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Abstract. In this paper we give a complete overview of test–problems
by Viète from 1600, Harriot from 1631 and Oughtred from 1647. The
original material is not easily accessible due to archaic language and
lack of conciseness. Viéte’s method was gradually elucidated by the sub-
sequent writers Harriot and Oughtred using symbols and being more
concise. However, the method is presented in tables and from the layout
of the tables it is difficult to find the general principle. Many authors
have therefore described Viète’s process inaccurately and in this paper
we give a precise description of the divisor used in the process which
has been verified on all the test–problems. The process of Viète is an
iterative method computing one digit of the root in each iteration and
has a linear rate of convergence and we argue that the digit–by–digit
process lost its attractiveness with the publications in 1685 and 1690
of the Newton-Raphson method which doubles the number of digits for
each iteration.
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1 Introduction

Viète wrote two treatises on solving equations: one theoretical and the other
numerical. The second treatise De numerosa potestatum ad exegesim resolutione
or On the numerical resolution of powers was published in 1600 and offered
something quite new. Here Viète took equations that could be solved only with
difficulty, or not at all, by standard methods and showed how numerical solutions
could be found to whatever degree of accuracy was required [26]. Viète exempli-
fies his technique on solving equations on numerous examples more like what we
find in more modern papers on numerical solution of nonlinear equations. All ex-
amples by Viète have integer solutions. Viète’s work was the first comprehensive
method of solving such equations that had been attempted, and it involved no
restrictions as to terms, signs, or degree [17]. Viète’s method closely resembles
the method of Šaraf–al–Din al-Tūs̄ı (died in the last quarter of the 12th century)
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[21]. This method is described in a manuscript on algebra entitled On equations.
However, Viète’s treatise from 1600 contains the first printed version of such a
method.

The Appendice Algébraique of 1594, an appendix to L’arithmetique from 1585,
Simon Stevin writes that after the publication of L’ Arithmétique he has found a
general rule to solve all equations either perfectly or with any degree of approx-
imation. The appendix itself was reproduced in French and Latin in 1608 and
in the reprint of L’Arithmétique by A. Girard of 1625. The processes presented
by Stevin and Viète compute the solution or root one digit at time. There are
basically two stages in such a process, first ascertain the number of digits in the
solution and determine the first digit of the solution. The next stage is to deter-
mine one digit at a time. If the sought root is an integer, the process terminates
after a few steps.

The first printed method for numerical solution of equations is that of Gero-
lamo Cardano (1501–1576) in Ars Magna from 1545 under the title De regula
aurea. This is the first successful general methods of approximating roots of
algebraic equations. The method was known in manuscripts and commonly re-
ferred to as the Rule of Double False Position since the 11th century. In Ars
Magna there are four examples using the double false position. The double false
position is a bracketing methods where the solution of the equation will be in
the interval. The secant method uses the same linear interpolation as the double
false position, but is not a bracketing technique. In ”Newton’s Waste Book” ([39,
p. 489-49] and there tentatively dated to early 1665) Ypma [40] identifies the
method used by Newton to be the secant method. It is well known that these
techniques are not digit–by–digit computation.

The invention of decimal fractions is usually ascribed Simon Stevin [2, p.
314], but most importantly he introduced their use in mathematics in Europe.
Simon Stevin wrote a booklet called De Thiende or ”the art of tenths”, first
published in Dutch in 1585, translated into French the same year and to English
in 1608. With the work of Simon Stevin, the classical restriction of ”numbers”
to integers or to rational fractions was eliminated. For Stevin, the real numbers
formed a continuum. His general notion of a real number was accepted, tacitly
or explicitly, by all later scientists [31, p.69].

Viète does not use decimals. In [32, 33] Viète writes (translation by Witmer
[34])

Thus if you are seeking the root of 2, a square, extract, if you wish, the
root of1 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00, [which is]
141, 421, 356, 237, 309, 505. So the root of 2 is said to be approximately
141,421,356,237,309,505
100,000,000,000,000,000 .

Both Harriot [6] and Oughtred [18] use the same process as Viète but make
different arrangement of the computation. Harriot shows the use of fractions
and Oughtred also shows computing a solution with decimals. Wallis [35] gives

1 The integer 2 · 1028 in Viète is replaced by 2 · 1034
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a better estimate of the new digit than Viète, Harriot, and Oughtred by not
excluding terms in the divisor.

The mathematical notation of equations changes in the period we consider.
In addition the methods or processes are illustrated using examples leaving some
details to interpretations and an example of the arrangement is given in Figure
2. Figure 1 contains examples of the notation used by the cited authors in the
different sections of the paper.

Fig. 1. Examples of mathematical notation in the 17th century

Viète x5 + 500x = 254832 1QC+500N, aequetur 254832

Harriot x5 + 500x = 254832 aaaaa+ 500a = = = 254832

Oughtred
x5 − 15x4 + 160x3 − 1250x2

+6480x = 170304782
1qc-15qq+160c-1250q+6480` = 170304782

Newton MS x3 + 30x = 14356197 Lc+30L=14356197

Wallis x3 − 2x2 = 186494880 Rc-2Rq=186494880

Newton [16] x4 − x3 − 19x2 + 49x− 30 = 0 x4 − x3 − 19xx+ 49x− 30 = 0

Cajori [1] in 1916 was one of the first to point out that the Viète process has
been described inaccurately by leading historians at that time, including Cantor
in 19002. Due to the inexplicitness of Viète process, writers like Augustus De
Morgan in 18473, Cajori [1, p.40], and Nordgaard [17, p.28] have misinterpreted
the process. Rashed in 1974 [21], Goldstin in 1977 [4, p.66] and Ypma in 1995
[40] make the error of stating an explicit formula to determine a digit. As will be
shown the general equations stated in Section 3 serve as estimates to determine
the digits used by Viète, Harriot and Oughtred. Section 3 contains a description
of Viète’s method and all test examples. However, the first section on solving
equations is on Stevin’s method in Section 2. The next two sections contains the
examples used by Harriot in Section 4 and Oughtred in Section 5. Compared
to extensive reuse of the test problems [27] of Joseph Raphson [20] from 1690,
there are few authors that reuse the test problems of Viète.

In Section 6 is Newton’s annotations from Viète and Oughtred. The anno-
tation represents ’state of the art’ in mid 17th century but the manuscript was
never published. Newton’s method was first published in print in Wallis’ algebra
in 1685, but the algebra book also introduces a modification of the divisor used
by Viète, Harriot and Oughtred. This is treated in Section 7.

Already in 1670 we find evidence in a letter from Collins to Leibniz, that
the computational work using the Viète process unfit for a Christian, and more
proper to one that can undertake to remove the Italian Alps into England [22]. In

2 M. Cantor, Vorlesungen über Geschichte der Mathematik, II, 1900, p. 640–641.
3 Augustus De Morgan, Involution and Evolution, in The Penny Cyclopaedia of the

Society for the Diffusion of Useful Knowledge, London 1846, Volume 2 p.103.
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Section 8 we argue that with the presence of higher order methods at the end of
the 17th century the use of digit–by–digit calculation for algebraic equation di-
minished. However, new variations of digit–by–digit methods for algebraic equa-
tions appears in the two books by John Ward [37, 38], a new method by Horner
[8] and by Holdred [7]. The digit–by–digit process survived in textbooks for hand
calculation until the age of calculators and was practised a lot to compute square
roots. This process is discussed in the final Section 9.

2 Stevin’s Method 1594

The Appendice Algébraique of 1594, Stevin uses two examples. The first equation
has an integer solution. The second equation has a root that is not integral, but
Stevin does not use the decimal notation of his De Thiende. The two examples are
x3 = 300x+ 33915024 and x3 = 300x+ 33900000. To find a first approximation
for x, try x = 10k, for k = 0, 1, 2 . . .. The result is that for k = 2 the value
of x3 is less than that of 300x + 33915024, but for k = 3, the value of x3 is
larger. Hence there will be 3 digits in the root (if integer) To find the first digit,
or approximation for x, he now substitutes x = 100, 200, 300, 400 and finds
300 < x < 400. The first digit is then 3. Now he tries x = 3 · 102 + 10, 3 ·
102 + 20, 3 · 102 + 30 and finds 320 < x < 330 and the second digit is 2. Then
x = 3 · 102 + 2 · 10 + 1, 3 · 102 + 2 · 10 + 2, 3 · 102 + 2 · 10 + 3, 3 102 + 2 10 + 4. It
appears that for x = 3 · 102 + 2 · 10 + 4 = 324 both sides of the equation finally
are equal so that x = 324 is the root.

Stevin points out that the method can also be applied if the root is not an
integral number. Consider x3 = 300x + 33900000 and we find 323 < x < 324.
Then write x = 323+ d1

10 and test for d1 = 0, 1, . . . , 9 and we find the first decimal

digit d1 = 9. Proceed with x = 323.9 + d2
100 as above, with d2 = 0, 1, 2, 3, 4, 5, 6

to find d2 = 5, then x = 323.95 + d3 · 10−3 etc. This can go on indefinitely.
Stevin’s method was made popular in the algebra in four volumes by John

Kersey in 1673 and 1674 where four examples are given with quadratic, cubic
and fourth order polynomials and using decimals [13, Book II, Ch.X].

3 Viète’s Method 1600

Viète’s method is an extension of Stevin’s method. Where Stevin systematic
examines all digits 0, 1, . . . , 9, Viète makes an estimate of the digit and either
increases or decreases it. Hutton in 1795 [9, Algebra, p. 87] and [10, Tract 33, p.
270] writes:

The method is very laborious, and is but little more than what was before
done by Stevinus on this subject, depending not a little upon trials.

However, it is today agreed that François Viète was not familiar with the works
of Stevin [34, Translator’s introduction].

Viète divides the examples in two; pure and affected equations. For the pure
equations Viète uses the technique presented in Section 9.
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3.1 Pure equations

In the section Purarum resolutione in De numerosa potestatum purarum, atque
adfectarum ad exegesin resolutione tractatus Viète [33, p.163–172] demonstrates
digit-by-digit computation on five problems using the technique in Section 9.
Table 1 contains problem number used by Viète and the solution. In Nordgaard

Table 1. Pure equations in Viète 1600 [32, p.3r-6v] and 1646 [33, p.166–172]

Name p(x) = N Solution

Problem I x2 = 2916 54

Problem II x3 = 157464 54

Problem III x4 = 331776 24

Problem IV x5 = 7962624 24

Problem V x6 = 191102976 24

[17, p.25] is the arrangement of the computation in Viète’s Problem II x3 =
157464 with a close paraphrase in modern notation.

3.2 Affected Equations

In the section Adfectarum resolutione in De numerosa potestatum purarum, atque
adfectarum ad exegesin resolutione tractatus Viète [33, p.173–223] gives numer-
ous examples of digit–by–digit computation for positive roots of polynomials. It
is generally agreed that the language used by Viète is archaic and there is an
absence of clear symbolism and conciseness [3]. Taking Problem IX which in the
notation of Viète is

Quidam numerus ductus in sui Quadrato-cubum, & in 6000 facit 191,246,976.
Queritur quis fit numerus ille. In notis 1CC+6000N æquatur 191,246,976
& fit 1N unitatatum quout?

will in modern language be A certain number multiplied by its sixth power and by
6000 makes 191,246,976. The question is what that number is. In symbols, x6 +
6000x = 191, 246, 976. What is x?4 An equation is ”duly prepared” according
to Viète if the coefficients of the polynomial are integers and N is positive and
Viète partition the equations in affected positively (I to IX), affected negatively
(X to XII), mixed (XIII to XV) and avulsed (XVI to XX). The positively and
negatively affected equations have only one positive root.

4 Translated by T.Richard Witmer [34].
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Consider the quadratic equation x2 + cx + d = 0. Let f(x) = x2 + cx + d
and consider f(x + h) = 0 for given x > 0. A bound on h can be found from
h(2x+ c) ≤ −f(x), and provided 2x+ c > 0 and the upper bound on h is

h ≤ −f(x)

2x+ c
. (1)

All the coefficients in the examples used by Viète are positive. For the quadratic
equation −x2 + cx+ d = 0 the corresponding bound will be an upper bound on

h, h ≤ −f(x)
−2x+c when −2x+c ≥ 0. We can observe that the bound in the quadratic

case is the correction to the current iterate x in the Newton-Raphson method

− f(x)
f ′(x) . Rashed [21, p.269] points out that the method of Šaraf–al–Din al-Tūs̄ı

and Viète are identical for quadratic equations. Problem 1a) is reproduced in
[21, p.266–267] and compared to the method of Šaraf–al–Din al-Tūs̄ı. In Table
2 the first column gives the name of the problems which are found in the second
column. The third column is the solutions and the two last columns give the
page numbers in the 1600 and 1646 editions.

Table 2. Quadratic equations in Viète 1600 [32] and 1646 [33]

Name p(x) = N Solution 1600 1646

Problem Ia) x2 + 7x = 60750 243 p. 7v p. 174

Example b) x2 + 954x = 18487 19 p. 8r p. 175

Problem Xa) x2 − 7x = 60750 250 p. 18v p. 195

Example b) x2 − 240x = 484 242 p. 19v p. 196

Example c) x2 − 60x = 1600 80 p. 20r p. 197

Example d) x2 + 8x = 128 8 p. 20r p. 197

Problem XVIa) −x2 + 370x = 9261 27 p. 27v p. 211

Example b) −x2 + 370x = 9261 343 p. 28r p. 212

For Problem XVIa the bound on h = α0 (the second and last digit) will be
a lower bound. Problem XVIa) and b) are Problem 4 in Harriot [6, p.128].

We now consider the cubic equations given in Table 3. Let f(x) = x3 + bx2 +
cx+ d and consider the cubic equation f(x+ h) = 0 for given x. Then

f(x+ h) = f(x) + h(3x2 + 2bx+ c) + h2(3x+ b) + h3 = 0. (2)

Viète eliminates h3 so −f(x) ≥ h(3x2 + 2bx + c) + h2(3x + b). If 3x + b ≥ 0,
initial h ≤ h and 3x2 + 2bx+ c ≥ 0 then an upper bound on h is,

h ≤ −f(x)

3x2 + 2bx+ c+ (3x+ b)h
.
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In Section 6 on Newton’s annotation the above bound is the same as the bound
(4) when b = 0. h will depend on the number of digits in the solution, k, and the
order j > 1, 10k−j . For the cubic equation, the bound is the Newton-Raphson
correction only when h = 0. The method of Šaraf–al–Din al-Tūs̄ı and Viète
deviates for cubic equations where the estimate of the next digit is the Newton-
Raphson correction −f(x)/f ′(x) scaled [21]. To show the differences, Rashed [21,
p.268–270] used Problem IIa. The arrangement of Viète’s Problem IIa) and IIb)

Table 3. Cubic equations in Viète 1600 [32] and 1646 [33]

Name p(x) = N Solution 1600 1646

Problem IIa) x3 + 30x = 14356197 243 p. 9r p. 176

Example b) x3 + 95400x = 1819459 19 p. 10r p. 178

Problem IIIa) x3 + 30x2 = 86220288 432 p. 10v p. 180

Example b) x3 + 10000x2 = 5773824 24 p. 11v p. 182

Problem XIa) x3 − 10x = 13584 24 p. 20r p. 198

Example b) x3 − 116620x = 352947 343 p. 21r p. 199

Example c) x3 − 6400x = 153000 90 p. 22r p. 200

Example d) x3 + 64x = 1024 8 p. 22r p. 201

Problem XIIa) x3 − 7x2 = 14580 27 p. 22r p. 201

Example b) x3 − 10x2 = 288 12 p. 22v p. 202

Example c) x3 − 7x2 = 720 12 p. 23v p. 203

Example d) x3 + 8x2 = 1024 8 p. 24r p. 204

Problem XVIIa) −x3 + 13104x = 155520 12 p. 29r p. 214

Example b) −x3 + 13104x = 155520 108 p. 29v p. 215

Problem XVIIIa) −x3 + 57x2 = 24300 30 p. 30r p. 216

Example b) −x3 + 57x2 = 24300 45 p. 30v p. 217

and a close paraphrase in modern notation is found in Nordgaard [17, p.26–27].
Let f be a polynomial of degree n on the form f(x) = xn + q(x) where q is

a polynomial of degree n− 1. We can write

q(x+ h) =

n−1∑
i=0

hi

i!
q(i)(x)

where q(i) is the ith derivative of q. Further

(x+ h)n = xn +

n−1∑
i=1

(
n

i

)
xn−ihi + hn ≥ xn + h

n−1∑
i=1

(
n

i

)
xn−ihi−10
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for 0 ≤ h ≤ h. So if all q(i)(x) ≥ 0 then

−f(x) ≥ h

[
n−1∑
i=1

(
n

i

)
xn−ihi−10 +

n−1∑
i=1

hi−10

i!
q(i)(x)

]
. (3)

This general case (refeq:general) will give an estimate which is either an upper
bound or lower bound on h. The first sum is by Viète called the lower part
and second sum is upper part based on the table Viète uses. To recognize the
computation in the tables of Viète, Harriot and Oughtred note that f(xj+1) =
f(xj) + (f(xj+1) − f(xj)) and some of the terms in f(xj+1) − f(xj) are also
needed in computing the divisor. Further details are given in Section 7.

Consider f(x) = x4 + ax3 + bx2 + cx+ d. Then the two parts will be

(lower) 4x3 + 6x2h+ 4xh2 and (upper) 3ax2 + 2bx+ c+ h(3ax+ b).

In all examples Viète uses the sum of lower and upper part to find an estimate on
the (next) digit. An annotated version of Problem XV is found in [3, p.214–216]

Table 4. Higher order algebraic equations in Viète 1600 [32] and 1646 [33]

Name p(x) = N Solution 1600 1646

Problem IVa) x4 + 1000x = 355776 24 p. 12v p. 183

Example b) x4 + 100000x = 2731776 24 p. 13v p. 185

Problem V x4 + 10x3 = 470016 24 p. 14r p. 186

Problem VIa) x4 + 200x2 = 446976 24 p. 14v p. 187

Example b) x4 + 200x2 + 100x = 449376 24 p. 15r p. 188

Problem VII x5 + 500x = 254832 12 p. 16r p. 190

Problem VIII x5 + 5x3 = 257472 12 p. 16v p. 191

Problem IX x6 + 6000x = 191246976 24 p. 17v p. 193

Problem XIII x4 − 68x3 + 202752x = 5308416 32 p.24r p. 205

Problem XIV x4 + 10x3 − 200x = 1369856 32 p.25r p. 207

Problem XV x5 − 5x3 + 500x = 7905504 24 p. 26r p. 208

Problem XIXa) −x4 + 27755x = 217944 8 p. 31v p. 219

Example b) −x4 + 27755x = 217944 27 p. 32r p. 220

Problem XX −x4 + 65x3 = 1481544 38 p. 32v p. 221

Example b) −x4 + 65x3 = 1481544 57 p. 33v p. 222

and with explanations omitted in [15, p.37]. The last section in Viète’s book
[33, p.228] there is an example on how to transform the equation to get the
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root correct to the tenths and to the hundredths by scaling the variables. Given
x3 + 6x = 8. Substitute x by x

10 and the equation will be x3 + 6 · 102x = 8 · 103

and solve the new equation using the Viète process and the approximate root of
the original equation will be 11

10 = 1 1
10 which will be correct to the tenths.

4 Test Examples from Harriot 1631

The test examples by Harriot are from the chapter Exegetice numerosa [6, p.117–
167] or Numerical Exegesis [23, p.129–182] in Praxis [6]. In the manuscripts Har-
riot refers all his examples to Viète and each manuscript page with an example
is marked De numerosa potestatum resolutione [23]. However, only three of the
examples in Praxis are from Viète. Where Viète splits the computation of the
divisor into a lower part (corresponding to xn) and the upper part (the remain-
ing divisor), Harriot also splits the order of the terms in two parts, without
the correcting term h and the part with the correction h. Further the tables in
Praxis contains symbols commenting the computation where Viète has a verbal
description.

In one example, Problem 6 in Table 7, Harriot suggests another table cor-
responding to h = 0. This will also yield an upper bound. Three problems in
Praxis in Table 7 are identical to problems in Viète and two of these problems
are used by Newton in his manuscript [39, p. 63–71]:

– Problem 4 (p.128) in Table 7 is Viète’s Problem XVI a) and b) in Table 3
– Example (p.138) in Table 7 is Viète’s Problem IIb in Table 3 and also used

by Newton in Table 5.
– Example (p.143) in Table 7 is Viète’s Problem XIa in Table 3 and also used

by Newton in Table 5.

Problem 13 (p.155) in Table 7 is reproduced in [15, p.38–39] and in [17, p.30]
using Harriot’s original formulation and notation

aaaa− 1024aa+ 6254a = 19633735875.

Hankel’s book on history of mathematics from 1874 illustrates Viète’s method
using one of Harriots’s examples [6, p.164] x2+14x = 7929 in Table 7 computing
the approximate root 82.319 [5, p.370] using decimals.

The four ’pure’ powers, Problem 1, 5, 11, and 15 in Table 7, Harriot uses the
same technique as for ’affected’ equations. The computation will be the same as
described in Section 9 where we always get an upper bound on the digit.

5 Test Examples from Oughtred 1647/48

No one did more to popularize the new method of Viète than did the clergyman
mathematician William Oughtred. This he accomplished by giving private tu-
ition to ambitious young men and these spread his teachings throughout Great
Britain; among them were Seth Ward, Christopher Wren, and John Wallis [17,
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p.31]. John Wallis [35] devotes a chapter on Mr. Oughtred and his Clavis [35,
Ch.xv] and points out that Oughtred’s contributions to Viète’s method were in
the simplification of the notation.

The second edition of William Oughtred (1574-1660) Clavis Mathematicæ
(The Key to Mathematics) was published in 1648 and an English translation in
1647. In the chapter Some examples of equations resolved in numbers Oughtred
[19, p.139–172] considers 16 examples using a digit-by-digit computation. In
Table 9 the page numbers refer to the translated version from 1647. The first
edition from 1631 contains only two examples using digit–by–digit computation,√

3272869681 = 57209 and 3
√

187237601580329 = 57209. These two examples are
also in the second edition. Before the year 1700 five editions of this little volume
had been published. The Clavis opens with an explanation of the Hindu-Arabic
notation of decimal fractions. Oughtred would write 15|7 for 15.7.

The 16 examples are also used by Jeake [12, 11] which also includes some
additional examples and comments on the computation. The same arrangement
of the computation of Example 1 in Table 9 is found in De Morgan [15, p.39–40]
using the Oughtred’s notation in Figure 1. Oughtred’s computation in Example
2 in Table 9 is discussed by Caljori [1, p.458–459]. This example has the same
form as discussed in Section 6 and in this case (5) is an equality.

6 On Newton’s Annotations 1664

In an unpublished note from 1664(?) reproduced in [39, p. 63–71] Newton an-
notates Viète’s Opera Mathematica from 1646 using the simplified notation in
Oughtred’s Clavis Mathematicæ from 1648. Newton gives 7 examples computing
the root digit–by–digit. This unpublished note represents the ’state of the art’
in mid 17th century. In the table below the references are to Viète 1600 and
1646 [32, 33], to Harriot [6] and MS is Harriot’s manuscripts collected by Stedall
[24]. The first column in Table 5 gives the function and the second contains the
references. For the first three problems the algorithm is the one used in Section

Table 5. Examples in Newton’s note [39, p. 63–71]

f(x) Reference(s)

x2 − 2916 Problem I in Viète

x3 − 157464 Problem II in Viète

x5 − 7962624 Problem IIII in Viète

x3 + 30x− 14356197 Problem IIa) in Viète and in MS

x3 + 95400x− 1819459 Example IIb) in Viète, and in Harriot and MS

x3 − 10x− 13584 Problem XIa) in Viète and MS

x3 − 116620x− 352947 Example XIb) in Viète, and in Harriot and MS
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9. The other problems are all on the form x3 + cx = d and a meta description
of the algorithm is:

– Step 1: Determine the number of digits in the root, say x = α2102+α110+α0.
– Step 2: Determine the first digit α2: Choose the largest 0 < α2 ≤ 9 so that

(α2102)3 + c(α2102) ≤ d

– Step 3: Determine the second digit α1: Choose the largest 0 ≤ α1 ≤ 9 so
that

(α2102 + α110)3 + c(α2102 + α110) ≤ d
– Step 4: Determine the last digit α0: Choose the largest 0 ≤ α0 ≤ 9 so that

(α2102 + α110 + α0)3 + c(α2102 + α110 + α0) ≤ d

The convergence of this technique follows from the observation that this is a
bracketing process where the root will be in an interval on the form [·, ·) (the
right end is open) and the assumed existence of a root and monotonicity of
x3+cx in the interval. The first interval will be [α2102, (α2+1)102), then [α2102+
α110, α2102+(α1+1)10) and the final [α2102+α110+α0, α2102+α110+α0+1).

Consider f(x) = x3 + cx− d and f(x+ h) = 0 for given x > 0 and unknown
h. Then

f(x+ h) = f(x) + h(3x2 + 3xh+ h2 + c) = 0.

Let h ≥ h ≥ 0 be an initial estimate, then an upper bound on h will be

h ≤ −f(x)

3x2 + 3xh+ c
= ĥ, (4)

provided c is not too negative. To determine digit number j > 1, αk−j , consider

xj =

k−1∑
i=k−j

10iαi = xj−1 + 10k−jαk−j .

Define hj = 10k−j then from (4)

αk−j ≤
⌊ 1

hj

−f(xj)

3x2j + 3xjhj + c

⌋
. (5)

In the following table we show the actual computation of the digits in the solu-
tion. We assume that the magnitude of the root and the first digit are known.

x3 + 30x− 14356197 x3 + 95400x− 1819459
x∗ = 243 x∗ = 19

x 200 240 10
−f(x) 6350197 524997 864459
h 10 1 1

3x2 + 3xh0h+ c 126030 173550 95730

ĥ 50.4 3.03 9.03
αi 4 3 9
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Consider finding root x∗ of x3 + 30x − 14356197. The number of digits in x∗,
when (x∗)

3 >> 30x∗ > 0, will be the number of digits in 3
√

14 356 197 which is
3 and the leading digit will be α2 = 2. To find the next digit of x∗ use (4) with
x = 200 and h = 10. An upper bound of α1 ≤ b5.04c = 5. However, 5 is too
large, and the second digit is found to be 4.

x3 − 10x− 13584 x3 − 116620x− 352947
x∗ = 24 x∗ = 343

x 20 300 340
−f(x) 5784 8338947 699747
h 1 10 1

3x2 + 3xh0h+ c 1250 162380 231200

ĥ 4.63 51.4 3.03
αi 4 4 3

Newton’s transcripts of Viète’s solution of x3 + 30x = 14356197 is found in
[39, p.66] and reproduced in [40, p.534]. The notebook (MS Add. 4000) with
transcripts is available online5.

7 Contributions of John Wallis 1685

In his algebra and history of algebra book [35] from 1685, John Wallis discusses
the work by Viète, Harriot and Oughtred and summarizes the method in one
example. In [35, p.103–105] he gives the example x3 − 2x2 = 186494880 and
computes the root 572 following the same basic principle as in [32, 6, 18] to
compute the solution digit by digit. Consider f(x) = x3 + bx2 + d. Contrary to
Viète, Harriot and Oughtred, Wallis does not exclude the h3 term in (2) and
uses

αk−j ≤
⌊ 1

hj

−f(xj)

3x2j + 2bxj + (3xj + b)hj + h2j

⌋
, (6)

where hj = 10k−j as in Section 6. Further,

f(x+ h) = f(x) + (f(x+ h)− f(x)) = 3x2h+ 3xh2 + h3 + 2bxh+ bh2. (7)

Since 500 < 3
√

186000000 ≤ 3
√

186494880 + 2x2 it follows that the sought
root has three digits (α2, α1, and α0) and the first digit will be 5. So α2 = 5,
x1 = 500, and h1 = 10 and h0 = 1. In Wallis the known is denoted A and E
is to be determined which corresponds to x and h properly scaled. In the first
column in Figure 2 is the computation in [35, p.104] and in the next column the
same computation using the notation in this paper.

A problem proposed by Pell and later proposed to Wallis by Colonel Silas
Titus is to find a, b, and c so that [25]

a2 + bc = 16, b2 + ac = 17, and c2 + ab = 18.

5 https://cudl.lib.cam.ac.uk/view/MS-ADD-04000/1
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Fig. 2. Wallis 1685 x3 − 2x2 = 186494880
186 494 880 −d

Ac 125 000 000 x31, x1 = 500
-2Aq -50 000 bx21

Residual 61 994 880 −f(x1), h1 = 10

3Aq 7 500 000 3x21 · h1

3A 150 000 3x1h1 · h1

I 1 000 h2
1 · h1

-4A -20 000 2bx1 · h1

-2 -200 bh1 · h1

Divisor 7 630 800 α1 ≤ 8, x2 = 570, h = α1h1 = 70

3AqE 52 500 000 3x21h
3AEq 7 350 000 3x1h

2

Ec 343 000 h3

-4AE -140 000 2bx1h
-2Eq -9 800 3x1h

2

Residual 1 951 680 −f(x2), h0 = 1

3Aq 974 700 3x22 · h0

3A 1 710 3x2h0 · h0

I 1 h2
0 · h0

-4A -2 280 2bx2 · h0

-2 -2 bh0 · h0

Divisor 974 129 α0 ≤ 2, x3 = 572

Wallis [35, p.225–252] treats this problem and in [35, Ch.62] reduces the three
equations to a fourth order algebraic equation

x4 − 80x3 + 1998x2 − 14937x+ 5000 = 0

to determine a =
√
x∗/2 using Viète’s method. Wallis computes

x∗ = 12.756441794480744

with 17 correct digits. The second equations follows from multiplying the first
quadratic equation by a and the second by b and eliminate abc to get the equation

17b− b3 = 16a− a3, where a =

√
1

2
x∗.

This equation is solved for b to 16 digits again using Viète’s method. Having
found a and b, c is found from the first quadratic a2 + bc = 16. The third
example of Viète’s method is found using synthetic division

f(x) =
x4 − 80x3 + 1998x2 − 14937x+ 5000

x− x∗

and finding a second root of the quartic polynomial 0.350987046. In all three
examples Wallis is using all terms in the divisor.
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If Newton’s method is applied to the system F (a, b, c) = (a2 + bc − 16, b2 +
ac− 17, c2 + ab− 18) with the starting point (a, b, c) = (2, 3, 4) the error in F is
of order 10−14 after 5 iterations.

8 End of an Era

1n the 1670s John Collins (1625-1683) wrote an account of Pell’s achievements
for Leibniz, and after describing one of Pell’s table (a yard long, according to
Collins) and its use, he made the remark that in an attempt to solve the equations
with Viète’s method,Mr Warner used to call work unfit for a Christian, and more
proper to one that can undertake to remove the Italian Alps into England [22,
Ch.LXXXV,p.248]. Similar statement from 1758 on Viète’s method, Montucla
[14, p.492] regards the calculation of the root of a biquadratic polynomial to
eleven decimal places as a work of the most extravagant labour or as Hutton
says in 1795 the method is very laborious.

On Wednesday, 17 December 1690, in a meeting of the Royal Society we find
the following announcement of Raphson’s book [20] (quote from [30])

Mr Ralpson’s Book was this day produced by E Halley, wherein he gives
a Notable Improvemt of ye method of Resolution of all sorts of Equations
Shewing, how to Extract their Roots by a General Rule, which doubles
the known figures of the Root known by each Operation, So yt by re-
peating 3 or 4 times he finds them true to Numbers of 8 or 10 places.
The Society being highly pleased with this his performance Ordered him
their thanks with their Desires, that he would please to Continue to
prosecute those Studys, wherein he hath been so Successful.

This marks the end of an active area on numerical solution of algebraic equa-
tions using digit–by–digit computations. As mentioned in the introduction im-
proved methods appeared, but these methods were soon replaced by the Newton-
Raphson method, the Rule of Double False Position or the secant method. How-
ever, the digit–by–digit computation of square square roots continued to be
popular and was used in schools right up to the 1960s [29, 3].

9 Computing the Square Root

Why no one before Viète should have thought of applying to the solution of alge-
braic equations the classical method of finding roots of large numbers may seem
strange [17, p.24]. In this section we discuss this classical approach to compute
square root of any positive integer digit by digit. The history of the method goes
back in Europe to the 13th century with the method of Ibn al–Bannã [3]. Al-
ready in 1695 Wallis pointed out that the digit–by–digit computation advocated
by Viète, Harriot and Oughtred was not an efficient method [36]. Other iter-
ative methods that are not digit-by-digit based method are based on repeated
approximation of the root [28].
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Let N be a positive integer and assume that
√
N is an integer. Assume for

k ≥ 1 that

N =

2k−1∑
i=0

βi 10i =

k−1∑
i=0

(β2i + 10β2i+1) 102i, βi ∈ {0, 1, 2, . . . , 9}

where not both β2(k−1) and β2(k−1)+1 are equal 0. The number of digits in
√
N

will then be k, say

√
N =

k−1∑
i=0

αi 10i, αi ∈ {0, 1, . . . , 9}

In the following an approximation xj of
√
N will be the number with k digits

where the j leftmost digits αk−1, . . . , αk−j are determined and αk−j−1 = . . . =
α0 = 0,

xj =

k−1∑
i=k−j

αi10i = 10k−j
j−1∑
i=0

αi+k−j 10i, j = 1, 2, . . . , k

and the remaining k − j digits are 0. Let

aj =

j−1∑
i=0

αi+k−j 10i, then xj = 10k−jaj , j = 1, . . . , k − 1.

Let dj = αk−j−110k−j−1 where αk−j−1 is the digit to be determined. Since
xj+1 = xj + dj we have aj+1 = 10aj + αk−j−1.

To determine αk−j−1 choose largest αk−j−1 so that

(xj + dj)
2 ≤ N or dj(2xj + dj) ≤ N − x2j

Then we have

102(k−j−1)(20aj + αk−j−1)αk−j−1 ≤ N − x2j

Now use the assumption that the last k − j digits in xj are 0. Hence

N − x2j = 102(k−j)rj +

2(k−j)−1∑
i=0

βi10i

= 102(k−j−1)
(
102rj + 10β2(k−j−1)+1 + β2(k−j−1)

)
+

2(k−j−1)−1∑
i=0

βi10i

Then αk−j−1 is the largest integer so that

(20aj + αk−j−1)αk−j−1 ≤ r̂j ,
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where
r̂j = 102 rj + 10β2(k−j−1)+1 + β2(k−j−1).

Further, we have

rj+1 = r̂j − (20aj + αk−j−1)αk−j−1, j = 1, . . . k − 1.

To find the largest αk−j−1, Wallis [35, p.98] chooses αk−j−1 ≈ b
(r̂j−β2(k−j−1))/10

2aj
c

and increase or decrease if needed. To determine an approximation to the second

digit in Fig. 9 this will be b 7710c and for the third digit b (2386−6)/1057·2 c.
To determine the first digit αk−1 we note that

d20 ≤ N, or α2
k−1 ≤ 10β2k−1 + β2(k−1),

so the first digit can be easily be determined directly.
Then we have the following digit by digit square root algorithm

r := 0
a := 0
for j = 1, 2, . . . , k

r := 100r + 10β2(k−j)+1 + β2(k−j)
Find the largest αk−j so that

αk−j(20a+ αk−j) ≤ r
a := 10a+ αk−j
r := r − αk−j(20a+ αk−j)

We give two examples computing the square root by Wallis in 1685 [35, p.99] in
Fig. 9 and Newton in 1707 [16, p.32] in Fig. 9.
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Table 6. Test Examples from Oughtred 1647/48

Name p(x) = N Solution

Example 1 (p.140) x5 − 15x4 + 160x3 − 1250x2 + 6480x = 170304782 47

Example 2 (p.142) x3 + 420000x = 247651713 417

Example 3 (p.143) x3 + 1007x2 = 247617936 417

Example 4 (p.145) x4 − 44299005x = 22252086 354

Example 5 (p.146) x4 − 124600x2 = 89726256 354

Example 6 (p.147) x4 − 340x3 = 621066096 354

Example 7 (p.149) x4 − 77108000x = 85530576 426

Example 8 (p.150) −x3 + 3200x = 46577 47

Example 9 (p.151) −x3 + 3200x = 46577 15.7

Example 10 (p.152) −x3 + 53x2 = 13254 47

Example 11 (p.153) −x3 + 53x2 = 13254 20.05

Example 12 (p.154) −x3 + 60034x = 1023768 236

Example 13 (p.155) −x3 + 60034x = 1023768 17.135

Example 14 (p.156) x4 − 72x3 + 238600x = 8725815.7056 47.6

Example 15 (p.158) −x3 + 3x = 1.258640782100 0.4499

Example 16 (p.154) x5 − 5x3 + 5x = 1.147152872702092 0.2437
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Fig. 3. Computing the square root of 3272869681 in Wallis 1685[35, p.99]

j αk−j r̂j−1 aj−1 (20aj−1 + αk−j)αk−j rj
1 5 32 0 25 7
2 7 772 5 749 23
3 2 2386 57 2284 102
4 0 10296 572 0 10296
5 9 1029681 5720 1029681 0

Fig. 4. Square root of 22178791 with five decimals in Newton 1707[16, p.32]

j αk−j r̂j−1 aj−1 (20aj−1 + αk−j)αk−j rj
1 4 22 0 16 6
2 7 617 4 609 8
3 0 887 47 0 887
4 9 88791 470 84681 4110

5 4 411000 4709 376736 34264
6 3 3426400 47094 2825649 600751
7 6 60075100 470943 56513196 3561904
8 3 356190400 4709436 282566169 73624231
9 7 7362423100 47094363 6593210869 76921223
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