
Math Geosci (2021) 53:375–393
https://doi.org/10.1007/s11004-021-09937-x

SPECIAL ISSUE

p-Kernel Stein Variational Gradient Descent for Data
Assimilation and History Matching

Andreas S. Stordal1,2 · Rafael J. Moraes3 ·
Patrick N. Raanes1 · Geir Evensen1,4

Received: 14 February 2020 / Accepted: 8 February 2021 / Published online: 17 March 2021
© The Author(s) 2021

Abstract A Bayesian method of inference known as “Stein variational gradient
descent” was recently implemented for data assimilation problems, under the heading
of “mapping particle filter”. In this manuscript, the algorithm is applied to another type
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In order to combat the curse of dimensionality, the commonly used Gaussian kernel,
which defines the solution space, is replaced by a p-kernel. In addition, the ensemble
gradient approximation used in the mapping particle filter is rectified, and the data
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from the subsurface inverse problem showmore promise, especially as regards the use
of p-kernels.
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1 Introduction

Bayesian inference in data assimilation (DA) has been researched for several decades
and is frequently applied in the petroleum industry today. Due to the typically vast
computational cost of the forward simulation problem, classic Bayesian Monte Carlo
methods, such as Markov chain Monte Carlo (MCMC) and importance sampling, are
not applicable. Therefore, approximate Bayesian methods, which require fewer com-
putational resources, are applied in most real-world cases. It is convenient to separate
these methods into derivative-based and derivative-free approaches. Derivative-based
approximations include Randomized Maximum Likelihood (RML, Kitanidis 1995;
Oliver et al. 1996), distributed Gauss–Newton solvers (Gao et al. 2017), and EDA-
4DVar (Carrassi et al. 2018).

However, it is more common to use derivative-free methods due to the common
lack of adjoint code in both commercial simulators and large scale models in general.
Many of the modern derivative-free methods are based on the ensemble Kalman filter
(EnKF, Evensen 2004). During the last decade the method of choice has become
the iterative ensemble methods such as iterative EnKF/EnKS (Bocquet and Sakov
2014), the ensemble RML (Chen and Oliver 2013) and the ensemble smoother with
multiple data assimilations (ESMDA, Emerick and Reynolds 2013). Unfortunately,
in the general (non-linear) case, none of these ensemble methods converge to the
true posterior distribution in the limit of an infinite sample size. It is possible to nest
some of these methods in the importance sampling framework to achieve asymptotic
optimality (Stordal and Elsheikh 2015; Stordal 2015; Stordal and Karlsen 2017), but
at a considerable cost. Other approximate approaches to Bayesian sampling that go
beyond the traditional approach of MCMC include sampling via optimal transport (El
Moshely and Marzouk 2012; Reich 2013; Marzouk et al. 2017) and implicit sampling
(Skauvold et al. 2019)

In this work, the recently published Stein variational gradient descent method
(SVGD, Liu and Wang 2016) is applied in history matching for the first time. The
kernels introduced in the algorithm aremore appropriate for high dimensional applica-
tions. In addition, an alternative derivative-free implementation is discussed. Previous
applications of SVGD includes Bayesian logistic regression (Liu and Wang 2016),
training of neural nets (Feng et al. 2017), sequential filtering of the Lorenz-63 and
-96 models (Pulido and van Leeuwen 2019; Pulido et al. 2019), inference on a sim-
ple linear and nonlinear partial differential equation (PDE) using a subspace Hessian
projection (Chen et al. 2019) and a Gauss–Newton formulation (Detommaso et al.
2018).

The outline of this paper is as follows: Sect. 2 introduces the SVGD theory. In
Sect. 3, the implementation is presented with and without an adjoint code, and the
choice of kernels for high dimensional applications. Examples with a toy model, with
the Lorenz systems, and with a reservoir model, are given in Sect. 4. A summary and
discussion of future work concludes the paper in Sect. 5.
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2 Stein Variational Gradient Descent

Let X ∈ X ⊆ R
Nx be the unknown vector of interest. In Bayesian statistics, it is

assumed random. Denote its (prior) probability density function (PDF), p(x). It is
observed through the noise-corrupted measurements

Y = H(X) + ε, (1)

where ε ∈ R
Ny is a random noise vector, and H is a (possibly nonlinear) mapping

H : X → Y ⊆ R
Ny . The likelihood, p(y|x), follows from the distribution of ε,

whose framing as an additive error ismere convention. The posterior is given byBayes’
rule: p(x |y) ∝ p(y|x) p(x). For complex problems, such as large scale inversion and
DA, Bayesian inference often takes the form of (approximate) sampling from the
posterior.

Given two densities p and q, the Stein discrepancy can be used to quantify their
difference. It is defined as

S(q, p) = max
f ∈F

(
Eq [(∂x log p(X)) f (X) + ∂x f (X)]) , (2)

where F is a set of test functions, f : X → R, that are sufficiently smooth and
satisfy

Ep[
(
∂x log p(X)

)
f (X) + ∂x f (X)] = 0. (3)

That is, f is in the Stein class of p (Liu et al. 2016). The variational problem Eq. 2 is
computationally intractable in most cases, and therefore Chwialkowski et al. (2016)
and Liu et al. (2016) introduced the kernelized Stein discrepancy, where the function
spaceF is set to the unit ball within a reproducible kernel Hilbert space (RKHS),H ,
forwhich analytical solutionsmaybeobtained. TheKullback–Leibler (KL) divergence
from p to q is given by

DKL(q‖p) =
∫

q(x) log

(
q(x)

p(x)

)
dx . (4)

It was related to kernelized Stein discrepancy by Liu and Wang (2016), who showed
that if X has density q, then the KL divergence to p from the PDF qT of the transfor-
mation

T (x) = x + εφ(x), (5)

has a derivative, d
dε

DKL(qT ‖p), that is maximized at ε = 0 for

φ(·) = Eq [K (X, ·) ∂x log p(X) + ∂x K (X, ·)], (6)

where K (x, x ′) is the unique kernel defining H .
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In the context of Bayesian inference, Bayes’ rule may be computed by a KL mini-
mizing algorithm (Liu and Wang 2016): the SVGD starts with a sample {xi0}Ni=1 from
the prior density p(x) and iteratively updates xik using the empirical (Monte Carlo)
version of Eq. 6 in Eq. 5

xik+1 = xik + εk N
−1

N∑

j=1

(
K (x j

k , xik)∂x log p(x j
k |y) + ∂x K (x j

k , xik)
)

, (7)

for all particles, or ensemble members, i = 1, . . . , N . If the kernels are chosen to be
Gaussian, i.e. K (x, x ′) = exp(− 1

2

∥∥x − x ′∥∥2
2), then Eq. 7 reduces to

xik+1 = xik + εk N
−1

N∑

j=1

K (x j
k , xik)

(
∂x log p(x j

k |y) + (xik − x j
k )

)
. (8)

The last term may be seen as a weighted average of the gradient of the log posterior
and of its similarity to the other members. The first term guides the sample points
towards the maximum of the log posterior, while the second term repulses sample
points that are too close. Equation 8 presupposes the use of simple gradient descent
optimization In practice, Liu and Wang (2016); Pulido and van Leeuwen (2019) both
used an adaptive subgradient variation of this (ADAGRAD, Duchi et al. 2011), which
is also the choice made here.

It is interesting to note that if the kernel is degenerate, then the SVGD algorithm
produces N copies of the MAP estimate (or N local optima in the general non-convex
case). It was shown in Liu (2017) that the continuous-time infinite-sample limit of the
density induced by SVGD satisfies the Vlasov equation (Vlasov 1961)

∂tμt = −∇ · (φμt )(μt ). (9)

Using Stein’s lemma (Stein 1972) it may be shown that ∂μt = 0 for μt = p(x |y),
meaning that the SVGD algorithm can be viewed as particle flow. Furthermore, Zhang
et al. (2018) showed that SVGD can be combined with Langevin dynamics to obtain
a stochastic particle flow version of SVGD that may avoid the issue of particles col-
lapsing to a single point or getting stuck in a local mode. This will not be discussed
further here as it did not have any impact on the problems presented here. For more
details the reader is referred to Zhang et al. (2018) and references therein.

3 Implementation

In the following it is assumed that the prior and the measurement error are both
Gaussian. Hence

∂x log p(x |y) = C−1
x (μ − x) + H	C−1

ε (y − H(x)), (10)
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where H is the sensitivity matrix (the derivative of H with respect to x) and Cx and
Cε are the covariance matrices of X and ε, respectively. Computing H is challenging
since it requires an adjoint code. It is therefore of great interest to study alternative
implementations of SVGD using approximate gradients. It should also be mentioned
that Han and Liu (2018) presented aweighted SVGDwherein the gradient is computed
using a surrogate density instead of the target density. In the following description,
however, the focus is to use either an adjoint code, or an ensemble approximation of
H.

3.1 Adjoint Implementation

In large scale PDE-constrained optimization for the solution of inverse problems (e.g.
in reservoir history matching) it is convenient to formulate H as depending on two
separate variables,H = H(ξ, x), where the dynamic ones, ξ , depend deterministically
on the fixed (but unknown) parameter fields x through g(ξ, x) = 0, where g is the
set of (discretized) forward model equations. Implicit differentiation yields ∂xξ =
−(∂ξ g)−1 ∂x g, so that the (total) derivative ofH with respect to x , required in Eq. 10,
is given by

H = ∂ξH ∂xξ + ∂xH (11)

= −∂ξH (∂ξ g)
−1 ∂x g + ∂xH. (12)

Using the shorthand

w = C−1
ε (y − H), (13)

the last term in Eq. 10 becomes

H	w = ( − ∂ξH (∂ξ g)
−1∂x g + ∂xH

)	
w (14)

= −(∂x g)
	{

(∂ξ g)
−	[

(∂ξH)	w
]} + (∂xH)	w. (15)

The use of brackets in Eq. 15 seems heavy-handed. However, in contrast to the explicit
computation of H of Eq. 12 (known in the literature as the forward, or direct, method
(Rodrigues 2006; Anterion et al. 1989), or gradient simulator (Oliver et al. 2008)), the
ordering of the brackets in Eq. 15 yields a sequence of computations, now involving
the transposed system, with a cost proportional to a single simulation. This sequence
of operations is known in the literature as adjoint, or backward, method (Rodrigues
2006; Chavent et al. 1975).

A major hurdle in applying the adjoint method (as well as in the Forward/Direct
method) is writing the code for the computation of the partial derivatives of g and H
with regard to both ξ and (mainly) x . In this study, automatic differentiation (Bendtsen
and Stauning 1996) is applied.
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3.2 Adjoint-Free Implementation

Zhou (2008) showed that, by the reproducing property of f ∈ H ,

∂x f (x) = 〈 f, ∂x ′K (x, ·)〉H . (16)

However, the inner product onH is given by

〈 f, g〉H =
∞∑

i=1

〈 f, φi 〉L2〈g, φi 〉L2

λi
, (17)

where φ and λ are the eigenfunctions and eigenvalues of K . This is not trivial to
compute due to the high-dimensional integrals and the computation of eigenfunctions.

An alternative formulation was used by Pulido et al. (2019) where the gradient of
H was approximated by Monte Carlo integration

H̃(x) = N−1
N∑

i=1

H(xi )K (x, xi ), (18)

using the sample available from the SVGD algorithm at each iteration. A further
normalization was later introduced to improve the approximation by dividing each
value of H̃ by the sum of the kernels at that point. The approximation was based on
the claim that Eq. 18 would converge to

Ĥ(x) =
∫

H(x ′) ∂x ′K (x, x ′) dx ′, (19)

forH ∈ H as N goes to infinity. However, this uses the plain L2 inner product,

〈H, K 〉 =
∫

H(x ′) K (x, x ′) dx ′, (20)

which is not a RKHS, so Eq. 19 is incorrect. However, if it assumed that
H(x)K (x, x ′) = 0 in the limits or at the boundary (in case of finite support), then
integration by parts yields

∫
H(x ′) ∂x ′ K (x, x ′) dx ′ = −

∫
H(x ′) K (x, x ′) dx ′ = −EK (x,·)[H]. (21)

Hence, Eq. 19 can be seen as a kernel-smoothed derivative of H around the point x ,
provided the kernel is normalized (integrates to one).

Furthermore, their unsatisfactory results are a consequence, not only of the approx-
imation in Eq. 19, but also of the fact that the sample is drawn from a particular
distribution and not uniformly in space. Hence the notion that Eq. 18 will converge to∫
HK is also incorrect. This can be corrected by noting that the samples are drawn
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from a distribution q, hence, Eq. 18 converges to Eq [HK ] unless the integrand is
normalized by q. An alternative approach is therefore to draw the sample from the
kernel density, q̂(x) = N−1 ∑

i K (x, xi ) at each iteration, yielding the Monte Carlo
estimate of Eq. 19 given by

H(x) ≈ −
∑

i

H(xi )
∂x ′K (x, xi )

∑
j K (xi , x j )

. (22)

Alternatively, Pulido et al. (2019) suggest using an average ensemble approximation
for the derivative, as in the EnKF. This does not allow for local information, and the
algorithm falls into the ensemble-based category where quasi-linearity of the model
is assumed.

Finally, since H̃ is estimated using a sample, it will suffer fromMonte Carlo errors.
This can, just like in the EnKF and its variants, be reduced by introducing localization.
A user defined correlation matrix ρ can be used to taperH(x) in Eq. 22 via the Schur
product ρ ◦ H(x).

3.3 Extension to p-Kernels

In the literature discussed above, almost all applications selected K (x, x ′) to be a
Gaussian kernel. The choice of the kernel may not be critical in low dimensional
problems. For high dimensional problems, however, the Gaussian kernel is not able to
separate points locally, due to the curse of dimensionality. It will produce degeneracy,
as illustrated in importance sampling. To overcome this issue, scaled kernels were used
both in Liu and Wang (2016) and Detommaso et al. (2018). In many cases, a simple
scaling of the kernel bandwidth is not sufficient to separate points in high dimensions
(increasing the bandwidth in high dimensions results in almost uniform weights) and
an alternative approach of using p-kernels (Francois et al. 2005) is therefore chosen
here. The kernel is specified by

K (x, x ′) = exp
(−(

d(x, x ′)/σ
)p)

. (23)

The special case p = 2 and d(x, x ′) = ∥∥x − x ′∥∥
2 reduces the p-kernel to a Gaus-

sian kernel. As the dimension increases, the distances (i �= j), which are χ2 if X is
Gaussian, tend to cluster away from zero, hence the term with i = j in Eq. 8 increas-
ingly dominates unless the bandwidth of the kernel is chosen to be very large. In this
case the kernel will not separate points, and the local property of the kernel is lost.
To overcome this, p-kernels force the kernel value to stay close to 1 until it reaches
the lower tail of the distance distribution of the sample, and then decay appropriately.
Specifically, the parameters p and σ are here set to match the α-percentile, dα , and
the (1−α)-percentile, d1−α , of the empirical distribution of distances, meaning

K (0, dα) = 1 − α, K (0, d1−α) = α, (24)
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Fig. 1 p-kernel (red) and Gaussian kernels with different bandwidths together with the sample distribution
of distances

which has the following solution

p =
log

(
logα

log (1−α)

)

log
(
d1−α

dα

) ; σ = d1−α

(− logα)1/p
. (25)

In Fig. 1, the distribution of Euclidean distances for a standardGaussian randomvector
of dimension 1000 with α = 0.05 is plotted. Also included is a set of Gaussian kernels
with different bandwidths and the p-kernel. The problem of using Gaussian kernels is
evident: either the kernel function dies out before it reaches the sampled distances, or
the bandwidth is so large that it does not separate the points. Hence uniform weights
could in practice replace the kernel.

4 Examples

4.1 Univariate Example

The first test is to reproduce the toy example in Pulido et al. (2019) in order to validate
our derivative approximation (Eq. 22) and demonstrate the sampling properties of
SVGD. In the simple toy problem of Pulido et al. (2019), the prior is given by a
univariate Gaussian density with mean 0.5 and variance of 1. The measurement model
is y = x2 + ε, where ε is a zero-mean Gaussian random variable with a variance of
0.5. The actual measurement is set to y = 3. Although x2 is not in the Gaussian RKHS
(Minh 2010), the reproducing property is still valid for the derivative in this particular
case. That is,

∫
u2∂x K (x, u) du = 2x .
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Fig. 2 The exact and approximate derivatives of the model y = x2

(a) (b)

Fig. 3 Posterior and posterior estimates in the toy model, using two different ensemble sizes, N

Figure 2 shows the derivative approximation of Eq. 18 and its normalized version
(blue and red), reproduced from Pulido et al. (2019), together with the true derivative
(black) and our proposed method (cyan) in Eq. 22 of the prior sample. The results
clearly show the inadequacy of the approximation (blue line) in Eq. 18, which in this
case is not even monotonic. The normalized version (red line) is just a damped version
and exhibits the same non-monotonic behavior. However, it can also be seen that
the corrected Monte Carlo estimate is slightly biased due to deficiency the of kernel
density estimation (Silverman 1986) for the tails of the prior density.

In Fig. 3 we plot density estimates, including SVGD using the exact (magenta) and
the new approximate (cyan) derivative of Eq. 22. The standard EnKF solution (green)
and the prior (red) are also included. The sample size is 100 and 1000. The error in
SVGD is due to the sampling error and bias in the kernel density estimation. The
SVGD with the (new) approximate derivative has an additional bias due to the error
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in the derivative estimate, as seen by the left and right skewness in Fig. 3. Note that
this error is reduced with increased sample size.

4.2 Data Assimilation Tests with the Lorenz Systems

Pulido and van Leeuwen (2019) tested the SVGD in the sequential filtering setting
(described below) of data assimilation (DA, Wikle and Berliner 2007), applying it in
the analysis step by constituting the prior from the ensemble using Gaussian mixtures.
They called this the mapping particle filter (MPF), however, the SVGD label is main-
tained here. Their results suggest that the SVGD filter achieves the accuracy of the
(bootstrap) particle filter on the Lorenz-63 system, and the EnKF on the Lorenz-96
system.

Unfortunately, their result lacks relevance because the Lorenz systems, used as
coarse prototypes of atmospheric dynamics, are inundatedwith noise (see appendixA),
so that the extended Kalman filter (EKF, Jazwinski 1970), or even 3D-Var, can achieve
optimal accuracy, at much lower costs. This issue is rectified here by benchmarking
the SVGD filter (i.e. MPF) with more standard settings.

The Lorenz-63 system (Lorenz 1963; Sakov et al. 2012) is given by the Nx = 3
coupled ordinary differential equations

ẋ = σ(y − x), (26)

ẏ = r x − y − xz, (27)

ż = xy − bz, (28)

with parameter values r = 28, σ = 10, and b = 8/3. The true trajectory, x(t), is
computed using the fourth-order Runge–Kutta scheme, with time steps of 0.01 time
units, and no model noise. Observations of the entire state vector (i.e. H = INx ) are
taken ΔtObs = 0.25 time units apart with a noise variance of 2 (i.e. Cε = 2INx ).

The Lorenz-96 system (Lorenz 1996; Ott et al. 2004) is given by the coupled
ordinary differential equations

ẋm = (xm+1 − xm−2) xm−1 − xm + F, (29)

for m = 1, . . . , Nx , with periodic boundary conditions, and a constant “force” of
F = 8. These are integrated using the fourth-order Runge–Kutta scheme, with time
steps of 0.05 time units, and no model noise. The state dimension is set to Nx = 10
(rather than the typical value of 40) so that the particle filter is practical. Observations
of the entire state vector (i.e. H = INx ) are taken ΔtObs = 0.1 time units apart with
unit noise variance (i.e. Cε = INx ).

The methods are assessed by their accuracy, as measured by root-mean squared
error (RMSE)

RMSE(t) =
√

1

Nx

∥∥x(t) − x̄(t)
∥∥2
2, (30)
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Fig. 4 Benchmarks of filter accuracy (RMSE) from synthetic DA experiments on the Lorenz-63 system,
plotted as functions of the ensemble size, N . For the SVGD (label “Stein”) filter, one curve is plotted for
each tuning value tested for the kernel bandwidth. Note that the vertical scale is compressed above 2

which is recorded following each analysis of the latest observation y(t). After the
experiment, the instantaneous RMSE(t) are averaged for all t > 20.

Comparison of the benchmark performance of SVGD is made to that of the EnKF
(Hunt et al. 2004) and the bootstrap particle filter (with universal resampling, triggered
if ‖w‖−2 < N/2, where w is the vector of weights). In addition, baseline methods
are included for context. Their analysis estimates, xa , are computed as follows: x̄ for
Climatology, x̄+K(C) [y− x̄] for Optimal Interpolation, and x f +K(cI) [y− x f ] for
3D-Var. Here, x̄ and C are the mean and covariance of the (invariant measure of the)
system dynamics, K(C) = CH	(HCH	 + R)−1 is a gain matrix, x f is the model
forecast of the previous xa , and c is a scaling factor subject to tuning.

The RMSE averages of each method are tabulated for a range of ensemble sizes, N ,
and plotted as curves in Figs. 4 and 5. The plotted scores represent the lowest obtained
among a large number of tuning settings, selected for optimality at each point. For the
PF the tuning parameter is the bandwidth (scaling) of the regularizing post-resample
jitter, whose covariance is computed from the weighted ensemble. For the EnKF
(Hunt et al. 2004) the tuning parameters are (i) the post-analysis inflation factor and
(ii) whether or not to apply random, covariance-preserving, post-analysis rotations
(Sakov and Oke 2008). For the SVGD the tuned parameters are: (i) the number of
iterations (maximum: 100) and (ii) the step size for ADAGRAD, (iii) the bandwidth
of the isotropic Gaussian kernels of the priors’ mixture, and (iv) the bandwidth of
the isotropic Gaussian kernels defining the RKHS. In the case of p-kernels, the latter
bandwidth is determined automatically by Eq. 25, along with the p parameter.

As can be seen in both Figs. 4 and 5, the abscissa (N -axis) can be roughly partitioned
into three segments, with regard to the ordering of the method scores: For intermediate
ensemble sizes, N , the EnKFobtains the lowest RMSE score among all of themethods.
For the largest ensemble size, N = 400, the particle filter obtains the best score, while
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Fig. 5 Benchmarks of filter accuracy (RMSE) from synthetic DA experiments on the Lorenz-96 system,
plotted as functions of the ensemble size, N . For the SVGD (label “Stein”) filter, one curve is plotted for
each tuning value tested for the kernel bandwidth. Note that the vertical scale is compressed above 2

in the case of Lorenz-63, the SVGD filter achieves the same score as the EnKF (which
it already obtained with N = 8). Tests with N > 400 were not affordable due to
the cost of SVGD. For small N , the SVGD filter obtains lower RMSE than both the
particle filter and the EnKF. However, as this score is not better than 3D-Var using a
background matrix proportional to identity, it does not hold much relevance.

Furthermore, the p-kernel modification generally scores worse than SVGD with
Gaussian kernels and tuned bandwidths. This is not very surprising, because the dimen-
sionality is low, preempting their rationale. Moreover, an investigation reveals that, for
small ensemble sizes, the p-kernel approach has a tendency to use very large values
of p. For example, the corresponding curve in Fig. 4 spikes at N = 3. The reason is
that, sometimes, the three distances between the three ensemble members are almost
equal, but far from zero, requiring, on average, p = 22. By contrast, this does not
occur at N = 2, because then there is only one distance, nor does it occur when N is
very large and the distances rarely coincide.

In summary, the SVGDfilter of Pulido and vanLeeuwen (2019), with orwithout our
p-kernelmodification,while functional, does not achieve the sameaccuracy as standard
DAmethods. It is important to remember that the SVGDfilter involvesmany iterations,
quite a few tuning parameters, and linear algebra with Nx × Nx matrices, all of which
add to its cost. It seems likely that the disappointing performance of SVGD stems from
several issues: Firstly, it is limited by the precision of the prior approximations, which
come from Gaussian mixtures, and may suffer from the curse of dimensionality, or
from using simple, identity covariances. Secondly, the optimization process may not
be very successful. In cursory experiments, other optimization routines were tested,
and testw were condunctued using more iterations and the use of pre-conditioning, all
of which sometimes could yield improved performance. A thorough examination is
left for future work.
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Fig. 6 The synthetic inverted
five-spot model used in the
numerical experiments. One of
the 1000 permeability
realizations is shown

Fig. 7 Four different permeability realizations from the ensemble of 1000 members

4.3 Reservoir History Matching Example

This section presents the results of SVGD with Gaussian kernels and p-kernels on
a synthetic reservoir case. The reservoir is a two-dimensional model with 21 by 21
grid cells consisting of incompressible two-phase flow (oil-water). In each corner
cell there is a production well and in the center an injection well (see Fig. 6). The
porosity is assumed to be known in each grid cell with a value of 0.3. The forward
model equations, as well as the adjoint model for this example, are fully depicted in
de Moraes et al. (2018).

The permeability field is considered unknown with a prior distribution that is Gaus-
sian. There are 1000 realizations available for this model (Jansen 2011), which specify
the prior mean and covariance. Figure 7 shows four different permeability realizations
from the ensemble. This is the same set up as in Stordal and Elsheikh (2015).

The observed data are generated from a synthetic truth (of the permeability field),
chosen at random as one realization from the ensemble. Specifically, the observations
are thewater rates resulting from the simulation of 10 years of the truth, observed every
six months, with a 5% white noise level. For more details on the reservoir settings, the
reader is referred to Jansen (2011) and de Moraes et al. (2018).

The ADAGRAD method for optimization was implemented with a step size of 0.1
and an autocorrelation of 0.9, which are the standard settings for ADAGRAD. The
maximum number of iterations was set to 50. The experiments were conducted with
both Gaussian and p-kernels, and with ensemble sizes N = 100 and N = 1000.

The results for the data match with 100 members are shown in Fig. 8, as well as
the data match with 1000 members in Fig. 9.

As can be observed from the results, both history matching using 100 members
(Fig. 8) and 1000 members (Fig. 9) provide a reasonably good match for each
individual well. Even though the prior ensemble either mostly underestimates the
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(a) (b)

Fig. 8 Data predictions from prior (green) and posterior (red) ensemblewith 100members. The blue circles
represent the observed data. The y-axis represents water rate (qw) in m3/day and the x-axis represents time
in days. Data match using Gaussian kernel (a) and p-kernel (b)

(a) (b)

Fig. 9 Data predictions from prior (green) and posterior (red) ensemble with 1000 members. The blue
circles represent the observed data. The y-axis representswater rate (qw) inm3/day and the x-axis represents
time in days. Data match using Gaussian kernel (a) and p-kernel (b)

water rate for PROD1 and PROD3 wells (top-left and bottom-right panels, respec-
tively) or overestimates the PROD2 and PROD4 water rates (top-right and bottom-left
panels, respectively), the posterior data predictions capture the observed data well.
Additionally, better data predictions are obtained with 1000 members. Furthermore,
underestimation of uncertainty is often a problem in history matching. It therefore is
interesting to see that the posterior ensemble using the p-kernel contains a much larger
uncertainty when compared to the posterior ensemble using the Gaussian kernel. This
is even clearer if one observes the uncertainty around the water break-through of wells
PROD2 and PROD4 (top-right and bottom-left panels on Fig. 9b).

Next, the history matching results are further investigated by comparing the perme-
ability marginal PDFs conditioned to production data, shown in Fig. 10. In general, the
conditionedmarginal PDFs for bothGaussian kernel and p-kernel provide a reasonably
good representation of uncertainty. While subtle, one may note that the conditioned
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Fig. 10 Marginal PDFs of
permeability. Each curve
represents one ensemble
member. Top: 100 members.
Bottom: 1000 members. Left:
Gaussian kernel. Right:
p-kernel. The prior is shown in
green, and the posterior in red.
The blue curves represent the
true (reference) marignal pdf

PDFs using p-kernel (right-side panels of Fig. 10) better represent the uncertainty
when compared to the conditioned PDFs using Gaussian kernel, mainly when looking
at the permeability range (horizontal axis) and the spread of the PDFs at the bottom,
that use a 1000 member ensemble.

Comparisons with RML (Oliver et al. 1996) in order to further investigate the usage
of p-kernels to better represent different high-dimensional geological settings will be
investigated in the future.

Even though the results presented here indicate that the SVGD is a promising alter-
native for reservoir uncertainty quantification, it is only feasible, even considering this
relatively small example, with an efficient gradient computation strategy. However,
other data assimilation/uncertainty quantification strategies, such as RML (Chen and
Oliver 2012), are also only feasible combined with efficient gradient computation
strategies. Even though derivative-free formulations have been devised to overcome
the adjoint implementation challenges (e.g. EnRML), the performance of both formu-
lations (derivative and derivative-free) in an SVGD setting should be investigated in
reservoir history matching problems.

5 Conclusions

The Stein variational gradient descent (SVGD) algorithm was extended to p-kernels,
andwediscussed derivative and derivative-free implementations.With an adjoint code,
the algorithm was applied to subsurface petroleum history matching for the first time.
The results showed that it can obtain reasonable datamatchwith bothGaussian kernels
and p-kernels, but that the posterior uncertainty was larger using the p-kernels, hence
demonstrating the potential usefulness of p-kernels in higher dimensions.

The SVGDwas also tested on two small chaotic dynamical systems. For thesemod-
els the measurement operator is linear, thus the sensitivity matrix is trivial. However,
as the prior distribution is unknown, it has to be approximated using kernel density
estimation. The results showed that the SVGD is outperformed by the EnKF for inter-
mediate ensemble sizes and the particle filter for large ensemble sizes, tempering the
impression given by Pulido and van Leeuwen (2019). This contradiction is most likely
a result of using a less noisy system (the dynamics in Pulido and van Leeuwen (2019)
were entirely driven by noise) and the fact that the posterior sample from SVGD can-
not overcome the deficiencies of the density estimate of the prior. Further analysis and
improvements are left for future work.
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The reservoir example indicated more potential for the SVGD algorithm. In partic-
ular, the uncertainty quantification of the posterior seemed to improve when using the
p-kernel instead of the Gaussian kernel. A more detailed investigation of the uncer-
tainty quantification properties of SVGD, in particular when compared to RML or
ensemble smoothers, is left for future work. In addition, the ensemble approxima-
tion of the derivative for reservoir models will also be investigated in the future, in
combination with localization.
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Appendix A: The Magnitude of the Noise Used to Test the MPF

The model noise covariance used by Pulido and van Leeuwen (2019) is Q = 0.3INx

for each ΔtObs = 0.01 (Lorenz-63) or ΔtObs = 0.05 (Lorenz-96) (Pulido and van
Leeuwen (2019) state that the value of Q used for the Lorenz-63 system is based on
climatological variances. However, this is probably inaccurate, judging by the code
the authors received in email communication with the principal author. The paper does
not clearly state how frequently the noise with covariance Q should be applied, but
the code indicates that it is every DA cycle, ΔtObs).

A.1 The Relative Importance of Noise/Model

The near-optimal RMSE scores that can be achieved for each twin experiment are
around

– 0.50 (resp. 0.03) for Lorenz-63, with (resp. without) noise.
– 0.50 (resp. 0.12) for Lorenz-96, with (resp. without) noise.

The noiseless scores were obtained with the PF and the EnKF, with large ensemble
sizes. The RMSE (The RMSE is not defined by Pulido and van Leeuwen (2019),
but their code indicates that the square root is taken after averaging in time (as well
as space). This is different from the DA literature standard, but our investigations
show that it makes little numerical difference in these experiments) score of 0.5 can
be gleaned from Fig. 7 and Fig. 9 of Pulido and van Leeuwen (2019). The huge
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difference in RMSE between the noisy and noiseless cases indicates that the systems
are dominated by noise.

A.2 Predicting the RMSE Without Experiments

It is no coincidence that the RMSE value of 0.5 occurs in the noisy case both (!) for
Lorenz-63 and -96. Consider the stationary Riccati recursion with constant system
matrices (with conventional DA notation)

(Pa∞)−1 = (MPa∞M	 + Q)−1 + (H	RH)−1, (31)

which can be used to predict the squared error, Pa∞, if the dynamics, M, are approx-
imately constant. Pulido and van Leeuwen (2019) use H = I, and a diagonal model
noise covariance, Q. Now, if the error growth is entirely dominated by the noise, then
the impact of the dynamics is negligible, i.e.M ≈ I. Thus the system dimensions (for
either Lorenz-63 or -96) becomes decoupled and homogeneous, and Eq. 31 reduces
to a set of identical scalar systems, each of which yields the quadratic equation

(Pa∞)2 + Q(Pa∞) − QR = 0. (32)

Inserting the settings of the Pulido and van Leeuwen (2019), namely Q = 0.3 and
R = 0.5, yields Pa∞ = 0.26, of which the square-root is 0.5. This indicates that,
indeed, the model, M, has negligible bearing on the experiments.
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