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Abstract
In the Intersection Non-emptiness problem, we are given a list of finite automata A1, A2, . . . , Am

over a common alphabet Σ as input, and the goal is to determine whether some string w ∈ Σ∗ lies
in the intersection of the languages accepted by the automata in the list. We analyze the complexity
of the Intersection Non-emptiness problem under the promise that all input automata accept a
language in some level of the dot-depth hierarchy, or some level of the Straubing-Thérien hierarchy.
Automata accepting languages from the lowest levels of these hierarchies arise naturally in the context
of model checking. We identify a dichotomy in the dot-depth hierarchy by showing that the problem
is already NP-complete when all input automata accept languages of the levels B0 or B1/2 and already
PSPACE-hard when all automata accept a language from the level B1. Conversely, we identify a
tetrachotomy in the Straubing-Thérien hierarchy. More precisely, we show that the problem is in AC0

when restricted to level L0; complete for L or NL, depending on the input representation, when
restricted to languages in the level L1/2; NP-complete when the input is given as DFAs accepting a
language in L1 or L3/2; and finally, PSPACE-complete when the input automata accept languages in
level L2 or higher. Moreover, we show that the proof technique used to show containment in NP
for DFAs accepting languages in L1 or L3/2 does not generalize to the context of NFAs. To prove
this, we identify a family of languages that provide an exponential separation between the state
complexity of general NFAs and that of partially ordered NFAs. To the best of our knowledge, this
is the first superpolynomial separation between these two models of computation.
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1 Introduction

The Intersection Non-emptiness problem for finite automata is one of the most funda-
mental and well studied problems in the interplay between algorithms, complexity theory, and
automata theory [12,20, 21, 24, 26,43, 44, 45]. Given a list A1, A2, . . . , Am of finite automata
over a common alphabet Σ, the goal is to determine whether there is a string w ∈ Σ∗ that is
accepted by each of the automata in the list. This problem is PSPACE-complete when no
restrictions are imposed [24], and becomes NP-complete when the input automata accept
unary languages (implicitly contained already in [38]) or finite languages [34].

In this work, we analyze the complexity of the Intersection Non-emptiness problem
under the assumption that the languages accepted by the input automata belong to a
given level of the Straubing-Thérien hierarchy [33,39,40,42] or to some level of the Cohen-
Brzozowski dot-depth hierarchy [6, 11, 33]. Somehow, these languages are severely restricted,
in the sense that both hierarchies, which are infinite, are entirely contained in the class of
star-free languages, a class of languages that can be represented by expressions that use union,
concatenation, and complementation, but no Kleene star operation [6, 8, 33]. Yet, languages
belonging to fixed levels of either hierarchy may already be very difficult to characterize, in
the sense that the very problem of deciding whether the language accepted by a given finite
automaton belongs to a given full level or half-level k of either hierarchy is open, except for
a few values of k [2, 15, 16, 33]. It is worth noting that while the problem of determining
whether a given automaton accepts a language in a certain level of either the dot-depth or of
the Straubing-Thérien hierarchy is computationally hard (Theorem 1), automata accepting
languages in lower levels of these hierarchies arise naturally in a variety of applications such
as model checking where the Intersection Non-emptiness problem is of fundamental
relevance [1, 4, 5].

An interesting question to consider is how the complexity of the Intersection Non-
emptiness problem changes as we move up in the levels of the Straubing-Thérien hierarchy
or in the levels of the dot-depth hierarchy. In particular, does the complexity of this problem
changes gradually, as we increase the complexity of the input languages? In this work, we show
that this is actually not the case, and that the complexity landscape for the Intersection
Non-emptiness problem is already determined by the very first levels of either hierarchy (see
Figure 1). Our first main result states that the Intersection Non-emptiness problem for
NFAs and DFAs accepting languages from the level 1/2 of the Straubing-Thérien hierarchy are
NL-complete and L-complete, respectively, under AC0 reductions (Theorem 3). Additionally,
this completeness result holds even in the case of unary languages. To prove hardness for NL
and L, respectively, we will use a simple reduction from the reachability problem for DAGs
and for directed trees, respectively. Nevertheless, the proof of containment in NL and in L,
respectively, will require a new insight that may be of independent interest. More precisely,
we will use a characterization of languages in the level 1/2 of the Straubing-Thérien hierarchy
as shuffle ideals to show that the Intersection Non-emptiness problem can be reduced
to concatenation non-emptiness (Lemma 5). This allows us to decide Intersection
Non-emptiness by analyzing each finite automaton given at the input individually. It is
worth mentioning that this result is optimal in the sense that the problem becomes NP-hard
even if we allow a single DFA to accept a language from L1, and require all the others to
accept languages from L1/2 (Theorem 8).

https://www.dagstuhl.de/20483
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Subsequently, we analyze the complexity of Intersection Non-emptiness when all
input automata are assumed to accept languages from one of the levels of B0 or B1/2 of the
dot-depth hierarchy, or from the levels L1 or L3/2 of the Straubing-Thérien hierarchy. It is
worth noting that NP-hardness follows straightforwardly from the fact that Intersection
Non-emptiness for DFAs accepting finite languages is already NP-hard [34]. Containment
in NP, on the other hand, is a more delicate issue, and here the representation of the input
automaton plays an important role. A characterization of languages in L3/2 in terms of
languages accepted by partially ordered NFAs [37] is crucial for us, combined with the
fact that Intersection Non-emptiness when the input is given by such automata is
NP-complete [29]. Intuitively, the proof in [29] follows by showing that the minimum length
of a word in the intersection of languages in the level 3/2 of the Straubing-Thérien hierarchy is
bounded by a polynomial on the sizes of the minimum partially ordered NFAs accepting these
languages. To prove that Intersection Non-emptiness is in NP when the input automata
are given as DFAs, we prove a new result establishing that the number of Myhill-Nerode
equivalence classes in a language in the level L3/2 is at least as large as the number of states
in a minimum partially ordered automaton representing the same language (Lemma 12).

Interestingly, we show that the proof technique used to prove this last result does not
generalize to the context of NFAs. To prove this, we carefully design a sequence (Ln)n∈N≥1

of languages over a binary alphabet such that for every n ∈ N≥1, the language Ln can be
accepted by an NFA of size n, but any partially ordered NFA accepting Ln has size 2Ω(

√
n).

This lower bound is ensured by the fact that the syntactic monoid of Ln has many J -factors.
Our construction is inspired by a technique introduced by Klein and Zimmermann, in a
completely different context, to prove lower bounds on the amount of look-ahead necessary to
win infinite games with delay [22]. To the best of our knowledge, this is the first exponential
separation between the state complexity of general NFAs and that of partially ordered NFAs.
While this result does not exclude the possibility that Intersection Non-emptiness for
languages in L3/2 represented by general NFAs is in NP, it gives some indication that proving
such a containment requires substantially new techniques.

Finally, we show that Intersection Non-emptiness for both DFAs and for NFAs is
already PSPACE-complete if all accepting languages are from the level B1 of the dot-depth
hierarchy or from the level L2 of the Straubing-Thérien hierarchy. We can adapt Kozen’s
classical PSPACE-completeness proof by using the complement of languages introduced in [28]
in the study of partially ordered automata. Since the languages in [28] belong to L3/2, their
complement belong to L2 (and to B1), and therefore, the proof follows.

Due to space constraints, many details of the paper can be found in the long version [3].

2 Preliminaries

We let N≥k denote the set of natural numbers greater or equal than k.
We assume the reader to be familiar with the basics in computational complexity the-

ory [31]. In particular, we recall the inclusion chain: AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ P ⊆ NP ⊆
PSPACE. Let AC0 (NC1, respectively) refer to the class of problems accepted by Turing
machines with a bounded (unbounded, respectively) number of alternations in logarithmic
time; alternatively one can define these classes by uniform Boolean circuits. Here, L (NL,
respectively) refers to the class of problems that are accepted by deterministic (nondetermin-
istic, respectively) Turing machines with logarithmic space, P (NP, respectively) denotes the
class of problems solvable by deterministic (nondeterministic, respectively) Turing machines
in polynomial time, and PSPACE refers to the class of languages accepted by deterministic or

FSTTCS 2021
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Figure 1 Straubing-Thérien and dot-depth hierarchies: the Intersection Non-emptiness status.

nondeterministic Turing machines in polynomial space [35]. Completeness and hardness are
always meant with respect to deterministic logspace many-one reductions unless otherwise
stated. We will also consider the parameterized class XP of problems that can be solved
in time nf(k), where n is the size of the input, k is a parameter, and f is a computable
function [13].

We mostly consider nondeterministic finite automata (NFAs). An NFA A is a tuple
A = (Q, Σ, δ, q0, F ), where Q is the finite state set with the start state q0 ∈ Q, the alphabet Σ
is a finite set of input symbols, and F ⊆ Q is the final state set. The transition function
δ : Q × Σ → 2Q extends to words from Σ∗ as usual. Here, 2Q denotes the powerset of Q. By
L(A) = { w ∈ Σ∗ | δ(q0, w) ∩ F ̸= ∅ }, we denote the language accepted by A. The NFA A is
a deterministic finite automaton (DFA) if |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. Then, we
simply write δ(q, a) = p instead of δ(q, a) = {p}. If |Σ| = 1, we call A a unary automaton.

We study Intersection Non-emptiness problems and their complexity. For finite
automata, this problem is defined as follows:

Input: Finite automata Ai = (Qi, Σ, δi, q(0,i), Fi), for 1 ≤ i ≤ m.
Question: Is there a word w that is accepted by all Ai, i.e., is

⋂m
i=1 L(Ai) ̸= ∅?

Observe that the automata have a common input alphabet. Note that the complexity of
the non-emptiness problem for finite automata of a certain type is a lower bound for the
Intersection Non-emptiness for this particular type of automata. Throughout the paper
we are mostly interested in the complexity of the Intersection Non-emptiness problem
for finite state devices whose languages are contained in a particular language class.

We study the computational complexity of the intersection non-emptiness for languages
from the classes of the Straubing-Thérien [39,42] and Cohen-Brzozowski’s dot-depth hier-
archy [11]. Both hierarchies are concatenation hierarchies that are defined by alternating the
use of polynomial and Boolean closures. Let’s be more specific. Let Σ be a finite alphabet. A
language L ⊆ Σ∗ is a marked product of the languages L0, L1, . . . , Lk, if L = L0a1L1 · · · akLk,
where the ai’s are letters. For a class of languages M, the polynomial closure of M is the set
of languages that are finite unions of marked product of languages from M.

The concatenation hierarchy of basis M (a class of languages) is defined as follows (also
refer to [32]): Level 0 is M, i.e., M0 = M and, for each n ≥ 0,
1. Mn+1/2, that is, level n + 1/2, is the polynomial closure of level n and
2. Mn+1, that is, level n + 1, is the Boolean closure of level n + 1/2.
The basis of the dot-depth hierarchy is the class of all finite and co-finite languages1 and their
classes are referred to as Bn (Bn+1/2, respectively), while the basis of the Straubing-Thérien
hierarchy is the class of languages that contains only the empty set and Σ∗ and their classes
are denoted by Ln (Ln+1/2, respectively). Their inclusion relation is given by

1 The dot-depth hierarchy, apart level B0, coincides with the concatenation hierarchy starting with the
language class {∅, {λ}, Σ+, Σ∗}.
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Bn+1/2 ⊆ Bn+1 ⊆ Bn+3/2 and Ln+1/2 ⊆ Ln+1 ⊆ Ln+3/2,

for n ≥ 0, and

Ln−1/2 ⊆ Bn−1/2 ⊆ Ln+1/2 and Ln ⊆ Bn ⊆ Ln+1,

for n ≥ 1. In particular, L0 ⊆ B0, B0 ⊆ B1/2, and L0 ⊆ L1/2. Both hierarchies are infinite
for alphabets of at least two letters and completely exhaust the class of star-free languages,
which can be described by expressions that use union, concatenation, and complementation,
but no Kleene star operation. For singleton letter alphabets, both hierarchies collapse to B0
and L1, respectively. Next, we describe the first few levels of each of these hierarchies:
Straubing-Thérien hierarchy: A language of Σ∗ is of level 0 if and only if it is empty or

equal to Σ∗. The languages of level 1/2 are exactly those languages that are a finite
(possibly empty) union of languages of the form Σ∗a1Σ∗a2 · · · akΣ∗, where the ai’s are
letters from Σ. The languages of level 1 are finite Boolean combinations of languages of
the form Σ∗a1Σ∗a2 · · · akΣ∗, where the ai’s are letters. These languages are also called
piecewise testable languages. In particular, all finite and co-finite languages are of level 1.
Finally, the languages of level 3/2 of Σ∗ are the finite unions of languages of the form
Σ∗

0a1Σ∗
1a2 · · · akΣ∗

k, where the ai’s are letters from Σ and the Σi are subsets of Σ.
Dot-depth hierarchy: A language of Σ∗ is of dot-depth (level) 0 if and only if it is finite or

co-finite. The languages of dot-depth 1/2 are exactly those languages that are a finite
union of languages of the form u0Σ∗u1Σ∗u2 · · · uk−1Σ∗uk, where k ≥ 0 and the ui’s are
words from Σ∗. The languages of dot-depth 1 are finite Boolean combinations of languages
of the form u0Σ∗u1Σ∗u2 · · · uk−1Σ∗uk, where k ≥ 0 and the ui’s are words from Σ∗.

It is worth mentioning that in [37] it was shown that partially ordered NFAs (with multiple
initial states) characterize the class L3/2, while partially ordered DFAs characterize the class
of R-trivial languages [7], a class that is strictly in between L1 and L3/2. For an automaton A

with input alphabet Σ, a state q is reachable from a state p, written p ≤ q, if there is a word
w ∈ Σ∗ such that q ∈ δ(p, w). An automaton is partially ordered if ≤ is a partial order.
Partially ordered automata are sometimes also called acyclic or weakly acyclic automata.
We refer to a partially ordered NFA (DFA, respectively) as poNFA (poDFA, respectively).

The fact that some of our results have a promise looks a bit technical, but the following
result implies that we cannot get rid of this condition in general. To this end, we study, for a
language class L, the following question of L-Membership.

Input: A finite automaton A.
Question: Is L(A) ∈ L?

▶ Theorem 1. For each level L of the Straubing-Thérien or the dot-depth hierarchies, the
L-Membership problem for NFAs is PSPACE-hard, even when restricted to binary alphabets.

Proof. For the PSPACE-hardness, note that each of the classes contains {0, 1}∗ and is closed
under quotients, since each class is a positive variety. As Non-universality is PSPACE-hard
for NFAs, we can apply Theorem 3.1.1 of [19], first reducing regular expressions to NFAs. ◀

For some of the lower levels of the hierarchies, we also have containment in PSPACE, but
in general, this is unknown, as it connects to the famous open problem if, for instance,
L-Membership is decidable for L = L3; see [27, 33] for an overview on the decidability
status of these questions. Checking for L0 up to L2 and B0 up to B1 containment for DFAs
can be done in NL and is also complete for this class by ideas similar to the ones used in [9].

FSTTCS 2021
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3 Inside Logspace

A language of Σ∗ belongs to level 0 of the Straubing-Thérien hierarchy if and only if it is
empty or Σ∗. The Intersection Non-emptiness problem for language from this language
family is not entirely trivial, because we have to check for emptiness. Since by our problem
definition the property of a language being a member of level 0 is a promise, we can do the
emptiness check within AC0, since we only have to verify whether the empty word belongs to
the language L specified by the automaton. In case ε ∈ L, then L = Σ∗; otherwise L = ∅.
Since in the definition of finite state devices we do not allow for ε-transitions, we thus only
have to check whether the initial state is also an accepting one. Therefore, we obtain:

▶ Theorem 2. The Intersection Non-emptiness problem for DFAs or NFAs accepting
languages from L0 belongs to AC0.

For the languages of level L1/2 we find the following completeness result.

▶ Theorem 3. The Intersection Non-emptiness problem for NFAs accepting languages
from L1/2 is NL-complete. Moreover, the problem remains NL-hard even if we restrict the
input to NFAs over a unary alphabet. If the input instance contains only DFAs, the problem
becomes L-complete (under weak reductions2).

Hardness is shown by standard reductions from variants of graph accessibility [17,41].

▶ Lemma 4. The Intersection Non-emptiness problem for NFAs over unary alphabet
accepting languages from L1/2 is NL-hard. If the input instance contains only DFAs, the
problem becomes L-hard under weak reductions.

It remains to show containment in logspace. To this end, we utilize an alternative
characterization of the languages of level 1/2 of the Straubing-Thérien hierarchy as ex-
actly those languages that are shuffle ideals. A language L is a shuffle ideal if, for every
word w ∈ L and v ∈ Σ∗, the set w�v is contained in L, where w�v := { w0v0w1v1 . . . wkvk |
w = w0w1 . . . wk and v = v0v1 . . . vk with wi, vi ∈ Σ∗, for 0 ≤ i ≤ k }. The operation � nat-
urally generalizes to sets. For the level L1/2, we find the following situation.

▶ Lemma 5. Let m ≥ 1 and languages Li ⊆ Σ∗, for 1 ≤ i ≤ m, be shuffle ideals, i.e.,
they belong to L1/2. Then,

⋂m
i=1 Li ̸= ∅ iff the shuffle ideal L1L2 · · · Lm ̸= ∅ iff Li ̸= ∅ for

every i with 1 ≤ i ≤ m. Finally, Li ̸= ∅, for 1 ≤ i ≤ m, iff (a1a2 . . . ak)ℓi ∈ Li, where
Σ = {a1, a2, . . . ak} and the shortest word in Li is of length ℓi.

Now, we are ready to prove containment in logspace.

▶ Lemma 6. The Intersection Non-emptiness problem for NFAs accepting languages
from L1/2 belongs to NL. If the input instance contains only DFAs, the problem is solvable
in L.

Proof. In order to solve the Intersection Non-emptiness problem for given finite auto-
mata A1, A2, . . . , Am with a common input alphabet Σ, regardless of whether they are
deterministic or nondeterministic, it suffices to check non-emptiness for all languages L(Ai),
for 1 ≤ i ≤ m, in sequence, because of Lemma 5. To this end, membership of the words
(a1a2 . . . ak)ℓi in Li has to be tested, where ℓi is the length of the shortest word in Li. Obvi-
ously, all ℓi are linearly bounded in the number of states of the appropriate finite automaton

2 Some form of AC0 reducibility can be employed.
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that accepts Li. Hence, for NFAs as input instance, the test can be done on a nondetermin-
istic logspace-bounded Turing machine, guessing the computations in the individual NFAs on
the input word (a1a2 . . . ak)ℓi . For DFAs as input instance, nondeterminism is not needed,
so that the procedure can be implemented on a deterministic Turing machine. ◀

4 NP-Completeness

In contrast to the Straubing-Thérien hierarchy, the Intersection Non-emptiness problem
for languages from the dot-depth hierarchy is already NP-hard in the lowest level B0. More
precisely, Intersection Non-emptiness for finite languages is NP-hard [34, Theorem 1]
and B0 already contains all finite languages. Hence, the Intersection Non-emptiness
problem for languages from the Straubing-Thérien hierarchy of level L1 and above is NP-hard,
too. For the levels B0, B1/2, L1, or L3/2, we give matching complexity upper bounds if the
input are DFAs, yielding the first main result of this section proven in Subsection 4.1.

▶ Theorem 7. The Intersection Non-emptiness problem for DFAs accepting languages
from either B0, B1/2, L1, or L3/2 is NP-complete. The same holds for poNFAs instead
of DFAs. The results hold even for a binary alphabet.

For the level L1 of the Straubing-Thérien hierarchy, we obtain with the next main theorem a
stronger result. Recall that if all input DFAs accept languages from L1/2, the Intersection
Non-emptiness problem is L-complete due to Lemmata 4 and 6.

▶ Theorem 8. The Intersection Non-emptiness problem for DFAs is NP-complete even
if only one DFA accepts a language from L1 and all other DFAs accept languages from L1/2
and the alphabet is binary.

The proof of this theorem will be given in Subsection 4.2.
For the level B0, we obtain a complete picture of the complexity of the Intersection

Non-emptiness problem, independent of structural properties of the input finite automata,
i.e., we show that here the problem is NP-complete for general NFAs.

For the level L3/2, if the input NFA are from the class of poNFA, which characterize
level L3/2, then the Intersection Non-emptiness problem is known to be NP-complete [28].
Recall that L3/2 contains the levels B1/2, and L1 and hence also languages from these classes
can be represented by poNFAs. But if the input automata are given as NFAs without any
structural property, then the precise complexity of Intersection Non-emptiness for B1/2,
L1, and L3/2 is an open problem and narrowed by NP-hardness and membership in PSPACE.
We present a “No-Go-Theorem” by proving that for an NFA accepting a co-finite language,
the smallest equivalent poNFA is exponentially larger in Subsection 4.3.

▶ Theorem 9. For every n ∈ N≥1, there exists a language Ln ∈ B0 on a binary alphabet
such that Ln is recognized by an NFA of size O(n2), but the minimal poNFA recognizing Ln

has more than 2n−1 states.

While for NFAs the precise complexity for Intersection Non-emptiness of languages
from L1 remains open, we can tackle this gap by narrowing the considered language class
to commutative languages in level L1; recall that a language L ⊆ Σ∗ is commutative if, for
any a, b ∈ Σ and words u, v ∈ Σ∗, we have that uabv ∈ L implies ubav ∈ L. We show that
for DFAs, this restricted Intersection Non-emptiness problem remains NP-hard, in case
the alphabet is unbounded. Concerning membership in NP, we show that even for NFAs,
the Intersection Non-emptiness problem for commutative languages is contained in NP

FSTTCS 2021
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in general and in particular for commutative languages on each level. This generalizes the
case of unary NFAs. Note that for commutative languages, the Straubing-Thérien hierarchy
collapses at level L3/2. See Subsection 4.4 for the proofs.

▶ Theorem 10. The Intersection Non-emptiness problem
is NP-hard for DFAs accepting commutative languages in L1, but
is contained in NP for NFAs accepting commutative languages that might not be star-free.

The proof of NP-hardness for commutative star-free languages in L1 requires an arbitrary
alphabet. However, we show that Intersection Non-emptiness is contained in XP for
specific forms of NFAs such as poNFAs or DFAs accepting commutative languages, with the
size of the alphabet as the parameter, i.e., for fixed input alphabets, our problem is solvable
in polynomial time.

4.1 NP-Membership
Next, we focus on the NP-membership part of Theorem 7 and begin by proving that for B0,
regardless of whether the input automata are NFAs or DFAs, the Intersection Non-
emptiness problem is contained in NP and therefore NP-complete in combination with [34].

▶ Lemma 11. The Intersection Non-emptiness problem for DFAs or NFAs all accepting
languages from B0 is contained in NP.

Proof. Let A1, A2, . . . , Am be NFAs accepting languages from B0. If all NFAs accept co-finite
languages, which can be verified in deterministic polynomial time, the intersection

⋂m
i=1 L(Ai)

is non-empty. Otherwise, there is at least one NFA accepting a finite language, where the
longest word is bounded by the number of states of this device. Hence, if

⋂m
i=1 L(Ai) ̸= ∅,

there is a word w of length polynomial in the length of the input that witnesses this fact.
Such a w can be nondeterministically guessed by a Turing machine checking membership
of w in L(Ai), for all NFAs Ai, in sequence. This shows containment in NP as desired. ◀

Notice that Masopust and Krötzsch have shown in [28] that Intersection Non-
emptiness for poDFAs and for poNFAs is NP-complete. Also the unary case is discussed
there, which can be solved in polynomial time. We cannot directly make use of these results,
as we consider arbitrary NFAs or DFAs as inputs, only with the promise that they accept
languages from a certain level of the studied hierarchies. In order to prove that for the
levels B0, B1/2, L1, and L3/2, the Intersection Non-emptiness problem for DFAs is
contained in NP, it is sufficient to prove the claim for L3/2 as all other stated levels are
contained in L3/2. We prove the latter statement by obtaining a bound, polynomial in the
size of the largest DFA, on the length of a shortest word accepted by all DFAs. Therefore,
we show that for a minimal poNFA A, the size of an equivalent DFA is lower-bounded by
the size of A and use a result of [28] for poNFAs. They have shown that given poNFAs
A1, A2, . . . , Am, if the intersection of these automata is non-empty, then there exists a word
of size at most

∑
i∈{1,...,m} di, where di is the depth of Ai [28, Theorem 3.3]. Here, the depth

of Ai is the length of the longest path (without self-loops) in the state graph of Ai. This result
implies that the Intersection Non-emptiness problem for poNFAs accepting languages
from L3/2 is contained in NP. We will further use this result to show that the Intersection
Non-emptiness problem for DFAs accepting languages from L3/2 is NP-complete. First, we
show that the number of states in a minimal poNFA is at most the number of classes in the
Myhill-Nerode equivalence relation.
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1
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1

Σ Σ Σ Σ
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Figure 2 DFA Aei with L(Aei ) = Σi1 · 1 · Σn−i1−1 ∪ Σi2 · 1 · Σn−i2−1 ∪ Σ≥n+1. A dotted arrow
between some states j and j′ represents a chain of length j′ − j with the same transition labels.

▶ Lemma 12. Let A = (Q, Σ, δ, q0, F ) be a minimal poNFA. Then, L(q1A) ̸= L(q2A) for all
states q1, q2 ∈ Q, where qA is defined as (Q, Σ, δ, q, F ).

Now, we can use the result from Masopust and Krötzsch to prove that the Intersection
Non-emptiness problem for DFAs accepting languages in L3/2 is in NP.

▶ Lemma 13. The Intersection Non-emptiness problem for DFAs accepting languages
from L3/2 belongs to NP.

Proof. By Lemma 12, we have that the number of states in a minimal poNFA is at most the
number of classes of the Myhill-Nerode equivalence relation. Hence, given a DFA accepting
a language L ∈ L3/2, there exists a smaller poNFA that recognizes L. By [28, Theorem 3.3],
if the intersection is not empty, then there is a certificate of polynomial size. ◀

4.2 NP-Hardness
Recall that by [34, Theorem 1] Intersection Non-emptiness for finite languages accepted
by DFAs is already NP-complete. As the level B0 of the dot-depth hierarchy contains all finite
language, the NP-hardness part of Theorem 7 follows directly from inclusion of language
classes. Combining Lemma 13, and [28, Theorem 3.3] with the inclusion between levels in
the Straubing-Thérien and the dot-depth hierarchy, we conclude the proof of Theorem 7.
▶ Remark 14. Recall that the dot-depth hierarchy, apart form B0, coincides with the
concatenation hierarchy starting with the language class {∅, {λ}, Σ+, Σ∗}. The Intersection
Non-emptiness problem for DFAs or NFAs accepting only languages from {∅, {λ}, Σ+, Σ∗}
belongs to AC0, by similar arguments as in the proof of Theorem 2.
We showed in Section 3 that Intersection Non-emptiness for DFAs, all accepting
languages from L1/2, belongs to L. If we allow only one DFA to accept a language from L1,
the problem becomes NP-hard. The statement also holds if the common alphabet is binary.

▶ Theorem 8. The Intersection Non-emptiness problem for DFAs is NP-complete even
if only one DFA accepts a language from L1 and all other DFAs accept languages from L1/2
and the alphabet is binary.

Proof sketch. The reduction is from Vertex Cover. Let k ∈ N≥0 and let G = (V, E) be a
graph with vertex set V = {v0, v1, . . . , vn−1} and edge set E = {e0, e1, . . . , em−1}. The only
words w = a0a1 . . . aℓ accepted by all DFAs will be of length exactly n = ℓ + 1 and encode a
vertex cover by: vj is in the vertex cover if and only if aj = 1. Therefore, we construct for
each edge ei = {vi1 , vi2} ∈ E, with i1 < i2, a DFA Aei , as depicted in Figure 2, that accepts
the language L(Aei

) = Σi1 · 1 · Σn−i1−1 ∪ Σi2 · 1 · Σn−i2−1 ∪ Σ≥n+1. We show that L(Aei
)

is from L1/2, as it also accepts all words of length at least n + 1. We further construct a
DFA A=n,≤k that accepts all words of length exactly n that contain at most k letters 1. The
finite language L(A=n,≤k) is the only language from L1 in the instance. ◀
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4.3 Large Partially Ordered NFAs
The results obtained in the last subsection left the precise complexity membership of
Intersection Non-emptiness in the case of input automata being NFAs without any
structural properties for the levels B1/2, L1, and L3/2 open. We devote this subsection to
the proof of Theorem 9, showing that already for languages of B0 being accepted by an NFA,
the size of an equivalent minimal poNFA can be exponential in the size of the NFA.

▶ Theorem 9. For every n ∈ N≥1, there exists a language Ln ∈ B0 on a binary alphabet
such that Ln is recognized by an NFA of size O(n2), but the minimal poNFA recognizing Ln

has more than 2n−1 states.

Proof. While the statement requires languages over a binary alphabet, we begin by con-
structing an auxiliary family (Mn)n∈N≥1 of languages over an unbounded alphabet. For all
n ∈ N≥1 we then define Ln by encoding Mn with a binary alphabet, and we prove three
properties of these languages that directly imply the statement of the Theorem.

For every n ∈ N≥1, we define the languages M ′
n and M ′′

n over the alphabet {1, 2, . . . , n}
as follows. The language M ′

n contains all the words of odd length, and M ′′
n contains all the

words in which there are two occurrences of some letter i ∈ {1, 2, . . . , n} with only letters
smaller than i appearing in between.3 Formally,

M ′
n = { x ∈ {1, 2, . . . , n}∗ | |x| is odd },

M ′′
n = { xiyiz ∈ {1, 2, . . . , n}∗ | i ∈ {1, 2, . . . , n}, y ∈ {1, 2, . . . , i − 1}∗ }.

We then define Mn as the union M ′
n ∪ M ′′

n . Moreover, we define Ln by encoding Mn with the
binary alphabet {a, b}: Let us consider the function ϕn : {1, 2, . . . , n}∗ → {a, b}∗ defined by
ϕ(i1i2 . . . im) = ai1bn−i1ai2bn−i2 . . . aimbn−im . We set Ln ⊆ {a, b}∗ as the union of ϕn(Mn)
with the language {a, b}∗ \ ϕ({1, 2, . . . , n}∗) containing all the words that are not a proper
encoding of some word in {1, 2, . . . , n}∗.

The statement of the theorem immediately follows from the following claim

▷ Claim 15. 1. The languages Mn and Ln are cofinite, thus they are in B0.
2. The languages Mn and Ln are recognized by NFAs of size n + 4, resp. O(n2).
3. Every poNFA recognizing either Mn or Ln has a size greater than 2n−1.

The formal proof of this claim is presented in the long version [3]. ◀

4.4 Commutative Star-Free Languages
In the case of commutative languages, we have a complete picture of the complexities for both
hierarchies, even for arbitrary input NFAs. Observe, that commutative languages generalize
unary languages, where it is known that for unary star-free languages both hierarchies collapse.
For commutative star-free languages, a similar result holds, employing [18, Prop. 30].

▶ Theorem 16. For commutative star-free languages the levels Ln of the Straubing-Thérien
and Bn of the dot-depth hierarchy coincide for all full and half levels, except for L0 and B0.
Moreover, the hierarchy collapses at level one.

Next we will give the results, summarized in Theorem 10, for the case of the commutative
(star-free) languages. The NP-hardness follows by a reduction from 3-CNF-SAT.

3 The languages (M ′′
n )n∈N≥1 were previously studied in [22] with a game-theoretic background. We also

refer to [30] for similar “fractal languages.”
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Figure 3 An example of a non-totally star-free NFA that accepts a star-free language.

▶ Lemma 17. The Intersection Non-emptiness problem is NP-hard for DFAs accepting
commutative languages in L1.

The upper bound shown next also holds for arbitrary commutative languages.

▶ Theorem 18. The Intersection Non-emptiness problem for NFAs accepting arbitrary,
i.e., not necessarily star-free, commutative languages is in NP.

Proof. It was shown in [38] that Intersection Non-emptiness is NP-complete for unary
NFAs as input. Fix some order Σ = {a1, a2, . . . , ar} of the input alphabet. Let A1, A2, . . . , Am

be the NFAs accepting commutative languages with Ai = (Qi, Σ, δi, q0,i, Fi) for 1 ≤ i ≤ m.
Without loss of generality, we may assume that every Fi is a singleton set, namely Fi = {qf,i}.
For each 1 ≤ i ≤ m and 1 ≤ j ≤ r, let Bi,j be the automaton over the unary alphabet {aj}
obtained from Ai by deleting all transitions labeled with letters different from aj and only
retaining those labeled with aj . Each Bi,j will have one initial and one final state. Let
q⃗0 = (q0,1, q0,2, . . . , q0,m) be the tuple of initial states of the NFAs; they are the initial states
of B1,1, B2,1, . . . , Bm,1, respectively. Then, nondeterministically guess further tuples q⃗j from
Q1 ×Q2 × . . .×Qm for 1 ≤ j ≤ r −1. The jth tuple is considered as collecting the final states
of the Bi,j but also as the start states for the Bi,j+1. Finally, let q⃗f = (qf,1, qf,2, . . . , qf,m)
and consider this as the final states of B1,r, B2,r, . . . , Bm,r. Then, for each 1 ≤ j ≤ r solve
Intersection Non-emptiness for the unary automata B1,j , B2,j , . . . , Bm,j . If there exist
words wj in the intersection of L(B1,j), L(B2,j), . . . , L(Bm,j), for each 1 ≤ j ≤ r, then,
by commutativity, there exists one in a∗

1a∗
2 · · · a∗

r , namely, w1w2 · · · wm, and so the above
procedure finds it. Conversely, if the above procedure finds a word, this is contained in the
intersection of the languages induced by the Ai’s. ◀

For fixed alphabets, we have a polynomial-time algorithm, showing that the problem
is in XP for alphabet size as a parameter, for a class of NFAs generalizing, among others,
poNFAs and DFAs (accepting star-free languages). This is in contrast to the other results
on the Intersection Non-emptiness problem in this paper. We say that an NFA
A = (Q, Σ, δ, q0, F ) is totally star-free, if the language accepted by qAp = (Q, Σ, δ, q, {p}) is
star-free for any states q, p ∈ Q. For instance, partially ordered NFAs are totally star-free.

An example of a non-totally star-free NFA accepting a star-free language is given next.
Consider the following NFA A = ({q0, q1, q2, q3}, δ, q0, {q0, q2}) with δ(q0, a) = {q1, q2},
δ(q1, a) = {q0}, δ(q2, a) = {q3}, and δ(q3, a) = {q2} that accepts the language {a}∗. The
automaton is depicted in Figure 3. Yet, neither L(q0Aq0) = {aa}∗ nor L(q0Aq2) = {a}{aa}∗ ∪
{ε} are star-free.
The proof of the following theorem uses classical results of Chrobak and Schützenberger [10,36].

▶ Theorem 19. The Intersection Non-emptiness problem for totally star-free NFAs
accepting star-free commutative languages, i.e., commutative languages in L3/2, is contained
in XP (with the size of the alphabet as the parameter).
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▶ Remark 20. Note that Theorem 19 does not hold for arbitrary commutative languages
concerning a fixed alphabet, but only for star-free commutative languages, since in the general
case, the problem is NP-complete even for languages over a common unary alphabet [38].

5 PSPACE-Completeness

Here, we prove that even when restricted to languages from B1 or L2, Intersection Non-
emptiness is PSPACE-complete, as it is for unrestricted DFAs or NFAs. We will profit from
the close relations of Intersection Non-emptiness to the Non-universality problem
for NFAs: Given an NFA A with input alphabet Σ, decide if L(A) ̸= Σ∗. Conversely, we can
also observe that Non-universality for NFAs is PSPACE-complete for languages from B1.

▶ Theorem 21. The Intersection Non-emptiness problem for DFAs or NFAs accepting
languages from B1 or L2 is PSPACE-complete, even for binary input alphabets.

As B1 ⊆ L2, it is sufficient to show that the problem is PSPACE-hard for B1. While without
paying attention to the size of the input alphabet, this result can be readily obtained by
re-analyzing Kozen’s original proof in [24], the restriction to binary input alphabets needs
some more care. Details can be found in the long version [3]. We modify the proof of
Theorem 3 in [25] that showed PSPACE-completeness for Non-universality for poNFAs
(that characterize the level 3/2 of the Straubing-Thérien hierarchy). Also, it can be observed
that the languages involved in the intersection are actually locally testable languages. Without
giving details of definitions, we can therefore formulate:

▶ Corollary 22. The Intersection Non-emptiness problem for DFAs or NFAs accepting
locally testable languages is PSPACE-complete, even for binary input alphabets.

By the proof of Theorem 3 in [25], also
⋃

i Li belongs to B1, so that we can conclude:

▶ Corollary 23. The Non-universality problem for NFAs accepting languages from B1 is
PSPACE-complete, even for binary input alphabets.

6 Conclusion and Open Problems

We have investigated how the increase in complexity within the dot-depth and the Straubing-
Thérien hierarchies is reflected in the complexity of the Intersection Non-emptiness
problem. We have shown the complexity of this problem is already completely determined
by the very first levels of either hierarchy.

Our work leaves open some very interesting questions and directions of research. First, we
were not able to prove containment in NP for the Intersection Non-emptiness problem
when the input automata are allowed to be NFAs accepting a language in the level 3/2 or
in the level 1 of the Straubing-Thérien hierarchy. Interestingly, we have shown that such
containment holds in the case of DFAs, but have shown that the technique we have used to
prove this containment does not carry over to the context of NFAs. In particular, to show
this we have provided the first exponential separation between the state complexity of general
NFAs and partially ordered NFAs. The most immediate open question is if Intersection
Non-emptiness for NFAs accepting languages in B1/2, L1, or L3/2 is complete for some level
higher up in the polynomial-time hierarchy (PH), or if this case is already PSPACE-complete.
Another tantalizing open question is whether one can capture the levels of PH in terms
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of the Intersection Non-emptiness problem when the input automata are assumed to
accept languages belonging to levels of a sub-hierarchy of L2. Such sub-hierarchies have been
considered for instance in [23].

It would also be interesting to have a systematic study of these two well-known sub-
regular hierarchies for related problems like Non-universality for NFAs or Union Non-
universality for DFAs. Notice the technicality that Union Non-universality (similar
to Intersection Non-emptiness) has an implicit Boolean operation (now union instead
of intersection) within the problem statement, while Non-universality lacks this implicit
Boolean operation. This might lead to a small “shift” in the discussions of the hierarchy
levels that involve Boolean closure. Another interesting hierarchy is the group hierarchy [32],
where we start with the group languages, i.e., languages acceptable by automata in which
every letter induces a permutation of the state set, at level 0. Note that for group languages,
Intersection Non-emptiness is NP-complete even for a unary alphabet [38]. As Σ∗ is a
group language, the Straubing-Thérien hierarchy is contained in the corresponding levels
of the group hierarchy, and hence, we get PSPACE-hardness for level 2 and above in this
hierarchy. However, we do not know what happens in the levels in between.
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