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EXTENDING WHITNEY’S EXTENSION THEOREM:
NONLINEAR FUNCTION SPACES

by David Michael ROBERTS & Alexander SCHMEDING (*)

Abstract. — We consider a global, nonlinear version of the Whitney exten-
sion problem for manifold-valued smooth functions on closed domains C, with
non-smooth boundary, in possibly non-compact manifolds. Assuming C is a sub-
manifold with corners, or is compact and locally convex with rough boundary, we
prove that the restriction map from everywhere-defined functions is a submersion
of locally convex manifolds and so admits local linear splittings on charts. This is
achieved by considering the corresponding restriction map for locally convex spaces
of compactly-supported sections of vector bundles, allowing the even more general
case where C only has mild restrictions on inward and outward cusps, and proving
the existence of an extension operator.
Résumé. — Nous considérons une version du problème de l’extension de Whit-

ney, globale et non linéaire, pour les fonctions lisses à valeurs dans des variétés et
définies sur des domaines fermés C à bords non-lisses dans des variétés possiblement
non compactes. Supposant que C est une sous-variété à bord anguleux, ou qu’elle
est compacte et localement convexe à bords non-lisses, nous montrons que l’opéra-
teur de restriction, à partir des fonctions définies partout, est une submersion de
variétés localement convexes, et donc possède des scindages linéaires locaux sur les
cartes. Nous considérons à cet effet l’opérateur de restriction correspondant pour
les espaces localement convexes de sections de fibrés vectoriels à support compact,
permettant aussi de tariter le cas plus général où C n’a que des restrictions légères
sur les cusps vers l’intérieur et l’extérieur, et montrons l’existence d’un opérateur
de prolongement.
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1. Introduction

The extension of differentiable real-valued functions from closed subsets
of Euclidean space was decisively solved in the 1-dimensional case by Whit-
ney [30] and for finite order differentiability on Rn by Fefferman [7]. In the
1-dimensional case, for any closed set C ⊂ R and the data of a Whitney
jet on C—a formal Taylor series defined everywhere on C—there is a real-
valued differentiable function on R whose Taylor series on C coincide with
the original Whitney jet (the recognition problem). Moreover, the restric-
tion map from globally-defined functions to jets on C is not just surjective
but has a continuous (linear) section, also called an extension operator (the
operator problem), solved in [31] and [8], the latter for Cm functions on
Rn. We shall refer to these two problems jointly as the Whitney extension
problem.
For closed sets in n-dimensional space the differentiability class of the

functions starts to impact the results and techniques (contrast [10] with [8],
for example), as well as regularity assumptions on the boundary of C in
the smooth case [10, Theorem 2.1] (obstructions to the operator problem).
A variation of these problems ([4, Proposition 2.16], [10]) is to consider not
the data of Whitney jets on C, but continuous extensions of differentiable
functions from the interior C◦ of C, all of whose derivatives also extend
continuously to C. In this case the roughness of the boundary can prevent
such smooth functions from defining Whitney jets (obstructions to the
recognition problem) and from extending to a larger domain. It is in this
more delicate setting that we prove our theorems. Namely, we consider the
following generalisation of the Whitney extension problem: Let M and N
be smooth manifolds and C ⊂ M closed. Recall that there is a smooth
manifold structure on the space C∞(M,N) of smooth maps from M to N ,
modelled on spaces of sections in certain vector bundles (cf. Appendix A).

Problem 1. — To what extent and under what conditions can one
define extension operators for the restriction map

resC : C∞(M,N) −→ {smooth functions C → N}?

Here by “smooth function” we mean smooth on C◦ such that all deriva-
tives extend continuously to C. Part of this problem is to determine the
appropriate definition of, and structure on, the latter function space.

Before we give an answer to this problem in Theorem B stated below,
let us illustrate an example toy application.
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Example. — Let the manifoldM be a torus, an infinite cylinder, or more
generally a quotient Rn/Γ by a proper action of some discrete group Γ, and
let C be the closure of an open set C◦ ⊂ M with non-smooth boundary.
Take N to be a Lie group G, and let f : C → G be a given function.
Assuming f extends to a smooth function M → G, when can we find an
extension operator whose domain is all smooth functions C → G sufficiently
close to f?
If G were a connected solvable Lie group, hence an aspherical manifold,

one could reduce this problem to one of finding an extension operator for
functions C ′ → G̃ ' Rk, where C ′ ⊂ Rn is the preimage of C under the
covering map Rn →M . We might then apply existing extension theorems
(e.g. [9]), but then one needs to guarantee the resulting extended functions
Rn → G̃ → G are Γ-equivariant so as to descend to M (e.g. by averaging
over Γ, if finite). This approach fails even under mild generalisation, for in-
stance to a non-aspherical homogeneous space on the source or non-solvable
Lie group in the target.
One result of this article (Theorem 6.13) is that under suitable assump-

tions on C (independent of being a subset of M) we can define a smooth,
locally convex manifold structure on the codomain of resC . More precisely,
if C is compact and a manifold with rough boundary (Definition 6.1) then
the space of smooth functions C → N is a Fréchet manifold with charts
modelled on space of sections of vector bundles over C. We recall also that
if C is in fact a manifold with corners (a special case of having a rough
boundary), then we can drop the assumption of compactness and recover
the construction of Michor [24, Theorem 10.4] of a smooth manifold of
smooth maps C → N . In this case, the charts are given by compactly
supported spaces of sections, so it is in this generality we will work.

Remark. — The restriction in the general rough boundary case to com-
pact sets C is only due to current manifold of mappings technology; a
generalised Ω-lemma in the forthcoming [15] is one main missing ingredi-
ent. We conjecture that the results of this paper relying on compactness of
C will be true for non-compact C.
Given Theorem 6.13, then, the nonlinear map resC looks like, on charts, a

linear restriction map for spaces of (compactly supported) sections of vector
bundles. We thus attack Problem 1 by reducing it to a linear extension
problem involving spaces of sections of vector bundles. To set this problem
up, let M be a smooth manifold, E → M be a real vector bundle and
C ⊂ M some closed set. Let Γc(M,E) denote the space of compactly-
supported smooth sections of E →M .

TOME 0 (0), FASCICULE 0
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Problem 2. — Under what conditions can one define extension opera-
tors for the restriction map

resC : Γc(M,E)→ {compactly-supported smooth sections C → E
∣∣
C
}?

Again, part of this problem is to determine the appropriate definition of,
and structure on, the latter function space.

One can make much weaker assumptions on the closed set in this case,
leading to a much stronger theorem than we need for the application to
Problem 1. An answer to this problem is given in Theorem A below, but
let us first consider a special case.

Example. — Consider again a quotient manifold M = Rn/Γ as in the
previous Example, and a complex line bundle E →M . Sections of E can be
identified with functions Rn → C satisfying a twisted equivariance condi-
tion. For a closed set C ⊂M with non-smooth boundary, when is there an
extension operator from smooth sections over C to global smooth sections?

Again, under very special assumptions on the geometry, existing results
(e.g. [9, Theorem 2.1]) might be adapted as in Example 1, since the space
of sections of a rank-k vector bundle E → Rn/Γ is isomorphic to a space
of suitably twisted-equivariant functions Rn → Ck (for instance, using
a family of GL(k,C)-valued multipliers); this approach fails under mild
generalisation.

Statement of results

We describe our results now in more detail, starting from the linear case
(Theorem A) and working up to the main, nonlinear case (Theorem B). Fix
a pair of finite-dimensional manifoldsM,N withM being a σ-compact and
equipped with a Riemannian metric. Let C ⊂M be a closed set satisfying
a cusp condition, defined below in Definition 4.1. This condition allows
general Lipschitz domains, but also much rougher boundary conditions, for
instance Koch snowflake-like sets. Note that at this stage we do not assume
that C carries any submanifold structure of its own, whence smoothness is
only a meaningful concept because we can test in charts of the manifolds
M and N which do not have a boundary.

ANNALES DE L’INSTITUT FOURIER
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Theorem A. — Let E → M be a (finite-rank) vector bundle and
C ⊂ M a closed set satisfying the cusp condition. The restriction map
on compactly-supported smooth sections

resC : Γc(M,E) −→ Γc(C,E)
σ 7−→ σ|C

has a continuous linear splitting.

We will use this result to show that resMC : C∞(M,N) → C∞(C,N)
admits local splittings. Recall that for a smooth manifold M (possibly
with corners), the space C∞fS (M,N) of smooth mappings with the fine very
strong topology (see [17] and [24], where the fS-topology is called FD-
topology) can be turned into an infinite dimensional manifold. If M is
compact the fine very strong topology coincides with the well known com-
pact open C∞-topology. We prove in Section 7 that Theorem A yields local
sections of resMC if C is a submanifold with corners of M . If C is compact,
we can even relax the condition and allow submanifolds with rough bound-
ary, a definition introduced by Karl-Hermann Neeb [15]. Thus our next
main result can be formulated as follows:

Theorem B. — For C⊂M a submanifold with corners, or compact and
a submanifold with rough boundary, the restriction map resMC :C∞fS (M,N)→
C∞fS (C,N) is a submersion of locally convex manifolds.

Recall that for infinite-dimensional manifolds whose model spaces are
more general than Banach spaces, a submersion is a map that locally,
in submersion charts, looks like a projection out of a product. This is a
stronger condition than the map on tangent spaces being a split surjection
(cf. [14] for a detailed study).

We remark here that Theorem B does not imply that resMC is surjective as
not necessarily all smooth functions on closed submanifolds with (rough)
boundary will admit extensions to the ambient manifold (compare [21,
Corollary 6.27]). A simple example is the case where M = S2, C ⊂ S2 is a
closed equatorial “belt” and N = S1. A map C → S1 cannot extend to S2

if has non-zero winding number.
Finally, we look at nested closed subsets which satisfy the assumptions

of Theorem B.
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Corollary C. — With the manifolds M,N as above and closed sets
C ⊂ D ⊂ M which both satisfy the assumptions of Theorem B, the re-
striction map

resDC : C∞fS (D,N) −→ C∞fS (C,N)
f 7−→ f |C

is a submersion of locally convex manifolds.

A more specific corollary applies the above collection of results to closed
sets that are geodesically strongly convex, for example closures Ui...j of
iterated finite intersections Ui...j = Ui ∩ . . . ∩ Uj of geodesically strongly
convex charts. Such closed sets satisfy the required cusp condition and we
prove in Lemma 7.3 that they are submanifolds with rough boundary.

Corollary D. — LetM be a smooth Riemannian manifold with geod-
esically strongly convex compact sets C ⊂ D ⊂M and N another smooth
manifold. Then the restriction map

resDC : C∞(D,N)→ C∞(C,N)

is a submersion of Fréchet manifolds.

Corollary D allows the construction of various spaces of tuples of maps
satisfying equations on suitable closed subsets of their domain; one can use
the submersions it gives to ensure certain limits of diagrams of Fréchet man-
ifolds exist. To this end, a close analogue of this corollary was stated as [27,
Proposition 3], with only a rough sketch of a proof, ignoring the function
space topologies, and also allowing M to be a manifold with corners. This
was used to construct infinite-dimensional manifolds of certain functors
from a Čech groupoid to an arbitrary Lie groupoid. However, the correct
hypothesis is rather “rough boundary”, rather than corners, so Corollary D
should be taken to replace [27, Proposition 3].
One can ask the obvious questions as to how much further the results

here can be pushed, especially in light of the results of Frerick on general
sets satisfying the cusp condition [9]. The biggest obstacle in pursuing this,
is to define the relevant locally convex topologies or manifold structures in
the linear and non-linear cases respectively. In light of this, an extension
of the results in the present paper might be possible but there seems to be
no straightforward way to do this.

A brief outline of the paper is as follows. In Section 2 we give basic no-
tions that are needed for the paper, relegating most technical results for
infinite-dimensional calculus and manifolds to Appendix A. Section 3 gives
the necessary ingredients to build towards Theorem A, namely various bits
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of extension theory and patching results in the linear setting, and these are
assembled in Section 5. We then recall (from the forthcoming [15, Chap-
ter 1.4]) the fundamentals of the theory of manifolds with rough boundary
in Section 6 and construct the smooth manifolds of maps in that case. In
Section 7 we then finally prove Theorem B. Appendix B is a summary of
the theory of Whitney jets, for ease of reference.

Acknowledgements
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Uri Bader, as well as Benoît Kloeckner for helpful discussions. The second
author thanks Helge Glöckner for useful comments on manifolds with rough
boundary and their spaces of mappings (in particular that Theorem 6.13
follows from the exponential law). Both authors thank Seppo Hiltunen who
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2. Preliminaries and Notation

We wish to study an extension operator between spaces of smooth func-
tions on manifolds. In the end, we will see that, as for the vector space
case, an extension operator for functions defined on a “suitably nice” sub-
set C of a manifold M to smooth functions on the whole manifold exists.
Further, we want to establish that the restriction of N -valued functions is
a submersion in the sense of [14].

2.1 (Notation and conventions). — We write N := {1, 2, . . .} and N0 :=
N ∪ {0}. Frequently we will use standard multiindex notation to denote
(iterated) partial derivatives of a (smooth) function f : Rd ⊇ U → Rm as
∂αf for α ∈ Nd0 (see B.1). For a subset S of a topological space we denote
by S◦ its interior. We say that a subset C of a topological space is regular, if
C◦ is dense in C. We note that closed subsets satisfying the cusp condition
to be defined below are always regular.
Further, every finite-dimensional manifold considered in the following

will always be assumed to be Hausdorff and σ-compact.
We say M is a Banach (or Fréchet) manifold if all its modelling spaces

are Banach (or Fréchet) spaces. In general, infinite-dimensional manifolds
will not required to be σ-compact or paracompact.
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We consider functions on non-open sets following [32] (where these map-
pings are used to define manifolds with boundary). Further we frequently
have need for smooth functions on possibly infinite-dimensional manifolds
(think manifold of mappings). To this end we base our investigation on the
so called Bastiani calculus [3] which readily generalises beyond the realm
of Banach spaces (cf. Appendix A for a short introduction).

Definition 2.2. — Let E,F be locally convex spaces and C ⊆ E be a
set with dense interior. A continuous mapping f : C → F is called C1-map
if f
∣∣
C◦

is C1 in the sense of Bastiani calculus and the derivative d(f
∣∣
C◦

)
extends (necessarily uniquely) to a continuous mapping df : C × E → F .

Similarly we say f is Ck for k ∈ N ∪ {∞} if f
∣∣
C◦

is Ck and the iterated
differentials extend (uniquely) to all of C. We say f is smooth (or C∞) if
f is Ck for every k ∈ N and write C∞(C,F ) for the set of all smooth maps
on C.

We have the following version of the chain rule (cf [32, Remark 5], and [1,
Lemma 3.17] for a more general statement; this is also treated in [15, Propo-
sition 1.4.10]):

Lemma 2.3. — Let C ⊆ E and D ⊆ F be regular subsets of locally
convex spaces E,F and H be another locally convex space. Consider Ck
mappings f : C → D ⊆ F and g : D → H then g ◦ f is a Ck mapping if one
of the following conditions is satisfied

(1) f(C◦) ⊆ D◦ (no condition on C and D),
(2) C,D are locally convex sets, i.e. every point has a neighborhood in

the set which is convex (no condition on f and g).

Note that for an open set U , C ∩U is a regular set if C is regular. Thus
the chain rule allows us to make sense of Ck-mappings on regular subsets
of smooth manifolds without boundary.

Definition 2.4. — Let C ⊆M be a regular subset of a manifold with-
out boundary. A continuous map f : C → N to a manifold N without
boundary is a Ck-mapping if for every x ∈ C there is a pair of charts
(ϕ,U), (ψ, V ) with x ∈ U , f(x) ∈ V such that ψ ◦ f ◦ ϕ−1|ϕ(U∩C) makes
sense and is a Ck-mapping.

Clearly by Lemma 2.3(1) this definition is independent of the choice of
charts. However, we note that many of the familiar rules of calculus are
no longer valid for Ck-mappings on sets with dense interior which are not
locally convex. In any case, these results are not needed to treat spaces of
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sections as locally convex spaces in Section 3 below and to prove Theo-
rem A.
To retain the “usual behaviour” of differentiable functions (most impor-

tantly, the Mean Value Theorem, and hence the chain rule) it is well known
(e.g. [20]) one needs to work with locally convex topological vector spaces.
In the non-linear setting one needs to require in addition that the subset
C of the domain manifold is locally convex.(1) This will be important to
establish the global setting required in Theorem B. Namely, the usual rules
of calculus enable the construction of manifolds of mappings as outlined in
Section 6.

3. Whitney’s extension theorem for linear spaces of
functions

The aim of this section is to recall the Whitney extension theorem in the
vector space case. Further, we discuss conditions under which the space of
Whitney jets can be identified with spaces of smooth functions on a regular
closed set. In this section we let C ⊆ Rd, d ∈ N be a regular closed set.

3.1 (Ideals of functions vanishing on closed sets). — Let m ∈ N and
W ⊆ Rd be an open neighborhood of the regular closed set C. We consider

IC(W,Rm) := {g ∈ C∞(W,Rm) | ∂αg|C ≡ 0, ∀ α ∈ Nd0}.

Since ∂α : C∞co (U,Rm) → Cco(U,Rm), f 7→ ∂αf and evx : Cco(W,Rm) →
Rm, f 7→ f(x) are continuous linear (cf. [1, Definition 2.5 and Proposi-
tion 3.20] with respect to the compact open C∞-topology (cf. Appendix A),

IC(W,Rm) =
⋂
α∈Nd0

⋂
x∈C

(evx ◦∂α)−1(0)

is a closed vector subspace of the Fréchet space C∞co (U,Rm). Indeed, if we
denote by E(C,Rm) the Rm-valued Whitney jets on C (see Appendix B),
we can view IC(W,Rm) as the kernel of the linear map rW : C∞(W,Rm)→
E(C,Rm), g 7→ (∂αg

∣∣
C

)α. Recall from [9, p. 126] that rW is continuous if
m = 1.(2) Identifying C∞co (W,Rm) ∼= C∞co (W,R)m (cf. [12, Lemma 3.4]) we
obtain continuity of rW for arbitrary neighborhoods W and m ∈ N.

(1)This observation seems to be due to Karl-Hermann Neeb, and will be treated in the
forthcoming book [15].
(2) Indeed the article claims this only for W = Rd but continuity follows directly from
the remarks above Definition 2.1 in [9] as explained in Remark B.6.
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Theorem 3.2 (Whitney extension theorem [30, Theorem 1], or [9, Theo-
rem 2.2] for a modern introduction). — The following sequence of Fréchet
spaces is exact:

(3.1) 0 −→ IC(W,Rm) −→ C∞co (W,Rm) −→ E(C,Rm) −→ 0

Remark 3.3. — Recall that in the category of locally convex spaces, a
sequence

0 −→ A
i−→ B

q−→ C −→ 0
of continuous linear maps is exact if it satisfies both of the following con-
ditions

(1) algebraically exact, i.e. images of maps coincide with kernels of the
next map,

(2) topologically exact, i.e. i and q are open mappings onto their images.
If A, B and C are Fréchet spaces topological exactness follows from alge-
braic exactness by virtue of the open mapping theorem; for general locally
convex spaces this is not the case (cf. e.g. [29]).

Note that the Whitney extension theorem in general requires only a
closed set C and not (as we required) a closed and regular set. However,
in our approach we will replace the space of Whitney jets by a space of
smooth functions on a closed set. Here the regularity assumption comes
into play (cf. Appendix A) and we will now construct a mapping which
deals with the identification:

3.4. — Consider the mapping

D : C∞(C,Rm) −→
∏
α∈Nd0

Cco(C,Rm)

f 7−→ (∂αf)α.

Then D makes sense by our definition of C∞(C,Rm) and is injective and
linear. Arguing as in [9, Section 2] the image of D is a closed subspace of the
Fréchet space

∏
α∈Nd0

Cco(C,Rm) (note that we have compact convergence
of functions and all derivatives on the dense interior of C!).

As the mapping D takes a smooth function on C to a jet expansion (i.e.
its family of derivatives), one is tempted to think that D takes its image
in the space E(C,Rm) of Whitney jets. However, this is wrong in general
as the following example from [4, Example 2.18] shows:

Example 3.5. — Let C be the complement of the open subset {(x, y)∈R2 |
0 < y < exp(−1/x2), x > 0}. Then C is a regular closed set and we define

ANNALES DE L’INSTITUT FOURIER
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a function f ∈ C∞(C,R2) as follows

f(x, y) =
{

exp(−1/x2) if x > 0, y > exp(−1/x2)
0 otherwise.

A computation of
(
f
(
x, exp(−1/x2)

)
− f(x, 0)

)
/(exp(−1/x2) − 0) = 1

shows that f cannot be extended to a smooth function on R2. Thus in
particular, the image of f under the mapping D from 3.4 is not a
Whitney jet.

As a consequence D can take its image in the space of Whitney jets only
if every smooth function on C extends to a smooth function on an open
neighborhood of C. It turns out that the non existence of extensions is tied
to the exponential type cusps of the set X in the example. Prohibiting such
inward cusps, which we shall call narrow fjords, ensures that every smooth
function can indeed be extended.

Definition 3.6 ([4, 2.16.1]). — Let A be a regular closed subset of Rd.
We say A has no narrow fjords if for all a ∈ A exists an integer p, a compact
neighborhood K of a in A and a constant C > 0 such that any x, y ∈ K
can be joined by a rectifiable path γ lying inside A◦, except perhaps for
finitely many points, and the length `(γ) of γ satisfies

‖x− y‖ > C `(γ)p.

Note that this definition gives control over how fast the width of fjords
can shrink as one moves inwards along them, see Figure 3.1. Further, the
no narrow fjords condition is closely related to the conditions called C-
quasiconvexity and the (C,ω)-convexity from [5, Definition 2.63].

Example 3.7. — Let A be a regular closed set. Recall that the open set
A◦ satisfes the bounded turning condition if there is a constant C > 0
such that for all x, y ∈ A, there is a rectifiable path γ from x to y such
that ‖x − y‖ > C `(γ). If A◦ satisfies the bounded turning condition then
A has no narrow fjords. Any uniform domain [22] (see, for example, [25,
Definition 2.2] for an updated formulation) satisfies the bounded turning
condition, which includes all Hölder domains and NTA domains (“non-
tangentially accessible domains” as introduced by [18]), and so the closures
of all these sets all have no narrow fjords.

3.8. — Let now C be a regular closed set with no narrow fjords. Then
D : C∞(C,Rm) →

∏
α∈Nd0

Cco(C,Rm) takes its image in E(C,Rm) by [4,
Proposition 2.16]. As a consequence of the Whitney extension theorem 3.2,
every element in C∞(C,Rm) extends to a smooth map on Rd, whence the

TOME 0 (0), FASCICULE 0
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A

a

K x

y

γ

Figure 3.1. No narrow fjords condition

image of D coincides with the space of Whitney jets E(C,Rm) (see Defini-
tion B.9). Thus we topologize C∞(C,Rm) with the identification topology
induced by D, turning it into a Fréchet space isomorphic to the space of
Whitney jets on C. In particular, the exact sequence (3.1) yields an exact
sequence of Fréchet spaces

(3.2) 0 −→ IC(W,Rm) −→ C∞co (W,Rm) −→ C∞(C,Rm) −→ 0

In the next section we are going to investigate outward cusp conditions
on the boundary of closed subsets and show how they can be transferred
to Riemannian manifolds.

4. The cusp condition

In the last section we have already encountered a cusp condition pre-
venting the occurrence of certain (inward) cusps on the boundary of the
closed set on which we are working. The key functional-analytic result we
use to extend sections is due to Frerick in [9]. It uses a metric condition
on a closed domain F in Rn to ensure there is a continuous extension op-
erator for Whitney jets on F to smooth functions on Rn. The following
definition abstracts the hypothesis from [9, Theorem 3.16] and from Def-
inition 3.6 so as to apply to closed sets in a metric space more general
than Rn. See Figure 4.1 for an illustration of the various quantities in the
following definition.
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M

F. . .

K

z

ε0

ε

x

ρεr

Figure 4.1. Polynomial outward cusps

Definition 4.1. — Let (M,d) be a locally compact metric space. A
closed set F ⊂M has

(1) no narrow fjords if for each x ∈ F there exists p ∈ N, K ⊆ F a
compact neighborhood of x and D > 0 such that all y, z ∈ K can
be joined by a rectifiable curve γ lying inside F ◦, except perhaps
for finitely many points, such that its length `d(γ) satisfies d(y, z) >
D `d(γ)p;

(2) at worst polynomial outward cusps if for all compact K ⊂M there
exist ε0, ρ > 0 and r > 1 such that for all z ∈ K∩∂F and 0 < ε < ε0
there is an x ∈ F with d(x, z) < ε such that if d(x, y) < ρεr then
y ∈ F and d(z, y) < ε.

If F has at worst polynomial outward cusps and no narrow fjords we simply
say that F satisfies the cusp condition.

In the case that r = 1, the condition on outward polynomial cusps is
sometimes called the (interior) corkscrew condition [16, p. 123], and so our
polynomial cusps can be seen as corkscrews with nonlinear growth.

Remark 4.2. — In Definition 4.1(2), if the constants ε0, ρ, r work for the
compact set K, then so do smaller such constants, and if ε0 6 1 then we
can also increase r. Putting this together, we can assume that ε0 = ρ < 1
and increase r as needed, and as a result can replace ρεr by εr+1. Hence
we can, without loss of generality, assume that ρ = 1 and r > 2.
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14 David Michael ROBERTS & Alexander SCHMEDING

Example 4.3. — Every Lipschitz domain satisfies the cusp condition, as
do Hölder domains and NTA domains. The compact subset of R2 whose
boundary is the Koch curve satisfies the cusp condition.

Recall that E(F ) denotes the space of Whitney jets on the closed set F .
In the following Theorem, Rn is taken with the Euclidean metric.

Theorem 4.4 ([9, Theorem 3.16]). — Let F ⊂ Rn be closed and have at
worst polynomial outward cusps. Then the surjective map C∞co (Rn)→ E(F )
of Fréchet spaces has a continuous linear splitting.

Moreover, Theorem 4.4 combined with 3.8 yields the following Corollary
which generalises [10, Theorem 2.1].

Corollary 4.5. — Let F ⊂ Rn be closed and satisfy the cusp condi-
tion, then the surjective map C∞co (Rn) → C∞(F,R) of Fréchet spaces has
a continuous linear splitting.

We want to be able to sensibly transfer both Frerick’s Theorem and
Corollary 4.5 in Euclidean space to a Riemannian manifold, so we will
need a result that allows change of metric. The following result is stated in
more generality than we need, since it should be of independent interest.

Lemma 4.6. — Let (M,d1) be a locally compact, complete metric space,
F ⊂ M be closed and let F have at worst polynomial outward cusps us-
ing the metric d1. If d2 is another metric on M that is locally bi-Hölder
equivalent to d1, then F has at worst polynomial outward cusps using the
metric d2.

Proof. — Let K ⊂M be any compact set and ε0,1, ρ1 and r1 be the con-
stants guaranteed to exist for K by virtue of F satisfying Definition 4.1(2)
for d1. By Remark 4.2 we will assume ρ1 = 1, r1 > 2 and ε0,1 < 1.
Define the compact set

N := {x ∈M | d1(F ∩K,x) < 2 and d2(F ∩K,x) < 2}.

Now as d1 and d2 are locally bi-Hölder equivalent there are constants C > 1
and 0 < α 6 1 such that

1
C
d1(a, b) 1

α 6 d2(a, b) 6 C d1(a, b)α

for all a, b ∈ N .
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Take

ε0,2 := min{C εα0,1, 1
2},

ρ := 1
C1+r1/α2 , and

r2 > r1/α
2 such that ρ εr2

0,2 6 ε0,1

to be the putative uniform constants required so that F satisfies Defini-
tion 4.1.2 for the metric d2. Note that since ε0,2 < 1 it does makes sense
to enlarge r2 until the upper bound on ρ εr2

0,2 is satisfied.
Let z ∈ ∂F ∩K be arbitrary, and take any ε2 such that 0 < ε2 < ε0,2.

Define ε1 = (ε2/C) 1
α . Since ε1 = (ε2/C) 1

α < (ε0,2/C) 1
α = ε0,1 then there

is an x ∈ F satisfying d1(x, z) < ε1 such that

d1(x, y) < εr1 =⇒ d1(z, y) < ε1 and y ∈ F.

Note that as z ∈ K and d1(x, z) < ε1 < ε0,1 < 2, we have x ∈ N . Hence
d2(x, z) 6 C d1(x, z)α < εα1 = ε2, as required.
Now take y ∈ M such that d2(x, y) < ρεr2

2 . Then d2(y, z) 6 d2(y, x) +
d2(x, z) < ρεr2

2 + ε2 < ε0,1 + 1 < 2, and so y ∈ N . So we can calculate that

d1(x, y) 6
(
C d2(x, y)

)α
< (C ρ2)α εr2α

2

=
(
ε
α2r2/r1
2
C

) r1
α

6
(ε2

C

) r1
α = εr1

1

where we have used that α2r2 > r1 and ε2 < 1. Using the cusp condition
for K in d1,

d1(z, y) < ε1 (and y ∈ F ) =⇒ d2(z, y) 6 C d1(z, y)α < C εα1 = ε2.

Hence F has at worst polynomial cusps for d2. �

Note that if we have uniformly bi-Hölder equivalent metrics then we can
dispense with the assumption of completeness; the proof goes through the
same without the need to define the compact set N .

We also have the following simple result for transferring the other half
of the cusp condition.

Lemma 4.7. — Let (M,d1) be a locally compact, complete metric space,
F ⊂M be closed and let F have no narrow fjords using the metric d1. Then
if d2 is another metric on M that is locally bi-Lipschitz to d1, then F has
no narrow fjords using the metric d2.
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16 David Michael ROBERTS & Alexander SCHMEDING

This follows once recalling that rectifiable paths can be taken to be Lip-
schitz functions I →M .

Corollary 4.8. — Take a manifold M with a continuous Riemannian
metric g, and a locally bi-Lipschitz chart, φ : U ∼−→ Rn on M . Here Rn is
given the Euclidean metric, and U the restriction of the geodesic metric dg
on (M, g). If C ⊂M is closed and satisfies the cusp condition for the metric
dg, then F = φ(C ∩ U) ⊂ Rn satisfies the cusp condition in the Euclidean
metric.

Remark 4.9. — Note that by standard arguments,(3) every C1 manifold
with a continuous Riemannian metric g has an atlas of charts that are
locally bi-Lipschitz to Euclidean space, hence a fortiori locally bi-Hölder.

We can apply this (perhaps overly general) result to our setup, namely
where we take a relatively compact smooth chart U on the smooth manifold
M . Observe that C ∩ U satisfies the cusp condition if C satisfies it. Thus
we obtain a regular and closed (in U !) subset which satisfies the no narrow
fjord condition, hence C∞(C ∩ U) is a Fréchet space with the topology
from 3.8. We have a commutative diagram of Fréchet spaces (cf. 3.8 and
Appendix B for a description of the topologies)

C∞co (U)

��

C∞co (Rn)'oo

��

C∞(C ∩ U) C∞(F )'oo

Theorem 4.4

ZZ

where the vertical arrows are surjective, and a continuous section of the
restriction map C∞co (Rn)→ C∞(F ). Thus:

Lemma 4.10. — Let C ⊂M be a closed set satisfying the cusp condition
and U '−→ Rn be a smooth chart onM . Then the restriction map C∞co (U)→
C∞(C ∩ U) of Fréchet spaces has a continuous section.

5. Proof of Theorem A

In this section we provide the necessary details for the proof of Theo-
rem A from the introduction. As a first step, we consider spaces of sections
on certain regular closed subsets of a Riemannian manifold. After these sec-
tions have been discussed, it will turn out that we only need to collect the

(3) see eg. the answer by Benoît Kloeckner at https://mathoverflow.net/a/236851/
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bits and pieces from the previous sections to obtain the result. Throughout
this section we fix the following data:

5.1. — From now onM will be a d-dimensional σ-compact manifold with
a fixed choice of Riemannian metric g, E → M a rank-m vector bundle
and C ⊆M a closed subset which satisfies the cusp condition with respect
to the geodesic metric dg.

Let U = (Ui, ϕi)i∈I be a locally finite atlas of relatively compact charts
of M such that ϕi(Ui) = Rd and there is a collection V of open sets Vi ⊆
V i ⊆ Ui, i ∈ I with

• C ⊆
⋃
i∈I Vi

• (χi)i∈I is a smooth partition of unity with suppχi ⊆ Vi
We set Ci := C∩Ui for i ∈ I and note that ϕi(Ci) ⊆ ϕi(Ui) = Rd is closed.

The main idea of the proof of Theorem A is as follows: We take a section
and use local triviality of the bundle to cut it into pieces which can be
extended due to the cusp condition. Then we reassemble the pieces into
a section by using a classical local to global approach with a partition
of unity. In the next subsections we provide the necessary tools: First we
define the spaces of sections, then we prepare the local to global result.

Smooth bundle sections on a closed set without narrow fjords

Our first task is to construct a suitable topology for the vector space of
sections into E on C.

Definition 5.2. — For a regular closed set C which has no narrow
fjords we define

Γc(C,E) := {σ ∈ C∞(C,E) |πE ◦ σ = idC and suppσ is compact}

the compactly supported smooth sections on C. Further, define

Ic(C,E) := {σ ∈ Γc(M,E) |T kx σ = 0, ∀ x ∈ C, k ∈ N}

the subspace of all compactly supported sections vanishing (with all their
derivatives) on C.(4)

(4)Here we use the notation Tk = T ◦ T ◦ · · · ◦ T (k times) to denote the k-fold iterated
tangent functor T . Note that unpacking the definition of the iterated tangent functors
(see e.g. [11, Lemma 1.14] for a local version) the vanishing of all iterated tangent
functors at a point is equivalent to the vanishing of all iterated partial derivatives in any
chart containing the point.
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Remark 5.3. — Clearly the pointwise operations turn Γc(C,E) and
Ic(C,E) into vector spaces. One can argue as in the vector space case
to see that Ic(C,E) is a closed subspace of Γc(M,E) (with the fine very
strong topology). Indeed using an atlas of M we can use Lemma A.5 and
Remark A.6 to rewrite the problem in charts, where closedness follows
from the argument in Theorem 3.2. (Avoiding localisation in charts, one
can alternatively use Lemma A.5 together with [12, Lemma 3.8].)

The following proposition is (apart from the topological assertions and
the fact that we are working with smooth functions and not jets) a folk-
lore fact which easily follows from the Whitney extension theorem 3.2 in
charts and a gluing argument. Since this argument will be the basis of our
construction we give full details.

Proposition 5.4 (Whitney extension theorem for sections on a
manifold). — The linear restriction map resC : Γc(M,E) → Γc(C,E) is
surjective and endows Γc(C,E) with a quotient topology such that

(5.1)

0 // Ic(C,E) //

��

Γc(M,E) resC //

ρU

��

Γc(C,E) //

r

��

0

0 //
⊕
i

ICi(Ui,Rm) //
⊕
i

C∞co (Ui,Rm)
q
//
⊕
i

C∞(Ci,Rm) // 0

is commutative with exact rows in the category of locally convex spaces.
Here r : Γc(C,E)→

⊕
i∈I C

∞(Ci,Rm) sends f 7→ (pr2 ◦Tϕi ◦ f |Ci)i∈I and
the spaces C∞(Ci,Rm) are topologised as in 3.8.

Proof. — Let us first deal with the lower row: Since ϕi is a diffeo-
morphism, we can use precomposition by ϕi to identify C∞co (Ui,Rm) ∼=
C∞co (ϕi(Ui),Rm) and C∞(Ci,Rm) ∼= C∞(ϕi(Ci),Rm). Now Fi := ϕi(Ci) is
a closed subset of the ambient space and ϕi(Ui) is an open neighborhood
of Fi. Moreover, since C has no narrow fjords, Lemma 4.7 implies that Fi
has no narrow fjords, whence 3.8 yields for every i ∈ I an exact sequence

0 −→ ICi(Ui,Rm) −→ C∞co (Ui,Rm) q−→ C∞(Ci,Rm) −→ 0,

where we set ICi(Ui,Rm) ∼= IFi(ϕi(Ui),Rm), C∞(Ci,Rm) ∼= C∞(Fi,Rm)
and suppress the identifications in the notation. Using that taking count-
able direct sums in the category of locally convex spaces is exact, we see
that the lower row of (5.1) is exact.
By Lemma A.5 we have canonical embeddings ρU of Γc(M,E) into⊕
i Γ(E|Ui) and ρV of Γc(M,E) into

⊕
i Γ(E|Vi). We identify Γ(E|Ui) ∼=
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C∞co (Ui,Rm) as in Remark A.6 and suppress this in the notation. Since
Ic(C,E) is clearly contained in the kernel of resC , we obtain a commuta-
tive diagram of vector spaces:

(5.2)

0 // Ic(C,E)

ρU |C
��

// Γc(M,E) resC //

ρU

��

Γc(C,E)

r=(rCi )i∈I
��

0 //
⊕
i

ICi(Ui,Rm) //
⊕
i

C∞co (Ui,Rm)
q
//
⊕
i

C∞(Ci,Rm) // 0

Here rCi(f) := f |Ci , i ∈ I and ρU |C is induced from ρU and realises
Ic(C,E) as the closed subspace {(ci)i∈I ∈

⊕
i ICi(Ui,Rm) | ci|Ui∩Uj =

Φij(idM , cj)|Ui∩Uj}.(5) Note that apart from the space Γc(C,E) which is
not yet topologised, (5.2) is a commutative diagram in the category of
locally convex spaces

resC is surjective. — Consider f ∈ Γc(C,E) and choose a family (gi)i∈I ∈⊕
i∈I C

∞(Ui,Rm) with q((gi)i) = r(f). In general (gi)i∈I will not be con-
tained in the image of ρU , but we see that

(5.3) gi|Ci∩Cj = f |Ci∩Cj = gj |Ci∩Cj for every i, j ∈ I.

Using the partition of unity from 5.1, we construct smooth functions on M
by continuing χj · gj |M\Uj ≡ 0. Hence

hi :=
∑
j∈I

(χj · gj)|Vi ∈ C∞(Vi,Rm), i ∈ I.

By construction (hi)i∈I ∈
⊕

i∈I C
∞(Vi,Rm) and hi|Vi∩Vj = hj |Vi∩Vj holds

for every pair (i, j) ∈ I2. Thus (hi)i∈I is contained in the image of ρV and
we can choose h ∈ Γc(M,E) with ρV (h) = (hi)i∈I . Now (5.3) implies that
hi|Vi∩Cj = f |Vi∩Cj . As the Vi cover C (see 5.1), we see that resC(h) =
f . Thus resC is surjective and we can endow Γc(C,E) with the quotient
topology, thus turning it into a locally convex space.
r is continuous with respect to the quotient topology. — Follows directly

from the commutativity of (5.2) and the definition of the quotient topology.
Note that r is linear, whence (5.1) indeed is a commutative diagram in the
category of locally convex spaces.

(5)Recall that point evaluations and postcomposition with fixed smooth functions are
continuous in the compact open C∞-topology (see e.g. [1]). An easy adaption of the
argument in [28, proof of Lemma 3.21(b)] shows that the subspace indeed is a closed
subspace of the direct sum.
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The upper row of diagram (5.1) is exact. — In Remark 5.3 we have seen
that Ic(C,E) is a closed subspace and we know that resC is surjective, open
and continuous. Hence we only need to prove that its kernel coincides with
Ic(C,E). Consider g ∈ ker(resC). Since ρU is injective, the commutativity
of (5.2) implies that ρU (g) is contained in the kernel of q and by exactness
of the bottom row and the definition of ρU |C we must have g ∈ Ic(C,E).
The converse inclusion is trivial and in conclusion (5.1) is exact in the
category of locally convex spaces. Finally we remark that this implies that
Γc(C,E) is a Hausdorff space (as the quotient of a Hausdorff space modulo
a closed linear subspace). �

An important ingredient in the proof of the last lemma was the local
to global argument using a partition of unity. We will see in Lemma 5.10
that this construction is continuous with respect to the function space
topologies.

Lemma 5.5. — The map r : Γc(C,E) →
⊕

i C
∞(Ci,Rm) is injective

and its image is the closed subspace

A :=
{

(hi) ∈
⊕
i∈I

C∞(Ci,Rm)

∣∣∣∣∣hi|Ci∩Cj = Φij(idCj , hj)|Ci∩Cj ∀ i, j ∈ N

}
.

If C is compact, r induces an isomorphism Γc(C,E) ∼= A.

Proof. — We already know that r is continuous and it is clearly injective
and takes its image in A. Now every Ci ⊆ C is contained in the compact
set U i. Hence for a family (fi) ∈ A, the obvious mapping

f : C → E, f(x) := Tϕ−1
i fi(x), for x ∈ Ci

makes sense and is a compactly supported smooth section over C, i.e. it
is contained in Γc(C,E). Hence A is the image of r. Again since point
evaluation and postcomposition by fixed smooth mappings are continuous
in the compact open C∞-topology, (3.2) shows that this is also the case for
the Fréchet topology on C∞(C,Rm). An easy adaptation of the argument
in [28, proof of Lemma 3.21(b)] establishes closedness of A.
Let us now assume that C is compact. Then there are only finitely

many i ∈ I such that Ci 6= ∅ we conclude that A is a Fréchet space as a
closed subspace of a finite product of such spaces. Furthermore, Γc(M,E)
is isomorphic to a closed subspace (cf. Lemma A.5) of the webbed space⊕

i C
∞
co (Ui,Rm), whence Γc(C,E) is webbed as a qotient of a webbed space

([23, Lemma 24.28]). Now the open mapping theorem [23, 24.30] shows that
r is open as a mapping into A, whence r induces the claimed isomorphism
of locally convex spaces. �

ANNALES DE L’INSTITUT FOURIER



EXTENDING WHITNEY’S EXTENSION THEOREM 21

Remark 5.6. — Note that the topology on Γc(C,E) does not automati-
cally turn r into an isomorphism if C is not compact. Studying the above
proof, the open mapping theorem is not applicable sinceA is not necessarily
ultrabornological (as it is not clear that it would be a limit subspace of the
direct sum). In fact the authors do not know whether the quotient topology
may be properly finer then the one induced by r in the non-compact case.

However, the problem mentioned in the last remark is not relevant for us,
since we will only consider sets which allow continuous extension operators.
In the presence of such a section, the two topologies coincide:

Lemma 5.7. — Assume that there exists a continuous section s : A →
Γc(M,E) of the map r ◦ resC , then the quotient topology turns r into an
isomorphism Γc(C,E) ∼= A.

Proof. — Since r ◦ resC is continuous surjective and admits a (global)
continuous section, it is a quotient map between locally convex spaces. As
r−1 ◦ (r ◦ resC) = resC we deduce that r−1 : A → Γc(C,E) is continuous,
whence r induces and an isomorphism of locally convex spaces onto its
image. �

Thus in the situation of Theorem A (to be proved in the end of the
section) the topologies coincide.

Interlude: Patching by partition of unity

In this interlude, we discuss continuity properties for the map which
patches mappings on a locally finite-covering by means of a partition of
unity.

5.8. — Recall that for a given compact subset K ofM only finitely many
members of the locally finite open cover U have a non-trivial intersection
with K. Thus for each i ∈ I we obtain a finite subset of I by setting

Ji := {j ∈ I | Uj ∩ Ui 6= ∅}

5.9. — Fix n ∈ N and consider for i ∈ I maps fj ∈ C∞(Uj ,Rn) for
j ∈ Ji. Multiplying with the partition of unity 5.1, we obtain for every such
pair a smooth mapping fji := χj |Vj∩Ui · fj |Vj∩Ui defined on the (possibly
empty) set Vj ∩Ui. Note that since suppχj ⊆ Vj , the mapping vanishes in
a neighborhood of the boundary of Vj ∩ Ui in Ui. Thus we can extend fji
by 0 to a smooth map on all of Ui (or by a similar argument to all of Vi).
In the following we will extend these mappings to all of Ui (or similarly
to Vi) and suppress the extension in the notation.
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Lemma 5.10. — Using the notation from 5.9, the mixing map

µ :
⊕
i∈I

C∞co (Ui,Rn) −→
⊕
i∈I

C∞co (Vi,Rn)

(fi)i∈I 7−→

∑
j∈Ji

(χj |Vi∩Vj ) · fj |Vi∩Vj


i∈I

is continuous linear. Its image is contained in the closed subspace A :=
{(gi)i∈I | gj |Vi∩Vj = gi|Vi∩Vj ∀ i, j ∈ I}.

Proof.
The mapping µ makes sense. — As argued in 5.9, every component of

µ(fi)i∈I is a smooth function as a finite sum of such functions. Note that
every i ∈ I appears only in finitely many of the sets Jk, k ∈ I. Thus every fi
appears at most in finitely many of the sums of the definition of µ, whence
µ makes sense as a mapping between direct sums. Clearly µ is linear.
µ takes its image in A. — By construction we have suppχk ⊆ Vk. Hence

if χk does not vanish on Vi ∩Vj we must have k ∈ Ji ∩Jj . Thus the sum in∑
k∈Ji(χk|Vk∩Vi) ·fk|Vi∩Vk coincides on Vi∩Vj (up to vanishing summands)

with the one summing over Jj . In conclusion, µ takes its image in A.
Continuity of the auxiliary mappings mi. — Let us first fix i ∈ I and

consider the linear map

mi :
⊕
j∈Ji

C∞co (Uj ,Rn) −→ C∞(Vi,Rn)

(fj)j 7−→
∑
j∈Ji

(χj |Vi∩Vj ) · fj |Vi∩Vj .

As Ji is finite and C∞co (Vi,Rn) is a topological vector space it clearly suffices
to establish smoothness for all of the mappings

cj : C∞co (Uj ,Rn) −→ C∞co (Vi,Rn), j ∈ Ji
f 7−→ χj |Vi∩Vj · f |Vi∩Vj .

Recall that the space C∞co (Uj ,Rn) is a topological C∞co (Uj ,R)-module (see
e.g. [13, Corollary F.13]). Thus the map κj(f) := χj |Uj · f is continuous,
takes its image in the linear subspace C∞

V j
(Uj ,Rn) ⊆ C∞co (Uj ,Rn) of smooth

functions supported in V j . Now [13, Lemma 4.24 and Lemma 4.6] extending
functions in C∞

V j
(Uj ,Rn) by 0 to all of M and restricting then to Vi ∩ Vj

yields a continuous linear map which, composed with κj , coincides with cj .
We conclude that cj and thus mi is continuous linear.
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Continuity of m. — We define the mapping

µ̃ :=
⊕
i∈I

mi :
⊕
i∈I

⊕
j∈Ji

C∞co (Ui,Rn)→
⊕
i∈I

C∞co (Vi,Rn).

This mapping is continuous linear, since the mappings mi are so by the
previous step. It follows from the universal property of the locally convex
direct sum that

Bdiag :
⊕
i∈I

C∞(Ui,Rn) −→
⊕
i∈I

⊕
#{k∈I|i∈Jk}

C∞(Ui,Rn)

∼=
⊕
i∈I

⊕
j∈Ji

C∞(Uj ,Rn)

(fi)i∈I 7−→
( ⊕

#{k∈I|i∈Jk}

fi

)
i∈I

7−→ ((fj)j∈Ji)i∈I
is continuous linear (where due to the construction, there is a bijection
between the index sets of both sums). Now, we have µ = µ̃◦Bdiag and thus
m is continuous linear as a composition of such mappings. �

Global extensions of bundle sections on a closed set

We will now prove Theorem A from the introduction, whose statement
we repeat here for convenience.

Theorem A. — Let C ⊆ M be a closed set satisfying the cusp con-
dition. Then the restriction map resC : Γc(M,E) → Γc(C,E) admits a
continuous linear section EMC .

Proof. — We use the notation and data introduced in 5.1. For the proof
we consider a commutative diagram of locally convex spaces (where the
numbers indicate where the (continuous) linear map was constructed):

(5.4)

Γc(C,E) r

(5.1)
//

EMC

��

⊕
i∈I

C∞(Ci)m
extension

Lemma 5.11
//
⊕
i∈I

C∞co (Ui)m

µ|im(ρV )

Lemma 5.10

��

µ

��

Γc(M,E)

resC

OO

ρV // im(ρV) inc //
⊕
i∈I

C∞co (Vi,Rm)
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We postpone the proof of the commutativity of (5.4) to Lemma 5.11
below, where also the extension map needed in the computation is defined.

Now EMC is defined via the right half of the diagram (using that ρV
is a topological embedding onto its image by Lemma A.5). Since all the
mappings in the definition are continuous and linear, EMC is a continuous
linear section of resC . �

Lemma 5.11. — There exists a continuous linear extension map

ε :
⊕
i∈I

C∞(Ci)m −→
⊕
i∈I

C∞co (Rd)m

which makes (5.4) commutative.

Proof. — To construct ε, we first construct continuous linear mappings
εi : C∞(Ci)m → C∞co (Rd)m and set ε :=

⊕
i∈I εi. Thus ε will be contin-

uous linear by the properties of the direct sum. For the construction we
distinguish two cases depending on i ∈ I:
Case 1: Ci = ∅. — Since the chart does not intersect the domain of

our map, we only have to extend the empty function, whence Ei is simply
defined as the constant 0-map in this case.

Case 2: Ci 6= ∅. — Due to our setup, the sets Ci satisfy the assumptions
made in the statement of Lemma 4.10. Hence in this case there is a con-
tinuous linear extension operator C∞(Ci) → C∞(Ui). We define εi as the
m-fold product of this extension operator.
This completes the construction of the extension map and all there is

left is to prove that the diagram (5.4) commutes. However, this is obvious
from a trivial calculation if one recalls the following facts:

• For each pair i, j ∈ I and (fk)k ∈ im r we have fi|Ci∩Cj = fj |Ci∩Cj ,
• the extension operators εi do not change the map on the Ci,
• composition with ρ−1

V µ is just mixing and restricting with a par-
tition of unity and then reconstruction via the sheaf property of
smooth maps.

Composing again with the restriction map, the outer square of (5.4) com-
mutes. �

As a direct consequence of the above theorem, we obtain:

Corollary 5.12. — If C ⊂ M is a closed subset which satisfies the
cusp condition in the geodesic metric onM , the exact sequence (5.1) splits,
i.e. we have the isomorphim of topological spaces Γc(M,E) ∼= Ic(C,N) ⊕
Γc(C,N).
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Remark 5.13. — As a consequence of Theorem A and Lemma 5.7 the
map r from Proposition 5.4 and (5.4) is a topological embedding onto a
closed subspace for every closed subset which satisfies the cusp condition.

6. Manifolds of mappings for manifolds with rough
boundary

In this section we recall some essentials on manifolds with rough bound-
ary from [15, Chapter 1.4]. Then we recall the classical construction of
manifolds of mappings and how to apply them to the rough boundary
case.

Definition 6.1. — We recall from [15] (cf. [1, Section 4]) that a mani-
fold with rough boundary modelled on a locally convex space E is a Haus-
dorff topological spaceM with an atlas of smoothly compatible homeomor-
phisms φ : Uφ → Vφ from open subsets Uφ ofM onto locally convex subsets
Vφ ⊆ E with dense interior (to distinguish from ordinary manifold charts,
they are also called rough E-charts).

If x ∈ M we call x a formal boundary point if there is a rough E-chart
(Uϕ, ϕ) around x such that ϕ(x) ∈ ∂ϕ(Uϕ). Denote by ∂M the (formal)
boundary of M , i.e. the set of formal boundary points of M .

If each Vφ is open,M is an ordinary manifold (without boundary). If each
Vφ is relatively open in a closed hyperplane λ−1([0,∞[ ), where λ ∈ E′ (the
space of continuous linear functional on E), then M is a manifold with
smooth boundary. In the case of a manifold with corners, each Vφ is a
relatively open subset of λ−1

1 ([0,∞[ )∩· · ·∩λ−1
n ([0,∞[ ), for suitable n ∈ N

(which may depend on φ) and linearly independent λ1, . . . , λn ∈ E′.

The boundary of manifolds with rough boundary is characterised by the
following.

Lemma 6.2. — LetM be a manifold with rough boundary and (Uϕ, ϕ),
(Uψ, ψ) be rough E-charts around x ∈M . Then ϕ(x) ∈ ∂ϕ(Uϕ) if and only
if ψ(x) ∈ ∂ψ(Uψ).(6)

(6)A full proof is contained in the forthcoming [15, Section 3]. However here is a rough
sketch: Argue by contradiction. In the chart where the image is in the boundary choose
a convex neighborhood W . Now apply the Hahn–Banach theorem to separate the image
of x from the interior of W by a functional λ. Taking the derivative κ of the change of
charts, one derives a contradiction by considering λ ◦ κ−1 on κ(W ).
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In essence Lemma 6.2 shows that the formal boundary of M arises from
the topological boundary of the images of charts in the model space.

Remark 6.3. — By virtue of the chain rule Lemma 2.3(2) we can define
smooth mappings on manifolds with rough boundary in the usual way.
Direct products of manifolds with rough boundary, tangent spaces and

tangent bundles(7) as well as vector bundles may be defined as usual.

We recall the compact open C∞-topology on the space C∞(M,N) of
smooth mappings from a manifold with rough boundary to a manifold.

Definition 6.4. — Let M,N be manifolds with rough boundary. We
define the compact-open C∞-topology on C∞(M,N) as the initial topology
induced by the mappings

T k : C∞(M,N) −→ Cco(T kM,T kN) k ∈ N0,

f 7−→ T kf

where the right hand side carries the compact open topology. Denote by
C∞co (M,N) the space with the compact open C∞-topology.

Remark 6.5. — If N = Rm the compact open C∞ topology coincides
with topology described in [1, Definition 3.21 and Section 4] by adapting
the argument of [11, Lemma 1.14] to manifolds with rough boundary. In
addition, ifM is a locally convex regular closed subset of Rm and N = Rm,
the compact open C∞-topology coincides with the identification topology
from 3.8 (by an argument analogous to B.6).

Proposition 6.6. — Let f : N → B and g : A → M be smooth map-
pings between finite-dimensional manifolds with rough boundary. Then

f∗g∗ : C∞co (M,N) −→ C∞co (A,B)
h 7−→ f ◦ h ◦ g

is continuous.

Proof. — The usual proof for manifolds without boundary (see e.g. [33,
Lemma 5.5]) carries over without any changes. �

(7)The definition of tangent vectors at x as equivalence classes of vectors in the model
space, i.e. (ψ, x, v) ∼ (ϕ, x,w) if and only if d(ψ ◦ ϕ−1)(ϕ(x), v) = w where ϕ,ψ are
manifold charts, makes sense for a manifold with rough boundary and yields the usual
results and identifications for iterated tangent bundles, cf. also [24, Section 2].
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Lemma 6.7. — The initial topology turns the map

T : C∞co (M,N) −→
∏
k∈N0

Cco(T kM,T kN)

f 7−→ (T kf)k∈N0

into a topological embedding with closed image.

Proof. — By definition of an initial topology, the map T is a topological
embedding. Let now (T kfα)k∈N0,α∈I be a net in the image of T which con-
verges to (fk)k∈N0 . If we can prove that fk = T kf0 holds for every k ∈ N
then the image of T is closed. Clearly we can verify the formula fk = T kf0
locally in charts. As the sequence converges with respect to the compact
open C∞-topology, the usual inductive proof using the fundamental theo-
rem of calculus ([11, Theorem 1.5 and Lemma 1.7] which is valid on locally
convex regular subsets of Rd!) carries over without any changes, see e.g. [33,
Lemma 5.13 and Theorem 5.14]. �

As a consequence of the above identification, we obtain the following
completeness and metrisation results (which are well known in the case of
a manifold without boundary).

Lemma 6.8. — Let M,N be manifolds with rough boundary, such that
M is locally compact(8) and σ-compact and N metrisable and modelled on
a metrisable space. Then C∞co (M,N) is metrisable.

Proof. — For convenience let d be the dimension ofM . SinceM is locally
compact, for every manifold chart (ϕ,U) the domain U is locally compact,
whence ϕ(U) is locally compact subset of Rd. As Rd is second countable,
ϕ(U) is locally compact and second countable, whence σ-compact. Using
the canonical atlas for the iterated tangent bundle, we see that locally
over U we get a bundle trivialisation T kM ⊇ T kU ∼= ϕ(U) × (Rd)2k−1.
Thus T kM is σ-compact for every k ∈ N0. Since N is metrisable and
modelled on a metrisable space, T kN is metrisable by [6]. Thus the spaces
Cco(T kM,T kN) are metrisable by [33, Proposition 5.10(e)] whence the em-
bedding from Lemma 6.7 indentifies C∞co (M,N) as a subspace of a metris-
able space. �

Corollary 6.9. — Let M be a locally compact manifold with rough
boundary and F a Fréchet space. Then C∞co (M,F ) is a Fréchet space.

(8) In contrast to manifolds without boundary, manifolds with rough boundary need not
be locally compact. For example, recall that regular locally convex subsets of Rd are in
general not locally compact, e.g. {(0, 0)} ∪ {(x, y) ∈ R2 | x > 0} in R2.
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Proof. — It is well known that the pointwise operations turn C∞co (M,F )
into a topological vector space (cf. [1, Section 2]). By Lemma 6.8 the
space C∞co (M,F ) is metrisable. In addition, [6] implies that every T kM

is metrisable, whence a k-space. Now T kF ∼= F 2k is complete and we
infer from [12, Remark 3.2(a)] that Cco(T kM,T kF ) is complete. Now
Lemma 6.7 identifies C∞co (M,F ) with a closed subspace of the complete
space

∏
k∈N0

Cco(T kM,T kF ), whence C∞co (M,F ) is a Fréchet space. �

Finally we turn to smooth sections of bundles over a manifold with rough
boundary.

6.10. — Let p : E → M be a vector bundle with typical fibre F . As-
sume that F is a Fréchet space and M is a compact manifold with rough
boundary. Then we define

Γ(M,E) := {σ ∈ C∞(M,E) | p ◦ σ = idM},

and endow it with the subspace topology induced by C∞co (M,E).
Note that sinceM is compact, we can choose an open cover (Wi, κi)16i6n

of domains of bundle trivialisations for E and denote by E|Ui the restricted
bundle over Ui. Then define the map

ρ : Γ(M,E) −→
∏

16i6n
Γ(Wi, E|Wi))

σ 7−→ (σ|Wi)i.

By Lemma 6.6 the map ρ is continuous (as each of its components are
given by mappings (ιi)∗, where ιi : Wi → M is the inclusion). Clearly ρ is
injective, linear and identifies Γ(M,E) with the subspace C := {(γi)i |
γi|Wi∩Wj

= γj |Wi∩Wj
}. Since the evaluation map is continuous by [1,

Proposition 3.20], C is closed. Working with subbasic neighborhoods, one
can also prove that ρ is open onto its image. We refer to [33, Lemma 6.4]
for details.
Now we obtain isomorphisms Γ(Wi, E|Wi)→ C∞co (Wi, F ), σ 7→ pr2 ◦ψi ◦

σ of topological vector spaces. Thus Corollary 6.9 implies that Γ(M,E) is
a Fréchet space as a closed subspace of a direct product of Fréchet spaces.

Having discussed the topology on the manifold of mappings, we will
now construct an infinite-dimensional manifold structure on C∞co (M,N) for
M a compact manifold with rough boundary and N a manifold without
boundary. If M is a manifold with corners, such a construction (even for
M non-compact) can be found in [24]. Our proof follows the general idea
of loc. cit. but we avoid using an instance of the so called Ω-Lemma. For
the rest of this sectionM will be a compact manifold with rough boundary
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and N will be a Fréchet manifold without boundary which admits a local
addition.

Definition 6.11. — A manifold N admits a local addition, if there is
a local addition ΣN on N , i.e. a smooth mapping ΣN : TN ⊇ Ω → N on
an open 0-neighborhood Ω, such that

(1) ΣN ◦ 0N = idN , where 0N : N → TN is the 0-section.
(2) (πN |Ω,ΣN ) : Ω → N × N induces a diffeomorphism onto an open

neighborhood of the diagonal in N ×N .

Using the local addition, we obtain canonical charts for the mapping
space:

6.12 (Canonical charts). — For f ∈ C∞(M,N) we let f∗TN be the
pullback bundle of the tangent bundle of N with associated bundle map
F : f∗TN → TN . Via the bundle map F , we can identify the Fréchet space
of sections Γ(M,f∗TN) (cf. 6.10) with

C∞f (M,TN) := {g ∈ C∞(M,N) | πN ◦ g = f} ⊆ C∞co (M,TN)

in the subspace topology. In the following we will suppress this (harmless)
identification without further notice. Then define the sets

Vf := {g ∈ C∞(M,E) | g(M) ⊆ Ω} ∩ C∞f (M,TN),
Uf := {g ∈ C∞(M,N) | (f, g)(M) ⊆ (π,ΣN )(Ω)} ⊆ C∞co (M,N)

and note that both are open in the compact open C∞-topology. Now Propo-
sition 6.6 implies that ϕf : Uf → Wf , g 7→ (πN ,ΣN )−1 ◦ (f, g) is a homeo-
morphism with inverse ϕ−1

f (τ) = (ΣN )∗(τ).

Theorem 6.13. — Let M be a compact manifold with rough bound-
ary and N a metrisable manifold modelled on a Fréchet space which ad-
mits a local addition. The atlas of canonical charts (Uf , ϕf )f∈C∞(M,N)
turns C∞co (M,N) into a Fréchet manifold modelled on spaces of sections
Γ(M,f∗TN). The manifold structure does not depend on the choice of
local addition.

Proof. — The compact open C∞-topology on C∞(M,N) is clearly finer
than the compact open topology, whence C∞co (M,N) is Hausdorff. In 6.12
we have already seen that the canonical charts form an atlas of homeo-
morphisms. Hence we only have to prove that the change of charts are
smooth.
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Change of charts formula. — To this end, observe that h := ϕf ◦ ϕ−1
g

has an open domain, Of,g ⊆ Γ(M, g∗TN) for each pair f, g ∈ C∞(M,N).
Let now τ be in Of,g and x ∈M , then we obtain the formula

(6.1) h : Of,g −→ Γ(M,f∗TN), h(τ)(x) = (πN ,ΣN )−1(f(x),ΣN ◦τ(x))

Localisation in charts. — Choose an atlas (Wi, κ
f
i )16i6n of local trivi-

alisations for the bundle f∗TN . Adjusting our choices if necessary, we may
assume that for each 1 6 i 6 n Wi is

(1) a domain of a bundle trivialisations (Wi, κ
g
i ) of g∗TN

(2) the domain of a manifold chart (Wi, ψi) of M .
Now as in 6.10 we construct the topological embedding ρ : Γ(M,f∗TN)→∏

16i6n C
∞
co (Wi, F ), where F is the model space of N . Since precompo-

sition with a smooth is continuous in the compact open C∞-topology by
Proposition 6.6, we see that C∞co (Wi, F ) ∼= C∞co (ψi(Wi), F ) as locally con-
vex spaces (similarly for g∗TN). We remark for later use that since M is
compact, Wi and also ψi(Wi) are locally compact.

Smoothness via the exponential law. — Now ρ is a topological embed-
ding with closed image, whence h will be smooth if and only if ρ ◦ h is
smooth and this is the case if and only if for each 1 6 i 6 n the mapping

hi : Of,g −→ C∞(Wi, F )
τ 7−→ pr2 ◦κi ◦ h(τ)|Wi

is smooth. Now we recall that Of,g ⊆ Γ(M, g∗TN) is open and the spaces
Γ(M, g∗TN) and C∞(Wi, F ) are Fréchet spaces by 6.10. Since Wi is a
manifold with rough boundary (being an open subset ofM) the exponential
law [1, Theorem B] for smooth mappings on manifolds with rough boundary
yields: The hi (and thus h) are smooth if and only if the mapping

h∨i : Of,g ×Wi −→ F, h∨i (τ, x) := hi(τ)(x)

is smooth. However, (6.1) allows us to write

(6.2) h∨i (τ)(x) = pr2 ◦(πN ,ΣN )−1 ◦ (f,ΣN ◦ (ev(τ |Wi
))(x),

where ev : Γ(Wi, g
∗TN |Wi) ×Wi → g∗TN |Wi , (f, x) 7→ f(x) is the evalu-

ation map. Using that g∗TN |Wi
is trivial we identify Γ(Wi, g

∗TN |Wi
) ∼=

C∞co (ψi(Wi), F ) and deduce from [1, Proposition 3.20] that ev is smooth.
As the restriction of τ is smooth by 6.10, we deduce from (6.2) that h∨i
is smooth as a composition of smooth functions. Summing up the change
of charts are smooth and the canonical charts form indeed a smooth atlas
turning C∞(M,N) into a Fréchet manifold
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The construction is independent of the choice of local addition. — Re-
placing the local addition ΣN by Σ̃N , the change of charts formula (6.1)
shows that the change of charts between a chart with respect to ΣN and
with respect to Σ̃N will be smooth. Hence the manifold structure does not
depend on the choice of local addition. �

Remark 6.14. — A crucial ingredient in the proof of Theorem 6.13 was
compactness of M to endow the function space C∞(M,N) with the com-
pact open C∞ topology and to use the exponential law instead of the so
called Ω-Lemma [24, 8.7]. Though the authors believe that for non-compact
M , the space C∞(M,N) can be endowed with a manifold structure along
the lines described in [24], this would involve two significant steps: One
has to define a version of the fine very strong topology for mapping spaces
on non-compact manifolds of mappings and reprove the results outlined
in [17] (mostly trivial with the notable exception of continuity of the com-
position). Then one needs an analogue of the Ω-Lemma for manifolds with
rough boundary (which will be contained in [15], due to H. Glöckner, pri-
vate communications).

7. Submanifolds with rough boundary and the proof of
Theorem B

In this section we establish the global version of the splitting of spaces of
compactly supported sections. Our aim is to construct submersions between
the infinite-dimensional manifolds of mappings. To this end we need to
clarify first our concept of a submanifold with boundary sitting inside of
manifolds without boundary. If we require the submanifold with rough
boundary to be closed, then it will automatically have no narrow fjords. The
authors believe that they will also automatically satisfy the cusp condition
but were not able to prove the latter statement.

Definition 7.1 (Submanifold with rough boundary). — Let M be a
finite-dimensional manifold (possibly with rough boundary). A subset S ⊆
M is called (embedded) submanifold with rough boundary ofM if for every
p ∈ S there is a chart (Up, ϕp) of M with p ∈ Up and ϕp(p) = 0 and a
regular locally convex subset Rp ⊆ ϕp(Up) such that ϕp(S ∩ Up) = Rp. If
for every p ∈ S the regular locally convex set is a relatively open set in
a quadrant [0,∞[m×Rd−m (cf. Definition 6.1), then we say that S is an
(embedded) submanifold with corners. If in addition S is a closed subset
which satisfies the above conditions, we say that S is a closed submanifold
with rough boundary (or with corners, respectively).
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Remark 7.2.

(1) A submanifold with rough boundary inherits the structure of a
manifold with rough boundary from the ambient manifold and this
structure turns the inclusion ιS : S →M into a smooth embedding.
Thus submanifolds with rough boundary as defined here are initial
submanifolds, i.e. a mapping f : N → S ⊆ M between manifolds
with rough boundary is smooth as a map to S if and only if it is
smooth as a map toM . Note that closed submanifolds of σ-compact
manifolds are again σ-compact.

(2) We remark that our definition of an embedded submanifold with
corners is a special case of a submanifold with corners as in [24,
2.5]. Since we are only interested in a very specialised case, we do
not need the more general definition. In particular, we refrain from
defining submanifolds of lower dimension (which could be done as
usual but is not needed here).

(3) Due to our definition an embedded submanifold with rough bound-
ary S ⊆ M is regular: Consider x ∈ ∂S and let (Uϕ, ϕ) be a sub-
manifold chart. Then ϕ(x) ∈ ϕ(Uϕ ∩ S) = ϕ(Uϕ) ∩ C for a regular
locally convex set C. Hence W := ϕ−1(ϕ(Uϕ ∩C◦)) ⊆ S is an open
set in M , whence contained in the interior of S. Choosing a se-
quence in W we can approximate ϕ(x), whence x ∈ S◦. Thus S is
regular and we see in addition that x ∈ ∂S entails ϕ(x) ∈ ∂ϕ(Uϕ).

Before we continue, let us construct a class of examples for submanifolds
with rough boundary of a Riemannian manifold which will be used to prove
Corollary D from the introduction.

Lemma 7.3. — Let M be a Riemannian manifold and C be a regular
closed subset which is strongly convex, i.e. for every p, q ∈ C exists a unique
minimal geodesic segment pq connecting p and q such that pq ⊆ C. Then
C is a submanifold of M with rough boundary.

Proof. — By standard Riemannian geometry, we can choose for every
p ∈ C an open 0-neighborhood Wp ⊆ TpM such that the restriction of
the Riemannian exponential map expp := exp |Wp

: Wp → M induces a
diffeomorphism onto an (open) p-neighborhood in M . We will show that
the manifold charts expp induce suitable submanifold charts with rough
boundary.
Clearly if p ∈ C◦ we can just shrink Wp to obtain such a submanifold

chart. For q ∈ ∂C (the boundary of C) we have to work harder. Define for
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q ∈ ∂C the set

Vq := {λw ∈ TqM | 0 < λ <∞, w ∈Wq and expq(w) ∈ C◦}.

We observe that Vq =
⋃

0<λ<∞ λ·exp−1
q (C◦) is an open subset of TqM . Now

we exploit the geometric properties of strongly convex sets following [19],
where these sets are called “konvex”.(9) As C is strongly convex, also the
interior C◦ is strongly convex [19, Korollar 4.5.1], whence it is also “schwach
konvex” (weakly convex) in the terminology of loc. cit.. Now regularity of
C implies that q ∈ ∂C = ∂C◦. We can thus copy the argument in the
proof of [19, 4.9.2] verbatim (note that the geodesics occuring there are
only needed locally in a small neighborhood around q!) to establish that
Vq is a convex cone in TqM whose tip is 0q. In particular V q is a convex
cone, i.e. a closed subset with dense interior that is (locally) convex.

Claim. — expq(Wq ∩ V q) = C ∩ expq(Wq). If this is true then expq re-
stricts to a submanifold chart (with rough boundary) for C around q as
Wq ∩ V q has dense interior (namely Wq ∩ Vq) and is locally convex as an
intersection of two (locally) convex sets in TpM . We conclude that C is
a closed embedded submanifold with rough boundary of the Riemannian
manifold M .

Proof of the claim. — Observe that expq(Vq ∩Wq) = expq(Wq) ∩ C◦
by construction of Vq (and the diffeomorphism property of expq). Now let
x ∈Wq ∩ V q. Since the interior of this subset is the dense set Wq ∩ Vq, we
can choose and fix a sequence (xn)n∈N ⊆ Vq ∩Wq with limn xn = x. By
continuity of expq and since expq(xn) ∈ C◦ ∩ expq(Wq) we have expq(x) ∈
expq(Wq) ∩ C◦ = expq(Wq) ∩ C. Conversely, if pn ∈ C◦ ∩ expq(Wq) is a
sequence converging to p ∈ C ∩ expq(Wq) we use continuity of exp−1

q to see
that p ∈ expq(Wq ∩ V q). Summing up, the claim follows. �

Remark 7.4. — Actually, strongly convex subsets have very nice bound-
ary behaviour. For example, it is known that they have Lipschitz boundary
(cf. e.g. [2]). However, we are not aware of another source in the literature
where submanifold charts of the above kind are explicitely constructed.
In light of Example 4.3 this implies that a strongly convex regular closed

subset satisfies the cusp condition.

Encouraged by these results, we shall now prove that every closed sub-
manifold with rough boundary satisfies the cusp condition, Definition 4.1.
(9)Loc. cit. assumes that M is a complete Riemannian manifold. We do not assume
completeness as the parts of [19] needed here do not rely on the completeness of M .
In fact, the geodesic segments needed in the proofs exist since we are working in the
strongly convex set C.
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Proposition 7.5. — Let M be a Riemannian manifold and C be a
closed submanifold with rough boundary. Then C satisfies the cusp condi-
tion.

Proof. — Following Remark 7.2 we already know that C is a regular
closed set. We first have to check the no narrow fjord condition. To this end,
fix x ∈ C together with a manifold chart ϕ : U → ϕ(U) ⊆ Rn around x and
ϕ(U ∩C) = ϕ(U)∩R for a suitable regular locally convex set R. Shrinking
the chart if necessary, we can assume that it is bi-Lipschitz with respect to
the geodesic length metric and the Euclidean metric (cf. Remark 4.9). Then
arguing as in Lemma 4.7, it suffices to check the no narrow fjords condition
for ϕ(x) as an element of the locally convex subset ϕ(U) ∩ R ⊆ Rn (note
that this set need not be closed whence it does not make sense to say that
it has no narrow fjords!)
Now since U ∩ C is the intersection of an open and a closed subset of a

locally compact space, it is locally compact, whence ϕ(U∩C) = ϕ(U)∩R is
locally compact. We can thus choose a compact neighborhood K of ϕ(x) in
ϕ(U)∩R. Then local convexity of ϕ(U)∩R allows us to choose a neighbor-
hood ϕ(x) ∈W ⊆ K which is convex. Denote now by Kϕ(x) = W ⊆ K the
closure of W . It is again a convex set and compact by construction. Now
an easy but tedious computation involving metric estimates, convexity of
Kϕ(x) and the boundary behavior observation ∂(ϕ(U)∩R)∩Kϕ(x) ⊆ ∂Kϕ(x)
yields the constants needed to verify the no narrow fjords condition for
Kϕ(x). Alternatively, observe that convex sets have Lipschitz boundary (cf.
again [2]) which implies that Kϕ(x) has no narrow fjords.

To check the outward polynomial cusp condition, we use again the com-
pact, convex neighborhoodKϕ(x) of ϕ(x) in ϕ(C∩U), and a diffeomorphism
ϕ(U) ' Rn (which is locally bi-Lipschitz). Since the image of the compact
convex neighborhood with Lipschitz boundary yields the required estimates
for the polynomial outward cusp condition, the diffeomorphism transfers
them from ϕ(U) to Rn (and so satisfying Frerick’s version of the definition).
Invoking Lemma 4.6, we see that C ∩ U satisfies the condition. Hence C
has at worst polynomial outward cusps, completing the proof. �

For regular closed subsets which are at the same time submanifolds with
rough boundary we prove now that for every vector bundle the space of
sections from Definition 5.2 can canonically be identified with the sections
of the corresponding pullback bundle over the submanifold with rough
boundary.
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Proposition 7.6. — Let πE : E → M be a rank k vector bundle over
a manifold without boundary. Let C ⊆ M be a closed submanifold with
rough boundary. Assume in addition that

(1) C is a submanifold with corners, or
(2) C is compact.

Then the pullback pC : Γc(M,E)→ Γc(C, ι∗CE), σ 7→ σ◦ιC by the inclusion
ιC : C →M is a linear quotient map.

Proof. — Observe that since C ⊆ M is closed, the inclusion ιC is a
proper mapping (i.e. preimages of compact sets are compact). Thus by
our definition of submanifold with rough boundary (or with corners), every
section σ ∈ Γc(M,E) induces a smooth pullback section σ◦ιC ∈ Γc(C, ι∗CE)
and the pullback map pC makes sense and is clearly linear. Further, taking
canonical identifications, a section τ ∈ Γc(C, ι∗CE) clearly coincides with a
smooth mapping τ̃ : C → E with compact support such that πE ◦ τ̃ = C

(here we use τ̃ to mark the difference in the codomain). Now Proposition 7.5
implies that C has no narrow fjords, whence by Proposition 5.4 there is
τ̂ ∈ Γc(M,E) which restricts to τ̃ on C. We deduce that pC(τ̂) = τ , whence
pC is surjective.
To establish continuity we have to distinguish the two cases, due to the

difference in the function space topologies.
(1) (C is a submanifold with corners) The map ι∗C : C∞fS (M,E) →

C∞fS (C,E), f 7→ f ◦ ιC is continuous by [24, Theorem 7.3] (and even
smooth) as ιC is proper. Consider the linear subspace DιC (C,E) :=
{g ∈ C∞(C,E) | πE ◦ g = ιC , g ≡ 0 off some compact set in C} of
C∞fS(C,E). It is easy to see that ι∗C restricts to a continuous map-
ping I : Γc(M,E) → DιC (C,E). However, due to the definition of
the pullback bundle (see [24, 1.18 and 1.19]), the space DιC (C,E)
is isomorphic as a linear and topological space to Γc(C, ι∗C(E)),
composing I with this isomorphism we obtain pC which is thus
continuous.

(2) (C is compact) Since M is σ-compact, we can choose and fix a
locally finite (countable) atlas of bundle trivialisations (Wi, κi)i∈N
for E such that every Wi is relatively compact. Since C is compact,
only finitely manyWi intersect C. After reordering, we may assume
that Wi ∩ C 6= ∅ iff 1 6 i 6 n for some n ∈ N. Observe that since
Wi is an open subset of M and C is an embedded submanifold
(with rough boundary), for i 6 n, the set ι−1

C (Wi) = Wi ∩ C is
a submanifold with rough boundary of Wi—as submanifold charts
ϕ : U → ϕ(U) are bijections, we find ϕ(Wi∩U∩C) = ϕ(Wi∩U)∩R.
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Hence Proposition 6.6 implies that

pi : C∞co (Wi,Rk) −→ C∞co (Wi ∩ C,Rk)
f 7−→ f |C∩Wi

is continuous linear for i 6 n. Thus we obtain a continuous (linear)
map

q :
⊕
i∈N

C∞co (Wi,Rd) −→
⊕
i6n

C∞co (Wi ∩ C,Rd)

(fi)i 7−→ (pi(fi))16i6n.

Following Lemma A.5 and 6.10 we obtain a commutative diagram

Γc(M,E)
ρ

//

pC

��

⊕
i∈N

Γ(Wi, E|Wi)
∼= //

⊕
i∈N

C∞co (Wi,Rd)

q

��

Γ(C,E)
ρ
//
⊕

16i6n
Γ(Wi ∩ C, (ι∗CE)|Wi∩C)

∼= //
⊕

16i6n
C∞(Wi ∩ C,Rd)

where the image the ρ are topological embeddings with closed im-
ages. Hence pC is continuous in this case.

Finally, let us establish that pC is a quotient map, i.e. pC is open. To
this end, recall from Appendix A that Γc(M,E) is an (LF)-space, i.e.
webbed and ultrabornological. Further, if C is a manifold with corners,
also Γc(C, ι∗CE) is an (LF) space. If C is compact and a manifold with
rough boundary, then Γ(C, ι∗CE) is even a Fréchet space by 6.10. In both
cases, pC is open by the open mapping theorem [23, 24.30]. �

Proposition 7.7. — Let M be a manifold and E → M be a rank
k vector bundle. If C is closed submanifold with rough boundary which
satisfies the assumptions of Proposition 7.6, then Γc(C,E) = Γc(C, ι∗CE)
as locally convex vector spaces.

Proof. — Since C is an embedded submanifold, a section in the pullback
bundle is smooth if and only if it is a smooth as a mapping C → E. Thus
as sets we canonically identify Γc(C,E) = Γc(C, ι∗CE). Now Proposition 7.6
and Proposition 5.4 yield a commutative diagram

Γc(M,E)
resC
vv

pC

((

Γc(C,E) id // Γc(C, ι∗CE)
id

oo

where the diagonal arrows are quotient mappings. �
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Manifolds of mappings for non-compact source manifolds. — Assume
that C is a (sub-)manifold with corners which is possibly non-compact.
Then the function space C∞(C,N) can be endowed with an infinite-dimens-
ional manifold structure which can be constructed similarly to the construc-
tion outlined in Section 6: One endows C∞(C,N) with the FD-topology
described in [24] (a Whitney type topology). In the boundaryless case [17],
this topology is also called the fine very strong topology and therefore we
denote by C∞fS (C,N) the function space with the fine very strong (=FD-)
topology.
Choosing a local addition on N , the construction of manifold charts is

completely analogous to the construction outlined in 6.12 with the notable
exception that one has to restrict to Γc(C, f∗TN) and one has to intersect
Uf with

{g ∈ C∞(C,N) | ∃ K compact, such that ∀ x ∈ C \K f(x) = g(x)}.

The rest of the construction is completely analogous to the one outlined
in 6.12 and yields the same structure as in Theorem 6.13 if C is compact
(note that we will thus also write C∞fS(C,N) = C∞co (C,N) if C is compact
with rough boundary).
We are now ready to prove Theorem B which we restate here for the

reader’s convenience. Recall thatM is equipped with a Riemannian metric.

Theorem 7.8. — For C ⊂ M a submanifold with corners, or com-
pact and a submanifold with rough boundary, then the restriction map
resMC : C∞fS (M,N) → C∞fS (C,N) is a submersion of locally convex mani-
folds.

Proof. — Let ιC : C → M be the canonical inclusion, which is smooth
as C is an embedded submanifold. Hence resMC = ι∗C is smooth by [24,
Theorem 7.3] (if C is a submanifold with corners). Since the compact-
open C∞ topology is coarser than the fine very strong topology (cf. [17]),
Proposition 6.6 implies that resMC is continuous if C is compact and a
submanifold with rough boundary (note that M might be non-compact).
Hence to establish smoothness and the submersion property, it suffices to
construct submersion charts for resMC .
Let now F ∈ C∞(M,N) and f := resMC (F ). Then we use that C satisfies

the cusp condition and consider the canonical charts (UF , ϕF ) and (Uf , ϕf )
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(cf. 6.12) to obtain a commutative diagram.

C∞fS (M,N)⊇UF

resMC
��

ϕF // Γc(M,F ∗E)
∼=

Cor. 5.12
//

resC
��

Ic(C,M)⊕ Γc(C,F ∗TN)

pr2

��

C∞fS (C,N)⊇Uf
ϕf
// Γc(C, f∗TN)

∼=
Prop. 7.7

// Γc(C,F ∗TN)

Observe that resMC is a smooth submersion as the canonical charts conjugate
it to a projection onto a complemented closed subspace, which is continuous
linear. �

Note that Corollary D from the introduction follows from the results in
this section and Corollary C in the wash as Lemma 7.3 asserts that strongly
convex regular closed subsets of Riemannian manifolds are submanifolds
with rough boundary.

Appendix A. Essentials on infinite-dimensional calculus
and function spaces

In this appendix we collect the necessary background on the theory of
manifolds that are modelled on locally convex spaces and how spaces of
smooth maps can be equipped with such a structure. Let us first recall
some basic facts concerning differential calculus in locally convex spaces.

Calculus in locally convex spaces

We base our investigation on the so called Bastiani calculus [3] and our
exposition here follows [11, 26].

Definition A.1. — Let E,F be locally convex spaces, U ⊆ E be an
open subset, f : U → F a map and r ∈ N0 ∪ {∞}. If it exists, we define for
(x, h) ∈ U × E the directional derivative

df(x, h) := Dhf(x) := lim
t→0

t−1(f(x+ th)− f(x)
)
.

We say that f is Cr if the iterated directional derivatives

d(k)f(x, y1, . . . , yk) := (DykDyk−1 · · ·Dy1f)(x)

exist for all k ∈ N0 such that k 6 r, x ∈ U and y1, . . . , yk ∈ E and define
continuous maps d(k)f : U × Ek → F . If f is C∞ it is also called smooth.
We abbreviate df := d(1)f and for curves c : I → M on an interval I, we
also write ċ(t) := d

dtc(t) := dc(t, 1).
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We will frequently want to work with smooth mappings on non-open
sets. Contrary to the treatment in the main body of the text we restrict
ourselves here to regular sets which are locally convex.

Definition A.2 (Differentials on non-open sets).
(1) A subset U of a locally convex space E is locally convex if every

x ∈ U has a convex neighborhood V in U .
(2) Let U ⊆ E be a locally convex subset with dense interior and F a

locally convex space. A continuous mapping f : U → F is called Cr
if f |U◦ : U◦ → F is Cr and each of the d(k)(f |U◦) : U◦ × Ek → F

admits a continuous extension d(k)f : U × Ek → F (which is then
necessarily unique).

Note that for Cr-mappings on regular locally convex subsets the chain
rule holds (whereas it becomes false in general without requiring local con-
vexity, cf. Lemma 2.3). Hence there is an associated concept of locally
convex manifold with rough boundary.

Topologies on function spaces with non-compact source

In this appendix we recall some basic facts on the topology of spaces of
smooth sections in vector bundles over a non-compact manifold. For the rest
of this section we let M,N be finite-dimensional manifolds and p : E →M

be a vector bundle overM . Further, we denote by Γ(M,E) the vector space
of all smooth sections of the bundle and by Γc(M,E) ⊆ Γ(M,E) the space
of compactly supported sections.

A.3. — For the space of smooth mappings between manifolds with cor-
ners C∞(M,N) we consider the so called FD-topology or fine very strong
topology and write C∞fS (M,N) for the space endowed with this topology.
This is a Whitney type topology controlling functions and their derivatives
on locally finite families of compact sets. Before we describe a basis of the
fine very strong topology, we have to construct a basis for the strong topol-
ogy which we will then refine. To this end, we recall the construction of the
so called basic neighborhoods (see [17]). Consider f smooth, A compact,
ε > 0 together with a pair of charts (U,ψ) and (V, ϕ) such that A ⊆ V and
ψ ◦ f ◦ϕ−1 makes sense. Then we use multiindex notation B.1 to define an
elementary f -neighborhood N r (f ;A,ϕ, ψ, ε) as

g ∈ C∞(M,N), ψ ◦ g|A makes sense,

sup
α∈Nd0 ,|α|6r

sup
x∈ϕ(A)

‖∂αψ ◦ f ◦ ϕ−1(x)− ∂αψ ◦ g ◦ ϕ−1(x)‖ < ε

 .
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A basic neighborhood of f arises now as the intersection of (possibly count-
ably many) elementary neighborhoods N r (f ;Ai, ϕi, ψi, εi) where the fam-
ily (Vi, ϕi)i∈I is locally finite. We remark that basic neighborhoods form
the basis of the very strong topology (see [17] for more information). To
obtain the fine very strong topology, one declares the sets

(?) {g ∈ C∞(M,N) | ∃ K ⊆M compact, s.t. ∀ x ∈M \K, g(x) = f(x)}

to be open and constructs a subbase of the fine very strong topology as the
collection of sets (?) (where f ∈ C∞(M,N)) and the basic neighborhoods
of the very strong topology.
Note that in [17] the fine very strong topology was only considered for

manifolds without boundary (and coincides with the FD-topology, see [17,
Appendix C]). For manifolds with corners, we refer to [24] for more infor-
mation on this topology.
If M is compact, all topologies mentioned above coincides with the com-

pact open C∞-topology from Definition 6.4. Further, the fine-very strong
topology turns C∞(M,N) into an infinite-dimensional manifold (cf. [24]
and [17]). If N = Rn then the pointwise operations turn C∞fS (M,Rn) into
a locally convex vector space (which is not a Fréchet space if M is not
compact).

We now turn to the space of compactly supported sections of a vector
bundle.

A.4. — Compactly supported sections of a vector bundle. Let p : E →
M be a finite rank vector bundle over the finite dimensional manifold M
(possibly with corners). We consider three spaces of sections

Γ(M,E) := {f ∈ C∞(M,E) | p ◦ σ = idM},
ΓK(M,E) := {f ∈ Γ(M,E) | supp f ⊆ Kfor K ⊆M compact},

Γc(M,E) :=
⋃

K⊆M compact
ΓK(M,E).

Endow Γ(M,E), ΓK(M,E) and Γc(M,E) with the subspace topology from
C∞fS (M,E); we obtain locally convex vector spaces [24, Proposition 4.8 and
Remark 4.11]. Moreover, we remark that by compactness ofK, the topology
on ΓK(M,E) coincides with the subspace topology induced by the compact
open C∞-topology, whence one can prove that ΓK(M,E) is a Fréchet space
(cf. e.g. [12, Section 3.1]). Further, by [24, Proposition 4.8 and Remark 4.11]
Γc(M,E) is the inductive limit (in the category of locally convex spaces) of
the Fréchet spaces ΓK(M,E), where K runs through a compact exhaustion
of M . Thus Γc(M,E) is an (LF)-space.
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IfM is a manifold without boundary, a different description of the topol-
ogy on Γc(M,E) is considered in [13, Appendix F]. By the following lemma,
this topology on Γc(M,E) is equivalent to the fine very strong subspace
topology.

Lemma A.5. — If M is a manifold without boundary, the following
describe equivalent locally convex topologies on Γc(M,E):

(1) Give Γc(M,E) ⊆ C∞fS (M,E) the subspace topology.
(2) Let U = {Ui}i∈I be a locally finite cover ofM by relatively compact

open subsets Ui ⊆M . Equip each Γ(Ui, E|Ui) ⊆ C∞co (Ui, E|Ui) with
the subspace topology, and give Γc(M,E) the topology induced by

ρU : Γc(M,E) −→
⊕
i∈I

Γ(Ui, E|Ui),

where the direct sum is given the box topology, and ρi : Γc(M,E)→
Γ(Ui, E|Ui) is the restriction map.

(3) For K ⊆M compact, give

ΓK(M,E) = {s ∈ Γ(M,E) : supp s ⊆ K} ⊆ C∞(M,E)co

the subspace topology. Now equip Γc(M,E) with the final locally
convex vector space topology with respect to the inclusion maps
ιK : ΓK(M,E)→ Γc(M,E) as K ranges through the compact sub-
sets of M .

Proof. — Note that the topology described in (3) is the locally convex in-
ductive limit topology induced by the inductive system {ιK}K⊆M is compact
(ordered by inclusion of compact sets). Hence the topologies described in (1)
and (3) coincide by A.4. However, also the topologies (2) and (3) coincide
by [13, F.19]. �

Remark A.6. — Assume that the sets Ui from Lemma A.5(2) are do-
mains of manifold charts ϕi : Ui → Rm of M . Then we define for each
X ∈ Γ(Ui, E|Ui) the local representative

Xϕi := pr2 ◦Tϕi ◦Xϕ−1
i ∈ C

∞(ϕi(Ui),Rm),

where pr2 : ϕi(Ui) × Rm → Rm is the canonical projection. This mapping
yields an isomorphism of locally convex spaces

Γ(Ui, E|Ui) −→ C∞co (ϕi(Ui),Rm), X 7−→ Xϕi .
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Appendix B. The space of (smooth) Whitney jets

In this appendix we recall some details from Whitney’s approach to the
extension problem for smooth functions on a closed subset of Rn. Though
the exposition in the main part of the article does not need these results
as such (since we will only cite their consequences from [9]); the authors
think that a quick recollection of these constructions will be beneficial to
understand the underlying ideas. Our exposition follows here [9, Section 2];
we mention that a more in-depth treatment can be found in [5, Chapter 2].

B.1. — Throughout this section we use standard multiindex notation,
i.e. α = (α1, α2, . . . , αd) ∈ Nd0, |α| =

∑d
i=1 αi, α! = α1! · · ·αd! and ∂α =

∂α1
1 · · · ∂

αd
d .

Definition B.2. — Let K ⊆ Rd be compact. For a family f = (fα) ∈∏
α∈Nd0

C(K) and x ∈ K we define the formal Taylor polynomial

Taymx f(y) :=
∑
|α|6m

fα(x)
α! (y − x)α.

The formal Taylor remainder Rmx f ∈
∏
|α|6m C(K) is then defined by

(Rmx f)α := fα−∂α(Taymx f)|K = fα−Taym−|α|x (fα+β)|β|6m−α|K , |α| 6 m.

B.3. — For |α| < m one easily checks the identities:

∂α Taymx f = Taym−|α|x ((fα+β)
β∈Nm−|α|0

)

(Rmx f)α = (Rm−|α|x (fα+β)
β∈Nm−|α|0

)0

We now define seminorms on the spaces of jets which allow us to define
a Fréchet topology on the space of Whitney jets (cf. Definition B.7 below).

Definition B.4. — For f = (fα) ∈
∏
α∈Nd0

C(K) andm ∈ N0 we define
the seminorms

|f |m,K := sup
x∈K

sup
|α|6m

|fα(x)|.

The seminorms | · |m,K are closely connected to the compact open C∞-
topology on the space C∞(U,R) as we will discuss in B.6 below.

Definition B.5. — For f = (fα) ∈
∏
α∈Nd0

C(K), m ∈ N0 and t > 0,
we define

qm(f, t) := qm(K, f, t)

:= sup{|Rmx (f)α(y)||y−x||α|−m : x, y ∈ K, 0< |x−y|6 t, |α|6m}
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and

‖ · ‖m,K := | · |m,K + sup
t
qm(K, · , t).

B.6. — Let U ⊆ Rd be open and K1 ⊆ K2 ⊆ . . . a fundamental sequence
of compact sets.(10) Then we recall from Remark 6.5 that the compact open
C∞-topology is initial with respect to the map

∂ : C∞(U,R) −→
∏
α∈Nd0

C(U), f 7−→ (∂αf).

Pulling back the seminorms on the jet space by the mappings ∂( · )|Kl , we
obtain two families of seminorms:

(1) {|∂( · )|Kl |m,Kl | l ∈ N,m ∈ N0}. These seminorms are the classi-
cal seminorms which induce the compact open C∞-topology (cf.
e.g. [12, 26]).

(2) {‖∂( · )|Kl‖m,Kl | l ∈ N,m ∈ N0}. Also these seminorms induce the
compact open C∞-topology (this is easily seen by the usual estimate
for the mth Taylor remainder using the m+1st derivative on closed
balls covering Kl) (see e.g. [9, Section 2]). Further we notice that
f ∈

∏
|α|6m C(U) is contained in the image of ∂ if and only if

limt→0 qm(K, f, t) = 0 for all m ∈ N0 and K ⊆ U compact.

These considerations lead to the following definition.

Definition B.7. — Let K ⊆ Rd be compact. We say f ∈
∏
α∈Nd0

C(K)
is a Whitney jet (of order ∞), if limt→0 qm(K, f, t) = 0 for all m ∈ N. We
denote the Fréchet space of all Whitney jets (of order ∞) equipped with
the seminorms ‖ · ‖m,m ∈ N by E(K).

Since smooth functions on an open set U restrict to Whitney jets on
every K ⊆ U compact (cf. [9, p. 125]), we have (as sets)

(B.1) C∞(U,R) = projn E(Kn)

for every fundamental sequence of compact sets K1 ⊆ K2 ⊆ . . . ⊆ U .
However, we can also view this limit in the category of locally convex
spaces and it follows from Remark B.6 that the locally convex topology on
the left hand side of (B.1) coincides with the compact-open C∞-topology
described in Definition 6.4 (cf. Remark 6.5).

(10) i.e. for all n > 1, Kn ⊆ K◦n+1 and U =
⋃
l
Kl.
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Definition B.8. — Let U ⊆ Rd be an open set with (Kl)l∈N a funda-
mental sequence of compact sets and F ⊆ U a closed set. Then we define the
space of Whitney jets on F as the projective limit E(F ) := projl∈N E(F∩Kl)
(in the category of locally convex spaces).

Note that the definition of E(F ) is independent of the choice of funda-
mental sequence used to define it.
Using the canonical identification, we have C∞co (U,Rm) ∼= C∞co (U,R)m

as Fréchet spaces. Hence it makes sense to define Whitney jets of vector
valued functions as the Whitney jets of the components of the functions:

Definition B.9. — Define E(K,Rm) to be the closed subspace of the
product

∏
α∈Nd0

C(K,Rm) which corresponds to E(K)m under the identifi-
cation

∏
α∈Nd0

C(K,Rm) ∼= (
∏
α∈Nd0

C(K))m. Similarly for (Kl)l and F as
in Definition B.8 we define E(F,Rm) := projl∈N E(Kl,Rm).
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