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Abstract
When modeling fluid flow in fractured reservoirs, it is common to represent the
fractures as lower-dimensional inclusions embedded in the host medium. Exist-
ing discretizations of flow in porous media with thin inclusions assume that the
principal directions of the inclusion permeability tensor are aligned with the
inclusion orientation. While this modeling assumption works well with tensile
fractures, it may fail in the context of faults, where the damage zone surround-
ing the main slip surface may introduce anisotropy that is not aligned with
the main fault orientation. In this article, we introduce a generalized dimen-
sional reduced model which preserves full-tensor permeability effects also in the
out-of-plane direction of the inclusion. The governing equations of flow for the
lower-dimensional objects are obtained through vertical averaging. We present
a framework for discretization of the resulting mixed-dimensional problem,
aimed at easy adaptation of existing simulation tools. We give numerical exam-
ples that show the failure of existing formulations when applied to anisotropic
faulted porous media, and go on to show the convergence of our method in both
two-dimensional and three-dimensional.
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1 INTRODUCTION

Modeling and simulation of flow in porous media with faults, fractures, and other thin inclusions representing disconti-
nuities is central to a wide range of subsurface engineering applications, including geothermal energy exploitation,1 shale
gas extraction,2 carbon sequestration,3 and energy storage.4

The inclusions are characterized by a high aspect ratio, and permeability significantly different from that of the host
medium; hence, they severely affect flow patterns. This poses a challenge for traditional simulation models, which are
based on upscaling of fine-scale details into an equivalent permeability.5-8 We instead focus on an alternative approach,
which explicitly represents the inclusions in the mathematical and simulation models and thereby to a large degree avoids
challenges related to parameter upscaling. To avoid elongated cells at the inclusion in the computational grid, it is common
to represent the inclusions as codimension one objects embedded in the host medium.9-12 The intersection of inclu-
sions further gives rise to line and point intersections of codimension two and three. There are two ways of treating the
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intersections. The first approach consists in representing explicitly the inclusions and host medium only, and making use
of ad hoc conditions for the intersections, see, for example, References 13-16. We instead refer here to a second approach
which has recently emerged (see, e.g., References 10,11,17), which consists in explicitly representing the intersections in
the geometry. Following this approach, all objects (matrix, inclusions, and intersection points and lines) are equally repre-
sented in the model as independent subdomains separated by interfaces, and discretization models arise naturally, thereby
avoiding challenges related to complex flow dynamics in the proximity of the intersections, for example, due to capillary
flow or fractures with different permeabilities. We refer to this representation of the geometry as mixed-dimensional.

Governing equations for fluid flow in lower-dimensional representation of the inclusion can be derived by integration
in the direction orthogonal to the inclusion. This leads to a decomposition of the governing equations into an in-plane
component that represents flow within the inclusion, and an out-of-plane component that couples flow between the
inclusion and the host medium. While the in-plane flow has been modeled with both linear9,18-20 and nonlinear,21-23

as well as with both isotropic and nonisotropic flow models, existing models for the coupling term are limited by an
assumption on orthogonal flow between inclusion and host. Reduced-order models for flow were also developed for
aquifers, leading to the same set of equations, see, for instance, References 24,25, and 26. The accuracy of the reduced
models as compared with the full equi-dimensional model has been analyzed by several authors. Březina and Stebel27

derived error estimates for the weak solution of the reduced model in comparison to the weak solution of the full model
for anisotropic Darcy flow. Independently of the current article, Gander et al.12 recently used a combination of Fourier
analysis, asymptotic expansions, and functional analysis to obtain error estimates for the reduced models of anistropic
diffusion in terms of the fracture width. However, both these studies treat the case of a domain containing a single fracture.
A theoretical or numerical analysis of the case of a general network of fractures is still missing. For analysis of two-phase
flow reduced models we refer the reader to References 23,25,28 and specifically to Reference 29 for Richards’ equation.
These existing models will be denoted as “local” in the following, meaning that the constitutive laws are local in both space
and geometrical representation, the latter implying that the flux on any given subdomain (or boundary) is proportional
to pressure gradients (or jumps) on the same subdomain.

Local models generally work well when the inclusion is a joint (tensile fracture). However, inclusions with a more com-
plex geological history may have significantly more complex flow properties in the out-of-plane direction. For instance, the
damage zone in the vicinity of faults may exhibit shear fractures, slip surfaces, and/or deformation bands, as summarized
in Fossen et al.30 These features introduce secondary permeability anisotropy in the damage zone as they tend to have
preferred orientations, as shown by both field studies31,32 and core analysis.33 This leads to preferential flow directions
that are neither parallel nor orthogonal to the main plane. This type of flow cannot be represented by existing simulation
models that employ dimension reduction. To the Authors’ best knowledge, the only attempt to simulating faults and their
surrounding damage zones in a mixed-dimensional framework can be found in Reference 34. However, they still apply
local formulations to model the damage zones as lower-dimensional objects which are connected on one side to the fault
and on the other side to the rock matrix, hence conceptually seeing the whole fault zone as a multilayer object. An alter-
native approach would be to implement the fault core as a transmissibility multiplier and the damage zone by modifying
the grid permeability in the cells adjacent to the model faults, as illustrated in Wilson et al.35 In the following, we will con-
sistently refer to the thin inclusions as faults, notwithstanding that all methods presented herein can be applied to models
of fractures and other thin inclusions, however, we expect that the methods proposed are of more importance for faults.

The contribution of this article is twofold: First, we present a generalized dimensional reduced model that can preserve
full-tensor permeability effects also in the out-of-plane direction of the fault. This type of mixed-dimensional problem
involving general permeability tensors has only been treated in a recent publication by Gander et al.,12 who used Fourier
analysis to derive coupling conditions between a single fracture and the surrounding rock in a two-dimensional (2D) set-
ting. It is interesting to note that both derivations lead to the same results. Herein, we further generalize the model to
the case with a general network of inclusions. The resulting reduced equations have a form similar to that of traditional
models, however, the more general coupling structure leads to additional terms both in the in-plane and out-of-plane
equations. These terms, as well as our whole novel formulation, will be denoted as “semi-local” in the following, empha-
sizing the fact that the constitutive laws contain quantities that, while physically in the same location, from a modeling
perspective are not local in terms of the geometry. As an example, the flux in a fault depends on the pressure jump (asso-
ciated with the boundary of the rock), and conversely, the flow from the rock into the fault depends on the gradient of
pressure in the fault.

Multiple discretization schemes have been proposed for the local dimensionally reduced models, including methods
based on finite volumes,13,14,36 mixed finite elements,9,10 virtual elements,37 and mimetic methods.38 A comparison study
for all these discretizations of flow in fractured media can be found in Flemisch et al.39 and40 for 2D and three-dimensional
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(3D) flow, respectively. However, the additional terms arising in our formulation bring the semilocal model outside the
scope of previously proposed discretization methods.

The second contribution of the article is therefore the derivation of discretization schemes for semilocal models. We
achieve this in two stages: First, based on the unified framework for discretization of mixed-dimensional problems with
local interface laws presented in Nordbotten et al.,11 we present conditions under which any standard discretization
scheme for fixed-dimensional problems can be extended to mixed-dimensional problems with semilocal interface laws.
Second, we present a concrete discretization approach based on finite volume methods. An important consequence of
this development is that we find that despite the geometric nonlocality allowed by the semilocal constitutive laws, the
resulting numerical implementation retains the complexity of the discretization of local constitutive laws.

The article is organized as follows. In Section 2, the mathematical model is presented, first for a domain with a single
fault, and then for a general faults configuration. Thereafter, in Section 3, the unified discretization is formulated. After
presenting simulation results in Section 4, concluding remarks are given in Section 5.

2 FLOW MODELLING IN FAULTED POROUS MEDIA

In this section, the mathematical model for flow in faulted porous media is presented, first for a porous domain containing
a single fault (Sections 2.1 and 2.2), and then for a general network of faults (Section 2.3). For the general case, we also
provide the weak formulation of the interface problem (Sections 2.4 and 2.5), which will be useful from the perspective of
implementation. To this end, we remark that the derivations that follow are formal, in the sense that sufficient regularity
is assumed for the equations to make sense. However, in order to accommodate the geometric complexities associated
with faulted geometries, the equations should properly be understood in a weak sense, where the appropriate notions of
continuous and weak spaces are defined in Reference 41.

2.1 Domain with a single fault

We start by considering two 3D porous media Ψ1 and Ψ2, each of them with its Neumann and Dirichlet boundaries 𝜕N
and 𝜕D, respectively. The two 3D domains are separated by a fault Ψ3, which is a thin, almost 2D object of thickness a (in
the following a will be denoted as the aperture), but which is currently represented as 3D. We note that Ψ3 need not be
planar, that is, a need not be constant. We denote by 𝜕Ψ3Ψj, for j= 1, 2, the boundary of Ψj adjacent to Ψ3. Furthermore, let
ni be the normal vector which is always pointing outwards of Ψi. It thus follows that n3 = −nj on 𝜕Ψ3Ψj. A representation
of the fault as a thin 3D domain Ψ3 is illustrated in the left of Figure 1. Darcy flow in the 3D porous medium is then
governed by the following set of equations (i= 1, 2, 3):

∇ ⋅ qi + fi = 0 on Ψi (1)
qi = −Ki∇pi on Ψi (2)
𝜆3,j = q3 ⋅ n3 = −qj ⋅ nj = −𝜆j,3 (j = 1, 2) on 𝜕Ψ3Ψj (3)

qi ⋅ ni = gi on 𝜕NΨi (4)
tr pi = 0 on 𝜕DΨi (5)

Here, p is pressure, q is the Darcy flux, f is a source, and K is a second-order tensor representing the absolute permeabil-
ity divided by fluid viscosity. Equation (1) represents mass conservation, while Equation (2) is Darcy’s law. Equation (3)
represents flux continuity conditions on 𝜕Ψ3Ψj, where 𝜆3,j represents flow from Ψ3 to Ψj, thus by flux continuity it follows
that 𝜆3,j = −𝜆j,3. Finally, Equations (4) and (5) are boundary conditions on 𝜕NΨi and 𝜕DΨi, respectively.

Before deriving the governing equations for the lower-dimensional manifold, we discuss the decomposition of the
permeability tensor within the fault. Existing local laws for faults as embedded thin inclusions assume that the principal
directions of the local permeability tensor are aligned with the fault orientation, as shown in Figure 2(A). Hence, more
general orientations of the permeability principal directions, shown in Figure 2(B,C), cannot be represented by existing
models. To be concrete, we let the permeability on Ψ3 have the following decomposition in terms of a coordinate system
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F I G U R E 1 Representation of the
fault as a thin three-dimensional domain
Ψ3 (left) and as a two-dimensional
manifold Ω3 (right). The boundary of Ψj

adjacent to Ψ3 is denoted by 𝜕Ψ3
Ψj, for

j= 1, 2, while ni is the normal vector
which is always pointing outwards from
Ψi, for i= 1, 2, 3

F I G U R E 2 Illustration of possible
structures of the permeability of a fault
embedded in a porous domain indicated
by the principal axis of the permeability
tensor: (A) Orthogonal permeability, (B)
homogeneous full-permeability
structure, (C) different structure on each
half of the fault

(A) (B) (C)

aligned with the fault orientation:

K3 =

[
K3,|| k3,t

kT
3,t k3,⟂

]
(6)

Here, K3,|| is a 2× 2 second-order tensor representing the within-fault permeability and k3,⟂ is a scalar representing
the normal permeability. The off-diagonal term k3,t is a two-vector representing the symmetric off-diagonal components
of K3; for local interface laws, these off-diagonal components are assumed to be negligible, that is, k3,t = 0.26,40 On the
contrary, when k3,t ≠ 0, the inclusion of this anisotropic term leads to significant complications in the modeling and
discretization, and is the main topic of this work. With this structure of the fault permeability, the Darcy flux for the fault
can be decomposed as q3 = [q3,||, q3,⟂], where the two-vector tangential component q3,|| and the scalar normal component
q3,⟂ have the following form:

q3,|| = −K3,||∇||p3 − k3,t∇⟂p3, (7)

q3,⟂ = −k3,t ⋅ ∇||p3 − k3,⟂∇⟂p3. (8)

Here, ∇|| and ∇⟂ = 𝜕

𝜕n
represent the in-plane and out-of-plane components of the gradient for the fault, respectively.

2.2 Model reduction

To proceed, we apply integration over the perpendicular direction to achieve a dimension reduction of the fault.
This replaces Ψ3 with a lower-dimensional domain Ω3 (see right of Figure 1). Note that we use Ψ to represent the
equi-dimensional geometry, that is all Ψj are 3D, and Ω to denote the mixed-dimensional geometry. We also introduce two
interfaces Γj,3 on each side j= 1, 2 of Ω3, as shown in Figure 3. The interfaces physically represent the half zone comprised
between the fault and either side of the surrounding matrix. In a mixed-dimensional setting, they have no perpendicular
extent, and serve as connectors between two objects of different dimensions. Note that, due to the dimension reduction
of the model, Ω3, Γ1,3, Γ2,3, 𝜕Ω3Ω1, and 𝜕Ω3Ω2 are all coinciding in physical space. Furthermore, we define the integrated
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F I G U R E 3 Illustration of the mixed-dimensional geometry.
Ω3 is connected to the higher-dimensional neighbors Ωj through
the interfaces Γj,3, for j= 1, 2. Note that Ω3, Γj,3, and 𝜕Ω3

Ωj are all
coinciding in physical space

Darcy flux q(2)
3 and the average pressure p(2)

3 , respectively as

q(2)
3 = ∫

a∕2

−a∕2
q(3)

3,||dn, p(2)
3 = 1

a∫
a∕2

−a∕2
p(3)

3 dn. (9)

Here, we use subscripts to index the domains, and superscripts (when necessary for clarity) to emphasize the effective
topological dimension of the domain, for example, p(3)

3 and p(2)
3 are the pressures within the fault in the 3D (on Ψ3) and

2D (on Ω3) representations, respectively. When passing to a mixed-dimensional representation of the geometry, that is,
when integrating Equations (1) and (7) along the perpendicular direction, the out-of-plane component of the gradient is
converted into a jump operator as follows:

∫
a∕2

−a∕2
∇⟂p(3)

3 dn = (tr p1 − tr p2). (10)

The governing equations for the fault are then obtained from Equations (1), (7), (4), and (5) by integrating
in the perpendicular direction. Moreover, since the fault is assumed to be thin, we let the permeability be con-
stant across the perpendicular direction on each side of the fault. Together with the definitions above, this results
in

∇3 ⋅ q(2)
3 − (𝜆1,3 + 𝜆2,3) + f (2)3 = 0 on Ω3 (11)

q(2)
3 = −aK3,||∇3p(2)

3 + 𝝁1,3 + 𝝁2,3 on Ω3 (12)

q(2)
3 ⋅ n(2)

3 = g(2)3 on 𝜕NΩ3 (13)

tr p(2)
3 = 0 on 𝜕DΩ3 (14)

where we have also introduced the integrated source term and boundary flux

f (2)3 = ∫
a∕2

−a∕2
f (3)3 dn, g(2)3 = ∫

a∕2

−a∕2
g(3)3 dn. (15)

We emphasize that the differential operator ∇3 in Equations (11) and (12) operates on the manifold Ω3. Compared
with traditional upscaled models, see, for instance, Nordbotten et al.,11 additional terms 𝝁j,3 appear in Equation (12),
analogous to the flux terms 𝜆j,3 in Equation (11). This two-vector term, which is not present in previous work, represents
the within-fault flux induced by pressure differences between the fault and the surrounding matrix, and is defined for
either side of the fault as

𝝁j,3 = 𝜖j,3k3,j,t(p(2)
3 − tr pj), (16)
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where the permutation variable 𝜖j,3 is positive if the coordinate systems of Ω3 and 𝜕Ω3Ωj coincide, and negative otherwise.
The presence of the trace operator in Equation (16) explains why we termed our formulation “semi-local,” that is we
emphasize that material laws which are local in space are nonlocal with respect to the geometric representation. This can
be easily seen when substituting Equation (16) into Equation (12), one obtains a flux which, while defined on Ω3, from a
modeling perspective contains quantities residing outside Ω3, specifically tr pj.

To complete the model, we derive a constitutive law for 𝜆j,3. This is obtained by integrating Equation (8) in the
perpendicular direction, that is

∫
a∕2

−a∕2
q(3)

3,⟂dn = −∫
a∕2

−a∕2
k3,t ⋅ ∇||p(3)

3 dn − ∫
a∕2

−a∕2
k3,⟂∇⟂p(3)

3 dn. (17)

The left-hand side of Equation (17) is approximated using the trapezoidal rule, that is

∫
a∕2

−a∕2
q(3)

3,⟂dn ≈ a
2
(𝜖1,3𝜆1,3 + 𝜖2,3𝜆2,3), (18)

where continuity of the flux across the boundary between the fault and the surrounding matrix is applied. The first term
at the right-hand side of Equation (17) is approximated as

∫
a∕2

−a∕2
k3,t ⋅ ∇||p(3)

3 dn = k3,2,t ⋅ ∫
0

−a∕2
∇||p(3)

3 dn + k3,1,t ⋅ ∫
a∕2

0
∇||p(3)

3 dn

≈ a
2
(

k3,1,t + k3,2,t
)
⋅ ∇3p(2)

3 . (19)

Finally, the second term at the right-hand side of (17) is resolved using the jump operator defined in Equation (10) as
follows:

∫
a∕2

−a∕2
k3,⟂∇⟂p(3)

3 dn = 𝜖1,3k3,1,⟂(p(2)
3 − tr p1) + 𝜖2,3k3,2,⟂(p(2)

3 − tr p2). (20)

By incorporating Equations (18)–(20) into Equation (17), we identify the flux 𝜆j,3 having the following form:

𝜆j,3 = −k3,j,⟂
2(p(2)

3 − tr pj)
a

− 𝜖j,3k3,j,t ⋅ ∇3p(2)
3 . (21)

Here, the first term on the right-hand side represents the local component of the constitutive law, while the second
part is the semilocal contribution that induces a flux across Γj,3 due to the pressure gradient within the lower-dimensional
manifold Ω3. Inspecting Equations (16) and (21), we see that both the normal permeability k3, j,⟂ and the off-diagonal
permeability k3,j,t are in the reduced model naturally interpreted as properties of the interface Γj,3. In the continuation, we
will thus assign these quantities independently to each side of the fault. It is interesting to see that, upon incorporation of
Equation (16) into Equation (12), substituting Equation (12) into (11) and taking the sum of the two sides of Equation (21),
one obtains the same coupling conditions derived in Gander et al.12

In summary, omitting superscripts for the sake of clarity, we can write the mixed-dimensional Equations (1)–(5),
(11)–(14), (16), and (21) in a unified way, that is for i∈ {1, 2, 3}

∇i ⋅ qi −
∑
j∈Ŝi

𝜆j,i + fi = 0 on Ωi (22)

qi = −𝜿i,||∇ipi +
∑
j∈Ŝi

𝜖j,i𝜿i,j,t(pi − tr pj) on Ωi (23)

qi ⋅ ni = 𝜆i,3 (i ≠ 3) on 𝜕Ω3Ωi (24)
𝜆j,3 = −𝜅3,j,⟂(p3 − tr pj) − 𝜿3,j,t ⋅ ∇3p3 (j = 1, 2) on Γj,3 (25)
qi ⋅ ni = gi on 𝜕NΩi (26)
tr pi = 0 on 𝜕DΩi (27)
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where Ŝi is the set of neighbors of Ωi of higher dimension, for example, Ŝ3 = {Ω1,Ω2}. Equations (22)–(27) are comple-
mented with the natural convention that there is no four-dimensional domain in the model, thus Ŝi = ∅ for i= 1, 2, and
one clearly has for these 3D domains also that a= 1, K|| = K, and ∇i =∇.

We remark that due to the model reduction, the within-fault permeability K3,|| and the normal permeability k3, j,⟂
scale with the aperture a and its inverse, respectively, while the off-diagonal permeability k3,j,t remains as in the
equi-dimensional model. In order to present Equations (22)–(27) without reference to this small parameter, these scal-
ings have been incorporated directly into the material constants. Thus, the mixed-dimensional permeability 𝜿3 is related
to the equi-dimensional K3 as follows

𝜿3 =

[
𝜿3,|| 𝜿3,j,t

𝜿
T
3,j,t 𝜅3,j,⟂

]
=

[
aK3,|| k3,j,t

kT
3,j,t 2a−1k3,j,⟂

]
. (28)

We point out that, when one reduces multiple dimensions at once, these scalings get exponents corresponding to
the number of dimensions below the ambient dimension. We also emphasize that the normal and off-diagonal perme-
abilities are in principle not a property of the fault itself, but instead a property which belongs to the internal interface
Γj,3 between the fault and either side of the higher-dimensional neighbors. This represents an important extension of
the existing local laws for fractured porous media, making the model also applicable to faulted porous media, since it
allows for capturing the anisotropic character of the fault damage zone. Moreover, since different values of k3,j,t and
k3, j,⟂ can be assigned to each side of the fault, our model can represent different permeability structures on each side of
the fault.

A schematic illustration of the different quantities and their domain of definition for the local and semilocal
formulations is shown in Figure 4.

2.3 Domain with a general network of faults

Following the formulation by Boon et al.,10 Equations (22)–(27) can be generalized also to faults intersections, both
the one-dimensional (1D) line intersections between two faults and the zero-dimensional point intersections of three
faults (see Figure 5 for an illustration of the mixed-dimensional geometry). To this end, we use subscripts to index each
domain (matrix, fault, or intersection) by number as in the previous section, and let I denote the index set of all domains.
Superscripts for the topological dimension associated with each individual domain will be consistently omitted, keep-
ing in mind that the dimension is always a property of the domain, that is, d= di. Hence, we can write for all i∈ I the
equations

F I G U R E 4 Illustration of the quantities associated with the local and semilocal formulations
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F I G U R E 5 Illustration of the decomposition of a
three-dimensional domain containing a network of three faults. From
top to bottom: All mixed-dimensional domains, the three faults, the
three one-dimensional fault intersections, and the zero-dimensional
point intersection All

2D

1D

0D

∇i ⋅ qi −
∑
j∈Ŝi

𝜆j,i + fi = 0 on Ωi (29)

qi = −𝜿i,||∇ipi +
∑
j∈Ŝi

𝜖j,i𝜿i,j,t(pi − tr pj) on Ωi (30)

qi ⋅ ni = 𝜆i,j (j ∈ Ši) on 𝜕ΩjΩi (31)

𝜆j,i = −𝜅i,j,⟂(pi − tr pj) − 𝜖j,i𝜿i,j,t ⋅ ∇ipi (j ∈ Ŝi) on Γj,i (32)
qi ⋅ ni = gi on 𝜕NΩi (33)
tr pi = 0 on 𝜕DΩi (34)

where Ši is the set of neighbors of Ωi of lower dimension, for example, Š1 = {Ω2,Ω3,Ω4}.

2.4 Mixed-dimensional formulation of the fault-matrix flows

While Equations (29)–(34) constitute a full semilocal model, they are stated in a form which is not imme-
diately amenable for discretization. This and the following subsection explore the model in more detail,
with a goal of rewriting the equations in a form that can be handled by standard discretization schemes
with only minimal adaptations. A discretization approach based on this reformulation is then given in
Section 3.

In order to simplify the exposition, we will introduce a mixed-dimensional notation following Nordbotten et al.11

In particular, we will denote the collection of pressure functions as 𝔭 =
(

p1, … , p|I|), and similarly the collection of
all fluxes (both in domains and across boundaries) as 𝔮 =

(
q1, … ,q|I|, 𝜆1,1, … , 𝜆|I|,|J|). It is sometimes convenient to

refer explicitly to only the domain or boundary fluxes, and we will therefore sometimes abuse notation and simply write
𝔮 = (q, 𝜆). We refer to these as mixed-dimensional functions, and consistently denote them with calligraphic font. We
adopt the natural convention that when evaluating a mixed-dimensional function at a point, say x ∈ Ωi, then we simply
evaluate the function on that domain, so that 𝔭(x) = pi(x). In a similar sense, we denote the disjoint union of domains as
𝔉 =

(∐
i Ωi

)
⊔

(∐
j,i Γj,i

)
.
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With this notion of mixed-dimensional functions, the extension of the divergence and gradient operators to the
mixed-dimensional setting is natural. First, we extend the concept of continuous functions by requiring that for 𝔮 to be
continuous, then it must hold that, for all Γj,i, qi ⋅ ni = 𝜆i,j. Then, for any point x ∈ Ωi we define

(𝔇 ⋅ 𝔮) (x) =
⎡⎢⎢⎣∇i ⋅ qi −

∑
j∈Ŝi

𝜆j,i

⎤⎥⎥⎦x

and (D𝔭) (x) =
[
∇ipi

]
x , (35)

while for any point on an interface x ∈ Γj,i we define

(D𝔭) (x) =
[
pi − tr pj

]
x . (36)

Now we can write Equations (29)–(34) compactly as:

𝔇 ⋅ 𝔮 + 𝔣 = 0 on 𝔉 (37)
𝔮 = −𝔎Dp on 𝔉 (38)
𝔮 ⋅ 𝔫 = 𝔤 on 𝜕N𝔉 (39)
tr 𝔭 = 0 on 𝜕D𝔉 (40)

where we have also introduced the collection of sources 𝔣 =
(

f1, … , f|I|) and the collection of boundary fluxes
𝔤 =

(
g1, … , g|I|). Here, the material coefficients are now all part of the mixed-dimensional permeability 𝔎,

which is defined such as that for any mixed-dimensional gradient 𝔲 = Dp = (u, 𝜇), it holds that for any point
x ∈ Ωi:

(𝔎𝔲) (x) = 𝜿i,||ui −
∑
j∈Ŝi

𝜖j,i𝜿i,j,t𝜇j,i, (41)

while for any point on an interface x ∈ Γj,i, it holds that

(𝔎𝔲) (x) = 𝜅i,j,⟂𝜇j,i + 𝜖j,i𝜿i,j,t ⋅ ui. (42)

It is then also sometimes convenient to write Equation (38) in matrix form, that is for 𝔮 = (q, 𝜆) and 𝔲 = D𝔭 = (u, 𝜇),
one has: {

q
𝜆

}
= −

[
𝔎ΩΩ 𝔎ΩΓ

𝔎ΓΩ 𝔎ΓΓ

]{
u
𝜇

}
. (43)

Equation (43) highlights the contribution from the semilocal terms in the mixed-dimensional version of Darcy’s law,
since, for local constitutive laws, the permeability is block diagonal when expressed in this way, with both 𝔎ΓΩ and 𝔎ΩΓ
vanishing.

One can show that as long as the all in-plane permeabilites 𝜿i,|| are symmetric positive definite, and the
mixed-dimensional permeabilities are diagonally dominant in the sense of satisfying

𝜅i,j,⟂ det𝜿i,|| > 𝜿i,j,t ⋅ 𝜿i,j,t, (44)

then the coefficients are globally positive definite, and Equations (37)–(40) are well-posed with a unique weak solu-
tion, as long as 𝜕DΩi has nonzero measure for at least one domain. This can be proven using the functional analysis
tools for mixed-dimensional problems described in Boon et al.41 In particular, our stated conditions ensure that the
mixed-dimensional coefficients are symmetric positive definite as defined in Boon et al.,41 thus their theorems 4.1 and 4.2
apply, and problem (37)–(40) are the Euler–Lagrange equations of a coercive minimization problem, which has a unique
minimum in the appropriately defined Hilbert spaces.
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2.5 Weak formulation as an interface system

The semilocal terms in Equations (29)–(34) lead to coupling terms between domains that are local in physical space, but
nonlocal in the mixed-dimensional representation of the geometry. A critical example are the fault and its sides, which,
from the perspective of implementation, we would prefer to only interact via the interfaces Γj,i, and not directly, as is the
case for the last term in Equation (30).

Thus, we are motivated to consider a reformulation of the governing equations before considering numerical dis-
cretizations. To this end, we recall that the model equations are to be understood weakly, and that it is therefore both
desirable to express the coupling conditions weakly in order to ensure a good numerical method. We proceed by first
performing an LU decomposition of Equation (43) as follows:

𝔎U

{
q
𝜆

}
= −𝔎L

{
u
𝜇

}
, (45)

where 𝔎U and 𝔎L are defined, respectively as:

𝔎U =

[
I 𝔎ΩΓ𝔎−1

ΓΓ

0 I

]
and 𝔎L =

[
AΩ 0
𝔎ΓΩ 𝔎ΓΓ

]
, (46)

and AΩ is the Schur-complement defined as

AΩ = 𝔎ΩΩ −𝔎ΩΓ𝔎−1
ΓΓ𝔎ΓΩ. (47)

Note that, since 𝔎ΓΓ consists only of scalar values (𝜅i,j,⟂), this reformulation only depends on the trivial inversion of
scalars.

In the following it will be helpful to discuss the components of the mixed-dimensional gradient and divergence, and
we therefore additionally define the “full jump” d𝔮 such that for any point x ∈ Ωi it holds that

(d𝔮) (x) =
⎡⎢⎢⎣−

∑
j∈Ŝi

𝜆j,i

⎤⎥⎥⎦x

, (48)

while the “half jump” d⋆𝔭 is simply the restriction of D𝔭 to Γj,i. We then write (with the natural extension of ∇ and ∇⋅):

𝔇 ⋅ 𝔮 = ∇ ⋅ q + d𝜆 and D𝔭 =
(
∇p,d⋆𝔭

)
. (49)

We now proceed by (formally) eliminating internal domain variables, in order to obtain a problem only posed on
interfaces. We note that Equations (37) and (38) can now be written as the first-order system:

𝔇 ⋅ 𝔮 = 𝔣 (50)
𝔎U𝔮 = −𝔎L𝔇𝔭 (51)

where use of Equation (45) has been made. By writing out Equation (50) in local notation for each Ωi and by stating
Equation (51) explicitly as two equations, we obtain the following set of equations:

∇ ⋅ q = f − d𝜆 (52)
q + AΩ∇p = −𝔎ΩΓ𝔎−1

ΓΓ𝜆 (53)
𝜆 = −

(
𝔎ΓΩ∇p +𝔎ΓΓd

⋆𝔭
)

(54)

This reveals that Equations (52) and (53) form a locally well-posed system (of standard Darcy type) on each Ωi, and
we can therefore consider p = p(𝜆) for any given 𝜆.
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We formalize this concept by introducing the (continuous) solution operators for the standard elliptic value problem
on Ωi, K

Ωi
, defined as:

(𝜐,∇𝜐, tr 𝜐,F) = K
Ωi
(f , 𝜒, b, 𝜐0) , (55)

where 𝜐 is the solution to

∇ ⋅ 𝜑 = f − F on Ωi (56)
𝜑 = −K (∇𝜐 + 𝜒) on Ωi (57)
𝜑 ⋅ n = b on 𝜕Ωi ⧵ 𝜕Ω (58)
𝜐 = 0 on 𝜕Ωi ∩ 𝜕Ω (59)

1|Ωi| ∫Ωi

𝜐 = 𝜐0 if 𝜕Ωi ∩ 𝜕Ω ≠ ⊘ (60)

where 𝜕Ω is the global boundary and F = 1|Ωi|
(∫Ωi

f − ∫Ωi
b
)

if 𝜕Ωi ∩ 𝜕Ω ≠ ⊘, and zero otherwise. Using this solution
operator, we see that the solution to Equations (52) and (53) can be stated as functions of 𝜆 (and a set of number of
numbers p0 corresponding to the domains where 𝜕Ωi ∩ 𝜕Ω ≠ ⊘) as:

(p,∇p, tr p,F)Ωi
(𝜆, p0) = Ai

Ωi

(
fi − (d𝜆)i ,A−1

i
(
𝔎ΩΓ𝔎−1

ΓΓ𝜆
)

i , 𝜆Ǐi
, p0

)
. (61)

Inserting p = p(𝜆, p0) and so forth into Equation (54), we have now reformulated the fault-matrix problem into a pure
interface problem. From the perspective of implementation, we desire to consider the interface problem in the weak
sense, and we therefore multiply by test functions w and integrate to obtain the problem: Find 𝜆 ∈ L2(Γ) such that, for all
w ∈ L2(Γj) (

𝔎−1
ΓΓ𝜆,w

)
Γj,i

+
(
𝔎−1

ΓΓ𝔎ΓΩ∇p(𝜆, p0),w
)
Γj,i

+
(
d⋆𝔭(𝜆, p0),w

)
Γj,i

= 0 (62)

and Fi(𝜆, p0) = 0 if 𝜕Ωi ∩ 𝜕Ω ≠ ⊘. We point out that the inner products in Equation (62) are bounded from a
formal perspective, since for 𝜆 ∈ L2(Γ), then pi ∈ H1(Ωi), and both 𝔎−1

ΓΓ𝔎ΓΩ∇p and tr p will lie in (at least)
L2(Γj,i).

Finally, we emphasize that Equations (61) and (62) are attractive from the perspective of implementation, since the
inner products appearing are easy to evaluate, and the solution operators Ai

Ωi
can be approximated by any standard

numerical method, as we will detail in the following section.

3 DISCRETIZATIONS OF FLOW FOR FAULTED POROUS MEDIA

The equations derived in Section 2.5, and in particular the interface problem of Equation (61), form the starting point for
the discretization approach laid out in this section. We present the general discretization framework in Section 3.1, and
discuss implementational aspects in Section 3.2.

3.1 Unified discretization

Equation (61) provides a solution operator for the arbitrary standard method used to solve the elliptic boundary value
problem (52) and (53) on Ωi. To be concrete, we consider each domain Ωi and its Neumann boundary 𝜕Ωi = 𝜕NΩi ∪∑

j∈Ši
𝜕ΩjΩi as endowed with a numerical discretization. Then, the solution operator i can be stated as

i ∶
[
N(Ωi),Ndi(Ωi),N(𝜕Ωi)

]
→

[
N(Ωi),Ndi (Ωi),N(𝜕Ωi)

]
, (63)
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where N(Ωi), Ndi(Ωi), and N(𝜕Ωi) are the discrete representations of L2(Ωi),
(

L2(Ωi)
)di , and L2(𝜕Ωi), respectively, and di is

the topological dimension of Ωi. In particular, i takes as input sinks, vector sources, and Neumann data and returns as
output pressures, pressure gradients, and pressure traces. Most discretization schemes for elliptic equations can provide
such a solution operator; we discuss the concrete implementation in the following subsection.

To discretize the flux coupling term 𝜆j,i, we introduce a mortar-like grid j,i on the interface Γj,i on which the boundary
flux 𝜆j,i will be defined. The flux variables are represented as piecewise constant on the mortar grid j,i, thus 𝜆j,i ∈ P0(j,i) ⊂
Ł2(Ωi). In order to allow communications between subdomains, and thus explicitly relate the degrees of freedom of the
numerical methods i and the mortar grids j,i, we introduce projection operators, namely, ΠN(Ωi) and ΠL2(Ωi). The former
is the compound operator projecting from the coupling variables on the mortar grids to the subdomain degrees of freedom,
that is

ΠN(Ωi) ∶
[

L2(Ωi),
(

L2(Ωi)
)di ,L2

(
ΩŠi

)
,L2(𝜕Ωi)

]
→

[
N(Ωi),Ndi(Ωi),N(𝜕Ωi)

]
, (64)

while the latter conversely moves from the numerical variables to the coupling variables, that is

ΠL2(Ωi) ∶
[
N(Ωi),Ndi(Ωi),N(𝜕Ωi)

]
→

[
L2(Ωi),

(
L2(Ωi)

)di ,L2
(
ΩŠi

)
,L2(𝜕Ωi)

]
. (65)

Now, following the variational formulation derived in Section 2.5, we exploit Equation (62) in order to provide
discretization-independent framework for faulted porous media. This takes the form: for given numerical discretizations
i, find 𝜆j,i ∈ P0(j,i), for all i∈ I and j ∈ Ŝi such that(

d⋆𝔭,wj
)
Γj,i

+
(
𝔎−1

ΓΓ
(
𝜆j,i +𝔎ΓΩ ⋅ ∇p

)
,wj

)
Γj,i

= 0

for all wj ∈ P0(j,i) (66)

subject to discrete constraints (for all i∈ I):

[pi,ui, tj] = ΠL2(Ωi)i(𝜓i + ai, bi, ci) (67)

[ai, bi, ci] = ΠN(Ωi)

⎡⎢⎢⎣−
∑
j∈Ŝi

𝜆j,i,−
∑
j∈Ŝi

A−1
i 𝔎ΩΓ𝔎−1

ΓΓ𝜆j,i,
∑
j∈Ši

𝜆i,j

⎤⎥⎥⎦ (68)

where the dummy variables ai, bi, and ci have the interpretations of sources, forces, and fluxes due to interactions with
other domains, respectively. By contrast, the variables pi, ui, and tj are the pressures, pressure gradients, and pressure
traces after projection onto the grids j,i.

The interpretation of this scheme is as follows. Equation (67) resolves the internal differential equations in each sub-
domain, Equation (68) is the projection of variables from the flux grids to the numerical boundary (and source) data,
while Equation (66) simply states that the flux 𝜆j,i between the fault and its surroundings should satisfy the semilocal
Darcy’s law. In the following section, we present the strategy for implementation of this approach and give details for a
specific numerical scheme.

3.2 MPFA discretization

It is of interest to consider the requirements put on the subdomain solution operators i in some more detail. From the
variational formulations stated above, we see that for a discretization on a generic subdomain Ωi to interact with the
interface Γj, we need to provide operators which:

1. Handle Neumann boundary data on the formΠN(Ωi)𝜆j, for all interfacesΓj whereΩi is the higher-dimensional neighbor.
2. Handle source terms ΠN(Ωi)𝜆j from interfaces Γj where Ωi is the lower-dimensional neighbor.
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3. Provide a discrete operator tr pi so that ΠL2(Ωi) can project the pressure trace from 𝜕jΩi to Γj where Ωi is the
higher-dimensional neighbor.

4. Provide a pressure pi so that ΠL2(Ωi) can project the pressure to all Γj where Ωi is the lower-dimensional neighbor.
5. Handle the divergence of vector source terms ΠN(Ωi)(∇ ⋅ 𝝁j,i) from interfaces Γj where Ωi is the lower-dimensional

neighbor.
6. Provide a pressure gradient ui so that ΠL2(Ωi) can project the pressure gradient to all Γj where Ωi is the

lower-dimensional neighbor.

The four first requirements are readily available for any discretization scheme for elliptic equations. Specifically, we
have based our solution operators on a cell-centered finite volume method termed the multipoint flux approximation
(MPFA).42,43 Treatment of vector source terms (item 5) is not as natural in primal discretization schemes such as finite
elements, but is easy to include in most flux-based discretization methods such as, for example, mixed finite elements.
We have employed the approach introduced in Starnoni et al.,44 which treats the vector source term as part of the discrete
divergence operator, and thereby provides an expression of the fluxes in terms of jumps in cell-centers vector sources.
Finally, the pressure gradients are discretized as piece wise constant on each cell from an interpolation of the face cells
fluxes (item 6). We implemented our model in PorePy, an open-source software for simulation of multiphysics processes
in fractured porous media.17

To better understand the structure of the discrete coupling, it is instructive to write out the coupled system for two
subdomains Ωh and Ωl separated by an interface Γj (see Figure 6). Let ph and pl, be the vectors of cell-center pressures in
Ωh and Ωl, respectively, and let 𝜆j be the vector of discrete mortar fluxes in Γj. The discrete coupled system in absence of
external sources can then be represented on the generic form

⎡⎢⎢⎢⎣
Ah 0 GhΠN(Ωh)

0 Al BlΠN(Ωl) + JlΠN(Ωl)Tj

−ΠL2(Ωh)Ph ΠL2(Ωl)Pl + TjΠL2(Ωl)Rl Dj

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ph

pl

𝜆j

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
0
0
0

⎤⎥⎥⎥⎦ . (69)

The first two rows of the system (69) represent the discretized differential equations in each subdomain, while the third
row is the discretized Darcy’s law in the direction perpendicular to the interface. Here, Ah and Al are the fixed-dimensional
discretizations on the subdomains, Gh is the discretization of Neumann boundary conditions on Ωh, Bl is the discretiza-
tion of source terms in Ωl, Jl is the discretization of the vector source term on Ωl, Tj is the discretized 𝔎ΩΓ𝔎−1

ΓΓ product
on Γj, and ΠN(Ωh) and ΠN(Ωl) are the projection operators from coupling variables on the mortar grid to each of the sub-
domains degrees of freedom. Furthermore, Ph provides a discrete representation of the pressure trace operator on Ωh, Pl
gives the pressure unknowns on Ωl, Rl gives the reconstruction of the pressure gradient on Ωl, and ΠL2(Ωk) is the projec-
tion operator from numerical variables to coupling variables. Finally, Dj is the discretized inverse normal permeability
on Γj.

We conclude by making two remarks: first, there is no direct coupling betweenΩh andΩl and second, global boundary
conditions are left out of the system.

F I G U R E 6 Illustration of a coupling between subdomains. Ωh and Ωl are the higher and
lower subdomains, respectively, Γj is the interface between the two subdomains, 𝜕jΩh is the portion
of the boundary of Ωh as seen from Γj, ΠN(Ωk) is the projection operator from coupling variables on
the mortar grid to each of the subdomains degrees of freedom (k= h, l), and ΠL2(Ωk) is the projection
operator from numerical variables to coupling variables
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4 NUMERICAL EXAMPLES

We validate the semilocal model and our implementation by a suite of numerical examples. First, we consider a case with
a single fault, and show how the semilocal model can capture the effects of anisotropic off-diagonal permeabilities, while
the local model fails to do so. Second, we probe the robustness of our discretization on more complex geometries in 2D
and 3D.

4.1 Comparison to the equi-dimensional model

In this first example, we compare our reduced model to an equi-dimensional model. The aim is to highlight the enhanced
modeling capabilities of our formulation with respect to the standard local formulation. With reference to this latter
point, we present results of two test cases: the first one where the fault has the same off-diagonal permeability on both
sides (see Figure 2B), and a second one where different permeability structures are assigned to each side of the fault (see
Figure 2C).

4.1.1 Case 1: Homogeneous permeability

We consider a 2D square domain of side L= 1 m cut by a horizontal fault of aperture a= 1 cm located in the middle of the
domain. In the mixed-dimensional setting we therefore have two 2D domains Ω1 and Ω2 and one 1D fault Ω3, as shown
in Figure 7. The hydraulic conductivity is isotropic homogeneous for the 2D matrix, that is Kj = KjI, with j= 1, 2, while
for the fault we consider the following equi-dimensional full tensor:

K3 =

[
Kf ,|| kf ,t

kf ,t kf ,⟂

]
, (70)

For simplicity, we take K1 =K2 =Km. Boundary conditions consist of an applied difference in hydraulic head along the
vertical direction and no-flow conditions elsewhere. In particular, the inlet pressure hin is specified on the portion of the
bottom boundary where 0.25< x< 0.75 m, while the outlet pressure hout is specified on the portion of the top boundary
where x< 0.25 & x> 0.75 m (see Figure 7). Data for the simulations are reported in Table 1. We consider as reference
solution the solution obtained with an equi-dimensional model of N = 40k structured square cells (mesh size dx = 5 mm),
where the fault is discretized with two rows of 200 elements each. Then, for the reduced models, we consider triangular
grids with approximately N = [40, 160, 700, 3k, 11k] (respectively, Nf = [4, 8, 16, 32, 64] cells for the fault), and report the
average L2 error in pressure along the fault

𝜀p =
√∑

i Δi(pi − pi,eq)2√∑
i Δip2

i,eq

, (71)

F I G U R E 7 Setup of Case 1
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where Δi is the size of the fault element in the reduced model, and pi, eq is calculated from the equi-dimensional model
as the mean value of the two fault cells at each location xi:

pi,eq(xi) =
∑

j=y1,y2

pij, (72)

where yj =L/2± dx/2.
Convergence results are shown in Figure 8(A). As Figure 8(A) clearly shows, our formulation presents about first-order

convergence rate, while the local formulation does not converge. This is due to the strong anisotropy of the fault, which is
not captured by the standard local formulation. As a result of the anisotropy of the fault, the flow will take a preferential
direction towards one of the two inlets, therefore breaking the symmetry of the local formulation. This is better observed
in Figure 8(B) showing the pressure distribution along the fault for the three models. As Figure 8(B) clearly shows, the
semilocal and the equi-dimensional models coincide, while the local formulation exhibits an erroneous symmetric profile.
We remark that, following Gander et al.,12 one would expect that both the semilocal and local model solutions converge
to the equi-dimensional solution for a→ 0 (when keeping the material parameters constant). As already discussed in the
Introduction, this is consistent with the fact that local laws might provide sufficiently accurate solutions for fractures,
however, they fail for highly anisotropic fault zones.

Parameter Description Value

Km Matrix hydraulic conductivity 1 m/s

Kf , || Fault tangential hydraulic conductivity 100 m/s

kf ,⟂ Fault normal hydraulic conductivity 100 m/s

kf , t Fault off-diagonal hydraulic conductivity 80 m/s

a Fault aperture 0.01 m

L Side of the square domain 1 m

hin Hydraulic head at the bottom boundary 10 m

hout Hydraulic head at the top boundary 1 m

Note: Values of the fault hydraulic conductivity are given for the equi-dimensional model,
that is, before scaling.

T A B L E 1 Data for Case 1
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F I G U R E 8 Case 1: (A) Convergence of the average error in pressure within the fault and (B) pressure distribution along the fault for
different methods
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4.1.2 Case 2: Dual permeability

As a further illustration of the enhanced modeling capabilities of the semilocal model, we modify the setup used in the
previous section to have different permeability structures on the two sides of the fault. This is relevant for modeling of
geological faults, where the two sides of the fault may undergo different damage processes. To that end, we divide the
fault into an upper and lower part (see Figure 9) and assign different permeability structures to the two sides, that is
for j= 1, 2:

K3,j =

[
Kf ,|| kf ,j,t

kf ,j,t kf ,⟂

]
. (73)

In particular, values of Km, Kf , ||, and kf ,⟂ are the same as those given in Table 1, while kf , 1, t and kf , 2, t take values of
50 and 80 m/s, respectively. The aperture of the fault is set to a= 2 cm and we use the same boundary conditions as in
Case 1.

Convergence results for the local and semilocal models are shown in Figure 10(A,B), with the reference solution again
computed from an equi-dimensional model with a grid with 40k cells. As in the previous case, the local model fails to
converge, while the semilocal model exhibits first-order convergence up to the last refinement step. Here, the mesh size
is of the same order of the fault aperture, thus further error reduction cannot be expected due to the modeling error in
the dimension reduction.

F I G U R E 9 Setup of Case 2
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F I G U R E 10 Case 2: (A) Convergence of the average error in pressure within the fault and (B) pressure distribution along the fault for
different methods
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4.2 Self-convergence

In this section, we test the robustness of the method on more challenging fault configurations in 2D and 3D. We remark
that no equi-dimensional solutions are available for these tests, and that this subsection aims at observing the numerical
scheme’s order of convergence.

4.2.1 2D case

We consider the same test case as Case 1 in Boon et al.10 The domain is a unit square including a network of five faults
(Figure 11A). Of these five faults, one cuts the square domain into two 2D subdomains, denoted asΩ1 andΩ2, respectively.
The faults are numbered for j= 3, .., 7 and are of two kinds: Ω3 and Ω4 are conductive, that is K3 =K4 =Kf , 1, while the
other three are blocking, that is K5 =K6 =K7 =Kf , 2. The hydraulic conductivity is isotropic homogeneous for the 2D
matrix, with K1 =K2 =Km, while for the faults we consider an equi-dimensional full tensor with kj, t = 0.1Kj, ||, for j= 3, .., 7.
Boundary conditions consist of an applied difference in hydraulic head along the vertical direction and no-flow conditions
elsewhere. Data for the simulations are reported in Table 2. We consider as reference solution the solution obtained with
approximately N = 133k cells for the 2D domain and a total number of Nf = 510 cells for the faults. Then we consider grids
with approximately N = [300, 1k, 4k, 17k, 67k] (respectively, Nf = [26, 48, 93, 183, 363]), and report the average L2 error in
pressure along the faults.

The convergence results, shown in Figure 11(B), indicate a rate of at least first order. The test thus confirms the perfor-
mance of our method also in cases that involve faults that are intersecting and have low permeability. Both these features
are highly relevant in a geologic setting where fault may have complex geometry and reduced permeability compared
with the host rock.

4.2.2 3D case

As a final verification, we consider a 3D case with multiple intersecting faults. The setup is based on Case 2 in the bench-
mark study described in Reference 40. The domain is a unit cube including a network of nine faults, whose intersections
divide the cubic domain into several subdomains, as shown in Figure 12(A). These 3D subdomains are grouped into two
regions, where we assigned different permeabilities Km, 1 and Km, 2, both homogeneous and isotropic (see Reference 40
for a visualization of these two regions). For the faults we consider full tensors with tangential permeability Kj,|| = Kf ,||I||,
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F I G U R E 11 Two-dimensional self-convergence test: (A) Mixed-dimensional geometry and (B) convergence of the average error in
pressure within the faults
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T A B L E 2 Data for the two-dimensional
self-convergence test

Parameter Description Value

Km Matrix hydraulic conductivity 1 m/s

Kf , 1, || Fault tangential hydraulic conductivity 100 m/s

kf , 1,⟂ Fault normal hydraulic conductivity 100 m/s

kf , 1, t Fault off-diagonal hydraulic conductivity 10 m/s

Kf , 2, || Fault tangential hydraulic conductivity 0.01 m/s

kf , 2,⟂ Fault normal hydraulic conductivity 0.01 m/s

kf , 2, t Fault off-diagonal hydraulic conductivity 0.001 m/s

a Fault aperture 0.01 m

hin Hydraulic head at the top boundary 1 m

hout Hydraulic head at the bottom boundary 0 m

Note: Values of the fault hydraulic conductivity are given for the equi-dimensional model,
that is, before scaling.

F I G U R E 12
Three-dimensional
self-convergence test: (A)
Mixed-dimensional geometry and
(B) convergence of the average error
in pressure within the faults
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T A B L E 3 Data for the three-dimensional
self-convergence test

Parameter Description Value

Km, 1 Matrix hydraulic conductivity 1 m/s

Km, 2 Matrix hydraulic conductivity 0.1 m/s

Kf , || Fault tangential hydraulic conductivity 1e4 m/s

kf ,⟂ Fault normal hydraulic conductivity 1e4 m/s

kf , t Fault off-diagonal hydraulic conductivity 1e3 m/s

a Fault aperture 1e−4 m

qin Normal flux at the inflow boundary −1 m/s

hout Hydraulic head at the outflow boundary 1 m

Note: Values of the fault hydraulic conductivity are given for the equi-dimensional model,
that is, before scaling.
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normal permeability kj,⟂ = kf ,⟂, and off-diagonal permeability kj,t = 0.1kj,ti||. Boundary conditions consist of an imposed
normal flux qin on the portion of the boundary where (x, y, z)< 0.25 m and a constant hydraulic head hout on the portion of
the boundary where (x, y, z)> 0.875 m. Data for the simulations are reported in Table 3. We consider as reference solution
the solution obtained with approximately N3 = 85k cells for the 3D domain and a total number of Nf = 8364 cells for all
faults. Then we consider N3 = [500, 1k, 2k, 4k, 10k, 20k, 40k] (respectively, Nf = [148, 282, 384, 814, 1536, 2298, 3456]) and
report the average L2 error in pressure along the faults.

Convergence results are shown in Figure 12(B), indicating first-order convergence on average. This confirms the
consistency of our implementation also for 3D problems with complex fault geometries.

5 CONCLUSIONS

We presented an improved framework to modeling and discretizing flow in generally anisotropic porous media with thin
inclusions, within the context of mixed-dimensional partial differential equations. Our model considers a full perme-
ability tensor for the inclusions, resulting in additional terms arising in our formulation as compared with existing local
discretizations. We expect our model to be important for modeling of flow in faulted porous media, however, the methods
proposed herein can be in any case applied to models of fractures, in fact our full-permeability model naturally reduces
to the existing models of fracture-matrix flow when the off-diagonal components of the inclusion permeability tensor are
set to zero.

We provided numerical examples showing convergence of the method for both 2D and 3D faulted porous media.
In particular, we provided numerical evidence that, as opposed to existing local discretizations, our model is capable of
simulating the anisotropic behavior of the faults near damage zone.

We remark that, in the spirit of flux-mortars coupling schemes, our formulation is independent of the discretization
methods used to discretize the flow equations in the porous matrix and the faults. However, we only showed results
obtained using a multipoint flux finite volume approach. Nevertheless, the formulation also applies to other discretization
methods, for example, mixed finite elements.
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