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Abstract
Development of models and dedicated numerical methods for dynamics in fractured rocks is an active research field, with
research moving towards increasingly advanced process couplings and complex fracture networks. The inclusion of coupled
processes in simulation models is challenged by the high aspect ratio of the fractures, the complex geometry of fracture networks,
and the crucial impact of processes that completely change characteristics on the fracture-rock interface. This paper provides a
general discussion of design principles for introducing fractures in simulators, and defines a framework for integrated modeling,
discretization, and computer implementation. The framework is implemented in the open-source simulation software PorePy,
which can serve as a flexible prototyping tool for multiphysics problems in fractured rocks. Based on a representation of the
fractures and their intersections as lower-dimensional objects, we discuss data structures for mixed-dimensional grids, formula-
tion of multiphysics problems, and discretizations that utilize existing software. We further present a Python implementation of
these concepts in the PorePy open-source software tool, which is aimed at coupled simulation of flow and transport in three-
dimensional fractured reservoirs as well as deformation of fractures and the reservoir in general. We present validation by
benchmarks for flow, poroelasticity, and fracture deformation in porousmedia. The flexibility of the framework is then illustrated
by simulations of non-linearly coupled flow and transport and of injection-driven deformation of fractures. All results can be
reproduced by openly available simulation scripts.

Keywords Fractured reservoirs . Mixed-dimensional geometry . Numerical simulations . Multiphysics . Discrete fracture matrix
models . Open-source software . Reproducible science

1 Introduction

Simulation of flow, transport, and deformation of fractured
rocks is of critical importance to several applications such as

subsurface energy extraction and storage and waste disposal.
While the topic has received considerable attention in the last
decade, the development of reliable simulation tools remains a
formidable challenge. Many reasons can be given for this; we
here pinpoint four possible causes: First, while natural frac-
tures are thin compared to the characteristic length of the do-
mains of interest, their extent can span the entire domain [1].
The high aspect ratio makes the geometric representation of
fractures in the simulation model challenging. Second, the
strongly heterogeneous properties of fractures compared to
the matrix with respect to flow andmechanics call for methods
that can handle strong parameter discontinuities as well as
different governing physics for the fractures and the matrix,
see for instance [2–4]. Third, phenomena of practical interest
tend to involve multiphysics couplings, such as interaction
between flow, temperature evolution, geo-chemical effects,
and fracture deformation [5]. Correspondingly, there is an
ongoing effort to develop and introduce multiphysics
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couplings within simulation models [6]. Fourth, fracture net-
works have highly complex intersection geometries, which
must be accounted for in the simulation models. Although
the geometry of the walls of individual fractures can be com-
plex by themselves, we will not consider this in any detail, but
rather assume that averaged apertures are available at the scale
of discretizations.

Traditionally, simulation of flow-driven dynamics in frac-
tured media has been based on two conceptual models. The
first is the upscaled representation, where the fracture network
geometry and dynamical processes taking place in the net-
work are replaced by equivalent continuum models, which
resemble those used in non-fractured porous media. As these
models do not resolve the fracture geometry, they are compu-
tationally efficient, and have been extended to cover a wide
range of multiphysics couplings, as exemplified by the
TOUGH2 family of codes [7] as well as PFLOTRAN [8].
The accuracy of the simulations is however highly dependent
on the quality of the upscaledmodel, which in turn depends on
the fractured domain’s resemblance of a continuous medium
with respect to the nature of the physical processes. In prac-
tice, the upscaling process ranges from treatable by analytical
means for simple fracture geometries and dynamics [9, 10], to
extremely challenging in the case of multiphysics couplings
and complex fracture geometries [11, 12].

The second traditional class of models, known as the dis-
crete fracture network (DFN) models, is constructed using an
explicit representation of the fracture network in the simula-
tion model, while ignoring the surrounding rock mass. The
models combine highly accurate representation of dynamics
in the fractures with computational efficiency from not having
to deal with the rock matrix. DFN simulation models with a
high level of sophistication have been developed, notably for
coupled flow and transport, see for instance [13–15]. By them-
selves, DFN models cannot represent processes outside the
fracture network; however, the models can be combined with
continuum models to achieve fracture-matrix couplings.

The respective limitations of continuum and DFN
models have, over the last decade, led to an increased
interest in the class of discrete fracture matrix (DFM)
models. In DFM models, the fractures are sorted in two
classes according to their importance for the dynamics in
question [16]. The most important fractures are represent-
ed explicitly, while upscaled models are applied for the
remaining fractures and the host rock. As such, DFM
models represent a flexible compromise between
upscaling and explicit representations. The models can
represent governing equations in the rock matrix, frac-
tures, and generally also in the intersections between frac-
tures. For computational efficiency, it is common to rep-
resent fractures and their intersections as lower-
dimensional objects embedded in the three-dimensional
rock matrix [17, 18]. We refer to such representation as

a mixed-dimensional model [19], and conversely refer to
a model of a domain where only a single dimension is
considered fixed dimensional.

DFM models can further be divided into two subgroups,
according to whether they explicitly represent the fracture
surfaces in the computational grid [16]. Models that apply
non-conforming gridding include the embedded discrete
fracture matrix model (EDFM) [20], and extended finite
element methods (XFEM) [21, 22]. These methods avoid
the complexities of conforming grid generation discussed
below, but must instead incorporate the fracture-matrix in-
teraction in what becomes complex modifications of the
numerical method for XFEM [23], or by constructing an
upscaled representation, e.g., [24], where the latter ap-
proach faces chal lenges reminiscent of those in
continuum-type models. For this reason, our interest herein
is DFM methods with conforming grids. Construction of
these grids can be challenging for complex fracture net-
works, particularly in 3d, and the high cell count that may
result can put limits in the amount of fractures that can be
explicitly represented. Nevertheless, this type of DFM
models has been developed for flow and transport, as well
as mechanics and poroelasticity, and the explicit represen-
tation is particularly useful when the fractures deform.
Simulation models that incorporate DFM principles include
DuMuX [25], CSMP [26], MOOSE-FALCON [27, 28],
OpenGeoSys [29], and Flow123d [30].

The utility of a rapid prototyping framework is illustrated
by the wide usage of the Matlab Reservoir Simulation
Toolbox (MRST) [31, 32], mainly for non-fractured porous
media. Similarly, research into strongly coupled processes in
mixed-dimensional geometries will benefit from software of
similar flexibility and with a structure tailored to the specific
challenges related to fractured porous media.

The goal of this paper is twofold: First, we review chal-
lenges related to design of simulation frameworks for
multiphysics couplings in mixed-dimensional geometries.
Our aim is to discuss design choices that must be made in
the implementation of any DFM simulator, including data
structures for mixed-dimensional geometries, and representa-
tion and discretization of multiphysics problems. Second, we
describe a framework for integrated modeling, discretization,
and implementation, and an open-source software termed
PorePy adhering to this framework. Key to our approach is a
decomposition of the geometry into separate objects for rock
matrix, individual fractures, and fracture intersections.
Governing equations can then be defined separately on each
geometric object, as well as on the connection between the
objects. This allows for significant code reuse from the
discretization of fixed-dimensional problems; thus, our design
principles are also applicable to more general PDE software
frameworks, such as FEniCS [33], Dune [34], and FireDrake
[35]. Furthermore, for scalar and vector elliptic problems

244 Comput Geosci (2021) 25:243–265



(flow and deformation), the models rest on a solid mathemat-
ical formulation [36–38].

Built on the mixed-dimensional geometry, PorePy offers
several discretization schemes for mathematical models of
common processes, such as flow, transport, and mechanical
deformation. Multiphysics couplings are easily formulated,
and their discretization depends on the availability of appro-
priate discretization schemes. Moreover, the framework al-
lows for different geometric objects to have different primary
variables and governing equations. The software can be used
for linear and non-linear problems, with the latter treated by
automatic differentiation. PorePy offers automatic gridding of
fractured domains in 2d and 3d, relying on the third-party
software Gmsh [39] to construct the grid. PorePy is fully
open-source (see www.github.com/pmgbergen/porepy) and
is released under the GNU General Public License (GPL)
version 3.

The paper is structured as follows: In Section 2, we pres-
ent the principles whereupon we have built the mixed-
dimensional framework in PorePy. Section 3 presents
models for physical processes central to fractured porous
media: single-phase flow, heat transport, and poroelastic
rock deformation coupled with fracture deformation
modeled by contact mechanics. The implementation of
PorePy is presented in Section 4. In Section 5, we bench-
mark our approach and the PorePy library against well-
established test cases. In Section 6, we present two complex
applications to illustrate the potential of the framework with
respect to advanced physical processes, followed by con-
clusions in Section 7.

2 Design principles for mixed-dimensional
simulation tools

Developing a simulation model for a specific process in
mixed-dimensional media requires three main ingredients: A
representation of the mixed-dimensional geometry, governing
equations for dynamics within and between the geometric
objects (rock matrix, fractures, and fracture intersections),
and a strategy for discretization and assembly of the equations
on the geometry. This in turn leads to decisions on how much
of the mixed-dimensional geometry to represent, which type
of couplings between different geometric objects to permit,
and how to establish communication between the geometric
objects.

In this section, we discuss principles for modeling of
coupled processes between dimensions in a general context
of fractured rocks, together with representation of the ge-
ometry in a continuous and discrete setting. The general
discussion herein is supplemented by concrete examples
of modeling of the important processes presented in

Section 3, while discretizations and implementation are
discussed in Section 4.

2.1 Representation of a mixed-dimensional geometry

We consider the representation of a fracture network embed-
ded in a 3d domain. The dimension of the fractures is reduced
to 2. Similarly, fracture intersections are reduced to 1d objects
and intersections of intersection lines to 0d, producing a hier-
archy of objects of dimensions 0 to 3. For a fracture network in
a 2d domain, the natural simplification applies, i.e., fractures
will be objects of dimension 1 and intersections objects of
dimension 0. An important modeling choice is which parts
of the geometry to represent in the model. We emphasize that,
as our focus herein is DFM models with explicit fracture rep-
resentation, it is assumed that at least the dominating fractures
and the matrix will be explicitly represented in the simulation
model, and furthermore that the simulation grid will conform
to the fractures.

We distinguish between two approaches for the represen-
tation of the fracture geometry: The first explicitly represents
the full hierarchy of geometric objects (3d–0d). However, for
many processes, one can to a good approximation assume that
the main dynamics take place in the matrix or in the fractures,
while objects of co-dimension more than 1 (intersection lines
and points) mainly act as transition zones between fractures.
This observation motivates the second approach: The matrix
and fractures are represented explicitly, together with some
model for direct fracture-fracture interaction.

Representation only of matrix and fractures and not the
intersections in some sense constitutes the minimal modifica-
tion to an existing fixed-dimensional model and has been a
popular choice, e.g., for flow and transport problems [40]. The
strategy has also been taken a long way towards practical
applications, see for instance [41]. There are however draw-
backs, notably in the treatment of fracture intersections:
Without explicit access to the intersection objects, modeling
of interaction between two fractures can be challenging. As an
example, for flow, the model does not allow for specifying the
permeability of the intersection between two fractures.
Significantly, the difficulties tend to increase with increasing
complexity of the dynamics, such as countercurrent flow due
to gravity and capillary forces, and when transitioning from 2d
domains to 3d, i.e., the dimension of the intersections in-
creases from zero to one. This has important consequences
for model and method development, as issues related to ad
hoc treatment of intersection dynamics may not manifest until
relatively late in the development process. For these reasons,
we prefer the first approach, where all geometric objects are
treated (or “represented”) equally, independent of their
dimension.

To illustrate our geometry representation, consider Fig. 1a
showing three fractures that intersect pairwise along three
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lines, which in turn intersect in a point. The fracture network
thus defines a set of objects of dimensions {0, 1, 2}, while the
surrounding host medium (not shown) is 3d. We shall refer to
each object as a subdomain and denote a generic subdomain
by Ωi. Note that all subdomains of dimension less than 3 are
embedded in at least one subdomain of one dimension more,
for instance, all lines in the geometry lie on at least two frac-
ture surfaces.

Figure 1b shows the computational grid constructed for
each subdomain. The grid on each subdomain conforms to
any lower-dimensional subdomains embedded within it, illus-
trated by the faces in the 3d grid that match the circular

fracture. We will discuss grid construction in more detail in
Section 4.1.

To finalize the description of the geometry, we introduce
the notation for an interface between two subdomains. With
reference to Fig. 2, we denote by Ωh and Ωl two subdomains
one dimension apart so thatΩl is embedded inΩh, and let ∂jΩh

be the part of the boundary ofΩh that geometrically coincides
with Ωl. Furthermore, we introduce the interface Γj on the
boundary between ∂Ωh andΩl. From the dimension reduction,
it follows that Γj, Ωl, and ∂jΩh all coincide geometrically. For
completeness, we note that the mathematical framework [36]
onwhich our models are based considers the two sides ofΩl as

Fig. 1 Conceptual illustration of a fracture network, including grids and lower-dimensional representation. (a) Fracture network, the rockmatrix is not visualized. (b)
Grids of all subdomains. Fracture intersections (1d) are represented by colored lines, the 0d grid by a red circle. The 3d grid is cut to expose the circular fracture
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different interfaces, Γj and Γk. Throughout, we will let Γj

denote a generic interface and use the triplet (Γj, Ωh, Ωl) to
represent an interface and its higher- and lower-dimensional
neighbor.

2.2 Permissible coupling structures for mixed-
dimensional processes

For modeling purposes, it is important to establish which
types of couplings between variables on subdomains and in-
terfaces are permitted. In our framework, we impose the fol-
lowing constraints on the modeling of dynamic processes:

1. There is only coupling between subdomains that are ex-
actly one dimension apart.

2. Interaction between subdomains is formulated as a model
on the interface between the subdomains.

3. A model on an interface can depend on variables on the
interface and the immediate subdomain neighbors, but not
on variables associated with other subdomains or
interfaces.

These choices have two important consequences: First, our
framework explicitly rules out direct 3d-1d couplings.
Second, our model does not permit direct coupling between
objects of the same dimension, say, two fractures; the com-
municationmust go via a lower- or higher-dimensional object.
On the other hand, the imposed constraints make the structure
of the equations on a subdomain relatively simple, as the dy-
namics depend only on variables internal to the subdomain
and on neighboring interfaces.

In some cases, it can be of interest to also consider cou-
plings between subdomains of equal dimension, for in-
stance to implement domain decomposition solvers. This
can be realized by a secondary partitioning of the
subdomains. When such a strategy is applied, the above
constraints should be applied only on the interface between
subdomains of different dimensions. On interfaces between
subdomains of the same dimension, standard continuity
conditions can be applied.

3 Model problems

In this section, we use the modeling framework defined in
Section 2 to present three sets of governing equations, each
of which is of high relevance for fractured porous media: the
elliptic pressure equation, fully coupled flow and transport,
and fracture deformation coupled with poroelastic deforma-
tion of the host medium. Since most of the involved fixed-
dimensional processes are well established, our main purpose
is to apply the modeling framework described in Section 2 to
the mixed-dimensional setting.

We introduce the following notation for variables and
subdomains: Variables in a generic subdomain Ωi are marked
by the subscript i, while the subscript j identifies interface
variables on Γj. For a subdomain Ωi, the set of neighboring
interfaces is split into interfaces towards subdomains of higher

dimensions, denoted bSi, and interfaces towards subdomains of

lower dimensions, denoted by Ši (see Fig. 3).
Communication between an interface and its neighbor-

ing subdomains is handled by projection operators. In the
subsequent parts, we will apply four different classes of
projections. We indicate the mapping from an interface to
the related subdomains by Ξ, with a subscript indicating the
index of the interface and a superscript denoting the index of
the subdomain, as illustrated in Fig. 4.We also introduce the
projection operators from subdomains neighboring of an
interface to the interface itself, denoted by the symbol Π
with the same convention as before for sub- and super-
scripts. The actual definition of these objects is scope-
dependent and will be specified when needed. The construc-
tion of the projection needs to consider the nature of the
variable to project, being of intensive or extensive kind, that
is, whether the projections should average or sum the vari-
ables, respectively.

3.1 Flow in fractured media

We first consider incompressible flow in mixed-dimensional
geometries, where we assume a Darcy-type relation between

Fig. 2 Mixed-dimensional
geometric objects. A higher-
dimensional subdomain Ωh is
connected to a lower-dimensional
subdomain Ωl through the
interface Γj. The part of the
boundary of Ωh geometrically
coinciding with Ωl is denoted by
∂jΩh. The interface Γk on the
lower side of Ωl is not shown
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the flux and the pressure gradient in all subdomains. The
model has been presented several times before, see, e.g., [2,
42, 43].

First, consider a domain with a single interface Γj with
neighboring subdomainsΩh andΩl. In addition to the pressure
pi and flux qi in each subdomain, we denote the flux on Γj by

λj and formally write λ j ¼ Πh
j tr qh � nh, with nh the unit nor-

mal on ∂jΩh pointing from Ωh to Ωl, and tr a suitable trace
operator mapping from Ωh to ∂jΩh, referring to Fig. 4. The
strong form of the Darcy problem for Ωl reads: find (ql, pl)
such that

ql þ
Kl

μl
∇pl ¼ 0;

∇ � ql − Ξl
jλ j ¼ f l

; ð3:1Þ

where the differential operators are defined on the tangent

space of Ωl and Ξl
j maps from Γj to Ωl. We have indicated

with fl a source or sink term, μl is the fluid viscosity, while
Kl represents the effective tangential permeability tensor
scaled by the aperture as described in [42]. An analogous

problem is written for (qh, ph), with the exception that Ξh
jλ j

is mapped to a boundary condition on ∂jΩh,

qh � nh ❘ ∂ jΩh ¼ Ξh
jλ j: ð3:2Þ

The flux λj is given by an interface condition on Γj, which
reads

λ j þ �j

μ j
Πl

jpl −Πh
j tr ph

� �
¼ 0: ð3:3Þ

Here, κj indicates the normal effective permeability.
Equation (3.3) can be seen as a Darcy law in the normal
direction of Γj. Different types of boundary conditions can
be imposed on the external boundary of Ωh and Ωl.
Moreover, we impose null flux if Ωl has an immersed tip
boundary.

The extension to problems with many subdomains is
now immediate: The flux on an interface is still formulated
in terms of variables on its two neighboring subdomains,
while for a subdomain Ωi summation over all neighboring
interfaces gives the problem: Find (qi, pi) so that

qi þ
Ki

μi
∇pi ¼ 0;

∇ � qi − ∑ j∈SΞ
i
jλ j ¼ f i;

qi � ni ❘ ∂ jΩi
¼ Ξi

jλ j ∀ j∈Ši

ð3:4Þ

Fig. 3 Intersecting fractures, interfaces, and types of boundary
conditions. The 2d domain contains three fractures (1d lines) that
intersect in two intersection points (dots). The fractures have three types
of boundaries: internal (green squares), immersed tips (purple squares),
and endings at the external boundary (red squares). A close-up of the

black fracture Ωi shows the interfaces associated with its higher-
dimensional (blue lines) and lower-dimensional (green squares)
neighboring subdomains. The sets of such interfaces are denoted

respectively by bSi and Ši

Fig. 4 Representation of a generic coupling between two subdomains.
An interface Γj is coupled to a higher-dimensional subdomain Ωh and a
lower-dimensional subdomain Ωl. The projection operators are denoted
by Ξ (interface to subdomains) and Π (subdomains to interface) with
subscripts indicating the interface and superscripts indicating the
subdomain. The trace operator tr maps quantities from Ωh to its
boundary ∂jΩh
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In the case of d = 0, most of the above terms are void, and
we are left with the balance between the source term and
fluxes from higher dimensions, while for the case d = 3, the
term involving interface fluxes from higher dimensions is
void.

3.2 Fully coupled flow and transport

We next turn to modeling of fully coupled flow and transport,
as an example of a multiphysics problem with variable cou-
pling within and between subdomains. We consider a single-
phase flow of an incompressible fluid with two components
that mix ideally. We denote by ci the mass fraction of a com-
ponent associated with Ωi; the closure relation for the mass
fractions implies that we can calculate the other value by 1 −
ci. The governing equation of the fluid is given by Darcy’s law
and the fluid mass conservation as in Eq. (3.4). However, we
let the viscosity of the fluid depend on the mass fraction,

μi ¼ μi cið Þ: ð3:5Þ

The conservation equations for the components can be for-
mulated as

ϕi
∂ci
∂t

þ ∇ � ciqi − Di∇cið Þ − ∑ j∈SiΞ
i
j η j þ β j

� �
¼ gi: ð3:6Þ

Here, ϕi represents the effective porosity, Di is the effective
diffusivity, and gi denotes sources and sinks. A sum of
advective, ηj, and diffusive, βj, fluxes from the higher-
dimensional domains is included in the conservation equation.
As for the flow problem, flow over lower-dimensional inter-

faces Γ j; j∈Ši, enters as Neumann boundary conditions. We
note that the governing equations are coupled via the mass
fraction dependency of viscosity and the presence of the
Darcy flux in the advective transport.

Let us now consider the interaction between two neighbor-
ing subdomains Ωh and Ωl via the common interface Γj. The
flow over Γj, denoted by λj, is given by Eq. (3.3), where the
interface viscosity μj is modeled as a function of the mean of
the mass fractions on the two sides,

μ j ¼ μ j

Πl
jcl þ Πh

j tr ch
2

 !
: ð3:7Þ

The component flux over Γj is again governed by an
advection-diffusion relation: The diffusion term βj is, in anal-
ogy with the corresponding term for the Darcy flux, given by

β j þ δ j Πl
jcl −Πh

j tr ch
� �

¼ 0; ð3:8Þ

with δj representing the effective diffusivity over the interface
Γj. For the advective term ηj, we introduce an upstream-like
operator based on the Darcy interface flux:

Up ch; cl;λ j
� � ¼ Πh

j tr ch; if λ j≥0
Πl

jcl; if λ j < 0:

(
ð3:9Þ

With this, the advective interface flux ηj is given by the rela-
tion

η j − λ jUp ch; cl;λ j
� � ¼ 0: ð3:10Þ

Finally, global boundary conditions are imposed in the
standard way for elliptic and advection-diffusion problems,
see, e.g., [44]. Equations (3.5)–(3.10) define the governing
equations in all subdomains and on all interfaces, with the
exception of 0d domains, where the diffusion operator again
is void.

3.3 Poroelastic fracture deformation by contact
mechanics

Our final set of model equations considers poroelastic defor-
mation of a fractured medium, where the fractures may open
or, if the frictional forces are insufficient to withstand tangen-
tial forces on the fracture surface, undergo slip. This process is
important in applications such as geothermal energy extrac-
tion and CO2 storage. Modeling of the process is non-trivial
due to (i) the coupled poroelastic processes, (ii) the heteroge-
neous governing equations between subdomains, (iii) the need
to use non-standard constitutive laws to relate primary vari-
ables during sliding, and (iv) the non-smooth behavior of the
constitutive laws in the transition between sticking and sliding
and between open and closed fractures. Modeling of this pro-
cess is an active research field, see, e.g., [45–47], and thus
represents an example where the availability of a flexible
prototyping framework is highly useful. Due to the complex-
ity in deformation of intersecting fractures, we limit our expo-
sition to media with non-intersecting fractures.

Flow and deformation in the rock matrix, represented by
the subdomain Ωh, are governed by Biot’s equations for
poroelasticity [48].

∇ � Ch∇suh − αhphIð Þ ¼ bh;

αh
∂ ∇ � uhð Þ

∂t
þ θh

∂ph
∂t

− ∇ � Kh

μh
∇ph

� �
¼ f h

ð3:11Þ

Here, the first equation represents conservation of momentum,
with the acceleration term neglected, while the second equa-
tion expresses conservation of mass. The primary variables
are the displacement, uh, and the fluid pressure, ph. The stiff-
ness matrix Ch can for linear isotropic media be expressed
purely in terms of the first and second Lamé parameters, and
the elastic stress can be computed as

σh ¼ Ch∇suh;
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where ∇s is the symmetric gradient. Furthermore, αh is the
Biot constant, I the second-order identity tensor, bh denotes
body forces, and θh the effective storage term.We also assume
boundary conditions are given on the global boundary.

Next, to model relative motion of the fracture walls, it is
necessary to consider both interfaces between Ωh and Ωl. In a
slight abuse of notation, we will let uj denote the displacement
variable on both interfaces. We emphasize that uj is a vector in
ℝn, that is, it represents the displacement in both the tangential
and normal direction of Ωl. We will require continuity be-

tween uh and uj, expressed as Πh
j tr uh ¼ uj, where we recall

that the trace operator maps to ∂jΩh. We also introduce the
jump in displacement,〚uj〛, between the two interfaces on
opposing sides of Ωl (see Fig. 5). The jump is decomposed
into the tangential jump〚uj〛τ and the normal jump〚uj〛n:

The mechanical state in Ωl is described by the contact trac-
tion σl, which also is a vector in ℝ

n, with normal and tangen-
tial components σl,n and σl,τ, respectively. Our model also
includes fluid flow in the fracture Ωl, which is governed by
conservation of mass

∂
∂t

a〚uj〛
� �� �þ θl

∂pl
∂t

− ∇ � Kl

μl
∇pl

� �
− Ξl

jλ j ¼ f l: ð3:12Þ

Here, the time derivative of the aperture a(〚uj〛) = a0 −〚uj〛n
represents changes in the available volume due to changes in
the displacement jump, with a0 denoting the residual hydrau-
lic aperture. The negative sign on the normal jump is related to
the sign convention in (3.14) below. As in the previous sec-
tions, the relation between the fluid pressures in Ωh and Ωl is
governed by a flux law of the type (3.3).

The relation between σl and〚uj〛is modeled by borrowing
techniques from contact mechanics as summarized here (for a
full discussion, see [49]). Balance of tractions between the

poroelastic stress in Ωh and the contact traction in Ωl is for
the two sides expressed as

Πh
j1
nh � σh − αhphIð Þ¼ Πl

j1
σl − Πh

j1
nh

� �
� IΠl

j1
αlpl

� �
Πh

j2
nh � σh − αhphIð Þ¼ − Πl

j2
σl − Πh

j2
nh

� �
� IΠl

j2
αlpl

� �
ð3:13Þ

The contact traction is zero whenever the normal displace-
ment jump is nonzero, that is

〚uj〛n≤0; σl;n≤0; 〚uj〛nσl;n ¼ 0: ð3:14Þ

For closed fractures, the motion in the tangential direction
is controlled by the ratio between the tangential traction σl,τ
and the maximum available frictional traction Fσl,n, where F
is the friction coefficient. The time derivative of the displace-
ment jump is zero until the frictional traction is overcome; for
larger tangential tractions, the time derivative of the displace-
ment jump and tangential traction are parallel:

‖σl;τ‖ ≤ −Fσl;n;

‖σl;τ‖ < −Fσl;n→〚uj〛τ ¼ 0;

‖σl;τ‖ ¼ −Fσl;n→∃γ∈ℝ;σl;τ¼ − γ2〚uj〛τ :

ð3:15Þ

Here ‖ · ‖ represents the Euclidean norm, and〚uj〛τ the sliding
velocity. We emphasize that the tangential contact conditions
are formulated in terms of the contact traction σl, with no
contribution from the fluid pressure pl.

4 Implementation

This section describes the implementation of the mixed-
dimensional simulation framework outlined above in the
open-source simulator PorePy. Our emphasis is on three
topics that are particular to this type of DFM simulation
models: Gridding, discretization of subdomain couplings,
and how to deal with parameters, variables, and linear systems
for multiphysics problems that are defined on an arbitrary
number of subdomains and dimensions. The ability to treat
these components with relatively simple input is the main
distinguishing feature of PorePy, and thus, the section gives
an overview of the important properties of the implemented
simulator.

Figure 6 displays the main components of PorePy, with
emphasis on the mixed-dimensional aspects of the code. The
implementation follows the principles of locality of variables
and equations described in the previous sections. Specifically,
equations and discretizations are assigned on individual
subdomains, and the implementation of specific discretization
schemes closely resembles that applied to fixed-dimensional
problems. Similarly, the stencil of interface couplings is

Fig. 5 Illustration of a lower-dimensional domain, Ωl, that has two
interfaces, Γ j1 and Γ j2 , with a higher-dimensional domain, Ωh
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limited to the interface and the immediate neighboring
subdomains. The connection between the subdomains is han-
dled in a top-down manner and implemented in two core
classes: The GridBucket class keeps track of the relation be-
tween neighboring subdomains and interfaces, and it also acts
as a facility for storage of parameters and variables. The
Assembler class can be considered a global degree of freedom
manager which also has methods for global discretization and
assembly. These core mixed-dimensional components are
supplemented by functionality for grid construction, assisted
by Gmsh, while visualization and linear solvers must be han-
dled by external packages.

A typical workflow for a mixed-dimensional simulation will
consist of the following steps:

1. Specify the problem geometry. Use this to create a
GridBucket object, that is, a mixed-dimensional grid.

2. On the individual subdomains and interfaces in the
GridBucket, specify variables, parameters, and discretizations
(thus implicitly define governing equations).

3. Create an Assembler object, use this for initial discretization
and assembly of linear system.

4. Solve the mixed-dimensional problem.

Depending on the problem characteristics, the last point
can entail non-linear iterations, time stepping, etc.

The rest of this section presents design choices and con-
crete implementation details of the individual steps. As an
illustration of the usage of the resulting simulation framework,
Fig. 7 provides an example PorePy code for the setup,
discretization, and solution of the mixed-dimensional com-
pressible flow problem. We emphasize that to change the
problem geometry, e.g., the fracture network, it is sufficient

to change the pink section, while governing equations, param-
eters, and/or discretization schemes are altered by modifica-
tions to the green section. Several examples of the latter are
given in Section 5.

4.1 Mixed-dimensional geometry and gridding

Grid construction is one of the main technical bottlenecks for
the application of conforming DFM models. The translation of
a geometric description of the fracture network into a compu-
tational grid consists of three steps: Identification of intersection
lines and points, construction of the mixed-dimensional grid,
and post-processing of the grid into a format that is suited for
the discretization approaches described in Section 4.2. The first
and third of these tasks are technically challenging, and one of
the strengths of PorePy is that it provides a robust implementa-
tion with a simple interface. The second item, grid construction,
is a highly advanced research topic in its own; in PorePy, this is
handled by a Gmsh backend.

4.1.1 Geometry processing

In PorePy, fractures are described as lines (for 2d domains) or
convex planar polygons (in 3d). Curved objects are not sup-
ported, as this would significantly complicate the task of iden-
tifying intersections; however, piecewise linear approxima-
tions are possible. The fractures are specified by their end-
points (in 2d) or vertexes (in 3d). Individual fractures are
collected into FractureNetwork2d and FractureNetwork3d
classes.

Before passing the fracture network to a gridding software,
all fracture intersections must be found. In principle, the com-
putation of fracture intersections is straightforward, following

Fig. 6 Outline of the architecture of PorePy: The main mixed-
dimensional components are the GridBucket class, which is a
combined grid and data manager, and the Assembler class, which
acts as a degree of freedom manager. Variables, parameters, and

discretizations are local to subdomains and interfaces. Geometry
specification and grid construction is handled in part by
communication with Gmsh, while visualization is available through
export to Paraview. Green boxes represent external dependencies
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for instance [50]. However, to reduce the complexity of the
grid construction and limit the number of cells in the resulting
grid, it can be useful to alter the geometry to avoid small
details, such as almost intersecting fractures. PorePy automat-
ically merges objects that are closer than a user-specified tol-
erance, and also cuts dangling fracture ends. While such

modifications can alter the connectivity of the network, we
have found that it is a critical ingredient for dealing with frac-
ture networks that originate from sources that have not re-
moved such small details, for instance networks exported
from geological processing software or stochastic fracture net-
work generators.

Fig. 7 Setup of a full PorePy simulation, illustrated by a mixed-dimensional compressible flow problem solved with a single time step. The background
colors indicate different simulation stages, which are discussed in detail in the indicated subsections
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4.1.2 Gridding

The computational grid should conform to all fractures, and
by extension also to their intersection lines and points. This is
a difficult problem; however, algorithms [51–53] and high-
quality implementations [54, 55] are available. PorePy relies
on Gmsh [39] for the grid construction, as this allows for a
unified approach in both 2d and 3d domains. While Gmsh
allows for a nuanced specification of grid sizes, only a limited
set of this functionality is exposed in the PorePy interface: A
grid size can be set for the fracture network and the far field;
more advanced settings can be accessed by direct manipula-
tions in Gmsh. Still, the specified geometry implicitly sets
conditions on the grid size; if the fracture network contains
fractures that are close relative to the specified grid size, Gmsh
will attempt to construct a grid with reasonable quality, and
thereby override the user preferences if necessary.

4.1.3 Construction of grids, mortar grids, and projection
operators

The grids provided by Gmsh must be post-processed to be of
use for our mixed-dimensional simulations. First, grids for
individual subdomains must be extracted. Second, mortar
grids must be constructed on the interface between subdomain
grids, together with projection operators between the grids.
Third, the resulting sets of grids must be arranged in the
mixed-dimensional GridBucket.

Subdomains of different dimensions can be identified from
Gmsh tags that for each cell identify the geometric object to
which the cell belongs (matrix, fracture, or intersection).
However, to avoid direct connection between cells that lie
on different sides of lower-dimensional objects, faces must
be split, and nodes duplicated before the grids are arranged
in the GridBucket. This process is illustrated in Fig. 8, which
also shows the resulting lower-dimensional grids. Note that
while all (d–1)-dimensional faces are split in two, the number
of duplicates of a node depends on whether it is located on an
intersection, a fracture tip or a global boundary, or in the inte-
rior of the subdomain. After this modification, the cells that

belong to the same geometric objects are collected into
subdomain grids. These are implemented as standard fixed-
dimensional grids, so that when a discretization scheme is
applied to a subdomain, this is indistinguishable from the tra-
ditional fixed-dimensional operation. In this spirit, the grid
structure used for individual grids is agnostic to spatial dimen-
sion, with an implementation heavily inspired by that of
MRST [32].

The mortar grids constructed under post-processing of the
Gmsh output are associated with the interfaces. They match
with the lower-dimensional grid, and thereby also with the
split faces of the higher-dimensional grid. The mortar grids
also have methods for the construction of projection matrices
between themselves and the lower- and higher-dimensional
neighboring subdomains, with separate methods for the map-
ping of extensive and intensive quantities. Only the lowest
order projection operators are available in PorePy, which for
matching grids simply identify the split faces of Ωh with cells
in Γj, and cells in Γj with cells in Ωi. However, non-matching
grids can be introduced by replacing individual subdomain
and mortar grids. Specifically, computational speedups can
often be achieved by combining fine grids in fractures, which
are often the main venue for dynamical processes, with rela-
tively coarse grids in the matrix. During the replacement, the
projection operators are automatically updated to account for
the resulting non-matching grids.

The individual subdomains and mortar grids are collected
in theGridBucket class. This is implemented as a graph, where
each subdomain grid Ωi defines a node, while the interface Γj
is represented as an edge in the graph, and is identified by the
pairing of its neighboring subdomains (Ωh,Ωl). In addition to
keeping track of geometric information, the GridBucket also
provides flexible data storage in the form of dictionaries on
subdomains and interfaces. These are used for parameters,
discretizations, simulation results, and other data if relevant.

4.2 Primary variables, parameters, and discretization

To define a problem to be discretized in PorePy, one must
define primary variables, governing equations, and problem

Fig. 8 The process of splitting the
faces and nodes of the grid. The
faces and nodes of the 2d grid that
coincide with the 1d grids (gray
lines) are split and define an
internal boundary of the grid.
Similarly, the faces and nodes of
the 1d grids that coincide with the
0d grid (black dot) are split. Note
that the split nodes and faces
coincide geometrically but have
been shifted in the right figure for
illustrative purposes
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parameters. PorePy is designed to allow for maximum flexi-
bility in these specifications. Variables and parameters are
defined on individual subdomains and interfaces. Governing
equations are specified in terms of their discretizations: Each
variable can be assigned one or several discretizations corre-
sponding to different terms in the equation. As with the vari-
able specification, discretizations are specified locally on
subdomains and interfaces, thus heterogeneous governing
equations or discretization schemes can readily be assigned.
It is up to the user to ensure that the specified combination of
variables, equations, and discretizations is mathematically
well posed on the given mixed-dimensional grid.

In terms of implementation, the data structures for param-
eters and solution vectors are stored locally to each subdomain
and interface. Specifically, variables are represented as numpy
arrays and parameters as a combination of numpy arrays and
dedicated classes.

4.2.1 Discretization classes

For the implementation of discretizations, it is useful to differ
between the schemes themselves, their implementation, and
the application of a discretization object to a specific grid and
parameter set, which produces a discretization matrix. All
discretization schemes are implemented as classes which are
designed to act on individual subdomains or interfaces. In
most cases, there is a one-to-one correspondence between
terms in the governing equations and discretization. As an
example, the compressible flow equation on a subdomain will
be specified by assigning discretizations of the accumulation
and diffusion term to a pressure variable, as is shown in Fig. 7.

A compatible discretization class should implement a
method for discretization, which computes coefficients that
will enter into a discretization matrix. Furthermore, the class
needs a method for assembly of matrix and right-hand side.
The act of discretization and assembly should together pro-
duce a local discretization matrix, usually in the form of a
sparse matrix represented using the SciPy library and a right-
hand side represented as a numpy array.

There are important differences between discretization clas-
ses for subdomains and interfaces: Subdomain discretizations
have access only to the subdomain grid and its associated data
and assemble a matrix local to the subdomain. An interface
discretization is responsible for coupling variables on the neigh-
boring subdomains, and it therefore has access to the relevant
subdomain discretizations and data in addition to information
local to the interface. Thus, an interface discretization may put
additional requirements on a subdomain discretization, see
Section 4.2.2 for an example. The assembly method in the inter-
face discretization should treat both the interface equation and
the discrete couplings of the interface law to the neighboring
subdomains.

In PorePy, subdomain discretization schemes are available
for diffusion, advection, and mechanical deformation, as well
as mass matrices for accumulation terms. Specifically, diffusion
processes can be discretized by the lowest order Raviart-Thomas
mixed finite elements combined with a piecewise constant pres-
sure approximation (RT0-P0) [56], the lowest order mixed vir-
tual element method (MVEM) combined with a piecewise con-
stant pressure approximation [57, 58], and by two finite volume
schemes: the two- and multipoint flux approximations (TPFA
andMPFA, respectively). Advection terms can be discretized by
a first-order upstream scheme. Mechanical deformation is
discretized by the multipoint stress approximation (MPSA)
[59, 60], also extended to poroelasticity [61] and thermo-
poroelasticity [62].

On interfaces, discretization schemes in PorePy cover the
interface diffusion law (3.3), and an upstream scheme for the
advection term (3.9). The discretization of the contact me-
chanics (Eqs. (3.14) and (3.15)) is implemented by a semi-
smooth Newton method to deal with the discontinuities in the
solution, for details we refer to [49, 63]. The available
discretizations on subdomains and interfaces can also be used
as building blocks for more complex problems; for instance,
the simulations of thermo-poroelasticity with fracture defor-
mation reported in [64] utilized several of the discretization
schemes mentioned above.

In the following, we present the implementation of two ex-
amples of combined subdomain and interface discretizations,
allowing us to discuss different aspects in the design and imple-
mentation of mixed-dimensional problems.

4.2.2 Subdomain coupling for discretization
of mixed-dimensional flow

3.1, focusing on the division of responsibilities between
subdomain and interface discretizations. The discretization
of the interface law (3.3) is implemented in the class
RobinInterfaceLaw, which in itself is simple, but has an in-
structive approach to communication with the adjacent
subdomain discretizations. From the model in Section 3.1,
we see that for a discretization on a generic subdomain Ωi to
interact with the interface problem, we need to provide oper-
ators which:

1) Handle Neumann boundary data on the form Ξi
jλ j for all

interfaces Γj for which Ωi is the higher-dimensional
neighbor.

2) Handle source terms Ξi
jλ j from interfaces Γj for whichΩi

is the lower-dimensional neighbor.
3) Provide a discrete operator tr pi to be combinedwithΠi

j to

project the pressure to interfaces Γ j; j∈Ši.
4) Provide a pressure pi that can be projected to interfaces Γ j;

j∈bSi using Πi
j.
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RobinInterfaceLaw assumes that the subdomain discretization
has dedicated methods, with specified names, that handle each of
these four operations. Thus, any discretization class aimed at indi-
vidual subdomains can be made compatible withRobinInterfaceLaw,
and thus applicable to mixed-dimensional problems, provided the
four required methods are implemented. Moreover, all of these are
readily available in any reasonable implementation of a discretization
scheme for elliptic equations. Examples of howRobinInterfaceLaw is
set up to interact with subdomain discretizations can be found in
Figs. 7 and 10.

It is instructive towrite out the structure of the coupled system for
our case with two subdomainsΩh andΩl separated by an interface
Γj. Denote by yh, yl, and ξj the vectors of discrete unknowns inΩh,
Ωl, and on Γj, respectively. As we make no assumptions that the
same discretization scheme is applied in both subdomains, these
may contain different sets of unknowns. The discrete system can
then be represented on the generic form

Ah 0 NhΞ
h
j

0 Al SlΞl
j

−Πh
jPh Πl

jPl M j

0B@
1CA yh

yl
ξ j

0@ 1A¼
f h
f l
0

0@ 1A: ð4:1Þ

Here, Ah and Al are the fixed-dimensional discretizations on the
subdomains and fh and fl the corresponding source and sink terms.
Nh is the discretization ofNeumannboundary conditions onΩh, and
Sl is the discretization of source terms in Ωl. Furthermore, Ph pro-
vides a discrete representation of the pressure trace operator on Ωh

and Pl gives the pressure unknowns in Ωl; the latter is an identity
operator for the integral formulations presented on primal form and
strips away flux unknowns in the dual formulation. Finally, Mj

represents the normal permeability term in (3.3) and is discretized
directly byRobinCoupling. In accordancewith the second constraint
on mixed-dimensional modeling discussed in Section 2.2, there is
no direct coupling betweenΩh andΩl as seen from the 0 entries in
the matrix.

The PorePy implementation of the above method repre-
sents the mortar variable by piecewise constant functions.
Our implementation for the coupled mixed-dimensional prob-
lem relies on the analysis carried out in [39], which provides a
theoretical background to obtain a stable global scheme with
full flexibility in choosing heterogeneous discretization
schemes between the subdomains. We also note that the inter-
face discretization for many other classes of equations, such as
the advection-diffusion problem presented in Section 3.2, fol-
lows a similar approach.

4.2.3 Subdomain couplings for contact mechanics
in poroelastic media

As a second example of the matrix structure produced by a
subdomain and interface coupling, we consider the model for
fracture deformation introduced in Section 3.3. This can be
considered a complex model, in that the traction balance on

the interface involves multiple variables on Ωh, Ωl, and Γj.
Specifically, the equations for the momentum balance present-
ed in Section 3.3 can be represented in matrix form as

Ah Bh DhΞ
h
j

0 0 UlΞ
l
j

Πh
jTh Πh

jGh Πh
jShΞ

h
j

0 0
0 Tl

−Πl
jGl �Πl

j

0B@
1CA

uh
ph
u j

pl
σl

0BBB@
1CCCA¼

bh
r
0

0@ 1A: ð4:2Þ

Here, the first row represents the momentum balance with the
contribution of the mortar displacement variables on the momen-
tum balance in Ωh. In practice, this takes the form of a Dirichlet
boundary condition discretized as Dh, while Ah, Bh, and bh rep-
resent discretization of poroelasticity in Ωh. In the second row,
thematricesUl and Tl represent the linearized fracture conditions,
i.e., the relation between uj and σl stated in Eqs. (3.14) and (3.15),
with contributions from the previous Newton iteration and time
step entering in r= r(uj, σl). The third row represents Newton’s
third law over the interfaces, and thus is a discretization of Eq.
(3.13). The first three terms provide the traction on the two frac-
ture walls reconstructed from the variables on ∂jΩh andΓj, where
Sh represents amapping from theDirichlet boundary condition to
tractions. The two last terms relate these tractions to the variables
in Ωl, where Gl represents nhαl, while the ± in the last term
accounts for the fracture side. We emphasize that neither the
inter-dimensional contributions to mass conservation nor the
coupling for mass conservation is included in (4.2); this is han-
dled by the corresponding internal subdomain discretizations and
additional coupling discretizations in the form discussed in
Section 4.2.2.

In terms of implementation, the interface equations in (4.2) are
in fact split into three different classes: One which handles the
interaction between uh, uj, and σl and two that represent the fluid
traction on Γj from ph and pl, respectively. The most interesting of
these classes is the first, termed PrimalContactCoupling, which is
used for purely mechanical problems; the discretization of the
contact problem that produces the matrices Ul and Tl for the cur-
rent state of〚uj〛and σl is outsourced to a separate class

ColoumbContact. An illustration of how PrimalContactCoupling

is set up to interact with the surrounding variables and
discretizations is given in the context of Sneddon’s problem of
fracture deformation (see Fig. 16 in Section 5.3).

4.3 Global assembly of mixed-dimensional
multiphysics problems

As discussed in Section 4.2, PorePy requires only specification of
variables and discretizations locally on subdomains and interfaces.
The global organization is left to the Assembler class, which has
the following responsibilities: First, to assign a global numbering
of the degrees of freedom of all local variables. Second, to apply
all assigned discretization schemes. Third, to assemble the sparse
global linear system. The user interface to theAssembler is simple;
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numbering of degrees of freedom is handled in the object initial-
ization, while the class has dedicated methods for discretization
and assembly. The underlying implementation of thesemethods is
elaborate and involves nested loops over theGridBucket. For glob-
al discretization, all local discretization objects are identified, and
their respective discretization methods invoked. In the assembly
operation, the local discretization matrices are placed in the global
linear system according to the degree of freedom of the associated
local variable(s).

It is instructive to consider the structure of the global linear
system in the setting of a multiphysics problem with more
than one primary variable. It has a double block structure, with
one set of blocks stemming from the geometric division into
subdomains and interfaces. Within each subdomain and inter-
face, there is a second set of blocks, with one block per vari-
able or variable pair (for off-diagonal blocks). This informa-
tion, which is useful for design of tailored preconditioners and
linear solvers as well as post-processing and visualization, can
be accessed through the Assembler. We emphasize that the
implementation of the Assembler is general in the sense that
it can be applied to new discretizations and governing equa-
tions without modification.

The bottom-up approach to the assembly of variables and
discretizations to some degree favors flexibility over compu-
tational speed. The overhead in construction and manipulation
of matrices, independent of matrix size and separate from the
cost of discretization, is minor but can become notable when
repeated many times, e.g., in time-dependent and non-linear
problems. For problems with many subdomains, the cost in
using local assembly can become prohibitively high.
Specifically, the cost has been pronounced in simulations of
non-linearly coupled flow and transport, as reported in [65]
and also in Section 6.1. As a remedy, which is also compatible
with the automatic differentiation (AD) module in PorePy, the
Assembler also provides methods to construct global discrete
operators.

4.4 Solvers and visualization

PorePy has no native support for linear solvers, but instead
relies on external libraries for solving linear systems. The struc-
ture of the linear systems obtained for mixed-dimensional is
non-standard compared with that of similar fixed-dimensional
problems. Thus, if the linear system is to be solved by iterative
methods, traditional preconditioners cannot be expected to per-
form well, and specialized methods may be preferable.
Preconditioners for mixed-dimensional problems are an imma-
ture research field, see however [66, 67] for examples on how
PorePy can be combined with dedicated solvers for mixed-
dimensional problems.

Finally, visualization is handled by an export filter to the
vtk/vtu format, which can be read for instance by Paraview

[68]. To aid analysis of simulation results, the export preserves
the link between the data and its associated dimensions.

5 Validation

In this section, we validate our modeling framework and its
implementation in PorePy by probing discretization schemes,
multiphysics problems, and time-dependent problems through
three test cases: a benchmark for flow problems in 2d frac-
tured media, Mandel’s problem for poroelasticity, and
Sneddon’s problem for fracture deformation in elastic media.
The cases thus supplement previous testing of PorePy, report-
ed in [38, 69–71]. The supplementary material provides de-
tailed setups, including parameters, for all simulations in
Sections 5 and 6. Scripts that reproduce all results reported
herein can be accessed at [72], see that reference or the sup-
plementary material for installation instructions.

5.1 Flow in 2d fractured porous media

To validate the mixed-dimensional flow discretization, we
consider Benchmark 3 of [73], which describes the incom-
pressible single-phase flow problem in a fractured domain
presented in Section 3.1. The fracture network contains
intersecting and isolated fractures (see Fig. 9). The network
contains both highly conductive and blocking fractures, see
the supplementary material for parameter details.

The aim of this case is twofold — we benchmark our code
against well-established methods in the literature and illustrate
PorePy’s flexibility in assigning heterogeneous subdomain
discretizations. We consider four groups of discretization
schemes and simulation grids: first, three homogeneous (the
same for all the subdomains) discretizations: TPFA, MPFA,
and RT0-P0. Second, a case with the MVEM, where the cells
of the rock matrix are constructed by a clustering procedure
starting from a more refined simplicial grid, see [70] for details.
Third, two heterogeneous discretizations where RT0-P0 and
MVEM for the rock matrix are combined with TPFA for the
fractures. Fourth, a case where the fracture grid is twice as fine
as the matrix grid, with the mortar grids non-conforming to the
surrounding grids (labeled Non-Matching) discretized using the
RT0-P0 scheme. We use simplex grids in all cases that do not
involve MVEM. A code snippet that highlights the assignment
of heterogeneous discretizations is given in Fig. 10.

Figure 9 shows the domain with fractures, boundary con-
ditions, and a representative numerical solution. The figure
also depicts a plot of the pressure along the line (0, 0.5) − (1,
0.9). We observe good agreement between the solutions ob-
tained in PorePy and the reference solution of [73], which is a
solution of the equi-dimensional problem computed on a very
fine grid. We also perform a refinement study using a se-
quence of three grids to compute the error relative to the
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reference solution, as done in the original benchmark.
Figure 11 shows the decay of the normalized L2 error for the
rock matrix and the union of the fracture subdomains. In the
former, we notice a first order of convergence for all the con-
sidered methods. The convergence rate for the fracture
subdomains is sublinear, as was also observed in the original
benchmark.

5.2 Mandel’s problem in poroelasticity

The next test case considers a poroelastic material, with a setup
defined by Mandel’s problem [74, 75], for which an analytical
solution is available. While the problem geometry does not in-
clude lower-dimensional objects, the case tests the implementation
of the poroelastic code and shows the framework’s flexibility to

Fig. 10 Code snippet of the discretization assignment for the combination of RT0-P0 and TPFA. The code can be used as a partial replacement of the
green section in Fig. 7. Note that the parameter definition is not included in the snippet

Fig. 9 Left: A solution obtained withMPFA on the coarsest grid showing
the fracture network and the problem setup. The red lines represent
conductive fractures whereas the blue lines are blocking fractures. The

yellow line indicates the line of the pressure profile. Right: Pressure
profiles for the discretization schemes used in the validation
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deal with coupled problems and time-dependent mixed boundary
conditions. The original problem consists of an isotropic
poroelastic slab of width 2a and height 2b sandwiched by two
rigid plates (Fig. 12). Initially, two compressive constant loads of
intensity 2F are applied to the slab at y= ± b. At x= ± a, fluid is
free to drain, and edges are stress free. Gravity contributions are
neglected.

The problem is modeled using the quasi-static Biot equations,
as presented in Section 3.3. Exploiting the symmetry of the prob-
lem, we focus on the positive quarter domain Ω′, rather than the
full domain Ω, see Fig. 12 for an illustration and for boundary
conditions. Note that the vertical displacement at the top of the
domain is time-dependent and given by the exact solution, see
[76].

The simulation parameters were taken from [77], see also the
supplementary material for details. The coupled problem is
discretized in space using MPSA and MPFA for the mechanics
and flow, respectively. For the time discretization, we use implicit
Euler. The computational grid is unstructured and composed of
622 triangular elements. The results are shown in Fig. 13 in terms

of dimensionless quantities and are in good agreement with [77]
for both pressure and displacement.

In Fig. 14, we show a code snippet illustrating the assembly of
a generic poroelastic problem using MPSA/MPFA in PorePy.
One primary variable for each subproblem must be specified,
namely displacement for the mechanics (variable 0) and pressure
for the flow (variable 1). There are five terms (plus one stabiliza-
tion term) involved in the discretization of the Biot equations. We
label them with subscripts kl identifying the impact on variable k
from variable l. The numbering also corresponds to the placement
in the 2 × 2 block discretization matrix, with the first row
representing the momentum balance and the second row the mass
balance.

The Mpsa class is used to obtain the divergence of the stress
(term_00), which corresponds to the first diagonal block. For the
second diagonal block, term_11_0 and term_11_1 refer to the
discretization of the fluid accumulation and fluid flux (after apply-
ing implicit Euler) obtained using the classes ImplicitMassMatrix
and ImplicitMpfa, respectively. In addition, term_11_2 is a stabili-
zation term arising naturally from the discretization process [61].

Fig. 12 Mandel’s problem. Left: Schematic representation of the full and positive quarter domains, Ω and Ω′. Right: Quarter domain showing the
boundary conditions

Fig. 11 Left: Convergence of the
pressure unknown for the matrix
subdomain for the simulations
reported in Section 5.1. Right:
Convergence for the pressure
unknown for the fracture
subdomains
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Lastly, term_01 and term_10 are the off-diagonal coupling blocks
representing respectively the terms involving the pressure gradient
(obtained with GradP) and the divergence of the displacement
field (obtained with DivU).

5.3 Sneddon’s problem of fracture deformation

In this example, a square domain with a single fracture located in
the middle is considered. The fracture forms an angle β with the

horizontal direction (see Fig. 15) and is subjected to a constant
pressure p0, which can be interpreted as a pair of normal forces
acting on either side of the fracture. An analytical solution for the
relative normal displacement along the fracture was derived by
Sneddon [78] for an infinite domain, and has the following form:

〚uj〛n d f
� � ¼ 1 − νð Þp0L

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d2f
L
2

� �2
vuut ; ð5:1Þ

Fig. 13 Analytical (solid lines)
and MPSA/MPFA (dots)
solutions to Mandel’s problem.
The dimensionless profiles for the
pressure (left) and the horizontal
displacement (right) are shown
for several times

Fig. 14 Code snippet illustrating the terms involved in the assembly of a poroelastic problem using MPSA/MPFA in PorePy. The snippet highlights
assignment of discretizations for multiphysics problems within a subdomain
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where ν andG are the Poisson’s ratio and shear modulus, respec-
tively, L is the fracture length, and df denotes the distance from the
center of the fracture.

In our calculations, the condition of infinite domain is replaced
with a Dirichlet boundary, where the prescribed displacement is
set equal to the analytical solution calculated using the procedure
illustrated in [79]. The accuracy of the numerical solution is very
sensitive to the discretization, specifically the cell configuration at
the fracture tips [46]. To reduce the dependency on specific grid
realizations, the values of the numerical solution reported in
Fig. 16 are the average of a group of 20 × 7= 140 computations
per level of grid resolution, with 7 different fracture angles β in the
range 0°–30° and 20 grid realizations per fracture. With six levels
of grid refinement, the full study contains 20 × 7 × 6= 840 simu-
lations. Figure 16 summarizes the results in the form of the error in
relative normal displacement between the analytical solution (5.1)
and the numerical solution as a function of the fracture resolution,
i.e., number of fracture elements. The method provides first-order
convergence on average.

Finally, the code snippet in Fig. 16 indicates the key parts of the
variable and discretization assignment for the contact mechanics
problem. The classes to note are ColoumbContact, which repre-
sents Eqs. (3.14) and (3.15), and the interface discretization
PrimalContactCoupling, see also the discussion in Section 4.2.3.

6 Applications: multiphysics simulations

Having established the accuracy of PorePy for central test
cases that involve mixed-dimensional geometries, we proceed
to present two multiphysics cases of high application rele-
vance: A non-linearly coupled flow and transport problem,
and fracture reactivation caused by fluid injection. The moti-
vation for the simulations is to illustrate further capabilities of
the modeling framework and its PorePy implementation, in-
cluding simulations on complex 3d fracture networks, auto-
matic differentiation applied to non-linear problems, non-

matching grids, and simulation of fracture deformation in a
poroelastic setting.

6.1 Fully coupled flow and transport

We consider the injection of a more viscous fluid into a do-
main initially filled with a less viscous fluid. The two fluids
are miscible and have equal densities; thus, they can be
modeled as two components in a single-phase system, as de-
scribed in Section 3.2. The viscosity of the mixture of fluids
given by μi(ci) = exp(ci), for the mass fraction ci ∈ [0, 1],
which is 0 if only the less viscous fluid is present and 1 if only
the more viscous fluid is present. In the parameter regime
studied in this example, the transport in the fractures is advec-
tion dominated, while the transport in the rock matrix is dom-
inated by diffusion, see the supplementary material for details.

The time derivative is approximated using an implicit Euler
method, which gives a fully implicit scheme for the primary
variables pressure and mass fraction. The spatial terms are
discretized by a finite volume method, with simple upstream
for advective terms, and TPFA for fluxes and diffusive terms.
We apply forward automatic differentiation implemented in
PorePy to obtain the Jacobian of the global system of equa-
tions, which is then used in a standard Newton method to
solve the non-linear problem. The convergence criterion is
given by the maximum norm of the residual vector with a
tolerance 10-9.

The mixed-dimensional domain considered in this example
consists of one 3d domain, 15 2d fracture domains, 62 1d
domains, and 9 0d domains. On this geometry, two computa-
tional grids are constructed: The first has matching grids in all
dimensions, with in total 20,812 cells, out of which 16,766 are
3d cells and 3,850 are 2d fracture cells. The second mixed-
dimensional grid has a 3d grid identical to the first grid,
whereas the lower-dimensional objects are assigned refined
grids with in total 13,839 2d fracture cells; thus, the 3d-2d
interfaces have non-matching grids. The combination of the

Fig. 15 Setup and convergence of
Sneddon’s problem. Left:
Schematic representation of the
domain. Right: Average
convergence behavior of the
relative normal displacement
along the fracture. Each dot
corresponds to the average of 140
simulations
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non-linearity and the non-matching grids provides a challeng-
ing test for the robustness of the PorePy implementation of
subdomain couplings and provides an illustration of the
framework’s flexibility.

Figure 17 shows the average mass fraction profile in the
fractures for the two grids. There are no significant differences
between the two cases, indicating the stability of the imple-
mentation of the non-matching case. Figure 18 shows a snap-
shot of the mass fraction in the fractures and the rock matrix at
time t = 20. The diffusive front in the rock matrix has only
moved a few grid cells at the break-through; however, due
to the diffusion and advection from the fractures to the rock
matrix, the mass fraction has increased in considerable parts of
the rock matrix. We observe no irregularities for the solution
produced on the non-matching grid in this case, suggesting
PorePy’s ability to deal with non-standard grid couplings also
for challenging physical regimes.

6.2 Poroelasticity and fracture deformation

The final example aims at demonstrating the modeling frame-
work’s and PorePy’s applicability to non-standard

combinations of physical processes in different domains and
thereby its potential for method development and prototyping.
With the critical events taking place on individual fractures as a
result of processes in the rock matrix, it also serves as an ex-
ample of the importance of incorporating dynamics of both the
matrix and explicitly represented fractures, as done in DFM
models.

Fig. 17 Fully coupled flow and transport: Comparison of average mass
fraction in the fracture network for a simulation with matching grids and a
simulation with non-matching grids

Fig. 16 Code snippet that illustrates variable and discretization assignment for Sneddon’s problem, discretized using the contact mechanics functionality
in PorePy. The code can be used as a partial replacement of the green section in Fig. 7

261Comput Geosci (2021) 25:243–265



Specifically, we consider the model equations for
coupled poroelasticity and fracture deformation presented
in Section 3.3. The poroelastic deformation of the host
rock is discretized with MPSA, while the fluid flow in
the fractures is discretized with MPFA. The discretization
of the contact mechanics follows the structure outlined in
Section 4.2.3, and temporal discretization is performed
using implicit Euler.

We consider a reservoir of idealized geometry containing
three non-intersecting fractures numbered from 1 through 3,
whereof the first contains an injection well (see Fig. 19). On
this geometry, we solve the governing equations presented in
Section 3.3. We impose injection over a 25-day period and an
anisotropic background stress regime, producing a scenario

well suited to demonstrate different fracture dynamics. We
investigate the dynamics both during the injection phase and
during the subsequent 25-day relaxation phase, at the end of
which the pressure has almost reached equilibrium once more.
The full set of parameters may be found in the supplementary
material.

The dynamics on the fractures throughout the simula-
tion are summarized in Fig. 19, while the spatial distribu-
tion of the fracture displacement jumps at the end of the
injection phase is shown in Fig. 20. The figures show how
the simulation captures the complex dynamics both during
and after injection, and thus highlight how the explicit
fracture representation allows for detailed studies of frac-
ture deformation.

Fig. 18 Fully coupled flow and transport: Mass fraction in the fractures
(left) and in the rock matrix (right) for the coupled flow and transport
problem given in Section 3.2 at the end time of the simulation (t = 20). In
the right figure, the rock matrix domain is cropped, and the fractures

removed to reveal the mass fraction inside the domain. The black lines
indicate the domain boundary. Non-matching grids are used with the
fracture grids being much finer than the grid in the rock matrix

Fig. 19 Left: Domain geometry
with numbering of the three
fractures. Fluid is injected in
fracture 1 during the first 25 days,
after which the well is shut. Right:
L2-norm normalized by fracture
area of the normal (dashed lines)
and tangential (solid lines)
displacement jumps for each
fracture
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7 Conclusions

The complexity in modeling and simulation of multiphysics pro-
cesses in fractured porous media, combined with a strong current
research focus and corresponding developments, calls for flexible
simulation tools that facilitate rapid prototyping of models and
discretization methods. This paper presents design principles for
such software together with their implementation in the open-
source simulation tool PorePy. The combined framework for
modeling and simulation is based on the discrete fracture matrix
model, where fractures and their intersections are represented as
separate lower-dimensional geometric objects. The framework fa-
cilitates flexibility for multiphysics dynamics and reuse of existing
code written for non-fractured domains; hence, it is well suited for
extending other software packages to mixed-dimensional
problems.

The open-source software PorePy demonstrates the capa-
bilities of the suggested framework: It provides automatic
gridding of complex fracture networks in two and three di-
mensions, and contains implemented numerical methods for
flow, transport, poroelastic deformation of the rock, and frac-
ture deformation modeled by contact mechanics. The imple-
mentation performs well for benchmark problems in flow,
poroelastic deformation, and fracture deformation.
Furthermore, multiphysics simulations of fully coupled flow
and non-linear transport and of fracture deformation under
poroelastic deformation of a domain demonstrate the versatil-
ity of the software.
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