form of now having to generate two separate

B-splines, as well as by altering the formulation of (3.47). Regarding the latter of these differences, as

a direct result of (3.1), each B-spline basis function can have non-zero values in a higher amount of
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intervals [Ti, Ti+1) laid out by the knot sequence T . This can be accounted for by simply calculating

the values in matrix elements one position further from the diagonal in each submatrix of h (3.45)

and s (3.46), compared to (3.47). By adjusting the Python-script in the way that is being put forth in

the current paragraph, in combination with the different-order B-spline representation, the following

results are found.

Figure 3.2e: Large (left image) and small (right image) components of the first four positive energy
solutions to the 1D TIDE (3.20) in different-order B-spline basis (3.50).

k =

{
7, Pn(x) [left image]

8, Qn(x) [right image]
, (a, b) = (−30, 30), ninternal knots = 200, Z = 5

From Fig. 3.2e, there is obvious improvement when seen in comparison to Figs. 3.2a & b. The curves

are much smoother and significantly less jittery. Still, through closer investigation of the wave function

for the small component, they are not fully satisfactory. This error is further illustrated by viewing

the corresponding graphs for the negative energy values, given in Figs. 3.2f & g.

Figure 3.2f: Large component of the first two negative energy solutions to the 1D TIDE (3.20) in
different-order B-spline representation (3.50).

[The right-side image is an up-scaled version of the left-side one.]

k =

{
7, Pn(x) [illustrated]

8, Qn(x) [not pictured]
, (a, b) = (−30, 30), ninternal knots = 200, Z = 5
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Figure 3.2g: Small component of the first two negative energy solutions to the 1D TIDE (3.20) in
different-order B-spline representation (3.50).

[The left and right images are up-scaled versions of the center image.]

k =

{
7, Pn(x) [not pictured]

8, Qn(x) [illustrated]
, (a, b) = (−30, 30), ninternal knots = 200, Z = 5

The two figures 3.2f&g clearly show the jittering that was observable in Figs. 3.2a-e, though in a much

more dampened intensity. Still, to be certain that discarding this representation is a good decision,

the energy solutions should also be considered. Graphing the density of states, as was done in Fig.

3.2-1, now for the different-order B-spline representation:

Figure 3.2-2: Density of negative energy solutions to the 1D TIDE (3.20) in different-order B-spline
representation (3.50).

k =

{
8

7
, (a, b) = (−30, 30), ninternal knots = 200, Z = 5

The lowest positive energy solution Ed.o.
1 to the 1D TIDE (3.20) in different-order B-spline repre-
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sentation (3.50) comes out to Ed.o.
1 = −12.49846 a.u., with k =

7, Pn(x) [not pictured]

8, Qn(x) [illustrated]
, (a, b) =

(−30, 30), ninternal knots = 200 and Z = 5. When compared to the solution for the ground state energy

Ee.o.
1 in equal-order B-spline representation (3.32), given in table 3.2.2.1 as Ee.o.

1 = −12.49275 a.u., it

can be seen that the change of representation has yielded results which are in closer agreement with

the 3D analytical value, found from (3.49). Still, the prevalence of spurious states arising from both

approaches indicate that another approach is in order.

3.2.4 Third approach - Dual Kinetic Balance

By discarding both previous attempts [formulated in (3.32) and (3.50)] at representing the solutions

to the 1D TIDE (3.20), it is time for a third approach. Inspired by the methods found in [25], and by

the encouragement of my supervisor, this next approach makes use of something called Dual Kinetic

Balance. This approach redefines the basis in which the wave functions are to be represented in the

following way [25]:

|ψn⟩DKB =

(
Pn

Qn

)
=

N∑
i=1

ci

(
Bi(x)
1
2c

dBi(x)
dx

)
+

2N∑
i=N+1

ci

(
1
2c

dBi−N (x)
dx

Bi−N (x)

)
(3.51)

Each matrix element of the eigenvalue matrices is still some integral over the corresponding basis

function, with the following representation:

(
fi

gi

)
=



(
Bi(x)
1
2c

dBi(x)
dx

)
1 ≤ i ≤ N

,(
1
2c

dBi−N (x)
dx

Bi−N (x)

)
N + 1 ≤ i ≤ 2N

(3.52)

From here, (3.52) can be inserted into the expression for the matrix elements described in (3.30) &

(3.31),

Hi,j =

∫
Ω

[
fi
(
c2 + ϕ

)
fj − cfi

dgj
dx

+ cgi
dfj
dx

+ gi
(
−c2 + ϕ

)
gj

]
dx (3.53)

and

Si,j =

∫
Ω

[fi · fj + gi · gj ] dx . (3.54)

Repeating the derivations from subsection 3.2.2 in this new representation yields the following terms

for the calculation of each submatrix:
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Submatrix α :


1 ≤ i ≤ N

1 ≤ j ≤ N

=⇒

(
fi

gi

)
=

(
Bi(x)
1
2c

dBi(x)
dx

)
(
fj

gj

)
=

(
Bj(x)
1
2c

dBj(x)
dx

)

Overlap matrix:

S
[α]
i,j =

∫ b

a

[
Bi(x) ·Bj(x) +

1
2c

dBi(x)
dx · 1

2c
dBj(x)

dx

]
dx

=
∫ b

a

[
Bi(x) ·Bj(x) +

1
4c2

dBi(x)
dx · dBj(x)

dx

]
dx

(3.55)

Hamiltonian matrix:

H
[α]
i,j =

∫ b

a

[
Bi(x)

(
c2 + ϕ(x)

)
Bj(x)− cBi(x) · 1

2c
d2Bj(x)

dx2 +

+ c
2c

dBi(x)
dx · dBj(x)

dx + 1
2c

dBi(x)
dx

(
−c2 + ϕ(x)

)
1
2c

dBj(x)
dx

]
dx

(3.56)

H
[α]
i,j =

∫ b

a

[(
c2 + ϕ(x)

)
·
(
Bi(x) ·Bj(x) +

1
4c2

dBi(x)
dx · dBj(x)

dx

)
−

− 1
2Bi(x) · d2Bj(x)

dx2

]
dx

(3.57)

Submatrix β :


N + 1 ≤ i ≤ 2N

1 ≤ j ≤ N

=⇒

(
fi

gi

)
=

(
1
2c

dBi−N (x)
dx

Bi−N (x)

)
(
fj

gj

)
=

(
Bj(x)
1
2c

dBj(x)
dx

)

Overlap matrix:

S
[β]
i,j =

∫ b

a

[
1
2c

dBi−N (x)
dx ·Bj(x) +Bi−N (x) · 1

2c
dBj(x)

dx

]
dx

= 1
2c

∫ b

a

[
dBi−N (x)

dx ·Bj(x) +Bi−N (x) · dBj(x)
dx

]
dx

(3.58)

Hamiltonian matrix:
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H
[β]
i,j =

∫ b

a

[
1
2c

dBi−N (x)
dx

(
c2 + ϕ(x)

)
Bj(x)− c 1

2c
dBi−N (x)

dx · 1
2c

d2Bj(x)
dx2 +

+ cBi−N (x) · dBj(x)
dx +Bi−N (x)

(
−c2 + ϕ(x)

)
1
2c

dBj(x)
dx

]
dx

(3.59)

H
[β]
i,j =

1

2c

∫ b

a

[(
−c2 + ϕ(x)

)
·
(

dBi−N (x)
dx ·Bj(x) +Bi−N (x) · dBj−N (x)

dx

)
+

+ 1
2
dBi−N (x)

dx · d2Bj(x)
dx2

]
dx

(3.60)

Submatrix γ :


1 ≤ i ≤ N

N + 1 ≤ j ≤ 2N

=⇒

(
fi

gi

)
=

(
Bi(x)
1
2c

dBi(x)
dx

)
(
fj

gj

)
=

(
1
2c

dBj−N (x)
dx

Bj−N (x)

)

Overlap matrix:

S
[γ]
i,j =

∫ b

a

[
Bi(x) · 1

2c
dBj−N (x)

dx + 1
2c

dBi(x)
dx ·Bj−N (x)

]
dx

= 1
2c

∫ b

a

[
Bi(x) · dBj−N (x)

dx + dBi(x)
dx ·Bj−N (x)

]
dx

(3.61)

Hamiltonian matrix:

H
[γ]
i,j =

∫ b

a

[
Bi(x)

(
c2 + ϕ(x)

)
1
2c

dBj−N (x)
dx − cBi(x) · dBj−N (x)

dx +

+ c
2c

dBi(x)
dx · 1

2c
dBj−N (x)

dx + 1
2c

dBi(x)
dx

(
−c2 + ϕ(x)

)
Bj−N (x)

]
dx

(3.62)

H
[γ]
i,j =

1

2c

∫ b

a

[(
c2 + ϕ(x)

)
·
(
Bi(x) · dBj−N (x)

dx + dBi(x)
dx ·Bj−N (x)

)
−

− 1
2
dBi(x)

dx · d2Bj−N (x)
dx2

]
dx

(3.63)

Submatrix δ :


N + 1 ≤ i ≤ 2N

N + 1 ≤ j ≤ 2N

=⇒

(
fi

gi

)
=

(
1
2c

dBi−N (x)
dx

Bi−N (x)

)
(
fj

gj

)
=

(
1
2c

dBj−N (x)
dx

Bj−N (x)

)

Overlap matrix:
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S
[δ]
i,j =

∫ b

a

[
1
2c

dBi−N (x)
dx · 1

2c
dBj−N (x)

dx +Bi−N (x) ·Bj−N (x)
]
dx

=
∫ b

a

[
Bi−N (x) ·Bj−N (x) + 1

4c2
dBi−N (x)

dx · dBj−N (x)
dx

]
dx

(3.64)

Hamiltonian matrix:

H
[δ]
i,j =

∫ b

a

[
1
2c

dBi−N (x)
dx

(
c2 + ϕ(x)

)
1
2c

dBj−N (x)
dx − c

2c
dBi−N (x)

dx · dBj−N (x)
dx +

+ cBi−N (x) · 1
2c

d2Bj−N (x)
dx2 +Bi−N (x)

(
−c2 + ϕ(x)

)
Bj−N (x)

]
dx

(3.65)

H
[δ]
i,j =

∫ b

a

[(
−c2 + ϕ(x)

)
·
(
Bi−N (x) ·Bj−N (x) + 1

4c2
dBi−N (x)

dx · dBj−N (x)
dx

)
−

− 1
2Bi−N (x) · d2Bj−N (x)

dx2

]
dx

(3.66)

From the simplifications performed in this subsection, the set of integrands that need to be calculated

has been reduced to the following 10:

(α, δ) (β, γ)

Bi(x) ·Bj(x)
dBi(x)

dx · dBj(x)
dx Bi(x) · dBj(x)

dx
dBi(x)

dx ·Bj(x)

ϕ(x) ·Bi(x) ·Bj(x) ϕ(x) · dBi(x)
dx · dBj(x)

dx ϕ(x) ·Bi(x) · dBj(x)
dx ϕ(x) · dBi(x)

dx ·Bj(x)

Bi(x) · d2Bj(x)
dx2

dBi(x)
dx · d2Bj(x)

dx2

Table 3.2.3.1: Integrands that need to be calculated in the numerical solution of the 1D TIDE (3.23)
in the DKB B-spline basis representation (3.51).

Most results from implementing the DKB B-spline representation (3.51) as solutions to the 1D TIDE

(3.23) will be retained until section 4.3, where they will be discussed at length. For now, it will suffice

to show that the jittering that was present in both previous approaches [see (3.32) and (3.50), with

illustrations in Figs. 3.2a-g], does not present itself when the DKB B-spline representation (3.51) is

used.
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Figure 3.2h: Large (left image) and small (right image) components to the first two negative energy
solutions to the 1D TIDE (3.20) in DKB B-spline representation (3.51).

k = 8, (a, b) = (−60, 60), ninternal knots = 8000, Z = 5

Looking at the wave functions in fig. 3.2h, and specifically at the smoothness of the curves, one will

immediately notice the absence of the jittering which was so prevalent in the previous B-spline bases

(See figs. 3.2c, d, f and g). Additionally, one might from fig. 3.2h notice that the negative energy

solutions to the 1D TIDE (3.20) in DKB B-spline representation (3.51) are heavily weighted toward

the edges of the one-dimensional “box”. This is in fact the case for all box sizes (a, b) which have been

tested during the current work, for both the large and small components. To illustrate the density of

states, as was done in Figs. 3.2-1 and 3.2-2, but now for a DKB B-spline basis:
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Figure 3.2-3: Density of negative energy solutions to the 1D TIDE (3.20) in DKB B-spline
representation (3.51). k = 8, (a, b) = (−60, 60), ninternal knots = 8000, Z = 5

Fig. 3.2-3 shows that implementing a DKB B-spline representation (3.51) to solve the 1D TIDE (3.20)

gets rid of the spurious states that were present in the two first approaches, as illustrated in figs. 3.2-1

and 3.2-2. Therefore, going forwards, it is assumed that the 1D TIDE (3.20) for an electron in a central

potential has known solutions in DKB B-spline representation (3.51). The solutions will be further

discussed in sec. 4.3, but it is helpful to first formulate an approach which will be used to investigate

the time-evolution of the model.

3.3 Time propagation of the Dirac model

To regard the time-evolution of some model, for which an initial state has been determined by solving

the 1D TIDE (2.30), it is only natural to remain within the Dirac-framework. As a reminder, the

one-dimensional time-dependent Dirac equation (1D TDDE) which will be used to model the time-

evolution of the system is given by eq. (2.20).

i
∂Ψ(x, t)

∂t
=
[
cσ2(p̂−A(t)) + σ3c

2 + I2ϕ(x)
]
Ψ(x, t) (3.67)

The Hamiltonian corresponding to eq. (3.67) can be expressed as (2.21)

HTDDE
1D =

[
cσ2

(
−i ∂
∂x

−A(t)

)
+ σ3c

2 + I2ϕ(x)

]
, (3.68)

from which the time-dependent and space-dependent parts can be separated, as described in eq. (2.42).

HTDDE
1D = HTIDE

1D +HD
1D(t) (3.69)

In (3.69), HTIDE
1D is given by (2.26), while HD

1D(t) “the Hamiltonian of Interaction” is expressed as in

eq. (2.41):

HD
1D(t) = −cσ2A(t) = −icA(t)

(
0 −1

1 0

)
(3.70)

From the expressions above, coupled with the assumption that solutions to the 1D TIDE are known,

some substitutions can be made. From (2.47)

⟨ψk|
2N∑
n=1

iċn(t) |ψn⟩ = ⟨ψk|
2N∑
n=1

cn(t)
[
HTIDE

1D +HD
1D(t)

]
|ψn⟩ , (3.71)

with known, orthonormal solutions for ⟨ψk| and |ψn⟩, and the 1D TIDE (3.23), these substitutions

(also expressed in the underbraces of eq. (2.48)) can be written as below.
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⟨ψk|ψn⟩ −→ δk,n (3.72)〈
ψk

∣∣HTIDE
1D

∣∣ψn

〉
−→ Enδk,n (3.73)

Furthermore, a name change is performed for the remaining inner product of (3.71), by inserting the

expression for the Hamiltonian of interaction from (3.70). The inner product is expressed as

〈
ψk

∣∣HD
1D(t)

∣∣ψn

〉
= −icA(t)

∫ a

b

[P ∗
k (x) ·Qn(x)−Q∗

k(x) · Pn(x)] dx︸ ︷︷ ︸
=Vk,n

, (3.74)

or, in shorthand,

〈
ψk

∣∣HD
1D(t)

∣∣ψn

〉
= −iA(t)Vk,n , (3.75)

with Vk,n :=

∫ a

b

[P ∗
k (x) ·Qn(x)−Q∗

k(x) · Pn(x)] dx . (3.76)

Inserting the substitutions from (3.72), (3.73) and (3.75) to the 1D TDDE (3.71), the equation for the

time-evolution of the system can be transformed to the following.

i

2N∑
n=1

ċn(t)δk,n︸ ︷︷ ︸
=ċk(t)

=

2N∑
n=1

cn(t)[Enδk,n − iA(t)Vk,n] (3.77)

Now, multiplying eq. (3.77) by −i, for every k such that 1 ≤ k ≤ 2N , the equation can be rewritten

in the form of a matrix eigenvalue problem.

d

dt


c1(t)

c2(t)
...

cN (t)

 =

−i


E 0 · · · 0

0 E2 · · · 0
...

...
. . .

...

0 0 · · · EN

− cA(t)


V1,1 V1,2 · · · V1,N

V2,1 V2,2 · · · V2,N
...

...
. . .

...

VN,1 VN,2 · · · VN,N





c1(t)

c2(t)
...

cN (t)

 (3.78)

By expressing the two matrices on the RHS of (3.78) as a Hermitian, time-dependent Hamiltonian

H(t), this can again be rewritten.

d

dt
c⃗(t) =

(
−iE⃗1N×N − cA(t)VN×N

)
c⃗(t) = H(t)c⃗(t) (3.79)

The form of eq. (3.79) can be recognised as a system of first-order differential equations. A common

way to solve such systems is by integrating factor. By setting µ as

µ = exp

(
−
∫ t

0

H(τ) dτ

)
, (3.80)
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its time-derivative dµ
dt can be written as

dµ

dt
= − exp

(
−
∫ t

0

H(τ) dτ

)
H(t) = −µH(t) . (3.81)

Now the integrating factor µ (3.80) is multiplied with eq. (3.79) from the left,

µ
dc⃗(t)

dt
= µH(t)c⃗(t) = −dµ

dt
c⃗(t) , (3.82)

which, when exposed to the product rule, can be rephrased as

µ
dc⃗(t)

dt
+
dµ

dt
c⃗(t) = 0 (3.83)

d

dt
(µc⃗(t)) = 0 . (3.84)

In spite of its miniscule size and unassuming form, eq. (3.84) is still the identity which governs the

time-evolution of any system of eigenstates which solve the 1D TIDE (3.20). As such, with the intent

of solving this equation, an expansion is in order. First, integrating over the time-interval t→ t+∆t

is performed on 3.84, . By applying some tricks for integration (specifically setting t → t′ within the

integral) and inserting the expression for µ as it was written in (3.80), the integral of eq. (3.84) can

be expressed and manipulated as below.

0 =

∫ t+∆t

t

[
d

dt′
(µc⃗(t′))

]
dt′ (3.85)

=

∫ t+∆t

t

d

dt′

[
exp

(
−
∫ t′

0

H(τ) dτ

)
c⃗(t′)

]
dt′ (3.86)

= exp

(
−
∫ t′

0

H(τ) dτ

)
c⃗(t′)

∣∣∣∣∣
t′=t+∆t

t′=t

(3.87)

= exp

(
−
∫ t+∆t

0

H(τ) dτ

)
c⃗(t+∆t)− exp

(
−
∫ t

0

H(τ) dτ

)
c⃗(t) (3.88)

Now, since the matrix contained within the exponential must be a Hermitian matrix, eq. (3.88) can

be multiplied with exp
(∫ t+∆t

0
H(τ) dτ

)
from the left to give

c⃗(t+∆t) = exp

(∫ t+∆t

0

H(τ) dτ −
∫ t

0

H(τ) dτ

)
c⃗(t) (3.89)

= exp

(∫ t+∆t

t

H(τ) dτ

)
c⃗(t) , (3.90)
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which, through Riemann integration (as ∆t≪ 1), becomes

c⃗(t+∆t) = exp(H(t)∆t) c⃗(t) (3.91)

This formulation brings with it some issues, as matrix exponentials oftentimes are unwieldy. Due to the

system only existing in one dimension, however, brute-forcing the calculations by simply diagonalising

the matrix in the exponential becomes a viable method. For each step of the time propagation,

the matrix exponential exp (H(x)∆t) will be diagonalised numerically by employing the algorithm

contained in the module “scipy.linalg.eig”. This is done by solving the given matrix for its left and

right eigenvectors,

A = PDP−1 =⇒ D = P−1AP , (3.92)

which also applies to matrix exponentials on the form

exp(A) = P exp(D)P−1 =⇒ exp(D) = P−1 exp(A)P . (3.93)

The evolution of the system in time will be approximated by incremental propagation in steps of ∆t,

using the expression

c⃗(t+∆t) = P exp(D)P−1c⃗(t) , (3.94)

where D is the diagonalising matrix and P and P−1 is and the right and left eigenvectors that solve the

eigenvalue problem P−1(∆tH(t))P = D. Now, using the ground state energy as the initial state of the

system, each time step can be approximated by performing the matrix multiplication expressed in the

above equation. Repeated an amount of times, this ultimately gives approximation for the probability

differential with regards to energy density.

3.4 B-spline representation of the TISE

This section is intentionally kept brief, as the methods being employed within it are significantly less

intricate than the ones involved in solving the 1D TIDE in sec. 3.2.

To begin, the stationery states that are solutions to the 1D TISE (2.58) are assumed to be approximated

by a linear combination of B-spline basis functions. With ψ given as

ψ(x) =

N∑
j=1

cjBj(x) , (3.95)

the 1D TISE (2.58) can be rewritten as follows.
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N∑
j=1

cj

[
−1

2

d2Bj(x)

dx2
+ ϕ(x) ·Bj(x)

]
= E

N∑
j=1

cjBj(x) (3.96)

Eq. (3.96) is multiplied by the series consisting of the basis functions
∑N

i=1Bi(x) from the left, before

integrating over the x-interval.

N∑
i=1

N∑
j=1

cj

∫ b

a

[
−1

2
Bi(x)

d2Bj(x)

dx2
+Bi(x) · ϕ(x) ·Bj(x)

]
dx = E

N∑
i=1

N∑
j=1

cj

∫ b

a

Bi(x) ·Bj(x) dx (3.97)

Abbreviating the integrals in this equation

LHS −→ Hi,j :=

∫ b

a

[
−1

2
Bi(x) ·

d2Bj(x)

dx2
+Bi(x) · ϕ(x) ·Bj(x)

]
dx , (3.98)

and

RHS −→ Si,j :=

∫ b

a

Bi(x) ·Bj(x) dx (3.99)

makes formulating the eigenvalue problem as a matrix equation more practical. With λ being the

eigenvalue from 1D TISE Hamiltonian (2.59), eq. (2.64) can be expressed as


H1,1 H1,2 · · · H1,N

H2,1 H2,2 · · · H2,N

...
...

. . .
...

HN,1 HN,2 · · · HN,N




c1

c2
...

cN

 = λ


S1,1 S1,2 · · · S1,N

S2,1 S2,2 · · · S2,N
...

...
. . .

...

SN,1 SN,2 · · · SN,N




c1

c2
...

cN

 , (3.100)

Regarding the choice of matrix dimension, the TISE (2.58) and TIDE (2.24) models differ somewhat.

Whereas the eigenstate solutions to the 1D TIDE come in the form of wave spinors, as well as being

permitted negative energy states, the TISE requires neither of these. As such, the 1D TISE will be

solved numerically in a N×N eigenvalue matrix problem. The matrix representation of the eigenvalue

problem (3.100) can be abbreviated

hc⃗ = Esc⃗ (3.101)

Running the script, this method seems to yield less problems than the original attempts for the Dirac

script. The system is inherently much simpler, in part due to having a significantly shorter Hamiltonian,

but also due to not requiring some interaction between the large and small components of the Dirac

system. The results of the solutions to the 1D TISE will therefore in full be presented in chapter 4.

With the wave functions and eigenvalues of the time-independent system completed, calculations on

the time-evolution will commence.
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3.5 1D TDSE in laser potential

Following eq. (2.73), the time-evolution of the 1D Schrödinger system is given by

ċk(t) =

N∑
n=1

cn(t)
[
−iEnδk,n − iV

′

k,n

]
, (3.102)

where cn(t) is the coefficient for the n-th eigenstate at the time t, En is its corresponding energy,

and V
′

k,n is defined by (2.72). The integral contained within V
′

k,n is calculated by Gauss-Legendre

integration, using the wave functions found by solving the TISE. Specifically, to facilitate the difference

in time dependence within it, the integral is separated to two parts. From (2.72):

V
′

k,n = A(t)

∫
Ω

[
iψk(x) ·

dψn(x)

dx
+
A(t)

2
· ψk(x) · ψn(x)

]
dx

V
′

k,n = iA(t)

∫
Ω

ψk(x) ·
dψn(x)

dx
dx+

A(t)2

2

∫
Ω

ψk(x) · ψn(x) dx︸ ︷︷ ︸
=δk,n

(3.103)

= iA(t)

∫
Ω

ψk(x) ·
dψn(x)

dx
dx+

A(t)2

2
δk,n (3.104)

The values given by V
′

k,n also satisfy V
′

k,n = V
′∗
n,k, as it is composed exclusively from Hermitian

operators. To formulate the time propagation of the total wave function, it is useful to state it in the

way of matrices.

Repeating the process to arrive at the expression for ċk(t) for every 1 ≤ k ≤ N facilitates the repre-

sentation of equation (2.73) in matrix form,

d

dt


c1

c2
...

cN

 = −i




E1 0 · · · 0

0 E2 · · · 0
...

...
. . .

...

0 0 · · · En

+


V

′

1,1 V
′

1,2 · · · V
′

1,N

V
′

2,1 V
′

2,2 · · · V
′

2,N

...
...

. . .
...

V
′

N,1 V
′

N,2 · · · V
′

N,N





c1

c2
...

cN

 (3.105)

which can be shortened into the Hermitian, time-dependent Hamiltonian HSE(t), governing the time

evolution of the system.

˙⃗c(t) = −i

E1N×N +V
′

N×N︸ ︷︷ ︸
=HSE(t)

 c⃗(t) = −iHSE(t)c⃗(t) (3.106)

Or, more practically,
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˙⃗c(t) + iHSE(t)c⃗(t) = 0 (3.107)

This system of differential equations can, similar to the case of the Dirac equation, be solved by method

of integrating factor,

µ = exp

(
i

∫ t

0

HSE(τ)dτ

)
(3.108)

−→ dµ

dt
= iµHSE(t) (3.109)

d

dt
(µc⃗(t)) = µ ˙⃗c(t) + iµHSE(t)c⃗(t) = 0 (3.110)

and then taking the time-integral from t→ t+∆t.

0 =

∫ t+∆t

t

d

dt

[
exp

(
i

∫ t′

0

HSE(τ)dτ

)
c⃗(t′)

]
dt′ (3.111)

=

[
exp

(
i

∫ t′

0

HSE(τ)dτ

)
c⃗(t′)

∣∣∣∣∣
t′=t+∆t

t′=t

(3.112)

= exp

(
i

∫ t+∆t

0

HSE(τ)dτ

)
c⃗(t+∆t)− exp

(
i

∫ t

0

HSE(τ)dτ

)
c⃗(t) (3.113)

From here, (3.113) is multiplied with exp
(
−i
∫ t+∆t

0
HSE(τ)dτ

)
from the left, yielding

c⃗(t+∆t) = exp

(
i

[∫ t

0

HSE(τ)dτ −
∫ t+∆t

0

HSE(τ)dτ

])
c⃗(t) (3.114)

c⃗(t+∆t) = exp

(
−i
∫ t+∆t

t

HSE(τ)dτ

)
c⃗(t) . (3.115)

Applying Riemann integration to (3.115) as ∆t≪ 1 gives

c⃗(t+∆t) = exp
(
−iHSE(t)∆t

)
c⃗(t) , (3.116)

which will be solved numerically by diagonalising the matrix exponential,

c⃗(t+∆t) = P−1 exp(D)P c⃗(t) , (3.117)

in a very similar fashion to the time propagation presented in sec. 3.3’s eq. (3.94).
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3.6 The modeled vector potential

To be able to accurately predict the time-evolution of some system modeled by the 1D TDSE (2.66)

and the 1D TDDE (2.51), it is important to present a well-defined model of the field (2.79) with which

the systems are to interact. Repeating the expression for the vector potential A(t) from (2.79):

A(t) =
E0

ω
sin2

(
πt

Tpulse

)
sin(ωt) , (3.118)

The parameters within this expression influence the shape of the pulse, and thereby its interaction with

the modeled systems, in various ways. The pulse is chosen to contain 15 periods, setting T = 15 · 2π
ω ,

and an angular frequency of ω = 50 a.u. Furthermore, outcomes from different configurations of the

electric field strength E0 will be investigated with the intent of comparing ionization probability for

the 1D Dirac and Schrödinger models. Below is an illustration intended to show the shape of the laser

pulse.

Figure 3.6a: Modeled vector potential A(t) (3.118) with Tpulse = 15 · 2π
ω , ω = 50, E0 = 1000,

n∆t = 7000

The configuration presented in the figure text of fig. 3.6a, notwithstanding the electric field strength

amplitude E0 (as explained in last paragraph), will be used as the standard configuration for most

results presented in chapter 4.
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3.7 Energy probability differential

In the physical world, the permitted energy states of a free electron is a continuum. Thus, to accurately

represent numerical findings which contain a finite set of positive energy states, some approximations

must be made to accommodate. The probability of observing an electron in a specific energy state i

with corresponding energy Ei at some time t can be expressed as the absolute value squared of the

coefficient ci(t) of the state:

P (i) = |ci(t)|2 (3.119)

Now, seeing as the eigenstate bases of the 1D TIDE (3.20) and 1D TISE (2.58) which will be propagated

in time by their respective propagators (3.91, 3.116) lacks the aforementioned continuum of free-

electron states, this must be accounted for. The method in which this will be done is by expressing

the probability distribution as a differential with regard to the density of numerical energy states from

the model,

dP (i)

dE
= P (i)σ(Ei) ≃

2

Ei+1 + Ei−1
, (3.120)

as presented in [31].
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Chapter 4

Numerical results

Before proceeding to the results of the numerical calculations carried out within this thesis, something

should be pointed out. In general, and unless explicitly stated otherwise, results given in this chapter

will have been based on the following parameters. The term Standard Configuration (SC) refers to

the values listed in this table.

Parameter Symbol Standard configuration (SC)

Nuclear charge Z 5
B-spline basis order k 8
x–interval (a, b) (−60, 60)
Number of internal knots in knot sequence T ninternal 16000
Edge splines for boundrary condition Binitial(x) = 0 = Bfinal(x)
Number of positive energy states taken to propagation neigs 1402
Number of time–intervals n∆t 7000
Angular frequency of the laser pulse ω 50
Total pulse time Tpulse 15 · 2π

ω

Energy pobability differential dP (i)
dE

2|ci(t)|2
Ei+1−Ei−1

Initial state of the system c⃗(0) cg.s.(0) = 1 , ci̸=g.s.(0) = 0

Table 4.0-1: Standard configuration (SC) for results presented within this chapter.

4.1 Numerical solution to the 1D Schrödinger equation

Within section 4.1.1, numerical solutions to the modeled 1D TISE (2.58) will be presented, by repre-

senting the eigenstates of the equation in a a B-spline basis 3.95. Then in 4.1.2, the solutions found

for the 1D TISE will be used as an eigenvalue basis to inspect the time–evolution of the system.

This time–evolution will be caused by light–matter interactions between the modeled atom and some

high-intensity laser pulse, and is governed by the time–propagator in (3.116).
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4.1.1 Wave functions and eigenstates of the 1D TISE

Starting out by looking at the energy solutions to the 1D TISE (2.58) represented from a B–spline

basis (3.95) in SC (table 4), as given in table 4.1.1 below.

State (n) Numerical value (1D) Analytic value (3D) Absolute difference

1 −12.50000 −12.50000 1.85 · 10−12

2 −5.82258 −3.12500 2.67 · 100
3 −3.34572 −1.38888 1.96 · 100
4 −2.11945 −0.78125 1.34 · 100
5 −1.47143 −0.50000 0.97 · 100

Table 4.1.1: The 5 lowest energy solutions to the 1D TISE (2.58) in B–spline basis (3.95) and SC

(table 4). Analytic values: Energy level determined by En = − z2

2n2 . All energy values are listed in
atomic units.

Immediately apparent is the near–identical values found for the ground state energy, in spite of the

solutions being for systems with different numbers of dimensions. Modeling the Coulomb–potential as a

soft–core potential (2.19) makes for high presicion in the ground state energy, whereas any excited state

has had some error introduced from the approximation. This is the expected result, and should not

impede the time–propagation of the system due to the introduction of the energy probability differential

(3.120). Three wavefunctions corresponding to the energy states n = {1, 2, 3} are illustrated below.

Figure 4.1.1: The three tightest–bound eigenstates of the 1D TISE (2.58) in B–spline representation
(3.95) and SC (table 4).
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Now, as the 1D TISE (2.58) for a particle in a central potential does not have analytic solutions, there

isn’t much to compare these wave functions that are presented in Fig. 4.1.1 with. The 1402 lowest

energy solutions to the 1D TISE (2.58) are carried into another script, made to propagate the system

in time.

4.1.2 Time–evolution after exposure to vector field

The results to be presented below are produced in the following fashion: First, an eigenvalue basis is

constructed from the 1402 lowest energy solutions of the 1D TISE (2.58) in B–spline representation

(3.95). Then, the modeled 1D system is propagated by applying the propagator from (3.116), by

exposing the system to a laser pulse as in (3.118). This is done in standard configuration (SC),

described in table 4. As was discussed in sec. 3.6, the electric field amplitude E0 for the pulse will be

adjusted between calculations to inspect the effect it has on the ionization probability of the modeled

system. It is, to be precise, the same eigenvalue basis solving the 1D TISE (2.58) represented by

B–spline basis (3.95) using SC (table 4) being propagated in time for all values of E0, to keep results

consistent with one another. Simulations were carried out in intervals of 100 a.u. of electric field

strength amplitude, starting from E0 = 100 a.u. increasing up to E0 = 1500 a.u.

For low electric field strength amplitudes E0, it will be shown that the energy probability differential

3.120 falls off dramatically at higher energy levels. Below is shown the energy probability differential

with E0 = 100 a.u., in fig. 4.1.2a. (NOTE: The interpolation which was performed on these emission

spectra will be discussed in the corresponding section 4.2.2 on results in the Dirac framework)
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Figure 4.1.2a: Emission specter after propagating an eigenvalue basis from solving the 1D TISE
(2.58) in B–spline basis (3.95), by applying the corresponding 1D TDSE propagator of (3.116) with

E0 = 100 a.u. and SC (table 4).

The graph in fig. 4.1.2a has been cut short, as values below 10−22 are more heavily influenced by

machine precision. Due to the energy probability differential for the the multi–photon resonance dif-

ferential being expressed in a logarithmic scale, it is necessary to inspect some system which experiences

greater interaction with the laser pulse. Initial models were in fact done with a 1D model hydrogen

atom, Z = 1. The energy probability differential resulting from the propagation of a 1D TISE (2.58)

in B–spline basis (3.95) with Z = 1 in the propagator were orders of magnitude smaller than fig. 4.1.2a

shows. The results became heavily influenced by “machine precision noise” to the point where they

became unintelligible. Based on recommendation from supervisor M. Førre, the proton number Z = 5

is used in these calculations instead. A handy attribute of the configuration Z = 5, when combined

with the angular frequency ω = 50 a.u., is that the absorption of a single photon enough to ionize the

hydrogenic model (Eg.s. ∼ −12.5). As such, bound excited states are of smaller importance, which is

helpful to the 1D model, as the soft–core approximation (2.19) of the Coulomb potential makes them

less precise 4.1.1.

Further investigating the energy probability differential will be done, and some results are illustrated

in fig. 4.1.2b below.
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Figure 4.1.2b: Emission spectra found by propagating an eigenvalue basis from solving the 1D TISE
(2.58) in B–spline basis (3.95), by applying the corresponding 1D TDSE propagator of (3.116) with

E0 =


400 a.u. Red dashed line

700 a.u. Blue solid line

1000 a.u. Black dash-dotted line

using SC (table 4)

Inspecting fig. 4.1.2b, a pattern emerges: As the electric field strength amplitude increases, the multi–

photon resonance peaks (located appx. every nω+Eg.s , 1 < n ∈ Z, or EMPR = {87.5, 137.5, 187.5, . . . })
become dominated by fluctuations. The black dash–dotted line in fig. 4.1.2b shows this feature espe-

cially pronounced, and the emission spectra for E0 = {700, 1000, 1300} a.u. are shown in fig. 4.1.2c

below.
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Figure 4.1.2c: 2nd, 3rd&4th photon resonance peaks of emission spectra found by propagating an
eigenvalue basis from solving the 1D TISE (2.58) in B–spline basis (3.95), by applying the

corresponding 1D TDSE propagator of (3.116) with E0 =


700 a.u. Blue solid line

1000 a.u. Black dash-dotted line

1300 a.u. Green solid line

using

SC (table 4).

In fig. 4.1.2c, the fluctuations permeate the peaks of the E0 = 1300 a.u. (green, solid line) to the point

where the “centres of mass” are lower than the energy intervals surrounding them. Inferring from

figs, 4.1.2b & c, it can be hypothesised that increasing the electric field strength amplitude E0 by a

significant amount could yield more noise–polluted curves. A reasonable proposition for the cause of

these fluctuations could be found in the expression (3.118) for the vector field, quantized to facilitate

numerical representation:

A(ti) =
E0

ω
f(ti) sin(ωti) , with f(ti) as the pulse envelope. (4.1)

From (4.1) and assuming that the initial system is equal across all simulations using the identical

eigenvalue basis (meaning e.g. the three that are illustrated in fig. 4.1.2c) in the SC (table 4), all

differences in the resulting emission spectra must stem from the variation of the electric field strength

amplitude E0. One way this could produce “noise” in the time–propagation is by increasing incre-

mental difference of the vector potential ∆A(t) = A(t) − A(t −∆t). Since A(t) is linearly dependent

on E0, increasing the field strength by substitution as E0 → nE0 for some 1 ≪ n ∈ R could signifi-

cantly increase the requirements for time–resolution. That is, an increase to the electric field strength
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amplitude E0 might require a corresponding increase in the number of iterations n∆t over which the

propagation must be performed, if it is to retain the resolution which can be observed at lower values

of E0. This problem, however interesting it is, does not fall directly within the main objective for the

present work, and is therefore left to ponder at a later occasion.

In the previous sections 4.1.1 and 4.1.2, numerical models and solutions to the 1D TISE (2.58) repre-

sented in B–spline basis (3.95) were put forth. Subsequently, a solution of the modeled system using

standard configuration (4) was utilised as a finite eigenvalue basis for the 1D TDSE time–propagator

(3.116), for varying values of the electric field strength amplitude. Results from both the 1D TISE

and TDSE were presented in illustrations, and some features of the emission spectra were discussed.

4.2 Numerical solution to the 1D Dirac equation

With numerical results from the non–relativistic 1D Schrödinger equation presented in sec. 4.1, this

is an opportune spot to consider the corresponding results from a Dirac framework. To begin, some

stationary eigenstates to the 1D TIDE (3.20) in a DKB B–spline representation (3.51) using SC (table

4) are shown.

4.2.1 Wave functions for TIDE

Solutions to the 1D TIDE (3.20) are shaped as wave spinors (2.28). Intrinsic to these solutions is the

substantial difference in relative amplitude for the large and small component. As such, any results

derived by solving the 1D TIDE (3.20) for a model hydrogenic atom with a soft-core potential (2.19)

are presented in two parts, one for each of the large and small components. First, using SC (table 4),

the large and small components of the solutions to the four lowest positive energy states are presented.
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Figure 4.2.1a: Large components of the four lowest positive energy eigenstates of the 1D TIDE (3.20)
in DKB B–spline representation (3.51) and SC (table 4).
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Figure 4.2.1b: Small components of the four lowest positive energy eigenstates of the 1D TIDE (3.20)
in DKB B–spline representation (3.51) and SC (table 4).

When comparing Fig.4.2.1a and b with one another, it can be seen that each pair of

(
Pn

Qn

)
contains

exactly one odd and one even component. This infers significant implications for the Hamiltonian of

interaction (3.79), specifically regarding the matrix elements Vk,n (3.75). For clarity, Vk,n is defined as

Vk,n =

∫ a

b

[P ∗
k (x) ·Qn(x)−Q∗

k(x) · Pn(x)] dx , (4.2)

which can be separated to

Vk,n =

∫ a

b

P ∗
k (x) ·Qn(x) dx−

∫ a

b

Q∗
k(x) · Pn(x) dx . (4.3)

Examining the large and small components to positive energy solutions with more values of n, the

following relation can be expressed:

Pn :


even

(
n

even

)
odd

odd

(
n

odd

)
even

 : Qn (4.4)

Now, as the product of one odd and one even function is an odd function, and the integral of a well–

defined odd function Fodd(x) in the interval interval (−a, a) yields
∫ a

−a
Fodd(x)dx = 0, the following

expression can be made for the matrix elements of (4.3):

Vk,n = 0 ∀ (k, n) ∈ Z such that k mod 2 ≡ n mod 2 (4.5)

In other words, if the matrix elements Vk,n for positive energy solutions were laid out on a chess board,

you should only expect to find non–zero values in either the black or the white squares. Now, as the

method used to express the components Pn and Qn is a numerical one, the identity laid out in (4.5)

is not exact. Using the matplotlib.pyplot.spy() functionality on this matrix with precision 10−11

still results in a chess pattern, as illustrated below.
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Figure 4.2.1c: Near–zero (|Vk,n| < 10−11) [white squares] and non-zero [black squares] values in the
matrix elements of Vk,n (4.3) obtained by solving the 1D TIDE (3.20) in DKB B–spline

representation (3.51) and SC (table 4).

From this result, it would seem that pairs of states which fulfil the condition for (k, n) laid out in

(4.5) will interact singificantly less than (k, n)–pairings of states which do not fulfill the condition.

In fact, this can immediately be seen when graphing out the resulting emission spectra given by

time–propagation in (3.91).

4.2.2 Emission spectra for TDDE

Before proceeding to the numerical results to the modeled 1D TDDE (2.43), it is useful to retrace

the steps leading up to this. First, the 1D TIDE (3.20) was solved in a DKB B–spline representation

(3.51) using the Standard Configuration (4). A basis consisting of the eigenstate solutions to the 1D

TIDE was then constituted, and the time–indepentent parts of the matrix elements in Vk,n (3.75) were

determined by integration. This matrix, as well as the eigenvalues to the 1D TIDE, is then passed

on to the model time–propagator (3.91), which governs the time–evolution of the initial system while

it interacts with the laser pulse (3.118). Ultimately, the entire process yields some vector c⃗(t = T )

containing the coefficients for each energy state in the post–interaction modeled system, enabling

some representation of the energy probability differential (3.120) so that the emission spectra can be

investigated.

The first figure of this subsection ties in heavily with fig. 4.2.1.c and the identity for Vk,n presented in

(4.5).
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Figure 4.2.2a: Emission spectra found by propagating an eigenvalue basis from solving the 1D TIDE
(3.20) in DKB B–spline basis (3.51), by applying the corresponding 1D TDDE propagator of (3.91)

with E0 = 400 a.u. using SC (table 4).

Figure 4.2.2a shows some glaring issues, and appear almost as if there are two emission spectra layered

on top of each other. This appearance is not entirely false either, and looking at fig. 4.2.2b (which has

the same data input as fig. 4.2.2a),

Figure 4.2.2b: Emission spectra found by propagating an eigenvalue basis from solving the 1D TIDE
(3.20) in DKB B–spline basis (3.51), by applying the corresponding 1D TDDE propagator of (3.91)
with E0 = 400 a.u. using SC (table 4). Values are separated into odd [blue] and even [red] indices of

the coefficient ci(t = T ).
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there are striking similarities. In 4.2.2a, the area which has been scrawled out is identical to the area

which is encased by the emission spectra drawn in fig. 4.2.2b. The mechanism responsible for this

splitting of the emission spectra is, or so I would think, related to the structure of the interaction

matrix, specifically in the relation (4.5). Having become aware of this peculiarity, it can be accounted

for by interpolating them to the same array of energy states. Subsequently, some emission spectra

(corresponding to the electric field strength amplitudes E0 that were in sec. 4.1.2 for the Schrödinger

framework) will be illustrated in the below figures.

Figure 4.2.2c: Emission specter found by propagating an eigenvalue basis from solving the 1D TIDE
(3.20) in DKB B–spline basis (3.51), by applying the corresponding 1D TDDE propagator of (3.91)

with E0 = 100 a.u. using SC (table 4).

Fig. 4.2.2c has been displayed above to illustrate the breakdown of the emission spectra into machine

precision “noise”. An explaination for this phenomenon has already been given, in the paragraph

immediately succeeding fig. 4.1.2a.
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Figure 4.2.2d: Emission spectra found by propagating an eigenvalue basis from solving the 1D TIDE
(3.20) in DKB B–spline basis (3.51), by applying the corresponding 1D TDDE propagator of (3.91)

with E0 =


400 a.u. Red dashed line

700 a.u. Blue solid line

1000 a.u. Black dash-dotted line

using SC (table 4).

Again for the sake of comparison, the emission spectra of three different electric field strength ampli-

tudes E0 are plotted on the same axis. The fluctuations that were discussed in the paragraph below

fig. 4.1.2b and beneath 4.1.2c can also be spottet in the emission spectra hailing from time–evolution

by the 1D TDDE (3.91).

To summarise section 4.2, the emission spectra which was produced by inserting an eigenvalue basis,

which was obtained by solving the 1D TIDE (3.20) for a hydrogenic atom in a soft–core potential

(2.19) in a DKB B–spline representation (3.51), into the time–evolution propagator 3.91 for the 1D

TDDE (3.67). Using results from section 4.1 and 4.2, as well as some not–yet introduced results, the

next section will attempt to find some perspective on how the shifts in the emission spectra for the

Dirac and Schrödinger models which was presented in fig. 1.3 (red/blue shift), as well as in section

1.5.
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4.3 Shifts in the emission spectra of the 3D Dirac and Schrödinger

equation

To start off this section, it seems appropriate to shed some light on the background for the main

problem of the current thesis. In previous studies [7, 8, 20, 23, 14] of the light-matter interactions of

some numeric model of a hydrogenic atom in the presence of a high–intensity laser field, a shift in the

emission spectra (such as the one illustrated in fig. 1.3) and/or ionization probabilities are observed

when accounting for relativistic effects in calculations. These relativistic effects have been accounted

for in several ways, most commonly by a) implementing some relativistic or semirelativistic corrections

to the TDSE, and b) by modeling the system on some numerical adaptation of the TDDE. To observe

the shift as vividly as required, M. Førre has contributed two emission spectra from numerical 3D

model systems of hydrogenic atoms in the presence of a high-intensity laser pulse, both of which

make use of the dipole approximation. The first emission specter is the result of some numerical,

non-relativistic 3D Schrödinger system interacting with the pulse, while the second one is calculated

from some relativistic 3D model system in the Dirac framework, interacting with the same pulse. For

consistency, the spectra are generated with similar configurations as the SC (table 4). Specifically, the

3D emission spectra supplied by Førre, as well as the 1D emission spectra with which they are to be

compared with, were made with the configurations presented in table 4.3-1 below.

Parameter Symbol Configuration

Proton number Z Ze = 5 a.u.
Angular frequency ω 50 a.u.
Electric field strength amplitude E0 1000 a.u.

Table 4.3-1: Configurations of input parameters used to model the 3D (supplied by M. Førre) and
1D (made by the author as part of the current thesis) emission spectra, for both Dirac and

Schrödinger models.

With configurations as specified in table 4.3-1 above, the emission spectra from the modeled 3D

hydrogenic atom are illustrated in section 4.3.1 below.

4.3.1 Emission spectra in 3D numerical models of Dirac and Schrödinger

systems

From the outset (and to amend for the fairly inaccurate provisional illustration displayed in fig. 1.3),

the emission spectra for the 3D Dirac and Schrödinger models supplied by M. Førre are presented in

figures 4.3.1a+b.
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Figure 4.3.1a: Emission spectra obtained by solving the 3D TDDE (red line) and TDSE (blue dashed
line) for some numerical dipole approximation model hydrogenic atom in a high-intensity laser pulse.

Data supplied by M. Førre.
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Figure 4.3.1b: Emission spectra obtained by solving the 3D TDDE (red line) and TDSE (blue dashed
line) for some numerical dipole approximation model hydrogenic atom in a high-intensity laser pulse.

Identical data set as fig. 4.3.1, upscaled for ease of inspection. Data supplied by M. Førre.

The data presented in figs. 4.3.1a & b clearly illustrates the shift occurring in the energy specter of

a Dirac modeled system when compared to the non-relativistic Schrödinger model. Closer inspection

of the peaks reveal that the multiphoton resonances from the Schrödinger emission specter has peaks

in very close proximity to nonrelativistic expectations (as explained in the paragraph succeeding fig.

4.1.2). On the other hand, in the relativistic regime governed by the Dirac equation, the multi-photon

resonence peaks are shifted further apart.

Now having discussed the data provided by Førre, it is time to compare the emission spectra of the

1D TDDE and TDSE models, for which illustrations have already been shown in sec. 4.1&4.2.

4.3.2 Comparison of emission spectra of 1D TDDE and TDSE model atoms

The process for finding the results that are presented within the current section has been discussed in

detail in the final paragraphs of section 4.1.2 (for the numerical solutions in the Schrödinger framework)

and section 4.2.2 (in the Dirac framework). The figures 4.3.2a & b below are framed and configured

to be as similar to figs. 4.3.1a & b as possible, to make for easier comparison.
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Figure 4.3.2a: Emission spectra found by propagating an eigenvalue basis from (1) solving the 1D
TIDE (3.20) in DKB B–spline basis (3.51), by applying the corresponding 1D TDDE propagator of
(3.91) (red, solid line), and (2) solving the 1D TISE (2.58) in B–spline basis (3.95), by applying the
corresponding 1D TDSE propagator of (3.116) (dashed blue line). Both systems are propagated with

E0 = 100 a.u. in SC (table 4).
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Figure 4.3.2b: Emission spectra found by propagating an eigenvalue basis from (1) solving the 1D
TIDE (3.20) in DKB B–spline basis (3.51), by applying the corresponding 1D TDDE propagator of
(3.91) (red, solid line), and (2) solving the 1D TISE (2.58) in B–spline basis (3.95), by applying the
corresponding 1D TDSE propagator of (3.116) (blue, dashed line). Both systems are propagated

with E0 = 1000 a.u. in SC (table 4). Upscaled for ease of inspection.

From looking at these graphs, it is immediately apparent that the shift which was present in the

emission specter hailing from the 3D Dirac modeled system, as in fig. 4.3.1a & b. Notwithstanding

some differences in amplitude, the emission spectra of the 1D Dirac model (red line) and 1D Schrödinger

model (blue dashed line) in figs. 4.3.2a & b are practically identical. Furthermore, this also seems to

be the case for propagating either of the modeled systems in every electric field strength amplitude E0

attempted throughout this work. Further illustrations are shown in fig. 4.3.2c below.
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Figure 4.3.2c: Emission spectra found by propagating an eigenvalue basis from (1) solving the 1D
TIDE (3.20) in DKB B–spline basis (3.51), by applying the corresponding 1D TDDE propagator of
(3.91) (red, solid line), and (2) solving the 1D TISE (2.58) in B–spline basis (3.95), by applying the
corresponding 1D TDSE propagator of (3.116) (black, dashed line). Both systems are propagated

with E0 =


100 a.u.

900 a.u.

1300 a.u.

in SC (table 4).

From inspection of figure 4.3.2c, there is still no sign at all of the shift which could clearly be seen in fig

4.3.1a & b. With intent to determine whether the two models produce near-identical emission spectra

for every E0, figure 4.3.2d will contain data for 15 values of E0, for both the 1D modeled atoms.
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Figure 4.3.2d: Centre-of-mass approximations for the emission spectra of the numeric models of
hydrogenic atoms after exposure to a high-intensity laser pulse. Results were found using the Dirac
(red triangles, see sec. 4.2.2) and Schrödinger (blue dots, see sec. 4.1.2) systems using SC (table 4).

In the centre-of-mass plot from fig. 4.3.2, the y-value of each data point is determined individu-

ally for both the the 1D TDDE and TDSE models, for each electric field strength ampliture E0 =

{100, 200, ... , 1400, 1500}, by finding the average y–value on the curve within an energy interval of

±5 a.u. of each peak. Although there is a noticeable difference between them, it does not give much

in the way of energy shifts as the 3D model presented. For the sake of comparing the emission spectra

of the 1D modeled systems to the 3D results provided by Førre, figure 4.3.2e is given below.
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Figure 4.3.2e: Comparison of emission spectra with E0 = 1000 a.u. for 4 different numeric models.
Upper axes: Both 3D results are provided by M. Førre. 3D TDSE (dashed, blue line) and 3D TDDE

(solid, red line). Lower axes: Results from 1D TDSE (dashed, green line) and 1D TDDE (solid,
yellow line). All emission spectra use the configurations listed in table 4.3-1. 1D simulations also use

SC (table 4).

From fig. 4.3.2e, one immediately apparent difference in the 1D and 3D emission spectra is the

amplitude present in them. By some numeric or physical mechanism, it would seem that the 1D

electron is less likely to interact with the electric field than an electron existing in a 3D modeled world

is.
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4.4 Ionization probability after exposure to a high-intensity

laser pulse

As the results of the 1D TDDE model show no observable shift in the emission spectra, it can be useful

to instead consider another potential use for the data sets produced over the course of the present

work. Previous research has shown that relativistic effects, acting in some light-matter interaction for

a numerical model hydrogenic atom in the presence of a high-intensity laser pulse, can manifest their

influence in the ionization probability for the modeled system [14, 23]. To investigate this, the results

(for which the method of obtaining have been discussed in sec. 4.1.2 (TISE) and 4.2.2 (TIDE)) are

sorted by which electric field strength amplitude E0 they were exposed to, as well as which model

they were based on. Finding the probability of ionization after some model has been exposed to the

high–intensity laser pulse can be done in the following way.

All systems have their initial state as the ground state (cg.s.(0) = 1, ci̸=g.s.(0) = 0). Ionization

happens as the electron obtains enough energy break out of the central potential of the modeled atom,

an as such the probability of ionization can be determined from the sum coefficients corresponding to

unbound energy states at some point after the pulse has imparted its effect on the system. To be more

precise, the probability of ionization for some system represented in an eigenvalue basis containing N

eigenstates – of which the lowest n correspond to bound states – can be expressed as the series given

below.

Pion =

N∑
i=n+1

|ci(Tfin)|2 for some n such that Ej > 0 ∀ j > n (4.6)

Inserting the same solutions as were illustrated in fig. 4.3.2d into eq. 4.6 yields results which are

displayed in figure 4.3.3a, below.
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Figure 4.3.2d: Ionization probability for 1D Dirac and Schrödinger model atoms after being exposed
to some high–intenstity laser pulse.

The resulting graph for the ionization probability is in agreement with the emission spectra from sec.

4.3.2: Relativistic effects are not noticeable in this modeled system.

4.5 Inclusion of negative energy states in the Dirac eigenvalue

basis

During a meeting with my supervisor some days before the deadline for this thesis, we came to

the realisation that the negative energy solutions from the 1D TIDE (3.20) had not included in the

eigenvalue basis used to solve the TDDE 3.91. Neglecting to include these negative energy states in

the eigenvalue basis has prevented the Dirac modeled system from exhibiting such relativistic effects

that would cause a shift illustrated in figs. 4.3.1a & b. Consequently, the 1D TDDE must be solved

by employing a slightly adjusted method, as will be described in the next paragraph.

To begin, the 1D TIDE (3.20) for a hydrogenic atom in a soft–core potential (2.19) is solved in the

DKB B–spline representation (3.51). These solutions, now including both positive and negative energy

solutions, are used to solve the 1D TDDE (3.67) by using the propagator from (3.91). The emission

specter for the 1D Schrödinger model presented in fig. 4.3.2b is also illustrated, as well as the emission

spectra provided by M. Førre.
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Figure 4.5a: Comparison of emission spectra approximated by the differential probability energy
distribution dP

dE with E0 = 1000 a.u. for 5 different numeric models. Upper axes: Both 3D results are
provided by M. Førre. 3D TDSE (dashed, black line) and 3D TDDE (solid, red line). Lower axes:
Results from 1D TDSE (dashed, black line), 1D TDDE without negative energy states (dotted,

cyan line). and 1D TDDE with negative energy states (solid, red line) All emission spectra use the
configurations listed in table 4.3-1.

With the inclusion of negative energy states to the eigenvalue basis propagated in the 1D TDDE (3.91),

a shift in the emission spectra caused by relativistic effects in the light-matter interaction with the

high-intensity laser pulse is can be observed. For further inspection, the 1D spectra are displayed for

a wider range of energy values in fig. 4.5b.
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Figure 4.5b: Comparison of the probability differentials with regards to energy found by propagating
an eigenvalue basis from (1): solving the 1D TIDE (3.20) in DKB B–spline basis (3.51), then

applying the corresponding 1D TDDE propagator of (3.91) to the eigenvalue basis with (red, solid
line) and without (black, dashed line) inclusion of the negative energy states; and (2): solving the 1D
TISE (2.58) in B–spline basis (3.95), by applying the corresponding 1D TDSE propagator of (3.116)
(green, dashed line). All modeled systems are propagated with the electric field strength amplitude

E0 = 1000 a.u.
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Chapter 5

Discussion, conclusion and future

prospects

In the current work, a modeled one-dimensional hydrogenic system within a soft-core potential has been

considered through varying methods and perspectives. The feasibility of representing the solutions of

the 3D radial TISE (3.13) in a B-spline basis (3.15) was discussed. Following this, a similar method

was implemented to solve the 1D TISE (2.58) for some one-dimensional model of a hydrogenic atom,

for which the central potential was approximated as a soft-core potential (2.19) to avoid the singularity

in x = 0. The process of representing solutions in a B-spline basis was subsequently applied to the 1D

TIDE, and three approaches to achieve this were described and evaluated. Ultimately, the first two

attempts were discarded in favour of the DKB representation (3.51), due to the prevalence of spurious

states caused by expressing the eigenstates in the first two approaches.

After finding numerical solutions to the time-independent modeled systems for both the Dirac and

Schrödinger equation, these solutions were taken as eigenvalue bases to inspect the time-evolution

of the modeled systems when exposed to some modeled high-intensity laser pulse. An expression

for predicting this time-evolution was derived by restructuring the time-dependent forms of both the

1D Dirac and Schrödinger equation to a time-propagator. This propagator was further simplified

by requiring that it only operate in small, sequential intervals, thus making the matrix exponential

contained within it Riemann-integrable. With a numerically solvable time-propagator, the modeled

systems were evolved in time through sequential solutions to the eigenvalue problem posed for each

time-step. In applying this propagator to the system, the light-matter interaction between the high-

intensity laser pulse and the modeled 1D atom was examined. Through graphical representations,

the relativistic effects seen in the 3D data could not be observed in the one-dimensional system.

Furthermore, results obtained from solutions of the Dirac and Schrödinger equation yielded near-

identical results. In some later calculations, the negative energy solutions of the modeled 1D TIDE

were included in the basis for the time-propagator, revealing a shift of similar magnitude to the one

observed from the 3D modeled system.

To answer the main problem put forth in the introduction: Yes. It is possible to observe relativis-
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tic light-matter interactions between some one-dimensional model and a high-intensity laser pulse.

Whether this implies that the shift is a real, physical mechanism or not does not fall under the per-

view of this thesis to formulate a definitive answer to. Additionally, knowledge that this relativistic

effect can be described in a one-dimensional system could be of potential help for someone attempting

to disentangle these interactions at a later date.
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