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Abstract
Clique-width and treewidth are two of the most important and useful graph parameters, and
several problems can be solved efficiently when restricted to graphs of bounded clique-width or
treewidth. Bounded treewidth implies bounded clique-width, but not vice versa. Problems like
Longest Cycle, Longest Path, MaxCut, Edge Dominating Set, and Graph Coloring
are fixed-parameter tractable when parameterized by the treewidth, but they cannot be solved
in FPT time when parameterized by the clique-width unless FPT = W[1], as shown by Fomin,
Golovach, Lokshtanov, and Saurabh [SIAM J. Comput. 2010, SIAM J. Comput. 2014]. For a given
problem that is fixed-parameter tractable when parameterized by treewidth, but intractable when
parameterized by clique-width, there may exist infinite families of instances of bounded clique-width
and unbounded treewidth where the problem can be solved efficiently. In this work, we initiate a
systematic study of the parameters co-treewidth (the treewidth of the complement of the input
graph) and co-degeneracy (the degeneracy of the complement of the input graph). We show that
Longest Cycle, Longest Path, and Edge Dominating Set are FPT when parameterized by
co-degeneracy. On the other hand, Graph Coloring is para-NP-complete when parameterized
by co-degeneracy but FPT when parameterized by the co-treewidth. Concerning MaxCut, we
give an FPT algorithm parameterized by co-treewidth, while we leave open the complexity of the
problem parameterized by co-degeneracy. Additionally, we show that Precoloring Extension
is fixed-parameter tractable when parameterized by co-treewidth, while this problem is known to
be W[1]-hard when parameterized by treewidth. These results give evidence that co-treewidth is a
useful width parameter for handling dense instances of problems for which an FPT algorithm for
clique-width is unlikely to exist. Finally, we develop an algorithmic framework for co-degeneracy
based on the notion of Bondy-Chvátal closure.
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1 Introduction

Treewidth and clique-width are two of the most important and useful graph parameters.
Families of graphs of bounded treewidth include cactus graphs, outerplanar graphs, series-
parallel graphs, Halin graphs, Apollonian networks [3], and graphs of bounded branch-
width [45]. Graph classes with bounded clique-width include cographs [10], distance-hereditary
graphs [35], and graphs of bounded treewidth [20]. Additionally, the clique-width of a graph
is asymptotically equivalent to its rank-width [43].

An algorithmic meta-theorem due to Courcelle, Makowsky and Rotics [15] states that
any problem expressible in the monadic second-order logic of graphs (MSO1) can be solved
in f(cw) · n time, i.e., it is fixed-parameter tractable when parameterized by the clique-width,
cw, of the input graph. Originally this required a clique-width expression as part of the
input. This restriction was removed when Oum and Seymour [43] gave an FPT algorithm,
parameterized by the clique-width of the input graph, that finds a 2O(cw)-approximation
of an optimal clique-width expression. In addition, Courcelle [16] states that any problem
expressible in the monadic second-order logic of graphs with edge set quantifications (MSO2)
can be solved in time f(tw) · n, where tw is the treewidth of the input graph. Clearly, every
MSO1 property is also a MSO2 property. However, there are MSO2 properties like “G has an
Hamiltonian cycle” that are not MSO1 expressible [18]. These results have been extended a
number of times [1, 9, 15, 37]. In particular, the MSO meta-theorems mentioned above were
extended to LinEMSO by allowing the expressibility of optimization problems concerning
maximum or minimum sets (LinEMSO properties are equivalent to MSO properties for
optimization problems which can be expressed as searching for sets of vertices/edges that are
optimal concerning some linear evaluation functions) [1, 17, 15]. From these meta-theorems,
it follows that several problems can be efficiently solved when restricted to graphs of bounded
clique-width or treewidth. Many optimization problems are LinEMSO2-expressible, but
Graph Coloring, the problem of determining the chromatic number of the input graph is
not a LinEMSO problem [41]. However, on graphs G with bounded treewidth, the chromatic
number of G is also bounded; therefore, in this specific case, the problem is Turing-reducible
to a MSO1 problem (k-Coloring for fixed k).

Bounded treewidth implies bounded clique-width [13] but the opposite implication is
not valid, as in the case of complete graphs. On the other hand, LinEMSO2 is more
expressive than LinEMSO1, and there exist LinEMSO2-expressible problems like MaxCut,
Longest Cycle, Longest Path and Edge Dominating Set that cannot be FPT when
parameterized by clique-width [28, 29, 30, 31], unless FPT = W[1]. Additionally, Graph
Coloring is also an FPT problem concerning treewidth parameterization that cannot be
FPT when parameterized by clique-width, unless FPT = W[1], see [30].

For problems that are fixed-parameter tractable when parameterized by treewidth, but
intractable when parameterized by clique-width, the identification of tractable classes of
instances of bounded clique-width and unbounded treewidth becomes a fundamental quest.
The goal of this work is to show that co-treewidth, that is to say, the treewidth of the
complement of the input graph, is a parameter that fulfills this quest. More precisely, we will
show that several natural problems that are unlikely to be in FPT when parameterized by
clique-width can be solved in FPT time when parameterized by co-treewidth. Examples of
such problems are Longest Path, Longest Cycle, MaxCut, Edge Dominating Set,
and Graph Coloring. In addition, since bounded treewidth implies bounded degeneracy
(the degeneracy of a graph is upper bounded by its treewidth), we also consider the degeneracy
of the complement graph, called co-degeneracy, as a parameter.
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Let us say that a parameter x is weaker than parameter y, and y stronger than x, if the
set of graph classes where x is bounded is a subset of those where y is bounded. In 2016,
Saether and Telle [46] considered a graph parameter called sm-width which is stronger than
treewidth and weaker than clique-width. They showed that MaxCut, Graph Coloring,
Hamiltonian Cycle and Edge Dominating Set are FPT when parameterized by sm-
width. However, co-treewidth and sm-width are incomparable since trees have bounded
sm-width but unbounded co-treewidth, and the complements of paths have bounded co-
treewidth but unbounded sm-width. Also, note that neighborhood diversity [40], twin-
cover [33], shrub-depth [34], and modular-width [32] are all weaker than clique-width, but
none of them are stronger than co-treewidth. Gajarský, Lampis, and Ordyniak [32] showed
that Graph Coloring and Hamiltonian Path are W[1]-hard parameterized by shrub-
depth but FPT parameterized by modular-width (which is stronger than neighborhood
diversity and twin-cover), they also leave as an open problem the complexity of MaxCut
and Edge Dominating Set parameterized by modular-width. Besides, also in the context
“between treewidth and clique-width”, Eiben, Ganian, Hamm, and Kwon [26] develop hybrid
parameters (H-treewidth) combining advantages of treewidth and modulators, the aim of
H-treewidth is to capture the treewidth of a modulator to the class H (see [26]).

In 2016, Dvořák, Knop, and Masařík [25] showed that k-Path Cover is FPT when
parameterized by the treewidth of the complement of the input graph (i.e., the co-treewidth
of the input). This implies that Hamiltonian Path is FPT when parameterized by co-
treewidth. In 2017, Knop, Koutecký, Masařík, and Toufar [38] asked about the complexity
of deciding graph problems Π on the complement of G considering a parameter p of G (i.e.,
with respect to p(G)), especially for sparse graph parameters such as treewidth. In this
paper, by showing that Longest Path, Longest Cycle, MaxCut, Edge Dominating
Set, and Graph Coloring are all FPT when parameterized by co-treewidth, we exemplify
that co-treewidth is a useful width parameter for dealing with problems for which an FPT
algorithm for clique-width is unlikely. Besides, to the best of our knowledge, this is the first
work dealing with co-degeneracy parameterization.

It is also natural to consider the clique-width of the complement graph as parameter,
however, Courcelle and Olariu [20] proved that for every graph G we have cw(Ḡ) ≤ 2 · cw(G).
Therefore, the notion of “co-clique-width” is redundant from the point of view of parameterized
complexity. On the other hand, the notion of co-treewidth seems to be interesting given that
bounded co-treewidth implies bounded clique-width; and treewidth and co-treewidth are
incomparable parameters. Moreover, although co-degeneracy is incomparable with clique-
width, it is stronger than co-treewidth and a useful parameter for handling some problems on
dense instances. In this paper, we show that Longest Path, Longest Cycle, and Edge
Dominating Set are FPT when parameterized by co-degeneracy, while Graph Coloring
is para-NP-hard. The complexity of MaxCut parameterized by co-degeneracy is left open.

Finally, we also remark that for some graph problems, co-treewidth can be a parameter
more useful than treewidth. For instance, Equitable Coloring and Precoloring
Extension are well-known W[1]-hard problems concerning treewidth; however, we remark
that both problems are fixed-parameter tractable when parameterized by co-treewidth.

1.1 Preliminaries
We use standard graph-theoretic and parameterized complexity notation, and we refer the
reader to [21, 24] for any undefined notation.

The degeneracy of a graph G is the least k such that every induced subgraph of G

contains a vertex with degree at most k. Equivalently, the degeneracy of G is the least k

such that its vertices can be arranged into a sequence so that each vertex is adjacent to most
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k vertices preceding it in the sequence. We denote by co-deg(G) the co-degeneracy of G, i.e.,
the degeneracy of G. Also, for a graph G, we denote by co-tw(G) the co-treewidth of G, i.e.,
the treewidth of G. For short, we use co-deg and co-tw whenever the graph G is implicit.

In general, for a tree decomposition (T, {Xt}t∈V (T )) it is common to distinguish one
vertex r of T which will be the root of T . This introduces natural parent-child and ancestor-
descendant relations in the tree T [21]. It is useful to design dynamic programming algorithms
based on tree decompositions to obtain rooted tree decompositions that satisfy some auxiliary
conditions. Such decompositions are so-called nice tree decompositions.

▶ Definition 1. A tree decomposition (T, {Xt}t∈V (T )) with root node Xr is nice, if the
following conditions are satisfied:

Xr = ∅; (the root is an empty bag of T )
If Xℓ is a leaf node of T , then Xℓ = ∅; (each leaf Xℓ is an empty bag of T )
Every non-leaf node of T is of one of the following three types:

1. Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some
vertex v /∈ Xt′ ; we say that v is introduced at t.

2. Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w} for some
vertex w ∈ Xt′ ; we say that w is forgotten at t.

3. Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

Let G be a graph and let (T, {Xt}t∈V (T )) be a nice tree-decomposition of the graph G.
For each node t of T , we denote by Tt the subtree of T rooted by t. Also, we denote by Gt

the subgraph of G induced by the set of vertices contained in some bag of Tt.
Based on the following results, we can assume that we are given a nice tree decomposition

of G without loss of generality.

▶ Theorem 2 ([5]). There exists an algorithm that, given an n-vertex graph G and an integer
k, runs in time 2O(k) · n and either outputs that the treewidth of G is larger than k, or
constructs a tree decomposition of G of width at most 5k + 4.

▶ Lemma 3 ([21]). Given a tree decomposition (T, {Xt}t∈V (T )) of G of width at most k, one
can in time O(k2 · max(|V (T )|, |V (G)|)) compute a nice tree decomposition of G of width at
most k that has at most O(k · |V (G)|) nodes.

The clique-width of a graph is another parameter that we will mention very often, and
therefore, we briefly define this parameter for completeness. Given a graph G, the clique-width
of G, denoted by cw(G), is defined as the minimum number of labels needed to construct G,
using the following four operations: create a single vertex v with an integer label ℓ (denoted
by ℓ(v)); take the disjoint union (i.e., co-join) of two graphs (denoted by ⊕); join by an (arc)
edge every vertex labeled i to every vertex labeled j for i ̸= j (denoted by η(i, j)); relabel all
vertices with label i by label j (denoted by ρ(i, j)). An algebraic term representing such a
construction of G and using at most k labels is a k-expression of G. The clique-width of G

is the minimum k for which G has a k-expression.
Given a graph G and a vertex v ∈ V (G), N(v) denotes the (open) neighborhood of v,

N [v] denotes the closed neighborhood of v ( N [v] = N(v) ∪ {v}), and d(v) denotes the degree
of v (d(v) = |N(v)|).

We say that two vertices v, w of G have the same type if N(v) \ {w} = N(w) \ {v}.
A graph G has neighborhood diversity at most k, if there exists a partition of V (G) into

at most k sets, such that all the vertices in each set have the same type. We denote by nd(G)
(or just nd when the graph G is implicit) the least k such that G has neighborhood diversity
at most k.
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A set S ⊆ V (G) is a vertex cover of a graph G if for each edge of G at least one of its
endpoints is in S. The vertex cover number of G, denoted by vc(G), is the least k such that
G has a vertex cover of size k. It is well known that if a graph G has vertex cover at most k,
then nd(G) ≤ 2k + k (c.f. [40]).

A path cover P of a graph G is a set of vertex-disjoint paths of G such that each vertex
in V (G) belongs to a path in P.

A graph G is Hamiltonian if there is a cycle which includes every vertex of G (such a
cycle is called a Hamiltonian cycle). A graph G is said k-Hamiltonian if the deletion of at
most k vertices from G results in a Hamiltonian graph.

Finally, we denote by n the number of vertices of the graph under consideration.

2 Monadic second-order logic for graphs with bounded co-treewidth

Dvořák, Knop, and Masařík [25] asked whether it is possible to extend the meta-theorem for
MSO2 for the complementary setting – i.e. to allow quantification over sets of non-edges. As
shown by Courcelle, Makowsky and Rotics [15] (assuming P ̸= NP on unary languages), it is
not possible to allow quantification over sets of edges as well as quantification over sets of
non-edges, under the requirement that for the target parameter the complete graphs should
have bounded width. However, as observed by Knop, Koutecký, Masařík, and Toufar [38],
the result that k-Path Cover2 is FPT when parameterized by co-treewidth suggests that
at least sometimes some extension of MSO theorem can be useful to decide properties of the
complement graph. Next, by way of illustration, we show that this is precisely the case of
Balanced co-Biclique, the problem of determining the maximum integer k for which the
input graph G has a pair of cliques K1, K2 such that |K1| = |K2| = k and there is no edge
from K1 to K2. Such a pair of cliques is the complement of a balanced complete bipartite
graph (balanced biclique).

Let LinEMSO2̄ be the extension of LinEMSO1, where quantification is allowed over
sets of non-edges, but quantification over sets of edges is not allowed. It is easy to see
that LinEMSO2̄-expressible problems are FPT concerning co-treewidth since LinEMSO2-
expressible problems are FPT concerning treewidth. Note that expressing a property in
LinEMSO2̄ is equivalent to expressing the complementary property in LinEMSO2.

▶ Lemma 4. Finding the maximum balanced biclique of a graph is LinEMSO2-expressible.

Proof. Given a graph G and set of vertices S1, it is easy to express in MSO1 the existence of
a disjoint set S2 such that S1 and S2 form an induced complete bipartite subgraph: S1 and
S2 must be independent sets, and G must contain all possible edges from S1 to S2. Although
comparing the cardinality of sets is not allowed in LinEMSO2, in this particular case, it
would still be possible by verifying the existence of a perfect matching in the subgraph
induced by S1 ∪ S2. Thus, the problem of finding the largest S1 meeting these conditions is
LinEMSO2-expressible. ◀

From Lemma 4 and the LinEMSO2 meta-theorem for optimization problems parameterized
by treewidth [19], it follows that Corollary 5 holds.

▶ Corollary 5. Balanced co-Biclique is fixed-parameter tractable when parameterized by
the co-treewidth of G.

2 k-Path Cover is the problem of finding a path cover of size k, where k is fixed.

MFCS 2021
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3 Bondy-Chvátal closure, stability and co-degeneracy

Let G be a graph with n vertices and let u and v be distinct nonadjacent vertices of G such
that d(u) + d(v) ≥ n. Ore’s theorem states that G is hamiltonian if and only if G + uv is
hamiltonian. In 1976, Bondy and Chvátal [8] generalized Ore’s theorem and defined a helpful
tool: the closure of a graph.

Let ℓ be an integer. The (n + ℓ)-closure cln+ℓ(G) of a graph G is obtained from G by
recursively adding an edge between pairs of nonadjacent vertices whose degree sum is at
least n + ℓ until no such pair remains. Bondy and Chvátal showed that cln+ℓ(G) is uniquely
determined by G and that G is hamiltonian if and only if cln(G) is hamiltonian.

First, observe that the classes of graphs with bounded co-degeneracy and bounded co-
treewidth are both closed under completion (edge addition), just as bounded degeneracy and
treewidth are closed under edge removals. Therefore, regarding Hamiltonian Cycle on
graphs with co-degeneracy or co-treewidth k, without loss of generality, we can assume that
G = cln(G).

Dvořák, Knop and Masařík [25] showed that if a graph G has co-treewidth k and
G = cln(G) (that is, closed under Bondy-Chvátal closure) then G has neighborhood diversity
bounded by 22(k2+k) + 2(k2 + k). Below we present some stronger results.

We call by co-vertex cover any set of vertices whose removal makes the resulting graph
complete, i.e., a vertex cover in the complement. The co-vertex cover number, co-vc(G), of a
graph G is the minimum cardinality of a co-vertex cover in G. Recall that co-vc(G) is also
called distance to clique, and a co-vertex cover set is also called a clique modulator.

▶ Theorem 6. Let ℓ ≥ 0 be an integer. If a graph G has co-degeneracy k and G = cln+ℓ(G)
then G has co-vertex cover number bounded by 2k + ℓ + 1. In addition, a co-vertex cover of
G with size at most 2k + ℓ + 1 can be found in polynomial time.

Proof. Let G be a graph such that G = cln+ℓ(G) and co-deg(G)=k.
We may assume that G has at least 2k + ℓ + 2 vertices.
Let v1, v2, v3, . . . , vn be an ordering of the vertices of G obtained by repeatedly removing

the minimum-degree vertex of G. For each t ∈ {1, 2, . . . , n} we denote by Gt the subgraph of
G induced by {vi : 1 ≤ i ≤ t}.

Note that G1 is a complete graph (i.e., a K1). Therefore, t = 1 is the base case.
Now, let t be an integer such that 2 ≤ t ≤ n and |V (G) \ V (Gt)| ≥ 2k + ℓ + 1.
Suppose by hypothesis that Gt−1 is a complete graph. At this point, it remains to prove

that Gt is also a complete graph.
Since V (Gt−1) = {v1, . . . , vt−1} is a clique of G and co-deg(G)=k, it holds that each

vertex of V (Gt−1) has degree at least n − k − 1 in G. Also, the vertex vt has at least k + ℓ + 1
neighbors in V (G) \ V (Gt), because |V (G) \ V (Gt)| ≥ 2k + ℓ + 1, and by the co-degeneracy
the vertex vt has at most k non-neighbors in V (G) \ V (Gt). Finally, as G = cln+ℓ(G) it
holds that vt is adjacent to all vertices of Gt−1 in the graph G, which implies that V (Gt) is
also a clique of G.

Thus, in a left-right manner according the ordering, v1, v2, v3, . . . , vn, we can observe that
each V (Gt) induces a clique until meeting the first vertex vj such that |V (G) \ V (Gj)| <

2k + ℓ + 1. This implies that {vj , vj+1, . . . , vn} is a co-vertex cover of G with size at most
2k + ℓ + 1, and it can be computed in polynomial time. ◀

As a corollary we improve the Dvořák-Knop-Masařík bound with respect to neighborhood
diversity for ℓ = 0.
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▶ Corollary 7. Let ℓ ≥ 0 be an integer. If a graph G has co-degeneracy k and G = cln+ℓ(G)
then G has neighborhood diversity bounded by 22k+ℓ+1 + 2k + ℓ + 1.

In [25], from the fact that if G = cln(G) then the neighborhood diversity is bounded by a
function of the co-treewidth, it is claimed that Hamiltonian Path is in FPT concerning co-
treewidth. For an FPT algorithm for Hamiltonian Path parameterized by the neighborhood
diversity (nd), they point to the seminal paper of Lampis [40], which uses an algorithm of
Cosmadakis and Papadimitriou [14] resulting in solving the problem in time O∗(2nd·log nd).
Recall that this strategy implies a solution for Hamiltonian Path in double exponential
time with respect to the co-treewidth. Below we present a much more efficient algorithm.
First, we consider co-vertex cover number parameterization.

▶ Lemma 8. Longest Path and Longest Cycle can be solved in time 2O(k·log k) · nO(1)

where k is the co-vertex cover number of the input graph.

Proof. Let S, K be a partition of the vertices of a graph G into a co-vertex cover S and
a clique K, where |S| = k. We assume that |K| > 2|S|; otherwise we can “guess”, in
single-exponential time, the vertices in the longest path/cycle, so one can solve both problems
using single-exponential exact algorithms for Hamiltonian Cycle (or TSP), such as the
Bellman–Held-Karp algorithm [2, 36].

Since |K| > 2|S|, there is a longest cycle and a longest path containing all vertices of K,
otherwise any longest cycle/path either has no edge between two vertices of K (therefore, it
has size at most 2|S|), or it has an edge uv where u, v ∈ K, implying that there is a larger
cycle/path obtained by replacing uv by a uv-path containing as internal vertices the vertices
of K that were not in the cycle/path, both cases contradict the fact that the cycle/path is
the longest. Also, note that Longest Path can be reduced to Longest Cycle by adding
one universal vertex. Therefore, we focus on Longest Cycle.

Now, in time 2O(|S|) one can branch by guessing the set Sx of vertices of S that are not in
the longest cycle, and then removing Sx. After that, we may assume that we are dealing with
an instance G′ of the Hamiltonian Cycle problem, where V ′ = V (G) \ Sx, G′ = G[V ′],
K ′ = K, and S′ = S \ Sx is a co-vertex cover of G′.

Let k′ be the cardinality of S′. Recall that k′ ≤ k. Now, we branch by guessing a
permutation s1, s2, . . . , sk′ of the vertices of S′ representing a circular order of visits of the
vertices of S′ in the Hamiltonian cycle C (if any). Given such a permutation s1, s2, . . . , sk′ ,
we guess the edges si, si+1 of G′ that are in C. Note that these branching steps take O(k! ·2k)
time. Recall that O(k! · 2k) = 2O(k log k). At this point, we have guessed the set of subpaths
of C induced by S′. Let P1, P2, . . . , Pr be the circular order of visits of such paths according
to the guessed permutation.

For each pair of consecutive paths Pi, Pi+1 either their corresponding endpoints are
connected by a common neighbor in C or there is a path of vertices of K between them in
such a cycle. Again, we branch by guessing in time 2O(k) the pairs connected by a common
neighbor. After that, we can construct a bipartite graph B with bipartiton V (B) = (B1, B2)
where: each vertex of B1 represents either a pair of endpoints of the paths that must have a
common neighbor in C, or an endpoint that has a distinct neighbor inside K along C; B2 is
the set of vertices of the clique K, and E(B) is defined according to the edges from S′ to K

(for vertices representing pairs of endpoints, the neighborhood is the vertices of K that are
neighbors of both endpoints). Clearly, if the guessed structures are feasible for obtaining a
Hamiltonian cycle C then B has a matching of size |B1|. Let M be such a matching, if any.

Since |K| > 2|S| we assume that for at least one pair Pi, Pi+1 its corresponding endpoints
do not have a common neighbor in C. Hence, having the matching M and such a path cover
P1, . . . , Pr of G′[S′], a Hamiltonian cycle can be easily obtained for G′. Therefore, Longest
Cycle and Longest Path can be solved in time 2O(k log k) ·nO(1), where k = co-deg(G). ◀

MFCS 2021
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Since Hamiltonian Path can be reduced to Hamiltonian Cycle by adding a universal
vertex, from Bondy-Chvátal Theorem, Theorem 6 and Lemma 8, the following holds.

▶ Corollary 9. Hamiltonian Cycle and Hamiltonian Path can be solved in time
2O(k log k) · nO(1), where k is the co-degeneracy of the input graph.

In order to extend the previous result to Path Cover, Longest Cycle, and Longest
Path as well as considering the same strategy for other properties, it becomes necessary to
introduce the notion of stability.

3.1 The stability of a property
A property P defined on all graphs of order n is said to be (n + ℓ)-stable if for any graph
G of order n that does not satisfy P , the fact that uv is not an edge of G and that G + uv

satisfies P implies d(u) + d(v) < n + ℓ. In other words, if uv /∈ E(G), d(u) + d(v) ≥ n + ℓ

and G + uv has property P , then G itself has property P (c.f. [12]). We denote by s(P ) the
smallest integer n + ℓ such that P is (n + ℓ)-stable, and call it the stability of P .

Note that if a graph property P is (n + ℓ)-stable then edges between pair of vertices u, v

such that d(u) + d(v) ≥ n + ℓ can be added without destroying such a property P .
Our co-degeneracy+closure+co-vertex cover framework is based on the following facts:

1. If a property P is (n + ℓ)-stable and cln+ℓ(G) satisfies P , then G itself satisfies P .
2. If a property P is (n + ℓ)-stable, regarding the problem of recognizing property P

parameterized by co-degeneracy we can assume without loss of generality that G =
cln+ℓ(G).

3. If G = cln+ℓ(G) and G has co-degeneracy k then G has a co-vertex cover of size at most
2k + ℓ + 1. In particular, we are interested in cases where ℓ is bounded by a function of k.

4. Many problems are easily solved in FPT-time concerning co-vertex cover parameterization.

Next, we list the stability of some graph properties P (see [8, 11, 12]):
Longest Cycle: “G has circumference k” satisfies s(P ) = n. (Thm. 4 in [11])
Longest Path: “G contains a Pk” satisfies s(P ) = n − 1 for 4 ≤ k ≤ n. (Thm. 2.40 in [12])
Path Cover: “G has a path cover of size at most k” satisfies s(P ) = n − k. (Thm. 9.13 in [8])
k-Hamiltonian: “G is k-Hamiltonian” satisfies s(P ) = n + k. (Thm. 2.25 in [12])

At this point, it is easy to see that Corollary 10 holds.

▶ Corollary 10. Longest Cycle/Path can be solved in time 2O(co-deg log co-deg) · nO(1), and
k-Hamiltonian graphs can be recognized in time 2O((co-deg+k) log(co-deg+k)) · nO(1).

Proof. By the stability of the properties regarding the computation of the longest cycle,
longest path, and recognition of k-Hamiltonian graphs, it holds that one can assume that
G is closed under Bondy-Chvátal closure for an appropriated integer ℓ (G = cln+ℓ(G)). By
Theorem 6, it holds that G has a co-vertex cover S of size O(co-deg), or O(co-deg + k) in
the k-Hamiltonian case, and such a co-vertex cover can be obtained in polynomial time.

Given a co-vertex cover S of G, in time 2O(|S|) one can “guess” the vertices of S that
must be removed or are not in the longest cycle/path. After that, the proof follows as in
Lemma 8. ◀

Next, we deal with the Path Cover problem.

▶ Corollary 11. Path Cover can be solved in time 2O(co-deg log co-deg) · nO(1).
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Proof. By the stability of the property P of having a path cover of size at most k (see [8]),
without loss of generality, we can assume G = cln−k(G). Note that E(G) ⊆ E(cln(G)) ⊆
E(cln−k(G)). Thus, from Theorem 6 it holds that G has co-vertex cover number at most
2k+1, where k = co-deg(G). In addition, such a co-vertex cover S can be found in polynomial
time. Thus, G has a path cover of size at most 2k + 2, because one can use a trivial path for
each vertex of the co-vertex cover, and a single path for the remaining vertices (they induce
a clique). So, the path cover number of a graph G is bounded by 2k + 2. At this point, it is
enough to determine the least r ∈ [1, 2k + 2] for which G has an r-path cover (path cover
of size r). Since one can reduce the problem of finding an r-path cover to Hamiltonian
Path by adding r − 1 universal vertices, and the addition of universal vertices preserve the
co-vertex cover number of the input graph, by Corollary 9 it holds that Path Cover can
also be solved in time 2O(k log k) · nO(1), where k = co-deg(G). ◀

4 Edge Dominating Set parameterized by co-degeneracy

An edge dominating set of a graph G is a set Q ⊆ E(G) such that every edge of G is either
in Q or incident to at least one edge of Q. The Edge Dominating Set problem consists of
determining the size of a minimum edge dominating set.

In [30], Fomin et al. showed that Edge Dominating Set parameterized by clique-width
is W[1]-hard. In [29, 31], they showed that Edge Dominating Set cannot be solved in
time f(cw) · no(cw), unless ETH fails.

In this section, we present a single-exponential FPT algorithm for Edge Dominating
Set parameterized by the co-degeneracy.

▶ Theorem 12. Edge Dominating Set can be solved in time 2O(co-deg) · nO(1).

Proof. First, we observe the following key property.

▷ Claim 13. The problem of finding a minimum edge dominating set is equivalent to finding
the smallest vertex cover S such that G[S] contains a perfect matching.

Proof. Yannakakis and Gavril [49] showed that given a minimum edge dominating set Q

of G, one could find a minimum maximal matching with |Q| edges. Since every maximal
matching is an edge dominating set, the size of a minimum edge dominating set equals the
size of a minimum maximal matching.

Now, let Q be a minimum edge dominating set that is also a minimum maximal matching.
Since Q is a maximal matching then V (Q) is a vertex cover inducing a graph having perfect
matching. In addition, there is no vertex cover smaller than V (Q) that also induces a graph
having perfect matching; otherwise, Q is not a minimum maximal matching.

Conversely, let S be the smallest vertex cover S of G such that G[S] contains a perfect
matching. Let Q be such a perfect matching of G[S]. Since S is a vertex cover of G then
V \ S is an independent set, which implies that Q is a maximal matching of G. In addition,
Q must be a minimum maximal matching, otherwise using the previous argument we obtain
a vertex cover smaller than S also having a perfect matching, a contradiction. ◁

Now, recall that enumerating vertex covers in G is the same as enumerating independent
sets in the same graph, which is equivalent to enumerating the cliques of G.

Since G has degeneracy k, we can enumerate all cliques containing some vertex of degree
at most k (such a vertex must exist and there are at most 2k cliques containing it); by deleting
this vertex and continuing the enumeration in the remaining graph, we can enumerate every
clique of G.
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Therefore, if a graph G has co-degeneracy k, then G has at most 2k · n distinct vertex
covers which we can enumerate in time O(2k · nO(1)). Thus, by checking the existence of
perfect matchings, one can find the minimum edge dominating set in time 2k · nO(1). ◀

5 MaxCut parameterized by co-treewidth

A cut [S, V \ S] of a graph G = (V, E) is a partition of V into two subsets S and V \ S.
The size of the cut [S, V \ S] is the number of edges crossing it, i.e., the cardinality of the
cut-set {uv ∈ E | u ∈ S, v ∈ V \ S}. In the MaxCut problem, we are given an unweighted
undirected graph G = (V, E), and our goal is to find a cut of maximum size.

From the parameterized complexity point of view, to determine if G has a cut of size at
least k is fixed-parameter tractable when parameterized by either k or k − | |E|

2 | (c.f. [42, 44]).
In addition, in 2000, Bodlaender and Jansen [6] showed that MaxCut can be solved in
FPT time when parameterized by the treewidth, and, in 2013, Bodlaender, Bonsma, and
Lokshtanov presented an O(2tw ·n) time algorithm for the problem, where tw is the treewidth
of the input graph. On the other hand, Fomin, Golovach, Lokshtanov and Saurabh [29, 31]
showed that MaxCut cannot be solved in time f(cw) · no(cw), unless ETH fails, where cw is
the clique-width of the input graph G.

Regarding co-degeneracy parameterization we left the complexity of MaxCut open. To
the best of our knowledge, the complexity of MaxCut is unknown even for co-planar graphs
(the class of planar graphs is a subclass of the 5-degenerate graphs).

Concerning co-treewidth, it is not clear whether MaxCut can be expressed in LinEMSO2̄.
Given a cut [S, V \ S] of a graph G, the complement of the cut-set of [S, V \ S] is the set
of non-edges that have one endpoint in each subset of the partition. The main challenge
to express MaxCut using just quantification over sets of vertices and sets of non-edges is
that the size of [S, V \ S] is given by (|S| · |V \ S|) − |{uv /∈ E | u ∈ S, v ∈ V \ S}|, thus, the
natural objective function is not linear, and it is not appropriate to express the problem in
LinEMSO. However, using a nice tree decomposition of the complement graph, we can find
the maximum cut of the input graph in single-exponential time concerning the co-treewidth.

Given a graph G and a nice tree-decomposition (T, {Xt}t∈V (T )) of G, our goal is to use
(T, {Xt}t∈V (T )) in order to find a maximum cut of G. Recall that for each node t of T , we
denote by Gt the subgraph of G induced by the set of vertices contained in some bag of Tt.
Also, for each Xt the set of forgotten vertices in Gt is denoted by Ft (Ft = V (Gt) \ Xt).

Given a cut [S, V \ S], we say that S is left part of the partition defined by the cut, and
V \ S is the right part.

Let C[t, S, ℓ] be the size of a maximum cut of the subgraph Gt, where S are the vertices
of Xt to the left part of the partition defined by the cut, and Xt \ S are the vertices of Xt on
the right part. Also, ℓ represents how many forgotten vertices are in the left part of this cut.

At this point, it is sufficient to show how to compute in a bottom-up manner the entries
of the matrix (which is regarding G (not G)) according to each type of node of the nice tree
decomposition of G. Note that the maximum size of a cut in G equals max0≤ℓ≤n{C[r, ∅, ℓ]},
where r is the root of the tree decomposition.

For each node t of T we denote by t′ and t′′ the children of t (if any), and for each bag
Xt we denote by E(Xt) the set of edges with both endpoints in Xt. Thus, we proceed as
follows:
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Leaf: Since Xt = ∅, it holds that S = ∅, ℓ = 0, and C[t, S, ℓ] = 0.

Introduce vertex: Xt = Xt′ ∪ {v}. Recall that we are working with the tree decomposition
of G, so the size of cuts of G is given by non-edges of G.

C[t, S, ℓ] =
{

C[t′, S \ {v}, ℓ] + |Xt \ S| − |{uv ∈ E(Xt) : u /∈ S}| + (|Ft′ | − ℓ) if v ∈ S

C[t′, S, ℓ] + |S| − |{uv ∈ E(Xt), u ∈ S}| + ℓ if v /∈ S
(1)

Note that |Ft′ | − ℓ is the number of vertices forgotten to the right part of the cut.

Forget vertex: Xt = Xt′ \ {v}. In this case, we take the best of two possibilities: v in the
left or right part of the cut.

C[t, S, ℓ] = max{C[t′, S ∪ {v}, ℓ − 1], C[t′, S, ℓ]} (2)

Join: Xt = Xt′ = Xt′′ . In this case we have to do the union of two partial solutions. Since
non-edges of G[Xt] are non-edges of both Gt′ and Gt′′ , they must not be counted twice.
In addition, there are non-edges between forgotten vertices of Gt′ and Gt′′ that must be
counted, so:

C[t, S, ℓ] = max
0≤i≤ℓ

{C[t′, S, i] + C[t′′, S, ℓ − i] − (|S| · |Xt \ S| − |{uv ∈ E(Xt) : u ∈ S, v /∈ S}|)+

i · (|Ft′′ | − (ℓ − i)) + (|Ft′ | − i) · (ℓ − i)} (3)

Since the correctness of the recurrences is straightforward, the matrix has size 2O(co-tw)·n2,
and each entry can be computed in time O(n), the following theorem holds.

▶ Theorem 14. MaxCut can be solved in 2O(co-tw) · n3.

6 Treewidth vs. co-treewidth

In the previous sections we showed that Path Cover, Longest Cycle, Longest Path,
MaxCut, and Edge Dominating Set are all FPT concerning co-treewidth parameteriza-
tion. These results contrast with the intractability of such problems regarding clique-width
parameterization. Since all of these problems are also fixed-parameter tractable when para-
meterized by treewidth, it becomes interesting to identify problems that are tractable for
co-treewidth but intractable concerning treewidth, as well as the opposite.

The TSP problem is NP-hard on complete graphs (co-treewidth equal to zero) but
fixed-parameter tractable when parameterized by treewidth [4]. On the other hand, Fellows
et al. [27] showed that Precoloring Extension and Equitable Coloring are W[1]-hard
when parameterized by treewidth; next, we contrast these results by remarking that both
problems are fixed-parameter tractable using co-treewidth as the parameter.

6.1 Coloring and covering problems
Each color class of a proper coloring of a graph G is an independent set, i.e., each color
class is a clique in the complement. So, to solve Graph Coloring working with the
complement graph, we must solve Clique Cover in G. Therefore, Graph coloring
parameterized by co-degeneracy/co-treewidth is equivalent to Clique Cover parameterized
by degeneracy/treewidth. It is known that Graph coloring and Clique Cover are NP-
hard on planar graphs [39, 22]. Thus, they are para-NP-hard with respect to co-degeneracy.
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Regarding co-treewidth, it is not clear if Clique Cover can be solved using the MSOL2
framework because in contrast with Graph Coloring, the size of the solution is unbounded
on bounded treewidth graphs. However, in [47], van Rooij, Bodlaender, van Leeuwen,
Rossmanith, and Vatshelle present an FPT algorithm for γ-Clique Cover parameterized
by treewidth. The γ-Clique Cover problem is a generalization of Clique Cover where
the goal is to find a minimum collection C of disjoint cliques covering V (G) such that the
size of every clique in C is contained in γ (a set of integers). They showed a FPT algorithm
that computes the size and number of minimum γ-clique covers of G. Preliminary parts
of [47] have appeared in [7, 48]. Thus, Graph Coloring is FPT concerning co-treewidth.

The Equitable Coloring problem is a variation of Graph Coloring where we are
asked to find the minimum integer k for which the input graph G admits a proper k-coloring
such that the sizes of any two color classes differ by at most one. Again, to solve Equitable
Coloring one can consider the complementary problem, i.e., Equitable Clique Cover
parameterized by treewidth. In the Equitable Clique Cover problem, we are asked to
find the minimum integer k such that the input graph G admits a clique cover of size k such
that the sizes of any two cliques of the cover differ by at most one. Thus, one can use the
algorithm for γ-Clique Cover to solve Equitable Clique Cover, considering that all
the cliques must have size either ℓ or ℓ − 1 (γ = {ℓ, ℓ − 1}). Using the folklore fact that
for a graph G, every clique of G is contained in some bag of a tree decomposition of G, it
follows that we only need to consider ℓ in [2, tw(G) + 1]. Therefore, the running time of the
algorithm increases by a factor of at most tw(G), and Equitable Coloring can also be
solved in FPT time concerning co-treewidth. Besides, Gomes, Lima and dos Santos [23],
using fast subset convolution as in [47], also showed an FPT-algorithm concerning treewidth
for counting clique covers of G having only cliques of size ℓ and ℓ − 1.

6.1.1 Precoloring Extension parameterized by co-treewidth

Precoloring Extension is a generalization of Graph Coloring, where we are given a
graph G = (V, E) with a subset P ⊆ V of precolored vertices, a precoloring cP of the vertices
of P , and asked to determine the minimum integer k for which G admits a proper k-coloring
c which extends cP (that is, c(v) = cP (v) for all v ∈ P ).

Again, we work with the complementary problem, which we propose to call Clique
Cover Extension. In such a problem the input is the same as in Precoloring Extension,
and the goal is to determine the minimum size of a clique cover for which vertices with the
same color are in the same clique, and no clique has a pair of precolored vertices v, u such
that cP (v) ̸= cP (u).

Next, we present a standard dynamic programming based on nice tree decompositions to
solve Clique Cover Extension parameterized by treewidth. The proposed algorithm has
a single-exponential dependency on the treewidth and preserves linearity with respect to n.

First, we assume that each color class induces a clique; otherwise, there is no solution.
Thus, in the forget node t of a precolored vertex v it holds that all vertices precolored with
color cP (v) belong to the graph Gt.

Let C[t, S] be the minimum number of cliques needed to cover the vertices of V (Gt) \ S

in Gt (the subgraph rooted by the node t) according to the constraints of Clique Cover
Extension, where S is a subset of Xt. Since each clique is contained in some bag, we assume
that each clique is formed when its last vertex is introduced. Therefore, the matrix is filled
in a bottom-up manner as follows.
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Leaf: Xt = ∅, thus S = ∅ and C[t, S] = 0.

Introduce vertex: We are introducing the vertex v and all its edges. Thus, we have two
possibilities: v ∈ S or v /∈ S. In the second case, v forms a new clique which either has size
one or is formed by v together with some non-covered neighbors in Gt′ .

C[t, S] =

C[t′, S \ {v}], if v ∈ S

min
∀ W

{C[t′, S ∪ W ]} + 1, if v /∈ S
(4)

where the minimum is taken over all possible W ⊆ N(v) ∩ (Xt \ S) such that G[W ] is a
clique (including the empty set) and:

W ∪ {v} contains no pair of precolored vertices u, w such that cP (u) ̸= cP (w);
if W ∪ {v} contains a precolored vertex then it contains all vertices precolored with the
same color.

Forget vertex: In this node the vertex v is forgotten. Since this vertex must be covered
with a clique of Gt′ , we have the following

C[t, S] = C[t′, S]

Join: In this case, we are joining solutions of the graphs rooted by nodes Xt′ and Xt′′ .
Every vertex of V (Gt) \ S should be covered by a clique in either Gt′ or Gt′′ . To avoid
counting twice some cliques of G[Xt], it is sufficient to note that if a vertex of Xt is covered
in Gt′ , then we can assume that it is not covered in Gt′′ , and vice versa. This implies that
for each pair of solutions to be analyzed (one from each child), the cliques of G[Xt] are
considered in at most one of them.

C[t, S] = min
∀S′,S′′

{C[t′, S′] + C[t′′, S′′]}

where the minimum is taken over all possible S′, S′′ such that S = S′ ∩ S′′, S′ ∪ S′′ = Xt.
Since the matrix has size O(2tw(G) · tw(G) · n), and each entry can be computed in

O(2tw(G)), the following holds.

▶ Theorem 15. Clique Cover Extension can be solved in 2O(tw(G)) · n.

▶ Corollary 16. Precoloring Extension can be solved in 2O(co-tw(G)) · n.

7 Concluding Remarks

Longest Cycle, Longest Path, Path Cover, MaxCut, Edge Dominating Set
and Graph Coloring are all fixed-parameter tractable when parameterized by treewidth,
but they are W[1]-hard when parameterized by clique-width. To handle dense instances of
problems that are hard when parameterized by clique-width, we have considered the notions
of co-degeneracy and co-treewidth of a graph.
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We have proposed a framework based on Bondy-Chvátal closure for working with co-
degeneracy. Using this framework we showed that Longest Cycle, Longest Path and
Path Cover are FPT when parameterized by co-degeneracy. Additionally, using a different
approach, we showed that Edge Dominating Set is also FPT when parameterized by
co-degeneracy. Conversely, we remark that Graph Coloring is para-NP-hard regarding
co-degeneracy parameterization while the complexity of MaxCut is left open. On the other
hand, both Graph Coloring and MaxCut are FPT when parameterized by co-treewidth.

We also have shown that Precoloring Extension is fixed-parameter tractable taking
the co-treewidth as parameter, while it is known to be W[1]-hard when parameterized by
treewidth (see [27]). The same holds for Equitable Coloring. In contrast, Clique Cover
Extension and Equitable Clique Cover are FPT when parameterized by treewidth
and W[1]-hard when parameterized by co-treewidth.

These results, which are summarized in Table 1, give evidence that co-degeneracy and
co-treewidth are handy width parameters for dealing with problems for which FPT algorithms
parameterized by clique-width are unlikely to exist.

Table 1 Parameterized complexity concerning treewidth, co-treewidth, co-degeneracy, and clique-
width of graph problems addressed in this work. Courcelle and Olariu [20] proved that for every
graph G we have cwd(G) ≤ 2.cwd(G), thus the W[1]-hardness of Clique Cover is implied from
Graph Coloring. Also, the indicated para-NP-hardness are inherited from Graph Coloring or
Clique Cover. The main results presented in this work are highlighted in red.

tw co-tw co-deg cw

Longest Path FPT FPT FPT W[1]-h
Longest Cycle FPT FPT FPT W[1]-h
Edge Dominating Set FPT FPT FPT W[1]-h
Maximum Cut FPT FPT open W[1]-h
Graph Coloring FPT FPT para-NP-h W[1]-h
Clique Cover FPT FPT para-NP-h W[1]-h
Precoloring Extension W[1]-h FPT para-NP-h W[1]-h
Equitable Coloring W[1]-h FPT para-NP-h W[1]-h
Clique Cover Extension FPT W[1]-h para-NP-h W[1]-h
Equitable Clique Cover FPT W[1]-h para-NP-h W[1]-h

We remark that min{treewidth,co-treewidth} seems to be a nice parameter between tree-
width and clique-width. Note that every problem which can be expressed in both LinEMSO2
and LinEMSO2̄ is solvable in FPT-time when parameterized by min{treewidth,co-treewidth}.
Therefore, co-treewidth is a powerful tool to manipulate dense graphs.

We left the complexity of MaxCut parameterized by co-degeneracy as an open problem.
We remark that determining the complexity of MaxCut seems to be a challenge even for
co-planar graphs. Also, investigating the applicability of co-treewidth for problems that are
hard when parameterized by treewidth is an interesting research direction. In particular, the
complexity of List Coloring parameterized by co-treewidth is another interesting question.

Finally, we note that one can also consider parameters between co-degeneracy and co-
treewidth such as co-contraction degeneracy, which is defined as the maximum degeneracy of
a minor of the complement of G.
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